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ABSTRACT

The purpose of this thesis is to find suitable ways to design feedback compensators

for high order systems by using Root-Locus methods.

As a starting point we will examine a motor amplidyne system and a position con-

trol system that were previously designed using Bode methods. Then we generalize the

method and extend it to other systems.

The final subject of this thesis is to design feedback compensators as filters by using

state feedback coelficients to define zeros of the filter, then we extend this idea to build

cascade filters.

m



TABLE OF CONTENTS

I. INTRODUCTION 1

II. PRELIMINARY EXAMPLES 2

A. HIGH GAIN MOTOR AMPLIDYNE SYSTEM 2

P. POSITION CONTROL SYSTEM 16

III. DESIGNING COMPENSATORS 33

A. NON-MINIMUM PHASE SYSTEMS 33

B. FLEXIBLE ROCKET CONTROL SYSTEM 73

IV. DESIGNING FEEDBACK COMPENSATORS USING POLE PLACE-

MENT 85

A. ALL COMPONENTS ARE IN THE LEFT HALF PLANE 85

B. NON-MINIMUM PHASE SYSTEMS 91

C. EXTENDING THE IDEA TO CASCADE COMPENSATION 100

V. CONCLUSIONS AND RECOMMENDATIONS 112

A. CONCLUSIONS 112

B. RECOMMENDATIONS 112

APPENDIX A. CONSTRAINT PARAMETERS OF FUNCTION MINIMIZA-

TION 113

APPENDIX B. COMPUTER PROGRAM FOR FUNCTION MINIMIZATION 115

LIST OF REFERENCES 117

INITIAL DISTRIBUTION LIST 118

IV



LIST OF FIGURES

gure 1. Original Compensated System 2

gure 2. Open Loop Bode Plot 3

gure 3. Ordinary Manipulation 4

gure 4. Comp System Open Loop Bode 5

gure 5. Comp System Root-Locus 6

gure 6. Comp Sysytem Magnified Root- Locus 7

gure 7. Comp System Time response 8

gure 8. First Step For Manipulation 9

gure 9. Final System For Root-Locus Examination 9

gure 10. Uncompensated System Root-Locus 11

gure 11. G and 111 Magnitude Curves 12

gure 12. Bode Plot For Loop Transfer Function GII(s) 13

gure 13. Root-Locus For Loop Transfer Function GIl(s) 14

gure 14. Magnified Root-Locus For Loop Transfer Function GH(s) 15

gure 15. Original Compensated System 16

gure 16. Uncompensated System Open Loop Bode Plot 17

gure 17. Ordinary Manipulation IS

gure 18. Compensated System Open Loop Bode Plot 19

gure 19. Compensated System Root-Locus 20

gure 20. Magnified Root- Locus 21

gure 21. Compensated System Time Response 22

gure 22. First Step For Manipulation 23

gure 23. Final System For Root-Locus Examination 23

gure 24. Root-Locus For Uncompensated System 26

gure 25. G and 111 Magnitude Curves 27

gure 26. Root-Locus For The Loop Transfer Function GH(s) 28

gure 27. Magnified Root-Locus For The Loop Transfer Function GII(s) 29

gure 28. The Same System With Two Zeros at Origin 30

gure 29. Two Zeros Pole at s = -50 31

gure 30. Two Zeros Pole at s = -75 32

gure 31. Oricinal Svstem 33



Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

gure 4F

gure 42.

gure 43.

gure 44.

gure 45.

gure 46.

gure 47.

gure 48.

gure 49.

gure 50.

gure 51.

gure 52.

gure 53.

gure 54.

gure 55.

gure 56.

gure 57.

gure 58.

gure 59.

ure 60.

re 61.

ure 62.

ure 63.

ure 64.

ure 65.

e 66.

F

F

F

F

F

F

F

F

F

F

Fig

F

Fig

Fig

Fig

Fig

Fie

sui

UP

Uncompensated System Open Loop Bode 34

Root-Locus For Uncompensated System 35

Magnified Root-Locus For Uncompensated System ig

Loop Transfer Function Form 37

Root-Locus For Loop Transfer Function 3g

Magnified Root-Locus For Loop Transfer Function 39

Compensated System 40

Resulting Equivalent G 40

Root-Locus For Final System 41

Magnifed Root-Locus For Final System 42

Bode Plot Without Outside Gain 43

Time Response Without Outside Gain 44

Final Compensated System 45

Bode Plot For Final System Loop Gain = 100 4$

Final System Loop Gain = 100 47

Loop Transfer Function Form 48

Root-Locus For Loop Transfer Function 49

Magnified Root-Locus For Loop Transfer Function 50

Compensated System 51

Resulting Equivalent G 51

Root-Locus For Final System 52

Magnified Root-Locus For Final System 53

Bode Plot Without Outside Gain 54

Time Response Without Outside Gain 55

Final Compensated System 56

Bode Plot For Final System Loop Gain = 100 57

Final System Loop Gain =100 58

Loop Transfer Function Form 59

Root-Locus For Loop Transfer Function 60

Magnified Root-Locus For Loop Transfer Function 61

Compensated System 62

Resulting Equivalent G 63

Bode Plot Without Outside Gain 64

Time Response Without Outside Gain 65

Final Compensated System 66

vi



sure 67. Bode Plot For Final System Loop Gain =100 67

gure 68. Final System Loop Gain =100 68

gure 69. Final System Loop Gain = 500 70

gure 70. Final System Loop Gain = 1000 71

gure 71. Original Uncompensated System 72

gure 72. Combined Uncompensated System 73

gure 73. Root-Locus For Uncompensated System 74

gure 74. Illustration of General Configuration 75

gure 75. Root-Locus for General Type Compensated System 76

gure 76. First Resulting Compensator of Function Minimization 77

gure 77. Root-Locus for First FM Result 78

gure 78. lime Response for First FM Result 79

gure 79. Second compensator Resulting from Function Minimization 80

gure SO. Root-Locus for Second FM Result 81

gure 81. Time Response for Second FM Result 82

gure 82. Block Diagram of Total Compensated System S3

gure 83. State Feedback Compensated System 85

gure 84. Root-Locus For State Feedback Loop Transfer Function 86

gure 85. The Form of The System With Unity Feedback 87

gure 86. System With Fxtra Poles 88

gure 87. Root-Locus For Filter Feedback Loop Transfer Function 89

gure 88. Final Compensated System 90

gure 89. Time Response for Only State Feedback Compensated System 91

gure 90. Time Response for Filter Compensated System 92

gure 91. State Feedback to Compensate The System 94

gure 92. Root-Locus For State Feedback Loop Transfer Function 95

gure 93. The Form of The System With Unity Feedback 96

gure 94. System With Extra Poles 96

gure 95. Root-Locus For Filter Feedback Loop Transfer Function 98

gure 96. Final Compensated System 99

gure 97. Time Response For Only State Feedback Compensated System 1 00

gure 98. Time Response For Filter Compensated System 101

gure 99. Cascade Compensated System 102

gure 100. Time Response for Cascade Compensator 103

gure 101. Cascade Compensated Second System 104

vii



Figure 102. Time Response For Cascade Compensator (Second example) 105

Figure 103. ALCON Simulation of First Problem 107

Figure 104. ALCON Simulation of Second Problem 108

Figure 105. Second DSL Simulation of First Problem 109

Fiaure 106. Second DSL Simulation of Second Problem 110

VUJ



ACKNOWLEDGEMENTS

A significant debt of gratitude is owed to Dr.George J. Thaler, for the many hours

of assistance and guidance he has extended, from the author's first course in control

theory through more advanced courses, and especially for his help in the prcperation of

this thesis.

Also 1 would like to express my sincere appreciation to Dr. Hal A. Titus of the

Department of Electrical and Computer Engineering of the Naval Postgraduate School,

my second reader.

To my wife, Huray Korkmaz and my family, for their encouragement and patience,

I am deeply grateful.

Finally, I wish to express my appreciation to the Turkish Navy Authority for the

opportunity to study in the Naval Postgraduate School.

IX





I. INTRODUCTION

Modern control systems may be compensated by placing a suitable filter in either

the forward (cascade) path or in a feedback path.

Mainly feedback systems have the advantage that the output follows the command

more accurately, so the steady state error is less, the bandwidth is greater, and the speed

of response is faster. Also we can say that the effect of external disturbances and internal

changes in the parameters or structure of the system is significantly reduced.

The conventional and more common way to design a Feedback compensator to

meet a given set of specifications is the Bode plot method, by determining a suitable gain

cross-over frequency and 1/H curve.

In this thesis we will try to find some rules to do the same design by using Root-

Locus methods. To achieve this, first we will examine several designs then try to put the

general ideas in a set of rules.

Simulation studies employed Dynamic Simulation Language (DSL) and Lwald

package in the IBM 3033/438 1 main frame.



II. PRELIMINARY EXAMPLES

A. HIGH GAIN MOTOR AMPLIDYNE SYSTEM
To study the ideas for feedback compensation first we choose an industrial design

that exists and is available for comparison. Figure 1 shows the whole compensated

system, where

Figure 1. Original Compensated System

A', = 14.8 (1)

G,(s)-
1209.8

H{s) =

s(s + 57.96)(5 + 0.12+/9.32)

0.1375
3

(5 + 62.5)(5 + 71.65)

(5+ l)(5 + 5.26)(5 + 625)

(2)

(3)

Figure 2 shows the open loop Bode plot for the uncompensated system. The un-

compensated system is badly unstable.
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Figure 2. Open Loop Bode Plot
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We may use two different kinds of block diagram manipulation to analyze this sys-

tem. First is the ordinary manipulation shown at Figure 3, where

R J. ^
if ~N fe. \*4 h. 0~~V\ j w i v i w u^M

k\ .

- 1

Figure 3. Ordinary Manipulation

A' = 14.8 (4)

Gcq
=

6096553. I4{s + \){s + 5.26)(.s + 625)

s{s + 0.003+/'0.U66j(5 + 59.35)(s + 79.2)(5 + 275.45+/S45.S)
(5)

Analysis of this transfer function provides the open loop Bode plot, Root- Locus,

magnified Root-Locus and time response of the system which are given by Figures 4 -

7. Since there is no pole in the right half plane, we can get phase margin and gain margin

from these plots.



L33QJ XHd
in

l£>

MTO
Figure 4. Comp System Open Loop Bode
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Figure 7. Comp System Time response



The second type of manipulation is done to get more information using the Root-

Locus method. "Hie first step for this is shown at figure 8. Then with the appropriate

block diagram reduction the system becomes as in Figure 9, where

1

4. -.

—K>-—* K1 * Pj1

1

i i _

1 1 IK 1 ~4 N -4
i / r\ i ^ 1 1 ^ '

"'Will

Figure 8. First Step For Manipulation

Figure 9. Final System For Root- Locus Examination

G3(s) =
17905

(5 + 579.97)(5 + 56A4){s - 26.98+J45.19)
(6)



_ 0.00926s
3

(s + 62.16)(s+71.92)mW-
(5+ l)(5 + 5.24)(5+ 625.33)

(7)

By using the loop transfer function GIl(s) to draw the Root-Locus we may examine

the system for root movements. Since the G(s) has two poles in the right half plane, the

Bode plot cannot be interpreted from the point of view of gain margin or phase margin,

but it shows the stability of the system.

The root locus for the uncompensated system is shown at Figure 10.

From this point we can proceed to explore the design procedure of the designer.

First of all, since this design was done using Bode design methods, it will be helpful to

get the Gl and I'll magnitude curve which is shown at Figure 1 1 lor the original system

at Figure 1.

As we may see from the block diagram there are zeros at the origin. For this system

wc need at least two zeros to keep the system type number unchanged. Also the spec-

ifications show that we want to have a very high error coefficient for steady state accu-

racy and a very narrow bandwidth. Because of these characteristics, there is a dipole near

the origin. It is possible to see this on the Bode plot of Figure 1 1.

The designer could have put the third zero very close to origin but in that case

building the system might difficult.

Since other poles are far away compared with these zeros and dipole, these compo-

nents will decide the system behaviour.

The Bode plot, Root-Locus and magnified Root-Locus around the origin for the

loop transfer function GH(s) are given by Figures 12 - 14. Since we have roots in the

right half plane, the Bode plot cannot be interpreted for phase and gain margin values.

As a result of this problem we may say that for high error coefficient and narrow

bandwidth systems we may need zeros at the origin and a dipole very close to the origin.

10
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Figure 11. G and 1/H Magnitude Curves
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B. POSITION CONTROL SYSTEM

As a second example we chose a position control system having an amplidyne and

a DC armature controlled motor as its power element. Figure 15 shows the original

compensated system, where

Ch>0 k> n * G1

G5

G2
i

.

\ _

G3
1

G4

w

Kh
< -4

Figure 15. Original Compensated System

A; = 0.233

Kh
= 0.061

(8)

(9)

r l 2000
1

==

0.07S.S + 1

G,=
1

1.885(0.04025+ 1)

(10)

(11)

G
3
= 0.3335

G, = 0.00465

'

(12)

(13)

G,=
5
2 + 6.55+ 10

(14)

16



Figure 16 shows the open loop Bode plot for the uncompensated system. The un-

compensated system is badly unstable.

fVi

(9301 T0H«J

ibtjj ion

Figure 16. Uncompensated System Open Loop Bode Plot
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Again we may use two different kinds of block diagram manipulation to analyze this

system.

First is the ordinary manipulation shown at Figure 17, where

R +• .
. c

-—ic )— Kc —* ^ 1

—
a .

-
V

Figure 17. Ordinary Manipulation

A; = 0.233

Geq
=

12000(r + 6.55 + 10)

0.00595
5 + 3.62855s

4 + 247.1445s
3 + 14.45s

2 + 18.8*
(16)

Analysis of this transfer function provides the open loop Bode plot, Root-Locus,

magnified Root-Locus, and time response of the system which are given by Figures 18

- 21

Since there is no root in the right half plane, we can get phase and gain margins from

this plot.

18
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Figure 21. Compensated System Time Response
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The second type of manipulation is done to get more information using the Root-

Locus method. The first step for this is shown at Figure 22.

D • r.n_*Q_* Kc — G1 - fe. rmw yjid.

i i .

<*

I— G3 —

I

Kc/KI-*- G5

4I G4 —
_i

Figure 22. First Step For Manipulation

Then with the appropriate block diagram reduction the system becomes as in

Figure 23, where

Figure 23. Fifial System For Root-Locus Examination

23



r = 473898.3

{s-26.72+jb6.S)){s + 9[J4) K
'

0.00 12.^(5 + 72.39)

" =
(, + 2.5X5 + 4J

(18)

By using the loop transfer function GH(s) to draw the Root-Locus we may examine

the system for root movements. Since G(s) has two roots in the right half plane, the

Bode plot of this cascade combination cannot be interpreted from the point of view of

gain margin or phase margin, but it shows the stability of the system.

The root locus for the uncompensated system is shown in Figure 24. From this

point we can proceed to explore the design procedure of the designer.

First of all, since this design was done using Bode design methods, it will be helpful

to get the G and I'll magnitude curve which are shown in Figure 25 for the original

system in Figure 15.

As we may see from the block diagram there are three zeros at the origin. As in the

first example we have to have at least one zero at the origin to keep the system type

number unchanged. Also since we want to keep the error coefficient unchanged we have

to have one additional zero at the origin. The reason for the third zero is to provide a

dipole near the origin to make the system have a very high error coefficient for steady

state accuracy and a very narrow bandwidth.

For the Gil(s), the Root-Locus and a close look around the origin to the Root-

Locus are given in Figures 26 and 27.

Now we may want to see the effect of removing some of the components from the

compensator. First, if we remove the third zero the Root-Locus becomes as in

Fisure 2S. The svstem is unstable. Now we mav want to bend the loci bv moving one

of the poles close to the origin toward left. If we start to move the pole which belongs

to the dipole at s = -2.5; Figure 29 shows the condition when this pole is at s = -50.

The system is still unstable. By putting this pole further from the zero at s = -72.39,

we can bend the loci toward the left half plane. We may interpret this as follows : when

we move the pole to the left we increase the sum of the poles and therefore the sum of

the roots. This affects the Root-Loci by moving the asymptote centroid to left, so the

loci from the right half plane cross into the left half plane. Figure 30 shows the Root-

Loci for this condition. Now we may want to examine the specifications of the system

24



and compare them with our specifications. Since the dominant roots are far away from

the origin the accuracy and damping will decrease, and the bandwidth of the system will

increase. These do not agree with our specifications.

After all these trials and sample designs we may summarize the results as a set of

rules for design of feedback compensation :

1. To keep the system type number unchanged put at least the same number of zeros

at the origin as the original system's type number.

2. To keep both the system type number and the error coefficient same unchanged,

the number of zeros at the origin should be N + 1, where N is the type number
of the uncompensated system.

3. To have high error coefficient and narrow bandwidth for steady state accuracy in-

clude a dipole close to the origin. Put the zero of the dipole at the origin for ease

in physical realization.

In the next chapter we will apply these rules to several different kinds of problems

and see whether thev work or not.

25
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Figure 25. G and 1/H Magnitude Curves
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III. DESIGNING COMPENSATORS

A. NON-MINIMUM PHASE SYSTEMS

Before studying systems that have all poles and zeros in the left half plane, we may

want to examine non-minimum phase systems. If we have a root or roots in the right

half plane we are not able to use Bode methods for designing compensators, therefore

the Root-Locus method will be the only useful tool.

To illustrate we chose the following transfer function, which is the roll mode of a

vertical take-off aircraft. Figure 31 shows the original system, where

R +y- c^\
fe, r^/o\

) * ^\p)
-

Figure 31. Original System

G(5) =
77.187(5 + 0.225 +J0.6607)

(5 - 0.0434)(5 + 1.464)(5 + 0.21 + y'0.844)(5 + 48.35 ±749.34)
(19)

As we may see from the transfer function, there is a real pole in the right half plane.

For this reason we can not use Bode methods to compensate the system. The open loop

Bode plot, Root-Locus and magnified Root-Locus for this system are given by Figures

32 - 34.

To find the closed loop roots we make the block diagram manipulations. Then the

closed loop transfer function becomes :

G,(5) =
77.187(5 + 0.225 ±j0.6607)

(5 - 0.036)(5 + 0.21 ±j0.84)(5 + 1.474)(5 + 48.34 ±y48.72)
(20)
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From this point on we may start to think in terms of Root-Locus and loop transfer

functions.

Since we will want to have loci from the pole in the right half plane toward the left,

we have to put cither a zero or a pole to the left of this pole. Putting a zero at the origin

will not help us, because in that case we always will have a root in the right half plane.

So we should put the compensator poles and zeros somewhere in the left half plane.

Choosing the specific zero and pole locations is an engineering decision and mostly de-

pends on the specifications. With this problem we will try to illustrate three different

combinations.

First put a zero close to the origin and a pole far away, both in the left half plane.

In this case the loop transfer function becomes as in Figure 35, where

R

i
c

b- p.ifM

1 n f°\"H^l

Figure 35. Loop Transfer Function Form

(7,(5) =
77.187(5 + 0.225 +J0.6607)

(5 - 0.036)(5 + 0.21 + 70.S4)(s + 1.474)(5 + 48.34 + y48.72)
(21)

//,(*) =
A-,(s+l)

(s + 50)
(22)

The Root-Locus and magnified Root-Locus for the loop transfer function are given

in Figures 36 and 37. As we may see from the plots there is a root-locus segment be-

tween the pole in the right half plane and the zero at -1.

To find the value for Ku we should get the tabulated points for the Root-Locus and

see for which gain all of the roots are in the left half plane. For this particular filter the

minimum value for A', was 203.7. We selected A', = 500 arbitrarily. For this value, our

system becomes as in Figure 38, where

37



*

o
•

8"

o
•

X
•

9"

e
•

•

8"

e
t

•

R

o
xn S
X
en o

,

~*
CJ>

°"
) \ Jh

1. a
»—• •

T
a

•

•

»

8
i

o
•

- •

•

i

o
t

•

„,.,.!, ._ 1

o
• v
•

8
-iSO.O -M .0 -4C .0 -3C1.0 -2£1.0 -ic1.0 .0 10.

REAL RX1S

Figure 36. Root- Locus For Loop Transfer Function

38



8

K YK
o

S D
8
o

AXIS

.00

0,

1 / "\

V ^

?

S

"*

?

R

(

D

?
k

8
•

•
1

i

'

1 i *"i
—

-2.00-l.7S -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.7S LOG

REAL AXIS

Figure 37. Magnified Root-Locus For Loop Transfer Function

39



G(s) =
77.187(5 + 0.225 T./0.6607)

(5 - 0.0434)(5 + 1.464)(5 + 0.21 + /).844)(5 + 48.35 + >49.34)

//,(*)=
500(5+ 1)

(5 + 50)

(23)

(24)

Figure 38. Compensated System

If we make the block diagram manipulation, we get the system shown in

Figure 39, where

R ir^ - G
eq<

S >

C
w

Figure 39. Resulting Equivalent G

Gea(s) =
77.187(5 + 0.225+/0.6617)(5+ 50)

(5 + 0.0269)(5 + 0.235+/0.842)(5 + 1.535)(5 + 49.67)(5 +48.41+/48.63)
(25)

The Root-Locus, magnified Root-Locus, open loop Bode plot and time response for

the compensated system are given in Figures 40 - 43. As we may see from the Bode plot

the system is stable but we do not have enough gain.
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Figure 43. Time Response Without Outside Gain
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We may handle this by putting another gain block outside the minor loop. The final

system then becomes as in Figure 44.

Figure 44. Final Compensated System

K may be selected according to the specifications. We chose K = 100 for illus-

tration.

G{s) =
77.187(5 + 0.225 +J0.6607)

(5 - 0.0434)(5 + 1.464)(5 + 0.21 +J0.844)(5 + 48.35 +J49.34)

77,(5) =
500(5+ 1)

(5 + 50)

(26)

(27)

The open loop Bode plot and time response for this particular values are given in

Figures 45 and 46. We may change the loop gain according to the specifications. Effects

of changing the loop gain will be shown for the third combination.
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The second type of configuration puts two complex zeros close to the origin and two

poles far away, all in the left half plane. In this case the loop transfer function becomes

as in Figure 47, where

Figure 47. Loop Transfer Function Form

<?,(*) =
77.187(5 + 0.225 +./0.6607)

(s - 0.036)(5 + 0.21 +70.84)(s + 1.474)(s + 4S.34 +748.72)
(28)

7/
2 (5)

=
K

2
(s+\+j)

(s + 20)(5 + 30)
(29)

The Root-Locus and magnified Root-Locus for the loop transfer function are given

in Figures 48 and 49. As we can see from the plots we moved the loci toward the left

half plane.
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To find a value for K2 ,
we should get the tabulated points for the Root-Locus and

see for which gain all of the roots are in the left half plane. For this particular filter the

minimum value for A'2 was 2125.8. We selected K2= 2500 arbitrarily, for this value, our

system becomes as in Figure 50, where

G(s) =
77.187(5 + 0.225+7'0.6607)

(5 - 0.0434)(5 + 1.464)(.s + 0.21 +ji).S44)(s + 48.35 +749.34)

H2{s)
2500(5 +I+7)

(5 + 20)(5 + 30)

(30)

(31)

-\ +s-

i

G(S)
C

J
i i

H2(S)

Figure 50. Compensated System

If we make the block diagram manipulation, we get the system shown in

Figure 51, where

R ±r^ ^ G
eq<

s >

c—K,

Figure 51. Resulting Equivalent G

77. 187(5 + 0.225 +70.66! 7)(5 + 20)(5 + 30)

eq^ ~
(5 + 0.007)(5 + 0.22+70.84)(5 + 1.427)(5 + 24.5+/6.3)(5 + 48.87+748.3)

(32)
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The Root-Locus, magnified Root-Locus, open loop Bode plot and time response for

the compensated system are given in Figures 52 - 55. As we may see from the Bode plot

the svstcm is stable but the gain is too low.
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Figure 55. Time Response Without Outside Gain
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We may handle this by putting another gain block outside the minor loop. The final

svstem then becomes as in Fieure 56.

Figure 56. Final Compensated System

K may be selected according to the specifications. We chose K = 100 for illus-

tration.

G(s) =
77.187(s + 0.225 T/0.6607)

(s - 0.0434)(5 + 1.464)(s + 0.21 + /).844)(5 + 48.35 + J49.34)

H2(s)
=

2500(5 4- 1 +7)

(5 + 20)(5 + 30)

(33)

(34)

The open loop Bode plot and time response for these particular values are given in

Figures 57 and 58. We may change the loop gain according to the specifications. Effects

of changing the loop gain will be shown with the next combination.

The third type of combination puts two complex zeros and one real pole close to the

origin and one pole far away, all in the left half plane. In this case the loop transfer

function becomes as in Figure 59, where
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Figure 58. Final System Loop Gain = 100
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Figure 59. Loop Transfer Function Form

0,(3)
77.187(5 + 0.225+70.6607)

(5 - 0.036)(5 + 0.21 +7'0.84)(5 + 1.474)(s + 48.34 +748.72)
(35)

7/
3 (5)

=
K

2
(s + 2 +70.5)

(5+ l)(5 + 50)
(36)

The Root-Locus and magnified Root-Locus for the loop transfer function are given

in Figures 60 and 61. As we may see from the plots the locus is moved toward the left

half plane.
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To find a value for A'3 , we should get the tabulated points for the Root-Locus and

see for which gain all of the roots are in the left half plane. For this particular filter the

minimum value for A'
3
was 81.6. We selected Ar

3
= 250 arbitrarily. By this, our system

becomes as in Figure 62, where

Figure 62. Compensated System

(7(5)=
77.187(5 + 0.225+70.6607)

(5 - 0.0434)(5 + 1.464)(5 + 0.21 Tv'0.844)(5 + 48.35 +749.34)
(37)

7/
3 (5)

=
250(5 + 2 + 0.5/1

(5 + 1)(5 + 50)
(38)

If we make the block diagram manipulation, we get the system shown in

Figure 63, where

GM 77.187(5 + 0.225 + j0.6617)(5 + \){s + 50)

(5 + 0.19)(5 + 0.236 +70.87)(5 + 1.52)(5 + 49.84)(5 + 48.37 +748.6)
(39)
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R io - G (s)
eq x

C

-

Figure 63. Resulting Equivalent G

The open loop Bode plot and time response for the compensated system are given

in Figures 6*4 and 65, As we can see from the Bode plot the system is stable but the gain

is too low.
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Figure 64. Bode Plot Without Outside Gain
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Figure 65. Time Response Without Outside Gain
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We may handle this by putting another gain block outside the minor loop. The final

system then becomes as in Figure 66.

Figure 66. Final Compensated System

K may selected according to the specifications. We chose different values for illus-

tration.

G(s) =
77.187(5 + 0.225 +/I.6607)

{s - 0.0434)(s + 1.464)(5 + 0.21 +/).S44)(5 + 48.35 +,,49.34)

H3 (s)

250(5 + 2 + 0.5/)

(5+ lj(5+50j

(40)

(41)

The open loop Bode plot and time response for K= 100 are given in Figures 67 and

68.
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Figure 67. Bode Plot For Final System Loop Gain = 100
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Figure 68. Final System Loop Gain = 100
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We can change the loop gain according to the specifications. Figures 69 and 70 show

the time responses for this system when this gain is 500 and 1000. As we may sec from

the time response we can change the amount of overshoot by changing this gain.

As a result of this problem we can summarize the steps for designing feedback

compensators for non-minimum phase systems as following :

1. Find the closed loop transfer function and get the Root-Locus for this.

2. Pick the filter poles and zeros according to the Root-Locus rules.

3. Get the Root-Locus for the loop transfer function. Tabulate the gain values, and
select the gain that puts all the roots to the left half plane.

4. Rearrange the system. Look for the Bode plot and time response. If they are ac-

ceptable, leave it that way otherwise select another gain outside the minor loop.
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Figure 70. Final System Loop Gain = 1000
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B. FLEXIBLE ROCKET CONTROL SYSTEM

As a second example we chose the control system of a flexible rocket which is shown

in Figure 71. This example was extracted from Ref. I.

R
'-XX15

Structure Structure and

Demod. Filter Servo Rigid Body

C
Gd Gsf Gs T + 0.3Gr

Figure 71. Original Uncompensated System

GR{s) is the transfer function for the rigid body and is defined as

GR(s)
7.21

(5+ 1.6)(s- 1.48)
(42)

GD(s) =
333

(5+333)
(43)

Gs(s)
2750

s
2 + 42.2s + 2750

(44)

_ (s
2 + 70s + 4000)(s

2 + 225 + 12800)
SpS

(s
2 + 305 + 5810)(5

2 + 305+ 12800)
(45)

And the structure is defined as
;

0.686(5 + 53)(5 - 53)(5
2 - 152.25 + 14500)(5

2 + 153.85 + 14500)
7(5) =— : r (46)

(5
2 + 5 + 605)(5

2 + 45.55 + 2660)(5
2 + 2.515 + 3900)(5

2 + 3.995 + 22980)
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After performing all calculations the total system becomes as in Figure 72. Since

the order of the numerator and denominator are quite large, the transfer function is split

into three parts to fit on the page.

R 4-^ r*/^^\
Go

\s

a .

Figure 72. Combined Uncompensated System

G (s) = Gol
x Go2 x Gcl where ;

39 134576.25(5 4- 35 Ty52.7)(5+ 11 +J112.6)

Go2
=

01
(5+ 15+J14.1){s + 15+7ll2.1)(5+333)(5+21.1 +J4S)

{s - 21.55 T,/21.79)(5 + 72.76 +jWQ.24){s - 83.1 +J61.82)

(5 + 22.75 T./46.29)(s + 1.255 Tj62.44){s + 1.995 +j\5l.51){s - 1.48)

(5+ 11.6+./24.02)
G°3 ~ (5+ l.6){s + 0.5+j24.6)

(47)

(48)

(49)

As we may see from the transfer function we have four zeros and a real pole in the

right half plane. In addition to this most of the poles and zeros which are in the left half

plane are very close to the imaginary axis.

The Root-Locus for the open loop uncompensated system is given by Figure 73.

The system is unstable. Since there is a real pole in the right half plane we can not easily

interpret the Bode plot for this system.

The next step is to find the loop transfer function as in previous examples. By per-

forming the regular block diagram manipulation the closed loop transfer function be-

comes G
c
(s) = G

cl (s) x Gc2{s) x Gci(s) which is
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G
c]

(s) =
39134576.25(5+ 35 + J52.1){s + 11 + jll2.6)(s + 11.6+J24)

(5 + 333)(5 + 1.9T7'151.5)(5+ 15 +j\ \2.2){s + 13.8 T/M. 5)
(50)

Gci(s)

(s + 72.8 + jlQ0.2)(s - 83 +761.8)(.s - 21.6 + J21.8)

(5+1.5 +7'60.4)(5 + 19.9 Tj52.6)(s + 1 Tj24)(s - 0.5 + y'4.5)
(51)

Gc3 (s)
= 1

(5+24.8+./44.17)
(52)

From this point on we may start to think in terms of Root-Locus design. As we saw

from the loop transfer function we have a pair of complex poles and four zeros in the

right half plane. In addition to this most of the poles in the left half plane are very close

to imaginary axis and there are four zeros in the right half plane. So probably some of

the roots are going to end up at these zeros. This will give us a gain constraint.

Since we have poles close to the origin and imaginary axis in the left half plane,

putting a zero or zeros at the origin would not help us, because in this case we always

will have roots in the right half plane. So we decided to use a general type of

compensator which is two zeros close to the origin and two poles far away. The purpose

of the zeros was to have loci from the poles in the right half plane terminate on these

zeros. We made several trials with this type configuration but none of them worked.

An illustration of this is shown in Figure 74, where G
c
(s) is the closed loop transfer

function and

R +^-^ C—*Q~* Gc
i * -

HI ^̂ ' — d

Figure 74. Illustration of General Configuration

7/,(5) =
98.6(5 + 0.46 +74.482)

(5+ 100)(5 + 200)
(53)
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The Root-Locus for this case is given in Figure 75.
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As we may see the system is unstable, because roots in the left half plane were

moving faster than the roots in the right half plane.

With this type of problem, since the system has a 12"' order numerator and 17"' order

denominator, designing the compensator by just examining the system would be impos-

sible or require many trials. So we decided to use the function minimization subroutine

in the DSL package in the mainframe. The parameters used in the subroutine and the

function minimization program are given in Appendix A and B.

As the result of the program we found that we have to put the poles of the

compensator close to the origin and to the left of the zeros which belong to the

compensator. By putting these zeros and poles in this combination, we make the roots

in the right half plane move faster. Figure 76 shows the block diagram for the compen-

sated system, where Gc
{s) is the closed loop transfer function and

R +^
•

C^-iry+ Gc
* * -

H2

Figure 76. First Resulting Compensator of Function Minimization

7/
2 (5)

14.72(5 + 0.875 T./2.058)

(s+2+,/8.343)
(54)

The Root-Locus for this compensation is given in Figure 77. By getting the tabu-

lated root locations, we see that for a Root-Locus gain of 0.068 we get all roots in the

left half plane. Then our final compensator becomes
;

.
.

, ,
5~ + 1.755 + 5H2{s)

= -z
5+45 + 73.6

(55)
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The time response for this case is given in Figure 78. As we may see the system is

stable but the settling time is a little long. According to the specs we may want a faster

svstem than this.
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Figure 78. Time Response for First FM Result

79



Running the Function Minimization program but changing ( and w„ to get an out-

put with the desired settling time, we got the coefficients for this compensator as shown

in Figure 79. G
c
(s) is the closed loop transfer function and

p . CUQ-+ Gc
i ^ -

H3 m̂

Figure 79. Second compensator Resulting from Function Minimization.

H3(s)
=

8.11(5+ 1.1531)(s + 4.878)

(s + 3.672 +75.67)
(56)

The Root- Locus for this is given in Figure 80. Again by getting tabulated root lo-

cations we see that for a Root-Locus gain = 0.124 we get all roots in the left half plane.

Then our final compensator becomes
;

7/
3 (5)

= 5
1 + 6.031 b + 5.625

5
2 + 7.3445 + 45.632

(57)

The time response for this case is shown in Figure 81. As we see the settling time

and amount of overshoot are within specific limits.
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Figure 81. Time Response for Second FM Result



Then our total compensated system becomes as in Figure 82, where G(s) is the Open

loop transfer function and

R +f
i

C"\ 'f~\ Go
i i i .

H3 ^̂

Figure 82. Block Diagram of /otal Compensated System

H3(s)

(s+ 1.1531)(5 + 4.878)

(S + 3.672 Ty'5.67)
(58)

As a result of this problem we may generalize that, if we have components close to

the imaginary axis in both left and right half plane, we have to use pole-zero couples

close to each other as a compensator. In the next chapter building filters by using pole

placement and state feedback methods will be discussed.
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IV. DESIGNING FEEDBACK COMPENSATORS USING POLE

PLACEMENT

To compensate the systems by state feedback, we may use several computer pro-

grams to find the feedback coefficients. Sometimes observing or feeding back some of

the states may not be possible. For such cases we might have to build an estimator to

estimate the states.

The purpose of this chapter is to investigate whether it is possible to build a filter

by using these feedback coefficients as zeros and adding extra poles to the feedback

path.

To illustrate this we chose the following plants.

A. ALL COMPONENTS ARE IN THE LEFT HALF PLANE

For this case the open loop transfer function of the plant is
;

ri , 1000 ,, Q ,G{S) =
s

{
s + l }{ s + 2)(s + W)

(59)

We want to design a feedback compensator (a filter) to stabilize this system after

determining the state feedback coefficients. Since the uncompensated system is fourth

order, in order to have full state feedback we have to name four roots.

In this thesis we used the SVS (State Variable Systems) [Ref. 2] program.

To use the computer program we have to determine n-1 roots (where n is the system

order) and find the fourth root from the characteristic equation to enter the program.

Our desired roots are

S]2 = -\+j2,s
2
= -4 (60)

Then H(s) becomes

H{s) = s
2 + 6s

2 + 135 + 20 (61)

If we get the GH(s) to find the characteristic equation

1000(s
3 + 65

2 + 135 + 20)
GH(s) -—^ -

2

L
(62)

5 + 13s
3 + 32s + 20s
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The characteristic equation then becomes

s
4 + 1013s

3 + 6032s
2 + 130205 + 20000

And the roots of the characteristic equation are
;

S, = -3.988, 523 = -0.997 qFj'1.996, s4 = -1007.02

(63)

(64)

The root locations obtained with this design are within 0.3 % of the desired values

and the 4 :h root is at -1007.02 .

Now we may go to the SVS program to find the state feedback coefficients which

would place the roots exactly at —4, — 1 +j2, —1007.02. The state feedback coefficients

we got from SVS are
;

H(s) = 0.9998s
3 + 5.982s

2 + 12.91s + 19.8 (65)

These coefficients are negligibly different from the ones we obtained by multiplying

the desired roots. For accuracy we used the coefficients that we got from SVS.

For all practical purposes we may accept the /c
3
which is coefficient of s\ as 1. Our

state feedback compensated system then becomes as in Figure 83, where G(s) is the

open loop transfer function and

Figure 83. State Feedback Compensated System.

H(s) = s
3 + 5.982s

2 + 12.91s + 19.8

H(s) in factored form is

H{s) = (s 4- 0.996 Tj\.993){s + 3.997)

Root-Loci for the loop transfer function GH(s) are given in Figure 84.

(66)

(67)
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To preserve the unity feedback we use block diagram manipulation and the system

then becomes as in Figure 85.

— 19.8-Uo- Lr^\ G(s)
*-K) +

i I
i

HKs)

Figure 85. The Form of The System With Unity Feedback.

In Figure 85, G(s) is the open loop transfer function and

//,(*) = 5(5 + 2.99+ 1.993) (68)

To convert the feedback compensator to make it more realizable as a filter, we have

to choose the locations of the extra poles quite far away so they can not affect the

transient behaviour of the system. If we put the extra poles into the system form shown

in Figure 83 we get the required gain easily. The new system then becomes as in

Figure 86, Where G(s) is the open loop transfer function and

H
2 (s)

=
K{s + 3.99)(5 + 0.996 +./1.993)

(5 + 3O0)(5 + 400)(5 + 500)
(69)
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Figure 86. System With Extra Poles.

To find the value of the K we get the tabulated root locations of the Root-Locus for

the loop transfer function G//2(s),which is shown in Figure 87.
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Root-locus gain K to bring the roots where we want them was A'= 1.905459 x UT

. By using the same manipulation as in Figure 85 if we redraw the block diagram of the

system to preserve the unity feedback we get the final compensated system shown in

Fieure 88.

R + •-

^ — GKs)—ic^( fe. G(s)^v
t
j W \J 1 \ O/ J w . w

i i a -

H3(s) «-

Figure 88. Final Compensated System

G(s) is the open loop transfer function and

G
l
{s) = 19.8 x 1.905459 x 10

/

{s + 300)(s + 400J(5 + 500)

7/3 (5)
=

1.905459 x 10
7
.s(s + 2.99 ±,/1.99)

{s + 300)(5 + 400)(5 + 500)

(70)

(71)

The time responses for only state feedback and for the filter compensated case are

Figures 89 and 90. As we may see from the transient responses since all roots are very

close to the desired places the time responses are almost exactly same. The only disad-

vantage of this configuration may be to build two identical sets of poles to use in dif-

ferent places.

B. NON-MINIMUM PHASE SYSTEMS

As a second example we chose a non-minimum phase system to check if the idea

works for both cases.

For this case the open loop transfer function of the plant is

G(s) =
1000

s{s- l)(s + 2)(s + 20)
(72)
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Figure 89. Time Response for Only State Feedback Compensated System
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Figure 90. Time Response for Filter Compensated System
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We want to design a feedback compensator (as a filter) to stabilize this system after

determining the state feedback coefficients. Since the uncompensated system is fourth

order, in order to have full state feedback we have to name four roots.

To use the computer program we have to determine n-1 roots (where n is the system

order) and find the fourth root from the characteristic equation to enter the program.

Our desired roots are
;

Then H(s) becomes

S1.2 « -1 Tj\, s3 = -3 (73)

7/(5 ) = 5
3 + 5s

2 + 85 + 6 (74)

If we get the GH(s) to find the characteristic equation

1000(5
3 + 55

2 + 8s + 6)
GH(s) = —t-^ : (75)

5
4 + 2l5

3 +185 2 -405

The characteristic equation then becomes

s*+ 102l5
3 + 50185

2 + 79605 + 6000 (76)

And the roots of the characteristic equation are

S, = -2.967, 523 = -0.988 +71.01, 54 = -1016 (77)

The root locations obtained with this design are within 1.1 % of the desired values

and the 4"' root is at -1016.

Now we may go to the SVS program to find the state feedback coellicients which

would place the roots exactly at -1 +jl, — 3, —1016.

The state feedback coefficients we got from SVS are

H{s) = 0.99995
3 + 4.9955

2 + 7.9525 + 5.956 (78)

These coefficients again are negligibly different from the H(s) we first accepted but

we used the ones we found from SVS.

For all practical purposes we may accept the k
3
which is coefficient of 5

3 as 1. Our

state feedback compensated system then becomes as in Figure 91.
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Figure 91. State Feedback to Compensate The System

G(s) is the open loop transfer function and

H(s) = s
2 + 4.995s

2 + 7.9525 + 5.956

II(s) in factored form is

7/(5) = {s + 0.995 + y0.99S)(s + 2.998)

The Root-Locus for the loop transfer function GH(s) is given in Figure 92.

(79)

(80)

i
,
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To preserve unity feedback we may use block diagram manipulation. The next form

of the system then becomes as in Figure 93 where G(s) is the open loop transfer func-

tion and

HAs) = s(s + 2.494+ 1.316) (81)

\_ ^c; r»c;A o—— 6(s)
) w^w
i r

—

r

H1(S)

_J

Figure 93. The Form of The System With Unity Feedback.

To convert the feedback compensator to make it more realizable as a filter, we have

to choose the locations of the extra poles quite far away so they can not affect the

transient behaviour of the system. If we put the extra poles into the system form shown

in Figure 91 we get the required gain easily. The new system then becomes as in

Figure 94.

Figure 94. System With Extra Poles
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G(s) is the open loop transfer function and

K(s + 2.998)(5 + 0.995 +/).998)
2[S)

(5 4- 3U0)(5 + 400)(5 + 500)
(

'

To find the value of the K we get the tabulated root locations of the Root-Locus for

the loop transfer function GH2{s),which is shown in Figure 95.
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The Root-locus gain K to bring the roots where we want them was

K= 1.1257119 x 10
7

. By using the same manipulation as in Figure 93 if we redraw the

block diagram of the system to preserve the unity feedback we get the final compensated

system shown in Figure 96.

R ir
4

k. C. 1 (r>\ *C\ ^ G(S)
^K -

W O 1 KZ>) vJ w
i k

•

a _

H3(S)

Figure 96. Final Compensated System

G(s) is the open loop transfer function and

5.956 x 1.12571 19 x 10
7

(7,(5) =
(s + 300)(s + 400j(5 + 500)

H3(s)
=

1.1257119 x 10
7

5(5 + 2.494±jl.316)

(s + 30U)(5 + 400)(s + 500)

(83)

(84)

The time responses for state feedback and for the filter compensated case are given

Figures 97 and 98. As we may see from the transient responses since all roots are very

close to the desired places the time responses are almost exactly same. The only disad-

vantage of this configuration may be to build two identical sets of poles to use in dif-

ferent places.

C. EXTENDING THE IDEA TO CASCADE COMPENSATION

The procedure for root placement with the feedback filter used only the loop transfer

function. We may compensate the system with the same components and same gain by

using cascade compensation. If we investigate the systems, the characteristic equations

are the same with the filter in either the feedback path or in the forward path. Except

this time instead of the poles, the zeros of the filter are the zeros of the closed loop
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Figure 97. Time Response For Only State Feedback Compensated System
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Figure 98. Time Response For Filter Compensated System
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transfer function but the roots of the closed loop transfer function are in the same places

as with the feedback compensation scheme.

To show the result of this idea we chose the same plants. For the first one if we put

the same filter in the forward path the system becomes as in Figure 99, where

R in —

*

Hl(s) ^ G(s)
C

f _

w —w-

•

Figure 99. Cascade Compensated System

(7(5) =
1000

11,(5) =

s{s+ l){s + 2){s+ 10)

1.905459 x 10
7
(s + 1 +j2){s + A)

(s + 300)(s + 400j(5 + 500)

(85)

(86)

The time response for this system is given in Figure 100. As we may see the time

responses and oscillatory frequencies are almost identical with the feedback compen-

sation time response which is shown in Figure 90. In this configuration because of the

derivatives due to the cascade zeros we have faster rise time.

We checked the roots of the systems for both the feedback and the cascade config-

uration. Thev were identical within 0.37 % difference.
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Figure 100. Time Response for Cascade Compensator
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The second plant becomes as in Figure 101 if we put the compensator in the for-

ward path, where

R

-*o-—

*

H2(s) * G(s)
C

Figure 101. Cascade Compensated Second System

G(5) = 1000

s(s- l)(s + 2)(s + 20)

//
2 (5)

=
1.12571 19 x 10Vj- 1 +y)(5+3)

(5+300j(5 + 400j(5 + 500)

(87)

(88)

The time response for this case is given in Figure 102. Again as we may see the time

response is essentially the same as that of the feedback configuration which is shown in

Figure 98. Here again we have a faster rise time because of derivatives in the cascade

filter.

As we may see from the Figures 99 and 100 we put the filter before the plant in both

cases and we used the DSL (Dynamic Simulation Language) which behaves the same

way with the hardware.

Then we decided to simulate the systems with ALCON (Simulation program for

personal computers). This program uses arithmethic polynomial calculations to calculate

the step responses for the systems.
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The resulting time responses from this program for both problems are given in Fig-

ures 103 and 104. As we see high frequency ripples exist for a short time period which

we didn't see in the DSL simulation.

To investigate the reason for this difference we interchanged the blocks in Figures

99 and 100, that is, we fed the error signal into the G block and the output from the G

block into the H block. For this combination resulting step responses are given in Fig-

ures 105 and 106 which are identical with the time responses we obtained from ALCON.

For these DSL simulation cases, in the first case the filter is before plant, the plant

works as Low-Pass filter and the high frequency ripples are not present, but in the sec-

ond case the filter follows plant, and the ripples appear in the output.

We could not decide which one of the simulations is true. According to linear the-

ory, changing the places of the plants should not affect to the behaviour of the system.

To investigate the reason for this difference is left as a recommendation.

As a result of these examples we may generalize the design steps as follows :

1. Select N - 1 desired roots.

2. Multiply them and find the H(s).

3. Find Gll(s) and get the characteristic equation.

4. Find the roots of the characteristic equation. If they are acceptably close to the

desired roots, use H(s) as a state feedback directly, otherwise go to SVS or another

computer program to find the state feedback coefficients to put the roots exactly

at the desired places.

5. Choose the extra poles as far away as possible and put them in the denominator

ofll(s).

6. Draw the Root-Locus for the loop transfer function GH(s) (including the extra

poles) and get the tabulated data.

7. Select the appropriate gain to have the system roots in the desired places (generally

this will be very high gain).

8. If the purpose is to design a cascade filter, put the resulting filter directly in the

forward path. Otherwise perform the block diagram manipulation as shown in the

examples and preserve the unity feedback.
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Figure 103. ALCON Simulation of First Problem
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Figure 106. Second DSL Simulation of Second Problem
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In this thesis, the development of a procedure to design the feedback compensators

by using Root-Locus methods and pole placement methods has been presented. Simu-

lation results and worked out examples have shown that except for extremely high order

systems designing the compensators with the Root- Locus method can be used for any

plant. The most important result is to design them using pole placement concepts and

to be able to use them either in cascade or in the forward path.

Simulation results have also shown that the compensator can be determined by a

Function Minimization subroutine directly from the transfer function of an ideal plant

based on given specifications.

B. RECOMMENDATIONS

1. Further research should investigate methods to satisfy certain specifications while

designing compensators with the Root-Locus method.

2. In this thesis, it has been shown that Function Minimization can be used to design

compensators, but the user should write his own program according to the param-
eters. A package program may be written for the main frame to make the procedure
interactive and faster.

3. Further research may investigate the effect of gain variations on the root locations

while using a pole placement method so one can use directly multiplication of de-

sired roots as H(s).
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APPENDIX A. CONSTRAINT PARAMETERS OF FUNCTION

MINIMIZATION

Subroutine HOOKE uses the Hooke and Jeeves "direct search" method to find the

local maximum or minimum of a multi-parameter criterion function, CF. [Ref. 3].

The algorithm evaluates CF at a base point, X— (A'(l), ..., A'(A")), then perturbs each

parameter in turn, by the amount ± STEP(f), and evaluates CF at each new point.

If none of these points produces a better value of CF, then the stepsizes are de-

creased by a factor of BETA, and the process is repeated.

To use HOOKE, the user must initialize the following arguments and, in the main

program, CALL I IOOKE(X,STEP,N,ITMAX,CFTOL,ALPHA,BETA,CF,Q,QQ,

W,IPRINT,MINMAX)

All of these arguments must be initialized in MAIN, except for X. CF, Q, QQ, and

W. Recommended values for ALPHA and BETA are ALPHA = 2., BETA = 0.5. All

of the arrays, i.e., X, STEP, Q, QQ and W, must be declared and dimensioned in MAIN.

The arguments and their meanings may be explained as following.

X = The array of N parameter values. The user must supply the initial guesses, ei-

ther in the DSL program or in MAIN.

STEP = An array of dimension N containing the initial step sizes to be used in the

search.

N = The number of parameters (a positive integer, at most 15).

ITMAX = The maximum number of function calls to be performed.

CFTOL = The error in the criterion function to be reached before the program

terminates ( difference between the current value and the previous stage value).

ALPHA = The factor of (Y - X) which is added to Y to get XNEW; a number

greater than or equal to 1.

BETA = The stepsize reduction factor; a number between and 1.

CF = The value of the criterion function.

Q> QQ> W = Arrays of dimension N, to be used as work space. They must be de-

clared and dimensioned in the main program.

I PRINT = An integer flag. for no intermediate printout, 1 for intermediate

printout of X, CF, the number of function evaluation and notification of step-reduction.
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APPENDIX B. COMPUTER PROGRAM FOR FUNCTION

MINIMIZATION
,vThis program finds the necessary parameters to fit the function to some
,vspecial transient response. By changing zeta and omgn the standart time
,vresponse may be generated.
D COMMON /HANDJ/FLAG,ERRFN,A1,A2,B1,B2
TITLE Rocket parameters

FUNCTION MINIMIZATION
,vPut initial conditions according to the previous assuming parameters.
INCON A10=2. ,A20=5. ,B10=1. ,B20=100.
lVDefine your arrays to simulate your system
ARRAY P(1),Q(2),A(1),B(2),D(5),E(5),F(1),G(3),H(9),L(11),K(2),...

M(2),Y(3),Z(3),S(2),T(4)
,vPut the values for the array coefficients
TABLE A(l)=333. ,B(1-2)=1. ,333. ,D(1-5) = 1. ,92. ,18340. ,984000. ,. . .

51200000. ,E(1-5)=1. ,60. ,19510. ,558300. ,74368000. ,...

F(l)=2750. ,G(1-3) = 1. ,42. 2,2750. ,H(1-9) = 1. ,40. 652,. . .

2949. 22,1048754. 7,1. 86426E+08,3. 9622E+09,1. 17521E+11,. .

.

2. 12662E+12,1. 10017E+14 ,L( 1-11) = 1. ,53. 12,30506. 757,. .

.

1378867. ,1. 83946E+08,5. 2509E+09 ,3. 42441E+11 , 2. 85168E+12,. . .

1.43994E+14,1.06498E+13,-3.42095E+14,K(1-2) = 13. 3,39. 9,. . .

M(l-2) = 1. ,30. ,P(1)=25. ,Q(1-2) = 1. ,100. ,Y(1) = 1. ,Z(1) = 1. ,. . .

S(l-2)=10. ,50. ,T(1-4) = 1. ,4. ,8. ,0.

PARAM R=l.

-Changing zeta and omgn changes the specifications of your system
CONST ZETA=0. 40 , 0MGN=6. , IC=0.
INITIAL
,vThis part of the program generates the standart time response

TOTERR=0.
C1=SQRT( 1. 0-ZETA*ZETA)
C2=0MGN*ZETA
C3=0MGN*C1
PHI=ATAN(C1/ZETA)
ASSIGN INITIAL GUESS FOR FUNCTION MINIMIZATION

''This part gives the starting point to the program
IF (FLAG. GE.0. ) GO TO 10

A1=A10
IF (FLAG. GE. 0. ) GO TO 10

A2=A20
IF (FLAG. GE.0. ) GO TO 10

B1=B10
IF (FLAG. GE.0. ) GO TO 10

B2=B20
10 CONTINUE

*Put your variable coeefficients here so program can change it

Y(2)=A1
Y(3)=A2
Z(2)=B1
Z(3)=B2

,vWrite normal simulation program for your system
DERIVATIVE
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X0=TRNFR(8,10,0. ,H,L,X2*2. 849)
X2=TRNFR( 0,2,0. ,F,G,X3)
X3=TRNFR(4,4,0. ,D,E,X4)
X4=TRNFR( 0,1,0. ,A,B,X6)
X6=15.*ERG
ERG=ER-X9
X9=TRNFR(2,2,0. ,Y,Z,X0)
ER=R-X0

DYNAMICS
*Standart time response is generated by this formula

STD=1.0-(EXP(-C2*TIME)/C1)*SIN(C3*TIME+PHI)
ERR=X0-STD
ERRSQ=ERR*ERR
TOTERR=INTGRL(0. ,ERRSQ)

,vAs a cost function integral of error square is used
TERMINAL
,vThis part finishes the calculation when min value is reached.

ERRFN = TOTERR
CONTRL FINTTM=2. ,DELT=0. 01
END
STOP
FORTRAN
,vFrom now on just declare your step values and amount of variables

MAIN PROGRAM FOR FUNCTION MINIMIZATION
IMPLICIT REAL*8 (A-H.O-Z)
DIMENSION X(4) ,STEP(4) ,Q(4) ,QQ(4) ,W(4)

C X(1)=K,X(2)=P INITIAL VALUES IN DSL ROUTINE
STEP(1)=0.5D0
STEP(2)=5.0D0
STEP(3)=0.5D0
STEP(4)=10.0D0
N=4
ITMAX = 100
CFT0L = 1. OD-6
ALPHA = 2. 0D0
BETA = 0. 5D0
IPRINT =
MINMAX = -1

CALL H00KE( X, STEP, N, ITMAX, CFTOL, ALPHA, BETA,
CF,Q,QQ,W, IPRINT, MINMAX)

STOP
END
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