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ABSTRACT

An overview and investigation of the more popular digital filter design tech-

niques are presented, with the intent of providing the filter design engineer a com-

plete and concise source of information. Advantages and disadvantages of the

various techniques are discussed, and extensive design examples used to illustrate

their application to specific design problems. Both IIR (Butterworth, Chebyshev

and elliptic), and FIR (Fourier coefficient design, windows and frequency sampling)

design methods are featured, as well as the Optimum FIR Filter Design Program

of Parks and McClellan, and the Minimum p - Error IIR Filter Design Method of

Deczky.
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I. INTRODUCTION

Digital filter design today is a rapidly growing field with myriad applications

in the areas of signal processing, image processing, filtering, prediction, and estima-

tion. Extensive research has resulted in a plethora of available information, which

can be overwhelming to the engineer presented with a specific design problem. As

the title suggests, the purpose of this thesis is to present an overview of the more

popular design techniques in an attempt to consolidate the information available in

the literature, and provide an easily readable reference manual. Detailed examples

are given to illustrate the application of selected techniques to specific filter design

problems.

Due to the wealth of information available, a summary and investigation of

every filter design technique is not possible. As stated the more popular meth-

ods are outlined in detail, however, references are included as sources of further

information.

The survey is threefoM, consisting first of recursive IIR design methods, fol-

lowed by nonrecursive FIR design, and finally computer-aided design (CAD). A

summary of the chapter contents follows to enable the reader to immediately lo-

cate the section applicable to his/her particular design problem.

Chapter II, Recursive Filter Design, presents Butterworth, Chebyshev and

elliptic filter design from both a traditional approach, wherein analog prototype

filters based on design specifications are converted to digital versions using the

bilinear transformation, and a direct design approach that eliminates the need to

determine an analog prototype.

12



Chapter III, Nonrecursive Filter Design, includes an overview of Fourier co-

efficient design, windowing, and a derivation and illustration of the method of

frequency sampling. Among the design examples presented is the design of a band-

pass differentiator and a bandpass integrator.

In Chapter IV, Computer-Aided Design, the Optimum FIR Filter Design

Method of Parks and McClellan (that employs the Remez Exchange Algorithm)

is investigated and applied to a bandpass filter design problem. Also included is

a short discussion of a method to enhance the application of this program to the

design of high-order filters.

To complete the chapter, the Minimum p-Error Design Method for IIR Filter

Design, that utilizes the Fletcher-Powell algorithm, is presented. Furthermore, a

discussion of the advantages and disadvantages of these two iterative techniques is

included.

13



II. RECURSIVEFILTER DESIGN

A. INTRODUCTION

The recursive realization of digital filters is advantageous, in that the desired

frequency response can be obtained using a lower order filter than if a nonrecursive

realization were used (assuming linear phase is not required). This is because the

filter frequency response is influenced by both the poles and zeros of the filter

transfer function, whereas the frequency response of a nonrecursive realization is

determined only by the filter's zeros.

Traditionally, the design of recursive digital filters involves the determination

of an analog prototype using one of several methods: Butterworth, Chebyshev or

elliptic, to name a few, and converting these to a digital version using impulse-

invariant design or bilinear transformation methods, the latter being the more

popular.

This chapter first presents a review of the traditional design techniques us-

ing examples involving Butterworth, Chebyshev and elliptic filters; then a Direct

Design method is presented, whereby the requirement for determining an analog

prototype is eliminated, thus reducing the algebraic complexity of recursive filter

design.

B. TRADITIONAL DESIGN TECHNIQUES

Recursive filter design techniques, as stated in the introduction, involve deter-

mining an analog prototype filter from given filter specifications, and then convert-

ing the prototype to a digital version using a bilinear transformation. Since this is

a well known design procedure [1], details of the derivation will not be considered.

14



However, as a quick review, three examples involving the design of Butterworth,

Chebyshev and elliptic filters will be given.

It should be noted that the tables of analog prototype transfer functions found

in this section (Tables 2.2, 2.3 and 2.4), all have a critical frequency of unity

(w c =1). Thus, to obtain a filter transfer function with a different critical fre-

quency based on these prototypes requires the use of an appropriate analog fre-

quency transformation (Table 2.1).

For example, suppose a lowpass analog filter with a critical frequency of wc

is desired. The following relationship applies:

HLP (jw c ) = HLPp (jl) (2.1)

where Hlp p is the prototype filter with a critical frequency of wc = 1.

To convert the prototype transfer function to the desired transfer function,

Hlp(s), the s in the lowpass prototype filter is replaced by s/w c as:

HLP (s) = HLPp (s] (2.2)

Table 2.1 (Reference 1) lists the appropriate frequency transformations for high-

pass, bandpass and bandstop filters. A summary of the design procedure follows.

1. Bilinear Transformation Design

From given analog filter specifications, determine the approppriate s-

domain design technique (i.e., Butterworth, Chebyshev or elliptic).

Design the analog prototype filter in accordance with the technique se-

lected above. This involves the translation of the filter specifications to those of

a lowpass prototype. The lowpass prototype is then designed according to the

translated specifications.

15



Transform the lowpass prototype to the desired lowpass, highpass, band-

pass, or bandstop filter according to Table 2.1.

Transform the analog filter transfer function to a digital version using the

bilinear transformation.

H(z) = H(s) (2.3)

Example 2.1 Butterworth Filter

Design a digital filter that is flat in the passband from to the 3 dB cutoff

frequency, f c , of 2 kHz. For frequencies greater than 4 kHz, the attenuation should

be at least 10 dB. The sampling r~.tc is 20 kHz.

Step 1 : A Butterworth design is called for because a flat passband is desired.

Step 2 : Convert the critical analog design frequencies to digital.

Sampling frequency: f 3 = 20 kHz =>• w9 = 40 x 10 3
7r rad/s

Cutoff frequency: f c = 2 kHz ==> wc = 4 x 10 3
7r rad/5

Stopband frequency: f a = 4 kHz => wa = 8 x 10 3
7r rad/5

9C = wc T = WJf, = {4

2
*™2* = 0.2* rad

Step 3 : Prewarp the analog frequencies to yield the desired digital frequencies.

w'c = tan (0'
c /2) = tan(O.lTr) = 0.325 rad/5

w'a = tan(Q' a /2) = tan(0.27r) = 0.726 rad/5

Note: Prewarping is done to ensure the analog filter will ultimately

yield a digital filter with the correct critical frequencies. This is best

visualized in the following graph (Figure 2.1) of the relationship between

the analog filter frequencies and the desired digital frequencies,

i.e., <=tan(0 n /2).

1G



TABLE 2.1

ANALOGFILTER FREQUENCYTRANSFORMATIONS
(after Ref. [1])

Filter Type «/-form s-lorm

to find (to tind H{s) from tf LP ,(s)

<a\,
p

replace s in prototype

with)

00

Lowpass filter

Highpass filter

Utfjp — (Kq s2 ^

Butfts

17



Normalizing to the lowpass prototype, according to Table 2.1:

w' = 0.325 —w =1 rad
c c„

i' a
= 0.726 —wap = 0.726/0.325 = 2.234 rad

CO

71/2 o e_ e. 71/2

Figure 2.1. Relationship Between Analog and

Digital Filter Frequencies

Note: Normalizing is done to transform the prewarped critical frequencies

of the analog filter to their relative equivalents in a lowpass prototype filter with

a critical frequency of wc = 1. This is done to enable the designer to take

advantage of previously compiled tables or frequency response curves corresponding

to the transfer functions of these lowpass prototypes. Thus, a prototype filter can

be selected whose frequency response characteristics have the same shape as the

filter that is being designed. The transfer function for the selected prototype is

then converted to a transfer function that exhibits the desired frequency response

characteristics using an appropriate substitution (Step 5). Figure 2.2, depicts the

process of normalizing.

IS



1.0

^M Lowpass Prococype

1.0

o.T07 . _ r?v>s

Lowpass

\
\

\
j\.

d
(i) - I 0) „,

0J

Figure 2.2. Normalization

Step 4 : Find the order N of the lowpass Butterworth filter prototype. The order

N to provide a gain of M^b at an angular frequency wa is

N log 10 (10 (
-' vWio) -1)

21og 10 wa

log^lO 1 -!)

]Md] lOdB

(2.4)

21og 10 2.234

= 1.37 (Since N has to be an integer choose, N = 2)

Step 5 : From Table 2.2 determine the transfer function for the lowpass filter.

HLP (s) = HLPp (s]

1

Hlp p {s)

s 2 + %/2s + 1

0.106

(.2.5)

s 2 +0.460.5 + 0.106

Step 6 : Determine the transfer function for the digital version of the filter using

the bilinear transformation.

HL p(z) = HLP (s]

z 2 + 2z + 1 0.06S(- + 1)
2

(2.6)

14.34^ - U.Oz + 6.14 z 2 - 1.14^ + 0.413

19



TABLE 2.2

BUTTERWORTHPROTOTYPECOEFFICIENTS

(Table after to Ref. 4)

N d\ 0,2 <23 a \ a 5 <^6 CLj <2g

1 1.0000

2 1.4141 1.0000

3 2.0000 2.0000 1.0000

4 2.6131 3.4142 2.6131 1.0000

5 3.2361 5.2361 5.2361 3.2361 1.0000

6 3.8637 7.4641 9.1416 7.4641 3.8637 1.0000

7 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1.0000

8 5.1258 13.1371 21.8462 25.6884 21.8462 13.1371 5.1258 1.0000

HLPp (s) =
1 + a x s -f a 2 s 2 + . . . + a Ns N

20



Step 7 : Obtain a plot of the digital filter frequency response to see if the design

specifications have been met.

Figure 2.3 shows that the design does indeed comply with the given filter

specifications, in that the cutoff frequency is 0.628 = 0.2-ir rad and the stopband

frequency is 1.257=0.47r rad with gains of —3dB and —14dB, respectively.

Example 2.2 Chebyshev Filter

Design a digital bandpass filter with the following specifications:

• 1 dB ripple in the frequency band 600 to 900 Hz,

• sampling frequency of 3 kHz,

• maximum gain of -40 dB for < / < 200 Hz.

Step 1 : Convert the critical analog design frequencies, it;,-, to the corresponding

digital frequencies, #,.

Sampling frequency: f 9 = 3 kHz

Lower ripple passband frequency: fi = 600 Hz ==>• u>£ = 12007T rad / s

Upper ripple passband frequency: f u = 900 Hz ==> wu = 18007T rad / s

Stopband frequency: f a —200 Hz ==> wa = 4007T rad /s

0'
t = we T = we/fs = ^^ = 0.4tt = 1.26 rad

0'
u = wu T = wjf s = ^^- = 0.6tt = 1.88 rad

B'a = wa T = wa /f s = ~~ = 0.1337T = 1.54 rad

Ripple band center frequency :
8' = \/9'

t
9'

u = 0.497T = 0.418 rad

21



H

_

o
! _L

a
~"^\

1 |

3

\| ! 1

N I i

d Kill
e

i \ i ! !

••

* \ 1

!

d
\ !

evi \J i i

c
[\. i ;

qd i
^ 1

0.00000 0.62832 1.25664 ;.8849G

FREQUENCY,THETA
2.51328 3.141G0

N = 2
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Step 2; Prewarp the analog frequencies so that the desired digital frequency

characteristics will be achieved.

w'
(

= tan(0j/2) = tan(1.26/2) = 0.729 rad/s

w'u = tan (0^/2) = tan(1.88/2) = 1.369 rad/s

w'a = tan (0^/2) = tan(0.418/2) = 0.212 rad/s

W'

Q = yjw'
e

w'u = V/ (0.729)(1.369) = 1.00 rad/s

Ripple band is: B' = w'u - w' t = 1.369 - 0.729 = 0.64 rad/s

From Table 2.1 convert the bandpass filter frequencies to the correspond-

ing lowpass prototype filter frequencies.

wLPp

=

B'w'np
, (2.7)

^jp-a.oo) 2

(0.64)w' BP
WBP WLPP

w'
e

0.729 -1

< 1.369 1

< 0.212 -7.04

W'Q 1.000

Step 3: Determine the order of the Chebvshev prototvpe filter that meets the

design requirements.

For a lowpass Chebyshev filter the magnitude - squared characteristic is

given by:
2

Hlp p {] w) — ( n °}

-i + «»c3K«)
[ - s >

where Cyv(w) is an Nth
- order Chebyshev polynomial and e indicates the degree

of ripple.

In this example the —40 dB gain translates to M= 10
-2

for the desired

filter frequency response in the stopband, i.e., we want llf^'ty)! < 10
-2

or

23



\H(jw)\ < 10~ 4
. The design specification for 1 dB ripple in the ripple band

corresponds to a value for e of 0.2589.

Making an initial guess for the filter order of N = 2 yields:

2

H2 (jw)
1

1 + 0.2589 (2w 2
a

-1)'

1

"
1 + 0.2589 (99.12 -if

which is not less than 10
-4

.

Proceeding further with N = 3 yields:

1

wa =7.04

= 4.01 x 10"

(2.9)

HzUw)
1 + 0.2589 (4wl-3w a y

1

u>„=7.04
(2.10)

2.044 x 10'

1 + 0.2589(1395.65- 21. 12f

which is less than 10~ 4
. Therefore, the design needs can be met using a third-order

Chebyshev lowpass prototype filter.

Step 4 : Obtain the transfer function of the third order lowpass prototype filter

with 1 dB ripple. Looking at Table 2.3, yields the following prototype

transfer function:

Hlp p (s) = 0.491
(2.11)

s 3 + 0.988s 2 + 1.2385 + 0.491

Since this is an odd order filter, the constant 0.491 in the numerator was

selected to make |#(;0)| = 1. Recall that for Chebyshev filter design, the constant

K in the numerator of the lowpass prototype filter is selected on the following basis:

for N odd;

for N even;

H(j0)

H(jQ)
(2.12)

[1 + * 2
]

211/2
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TABLE 2.3

CHEBYSHEV- PROTOTYPEDENOMINATORPOLYNOMIALS
(Table due to Reference 4)

0.5-dB Ripple Chebvyshev Filter (e = 0.3493)

1 * + 2.863

2 ** + 1.425* 4- 1.516

3 *' 4- 1.253** 4- 1.535* + 0.716 - (s + 0.626X5* 4- 0.626* 4- 1.142)
4 ** + 1.197*3 4- 1-717*2 + 1.025* + 0.379 - (,» + 0.351* + 1.064X** 4- 0.845* 4- 0.356)

5 *' - 1.17251 j* + 1.9374*' + 1.3096*2 + 0.7525* + 0.1789

(* 4- 0.3623)((* + 0.1120)2 4. i.01162][(j -r 0.2931)2 + 0.62522]

6 *« - 1.1592a' - 2.1718** - 1.5898*' + 1.1719*2 + 0.4324* 4- 0.0948

[(* - 0.0777)* - 1.0085*H(* - 0.2121)* + 0.7382*][(* - 0.2898)2 - 0.2702*]

7 s 1 + 1.1512** 4- 2.4126*5 4- 1.8694** - 1.6479*' 4- 0.7556** + 0.2821* + 0.0447

(* - 0.2562)[(* - 0.0570)2 4- 1.0064*][(* + 0.1597)2 + 0.8001 *][(* 4- 0.2308)* 4-

0.4479*]

8 *« - 1.1461* 7 4- 2.6567** 4- 2.1492* 5 4- 2.1840** 4- 1.1486*' 4- 0.5736* 2 4-

0.1525* - 0.0237

[(* * 0.0436)* -t- 1.0050*][(* 4- 0.1242)* + 0.8520*][(* 4- 0.1859)* 4- 0.5693*]

[(* 4 0.2193)* - 0.1999*]

9 *' 4- 1.1426** - 2.9027* 7 + 2.4293** - 2.7815*' + 1.6114** 4- 0.9836*' +
0.3408** - 0.0941* - 0.0112

(* + 0.1984)[(* -r 0.0345)* 4- 1.0040*][(* + 0.0992)* 4- 0.8829*]((* + 0.1520)* +
0.6553*][(* + 0.1864)* + 0.3487*]

10 * 10 - 1.1401* 9 4- 3.1499*» 4- 2.7097*'' 4- 3.4409** -r 2.1442* 5 4- 1.5274** +
0.6270*' - 0.2373** - 0.0493* - 0.0059

[(* - 0279)* - 1.0033*][(* - 0.0810)* * 0.9051 *][(* - 0.1261)* + 0.7183*]

[(* -r 0.1589)* - 0.4612 :
][(* 4- 0.1761)* 4- 0.1589*]
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TABLE 2.3 (Continued)

CHEBYSHEV- PROTOTYPEDENOMINATORPOLYNOMIALS
1.0-dB Ripple Chebyshev Filter (e = 0.5089)

1 * + 1.308

2 j : - 0.804* -r 0.637

3 *' - 0.738*1 - I.02Z* - 0.327 = (* - 0.402H*i - 0.369* - 0.886)

4 ** - 0.716*' - 1.256*1 - 0.517* - 0.206 = is* - 0.210* - 0.928)(*i - 0.506* - 0.221)

5 ** - 0.7065** - 1.4995*' - 0.6935*1 - 0.4593* - 0.0817

(s - 0.2183)[<* - 0.0675) : - 0.9735i][(* - 0.1766)1 - 0.6016-]

6 *« - 0.7012* 5 - 1.7459** • 0.S670*' - 0.7715*2 - 0.2103* - 0.0514

[(s - 0.0470)= - 0.98I7:][(* - 0.1283)- - 0.71S7i]{(* - 0.1753) i - 0.2630:]

7 j 7 - 0.6979*' - 1.9935*' - 1.0392** - 1.1444*' - 0.3S25*: - 0.16661a - 0.0204

(s - 0.1553)[(* - 0.0346)^ - 0.9867i][(* - 0.0968): - 0.7912:][(* - 0.1399)- -
0.43911]

8 *• - 0.6961* 7 - 2.2423** - 1.2117*' - 1.5796** - 0.5982*' - 0.3587*: -
0.0729* - 0.0129

[(* - 0.0265): - 0.9898:][(* - 0.0754): - 0.8391 :][(* - 0.1129): - 0.5607:]

[(* - 0.1332): - 0.1969:]

9 *» - 0.6947*' * 2.4913*" - 1.3837** - 2.0767*' ~ 0.8569** - 0.6445*
J

-
0.16844*: - 0.0544* - 0.0051

(* - 0.1206)((* - 0.0209): - 0.99|9:][(* _ 0.0603): - 0.8723 :
][(* - 0.0924):

-r 0.6474:][(* - 0.1134*: - 0.3445:)

10 *'» - 0.6937*' - 2.7406*» - I.5557* 7 - 2.6363** - 1.1585*' - 1.0389** +
0.317S*' - 0.1440*: - 0.0233* - 0.0032

[(* - 0.0170)1 - 0.9935:][(* - 0.0767): _ 0.7I13:][(* ^ 0.0493): - 0.8962 :
]

[(* - 0.0967): _ 0.4567:][f* - 0.1072): - 0.15741]

2-dB Ripple Chebyshev Filter (e = 0.7648)

1 * + 1.965

2 *i - 1.098* - 1.103

3 *' - 0.988*1 - 1.238* - 0.491 = (* ->- 0.494H* 2 - 0.490* - 0.994)

4 ** - 0.953*' -r 1.454*1 -r 0.743* * 0.276 = (*i - 0.279* - 0.987)(*i - 0.674* - 0.279)

5 *' - 0.9368** - 1.6688*' - 0.9744*1 - 0.5805* 4- 0.122?
(* - 0.2895)[(* - 0.0895)1 *- 0.99O1 }[{: * 0.2342)1 - 0.61191]

6 ** a. 0.9282*' -r 1.9308** - 1.2021*' - 0.9393*1 -u 0.3071* - 0.0689
[(* - 0.0622)1 - 0.9934i][(* -,- 0.1699)1 j. 0.7272=][(j - 0.2321 )i - 0.26621]

* 7 - 0.9231*' - 2.1761*' - 1.4288** - 1.3575*' - 0.5486*1 - 0.2137* - 0.0307
(* - 0.2054)((* - 0.0457): - 0.9953i]K* - 0.1281)1 - 0.7982i][(* - 0.1851 )- -
0.44291]

8 *• - 0.9198* 7 - 2.4230** - 1.6552*' -f 1.8369** - 0.8468*' - 0.4478*1 +
0.1073* - 0.0172

[(* - 0.0350)1 - 0.9965i][(* - 0.0997)1 - 0.8448i][(* J. 0.1492)1 - 0.56441]
[(* - 0.1759)1 - 0.19821]

9 *» - 0.9175*« - 2.6709*' - 1.8815** - 2.3781*' - 1.2016** - 0.7863*' 4.

0.2442*1 - 0.0706* - 0.0077

is - 0.1593)[(* - 0.0277)1 _ o.9972i][(* - 0.0797)1 + 0.8769i][(* - 0.1 221 )• -
0.6509i][(* - 0.1497)1 - 0.34631]

j'o - 0.9159*» - 2.9195*» - 2.1079* 7 - 2.9815** - 1.6830*' - 1.2445** -
0.4554*' - 0.1825*1 - 0.0345* - 0.0043
[(s - 0.0224)1 - 0.9978i][f* - 0.1013)1 - 0.7143i)[(* ~ 0.0651)1 - 0.9001 :]
[(* - 0.1277)1 - 0.4586!)[(* - 0.1415)1 - 0.15801]
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Step 5 : Convert the lowpass filter prototype to a bandpass filter prototype.

From Table 2.1:

HBp{s) = HLPp {s)

(2.13)

(oft) + 0-9*8 (£±I) + 1.238 (&£)+ 0.491

0.129s 3

~
s 6 + 0.632s 5 + 3.507s 4 + 1.394s 3 4- 3.507s 2 + 0.6325 + 1

Step 6 : Determine the digital version of the transfer function using the bilinear

transformation.

HBP(z) = HBP(s)

-n 3
0-129 (frf)

({=£)• + 0.632 (f-i)
5

+ 3.507 (-1)
4

+ 1.394 (f-1)
3

+ 3.507 ({£)'

-(- 1.238
I ^"—T )

+0.491
x

2

0.011 (z 6 - 3z 4 + 3; 2 -1)
z 6 + 2.1532 4 + 1.786z 2 + 0.545

(2.14)

Step 7 : Confirm that the filter design meets specifications by obtaining a fre-

quency response plot. Figure 2.4 indicates the specifications for a pass-

band of 1.26 to 1.88 rad with 1 dB ripple have been met.

Example 2.3 Elliptic Filter

A lowpass elliptic filter with the following specifications is desired:

• passband ripple of 0.5 dB,

• passband ripple-edge frequency of 2 kHz,

• stopband gain should be at most —20dB for frequencies greater than 4 kHz,

and

• sampling frequency is 20 kHz.
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Step 1 : Convert the critical analog design frequencies to digital frequencies.

Sampling frequency: f 3 = 20 kHz

Passband ripple-edge frequency: /i = 2 kHz ==> w\ = 4 x 10 3
7r rad /

s

Stopband ripple-edge frequency: f 2 = 4 kHz => w2 = 8 x 10 3
7r rad Js

(4 X 10 3
) 7T

0[ = Wl T = w
y lf a = V

20xlQ ; = 0.2;r = 0.628 rad

(8 X 10 3
) 7T

9'
2 = w2 T = w2 /f 3 = V

20xlQ 3
= 0.6tt = 1.88 rad

Step 2 : Prewarp the analog frequencies in order to determine the appropriate

lowpass prototype filter.

w[ = tan(0j/2) = 0.325 rad/s

w'2 = tan (02/2) = 1.376 rad/5

Step 3 : Determine the order of the elliptic prototype filter that meets the design

specifications. Find the ratio, R, of the stopband frequency, w'2 , and the

passband frequency, w[ .

R= u»iM = J||= 4.234 (2.15)

From Table 2.4b determine the prototype filter order and the resulting

transfer function. Looking at Table 2.4, it can be seen that a filter of

order N = 2 has a value for R of 2.76261, which is more than sufficient

to meet the design specifications.

Step 4 : Obtain the transfer function of the second-order lowpass prototype filter.

Again, looking at Table 2.4, the prototype transfer function is determined

to be:

_ ,
,

0.1s 2 + 0.5338 ,__,Hlp ' {3) =
,2+0.80943 + 0.5667

(2 - 16)
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TABLE 2.4a

ELLIPTIC FILTERS

Generalized Transfer Functions

(due to reference 5)

iV = 2

-V

Ho s 2 +A0l

s + s s 2 + Bn s + Boi

H S
2 +H0A01

s 3 + (B U +s )s 2 +(B i +Bu so)s + Bol so

iV = 4

(s
2 +A01 )

(s 2 +A02 )

s 2 +Bu s + B01
' s 2 + Bu s + B02

H s* +Hq(A 01 +A02 )s 2 +HqAq1 Ao2

s 4 + (5„ + B12 )s 3 + (B02 + Bn B12 + B i)s 2 + (5 n B 2 + B iB 12 )s

+ Bq\Bo 2

H4 (s) = H

H4 (s)

N = 5

# s
4 + #o(.4oi +Ao2)5 2 F AoiA(

#*(*) =
s 5 +(5„ + £ 12 +s )6 4 + [B Q2 + BUB12 +B01 +Bu so+B 12 s ]s*

+ [B UB02 +B iB 12 +B02 s +Bu B12 so + B01 so]s
2

+ [BoiBq 2 + BhBo2 Sq + I?oi#12<So] 5 + BoiB 02 Sq
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TABLE 2.4b

ELLIPTIC FILTERS

(due to reference 5)

n-

Passoand ripple 5 dB. stopoand gains -20. -30. -40. -50.

Passoand nppie « 5 dB. stopoand gain •

60. -70 i

-20d8

33789

"5640

6507ft

0721

1

566660

808321

i) 8277X7

973640

61 1899

934X30

0.990620

97h474

94668 I

00775

00 1 OX

809390

I) 359160

931959

1 3A543

0.41281ft

049395

0.933855

0.156221

0017576

413652

0563X4

006219

933X64
'I 156548

020051

002197

4 I <695

056505

0.OO7O93

000775

306214F.

667292

303X95E •

667292

I 303X6 IF.

I 667292

I00I92E + OO0

3037X6E-OO0

2.76261

1.421X9

I.I3IX8

1.04465

I 01553

1.00545

Passoand rippie = 5 dB; stopoand gain

318702

5973X4

639007

3X2044

I6294E

21X7XE-

808X0

.92322

3X6X0

07474

! 13439

15171

03I6X

, <794l

3X394

06301

01359

: 13409

1 5070

398996

798764

64X724

907216

402050

0.650591

9207X5

981925

964X98

992137

650636

921256

984652

996<X9

822201

191032

480774

0X80X0

828822

237025

0.039181

484325

108419

0.017159

04804 3

007464

484454

109144

021005

003238

XX07E -

1761

6296E -

||8701E*000
511761

3I62S9E-OOI

12912

05394
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TABLE 2.4c

ELLIPTIC FILTERS

(due to reference 5)

PassDand rippie 1 dB . stopDand gains -20. -30. -40. -50. -60. - 70 dB

PassDand ripple = 1 dB: siopband gain = - 20 dB

N Aa Ba S„ Ho-S,, ft

: i
4 4 2.14 J 497233 676727 1001851- -000 2 32474

»

1 1 5HS65 0.790229 0.282927 2X1 (WOE-* 000

565168

1 30797

*
3 81475

1 159S6

0536633
0926578

768217

099029

IOOI85L + 000 1 09029

' ;.
1 5IH52

1 IU886

K0XO49

975703

318242

0.12771

279829b -000
565168

1 02826

-

i

.1 80873

1 MIA?
1 015V)

537071

931 194

0992101

769217

1 10761

0.010654

I0OIX4K-0O0 1.00902

7

;

1 51782

1 04421

1 (XU97

0.808242

0.977941

997446

0.318627

036573

0.003444

2798I4E-0O0
0.565168

1.0O29O

"
5

3 80866

1 14350

1 014115

1 00160

0.537076

933266

992834

999176

769228

110888

0.01 1881

0.001 III

0.I0OI85E-OO0 1 CXXN3

'

i

4

1 51X12

1 04421

1 IKM5I

1 00052

808099

977936

997680

99*1734

118714

036644

003845

000.159

0.27961 It -000
565 16*

1 000.30

Passband ripple * 1 dB, stppband gam - - 30 dB

N Aa So 8„ H iS 11,

2 2029.1 586596 31 1981 1 1 3223E

430700

+ 000 1 73254

5 72672 348 1 1 1 682880 03162861": -001
1 25040

1 37628 803477 148347

1 96914 63.1529 383990 1 1 1 1 80E toon 1 09554

1 11918 914405 0646 12 430700

5 67743 350184 687075 3I6278E •001 1 0.1799

1 11626 828467 0.179733

1 05468 964084 0271 II

1 96122 614884 186055 III 1231. -IKK! 1 01536
1 1 1 870 925872 077672 430700

1 02200 985162 01 1201

5 67614 0350237 68 7189 3I6265R -001 1 00625
1 31463 0829171 180623

1 04690 969003 0032478
1 00893 993908 0O459X

1 96311 614904 (I 386117 IIII09E- . (K)0 1 00255
1 1 1814 926187

987211

078043

013399

430700

1 <X)364 997505 001883
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TABLE 2.4d

ELLIPTIC FILTERS

(due to reference 5)

Pwacano nople; 2 a8 slopoand gams -20. -30. -40. -50. -60. - 70 dB

Passoana ripple » 2 dB: sioooand gam = - 20 dB

N i Aa So a„ H /S 11.

: i
< 60961 454891 5.17126 1001036 -MXX) 1 94332

'
'

1 429.19 74 .11X0 i) 204089 0.25444 IE 4-000

II 458848

1 20808

*
!

1 10765

486218

4)5564

U 597266

11 06.1585

O.IOUI02E + 000 1 05569

5 :

1 191 16

1 02976

807116

481070

ii 22.1995

I) 018680

2538786 + IXX)

458848

1 01567

«
\

i 25657

1 IIWI »

i
i«)845

486417

II 940286

44JS12

I) 597679

1 1)694 17

1) 005.14ft

IOOI02E + 000 1 (XW47

1 "0242

807184

ii 020.162

o 25.1X.V)E*(XX)

II 458848

1 00128

j

' 2S73A

1 0441 1

i (x)7s:

! 1)0069

486114

940275

0,994418

994548

597662

0694X8

0. 00588.1

000446

1) 1000406*000 1 .00037

;
l IP7<5

807065 o 224111

020419

25.141X6*000 1 0001

1

Passoand riooie = 2 dB. siopoand gain = - 30 dB

41395.1 3I6259E

238474 1041836

345928

517 241

105666

o .11625X6

2XS64I

042702

i) I02947E

514562

124605

016632

3162596

286656

050009

o 1029206

II 345928

050171

007452

00119 10
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Step 5 : Find the analog transfer function of the desired filter based on the lowpass

prototype.

This is done by finding a scaling factor, a, to convert the lowpass proto-

type's cutoff frequency, wi p , to the desired cutoff frequency, w\.

For the prototype:

fl = 2.76261 ; ^ = 1/^ = 0.6016

For the desired filter:

wl = 0.325

Therefore, the scaling factor, a, is:

0.6016
a = wip/wi

0.325
1.85 (2.17)

Thus, the actual transfer function, Hlp(s), can be found as follows:

HLP (s) = HLPp (s] Rlpp{*)\

0.1s 2 + 0.5338

(2.19)
s 2 + 0.80945 + 0.5667

_ 0.1(1.85s) 2 + 0.5338
~ (1.85s) 2 +0.8094(1.855) + 0.5667

0.3423s 2 + 0.5338
" 3.423s 2 + 1.497s + 0.5667

Step 6 : Determine the digital version of the transfer function using bilinear trans-

formation.

Hlp(z) = HLP (s)

0.3423(2-1/2 + 1)' +0.5338

3.423(2 - 1/2 + iy + 1.497(2 - l/x + 1) + 0.5667 (2.20)

0.87612 2 + 0.3832 + 0.8761

5.4872 2 - 5.71262 + 2.493

0.15972 2 + 0.06982 + 0.1597

2 2 -1.04112 + 0.4543
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Step 7 : Verify that the design meets the specifications from a frequency response

plot (Figure 2.5).

2. Summary

This concludes the review of the use of the bilinear transformation to

design recursive filters based on Butterworth, Chebyshev or elliptic analog pro-

totypes. As can be seen, this method is very involved in terms of algebraic ma-

nipulation. The following sections will introduce the direct design technique. It

will be shown that the direct design procedure reduces considerably the amount of

algebraic calculations required, and eliminates the somewhat confusing procedure

of prewarping.

C. DIRECT DESIGN TECHNIQUE

The direct design technique is based on the bilinear transformation in the

following manner:

The tables of coefficients for analog lowpass prototype filters, i.e., Butterworth -

Table 2.2, Chebyshev - Table 2.3, and elliptic -Table 2.4, were converted to z-

domain versions through the use of the bilinear transformation, and can be shown

to have a critical frequency of 7r/2. The reason, as stated in Section A, is that

the analog prototype filters comprising these tables all have a critical frequency of

wc = 1. For the bilinear transformation, the following substitution for s is used in

the analog prototype transfer function to convert it to a digital prototype transfer

function:

-St « • =B w
An analog critical frequency of 5 = jw c = jl implies:

2 = 1-±l^ = l±l (2.22)l-jw c I-

j
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since z —e
jB

, this gives:

e*°c = 1±4 = le J7r/2
(2.23)

Thus, it can be seen that an analog critical frequency of wc = 1 yields a

digital critical frequency of 6 C = ir/2. Tables of prototype filters were thus created,

specifically, Butterworth - Table 2.7, Chebyshev - Table 2.8 and elliptic - Table 2.9.

The use of these tables to design a digital filter based on analog specifications

involves the following generalized steps. To further illustrate the technique, a

detailed description of its derivation and use, including examples for the various

filter types, will be presented.

1. Direct Design

Step 1 : Determine the appropriate desired filter type based on the design speci-

fications, i.e., Butterworth, Chebyshev or elliptic.

Step 2 : Convert the analog filter frequency specifications to digital equivalents.

Step 3 : Use the digital-digital frequency transformations of Table 2.5 to normal-

ize the desired filter's design frequencies, so that the appropriate lowpass

prototype filter may be selected.

Step 4 : From the normalized design frequencies obtained in Step 3, determine

the lowpass prototype that meets or exceeds these requirements.

For Butterworth and Chebyshev filters - this is done using the design

curves of Figures 2.8 and Figures 2.10-2.12.

For elliptic filters - Table 2.9 is used.

Step 5 : Obtain the actual filter transfer function from the lowpass prototype,

based on the digital-digital frequency transformations of Table 2.5.
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TABLE 2.5

DIGITAL FILTER FREQUENCYTRANSFORMATIONS

(Due to Reference 2)

Type Transformation

(Replace z in LP digital

prototype with)

Design Constants

1. Lowpass i^t
_ sln(e c /2-0'

c /2)

si n (9 c /2+9' c /2)

2. Highpass _ 2-a
1 —az

cos(9 c /2-9' c /2)
01

cos(9 c /2+9' c /2)

3. Bandpass

k:

cos(0' u /2+^/2)
01 ~ cos(9' u

/2-9'
t /2)

= tan ^cot(0' u /2- 0^/2)

4. Bandstop
z

2 - -22- z+ ±=Jl

k =

cos(9' u /2+9'
( /2)

~ cos(9' u /2-9'
( /2)

= tan^tan(0' u /2-0'
€ /2)
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As can be seen from the previous design summary, the crux of this method

is the use of the digital- digital frequency transformations of Table 2.5, which merit

explanation [2].

These transformations enable the user to convert the lowpass digital pro-

totype, HlPp(z) (be it Butterworth, Chebyshev or elliptic) to the actual lowpass

(LP), highpass (HP), bandpass (BP), or bandstop (BS) filter transfer function.

The transformations provide a means of transferring the stability, inherent

in the prototype filter, to the actual filter; that is, the poles of the actual filter will

lie inside the unit circle, as they do for the prototype filter. For this reason the

frequency response of the lowpass prototype filter at a specific frequency of a must

be the same as the desired value of the frequency response of the actual filter at

its corresponding frequency of 6'
a .

HLPp (e^)=H Type (e^) (2.24)

where,

a = prototype frequency

9'
a = desired filter frequency

Type = LP, HP, BP, or BS
For example, when transforming a lowpass prototype filter to a desired

lowpass filter, one wishes to maintain the integrity of the magnitude characteristic

of the prototype filter, while expanding or compressing the frequency scale so that

the critical frequency is changed from the prototype value of 8 C = 7r/2 to the

critical frequency of the actual filter B'c ,
(see Figure 2.6).

According to Table 2.5, this involves the following substitution for z in

the lowpass prototype transfer function.

z = ±=2- (2.25)
1—0:2;
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Figure 2.6. Lowpass Prototype - Lowpass Transformation

For the critical frequency of the prototype, 9 C , to map to the critical

frequency of the actual filter &c , the following must be true:

Substituting, e*
9 c —z on the left in Equation (2.25), and e J c = z on the

right gives,

e>°c = e
JI

1 - ae J "c

and solving for the design constant, a, yields,

sm(9 c /2-0'
r /2]

(2.26)

sin(* c /2 + *c /2)

Similar arguments apply to HP, BP, and DS filters.

Thus, the transformations of Table 2.5 accomplish the appropriate map-

ping from the lowpass prototype digital fiiter to the actual filter, and ensure that

stabilty is maintained.
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2. Butterworth Filters - A Direct Design Approach

The design curves shown in Figures 2.8a - d, describe lowpass prototype

filters with a critical frequency of 9 C = 7r/2, and of order N = 1 through N = 8.

Higher order filters can be realized by cascading the appropriate lower order filters

characterized by these curves.

The curves were constructed by using the s-domain version of the But-

terworth filter coefficients for N = 1 through N = 8, and then determining the

2-domain version of these transfer functions through the use of the bilinear trans-

formation and the conversion tables obtained from Reference 3, (see Table 2.6).

These tables establish the necessary relationships between the coefficients of an

analog filter and its digital counterpart.

a. Generalized Analog Transfer Function

AQ +A l s + A2 s
2 + ... + Ak s

k

BQ +B1 s + B2 s 2 +... + Bk s l

h(s) = ? t„
a

:t ?:,:•••;„'% (2.27)

b. Generalized Digital Transfer Function

m s ap+aiz- 1 +a 2 z- 2 +... + a k z- k

H{Z) ~ l + 6 1
*-i+6

2 z-»+... + ***-* (2 ' 28)

For example, in the case of N = 1 the bilinear transformation digital

filter coefficients, in terms of the analog filter coefficients are:

A Bo+Bi
a (A +Ai)/A
ai (Ao-Ai)/A
h (Bo-B^/A

Note: C is the critical frequency, wc = 1.

For a first-order Butterworth prototype filter described by:

H(s) = -L- (2.29)
5 + 1
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TABLE 2.6

BILINEAR TRANSFORMATIONDIGITAL FILTER COEFFICIENTS

IN TERMSOF ANALOGFILTER COEFFICIENTS

(due to reference 3)
A Bo+8, OS^C^ejC 3

Bo*B,C

(A Q*A,C)/A

(Aq-A^J/A

(8 -e,C)/A

(1st order)

80*8,0*820^

(a *a,c*a 2 c 2 )/a

(2A -2A 2 C2 )/A

(A -A,C*A 2 C 2 )/A

(28 -2B 2 C2 l/A

(8o-8,C*8 2 C2 )/A

(2nd order).

(A «-A,C*A 2 CZ +A,C i )/A

Bo-8iC*3 2 C2 ~8jC 3 «8 4 C4

(A -A.C*A 2 C2 -A 3 C3 '-A <,C
4 )/A

(4A *2A, C-2A jC 3 -«A„C 4
) /A

(6A -2A
2 C2 »6A 4 C

4 )/A

(4A -2A, C-2AjC 3 -»A 4 C
4

: /A

(A -6,c+A 2 c 2 -a 3 C3 -A a c
4 )/A

(1B *2B,C-29 3 C3 -484C 4 VA

(68 -2B 2 C2 *68 4 C
4 )/A

<4B -2B,C*2B 3 C3 -«J8,.C
4

) /A

(8o-a,C*82C 2 -&3C 3 *e4C*}/A

(4th order)

( 3A *A, C-A 2 C2 -3A jC 3
) /A

(3A -A,C-A 2 C2 *3A 3 C 3 )/A

<A -A,OA 2 C2 -A 3 C3 )/A

(38 *8,C-B 2 C2 -3BjC 3 )/A

(SBq-B, C-8 2 C2 i-383C 3 )/A

(B -8
1
C+B2C2 -B 3 C3 )/A

(3rd order).

8 *8 1 C*B 2 C2 *ejC 3 *e 4 C
4 *B,C 9

(

A

Q*A, C*

A

2 C2 *

A

3 C3 *A 4 C
4 *A,C 5

) /A

(5A *3A.C+A 2 C2 -A 3 C3 -3A 4 C
4 -5A 5 C5 )/A

{ I0A0+2A, C-2A 2 C
2 -2A 3 C3 *2A 4 C

4 lOA,C 5
) /A

(IOA -2A,C-2A 2 C2 *2A
3 C3 +2A4 C

4 -IOA 5 C5 !/A

(5A -3A
1 C*4 2 C2 *A

3 C3 -3A 4 C
4 *5A 5 CS )/A

(A -A,C*A 2 C2 -A 3 C 3 *A 4 C
4 -A 5 C5

) /A

(5Bo*38,C+e 2 C2 -BjC 3 -3B 4 C
4 -5S 5 C5 )/A

( 1003*28, C-2e 2 C2 -28jC 3 *2B 4 C
4 *iOB 5 C5

) /A

(iC8 -28,C-28 2 C2 *28jC 3 *284C 4 -iOe 5 C5 UA

(58 -3B, 0*82^*8 jC 3 -3B 4 C
4 *5B 5 C, )/A

(8o-8,C*8 2 C2 -8
3 C3 *B 4 C

4
-B5C 5 )/A

(5th order)

the values for the digital filter coefficients are:

A 1+1=2
a (l+0)/2 = 0.5

aj (l-0)/2 = 0.5

61 (1 - l)/2 =
The transfer function H(z) is therefore:

0.5 + 0.5Z" 1

Hi(z) Hi(z)
0.5z + 0.5

(2.30)
1 z

A plot of this transfer function is illustrated by the curve (N = 1) in Figure 2.7
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Table 2.7 is a summary of the analog and digital versions of lowpass prototype

Butterworth filter transfer functions for filter orders up to N = 8.

To illustrate the direct design approach the design problem of the

previous section will be used (Example 2.1), where the problem statement was:

Design a digital filter for a 20 kHz sampling rate that is flat in the

passband of to the 3 dB cutoff frequency of 2 kHz, and has a gain of not more

than —10dB for frequencies greater than 4 kHz.

Step 1 : A Butterworth design is called for because a flat passband is desired.

Step 2 : Convert the critical analog design frequencies to digital.

Sampling frequency: f a = 20 kHz

Cutoff frequency: f c = 2 kHz =» wc = 4 x 10 3
7r rad/s

Stopband frequency: f a = 4 kHz =* wa = 8 x 10 3
7r rad/s

ff c = wc T = »„//. = {4

2 *™*l*
= 0.2* rad

ff a = WaT = wa /f. =
20

X

X

10

1Q3
= 0.4t rad

Step 3 : Since the "design chart" is based on a critical frequency of 9C = t/2,

digitized design specifications need to be normalized to this frequency,

so that the order of the required lowpass prototype filter can be deter-

mined. For this process the following frequency transformations apply

(from Table 2.5, prime denotes desired filter).

• Prototype filter from desired filter:

eJ *» —a
~, Tor (2-31)
1 - oe^« v '
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TABLE 2.7

LOWPASSPROTOTYPEBUTTERWORTHFILTER

TRANSFERFUNCTIONS

(due to reference 4)

Filter Order

K HLPp (s) HLPp (z)

1

3+1

1

0.5(2+1)
z

(z + D2

a 2 + 1.41423+l

1

3.41z 2 +0.59

(z + 1)
3

s 3 +2s 2 +2s+l

1

6z 3 + 2z

(z+D*
3 4 +2.613l3 3 + 3.4142s 2 +2.6131

1

9+1 10 .6383z 4 +5.17z 2

(z+1) 5

3 5 +3.236l3 4 +5.2361a 3 18. 94z 5 + l 1.996z 3 + 1.05492

+5. 2361a 2 +3. 23613+1

i ii+nl
s 6 +3. 8637a 5 +7. 4641a 4 +9. 141 6a 3 +7. 4641a 2 33 .7972 6 +2 6.284 z 4 +3 .86 2 2 +0 .05 92

+3.86373+1

1 (* + l)
7

a 7 +4.4940 3 6 + 10.09783 5 +14.5918a 4 60.367z 7 + 55.537z 5 + 11 .6332 3 + 0.46 24 2

+ 14.59183 3 + 10.0978 3
2 +4.4940s+l

1 (* + l)
8

a 8 +5.1258a 7 + 13.1317a 6 +21.84623 5 107.8962 8 + 1 14.438z 6 +31 .496 z 4

+ 25.68843 4 +21.84623 3 +13.137l3 2 +2.162z 2 +0.008

+5.12583+1
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• Desired filter from prototype filter:

e jd '« + a

1 + aei e *

where (2.32)

_
sin(fl c /2-fl' c /2)

01

sin(0 c /2 + 0'
c /2)

0'
c and dj, are the critical and stopband frequencies (respectively) used to

determine the optimum prototype filter order.

Equation (2.31) is applicable to this problem, and thus:

0a =?

0'
a

= 0.47T

9C = 0.5tt

d' c
= 0.2;r

_ sin(0.57r/2-0.27r/2)
a ~ sin(0.57r/2 + 0.27r/2)

= sin(0.157r) = 0.454 =
sin(0.357r) 0.891

Therefore,

>j0a _ eJ° Aw - 0.510
"

1 - 0.519e> - 4ff

= 0.97e^ 779

=
.

2 . 349

0.97e-> 057

=> 6a = 2.349 rad = 0.75tt rad

(2.33)

Step 4 : Once the normalized stopband frequency is obtained, (in this case 0.757r),

the design chart is used to determine the lowest order filter that will give:

3dB at 9 C = 0.5tt
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Turning to Figure 2.8, it can be seen that the curve for N = 2 meets

these requirements. At this point, it is worth noting that a second-order Butter-

worth filter was also determined to be required using the traditional approach in

the previous section.

In Table 2.7 it can be seen the prototype low-pass filter transfer func-

tion for N = 2 is:

LPpW
3.4l2 2 +0.59 3.4l2 2 +0.59 y "' }

Step 5 : Once the prototype filter is obtained from the design curves, it is neces-

sary to determine the actual transfer function that will meet the design

specification, such that 0'
c is 0.27T and 9'

a is 0.47T.

Using the digital filter frequency transformations of Table 2.5, the

transfer function is determined as follows:

HLP {z) = HLPp {z)

z 2 +2z + \

ZA\z 2 + 0.59

z 2 + 2z + 1
(2.35)UMz2 -17.02 + 6.14

which is the same transfer function obtained in the previous section.

Step 6 : A computer generated frequency response plot of the filter is used to

verify that the design fulfills the design specifications; Figure 2.9 reveals

that this is indeed the case.

D. LOWPASSPROTOTYPETO HIGHPASS, BANDPASSBAND-
STOPFILTERS

Once the lowpass prototype filter is obtained, a highpass, bandpass or band-

stop filter can be derived using the digital frequency transformations of Table 2.5.

In the next section, an example is presented that illustrates this process.
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1. Chebyshev Filters - A Direct Design Approach

As stated in the introduction to this section, this design approach is of

course applicable to Chebyshev filter design problems. Again using the bilinear

transformation techniques cited in [2], the digital filter coefficients corresponding

to the analog filter coefficients for prototype Chebyshev filters were determined.

The frequency responses of the resulting transfer functions listed in Table 2.8 were

then plotted to obtain a set of design curves with a cutoff frequency of 7r/2 (see

Figures 2.10 thru 2.12).

The design problem of the previous section will be used to illustrate ap-

plication of this new technique (Example 2.2).

The problem statement called for a Chebyshev digital bandpass filter to

be designed to meet the following specification:

• 1 dB ripple in the range of 600 to 900 Hz

• Sampling frequency is 3 kHz

• Maximum gain of -40dB for < / < 200 Hz

Step 1 : Convert the critical analog design frequencies to digital:

Sampling frequency: f s = 3 kHz

Lower Passband frequency: ft = 600 Hz

Upper Passband frequency: /„ = 900 Hz

Stopband frequency: f a = 200Hz

d\ = we T = wt/fs = 2(60 ° )7r
= 0.4tt = 1.26 rad1 u

3000

0'
u = wu T = wu /f 3 = 2(

3

9

Q

° )7r
= 0.6tt = 1.88 rad

9(900W
S'a = wa T = wa lf s =

3 0Qq
= 0.1337T = 0.418 rad

Ripple band center frequency: 6' = y/0'
e

8'
u

= \/2.35 = 1.54 rad
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TABLE 2.8

LOWPASSPROTOTYPECHEBYSHEVFILTER TRANSFERFUNCTIONS

(due to reference 4)

1/2 - dB ripple (e = 0.3493)

N HW H{z)
-i 2.863 2.863z + 2.863

3 + 2.863 3.8632 + 1.863

9 1.43 1.43z 2 +2.86z+1.43
^

3 2 + l. 425s+l. 516 3.941z 2 + 1.032z+1.091
o 0.716 0.716z^+2.148z^ + 2.148z + 0.716
°

3 3 + 1.2533 2 +l. 5353 + 0. 716 4.5 04z 3 -0 .5 70 z 2 +2 .360z-0 .56 6

a 0.944 0.358z 4 + 1.432z 3 +2.148z 2 +1.432z + 0.358
*

3 4 + 1.1973 3 + 1.7173 2 + 1.025s + 0.379 5.3 18 z 4 -2 .82 8z 3 +4 .840 z 2 -2.1 40 z + .874

1 - dB ripple (c = 0.5088)

TV H[s)_ H(z)
i 1.965 1.965z + 1.965

3+1.965 2.965z + 0.965
o 0.983 0.983z 2 + 1.966z + 0.983
L

3 2 + l. 0983+1. 103 3.201z 2 +0.206z + 1.005

q 0.491 0.4 91 z
3 + l .4 73 z

2 + l .473 z + .49 1

3 3 +0.9883 2 + 1.2383 + 0. 49 1 3.7 17 z 3 -1 .2 77 z 2 +2 .24 7 z -0 .75 9

a 0.891 0.2 4 6z' 1 +0.984z 3 + 1.4 76z 2 + 0.9 84z + 0.24 6
3 4 +0.9 53 3 3 + l 4543 2 +0.743 3 + 0.276 4 .4 26 z 4 -3 .3 1 6 ; 3 +4 .7 48 z 2 -2.4 76 z+ 1 .034

2 - dB ripple (e = 0.7648)

N H(s) H(z)
I 1.308 1.308Z + 1.308

3+1.308 2.308z + 0.308

9 0.506 0.506z 2 + 1.012z + 0.506
3 2 +0. 8043+0. 637 2.441z 2 -0.726z + 0.833

q 0.327 0. 3 27 z
3 +0. 981 z

2 +0.981 z + 0. 327
3 3 +0.73 8.

s

2 + l. 0223 + 0. 327 3.087z 3 -1.7 35z 2 + 2.221z-0.95 7

A 0.164 0.164z 4 +0.656; 3 +0.9 84z 2 + 0.6 56z + 0.164
3 4 +0.7 16 3 3 + l .25 63 2 +0.5 17 3 + 0. 20 6 3.6 95 z 4 -3 .57 4 z 3 +4 .7 24 z 2 -2.778 z + 1 .22 9

54



TABLE 2.8 (Continued)

LOWPASSPROTOTYPECHEBYSHEVFILTER TRANSFERFUNCTIONS

1/2 - dB ripple (« = 0.3493)

K £(£l #[£}

5
0.179

'*+' )73« • + 1 937 .3+1.310. ' + 0.7S3.+0.179

OOP
.'+1.159. ' + 2.172, .' + 1 .600.*+l. 172.-+G 432.+0 096

O.MS
• +] .151 (

l +2. •113/ +1 .869 i' + 1.648r

0.01?

>+0.7S6. 3 +0.282, p+U 045

6

+0.1S3.+ 0.024

1-dB ripple (c = 0.5088)

ff(<) ff(z)

r'+0.937. • + 1 689 .3 + 0.974.

061

3 + 0. SSI. + 0.123

i'+0.928»'+1.931 >*+l .202»3+0.939» 3 +0.307.+0.069

.923, -' + 2.176. > + l .429. p«+1.3M.

015

3 + 0.549.3+0.214, > +0.031
0.031.- T +O.215.-*+O 64S.-' + l 075.-- + 1 075- 3 + 0.645.- : ' + 21S. + 031

7. 679, : - IS. 286,' + 26. 242, '-29. 121, '+25. 126, 3-1 5.812,3
+6.919.-1.816

015.-' + OI2.-'+0 4:.-_'+0 84.- , + 105, < +0.84, 3 +0.42.- 3 + 0.12,+0.01S
9. 2M:' -22.255. • +41.993.-' -53. 661 i J +53.51 7.-« -40.61 l?

+23. 242, '-9.271, + 2. 196

2 - dB ripple (« = 0.7648)

5
008?

«'+0.707»< + l. 500,3 + 0. 694.3 + 0.459.+ 0. 082

6 0.041
»'+0.701»» + 1.746.«+0. 867.^ + 0. 772.3 +0.210.+0. 051

7 0.020
. '+0.698.'+ 1.994. '+1.039. ' + 1.44. J +0.383. 3 + 0. 167. + 0. 020

8 0.010

041, '+0. 345^ + 612.-- + 816, 3 + SH-" 3 +0 245.+ 04 1

5.347,'-9. 604,'+ 15. 210,' -IS. 074, 3 + 11.297,3-5.677, + 1.790

0.020, T +0 I43.-'+0 428.-' + 714, '+0 714.-'+0 428, 3 +0 143, + 0.020
6. 445," -14. 242, ' + 2S. 034, '-29. 203, '+26. 062/3-1 7. 08£, 3 + 7. 765. -2. 16S

0.010.-'+0 082, T +0 266.-' + 0.571.-' + 714, , + 571.-'+0 286.- 3 +0 082.+ 0.010
7. 772, '-20. 397, ' +39. 593,' -52. 787, '+54. 371, '-42. 699, •>

+ 25.30, 3 -10. 46S. + 2. 615
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Step 2 : Again, the design chart is based on a ripple edge frequency of 7r/2, necessi-

tating the normalization of the design specification frequencies. Looking

at the Table of Digital Filter Frequency Transformations (Table 2.5), the

following frequency transformations apply for a bandpass filter:

Prototype filter from desired filter:

j29' a _ 2ak j0' a , fc^
e J9* = fc+i 1_*±J_ (o 36)

where:

_ cos(9' u /2 + 9'
e /2)

a
cos(6'J2-0' e /2)

k = tan(0 c /2)cot
2 2 J

9a is the stopband frequency used to determine the filter order N

.

9C is the ripple edge frequency on the design chart, in this case C = 7r/2.

For this problem:

#a =?

9'
a = 0.133tt

9'
u = 0.6tt

9'
e

= 0.4tt

9 C = 0.5tt

_ cos(0.3tt + 0.2tt) _ cos(0.5tt)
01 ~ cos(0.37r-0.27r) ~ cos(O.Itt)

k = tan(7r/4)cot(0.l7r) = 3.07
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Since a =

e'"
2 '- + j=f e^« + 0.509

1 + IrreJ
2 ^ "

1 + (0.509)c> Mi

. c
jo.836 _ 0>509 I.394e-J2.58

l + 0.509eJ°- 836 1.394e> - 282 (2.37)

=$> 9 a = —2.86 rad = 2.86 rad (due to symmetry)

Step 4 : Determine the lowest order Chebyshev lowpass filter prototype from the

design chart that gives:

3 db at 9 C = 0.5tt rad

less than - 40 db at 6 n = 2.86 rad

Turning to Figure 2.11, the filter order is determined to be N= 3. Again,

this agrees with the order obtained using the approach in the previous section.

From Table 2.8 the lowpass prototype transfer function for N = 3 is:

0.491* 3 + 1.473* 2 + 1.473* + 0.491
HLP' (Z) =

3.717*3- 1.277*' + 2.247* -0.759
(2 - 38)

Step 5 : As with the Butterworth design, the Digital Filter Frequency Transfor-

mation Table 2.5, is used to convert the lowpass prototype filter to a

bandpass filter.

HBp{z) = HLPp (z)

z -- fc,+ i : <i+i_
i_ 2aA z+ k-l z 2

k + i
z+ k+i z

0.49U 3 + 1.473z 2 + 1.473-g + 0.491

3.717z 3 - 1.277* 2 + 2.247z - 0.759

0.012z 6 - 0.036z 4 + 0.036; 2 + 0.012

z 6 + 2.1362 4 + 1.7682 2 + 0.540
(2.39)

Again, this is nearly identical to the transfer function obtained using the

'traditional approach"

.
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Step 6 : Verification of design using a computer generated frequency response

plot. From Figure 2.13 it can be seen the design specifications of:

$'
e

= 0.4tt = 1.257 rad

ff u = 0.6tt = 1.885 rad

0'
a = 0.133tt = 0.418 rad

are met.

2. Elliptic Filters - A Direct Design Approach

As was shown in Example 2.3, the design of elliptic filters is algebraically

intensive, an extremely undesirable feature, especially for high-order filters. Elliptic

filters characteristically exhibit a sharper cutoff, that is, a narrower transition width

for a given filter order than their Butterworth or Chebyshev counterparts. For this

reason they are very popular, making the pursuit of a more efficacious design

approach a worthwhile endeavor.

Just such an approach was found by taking the analog prototype filters of

Table 2.4 and normalizing them to have a passband ripple edge (critical) frequency

of one. They were then transformed to digital versions using the bilinear transfor-

mation, resulting in digital prototype filters with a critical frequency of rc/2 (Table

2.9).

Thus, the amount of calculation involved in the design of a digital elliptic

filter is cut in half because the requirement for finding an analog prototype is

eliminated. The designer need only convert the filter design specifications to digital

frequencies, find the digital lowpass prototype filter that meets these requirements

(from Table 2.9), and then find the actual filter transfer function through the use

of the digital frequency transformations of Table 2.5.
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Two examples will be presented that illustrate this process; however, a

more detailed explanation of how the transfer functions of Table 2.9 were arrived

at is in order.

For purposes of explanation, a second-order filter with 0.5 dB passband

ripple, and a stopband gain of —20dB will used.

Turning to Table 2.4, the lowpass prototype transfer function is of the

form:

H s 2 +H Aqi
Hlp p (s) =

s 2 + Bu s + Bqi

where,

Ho =0.100220

A i = 5.33789

Boi = 0.566660

Bn = 0.809390

therefore,

Hlp p {s)
0.1s 2 +0.5338

(2.40)
s 2 + 0.8094.S + 0.5667

This prototype has a value for R of 2.76261. The parameter R is the ratio

of the stopband frequency, W2P , to the passband cutoff frequency, u; lp (i.e., R =

W2 P / wi P )- Thus, it describes the sharpness of the transition region. A large value

of R is indicative of a broad transition region, while, conversely, a small value

corresponds to a narrow transition region. As expected, the higher the filter order,

the narrower the transition region, and the smaller the value for R. Figure 2.14

(due to [5]), illustrates the magnitude squared frequency response of the normalized

lowpass elliptic filters of Table 2.4.

For this particular example, w\ p and wi P are subject to the constraint

that their ratio R be 2.76261. Furthermore, it should also be noted, the filters
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transition

|H(JG) 3topband

Figure 2.14. Magnitude Squared Frequency Response

of a Normalized Lowpass Elliptic Filter

comprising this table have been normalized, so that the geometric mean of w\ p

and W2P is one.

(w lp w2p ) = l (2.41)

Combining these two constraints, the following relationships between w\ p and u>2 P

apply:

wlp = l/\/R = 0.6016 rad/s (2.42)

w2p = VR= 1.6620 rad/s (2.43)

The goal of the direct design procedure is to find a digital parallel to the

analog prototype filters, and tabulate a table of digital lowpass prototypes.

Step 1 of this process is to normalize the transfer functions of Table 2.4

so that they all have a value for w\ p of one. This is depicted Figure 2.15.

For this example:

0.13 2 4- 0.5338
Hlp '< 9) =

,'+0.8094, + 0.5667
(2 ' 44)
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where

w lp = l/y/R = 1/^2.76261 = 0.6061

To normalize Hlp p (s) to w\ p = 1, let s = s/yR = 0.6061s

0.1(0.6061s) 2 +0.5338
Hlp p {s)

(0.6061s) 2 + 0.8094(0.60616) + 0.5667

0.0367s 2 +0.5338
(2.45;

0.3674s 2 + 0.4906s + 0.5667

where now, w\ p = 1, and w2p = R, since R = W2P /wi p .

The normalized analog prototype was then converted to a digital prototype

through the use of bilinear transformation.

Hlp f {z) = H[
y p p (s)

0.0367
(ff^-) +0.5338

0.367 (7+^) + 0.4906 (±=±) + 0.5667

1.575z 2 -2.752 + 1.575

(2.46)

3.9U 2 + 1.132 + 1.22

The digital passband critical frequency is 8 lp = 7r/2, since an analog

frequency of w\ p — 1 corresponds to digital frequency of 7r/2 when using the

bilinear transformation.
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Table 2.9 contains the compiled results of applying this process to some of

the analog prototype transfer functions of Table 2.4. As with analog elliptic filters,

special relationships exist between the passband critical frequency, 9\ p , and the

stopband frequency, 02 P , of digital elliptic filters.

Using the digital frequency transformations of Table 2.5, the following

values for B\ p and $2 P are found based on the analog prototype values for W\ p and

w2p -

For9 lp ,

For 2 P ,

-jl + 1

n/4
-- le^/ 2

* Blp = tt/2

i0 2p
jR + l

-jR + 1 le

Le
jtan-

-j tan -1

1 R

[ (-R)
= le>

2t

02 P = 2 tan
-1 R

(2.47)

(2.48)

Again, R is the transition region parameter described by the ratio of w2p

to Wi p of the analog version of the filter. Table 2.9 presents a summary of the

values for 9\ p , $2 P , and R for some of the digital lowpass prototype elliptic filters.

Example 2.6

Once again the design example of the previous section will be used to

illustrate the new direct design procedure. The problem statement is:

Design an elliptic lowpass filter that meets the following specifications:

• passband ripple of 0.5 dB

• passband ripple-edge frequency of 2 kHz

• stopband gain of at most —20dB for frequencies greater than 6 kHz

• sampling frequency is 20 kHz.
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TABLE 2.9

ELLIPTIC LOWPASSPROTOTYPEFILTERS

Passband ripple = 0.5 dB ; Stopband gain = —20 dB

(due to reference 5)

N 9ip_ dj^ R

2 1.5708 2.447 2.7626

3 1.5708 1.9157 1.9157

4 1.5708 1.6145 1.0447

5 1.5708 1.5862 1.0155

Transfer Functions

N H(z)

o 1.575z 2 + 2.75s + 1.575
^ 3.91z 2 + 1.13z + 1.22

o 1.276z 3 + 2.367z 2 +2.376z + 1.276
° 4.626z 3 +0.008z 2 +3.030z-0.352

a 1.4179z 4 +2.366z 3 +3.4362z 2 +2.336z + 1.4179* 5.885z 4 -1.0958z 3 + 6.5858z 2 -1.0954z + 1.338

r 1.794z 5 +2.9512z 4 +4.8532z 3 +4.8532z 2 +2.9512z + 1.794° 7.9516z 5 -2.314z 4 +12.7192z 3 -3.1856z 2 +4.9276z-0.902
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Step 1 : Find the critical digital design frequencies.

= 2^2,(2x103)
lp

f a 20 x 10 3

2^ 2,(6 x 1Q3) =
2p

/, 20 x 10 3

Step 2 : To determine the filter order of the prototype filter, find a and 92p , which

are defined as follows from Table 2.5.

sin (fl c /2- 0^/2)
sin(0 c /2 + 0' /2)

where C is the critical frequency of the prototype filter i.e., 9 C = tt/2.

Therefore,
sin(0.57r/2-0.27r/2)

a
sin(0.57r/2 + 0.27r/2)

_ sin (0.7854 -0.31416) _ 0.45399 (2.49)
~

sin (0.7854 + 0.31416) ~ 1.09956

= 0.5095

Find 92p , the stopband frequency for the lowpass prototype filter.

e>
9 *p = €

1 - ae
je *p

e
ji-855 _ 0,5095

"
1 - (0.5095)e> 1 - 855 (2.50)

_ i -^ QQe _ -.J2.6785

l^SSe-^ - 3965

=>9 2p = 2.6785 rad

Step 3 : From the design chart (Table 2.9), determine the lowest order elliptic

lowpass filter prototype. Table 2.9, indicates that a second-order fil-

ter has a stopband frequency 92p of 2.447 rad, which meets the design

specifications. Thus, the lowpass prototype transfer function is:

1.575; 2 + 2.75; + 1.575
HlPp{z) ~ 3.91*' + 1.13* + 1.22

(2 - 51)
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Step 4 : Find the actual filter transfer function, using the prototype transfer func-

tion and the digital filter frequency transformations of Table 2.5.

Hlp(z) = Hlp p {z

1.5752 2 + 2.752 + 1.575

3.9U 2 +1.13* + 1.22
(2.52)

_ 0.5829z 2 + 0.2541* + 0.5829

3.65U 2 - 3.80422 + 1.6593

or

TT , N
0.1596z 2 + 0.0696* + 0.1596

, n roNHLP{Z) = z*- 1.042. + 0.4545
(2 ' 53)

The transfer function of Equation (2.52) is identical to the transfer

function obtained using the traditional design technique (see previous

section).

Step 5 : Verify the design by obtaining a computer generated frequency response

plot (see Figure 2.16).

To further illustrate this direct design method, an additional example

follows involving the design of a bandpass filter.

Example 2.7

A digital elliptic bandpass filter is to be designed to meet the following

specifications:

• 0.5 dB ripple in the frequency range 600 Hz < / < 900 Hz,

• sampling frequency of 3 kHz, and

• maximum gain of -20 dB for < / < 200 Hz.
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Step 1 : Find the critical digital frequencies from the design specifications:

1
f 3 3000

, a = ^ = M9oo) =lg8rad
fs 3000

2p
/ a 3000

^ = /^ = v/(1.25) (1.88) = 1.53 rad

Step 2 : Again, since the design chart is based on a cutoff frequency of C = ir/2,

the design specifications need to be normalized to determine the lowpass

prototype filter from Table 2.9.

From the Table of Digital Frequency Transformations (Table 2.5),

the following frequency transformations apply:

Prototype filter from desired filter:

J20' _ 2ak J9' 2 fc-i

e^r = -- y 6
-

+ y (2.53)
1

fc+i
e + Jfc+i

e

where:

_ cos(^/2 + ^/2)a
cos(0' u /2-^/2)

fc = tail (0 c /2) cot (0^2 -0J/2)

6'
2p is the stopband frequency used to determine the filter order, JV.

C is the cutoff frequency of the prototype filter, 8 C = n/2.
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For this problem:

6'
2p = 0.133tt

0'
u =0.6tt

9'
e =0.4tt

6 C = 0.5tt

_ cos(0.37r + 0.27r) _ cos(0.5)7r
a ~ cos(0.3tt - 0.2tt)

~
cos(O.Itt)

a =

fc = tan(0.57r/2)cot(0.67r/2 - 0.4tt/2) = 3.07

Step 3 : Find 92p to determine the lowest order prototype filter that may be used.

Since a =

JH9 - ^^ + fe* e J^ +0.509

1 + f^e'
2 '

2 * 1 + (0.509)e i2 ^p

eJ o.836 +0509 i.394e-> 258
1

_, 286 (
2 ' 55 )

— =le J "

1 + (0.509)eJ°- 836 1.394e> - 282

== 2p = 2.86 rad

Step 4 : From Table 2.9, determine the filter order of the prototype filter that

corresponds to the above value of #2 P - It can be seen from the table that

a second-order filter fulfills the design specifications.

Again, the lowp?,ss prototype transfer function is:

1.575z 2 +2.75z + 1.575
*"* W=

3.91,' + 1.13, + 1.22
(2 - 56)
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Step 5 : As in previous design problems, the prototype filter transfer function is

converted to the actual filter transfer function through the use of the

digital frequency transformations of Table 2.5.

HBP(z) = HLPp (z

z= -- fc + i
r Eu

1.575* 2 +2.752 + 1.575

3.912 2 + 1.132 + 1.22

0.5833z 4 - 0.2558-z 2 + 0.5833

(2.57)

-a ?
2 +Q5Q9

-0.509z 2 -l

3.65092 4 + 3.7996z 2 + 1.6579

Step 6 : Obtain the frequency response plot for design verification (see Figure

2.17).

In summary then, this chapter has presented three commonly used recursive

filter types: Butterworth, Chebyshev and elliptic. The type chosen by the designer

is dependent on the requirements of his/her particular design problem.

Butterworth filters exhibit a flat frequency response characteristic, but do not

have as steep a transition region for the same order filter as do Chebyshev and

elliptic filters. With Chebyshev and elliptic filters the steepness of the transition

region is attained by accepting a degree of ripple in the passband.

All three filter types may be designed using either the traditional approach,

involving an analog prototype filter transfer function, or the direct design approach

that uses digital prototype filter transfer functions.

S3



o

OJ _J \

d
c / Lo T
d
83

! / \

\D
! / \

O
\

*
/ i \

d
PS i / ! \
e

/ i \
d

i / \
o
d

~^\ / \V^~
0.00000 0.62832 1.25664 1.86496

FREQUENCY,THETA
2.51328 3.14160

N

Figure 2.17. Frequency Response for

Elliptic Bandpass Filter

S4



III. NONRECURSIVEFILTER DESIGN

A. INTRODUCTION

The nonrecursive realization of digital filters is desirable because it can result

in two very attractive features: linear phase and the absence of stability problems

because all of the poles are at 2 = 0.

Nonrecursive filters are normally characterized by a finite duration impulse

response; consequently, historical methods of design involve the analytical deter-

mination of the filter coefficients by expanding the desired frequency response in a

Fourier series and then truncating the series to the desired filter length (order). A

disadvantage inherent in this design method is the presence of an overshoot that

occurs at discontinuities in the desired frequency response (known as Gibbs' phe-

nomenon). The use of window functions was devised as a remedy to this problem;

examples are the Kaiser, Hamming and von Hann windows [14].

Another popular method of FIR filter design is frequency sampling, whereby

the desired filter frequency response is sampled, and then the inverse discrete

Fourier transform of these sample values is determined to find the filter impulse

response.

In this chapter both of these methods will be presented, and several design

examples given, but first a review of the theoretical background of nonrecursive

digital filter design by Fourier methods is in order.
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B. BACKGROUND
The design of nonrecursive digital filters hinges on the following relationships:

A causal nonrecursive system can be described by a difference equation of the

form [1]

k=L

y(n)= Y, h kx(n-k). (3.1)

jfc=0

For an input x(n) = e
jn * the steady - state system output is

y 99 (n) = j n9 H{J 9
) (3.2)

where H(e J
) is the system's frequency response.

Expanding the right side of Equation (3.1) for the same input x(n) = e^
n6

,

yields the following steady - state output

y„(n) = £ fee*-** = £ h^'e-^

(3.3)
Jt=0 Jfc=0

= b ei ne + bx e?
ne t-> 9 + b 2 e>

n$
e-3

2e + .... + b L e>
n9 e-' L9

= e?
n6

[b + he'' 9 + fee"'"" + . . . + b L e'' L$
] .

Equating Equations (3.2) and (3.3) gives

e>
n9 H{e> 9

) = e>
n9

[b + 6 lC "^ + b2 e~ ]29 + ... + b L e^ L0
]

(3.4)

which implies

H(e> 9
) = Y, Ke- Jn6

. (3.5)

n=0

But, by definition the frequency response of an LTI system is

n=oo

H(e* 9
) = £ A(n)c->»*. (3.6)

n=oo

For a causal filter (h(n) = 0,n < 0), with a finite number of delays (n = L),

however, the frequency response definition is

n=L
H{e> 9

) = £ h(n)e-J" 9
. (3.7)
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Comparing Equations (3.5) and (3.7) produces the following relationship that is

the crux of nonrecursive filter design

h(n) = b n . (3.8)

Equation (3.8) establishes a direct relationship between the unit impulse response

of an FIR filter and the coefficients, 6n , in the system difference equation.

The goal of the design techniques presented in this chapter is to determine the

filter coefficients (or weights), &o, &i , . .
.

, &£, for a desired frequency response charac-

teristic, Ho(^ 9
)- These techniques include: Fourier Coefficient Design for lowpass,

highpass, bandpass and bandstop filters; Windowing; and Frequency Sampling.

C. FOURIERCOEFFICIENT DESIGN

As stated in the introduction we need to determine the filter coefficients, which,

in the case of nonrecursive filters, are also the coefficients of the unit impulse

response, h(n). Thus, a relationship between the desired frequency response and

the impulse response needs to be established.

Beginning with the desired frequency response

n=oo

HD(e
je )= Y, h (")e~ jne

- (3-9)

n=—oo

It can be shown, [1], that h(n) of Equation (3.9) may be written,

JOo

2n+6
h(n) = (1/2tt) / HD(e

je y n9
d9. (3.10)

Equation (3.9) is recognized as the Fourier series expansion of the function Hd(^ &
)i

where the h(n) are the Fourier coefficients (hence the source of the name for this

design technique).

Depending on the type of filter that is desired, this expression can be reduced

to the following forms:
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(3.n;

Lowpass Filters :

^Lp(rc) = (K/irn)sm(n0 c )

K — desired magnitude in the passband

n = 0,±l,±2,...

9 C = the desired cutoff frequency

The number of coefficients is truncated to correspond to the desired filter order;

as expected, the higher the order, the better the approximation to the desired

frequency response.

i
j9

)

K

^
- K -e fc c It

Figure 3.1. Ideal Lowpass Filter Frequency Response

Highpass Filters :

h Hp(n)=h LP (n)(-l) n
(3.12)
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Figure 3.2. Ideal Highpass Filter Frequency Response

Bandpass Filters :

h Bp(n) = [2cos(n0 o )] h LP (n) (3.13)

where,
Bu-Si

2

6u+0t
>o

=

; # u = upper passband frequency

; 0( = lower passband frequency

k -e.-e. -a, e
-j ° °- K y

Figure 3.3. Ideal Bandpass Filter Frequency Response

Bandstop Filters :

fcz?s(0) = K - h BP(0)

h BS(n) = -h BP(n);n = ±1,±2,...

(3.14)
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Figure 3.4. Ideal Bandstop Filter Frequency Response

As can be seen in the previous impulse response expressions for the various

filter types, they are all based on a lowpass filter prototype, h LP (n). Thus, the

design steps for the ideal lowpass prototype filter can be summarized as follows,

bearing in mind that once the lowpass filter coefficients are determined they may

be transformed to the coefficients for a highpass, bandpass, or bandstop filter, if

desired.

1. Lowpass Prototype Filter Design Procedure

Ste P 1 : Translate the design specifications to those of a lowpass prototype. De-

termine the desired critical frequency, 6 C , and the passband magnitude,

A'.

Step_2: Find the lowpass filter coefficients given by Equation (3.S), that is,

h LP (n) = b n =(K/Tm)sin(nO c )i n = 0, ±1, ±2,. .
. , ±L (3.15)

with L = (N - l)/2.

Step_3: Shift h LP (n) to the right by L terms to mate the filter causal.

h LP {n) = [A'/7r(n - L)\ sin [(a - L)9 C J
; n = 0, 1, 2, . .

.

,

2L (3. 16)
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Step 4 : Transform the coefficients, hLp(n), to lowpass, highpass, bandpass or

bandstop, as desired. Implement the design, and compare the frequency

response obtained with the original specifications to ensure that these

specifications are met.

As an example, suppose a highpass filter with a passband of unity gain for

frequencies greater than 10 kHz is desired. The system sampling frequency is 50

kHz.

Step 1 : Cutoff frequency, 9'
c

= wT = ^ =
fffipj

= 0.4tt

Passband gain, K = 1.0

Translating to lowpass prototype specifications:

&c
= 7r —9 C ; where 9C is the cutoff frequency of the

lowpass prototype and 9' is the cutoff

frequency of the highpass filter

=> 9 r = 7T - 9' = 7t - 0.4tt = 0.6k" c

Step 2 : From Equation (3.11), the lowpass prototype filter coefficients are:

h LP (n) = sin(0.67m)/(7rn); n = 0, ±1, ±2, . .
.

, ±10

for a 21 -coefficient filter, while the highpass filter coefficients are obtained

from Equation (3.12). The resulting frequency response is illustrated in

Figure 3.5.
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tlT.P tlHP

0.600 0.600

±1 0.303 -0.303

±2 -0.094 -0.094

±3 -0.062 0.062

±4 -0.076 0.076

±5 0.0 0.0

±6 -0.050 -0.050

±7 0.027 -0.027

±8 0.023 0.023

±9 -0.034 0.034

±10 0.0 0.0

D. WINDOWS
It has been shown that the expression for the desired frequency response,

HD{z* e
), can be written in terms of a Fourier series. Equations (3.9) and (3.10)

are rewritten below for convenience.

n=oo

HD (e j0 )= J2 h(n)e- jn6 d0 (3.9)

n=—oo

where
27T+0O

h(n) = (1/2tt)
/

HD(e
je

)e
jne

d8. (3.10)
JOo

In actual implementation, however, the infinite sum in Equation (3.9) must neces-

sarily be truncated, since a filter cannot have an infinite number of delays. Also,

at points of discontinuity in the ideal frequency response (where the magnitude

abruptly changes from 1.0 to 0.0, or vice versa), the Fourier series approximation

cannot match the desired frequency response exactly, even if an infinite number of

terms were possible. There is always an overshoot of about nine percent near
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discontinuities. This overshoot is the well known Gibbs' phenomenon, and is alle-

viated through the use of window functions. The filter weights, h(n), are modified

using one of several available analytical expressions (Hamming, Von Hann, etc.)

[14].

h(n) = h(n) • w(n) (3.17)

h(n) = modified unit sample response

h(n) = original unit sample response

w(n) —window function

The modified value of the desired frequency response is therefore

n=L

n=-L
n=L

= J2 h(n) • w(n)e- jn

(3.18)

n=-L

again where,

/ iWVh(n) = (1/2tt) / HD (e j6 )e
jnd d8

which exhibits a gradual roll-off, rather than the steep slope characteristic of the

ideal frequency response. Thus, the tradeoff involved when using windows in

Fourier design is that a reduction in the overshoot caused by Gibbs' phenomenon,

is achieved at the expense of decreasing the sharpness of the frequency response

cutoff. That is to say, the passband and stopband ripples are suppressed at the

expense of a wider transition from passband to stopband; specifically, there is a

less steep transition. Figures 3.6 and 3.7 illustrate these points; they depict an un-

windowed and windowed lowpass filter design, respectively. For convenience, some

of the more popular window functions are summarized [14]:
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• Hamming Window

w(n) = 0.54 + 0.46cos(n7r/I)

n = 6,±l,±2,...,±Z

• Von Hann Window

w(n) = 0.50 + 0.50cos(n7r/L)

n = 0,±l,±2,...,±L

(3.19)

(3.20)

• Kaiser Window mi-(2n/L>W»
hP (3.21)

n = 0,±l,±2,...,±L

where Iq{-) is the modified zeroth-order Bessel function, and j3 is a constant that

specifies a frequency response tradeoff between the peak height of the sidelobe

ripples, and the width of the main lobe.

E. DESIGN OF A DIFFERENTIATOR

The Fourier series design procedure is easily applied to the design of a differ-

entiator, which is often used in signal processing applications to track the rate of

change of a signal. The desired analog frequency response for a differentiator is

HD(jw) = jw. (3.22)

Its counterpart in the digital frequency domain is

HD(e
je

) = j9/T;9 = wT. (3.23)

Figure 3.8 illustrates the ideal magnitude and phase characteristic.
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Figure 3.8. Ideal Differentiator Frequency Response Characteristic

The Fourier series design approach requires the determination of the Fourier

series that approximates this ideal frequency response characteristic.

Substituting the desired frequency response (Eqn. 3.23) into Equation (3.10)

yields

h{n) = (l/2ir) / (je/T)e jn6 d6

J-\ (3.24)

= (J/2ttT) I 6e
jn6

d9.

Evaluating this integral, the following expression is obtained for the unit sample

response of a differentiator.

fe(n) = (-l)V(nD,n = ±l,±2,...

h(n) = ,n =
(3.25)
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Figure 3.9 depicts the frequency response of a 20th-order differentiator whose co-

efficients for T = 1 are as follows:

n h(n) n h(n)

-1/10 11 -1

1 1/9 12 1/2

2 -1/8 13 -1/3

3 1/7 14 1/4

4 -1/6 15 -1/5

5 1/5 16 1/6

6 -1/4 17 -1/7

7 1/3 18 1/8

8 -1/2 19 -1/9

9

10

1 20 1/10

Also, included is a 20th-order differentiator with a Hamming window, which, as

can be seen in Figure 3.10, is a very good approximation.

In summary then, the Fourier series design technique is very effective, and

can be used in many applications such as the design of a differentiator illustrated

here. The use of window functions is necessary, however, to reduce the Gibbs'

phenomenon effect, which introduces a sacrifice in the designed filter's transition

region.

F. FREQUENCYSAMPLING

The window design technique introduced in the previous section has a distinct

disadvantage in that the computation of Fourier series coefficients for the desired

frequency response can be impossible when an analytical expression for the desired

filter's frequency response is unknown or extremely difficult to determine.

Frequency sampling is a technique originally proposed by Gold and Jordan and

later developed by Rabiner et al. as a solution to this problem [9]. This method

has two distinct advantages:
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• It is possible to design a filter that approximates any desired frequency domain
specifications, without ever having to determine an analytical expression for

the filter frequency response, H(e ]9
).

• The filter coefficients, h(n), can be determined using the IDFT algorithm.

Before proceeding with an explicit summary of the steps involved, and a de-

tailed example, a discussion of the theoretical background will be presented.

In many filter applications a sharp cutoff amplitude characteristic and linear

phase are desired. To ensure that these objectives are met when designing a filter,

requires consideration of the number N and location of the equispaced frequency

samples. Discussion of these parameters relative to their impact on the filter's

frequency response involves consideration of four separate cases [9].

Case 1 N odd, frequency samples at

0, =27^/^ = 0,1,2,...,^-!.

N =» 9

Figure 3.11a. Frequency Samples for N Odd

Case 2 N even, frequency samples at

k =2rr^/ i V,;- = 0,l,2,...,.V-l.

102



Figure 3.11b. Frequency Samples for N Even

Case 3 N odd, frequency samples at

6t .^ii+^i.t. 0,1,2,. ..,n-i.N

N = 9

Figure 3.11c. Frequency Samples for N Odd

Case 4 N even, frequency samples at

(A; + 1/2)
=: fir

N fc = 0,l,2,...,iV-l,
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<f 2^-8/2

N =

Figure 3. lid. Frequency Samples for N Even

It should be noted that Cases 3 and 4 do not readily lend themselves to inverse

DFT computation using the FFT algorithm, since the first frequency sample is not

at Hz. For this reason a detailed discussion of these two cases will be omitted,

however, information regarding these cases can be found in [9]. A discussion of

frequency sampling considerations for Cases 1 and 2 follows.

Cases 1 & 2: Sampling Theorem

Recall that for an FIR filter with impulse response, h(n) —{/*(0), h(l), . .
.

,

h(N —1)} , the transfer function is

JV-l

H(=) = y, h ^= (3.26)

As discussed earlier, the impulse response, h(n), can also be represented in terms

of its Discrete Fourier Transform (DFT), since it is of finite duration [9]

N-l
h(n) = (1/JV) Y Hk e i2 * kn /N

(3.27)

where Hk —H{z
;=ei'«*/"
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Substituting the expression for h(n) into Equation (3.26) gives [9]

N-l

*<«)-£
n=Q I

N-l
(1/N) J2 Hk e

j2nkn /N

N-l

(i/ff) E
Ar=0

N-l

2jj*.
,j2irkn/N

jk=0

N-l N-l
= (1/N) J2 E Hk eJ

2irkn ' Nz- n

jt=0 n=0
N-l N-l

= (1/iV) Y, Hk Y, e
j2 " kn ' Nz- n

k=0 n=0

Applying the finite geometric sum property to the inner summation

N
N-l
V^

e
J2nkn/N z -n _

1- J2rk/N

n=0

N-l

1- e ;2xfc/N

E eJ
'

2 ' kn/N-n _
1- *

Tl=0
e j2xk/N

1 _ eJ2*k z -N

1 _ e j2nk/N z -l

Substituting back into Equation (3.28) yields [9]

N-l

;e i2,r * = l,ifc = 0,l,2,...

jfc=0

(I-*-*)"
iV

Jt=o
e j2nk/N 2

-

Let 2 = e-
7 ^, to determine the interpolated frequency response

,-jN0/2 („jN0/2 _ jj
tf(e*) =

,-( eJN9/2_ e -jne/2j

N
jn6/2\ N-l

f~L 1
jfc=0

(ei 2 * k l N)(e-i 9
)

_ c -iN»/2 ^J # fc ( e jN*/2 _ e-J»N/2)

~~JV A* i-( c i 2 **/N)( c ->«)
Jfc=0

(3.28)
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e -jN6/2 N-l
ffk

^jN9/2 _ e
~jN8/2)

. e
~jwk/N

. e J9/2
= M ^ e -jnk/N . eJB/2 _ e jnk/N . e ~j0/2

Jb=0

e
-jN9/2

. e
jB/2 *zi Hk (e>

N9' 2 - e-> Nel 2
) e-> vk ' N

=
tf 2^ e j(6/2-*k/N) _ eJ(0/2-irk/N)

fc=0

* & *»«-#)' (3 - 9)

Thus, Equation (3.29) expresses the interpolated frequency response in terms of

the sample values, Hk, of the desired frequency response [9].

In Case 1, where the number of frequency samples, TV, is odd, choosing the

frequency samples, Hk, to be real and symmetric yields a real and symmetric

impulse response

(N-l)/2

h( »>-f + £ ^ «-(£*)• (3 - 30)

Jk=l V 7

The interpolated frequency response, H (e- 7 *), is also purely real which, as stated

in the beginning of this section, is highly desirable for most filter applications

(JV-l)/2

H (e>
9

) = Yl 2h ( n
)

cos ( nd
) ( 3 - 31 )

Case 2, however, presents a problem. Looking at Equation (3.29), it can

be seen that for N even, the term e~i* k l N inside the summation introduces an

imaginary component into the interpolated frequency response, H (e J<9
).

For example, suppose the following lowpass filter frequency response is sampled

from —7r < < 7r with an even number of frequency samples, N = 4. From

Equation (3.27), the following noncausal impulse response is obtained

h(n) = (1/4) V Hk e j2 ™k /*

*=-2 (3.32)

= (1/4) [O + (l)e-'
2^ + 1 + (l)e 1

" 1**
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Figure 3.12. Desired Lowpass Filter Frequency Response

therefore,

h{-2) = (l/4)[0 + ey> + 1 + e- J>
] = -0.25

fc(-l) = (l/4)[0 + ^ 2 + l + e"^ 2
]
= 0.25

h(0) = (l/4)[0 + 1 + 1 + 1] = 0.75

h(l) = (l/4)[0 + e~^ 2 + 1 + e^/ 2
]
= 0.25

and the frequency response is

F(e") = J] >>(n)e-»
n=-2

= (-0.25)e- ?

'

2 * + (0.25)6* + (0.75) + (0.25)e~*

= (-O.25)[cos(20) +j sin(20)] + O.25[cos(0) + jsin(0)] + (0.75)
(3 ' 33 ^

+ (O.25)[cos(0)-jsin(0)]

= (0.75) + (0.5) cos 6 + (-O.25)[cos(20) + j sin(20)].

The imaginary component introduced is

-0.25; sin(20).

According to Reference 9, the amplitude of this component should be,

A = (l/N) £iT t (-l)*
k=-2

= (l/4)[0 - 1 + 1 - 1] = -0.25

which is indeed the case.



If an odd number of samples, N = 5, were taken of the same frequency re-

sponse, the impulse response would be

2

h(n) = (1/5) £ Hk e** nk ' 5

k=-2

(l/5)[0 + (l)e-
j2 ^ + 1 + (l)e'

2^ + 0]

= (l/5)[l + 2cos(27rn/5)]

(3.34)

(3.35)

therefore,

h(0) = 0.6

h(±l) = (1/5)[1 + 2 cos 2tt/5] = 0.324

h(±2) = (1/5)[1 + 2cos47r/5] = 0.124.

The frequency response is thus

H(e* 9
) = £ *(n)e-'»'

n=-2

= (0.324)e'
2 ' + (0.124)e J * + 0.6 + (0.124)e"'' + (0.324)e-'

w

= (O.324)[cos(20) + jsin(20)] + (0.124) [cos + j sin 0]+

O.6 + (O.124)[cos0- jsinfl] + (O.324)[cos(20) -jsin(20)]

= 0.6 + (0.648) cos 9 + (0.248) cos(20)

and there is no imaginary component.

To remedy the imaginary component problem for the even case, the following

substitution is made for the frequency sample values Hk [9]

Hk = Gk e
jnk/N

. (3.36)

The set of Gfc 's is selected so that G(0) = H(0), G(N/2) = 0,

and G(k) = -G(N - jb), k = 1, 2, . . ., {N/2) - 1.

The resultant impulse response is both real and symmetric, with h(n) = h
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(JV - 1 - n); n = 0, 1, 2, . . ., (iV/2) - 1. The values of /*(n) are given by,

w=£+TfH(£) fc+ (IH (337)

and the interpolated frequency response H(e^ e
) is,

(7V-l)/2

H(e j °)= Yl 2h(n)cos(n0). (3.38)

The steps involved, when designing a filter using the frequency sampling

method, are as follows:

Step 1 : Given the continuous frequency response specifications for a desired filter,

N samples are taken at equispaced frequencies over one period of the

desired response

H(k) = H(e> 9
); 9 = 2-Kk/N. (3.39)

If the number of samples, N', is even, they need to be transformed using

the following relationship, prior to proceeding with Step 2

H{k) = G{k)e j2nnk l N (3.40)

such that

G(0) = H(0)

G(N/2) =

G(k) = -G(N - Jfe); k = 1, 2, . .
. ,

(N/2) - 1.

Step 2 : Determine the Fourier coefficients of the desired filter by finding the

IDFT of these sample values. In other words, determine the impulse

response.

h(n) = (1/N) J] H(k)e j2irnk / N
(3.41)
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Step 3 : Again, it may be necessary to use an appropriate window function,

h(n) = h(n) • w(n). (3.42)

Step 4 : The Fourier coefficients thus determined correspond to the weighted filter

impulse response, h(n), and the filter is realized nonrecursively by the

difference equation
N-i

y(n) = Yl b^ n ~ fc
) ( 3 - 43 )

fc=0

where

b k = h(n).

Step 5 : Verification of the filter design is accomplished by determining the inter-

polated frequency response, H(e^ e
), resulting from the use of the above

filter coefficients. This frequency response is compared to the original

desired frequency response, Hd(^ 9
), to see if it is a reasonable approxi-

mation.

This procedure is illustrated by the design of a bandpass filter. First, an odd

number of frequency samples will be used and then an even number.

Example 3.1 Frequency Sampling for N Odd

A bandpass filter is desired with the ideal frequency response characteristic

illustrated below. The number of frequency samples to be used is N = 255.

Sampling gives

9 k = 2rrk/N

where N = 255

(3.44)

k = 0,1,..., 254

or A0 = 2;r/iV = 0.0246.
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Figure 3.13. Desired Bandpass Filter Frequency Response

Thus,
(- 1.0; k = 64, . .

.
, 106 and it = 140, . .

. , 101

JJ(fc) = I 0.0; ifc = 0, . .
.

, 63 and it = 107, . .
.

, 148

I and fc= 192,..., 254 .

Taking the ID FT of the above frequency sample values and truncating h(n) to 51

terms with a rectangular window, produces the interpolated frequency response of

Figure 3.14a, while Figure 3.14b illustrates the response obtained using a Hamming

window.

Example 3.2 Frequency Sampling for N Even

Repeat the previous example, with N = 256 frequency samples.

Sampling gives

where

k = 2zk/X

N = 256

A: = 0,1,...

A0 = 2»/.V = 0.0245.
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BANDPASSFILTER (N = 255)
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Figure 3.14a. Unwindowed Bandpass Filter Frequency Response

112



BANDPASSFILTER (N = 255
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Figure 3.14b. Windowed Bandpass Filter Frequency Response
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Thus,

f
1.0;

= < 0.0;

1.0; fc = 64,...,106 and fc = 150,..., 192

{ 0.0; k = 0, . .
.

, 63 and k = 107, . .
.

, 149

and k = 193, . .
.

, 255

But recall for N even, the sample values H(k), must be transformed to elimi-

nate the unwanted imaginary component. Applying Equation (3.40) gives

H(k) = G(k)e^ k / 256

such that,

For example

G(0) = H(0) =

G(256/2) = G(128) =

G(k) = -G(256 - Jfe); k = 1, 2, . .
.

, 127.

G(65) = H(65) = 1.0 = -G(191) => G(191) = -1.0

and the transformed #(65) and if (191) are

#(65) --= i.Oe'
2 ^ 65 )/ 256

tf(191) = -1.0e j2,r(191) / 256
.

Using the transformed H(k) values, the IDFT is determined to find the impulse

response, which is again truncated to 51 terms. Figures 3.15a and 3.15b show the

unwindowed and windowed frequency responses, respectively. It should be noted

that when using a Hamming window for an even number of terms (in this case 52)

the equation for the window function (Equation 3.19) should be modified as follows

w(n) = 0.54 + 0.46 cos
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Figure 3.15a. Unwindowed Bandpass Filter Frequency Response
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BANDPASSFILTER (N = 256)
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G. TRANSITION POINTS

As discussed in the previous section, frequency sampling involves taking N

equispaced samples of a desired filter frequency response, Hd(^ 9
)- The IDFT

algorithm is used to approximate the unit sample response, /i(n), which, for the

case of nonrecursive filters, is equivalent to the Fourier series coefficients. The

coefficients, in turn, are used to design a filter that approximates the original

desired continuous frequency response.

A filter designed in this manner has a frequency response that is equal to

the desired frequency response at the frequencies of the sampled values, however,

the response can deviate significantly from the desired response at frequencies in

between these sample values.

A method that can be used to smooth the frequency response involves the

use of transition samples between the passband and stopband of the desired fre-

quency response [9]. The values of these transition samples are selected based on

minimization of the ripple in the passband and/or stopband, or minimization of

the maximum sidelobe of the frequency response. In other words, a minimization

algorithm is used to find the optimum values for the transition samples based on

the selected minimization criterion.

As before, an example will be given to illustrate this technique, but first a

summary of the steps involved:

Step 1 : Sample the desired continuous frequency response at N equispaced fre-

quencies where N is the number of Fourier coefficients that will be used

to approximate the desired filter response. The spacing between the

frequencies is A0 = 2it/N.

Step 2 : Determine the impulse response h(n) (Fourier coefficients) by finding the

Inverse Discrete Fourier Transform, IDFT, of the sample values.
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Step 3 : Using the coefficient values determined in the previous step, find the con-

tinuous frequency response and compare with the desired filter response.

Step 4 : Use the minimization algorithm to adjust the transition coefficient values,

in order to obtain as close a match as possible between the desired filter

response and that obtained through the design procedure.

The minimization algorithm as used in [9], is based on minimizing the maxi-

mumsidelobe of the frequency response. Tables were generated for lowpass filters,

bandpass filters and wide-band differentiators of varying bandwidths; 1, 2, or 3

transition points; and odd and even values of the number of frequency samples, N.

Table 3.1 is a reprint of subsets of these tables (due to Reference 9) for lowpass

filter design, using 1, 2, or 3 transition points. The number of frequency samples is

N = 15, the column labeled minimax refers to the maximum sidelobe, and Type-1

data means that the first frequency sample is taken at = 0.

Design Example

In this example the goal is to design a lowpass filter with three frequency

samples in the passband symmetric about the origin (BW = 3), and a total of 15

frequency samples (JV = 15). The effects of using 0, 1, 2, and 3 transition points

will be investigated.

The values of the frequency samples, transition point values, and impulse

responses, h(n), are summarized below for all four cases; the transition point values

were obtained from Table 3.1.
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TABLE 3.1

LOWPASSFILTER DESIGN
(TYPE-1 DATA, N ODD)

ONETRANSITION COEFFICIENT
(due to reference [9])

BW Minimax 7\

TV = 15

1 -42.30932283 0.43378296

2 -41.26299286 0.41793823

3 -41.25333786 0.41047363

4 -41.94907713 0.40405884

5 -44.37124538 0.39268189

-56.01416588 0.35766525

TWOTRANSITION COEFFICIENTS

BW Minimax Ti T2

JV = 15

1 -70.60540585 0.09500122 0.58995418

2 -69.26168156 0.10319824 0.59347118

3 -69.91973495 0.10083618 0.58594327

4 -75.51172256 0.08407593 0.55715312

5 -103.46078300 0.05180206 0.49917424

THREETRANSITION COEFFICIENTS

BW Minimax Tx T2 T3

JV = 15

1 -94.61166191 0.01455078

2 -104.99813080 0.01000977

3 -114.90719318 0.00873413

4 -157.29257584 0.00378799

0.18457882 0.66897613

0.17360713 0.65951526

0.16397310 0.64711264

0.12393963 0.60181154
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Case 1 - Transition Points

H(k)

N = 15

-i _ 6 _ 5 _ 4 -3 _ 2 -i 12 3 4 5 6 7

Figure 3.16a. Case 1 - Frequency Samples

k -> ±1 ±2 ±3 ±4 ±5 ±6 ±7

fl"(fe) -> 1 1 1

h{n) - 0.333 0.278 0.142 0.0 -0.077 -0.067 0.0 0.058
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Case 2 - 1 Transition Point

• » i

7 -6 -5 -4 -3 -2 -1

H(k
N = 15

T, = 0.410474

12 3 4 5 6 7 k

Figure 3.16b. Case 2 - Frequency Samples

k ->

H{k) -,

h(n) -^

±1 ±2 ±3 ±4 ±5 ±6 ±7

1 1 1 0.410

0.388 0.295 0.098 -0.044 -0.061 -0.012 0.017 0.014
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Case 3 - 2 Transition Points

H(k) N = 15

T\= 0.100836

1 -6 -5 -4

Figure 3.16c. Case 3 - Frequency Samples

k — ±1 ±2 ±3 ±4 ±5 ±6 ±7

H{k) -* 1 1 1 0.586 0.101

h(n) -> 0.425 0.300 0.066 -0.059 -0.041 0.005 0.013 0.004
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Case 4 - 3 Transition Points

H(k)
N = 15

T, = 0.008734

T
2

= 0.163973

.
T

3
T

3
= 0.647113

3 4 5 6 7 k

k -> ±1 ±2 ±3 ±4 ±5 ±6 ±7

H(k) -> 1 1 1 0.647 0.164 0.009

h{n) -* 0.443 0.301 0.050 -0.062 -0.032 0.008 0.010 0.002

Figure 3.16d. Case 4 - Frequency Samples
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Figure 3.17 depicts the results of frequency sampling design using transi-

tion points. As expected, the amplitude of the passband and stopband ripple is

reduced with an increasing number of transition points; however, the tradeoff is

that the sharpness of the cutoff is reduced. This example illustrates the usefulness

of minimization algorithms in smoothing interpolated filter frequency responses

obtained with the frequency sampling technique. As stated earlier, Reference 9

contains tables for lowpass and bandpass filter design, as well as wideband differ-

entiators. While quite extensive, a designer may want parameters that have not

been tabulated. In this case, approximate values of the transition coefficients can

be derived from the tabulated values given, using linear interpolation.

H. DESIGN OF AN INTEGRATOR

In Section A analytical methods were used to design a differentiator. The use of

these methods to design an integrator, however, does not yield an easily obtainable

solution. As will be shown shortly, frequency sampling solves this dilemma by

providing a straightforward design technique that produces extremely good results.

Bandpass Integrator Design Example

A bandpass integrator with the following frequency response characteristic

is desired. Both of the aforementioned design methods will be applied to the design

problem to illustrate the advantage of the frequency sampling technique.

a. Method 1 - Analytical

In the 5-domain an integrator is described by the transfer function

H(s) = 1/s. The frequency response is thus: H(jw) = 1/jw = {jw)~ l
. Converting

the frequency response to digital frequencies

H(jw) = 1/jw => H(e j0
) = -jT/0- T = period. (3.46)
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K -8,

H n (e )

Figure 3.18. Ideal Integrator Frequency Response Characteristic

To determine the impulse response, h(n),

fc(n) = (1/2tt) / tf D (e^) e^-c/0 4- 1/2t / tf D (e
je

) e>
9 "dO

J-9 7 Je x

" dd
&

h(n) = (l/2rr) f (-JT/8) eJ
e "d9 + 1/2* f l/6e j

Since : f{l/x)e ax

h(n) = -;T/2;r

Jx = lnX +
l!

+ 2^ +
^l!

+ -

, ,
jnfl

,

(jn)W
,

(jn) 3 3
,

ln 9 + —+ T^T + T"3T +

A considerable number of steps later yields

jn0
,

On) 2 ^ 2

|

(jn) 3 ^
|

t

+ 9.0) 3-3!

h(n) = T/x n(92-e l ) + —(el-el)+... + —(8?-e?) (3.47)

where n is the number of coefficients desired for the implementation of the bandpass

integrator.

The analytical expression for the impulse response of the bandpass

integrator, Equation (3.40), is cumbersome, especially when the integrator design

is of a high order. Therefore, an alternative method is desirable.
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b. Method 2 - Frequency Sampling

Recall that the expression for the desired frequency response is

HD (e*) = -jT/0. (3.48)

Letting T = 1, one hundred and one frequency samples will be taken of the de-

sired bandpass integrator with a bandwidth of OAtt to 1.67T. In other words, 101

frequency samples, H(k), of the magnitude and phase characteristic (Figure 3.19)

will be taken using the following increment of the digital frequency

A0 = 2wk/N = 0.062A; for TV = 101

H{k) = H (e j °) for k = -50, . .
. , +50.

0=O.O62Jfc

The 101-coefficient impulse response is obtained by determining the

IDFT of these frequency sample values, and a 21-coemcient rectangular window is

applied yielding the following bandpass integrator coefficients.

R h{n) R h(n)

0.0974 11 0.4813

1 0.0793 12 0.2391

2 0.0946 13 0.2248

3 0.0439 14 0.0818

4 0.0362 15 0.0562

5 -0.0562 16 -0.0362

6 -0.0818 17 -0.0439

7 -0.2248 18 -0.0946

8 -0.2391 19 -0.0793

9 -0.4813 20 -0.0974

10 0.000

Finally, the interpolated frequency response is obtained. As can be

seen in Figure 3.20, the results are good. (Solid dots indicate the ideal frequency

response.) Also included in Figure 3.21 are the results obtained when a Hamming

window is used, while Figures 3.22 and 3.23 are the results of using 41 coefficients.
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This example further demonstrates the versatility and usefulness of

the frequency sampling technique. It allows for the design of filters that may be

unattainable using traditional analytic methods, and is thus an indispensable tool.
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Figure 3.21. Windowed 21-Coefficient Bandpass Integrator

(Solid dots indicate ideal frequency response)
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Figure 3.22. Unwindowed 41-Coefficient Bandpass Integrator

(Solid dots indicate ideal frequency response)
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Figure 3.23. Windowed 41-Coefficient Bandpass Integrator

(Solid dots indicate ideal frequency response)
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IV. COMPUTER-AIDEDDESIGN

The basis of all computer-aided design (CAD) techniques is optimization. This

is to say, a desired filter frequency response is approximated by a particular filter

whose coefficients are to be determined. The accuracy of the approximation is

evaluated according to some criterion, usually an error function, that indicates

how large a disparity exists between the desired filter frequency response and the

approximated filter frequency response. Variable parameters of the approximating

function are then "adjusted" to optimize the filter design in terms of this criterion.

A. REMEZEXCHANGEALGORITHM

An extensively used computer-aided design technique for linear phase FIR

filters is the Remez exchange algorithm. The mathematical basis for this algorithm

is the weighted Chebyshev approximation.

A summary of the approximating and error functions for this algorithm follows.

It has been shown in [1] and [13], that the frequency responses for the four cases

of linear phase filters - i.e., even or odd symmetry with an even or odd number of

terms - can be written in the form:

H (e?
9

) = t-W-WjWWH(e>'«) (4.1)

where H (e
jtf

) is a real-valued function used to approximate the desired niter's

magnitude specifications, and the remaining terms approximate the desired phase.

Table 4.1 gives the values L, and the form of H (e 7'*) for all four cases.
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TABLE 4.1

FREQUENCYRESPONSESFORLINEAR PHASEFILTERS

(due to reference 13)

L H (eg)

Case 1 - N odd
(N-l)/2

Symmetrical ^ a ( n ) cos(n#)
n=0

Impulse Response

Case 2 - JV even
iV/2

Symmetrical £ 6(rc) cos [9(n - 1/2)]
n=l

Impulse Response

Case 3 - JV odd
(N-l)/2

Anti-symmetric 1 ^ c(n)sin(n#)
n=l

Impulse Response

Case 4 - iV even
AT/2

Anti-symmetric 1 £] cf(n) sin[#(n —1/2)]
n=l

Impulse Response

Using trigonometric identities, the expressions for H (e^
e

) in Table 4.1 can be

rewritten in the following form:

H (e") = Q (e?
9

) P (e*) (4.2)

where Q (e 7 *) is a fixed function of frequency, 0, and P (e- 7 ^) consists of a sum of

weighted cosine terms (see Table 4.2).
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TABLE 4.2

FREQUENCYRESPONSESFORLINEAR PHASEFILTERS

(due to reference 13)

0(e") P(e>«)

(N-l)/2_
Case 1 1 ^ <Kn ) cos(n#)

n=0
(N/2)-l„

Case 2 cos(0/2) X) 6(n)cos(n0)
n=0

(N-l)/2
Case 3 sin(#) ^ c(n)cos(n#)

n=0
(N/2)-l _

Case 4 sin(0/2) £ d(n)cos(n#)
n=0

where

a{n
>-\a(n) = 2h(^-n: for n = 1,2,. is =1

2

r 6(1) = 6(0) + 1/26(1)

b(n)= I 6(n) = 1/2 [&(n - 1) + 6(n)l for n = 2,3,... , f - 1

l6(iV/2) = l/26(f -1)

c(l) = c(0)-l/2c(2)
c(n) = 1/2 [c(n - 1) - c(n + 1)] for n = 2,3, . .

.
, ^f 1-

c(n)=<j
c( iv

f i_ l) = 1/2g (A^i_
2)

c(^i) = l/2c(^i-l)

d(l) = J(0) - 1/2J(1)

^ <f(n) = 1/2 [J(n - 1) - J(n)] for n = 2,3, . .
. , f - 1

<f(f) = l/ 2J(f-l)
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Since Q (e-*
6

) is a function of frequency only, it can be seen that the approx-

imating function, H (e J °), can only be optimized in terms of P (e- 7 *); that is, the

dependency of H (e- 7 ^) on the filter coefficients is contained in P (e- 7
). Thus, the

coefficients of P (e^
9

) can be varied to achieve an optimum filter design, and, the

true approximating function can be generalized for all cases as,

P{e? 9
) = ^a(n)cos(n0) (4.3)

n=0

where L = (N —l)/2 or (N/2) —1 depending on which case is being considered,

and the a(n) are the weights from which the filter coefficients can be determined.

As stated in the introduction to this chapter, a measure of how well the de-

signed filter frequency response approximates the desired filter frequency response

is required. The weighted Chebyshev approximation uses an error function defined

as follows:

E($) = W{8) ]H D (e?
e

) - H (e>*)] (4.4)

where
Hd (e J

) = the desired frequency response

H (e J
) = the designed frequency response

W(0) = weighting factor

E{9) = error

In order to see the relationship between the filter coefficients and the error,

Equation (4.4) can be rewritten in terms of the functions Q (e J *) and P (e
jd

).

E(9) = W(9) [H D {e?
9

)
- Q (e") P (e*)]

HD (e^)
W{9)Q (e")

(e") -p(*n

Letting

W{9) = W(9)Q (e^) and HD (e>
8

) = HD (e*
#

) /Q (<J

(4.5)

(4.6)
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yields

E(9) = W(9) [H D (e*) - P (e?
6

)]
(4.7)

Thus, the Chebyshev approximation that is performed using the Remez exchange

algorithm can be stated as follows:

Find the set of filter coefficients (determined from the values of a(n)) that

minimizes the maximum absolute value of the error, E(9), over the frequency range

of interest.
n

e \E(6)\
(4.8)

-E optimum —min

(coefficients)

At this point, a discussion of the weighting function, W{9), is in order. The

purpose of this weighting function is to ensure a small tolerance for error in critical

frequency ranges.

If W{9) is large, this means a large deviation between the desired frequency

response, Ho (e^*)) an d the designed frequency response, H (e- 7 *), cannot be toler-

ated. Looking at Equation (4.4) we see that if W{9) is large, the difference between

the desired and designed frequency responses, \Hd (e- 7 *) —H (e J(9
) has to be small

to keep the weighted error small.

Conversely, if W(9) is small, the difference Ed (^ e
)

—H (e- 7 *) can be larger

and still meet the error criterion. Small values for W{9) would be used in frequency

bands where close approximation to the desired frequency response is not critical.

A copy of a program employing the Remez exchange algorithm [16] lias been

included, and its use is best illustrated with an example. Before proceeding with

the example, the salient features of the FIR Linear Phase Filter Design program

can be summarized as follows.
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1. Main Program Functions

Manage the Input -

NFILT = filter length in terms of samples, 3 < NFILT < NFMAX

NFMAX= 128, but can made greater or smaller by the user

JTYPE = filter type

1 = Multi-Passband/Stopband

2 = Differentiator

3 = Hilbert Transformer

EDGE= number of frequency bands, specified by 0i ower and upper

( maximum allowed is 10 )

FX = desired frequency response magnitude in each band, \Hd {e J&
) \

WTX= positive weight function, W(9), in each band

LGRID = Grid Density (the grid density, default value is 16)

Set-up appropriate approximation problem, based on the desired frequency

response, Hd (
ejd

)» and the weights, W{9).

Yield Output -

o The coefficients of the best impulse response obtained from the best cosine

approximation.
r max

\E{9)\o The optimal error I min

max
o The extremal frequencies where E{9) = 9 \E(9)\

2. Most Important Subroutines

EFF - defines the desired frequency response, Hd (e jd
)

WATE- defines the weight function, W{9)

REMEZ- calculates the best Chebyshev approximation of the desired frequency

response
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3. Important Note

It should be noted that the program output is the impulse response, h(n).

The user must supply his/her own program to calculate and plot the filter frequency

response, which is necessary to determine the suitability of the filter design.

4. Input Format

NFILT JTYPE # Bands LGRID

EDGE(Band Edges)

FX (Magnitude in Bands)

WTX(Weights in Bands)

5. Bandpass Filter Design Example

Wewish to design a bandpass filter that meets the following specifications:

Passband with a gain of one for the frequency interval 10 kHz to 15 kHz,

with a system sampling frequency of 50 kHz.

• The digital frequency band is:

2tt(10 4
)

2t(1.5) (10
4

)'•=
5(10<)

=0 - 5 "

• Normalizing so that = tt corresponds to a normalized frequency of 0.5.

0.47r _ 6j_

w ~
0.5

o.6tt e u

. e = 0.2
7T 0.5

0.5 ^ = °- 3
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• Designate Band Edges, Magnitudes, Weights: (the weights were arbitrar-

ily made equal for this example)

Band 1

Edges - 0.0 to 0.19

Magnitude - 0.0

Weight - 10.0

Band 2

Edges - 0.2 to 0.3

Magnitude - 1.0

Weight - 10.0

Band 3

Edges - 0.31 to 0.5

Magnitude - 0.0

Weight - 10.0

• Select Filter Length ( number of coefficients )

iV = 21

6. Sample Input File

00021 00001 00003

0.0 0.19 0.2 0.3 Band Edges

0.31 0.5

0.0 1.0 0.0 Magnitudes

10.0 10.0 10.0 Weights
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7. Sample Output File

The output file below was generated using the above input file. Njte

the output consists of the filter impulse response, the input values used and the

deviation between the desired and approximated frequency responses.

pj'ITf T[* T,r TL^ c ' E ESPOUSE (ftt|
LINEAP' "HAEE OIOT m \L ' ^TT.T^

'

6*STGN
°EME7 ErCFVIG 17 ftfiO^ITHI

P1NDn ASS ETLTEP

"TITE 75 LENGTH = 71

***** T1"» f JT f^'? orqr>QMq^ *****
r !( 1) = "^.11^^0311X^ + 00 = q ( 9 1 )

T
f f 2) = -0. 1037?3^ 1"-0? = R( to)
w( 3) = 0.110971011? +00 = '-j( io>
H( 4) = -0.23107301^-0 3 = it

( 1fl)

h( s> = -o. 1^^307^+00 = a ( 17^
»( M = -0. 2' ? 3">1 7 U*E-03 = »f 16'
H 7 ) = 0. 18^3 18f^a^ + oo = jj ) 1S «

Hf «j = -0. 1?8 1S3U^^-0 3 = '»( 14'
h( o\ - -0. 2207nq21 r +OQ = n( n
H 10) = -0. 0^6 1FO03F-0U = U( 12'

H(11) = 0. 233 4UO227+O0 = h( 1V

BA'O 1 *A'T0 7 BA10 3
10'^" BA VID EP^E 0.3003000 0.~>000000 0.310O000
rjt>nt?D q^VD rr^jp 0.10000^0 O.^OOOOOO o.S n lO0 0O
r>ESfBED VAL'TE 0I00000OO 1.0000300 ollOOOOOO
WE I GH^T ?! G 10.0000000 io.oooo^do 10.0000000
DEVIATION ol 3'*4*7n'.i oI?Ufi£7°4 9I34U6704
DEVIATION IN OB - Q .25169U7 2.5723715 -0.2516947
p yT CFMM r * T71? iO[TENC' rT: ' e

> MAv
'" rv,

A nT? tut* ptjppo C f
J r 7 17

6.'0511.363" '0.1051131 0.1S*?4pQ o.l^ooooo 0.209O0O0
0.75113^9 o. too 0000 0.3100000 o

# 3f|: ; nqo5 3.39522^3
0. 44^2030 0. 5000000

8. Results

Figures 4.1 to 4.3, illustrate the frequency responses for filter lengths N =

21,41 and 61, respectively.

As expected, the frequency response improves with an increasing number

of coefficients. The cutoff is sharper and the magnitude more closely approximates

dB in the passband. As with other design methods, windows may also be used
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to improve the frequency response characteristic. Figures 4.4 to 4.6, show the effect

of changing the band edges as follows, for N = 21 coefficients.

Figure 4.4 - Band 1 0.0 to 0.19

Band 2 0.2 to 0.3

Band 3 0.31 to 0.5

Figure 4.5 - Band 1 0.0 to 0.15

Band 2 0.2 to 0.3

Band 3 0.35 to 0.5

Figure 4.6 - Band 1 0.0 to 0.1

Band 2 0.2 to 0.3

Band 3 0.4 to 0.5

Figure 4.4 represents the original cutoff frequencies, while Figures 4.5 and

4.6 show the results of not selecting the stopband frequency cutoff close enough to

the passband frequency starting point, i.e., the passband is broadened beyond the

desired 0.2 to 0.3 specifications.

Thus, when selecting the stopband cutoff frequencies one should choose

values as close to the passband frequencies as possible. It is of importance to note

that the program does not allow for the upper stopband frequency equaling the

lower passband frequency. In other words the following parameters would not be

acceptable:
Band 1 0.0 to 0.2

Band 2 0.2 to 0.3

Band 3 0.3 to 0.5
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Finally, Figures 4.7 to 4.9 are the result of varying the weights of the

original filter specifications as follows for N = 21.

Figure 4.7 - Band 1 weight = 1.0

Band 2 weight = 1.0

Band 3 weight = 1.0

Figure 4.8 - Band 1 weight = 10.0

Band 2 weight = 1.0

Band 3 weight = 10.0

Figure 4.9 - Band 1 weight = 10.0

Band 2 weight = 10.0

Band 3 weight = 10.0

Again, as expected, the frequency bands with the heavier weight assigned

more closely approximated the desired frequency response, Figure 4.8. Here it

should be noted that the weights are taken into account relative to one another.

Figures 4.7 and 4.9 are identical because in both cases the relationships between

the weights is 1:1:1.

In this example, we have seen that the Remez exchange algorithm provides

an effective way to design linear phase FIR filters. However, a primary drawback

to this procedure is that the CPU time required grows quite rapidly (on the order

of N) with the filter order N.

For example, fifteen CPUminutes are required for the design of a lowpass

filter with N = 512 using a CDC 6500 [15]. This is the time required for one

iteration of the procedure. Typically, more than one iteration is required to find
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technique to reduce the CPU time required is desirable. Reference 15 presents a

method whereby the p A-operties of a high-order filter can be extrapolated from a

lower-order filter.

B. METHODFORTHEDESIGNOFHIGH-ORDERLINEAR PHASE
FIR FILTERS BASEDONA LOW-ORDERPROTOTYPE

A detailed explanation of this method will not be presented, however, a sum-

mary of the general idea behind this technique follows. The interested reader is

directed to Reference 15 for details of its application. It should be noted that the

term "high-order" refers to filters with orders approaching N = 2048.

The underlying basis for the high-order filter design technique is the observa-

tion that in high-order, multi-passband/stopband filters, extremal frequencies (i.e.,

ripple frequencies) in the broad part of these bands are more evenly distributed

than in the transition regions.

H n (e

M
E

.PJAyvw —1/\A/ojU^j07Ww
AG. AG. AG AG AG.

Figure 4.10. Desired High-Order Filter

Figure 4.10 represents the desired frequency response of a high-order multi-

passband/stopband filter; and it is noted that in regions A, C, and E there is a

uniform distribution of extremal frequencies, while in regions B and D the distri-

bution is non-uniform.
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The design of this filter using a lower order prototype involves the following

steps:

To obtain the low-order prototype, the uniform extremal frequency regions, A,

C and E are "cut-out". The remaining non-uniform regions B and D are then

merged to form the lower order filter whose frequency response Hp (e j8
) is

shown in Figure 4.11.

Figure 4.11. Low-Order Filter Prototype

• The Remez exchange algorithm is then used to obtain the filter order, N, and

the coefficients required that will meet the specifications of Hp (
e^ e

J
. This

is done by varying the order and the weights, until the order and weights that

yield the desired passband ripple and stopband attenuation are found.

• Once the low-order prototype filter is obtained, its extremal frequencies are

plugged back into the appropriate regions of the original desired high-order

filter, Figure 4.12.

• The extremal frequencies are used as initial values, and a final run of the

Remez Exchange Algorithm is then made to obtain the filter order and impulse

response of the high-order filter design. Again, the filter order and weights are

varied until an optimum design is obtained.

In conclusion it should be mentioned that in Reference 21a program is outlined

that automatically designs high-order FIR filters using this procedure. Approxima-

tions of filters with orders up to N = 4096 have been achieved using this program.
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Figure 4.12. Low-order filter prototype being placed

back into the appropriate regions of the

desired high-order filter

In conclusion it should be mentioned that in Reference 21a program is outlined

that automatically designs high-order FIR filters using this procedure. Approxima-

tions of filters with orders up to N = 4096 have been achieved using this program.

This section has illustrated the usefulness and relative ease of application of

Computer- Aided-Design (CAD) techniques, such as the Remezexchange algorithm.

Since this algorithm is only applicable to linear phase FIR filters, it is worth-

while at this point to diverge to a discussion of a popular algorithm for the design

of recursive IIR filters, the Minimum p-Error Design Method.
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C. THE MINIMUMp-ERRORDESIGN METHOD
Before proceeding with a discussion of this technique, it should be mentioned

that, in the interest of brevity, the pertinent equations and relationships used

are presented without elaboration. This is because the mathmatical basis for the

minimum p-error criterion is quite extensive and beyond the scope of this thesis.

The interested reader may find details of its derivation in Reference 19.

The minimum p-error design technique consists of a generalization of the min-

imum mean-squared error design method, wherein the optimum filter coefficients

are determined by minimizing the following error function [18].

**M) = Ew (**) &< A '
° k "> - H^k)f p

(4.9)

fc=i

where

w (Ok) = weighting factor

H (A, Ok) = approximating function (actual response)

Hd (Ok) = desired frequency response

Ok = digital frequencies over the range of interest, k

A = vector containing the k independent parameters

(i.e., the filter coefficients)

Note: If the value for p in Equation (4.9) is unity, this relationship describes the

mean-square error.

The filter approximation problem can thus be stated as follows: Given an

amount of error that can be tolerated, -&2
P , find the set of k parameters (filter

coefficients) such that the error between the approximate frequency response and

the desired frequency response is within the stated tolerance.

157



Again, looking at Equation (4.9) it can be seen that for large values of p,

the approximate frequency response, H(A,9k), has to be very close to the desired

frequency response, Hoi^k), to remain within the pre-selected error tolerance value

of Ei
v

• Furthermore, a sufficiently large value of p results in an optimal solution

that is very close to the optimal Chebyshev (or minimax) solution [19]. The method

of solution of this approximation problem, as will be shown, is dependent on the

error tolerance value selected, E2
P , the form of the transfer function, H(z), and

the parameter vector, A. First a discussion of the transfer function is presented

because its form has a direct impact on several important features in digital filter

design [18].

As is well known, three possible forms of the filter transfer function are direct,

cascade and parallel realizations. With respect to errors directly related to the

physical structure of the filter, i.e., quantization effects and finite coefficient size,

the use of the direct form of the transfer function in filter realization is undesirable.

This leaves the parallel and cascade forms, with the cascade form being selected

because the zeros of the transfer function remain unaltered in the process of cas-

cading, resulting in well defined stopbands. Conversion of a filter transfer function

to the parallel form, on the other hand, involves partial fraction expansion, which

results in the zeros being less well defined. Theoretically this should not be the

case, but, when the parallel form is implemented digitally, the zeros are slightly

different than those of the original direct form transfer function due to the finite

precision of the computer.

Using the cascade form of the filter transfer function has other advantages

including:

• stability tests of the filter can be accomplished without lengthy calculations,
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• the frequency response is of a simple functional form that readily lends itself

to insights as to how the poles and zeros (hence, the filter coefficients) impact

the error function.

Thus, the first step in the use of this design procedure involves decomposing

the proposed approximating transfer function, H(z), into cascaded second-order

sections.

»=i t=i

where
k = a positive normalizing constant, and

N = filter order /2.

The parameter vector, A, therefore, consists of the multipliers used in the

cascade structure.

A = [ai 1 ,a 1 2,&ii,&i2,...,ai f-,a 2 i,&i,-,&2i,-..,&o] (4-H)

The following expressions for the frequency response and group delay of the

filter incorporate the cascade structure and parameter vector.

• Frequency Response

ntx m_ MJ°\- h TT ( 1 + a2,)cos^ + q lt +i(l-Q2,)sin^
«{±e)-H(e>)-koil (4.12)

Group Delay

N
T(A,8) = -±H(e>°) = Y,

2cos0 + &i,- + J2sin0

(1 + b2i )cos0 + bu + i(l - b2l ) sin

/ 2cos^ + ai, +j2sin^ N

\(1 -1- a 2 i) cos 9 + an + j(l —a 2 ,)sin^
(4.13)

Equations (4.12) and (4.13) describe the frequency response and group delay

of the approximating function, H(A,0k). To determine if the coefficients of the
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A vector yield an optimum filter design based on the desired frequency response

Hoi^k) and the error that will be tolerated E2
P

(A) involves finding the partial

derivatives of the frequency response and group delay portions of the error function,

in terms of the filter coefficients, and minimizing them.

In other words, the filter coefficients comprising the A vector are to be selected

so as to minimize the following partial derivatives:

^%^ = t P-. («») P- («

(

A
> *•) - H° (^))

2 '- 1

(
4 - 14 )da u £rj oa u

*^*2 = £>,(«,) ^ (r (A. «*)" HD (S k )f>-' (4.15)

and similarly for dE2 P a(A)/dbn and dE2 P T(A)/dbn, etc.

Upon examining Equations (4.12) and (4.13), it is that apparent these par-

tial derivatives are not easily attainable because complex expressions are involved.

To remedy this the polar coordinates of the poles and zeros are used for param-

eters, rather than the original rectangular form. Thus, the parameter vector and

expressions for the amplitude and group delay are modified as follows,

• A Parameter

A = [r i , O i , r pll BpU . .
.

, rtf,-, oi , r pi , 9pi ,
. .

. , k
]

(4.16)

• Frequency Response

°
l=\ {1 - 2r pi cos(0 - 0~) + r pi2 }

1/2
{l - 2r pi cos(9 + ~$~) + r pi ,

}

1/2

(4.17)
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• Group Delay

r(A,0) = £ l-r pi cos(0-0 pt ) 1 -r p , cos (0 + Opt

_ 1 - 2r pi cos (6 -9 pi ) + r pi 2 1 - 2r p , cos (9 + 9pt ) + r
;

1 —r i cos (0 — 1 -r oi cos(0 + 9 oi

1 - 2r ot cos (9 - OI ) + r ot 2 1 - 2r 01 cos (0 + 9oi ) + r
,

2

resulting in the following partial derivatives of the error function:

kdE2p r(A] dr
= Y^P^riOk) jr- (r(A,O k ) - HD{9 k )fdr oi
^-^> dTc

and for dE2p a{A)/d9 oi and dE2p T(A)/d9 0i , etc. where

r oi - cos (9 - 9 i)da
dr nt

da

+

1 - 2r oi cos (9 - 9 oi ) + r oj2

r oi - cos(9 + 9 oi )

l-2r oi cos(9 + 9 oi

r oi s'm(9 - 9 oi )

l-2r oi cos{9-9 oi ) + r ot ,

r oi sm(9 + 9oi )

l-2r ot cos(9 + 9 ol ) + r ot 2

dr
_

(l + r pt
- 2 )cos(fl-fl pi )-2r pt

&X (l-2r pi cos(0-0 pt ) + r p ,
2

)

2

dr

d9 ot

(l+r p ,
2 )cos(fl + fl pt )-2r p ,

(l-2r pi cos{9 + 9pi ) + r pi 2)
2

,i(l-r pi 2)sm(0-e pi )

(4.18)

(4.19)

(4.20)

(l-2r p ,cos(0-0 pi ) + r pt O
r pi (l -r p ,

2 )sin(fl + fl p ,)

(l-2r pi cos(9 + 9pt ) + r pt 2)
2

'

The partial derivatives da/dr pi ,da/d9 p i,dr/dr i, and dr/d9 i, are the same as

the above but with changed signs.

Thus, the approximation problem amounts to the minimization of nonlinear

functions (Equations (4.19) and (4.20)), of n variables (the poles and zeros). This
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problem is readily solved through the use of the Fletcher- Powell algorithm, the

details of which can be found in Reference 20.

A program that performs the synthesis of recursive digital filters using the

minimum p-error criterion and the method of Fletcher and Powell for function

minimization is contained in Reference 16. Included in this reference are an exten-

sive program description, input requirements, dimension restrictions, and examples

to illustrate how the program is used for various types of filter design. Also included

is a copy of the actual program.

The reader is reminded, however, that to make use of the program, the transfer

function must be in the cascade form mentioned previously. The program output

consists of an argument vector, X, and a gradient vector, G, corresponding to the

minimization of the functions Fl, F2, and F3 which are used by the program for

the magnitude approximation, the group delay approximation, and the combined

magnitude and group delay approximation, respectively. Based on X, the poles,

zeros and coefficients of the cascade realization of the filter are computed. If desired

by the user, the frequency response is also given [16].

D. SUMMARY
In summary then it is appropriate to cite a recent paper by Little and Gowdy

[17], that evaluates both the optimum FIR design method (that employs the Remez

exchange algorithm), and the minimum p-error method used in IIR design. Their

evaluation specifically investigates convergence problems encountered when using

these iterative techniques, and considers the design of lowpass, highpass, bandpass

and bandstop filters.
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The following is a brief summary of the more important points mentioned in

this article, that should be considered when using these iterative techniques.

1. Minimum p-Error Design Method

a. Advantages:

• Extremely flexible - can be used to design filters with arbitrary magni-

tude and/or phase characteristics, as opposed to being limited to lowpass,

highpass, bandpass, or bandstop designs.

b. Disadvantages:

• Nonconvergence problems due to:

o a poor guess for the initial parameter vector X

o finite wordlength

• Uses large amounts of CPU(IBM 3081) time (up to 2 minutes for higher

order filters, greater than N = 12)

• Requires a considerable amount of input to specify one filter

2. Optimum FIR Filter Design Program

a. Advantages:

• The program is easy to use

• Consumes relatively little CPU (IBM 3081) time, provided the filter is

not of extremely high order.

b. Disadvantages:

• Restricted to the design of the more common filter types: multi-band,

bandpass, Hilbert transform, and differentiators

• Highpass and bandpass filter designs were poor when even filter lengths

were used, but good for odd filter lengths

• The user must supply an FFT program to obtain frequency response data

to verify the filter design. Convergence of the program does not guarantee

an acceptable design.
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Keeping these considerations in mind, both programs can be used effectively

to design a wide variety of FIR and IIR filters. It is suggested that if a designer

wishes to use either of these programs this paper is a valuable reference to assist

in identifying problems that may be encountered.
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V. CONCLUSION

The areas of recursive (IIR) and nonrecursive (FIR) filter design have been

investigated, while the more predominant design methods have been extensively-

discussed and exemplified. Additionally, the prevailing computer-aided-design al-

gorithms (Remez exchange and Fletcher-Powell) were also presented.

In conclusion, points in these three areas that merit special emphasis are

summarized below:

A. RECURSIVEFILTER DESIGN

• The desired frequency response may be obtained using a lower order filter

than if a nonrecursive realization were used, however, filter stability must
be considered, and a linear phase characteristic is not guaranteed.

• The traditional design methods involving Butterworth, Chebyshev or el-

liptic analog prototypes, and the bilinear transformation are algebraically

intensive. The direct design method presented eliminates the need for

determining an analog prototype and for prewarping, thereby reducing

the number of calculations required.

B. NONRECURSIVEFILTER DESIGN

• Although a higher order filter is required than in recursive realizations to

obtain the same frequency response; nonrecursive filters are always stable

due to the all zero nature of their transfer functions, and can exhibit a

linear phase characteristic.

• The filter coefficients, h(n), may be determined analytically by expanding
the desired frequency response in a Fourier series, because the Fourier

coefficients correspond to the filter coefficients.

• Windows may be used to eliminate the overshoot in the frequency re-

sponse (Gibbs' phenomenon) caused by truncating the number of terms

in the Fourier series to a finite value. However, windowing decreases the

sharpness of the filter's cutoff region.
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• Frequency sampling can be used when an analytical expression for the

desired frequency response cannot be found. The IDFT is then used to

determine the filter's impulse response from the these sample values.

C. COMPUTER-AIDEDDESIGN

• For FIR filters, programs using the Remez Exchange algorithm are the

most popular, while for IIR filters, the Fletcher- Powell algorithm is in

predominate use.

• CAD is especially advantageous in the design of extremely high-order

filters, or filters with arbitrary frequency response characteristics.

As stated in the introduction, the design methods presented here are by no

means the only ones available to the filter design engineer; however, d^e ,o the

quantity of information available, one is easily overwhelmed. A need exists for a

concise source of information on the popular design methods available, and how

they are used. This has been the intent of this thesis.
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APPENDIX

MAIN PROGRAM

c

C MAIN PECGEA.1: FIE LINEAR PHASE FILTER DESIGN FECGEAM
C
C AUTHORS: JAMES H. HCCLELLAK
C DEPAETSSHT Of ELECTRICAL ENGINEERING AND CCMPUTEFSCIENCE
C MASSACHUSETTSIBSlITlllI CF TECENCLCGY
C CAMBRIDGE, MASS. 0^1 3£
C
C THOMAS H. PARKS
C DEPARTMENTOF ELECTRICAL ENGINEEEING
C RILE UNIVERSITY
C HOUSTON, TEXAS 77001
C
C LAWRENCEE- RABINEE
C BELL LABORATORIES
C MORBAYHILL, NEK JERSEY 07S74
C
C INPDT:
C NFILT-- FILTER LENGTH
C JTYPE—TYPE CF FILTER
C 1 = MULTIPLE PASSbAND/STCPBAKEPILIEE
C 2 = DIJFEEENTIATCF
C 3 = HUBERT TRANSFORMEILTE2
C NBANDS—NUMBER OJ EANDS
C LZL1D—GRID DENSITY, illl EE SET TC 16 UNLESS
C SPECIFIED OTHERWISEBY A POSI1IVE CCNSTANI.
C
C EDGE(2»NBANDS)—3ANDEDGEAERAY, LOWER AND UFPEE EDGES FCF. EACH B^
C i'llb h MAXIfiCC Of 10 EANDS.

C FX (NBANDS) —DESIRED FUNCTION AEEAY (CE DESIRED SLCEE IF A
C DIFFERENTIATOR) tCE EACH BAND.

C WTX(NoANDS)—WEIGHT FUNCTION ARRAY IN EACH BAND. FOE A
C DIFFERENTIATOR, TEE WEIGHT FUHCTICii IS INVERSELY
C PROPORTIONALTC I.
C
C SAMPLE INPUT DATA SETUP:
C 32,1,3,0
C 0.0,0.1,0.2,0.35
C 0.-25,0.5
C 0.0,1.0.0.0
C 10.u,1.0,1u.0
C THIS DATA SPECIFIES A LENGTH 32 BANDPASS FILTER WITH
C STCPBANDS TC 0.1 AND C.-25 TC 0.5, AND PASSBAND FBCfl
C 0.<< 10 0.35 WITH WEIGHTING CF 10 IN THE STOPBAuDS AND 1

C IN THE PASSBAND. THE GPID DENSITY DEFAULTS TO 1o.
C THIS IS THE FILTER IN FIGURE 10.
C
C THE FOLLOfllNG INPUT DATA SPECIFIES A LENGTH 32 FULLEAND
C DIFFERENTIATOR KITH SLOPE 1 AND WEIGHTING CF 1/F.
C THE GRID DENSITY WILL EE SET TC 20.
C 32.2,1,20
C 0,0.5
C 1.0
C 1.0
C

c
COMMONPI2,AD,DEV,X, Y, GRID ,DES, WT, ALPHA, I EXT , NFCNS, NGRID
COMfiCN /OOPS/MTEr,ICUT
DIMENSION I EXT (bo) ,AD(66) , ALPHA(6 6) , X (b6) , Y (66)
DIMENSION H (bo)
DIMENSION DES (10U5) .GRID (104 5) , WT (104 5)
DIMENSION zlGil (20) ,FX ( 1 0) , KIX ( 10) ,DEVIAI (10)
DOOdLE PEECISION FI2.PI
DOUBLE PEECISION AD,D£V,X,Y
DOUBLE PRECISION GEE,D
INItGEE BD1,fcD2,EE3,BD«
DAI A BD 1,EE^, EDJ, BD-+/1HB, 1flA, 1BN, 1HD/

C lNFUI = I1iiACH (1)
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C ICDI=I1BACH(2)
P1=4.0*DAIAK (T.ODO)
FI2=2.QDOO*P1

C
C THE PECGEAB IS SET OP FOE A BAXIBUB LffiGTE CF 128, EUT
C THIS UPPE* Llilll CAN BE CHANGEDEY EEEIBENSICNING THE
C AREAYS 1EXX. AC, ALPHA- X, X, H TO BE NFBAI/2 2.
C THE ABtvAYS DES, GBID, AND KT BUST DIEENSICNED
C 1t> (NFBAX/2 2) .

NFBAX=123
100 CONTINUE

JIYPI=0
C
C PHCGEAB INPUT SECIICN
C

BEAD(4,110) NFI1T,JTYPE,NEANES,LGEID
If (NFILT.EQ.O) S1CP

110 FGRBAT(4 (Id,3X) )

IF (6iFIlI.LE.NFaAX.ANL.NFIIT.GI. 3) GO TC 115
CALL EEECE
STCP

115 IF (NBANJS.LZ.O) NcANDS=1

C GEID DENSITY IS ASS02ED TO BE 16 UNLESS SFECIFIEC
C CIHZEhlSE
C

IF (LGEID.LE.O) IGEID=1o
JB=2*NBANDS

:AD(4,1L0) (EDGE (J) ,J=1,JE)
[FX (J) ,J=1,NBANDS)4,120)

BEAD(4, 120) (WIX JJ) ,J=1, lib AND3)
FCB3A1 {hI15.4)
IF (JIYPE.G1.0.ANE.JTYPE.LE.3) GO TO 125
CALL EEhCB
STOP

125 NEG-1
IF (JTYFL.EC..1) NEG=0
NCLD=NFILI/2
«UDD=NFILT-2*NCDD
NFCNS=N5ILI/2
If (NCDE.EQ. 1.ANE.HEG.EC-0) NFCNS= Nf CNS+

1

C SET UP THE DENSE GEID. THE KDHcEfi Of POINTS IN IKE GBID
C IS (FILTER LENGTH + 1)*GEIE EENSITY/2

GBID (1)=ZDGE (1)
DELf=LG5IE»NFCNS
DELf=0. 5/DELf

F (NEG.EC.O) GO TC
^ (1) -LI.Dr

135 CONIINOE
IF (EDGE (T) -LI.DELF) oRID(1)=DELF

G=1
I = 1

IBANL-1
140 FUF=EDGE(1+1)
145 IEBP=G£ID(J)

C CALCULATE THE DE3IEEE BiGNITUDE EESPCNSE ANE THE WEIGHT
C FUNCTION CN IHE GRIE
C

DES (J)=EFF (TEBP,F X , XTX , LB A ND,JTYPE)
KT (J)=WA1E <IEBP,FX,i.IX,LaAND # JTYPEJ

GEID (J) =TEBP+DELF
II (GEID (J) -GI. FOP) GC TC 150
GC TC 145

150 GEID (J-1) =FUP
DES (J-1)=EFF (FUP,FX,WTX, LEAKE, JTYPE)
WT (J-1)=iATE <iUF,FX,WTX,LfcANE,JTYPE
LBAND= LBAND«-1
L = I + 2
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IF (LHAND.GT.NEANES) GO 1C 160
GEIC (J) = EEG£ (1)
GC IC -WO

160 NGEID=J-1
IF (NtG.NE. NCED) GC TC 165
IF (SLID (NGEID) .GT. (0.5-EELF) ) NGEID=KGEID-

1

165 C0M1IHDE
C
C SET DP A NEU APP5CXIMATICN PBCELEK WHICH IS EQUIVALENT
C TC 1HE GBIGINAl FECEIEH
C

IF (NEG) 170.170,180
170 IF (NCED.EC- 1) GC IC 200

EC 175 JM.NGHIE
CRANGE=DCCS(?I*GEICJJ)

)

DES (J) = i)ES (J) /CHANGE
175 WT (J)=K1 JJ) *CriANGE

GO Tl
IF (N(
DC 145 J=T,NGEIS

180 IF (NCDD.EC.1) GO TC 190

CHANGS=DSIN(F1*GEID ( ") )
DES (J) =DES (J) /CHANGE

185 WT (J) =WTJJ) "CHANGE
GC IC 200

190 DO 195 J=1, NGEID
CEANGE=DSIN(?I2*G5ID (J) )

EES (J) =DES (J) /CHANGE
195 »'l (J) =UT (J) 'CHANGE

C INITIAL GUESS FOE IliE EXTEZflAL FEEQUENCIES—ECUALLJ
C SPACED ALONG THE GFII
C

200 TEHr=FLOAT (NGEIE-1) /FLOAT (NFCNS)
DO 210 J=1, NFCNS
XI=J-1

210 IEXI (J)=XT*IEHP*1.0
IZXI (KFCiiS+1) =NGEIE
NH1=NFCNS-1
NZ=NFCNS*1

C
C CAL1 THE &EJ1EZ EXCHANGEALGORITHM TO EC IHZ APPECXIHAI1CS
C PEGEIEM
C

CALL SZKEZ
C
C CALCULATE THE IflPULSE KZSPONSZ.
C

IF(.NEG) 3C0, 300,320
300 IF (NODE.

E

¥ . 5) GC IC 310
EC jC5 J=1,NH1
NZ5J=N2-J

305 h (J) =0.5*ALPHA (NZflJ)
E(NFCNS^=ALPHA 1)
Gd IC 350

310 H<1) =0.25»ALPHA (NFCNS)
EO 315 J=2, NB1
N2HJ=NZ-J
NF2J=NFCNS+2-J

315 H(J) =0.25» (ALPHA (HZMJ) ALPHA (NF2J)
)

h (NFCNS) =0.5» ALPHA (1) «-0.25» ALPHA (2
GC IC 350

320 IF (NCDD.EC-0) GC IC 330
H (1) =G.25*ALFHA (NFCNS)
H(2[ = 0.25*ALFHA (NH1)
EC 325 J=3,NM1
NZHJ=NZ-J
NFJJ=NFCNS+3-J

325 H (J) =0.25* (ALPHA (HZttJ) -ALPHA (NF3J)

)

H <NFCNS)=0.5»ALPh* ( 1) -0. 25»ALFHA (3
h (NZ)=0.0
GC IC 350

330 H (1) =0.25*ALFHA (NFCNS)
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DC 335 J=2,NM1
NZflJ=KZ-J
NF2J=NfCNS+2-J

335 H (J) =0.25* (ALPHA (NZflJ) -ALPHA (NF2J)
)

fa (NFCNS) =0.5* ALP HA ( 1j -0. 25* ALPHA (2)

C PHOGBAfl OUTPUT SECIION.
C

350 'JEIIE (8,360)
360 FCEflAT(1H1, 70 (1 H*) // 15X, 29HFIKITE IMPULSE EESPCNSE (FIB)/

1 13X,34HLINZAE PHASE DIGITAL F1LTIE DESIGN/
217X,24HEEBEZ EXCHANGEALGCEITHB/)

IF (JTI?£.E;.1) KBIIE(8,3o5)
365 FOEflAI (221, 15HBAN2PASS i'lLIEF./)

If (JIYPE.EC..2) WEIIE]d,370)
370 POEHA1(221, 14HDIFFEEENIIAICE/)

IF (JTYPE.Ei. J) iEIIE (8,375)
375 F0E3AT (20X, 19HHILBEEI TEANSFCEHEB/)

WEIIEj6\j78) NFILI
378 FOEMAI (20X, 16HFILIEE LENGTH = ,13/)

VBIIEJ6, j80)
380 POBflAI (151,288***** IflPOL.SE RESPONSE****»)

DO 381 J=1, NFCNS
K=NFILT*1-J
IF (NZG.E w .O) WBII£(b,382) u.B(J),F.
If (KEG. Ew-1) «HIIE{a,383) J,H(Jj,K

381 COMIIIDE
382 FOEflAT (13X,2HH (,I2,4H) = ,E15.3,5H = H(,I3,1U))
38J FORMAT(13X,2HH (,I2.4H) = ,E15.8,6H = -a(,I3,1H))

IF (NEG.Ei.1. AND.JiCiJ.ES. 1) SSIIZ(b,334) NI
384 FCRBAI (13X, 2HH (, 12, 8H) = CO)

CO 450 K=1,NBANDS,4
KDF=K+3
IF (KUP.GI.NBANDS) KU?=N3ANDS
KBIT E (8,365) (dE 1 , ED2.ED3, ED4, J ,J=K, KUP)

385 FOEBAT</24X,4 (4A1,Ij,7X) )

utilli (o,390) [ECGt (2*J-li,J=K,K0P)
390 FORMAT12X, 15HLC'.EE BAND EDGE, 5f 14. 7)

• SITE (0,395). (EEGc (2»J) ,J=K,K0P)
395 FCKnal (2X,l3Hu?PEF BANE EDGE, 5F1U. 7)

IF (JT1PE.NE.2) 5EITE(8.4J0) (f X [ J) , J=K , KUP)
400 FCEBAI (2X,13HUES1RED V ALUE ,2X, 5* 1 4 . 7)

IF (JTYPE.EC.2) WEITE (8.4J5) (F X ( J) , J = K, KUP)
405 FOEBAT(2X, 1 3HDESIEED SLOPE,2X, 5F 14. 7)

WBIIE(e,4lO) (VIXJJ) ,J=K,KUP)
410 FOBflAT (2X,9EV£IGEIING,6X,5F14.7)

CO 420 J=K,KU£
420 EEVIAT (J)=D£V/KIX(J)

WRITE (6,425) (DEVI AT (J) ,J=K-KOF)
425 FCEBAT (2X , SBDEV1AIIOK, o£,bF 14. 7)

IF (JIYPE.NE. 1) GC TO 450
EC 430 J=K,KUP

430 DEVIAT (J) =20.0*ALCG 1 (DEVI AT (J) *FX (J)

)

fcEIIE (6,435) (DEVIAT (J) ,J = fc,KUP)
435 FCEKAI (2X, 15HDEVIA1I0N IN EE,5F14.7)
450 CONTINUE

DO 45^: J=1,N2
IX=IEXT (J)

452 G£ID(J)=GEID(IX)
5.EITE (6,^55) (GRID (J) ,J=1,NZ1

455 FOBBAT (/2X.h7HEXT££KAL FEEwUENCIES—H AXIMA OF THE EEECE CDEVE/
1 (21,5*12.7))

WRITE (6,460[
4o0 FOEBAT f/1X,70 (1H*J/1H1)

GC TC 100
END

C
C
C FUNCTION: EFF
C FUNCTIOr. TO CALCULATE THE DESIRED KAGNIIUDE EESPOHSE
C AS A FUNCTION Of FREQUENCY.
C AN AEBITEARY FUNCTION OF FREQUENCYCAN BE
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C APPROXIMATED IF THE USER REPLACES THIS FUNCTION
C WI1H IHE APPROPRIATE CODE 10 EVALUATE THE IDEAL
C MAGNITUDE. N01E THAI TflE PARAMETERFEEQ IS THE
C VALUE Of NORMALIZED FREQUENCYNEEDEE FCR EVALUATION.

C
FUNCIION EFF (FREC , FX, WTI ,LEA 1JD, JTYPE)
ElEENSICN FX lb) ,WIX (5)
If (JTYFE.EQ.2) GC TO 1

EFF=FX (LBANE)
RETURN

1 EFr=FX (LBANE) *FEEQ
RETURN
ENE

C
C
C FUNCTION: MATE
C FUNCTION TO CALCULATE THE WEIGHT FUNCTION AS A FDNCIICN
C Of FREQUENCY. SIMILAR IC IHE FUNCTION EFF, THIS FUNCTION CAN
C BE EEFLACEE til A DSER-WRITIEN ROUTINE TC CALCULATE ANX
C DESIRED BSIGHIIKG FUNCTION.
C
c

FUNCTION KATE (FEEQ , FX, WTX, LB AN£, JT XPE)
EIMENSION FXjb) ,»IX (5)
IE (JIXFE.EC.2) GC TO 1

UAIE=K1X(LEAND)
RETURN

1 IF (FX (LBAND) .LI.0.C001) GC TC 2
UAIE=WIX (LBANDJ/EEEQ
RETURN

2 WAIE= WIX (LBANE)
RETURN
ENE

C
c
C SDBECUIINE; EBECF
C THIS FCUTINE WHITES AN ERROB MESSAGZ13 AN
C EEBOfi HAS BEEN EEIECTEB IN TEE INPUT DATA.

C
SUBROUTINE ERROE
coaaoii /ccps/niizr,iohi
RUE(8,1)

1 FORKAT(44H ««»»*»*»»»** ERBCS IN INPUT CAIA «»«»»»**»•)
RETURN
ENE

C

C SU3BCCTINE: RZMEZ
C THIS SUBROUTINE IMPLEMENTS IHE RZMEZ EXCHANGEALGORITHM
C FOR THE WEIGHTED CHZtiYSEEV AEPECXIMAT 1C N OF A CONTINUOUS
C FUNCTION -1Tb A SUA OF CCSINES. INPUTS TC THE SUBROUTINE
C ARE A DENSE GBIE WHICH REPLACES THE FREQUENCYAXIS, THE
C DESIRED JUNCTION ON THIS GRID, THE WEIGHT FUNCTION CK THE
C GRID, THE NUMBER CF COSINES, AND AN INITIAL GUESS OF IHE
C EXTREMAL FREQUENCIES. IHE PROGRAMMINIMIZES THE CHEcISBEV
C ERROR EY DETERMINING THE EEST LOCATION CF THE EXTREMAL
C FREQUENCIES (POINTS OF MAXIMUM ERFOB) AND 1HSN CALCULATES
C THE COEFFICIENTS CF THE BES1 APPROXIMATICN.C—————————————————— ———_—_ __— __—__ ———

_

c
SUBROUTINE EEMEZ
COMMONPI2,AB,DEV,X, 2. GRID ,BES , KT , ALP HA, IEXT, NFCNS, NGBID
COMMON/COPS/NITER, ICUI
EI MENSION IEXT(oo[,AB(66) ,ALPhA(6o) , X JbG) , Y (06)
DIMENSION DES (104 3) ,GEI£(1045) , Ml (1045)
DIMENSION A (oo) ,F (to) , Q (o5)
DOUBLE PRECISION t 12, DNDM,BEEN, DTEMP, A, E ,Q
ECU3LE PRECISION ER,EAK
DUDBLE PRECISION AD,DEV,X,X
DOUBLE PRECISION GEE,D
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C THE PSOGEAd ALLOWS A 8AXIHUH ifOHEEB CF ISIBAIIOKS OF 25

ITEflAX=25
EEVL=-1.0
N2=KFCUS+1
KZZ=NfCHS+2
KIIEf=0

100 COKIIHDE
IEXI <NZZ) =KGEID*1
NITEF=NI1EE*1
If (NITER. GT.IIE8AX) GC TC 40C
EC 110 J=1,NZ
JXT=IEXI <J)
ETEHr=GEIE (JXT)
DT£flE=ECCS (EI£flP*PI2)

110 XjJ)=LIEHP
JEI = JSPC«S-1)/15+1
DO 120 J=1,NZ

120 ADJJ)=D <J,NZ,JET)
EK0B=0-0
EE£N=0.0
K=1
EC 130 J=1,MZ
L = IcXl <J)
EI£KP=Afl (J)*D£S (L)
DNuH= DNU£+DIE.lF
Dl£flf = FLOAI <K) *AE (JJ/KT (L)
E£EN=E£EN*EI£flP

130 K=-K
E£V=DKU£/DDEfl
kEITE <8, 131) BEV

131 F0E3AI <1X,12HD£VIAII0K = ,F12.9)
NU=1
If (EEV.GT.0.0) N0 = -1
EEV=-f~CAI <KU »E£V
K = K0
EO 14C J=1,NZ
L=IIZ1 <J)
El£."-f = riOAT (K) *EEV/il (I)
i' i0) =DES (I) *£IZfir

140 K = -K
IF-iDEV.GT.DEVi) GC TC 150
CALL OUCE
GC TC 400

150 EEV1=D£V
JCHNG£=0
E1=IIXT{1)
KN2= I£XT (NZ)
KLCW=0
N0T=-NU
J=1

C
C SEAECE FOE THE EXTEEflAL FEEQUFNCIES CF IHE BEST
C A?P£CXIHAIICN
C

200 IF (J.EC..HZZ) YNZ=CCHP
If (J.GE. NZ2[ GO TC 300
KUP^IEXT (J*1)
L = IIX1 (J) +1
KUI=-NU1
If<J.£C-2) J1=CCHP
COCP=DEV
IF JL.GE .F.0F1 GC TC 220
EEE= G££ (L.NZ)
£EE= (EEE-EEJ (L) ) *HI (L)
ET£tr=FLCAl (NUT) *EBE-CCHP
IF (ETEMP.LE.G.O GC 1C 220
COBP=FLGAT(NUT) *EBB

210 1*1*1
IF (L.GE.KUP1 GO TC 215
EBJ=GEE(L,NZ)
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E5E= (EEF-DES (l) ) *II 11)
EI£»i£ = FLOAl (NUT »EE*-CC3P
IF (EIEBF.LE.O.O) GC TC 215
COhP= FLOkl (NUI) *EEfl
GC IC 210

215 IEXT(J)=1-1
J = J+1
KICli = I-1
JCHNGZ= JCHNGF,+ 1

GC TC 200
220 1=1-1
22D 1=1-1

IF (1.1E.KLCW) GC 1C 250
EEF=GEE(1,NZ)
£EF= (ZRF-DES (I) ) *WI (L)
ETZMP=FL0A1 (NOT) »E£*-CCMP
IE (DlZaF.GT.O.O) GC 1C 230
IF (JCfiNGE.IE.O) GC TC 225
GC IC 2b0

230 C0f1P=F10AI (NUI) *£EE
235 1=1-1

If <1.1£. K1CW) GC TC 240
EEE=GEE(I,K2)
ERB= (Eah-DES (L) ) *WT (1)
EIZHP=FLCA1 (NUI) *EE?-CCMP
IF (ETEKP.LZ.G.O) GC TC 240
CUaP=FLCAI (NUI) »EEK
GC TC 235

240 KlCk=lZXT(J)
IZX1 (J) = L+1
J = J*1
JCHNGF=JCHKGF+1
GC IC 2v>0

250 1=IZZI (J) +1
IE (JCH»«E.GI.O) GC TC 215

255 1=1-1
IF (L.GE.K0P1 GC TC 2oO
£EE=GZE(L,KZ)
Lkh= (EEE-DES(L)

)
»KI (L)

ETZnP=FLCAI (2.UI *EEE-CCf1P
IF jEIEflr.li.C.O) GC 10 255
CCKP=FLCAI (NUI) *£EE
GC TC 210

260 KlCi.=IZXl (J)
J = J+1
GC IC 200

300 IF (J.GI.HZZ) GC IC 320
IF (K1.GI.IIXT (1) ) K1 = IZXT(1)
1FJKNZ.LI.IEXT (NZ) ) KNZ=IZ2T (NZ)
N0T1=N0T
KUI = -i<U
1=0
KUP=K1
COHP=YNZ*(1.00001)
1UCK=1

310 1=1*1
IF (l.GE.EUF) GC TC 315
EKF=G£E(L,NZ)
EEE= (lafi-DES(L) ) *WT (L)
ETEBF=FLCAT (NU I) *E RE-CCflP
IF (DIZHP.LE.Q.O GC IC 310
CCnF=FLOAl (NUT) *£EE
J=N2Z
GC TC 210

315 LUCK=6
GC TC 325

320 IF (LUCK. Gl. 9) GC TO 350
IF (CCKE.G2.il) Y1=C0HP
K1=IEiT (NZ2)

325 I=NGEID+1
KLC»=KNZ
NU1=-NUT1
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C0HP=I1» (1.00J01)
330 L=L-1

IF (L. IE. KICK) GC IC j40
EEr=GEr (L, HZ)
£EB={ZSi-EES [111 *HT (L)
CTEfl£=FLCAl (NUI) *£EE-CC!1P
IF <D1EHP.LE.0.0) GC IC 330
J*K2Z
COfll*PIOAI (NUI) *E5B
lOCK-IDCK+10
GC IC 235

340 IF (LUCK-EC. 6} GC TO 370
DC 345 J=1,HFCH2
NZ2flJ=NZ2-J
K2tiJ = NZ-J

345 IEXT (NZ2KJ) =IEXT <NZMJ)
1EXIJ1)=K1
GO IC TOO

350 KN= IEXT (N2Z)
DO 360 J=1,S1CMS

360 IEXI l J)=IEII (J + 1)
IEXI (KZ) = KN
GC IC 100

370 IF (JCflnGE.GT.O) GC IC 100

C CALCULAIICN OF THE COEFFICIENTS OF THE cE3I APPECXIMAIIC

N

C UJlJiG I HI INVtSSE EISCEZTE FCOEIEB TBAKSFCLfl
C

400 COBIIKOE
Nfll=NFCNS-1
FSH=1. JE-Ofc
GIEMt=GEICJ1)
XIN22)=-i.O
C»a2*NFCMS-1
EELF=1.0/CN
L=1_

IF (GFID {1) .LT. 0.01. AND. GEIE(NGBID) .SI.C.49) KKK= 1

IF (NFCNS.LE.3) KKK=1
IF (KKK.EQ. 1) GC IC <*05
DIEfiF»DCUSfPI2*G5IDMn
EKUflsJJCCS (5I2*GiIE (wGEID) )

AA=2.0/ fDIEflP-DKUS)
EB = - (CIEH?*DNOaj/ (CIEBP-DN Ofl)

405 COKllNUE
DC 43C J=1,NFCMS
FT=J-1
FI=F1*DELF
XT=ECCS(PI2»FI)
IP (KKK.2S.1) GO IC 410
11= <X1-B£)/AA
XI1 = SgBT (1.0-XT*XI)
FT=A1AK2{IT1#XT)/EI2

410 XI=X(L)
IF (II.GT.XE1 Gl
IF ( <XE-XI) .Il.FSb) GO 10 4 15
IF (II.GT.XE1 GC IC 420

1 = 1+1
GC 2C 410

415 A(J)=X{L)
GO IC 425

420 IF (jXT-XE) -II. FSH) GO IC 415
GEID<1)=FI
A(J)=GEE(1.NZ)

425 CONT1N0E
IF (L.GI. 1) I = L-1

430 CONIIKOE
GEID (1)=GIZKP
ED£N=PI2/CN
CO 510 J=1,NFCNS
E1EMF=0.0
ENUfl=J-1
EhUfl=DNUfl»EDEN
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If (Nfl1.LT. 1) 30 IC 505
EC 500 K=1,N31
EAK= A (K+1)
EK = K

500 DI£KF=DTEHF+DAK*ECCS(DNUfl-EK)
505 DlE«£«2.0*£ISflP*A(l)
510 ALPHAJJ) =EIErtP

- 550EC 550 J=2,NFCNS
ALPHA (J) =2.0*ALFHA (J) /CK
ALPHA (1) =ALPHA (1) /CN
IP |KKK.£C. 1) 30 1C 545
? (1)=2.0*ALFHA (til CNS) *Bri+AlPEA (Nfll)
? <2) =2.0-_A*ALFHA jNFCNS)•) =2.0*AA*ALFHA (NFCNS)

)= ALPHA (MFCHS-i) -ALPHA (JiFCSi
540 J=2,Nfl1

If (J.LI. Nfll) GO IC 515
AA=0o5*AA
£B=0.5»BB

515 CONTINUE
P <J+1)=0.0
EC 520 K=1,J
A{K) =P (K)

520 P (K) =2-0»E£*A (K)
? (2) =P 12) «-A (1) »2.0*AA
JH1-J-1
EC 525 K=1,Jfl1

525 FJK)»P(K)+C.(K)+AA*A(K+1)
JP 1=J +

1

EC 530 K=3,JP1
530 PJK) =P (K) «-AA*A (K-1)

If (J.2C. NS1) SO TC 540
EC 335 K=1,J

535 ; (K) =-A (K)
NF1J=Nf_NS-1-J
Q (1) =C (1) *ALFHA (Nf 1J)

540 CONTINUE
DC 54j J=1,NfCNS

343 ALPHA (J) =P <J)
545 CONTINUE

IF (NFCNS.GT.3) F.EIUBN
ALPH* (NFCNS+1)=C.0
ALPHA NFCN5+2 =0.0
HEIUEN
END

C FUNCTION: E
C FUNCTION TC CALCULATE THE LAGF.ANGE I NTEEFCLATICN
C COEFFICIENTS FOB USE In IHE FUNCTION GIL.
C———--———————________ ——- —______________________
c

DOUBLE PRECISION FUNCTION E(K,N,fl)
COBHON P12,AE,DEV,X, i , SRIE ,DE3, WT, ALFliA, IE XT , NF
EISENSIGN IEXT (bo) ,A£ (bo J . ALPHA (*o) , X (bo) ,Z (b6)
EIHENSICN DES (104b) , GEID ( 1 04 5) , 31 ( 104 5)
EOUBLE PRECISION A£,DEV,X,X
BOUELE PRECISION C
EOOfilE PEECISION PI2
E=1.0
C = XJK)
EC j 1=1, fl

EO 2 J=L,N,fl
IFjJ-K) 1,2,1

1 D= i-C*b-(w-X(J))
2 CONTINUE
3 CONIINUE

D=1.0/B
EETUEN
ENE

C

C FUNCIICN; GEE
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C FUNCTION TC EVALUATE TBE FEigOF.NCT RESPONSEUSING IHE
C LAGLAUGE INTEEPCLATICN FCBKULA IK THE EAEYCENIEIC FCSH
C
C

DOOBXEPRECISION FUNCTION GIE(K.N)
COHHCfl PI2,AE,DIV,I,I,GEIE,DES,»I f ALEHA,IEXI , NFCNS, NGEID
EI3ENSI0N IEXI (60) ,AL (bo) f ALEHa(bC) .X Jot) ,Y (00

J

r~a£KSICN VlSiiQuh) ,SEID(1G45) , 81 <1045)
CUJBLE PRECISION E,C,D,XF
DCUHLE PRECISION 112
DOUBLE PHECISION A£,DEV,X,Y
E = C.O
XF=GBID (K)
XF=DOCS EI2*XF)
E=C.O
DC 1 J=1,N
C = XF-X(J)
C = AD(J)/C
E=D*C

1 E = E*C*Y(J)
GEE=E/D
SEIDEK
END

C

C SCBECUIIKI: CUCH
C *?.ITES AK EEROF. MESSAGEWHIN THE ALGCRITHE FAILS TC
C CCNVEEGE. 1HERE SEEM TO BE 2.C CONEIIICMS UN0E5 WHICH •

C THE ALGCEITHtl FAILS 10 CCNVEEGE: (1) THE INITIAL
C GUESS FCE THE EXIEE3AL FEECUZNC1ES IS SC PCCE THAT
C THE EXCHANGEITERATION CANNC1 GET SIAETEE, CF.
C 12) NZAE THE IE5HINAIICN CF A CCIifiECI EESIGK,
C THE DEVIATION DECREASESDUE IC BOUNDING EIECF.S
C A;JD THE ESCGEA" SICFS. IN THIS LA1TEB CASE THE
C FILIEZ DESIGN IS FRCDAHLY ACCEEIASLE, EUT SHCOLD
C BE CHECKEDBY" COBEUTING A FEEC.OZNCY RESECKSZ-

C
SUBBOUIINE CUCH
CCH«CN /CCES/NITIE,ICDI
SiRIIE {6, 1} NITEE

1 F05HA. i-^L »»»»»»»**»*» FAILUEE TC CCNVEEGE*«»»»*»***/
1**1H0?EOliAELZ CAUSE IS flACBINE HCUKDING EEEOE/
223H0NUUBEE CF IIEEATICNS =,14/
3J9H0IF THE NUH3EE OF ITERATIONS EXCEEDS i,/
4o2H0THE EZSIGN SAX BE CORRECT, BUT SHOULD BZ VEEIFIEE CIIH Afc FF:

EEIOEN
END
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