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ABSTRACT

A hot-wire system, with software designed for calibrating and taking data with sin-

gle, double and triple hot-wire sensors separately, or three probes at once, was verified

and used to make wake measurements downstream of a compressor stator blade in a

cascade wind tunnel. Using a single hot-wire probe, velocity and turbulence data weie

obtained in the wake of the controlled-diffusion blade in order to verify LDV data taken

in earlier studies. The tests were conducted at three inlet angles from near design inci-

dence towards the expected stall condition at a Mach number of 0.25 and Reynolds

number of about 700,000. Wake profiles were obtained from 0.08 to 0.2 chord lengths

downstream of the blade. Good agreement was found with LDV measurements. Meas-

urements at the highest incidence angle showed that the wake constituted one third of

the ilow and yet no separation occured before the trailing edge on the suction side of the

blade.
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I. INTRODUCTION

Controlled diffusion blades have been developed in recent years for single and

multistage compressor applications. These blades are designed analytically to be

shock-free at transonic Mach numbers and to avoid suction surface boundary layer

separation and ensure stable compressor operation over a wider range of inlet condi-

tions. High efficiency and high loading capability using such blade shapes leads to

reduced development costs and improved surge margin in aircraft engine compressors

[Rcf. 1|.

A numerical optimization technique to design controlled diffusion (CD) compressor

blading was developed by Nelson L. Sanger of the NASA Lewis Research Center and

used to replace the double circular arc blading in the stator of a two-stage fan ( Kef. 2J.

I he midspan of the redesigned blade row was subsequently tested in the subsonic cas-

cade wind tunnel at the Turbopropulsion Laboratory, Naval Postgraduate School [Ref.

3j. The blade element performance was measured using calibrated pneumatic probe

surveys, and surface pressure distributions and blade surface flow distributions were

compared with the design and analysis expectations [Ref. 4|.

In an attempt to resolve questions left in the earlier tests and to understand the loss

behavior, John Dreon [Rcf. 5] made wake measurements using a calibrated pneumatic

probe. Dreon obtained data from 0.12c to 1.711c (where c is the chord length of the

blade) downstream of the blade for air inlet angles of 40.3 and 43.4 degrees. The data

showed that the near wake was quite asymmetric.The side of the wake from the pressuic

side of the blade showed a very steep velocity gradient while that from the suction side

had a more gradual variation in velocity.

A more detailed study of the complete flow field through the CD blading was carried

out recently by Elazar [Ref. 6] using a 2-component laser doppler velocimeter (LDV).

As a part of that study, Elazar obtained wake data from 0.04c to 0.2c downstream of the

blade for three inlet flow angles. The wake velocity and turbulence distributions were

mapped downstream of the blade. The wake thickness was found to increase with in-

creasing flow angles. In general, there was reasonable agreement with Dreon s data for

the velocity magnitude, and some disagreement in the flow angle. However, no data were

available with which to confirm the turbulence levels indicated by the LDV measurement

technique.



Thus, the purpose of the present investigation was to retest the CD compressor

stator blade in order to measure the wake downstream of the blade using a hot-wire

system. The experiment was performed in the same subsonic cascade wind tunnel used

by Llazar, with the same 20 CD blades installed in the test section. After preliminary

work to interface and verify the hardware and the software of the hot-wire instrumen-

tation, and to devise a probe system which would allow the hot-wire to be calibrated

during the experiment, data were taken in the cascade at three stations from 0.08c to

0.200c downstream of the blade trailing edge for a total of three inlet flow angles from

design to near stall condition.

In general, very good agreement was found between the single sensor hot-wire sys-

tem and the two-component LDV measurements of both the mean velocity and the

turbulence level at inlet angles of 40.0 and 46.0 degrees, despite the significant differences

between the techniques. Data were also obtained at an inlet How angle of/?, = 48.0° for

the first time.

In the present report, following a description of the wind tunnel facility and test

section in Section 2, The IBM-PC/AT controlled IS I hot-wire system and its operation

are described in Section 3. The experimental procedure and program of measurements

are given in Section 4. The results are presented and discussed in Section 5 and the data

are listed in tables in Appendix A. Finally, conclusions and recommendations are given

in Section 6.



II. TEST FACILITY

A. CASCADE WIND TUNNEL

The subsonic cascade wind tunnel at the Turbopropulsion Labratory of the Naval

Postgraduate School was used for the present tests. A schematic diagram of the tunnel

is given in Figure 1. The relevcnt features were outlined and a description of the How in

the tunnel was given by Sanger and Shrecve [Ref. 4: p. 46]. I he test section instrumen-

tation and physical dimensions are given in Figure 2. The CD blade coordinates are

given in Table 1. The geometrical paramcteis of the cascade and the nominal test con-

ditions arc given in Tables 2 and 3 respectively.

The test facility was the same as that used by Dreon. "I he only differences com-

pared to Dreon's work, were in the settings for the inlet flow angles, and in the dual-

probe traverse and axial probe locations.

B. PROBES AND TRAVERSE ARRANGEMENT

A dual-probe traverse arrangement was devised and installed to survey in the wake

of the 7th cascade blade as shown in figure 3. A TSI model 1210-1 1.5 single sensor hot

wire mounted in a Model 1150-18 probe support and Model 1152 light angle adapter

were inserted into a modified United Sensor Corporation manual traverse unit such that

the sensor was at the same station as the tip of a United Sensor Model PBC-24-G-22-KL

Pitot-Static Probe. The manual (spanwise) traverse unit was mounted to a manual

bladc-to-blade traverse table, which was attached to the frame of the side wall. The axial

location of the dual-probe arrangement was changed using alumunium blocks. Ihe

probe locations are shown in Figure 4.

C. AUXILIARY INSTRUMENTATION

The plenum chamber total pressure was obtained using a pressure tube and the

temperature was obtained with a thermocouple suspended into the plenum. A second

pitot-static tube aligned with the inlet (low was used to obtain inlet total and static

pressures. Ihe pressures from the plenum and the two pitot-static probes were con-

nected to a 10-tube water manometer referenced to atmosphere. Plenum and inlet How

conditions were recorded to obtain inlet velocity, Mach number and Reynold number.

The calculation of the reference conditions is given in the Appendix B.
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Table 1. COORDINATES of (he CD BLADE

x-coord.(in) y-coord.(in)( pressure side)
)
.-coord. ( in )( suction side)

0.000 0.045 0.045

0.022 0.084

n.()57 o.oo2

0.222 0.044 0.196

0.444 0.101 0.307

0.666 0.155 0.403

0.888 0.207 0.488

1.110 0.255 0.501

1.332 0.299 0.621

1.554 0.330 0.663

1.776 0.350 0.691

1.998 0.359 0.705

2.220 0.359 0.708

2.442 0.352 0.701

2.664 0.342 0.681

2.886 0.331 0.650

3.108 0.317 0.610

3.330 0.301 0.563

3.552 0.2S1 0.510

3.774 0.257 0.453

3.996 0.227 0.393

4.218 0.191 0.332

4.440 0.146 0.270

4.662 0.089 0.208

4.SS2 0.019 0.145

4.925 0.004

4.964 0. 1 22

5.010 0.062 0.062
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Table 2. GEOMETRICAL PARAMETERS of the CASCADE
Number of Blades 20

Chord 5.01"

Blade Spacing 3.0"

Solidity 1.6 7

1 hickness 7% Chord

Leading L-dgc Radius o.<)45"

Trailing F;dgc Radius 0.062"

Setting Angle U.2± 0.1°

Stagger Angle 14.4+ 0.1°

Span 10.0'

Table 3. NOMINAL TEST CONDI MONS
7„ 530 11°

F* 1.032 atm.

Pi l.oo atm.

M 0.2.5

R. 700.000



Figure 3. View of the Cascade Wind Tunnel and Dual-Probe Traverse Installation.



STATION /H

Downstream of the blade trailing edge

D 0.200c

STATION 111

STATION III

3 0.123c

=3 0.080c
(not to scale)

STATION Hi

Upstream of the blade leading edge
(not to scale)

==> 1.0c

Figure 4. Probe Survey Stations.



III. HOT-WIRE SYSTEM

A. HARDWARE
The hot-wire system consisted, as shown in Figure 5., of the probe, the T SI I FA 100

Anemometer, IS I 1FA 200 Digitizer and an IBM PC-AT. The computer system included

512K of memory, a 10MB hard disk and two 1.2MB floppy disks, a printer adapter card

and a color graphics card, and a math co-processor. A TSI 6260 parallel interface card

and a serial, parallel adapter were used to communicate with the I FA 100 and IFA 200.

D. SOFTWARE AND DATA ACQUISITION:

The TSI data analysis package (DAP) was used to obtain detailed fluid dynamic

properties from the voltage output of a multi-element thermal anemometer system. One

or two component data can be obtained depending on the probe used. The analog probe

outputs from each anemometer channel are digitized and sent to the computer, lhe

digitized data are converted to velocity using calibration information. At the same time

the data are corrected for the effect of temperature on the velocity.

The IFA Thermal Anemometry Software Package is made up of six program pack-

ages ;

Calibration Program

Data Acquisition Program

Statistical Analysis Program

. Spectrum Correlation Program

Traverse Table Control Program

Flow Field Plot Program.

The interrelation between the programs is illustrated in Figure 6.

1. Calibration Program

This is a stand alone program in the IFA Thermal Anemometry Software

Package. The program is used to calibrate single-, cross- and triple sensor probes. The

voltage is fitted to a fourth order polynomial, the constants of which are used to produce

"look-up tables". The look-up table for a particular probe is used with data taken with

the acquisition program, to find the velocity corresponding to the deconditioned,

temperature-corrected, digitized voltage.

Four methods may be used to calibrate; namely,

a. using data taken with the IFA 100 and 200 and a pressure transducer.

10



b. using data taken with the 1 1 A 100 and 200 and manually entering

differential pressure.

c. using data taken with the 1 1 A 100 and 2U0 and manually entering velocity,

d. by manually entering bridge voltage and pressutc directly. In this case

no data are acquired (torn the I FA 100 via DMA.

2. Data Acquisition Program

This program is designed to acquire data with 1, 2 and 3 sensor hot-wire con-

figurations. It allows control of the anemometer and digitizer systems. It can take data

up to 16 channels and store them in raw data files. The communication between the

computer and the I FA 100 or 1FA 200 can also be verified in this program.

3. Statistical Analysis Program

This program generates the velocity data and the statistics from the raw data

files created by the Data Acquisition Program. The look-up tables are used when con-

verting the raw voltage into an effective velocity. During the statistical data processing,

no additional parameters are entered to build the velocity data and statistics. All the

parameters required by the program arc set in the Data Acquisition Program and saved

in the header of the raw data file. The Statistical Analysis Program constructs the ve-

locity data and statistics for all probes that arc defined when data are collected. It com-

bines single-, cross- and triple-wire probes signals when collecting data; The program

then constructs the velocity data and statistics for all of them at one time. Finally the

program saves the data in the velocity and statistics files.

4. Spectrum Correlation Program

This program builds the signal spectrum, the signal auto-correlation and the

two-signal correlation functions. It uses the velocity data produced by the statistics

analysis program. The spectra and correlations arc built using a Fast Fourier Transform

(FFT) algorithm for spectra. The data are transformed to the frequency domain to be

averaged and smoothed with the I fanning window. For correlations, the data are trans-

formed to the frequency domain, multiplied by the conjugates of one another and

transformed back to the time domain for averaging. Both processes use the segmentation

method to transform the data.

This program allows the construction of the requested spectrum or correlation

using segmentation and the FFT. These can be displayed on the screen, plotted or

printed out as tables. The data can be saved for future processing.

11



5. Traverse Table Control Program

This program allows independent control of the movement of the Traverse Ta-

ble. It also constructs an automatic traversing matrix that can be used as a list of coor-

dinate positions. The Data Acquisition Program will use this matrix to automatically

collect data along a pre-determined coordinate path. This program can be used with a

TSI computer-controlled traverse table. Alternatively, the position of the probe can be

entered manually, to be recorded witli the corresponding data. This was done in the

present study.

6. Flow Field Plot program

This program is designed to plot statistical values such as mean velocity. RMS, skewness

coefficients, flatness coefficients, and correlation coefficients vs the piobe position. The

inputs to the program are the raw data files and the analysis files generated by the Data

Acquisition Program and Statistics Analysis Program. Multiple data files can be used to

plot any statistical parameter as a function of position.

The program offers four important functions:

1 he plot-file can read up to 30 family filenames; each family can have up to

99 data files.

The plot can generate up to 400 statistical positions.

The data used in the plot can be printed on a printer.

The plots may be non-dimensionalized, automatically scaled, or manually

scaled.

More detailed information is given in IRef. 7].

12
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IV. EXPERIMENTAL PROCEDURE

A. TEST SECTION SET UP AND ADJUSTMENTS.

Prior to measurements of each inlet flow angle, the front plexiglas wall of the wind

tunnel was removed and the inlet wall angle and IGV's were set. I he wall was replaced,

the tunnel was started and the tailboard angles were adjusted to get a uniform outlet

static pressure distribution. The absence of leaks was checked very carefully. Then the

experiment was performed for the current inlet condition.

B. SURVEY PROCEDURE

I. Probe Calibration

Prior to the experiment, the 11
:A 1UU Flow Analyzer and I FA 200 Digitizer were

made ready to take data. First, a shorting probe was inserted into the probe holder and

the probe cable resistance was measured. The value was entered into the I FA 100

memory. Then the shorting probe was removed and the hot-wire was inserted into the

probe holder. The probe resistance was measured and recorded into the 1 FA 100 mem-

ory. Related to the cable resistance and the cold resistance, the operating resistance was

obtained and entered into the memory. (The software is designed to accept those values

and to enter them into the program for future use. The resistance values arc assigned

to the particular probe serial number and channel number to which it is connected).

The signal conditioner was adjusted to span the minimum and maximum wire

voltages to be recorded during the measurements. These voltages correspond to mini-

mum and maximum expected flow velocities. While acquiring velocity data, the changes

of the supply temperature were recorded and entered into the program to facilitate

corrections. A complete description of the calibration procedure is given in [Ref. 7:

P . 45).

The probe calibration was carried out immediately prior to measurements with

the hot-wire installed in the dual-probe traverse mechanism in the cascade wind tunnel.

The probes were traversed to a position outside of the blade wake where the flow was

uniform. The hot-wire sensor and the pitot-static tube total pressure hole were at the

same axial station. The span-wise traverse was adjusted so that the two probes were also

equidistant from mid-span. The first point in the calibration was with the tunnel off.

Then, the tunnel was started, and for a number of wind tunnel speeds up to the desired

operating speed, calibration data were recorded. At each speed, the hot-wire output was

15



sampled and the corresponding pitot-static pressure differential was entered as re-

quested. The program then fitted these data with a fourth order polynomial of velocity

vs. voltage and calculated the five constants. The five constants were saved in a file,

refered to as a "Look-up table" and also stored in every subsequent raw data file con-

taining measurements.

2. Surveys

a. Upstream Probe Survey

A preliminary survey was made with the upstream pitot-static probe ap-

proximately 4.75 inches upstream of the test blade. When it was verified that the velocity

did not vary in the bladc-to-blade direction, the probe was fixed at a station one blade

passage away from the test blade to avoid disturbing the flow around the test blade. The

probe was aligned carefully to inlet flow direction.

b. Downstream Probe Survey

The hot-wire in the dual-probe system was located at midspan in

midpassage and traversed in the blade-to-blade direction through the wake of the test

blade. Data were recorded across one blade spacing for a total of 33 points. The incre-

ments were 0.1-0.2 inches outside and 0.05 inches inside the wake.

C. PROGRAM OF MEASUREMENTS
The data were taken at three axial stations for a total of three inlet flow angles from

on design to near stall conditions. The program of measurements is given in Table 4.

Table 4. PROGRAM of MEASUREMENTS
RUN i )ATA

SET
Pi yjc = 0.080 >•/<; = 0.12J yjc = 0.200

1 1 40.0° X
2 40.0° X

3 40.0° X

2 1 46.0° X
2 46.0° X

3 46.0° X

3 1 48.0° X

L 48.0° X

3 48.0° X

16



V. RESULTS AND DISCUSSION

A. WAKE VELOCITY DISTRIBU1 IONS

The plots of the downstream wake surveys aie given in Figures 7-9 for inlet How

angles /?, = 40.0°
, /?, = 46.0° and //, = 48.0! respectively. The velocity shown on the plots

was made non-dimensional with respect to inlet flow velocity.

In general, the wake shape downstream of the blading was qualitatively as expected

following Dreon [Ref. 5: p. 38]. The pressure side of the wake had a very steep velocity

gradient while the suction side had a more gradual velocity gradient.

The magnitude of the wake velocity changed depending on inlet flow angle and the

axial displacement. For design inlet conditions, (/?, =40.0°) the wake was nearly s>m-

metric at the three axial stations. As can be seen from Figure 7, the frecstream velocity

decreased from the first downstream location to far downstream while the minimum ve-

locity in the wake increased. The freestream velocity was about 86% of the inlet flow

velocity and the minimum was about 18% of the inlet velocity at Y = 0.08c. The free

stream velocity decreased to 84% and the minimum increased to 4U% of the inlet flow

velocity at Y = 0.2c.

At higher inlet flow angle, /?, = 46.0°, the wake velocity distribution at the suction

side of the blade became thicker with a reduced velocity gradient while the pressure side

kept nearly the same shape as for the design condition. I he change in the magnitudes

of the velocities can be seen in Figure 8. I he freestream velocity was about 80% of the

inlet flow velocity. The minimum velocity was about 11% at Y = 0.08c, 17% at

Y = 0.123c and 26% at Y = 0.2c with respect to inlet velocity.

At /?,=48.0°. the wake was even wider. However, the frecstream velocity outside

wake was about 86% of the inlet velocity at Y = 0.08c, 85% at Y = 0.123c and 0.2c which

was very similar to the design conditions. But the minimum velocity was about 13% of

the inlet velocity at Y = 0.08c, 18% at Y = 0.1 23c and 24% at Y = 0.2c, which were lower

than the minimum velocities at design conditions.

The wake velocities at the three inlet angles are compared in Figures 10 and 11. It

is noted that before the measurements were made , flow separation was expected to oc-

cur near the trailing edge of the blade at /?, =48.0° . However, in an examination using

tufts, no indications of separation or on-set of stall were found. Thus, the three wakes

17



shown in figures 10 and 11 were generated from progressively thicker, but attached,

boundary layers leaving the trailing edge of the blade.

The data obtained with the hot-wire system are shown for comparision with data

obtained using the LDV [Ref. 6: p. 135] in Figures 12 and 13. Very good agreement was

found at both /?,=40.0° and ft = 46.0°, at Y= 0.123c. No LDV data were taken at

/], = 4S.0°.

18
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B. TURBULENCE INTENSITY DISTRIBUTIONS

Turbulence intensity measurements are shown in Figures 14-16. "I he comparisions

at the three stations for the three inlet (low angles arc given in Figures 17 and 18.

Comparisions with LDV measurements at /?, = 40.0° and /?, = 46.0° are shown in Figures

19 and 20, respectively.

I
; or the design condition. (/?, =40.0") , the pressure side of the wake had a peak

turbulence level higher than the peak value on the suction side of the wake. '1 he maxi-

mum values of about 10% were almost the same at V = 0.0Sc and V = 0.123c. 1 he max-

imum declined to about 9% far downstream of the blade.

At the higher inlet How angle of /?, = 46.0°, the peak values of the turbulence were

on the suction side of the wake, in contrast to design conditions. The thickness of the

turbulent region was wider than at the design condition, consistent with the velocity

distribution at this inlet angle. The peak turbulence values were about 11% at all axial

stations.

Close to the expected stall condition, at /?, = 48.0°
, the turbulent layer was much

thicker and the magnitude of the turbulence intensity was larger than at the other two

inlet flow angles. There were also three peak values in the distribution, rather than two.

The highest value was about 13% towards the suction side of the midpoint of the wake,

the second was at the suction side of the wake with a magnitude of about 12%, the third

was on the pressure side of the wake, with a magnitude of about 11%.

Comparisions with LDV data are shown in Figures 19 and 20. They were seen to

agree very well except near the center of the wake. Significant differences can be seen in

the plots. 1 here are at least two possible explanations for these dilferences. The first is

the fundamental difference in the measurements of the systems. The LDV takes two

components of the turbulence and averages them, while the hot wire measures a single

component. The contributions of the two velocity components need not ncccsarily be

the same. The second possibility is that the particles measured by the LDV do not follow

the How perfectly in these regions.
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VI. CONCLUSIONS AND RECOMMENDATIONS

From the program of hot-wire measurements and comparision with data obtained

using a two component LDV system, the following conclusions were drawn:

a. I he hardware and the software of the hot-wire system were verified lor single

channel operation with manual input of probe position. I he software was not diflicult

to use.

b. The wake velocity distribution data agreed with LDV wake velocity to within

the accuracy of the measurements.

c. Turbulence intensity data agreed well with LDV turbulence intensity data in

spite of differences in the methods used by the two methods to calculate turbulence level.

An exception to this general agreement was found in the center of the wake uhere the

hot-wire recorded a reduced level of turbulence and the LDV did not.

d. Observations at /?, = 48.0° did not show any indication of impending stall. The

blade suction side boundary layer appeared to be fully attached to the beginning of the

trailing edge curvature.

The following recommendations arc made:

a. Since the cascade wind tunnel temperature fluctuates somewhat, particularly

early in a run, an alternate calibration procedure should be considered. Optimumly. the

hot-wire needs to be in an environment in which the temperature does not change at all

during the calibration. Temperature fluctuations are not a problem while measurements

are being made.

b. LITort should be made to provide positive seals on the moving sections of the

cascade to eliminate the need for extensive taping. The elimination of leaks is critical in

obtaining proper cascade flow conditions.

c. A computer-controlled automatic traverse unit would greatly improve the ac-

curacy in specifying probe displacement and also speed the process of data acquisition.
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APPENDIX A. TABULATED RLDUCED DATA

Table 5. WAKE DISTRIBUTION DATA at /?, = 4U.0\ T=U.U8c

r,(m s) r
2
(nv's) X 7 m, (%)

78.131 67.940 0.87 1.17

78.131 67.290 0.86 1.26

78.131 67.210 0.86 1.20

78.131 66.950 0.86 1.20

78.131 67.020 0.86 1.24

78.131 66.730 0.85 1.18

77.641 66.690 0.86 1.30

77.641 66.450 0.86 1.27

77.641 66.380 0.85 1.28

77.641 66.620 0.86 1.33

77.641 66.330 0.85 1.42

77.641 65.690 0.85 1.47

77.641 65.830 0.85 2.19

77.641 63.210 0.81 4.57

77.641 50.900 0.66 8.43

77.641 33.140 0.43 10.22

77.641 17.540 0.23 9.26

77.641 13.910 0.18 9.65

77.641 24.540 0.32 9.68

76.153 40.100 0.53 8.01

76.153 50.500 0.66 6.21

76.153 60.120 0.79 3.55

76.153 63.030 0.83 1.62

76.153 63.760 0.84 1.41

76.153 63.950 0.84 1.34

76.153 63.940 0.84 1.14

76.153 64.080 0.84 1.20

76.153 63.830 0.84 1.20

76.153 64.250 0.84 1.15

76.153 63.860 0.84 1.20

76.153 64.120 0.84 1.19

76.153 63.910 0.84 1.24

76.153 63.520 0.83 1.27

No x(in.)

1 -1.500

-1.300

3 -1.100

4 -0.900

5 -0.700

6 -0.600

7 -0.500

8 -0.450

9 -0.400

10 -0.350

11 -0.300

12 -0.250

13 -0.200

14 -0.150

15 -0.100

16 -0.050

17 0.000

18 0.050

19 0.100

20 0.150

21 0.200

22 0.250

23 0.300

24 0.350

25 0.400

26 0.450

27 0.500

28 0.600

29 0.700

30 0.900

31 1.100

32 1.300

33 1.500

35



Table 6. WAKE DISTRIBUTION DATA at p {

= 40.0°, Y = 0.123c

No x(in.) r,(m/s) r
2
(m/s) X Tin,{%)

1 -1.500 76.652 65.830 0.86 1.22

2 -1.300 76.652 65.540 0.S6 1.33

3 -1.100 76.652 65.280 0.85 1.25

4 -0.900 76.153 64.5S0 0.85 1.28

5 -0.700 76.153 64.530 0.85 1.24

6 -0.600 76.153 64.890 0.85 1.27

7 -0.500 76.153 64.370 0.85 1.23

8 -0.450 76.153 64.420 0.85 1.14

9 -0.400 76.153 64.520 0.85 1.20

10 -0.350 76.153 64.480 0.85 1.26

11 -0.300 76.153 64.140 0.84 1.38

12 -0.250 76.153 64.180 0.84 1.59

13 -0.200 76.153 64.340 0.84 1.95

14 -0.150 76.153 64.110 0.84 2.90

15 -0.100 76.153 60.050 0.79 6.02

16 -0.050 76.153 47.460 0.62 9.28

17 0.000 76.153 35.180 0.46 9.82

18 0.050 76.153 24.230 0.32 8.45

19 0.100 76.153 23.150 0.30 9.53

20 0.150 76.153 32.690 0.43 9.42

21 0.200 76.153 45.270 0.59 7.95

22 0.250 76.153 57.020 0.75 5.54

23 0.300 76.153 62.920 0.83 2.71

24 0.350 76.153 64.450 0.85 1.69

25 0.400 75.902 64.100 0.84 1.36

26 0.450 75.902 64.160 0.85 1.28

27 0.300 75.902 64.550 0.85 1.30

28 0.600 75.902 64.530 0.85 1.23

29 0.700 75.902 64.620 0.85 1.21

30 0.900 75.902 64.640 0.85 1.20

31 1.100 75.902 64.680 0.85 1.12

32 1.300 75.902 64.690 0.85 1.21

33 1.500 75.902 64.500 0.85 1.25
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Table 7. WAKE DISTRIBUTION DATA at /J, = 40.0°, Y= 0.2c

No x(in.) r.On/s) r
2
(m,s) X Tm ,.(%)

1 -1.500 76.403 64.450 0.84 1.13

2 -1.300 76.403 64.500 0.S4 1.22

3 -1.100 76.403 64.420 0.84 1.16

4 -0.900 76.403 64.230 0.S4 1.24

5 -0.700 76.403 64.080 0.84 1.27

6 -0.600 76.403 64.140 0.84 1.17

7 -0.500 76.403 63.920 0.84 1.15

8 -0.450 76.403 63.930 0.84 1.14

9 -0.400 76.403 63.850 0.84 1.22

10 -0.350 76.403 63.520 0.83 1.32

11 -0.300 76.403 63.230 0.83 1.36

12 -0.250 76.403 62.910 0.82 1.73

13 -0.200 76.403 63.190 0.83 2.16

14 -0.150 76.403 63.010 0.82 3.08

15 -0.100 76.403 60.260 0.79 6.04

16 -0.050 76.403 54.260 0.71 8.27

17 0.000 76.403 45.730 0.60 9.42

18 0.050 76.403 35.740 0.47 9.14

19 0.100 76.403 30.540 0.40 7.61

20 0.150 76.403 34.930 0.46 8.36

21 0.200 76.403 42.460 0.56 8.96

22 0.250 76.403 52.070 0.68 7.59

23 0.300 76.403 60.360 0.79 4.72

24 0.350 76.403 62.740 0.82 2.05

25 0.400 75.902 63.120 0.83 1.50

26 0.450 75.902 63.200 0.83 1.38

27 0.500 75.902 63.000 0.83 1.36

28 0.600 75.902 62.890 0.83 1.23

29 0.700 75.902 63.040 0.83 1.22

30 0.900 75.902 63.110 0.83 1.22

31 1.100 75.902 63.190 0.83 1.20

32 1.300 75.902 63.230 0.83 1.34

33 1.500 75.902 62.890 0.83 1.38
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Table 8. WAKE DISTRIBUTION DATA at /J, = 46.0°, K= 0.08c

s
T

o x(in.) Pi(m/s) r
2
(m/s) X Tm,.(%)

i -1.500 76.403 60.890 0.797 1.019

2 -1.300 76.403 60.760 0.7Q5 1.031

3 -1. 100 76.403 60.730 0.795 1.083

4 -0.900 76.403 60.820 0.796 0.990

5 -0.700 76.403 60.640 0.794 1.022

6 -0.600 76.403 60.940 0.798 1.039

7 -0.500 76.403 61.160 0.800 1.104

8 -0.450 76.403 60.730 0.795 1.071

9 -0.400 76.403 60.680 0.794 1.213

10 -0.350 76.403 60.550 0.793 1.293

11 -0.300 76.403 60.810 0.796 1.260

12 -0.250 76.403 61.020 0.799 1.3S0

13 -0.200 76.403 61.000 0.798 2.371

14 -0.150 76.403 57.350 0.751 5.340

15 -0.100 76.403 42.010 0.550 9.144

16 -0.050 76.403 21.610 0.283 9.493

17 0.000 76.403 9.972 0.131 8.645

18 0.050 76.403 8.681 0.114 8.865

19 0.100 76.403 13.730 0.180 10.598

20 0.150 76.403 19.830 0.260 11.016

21 0.200 76.403 25.210 0.330 10.275

22 0.250 76.403 30.370 0.397 9.974

23 0.300 76.403 38.070 0.498 9.189

24 0.350 76.403 42.490 0.556 8.209

25 0.400 76.403 47.000 0.615 8.040

26 0.450 76.403 51.540 0.675 6.712

27 0.500 76.403 55.650 0.728 5.530

28 0.600 76.403 60.580 0.793 2.395

29 0.700 76.403 60.930 0.797 1.337

30 0.900 76.403 60.970 0.798 1.148

31 1.100 76.403 61.100 0.800 1.066

32 1.300 76.403 61.200 0.801 1.073

33 1.500 76.403 60.880 0.797 1.110
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Table 9. WAKE DISTRIBUTION DATA at /?, = 46.U°, }'= 0.123c

No x(in.) r,(m/s) r
2
(ra's) x 7;,,(%)

1 -1.500 78.860 62.050 0.787 1.140

2 -1.300 78.S60 62.230 0.7S9 1.062

3 -1.100 77.395 62.020 0.801 1.035

4 -0.900 77.395 61.750 0.798 1.012

5 -0.700 77.395 61.350 0.793 1.004

6 -0.600 77.395 60.980 0.788 1.102

7 -0.500 77.395 60.950 0.788 1.046

8 -0.450 77.395 60.840 0.786 1.083

9 -0.400 77.395 60.910 0.787 1.185

10 -0.350 77.395 60. 4SO 0.781 1.279

11 -0.300 77.395 60.430 0.781 1.379

12 -0.250 77.395 60.440 0.781 1.747

13 -0.200 77.395 60.710 0.784 2.353

14 -0.150 77.395 58. 1 20 0.751 5.037

15 -0.100 77.395 47.730 0.617 9.150

16 -0.050 77.395 32.470 0.420 10.527

17 0.000 77.395 19.840 0.256 9.137

18 0.050 77.395 13.000 0.1()8 8.193

19 0.100 77.395 15.110 0.195 9.814

20 0.150 77.395 19.020 0.246 11.127

21 0.200 77.395 22.920 0.296 11.777

22 0.250 76.652 30.520 0.398 9.971

23 0.300 76.652 35.920 0.469 9.306

24 0.350 76.652 40.870 0.533 8.905

25 0.400 76.652 46.230 0.603 7.902

26 0.450 76.652 50.010 0.652 7.166

27 0.500 76.652 53.670 0.700 6.251

28 0.600 76.652 59.470 0.776 2.858

29 0.700 76.652 60.430 0.788 1.424

30 0.900 76.652 60.830 0.794 1.125

31 1.100 76.652 60.440 0.788 1.100

32 1.300 76.652 61.100 0.797 1.124

33 1.500 76.652 61.240 0.799 1.042
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Table 10. WAKE DISTRIBUTION DATA at /J, = 46.0°
, r=o.

No x(in.) r,(m/s) r,(m/s) X Tlm.(%)

1 -1.500 78.S60 62.830 0.797 1.224

2 -1.300 78.860 62.530 0.793 1.022

3 -1.100 78.860 62.990 0.799 1.043

4 -0.900 78.860 62.600 0.794 1.164

5 -0.700 78.860 62.990 0.799 1.173

6 -0.600 78.860 62.880 0.797 1.062

7 -0.500 78.860 62.770 0.796 1.102

8 -0.450 78.860 62.820 0.797 1.150

9 -0.400 78.860 62.640 0.794 1.264

10 -0.350 78.860 62.160 0.788 1.268

11 -0.300 78.860 62.980 0.799 1.440

12 -0.250 77.395 60. 8 SO 0.787 1.759

13 -0.200 77.395 60.970 0.788 2.276

14 -0.150 77.395 60.370 0.780 3.579

15 -0.100 77.395 53.130 0.686 6.401

16 -0.050 77.395 46.8S0 0.606 9.635

17 0.000 77.395 37.400 0.483 10.703

18 0.050 77.395 27.920 0.361 9.985

19 0.100 77.395 21.010 0.271 8.581

20 0.150 77.395 20.220 0.261 8.769

21 0.200 77.395 21.900 0.283 9.861

22 0.250 77.395 23.460 0.303 11.011

23 0.300 77.395 28.240 0.365 10.657

24 0.350 77.395 36.510 0.472 9.401

25 0.400 77.395 40.190 0.519 9.228

26 0.450 77.395 44.410 0.574 8.999

27 0.500 77.395 48.290 0.624 7.523

28 0.600 77.395 55.350 0.715 5.476

29 0.700 77.395 61.150 0.790 2.391

30 0.900 77.395 61.660 0.797 1.237

31 1.100 77.395 61.430 0.794 1.142

32 1.300 77.395 61.820 0.799 1.083

33 1.500 77.395 61.100 0.7S9 1.103
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Table 1 1. WAKE DISTRIBUTION DATA at /J, = 48.0°, ]'= O.OcSc

No x(in.) r,(m. s) V
:
(m s) x 7;,..(%)

1 -1.300 76.901 66.740 0.87 1.17

2 -1.100 70.901 66.300 0.S6 1.10

3 -0.800 76.901 06.510 0.86 1.06

4 -0.600 76.901 66.4X0 0.S6 1.18

5 -0.500 76.901 66.220 0.86 1.18

6 -0.400 76.901 66.920 0.87 1.07

7 -0.300 76.901 66.970 0.87 1.23

8 -0.200 76.901 67.400 0.88 1.38

9 -0.150 76.901 67.180 0.87 1.82

10 -0.100 76.901 66.010 0.86 4.S6

11 -0.050 76.901 52.630 0.68 10.75

12 0.000 76.901 29.120 0.38 12.83

13 0.050 76.901 13.670 0.18 10.16

14 0.100 76.901 10.010 0.13 10.42

15 0.150 76.901 11.420 0.15 11.78

16 0.200 76.901 14.760 0.19 12.17

17 0.250 76.901 18.460 0.24 13.55

18 0.300 76.901 23.980 0.31 13.85

19 0.350 76.901 27.940 0.36 13.15

20 0.400 76.901 34.820 0.45 13.06

21 0.450 76.901 37.560 0.49 13.33

22 0.500 76.901 43.130 0.56 12.10

23 0.550 76.901 47.730 0.62 11.16

24 0.600 76.901 52.470 0.68 11.09

25 0.650 76.901 55.280 0.72 10.27

26 0.700 76.901 58.350 0.76 9.01

27 0.800 76.901 64.620 0.84 5.49

28 0.900 76.901 67.020 0.87 2.93

29 1.000 76.901 67.260 0.87 1.76

30 1.100 76.901 67.190 0.87 1.38

31 1.200 76.901 66.380 0.86 1.29

32 1.300 76.901 66.580 0.87 1.25

33 1.500 76.901 66.620 0.87 1.26
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Table 12. WAKE DISTRIBUTION DATA at /J, = 48.0°, Y = 0.123c

No x(in.) r,(m/s) r
2
(ni,s) X 7 mr.(%)

1 -1.500 78.618 66.440 0.85 1.08

-1.300 78.618 66.630 0.85 1.07

3 -1.000 78.618 66.460 0.85 1.12

4 -o.soo 78.131 66.450 0.85 1.10

5 -0.600 78.131 66.960 0.86 1.26

6 -0.500 78.131 66.390 0.85 1.16

7 -0.400 77.641 66.920 0.86 1.14

8 -0.350 77.641 66.890 0.86 1.25

9 -0.300 77.641 66.200 0.85 1.39

10 -0.250 77.641 66.660 0.86 1.53

11 -0.200 77.641 66.490 0.86 1.88

12 -0.150 77.641 66.640 0.S6 2.96

13 -0.100 77.641 63.070 0.81 6.41

14 -0.050 77.641 49.360 0.64 11.82

15 0.000 77.641 32.540 0.42 13.02

16 0.050 77.641 17.970 0.23 10.53

17 0.100 77.641 13.890 0.18 9.89

18 0.200 77.641 15.200 0.20 11.21

19 0.250 77.641 16.860 0.22 12.44

20 0.300 77.641 21.010 0.27 13.34

21 0.350 77.641 24.720 0.32 12.87

22 0.400 77.641 30.090 0.39 12.92

23 0.450 77.641 34.500 0.44 13.09

24 0.500 77.641 38.2SO 0.49 12.02

25 0.550 77.641 43.930 0.57 11.43

26 0.600 77.641 46.810 0.60 11.69

27 0.700 77.641 55.460 0.71 9.97

28 O.SOO 77.641 62.810 0.81 7.02

29 0.900 77.641 66.350 0.85 3.41

30 1.000 77.641 66.2S0 0.85 2.15

31 1.100 77.641 66.300 0.85 1.55

32 1.300 77.641 66.500 0.86 1.59

33 1.500 77.641 66.790 0.86 1.55
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Table 13. WAKE DISTRIBUTION DATA at 0, = 4,8.0°, ]'= 0.2c

r,(m/s) r
2
(m/s) X 7;„ f.(%)

82.871 70.050 0.85 1.03

82.871 70.050 0.85 1.04

82.871 70.010 0.84 0.99

82.871 69.790 0.84 1.08

82.871 69.520 0.84 1.03

82.640 69.330 0.84 1.06

82.640 68.980 0.83 1.16

82.640 68.530 0.83 1.15

82.640 68.790 0.83 1.30

82.640 68.580 0.83 1.34

82.640 69.120 0.84 1.53

82.640 6S.SO0 0.83 1.94

82.640 68.580 0.83 2.54

82.640 67.670 0.82 4.55

82.409 62.080 0.75 8.28

82.409 53.550 0.65 10.85

82.409 40.640 0.49 11.21

82.409 30.630 0.37 10.99

82.409 23.230 0.28 10.46

82.409 19.820 0.24 11.14

82.177 20.350 0.25 11.53

82.177 24.2S0 0.30 12.45

82.177 27.240 0.33 12.26

82.177 32.210 0.39 12.70

82.177 36.740 0.45 11.15

82.177 38.890 0.47 11.91

82.177 42.810 0.52 11.03

82.177 50.830 0.62 9.74

82.177 58.040 0.71 8.68

82.177 65.470 0.80 5.68

82.177 69.120 0.84 1.81

82.177 68.700 0.84 1.20

82.177 68.850 0.84 1.20

No x(in.)

1 -1.500

2 -1.300

3 -1.100

4 -0.900

5 -0.700

6 -0.600

7 -0.500

8 -0.450

9 -0.400

10 -0.350

11 -0.300

12 -0.250

13 -0.200

14 -0.150

15 -0.100

16 -0.050

17 0.000

18 0.050

19 0.100

20 0.150

21 0.200

22 0.250

23 0.300

24 0.350

25 0.400

26 0.450

27 0.500

28 0.600

29 0.700

30 0.800

31 1.000

32 1.200

33 1.400
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APPENDIX B. CALCULATION OF DIMENSIONLESS PARAMETERS

I he inlet velocity was made dimensionless by dividing by total velocity V, which is

given by

where T, is the total temperature and C
r

is the specific heat at constant pressure.

Then the dimensionless velocity X is given by;

The relationship between dimensionless velocity and temperature ratio is given for

a perfect gas [Ref. 8j.

-£_,_!»
7,

Whereas, in terms of Mach number;

—- = 1
-- M 2

T 2

Therefore, the relationship between Mach number and dimensionless velocity is

The Reynold's number is given by

p\\C
R =-——

e P

where p is the density of the fluid calculated from inlet flow conditions using the perfect

gas equation of state,

?", is the inlet flow velocity,

C is the chord length of the blade,

p is the viscosity.
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