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ABSTRACT 
 

In this thesis, a fuzzy logic algorithm is developed 

for the detection of potential aircraft icing conditions 

using the Moderate-Resolution Imaging Spectroradiometer 

(MODIS).  The fuzzy MODIS algorithm is developed in a 

manner similar to the cloud mask currently used to process 

MODIS imagery.  The MODIS icing potential detection 

algorithm uses thresholds for 8 channels in a series of 12 

tests to determine the probability of icing conditions 

being present within a cloud.  The MODIS algorithm results 

were compared to results of the GOES icing potential 

detection algorithm run on MODIS imagery for 4 cases.  When 

compared to positive and icing pilot reports for the cases, 

the MODIS algorithm identified regions where icing was 

encountered more effectively than the GOES algorithm.  

Furthermore, the use of fuzzy thresholds on MODIS rather 

than the hard thresholds of the GOES algorithm allowed for 

less restrictive coverage of potential icing conditions, 

making the MODIS algorithm more reasonable in assessing all 

cloud regions for icing potential.  The results here are 

preliminary, as further statistical analysis with a larger 

validation dataset would be more effective.  Algorithm 

details are provided in the appendix for reference.  



 vi

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii

TABLE OF CONTENTS 
 
 

I. INTRODUCTION ............................................1 
A. BACKGROUND .........................................1 
B. MOTIVATION .........................................2 
C. PURPOSE ............................................3 
D. THESIS PLAN ........................................5 

II. THEORY ..................................................7 
A. ICING OVERVIEW .....................................7 
B. GOES-BASED ICING POTENTIAL DETECTION ALGORITHM .....9 

1. Channel 1 (0.65µm) ...........................10 
2. Channel 2 (3.9µm) ............................12 
3. Channel 4 (11µm) .............................14 
4. Channel 2 – Channel 4 Difference (3.9-11µm) ..16 

C. APPLICABLE MODIS CHANNELS .........................17 
1. Reflectance Tests ............................20 

a. Channel 6 (1.6µm) .......................20 
b. Channel 7 (2.1µm) .......................24 
c. Channel 26 (1.38µm) .....................25 

2. Reflectance Ratio Tests ......................27 
3. Infrared Difference Tests ....................28 

a. Channel 29 – Channel 31 (8.5-11µm) ......29 
b. Channel 31 – Channel 32 (11-12µm) .......30 
c. Trispectral – Channels 29-31 vs. 31-32 

(8.5-11µm vs. 11-12µm) ..................31 
III.  PROCEDURES ............................................33 

A. INVESTIGATION .....................................33 
B. VERIFICATION ......................................38 

IV. RESULTS ................................................41 
A. GROUP I RESULTS ...................................43 
B. GROUP II RESULTS ..................................48 
C. GROUP III RESULTS .................................51 
D. GROUP IV RESULTS ..................................52 
E. FINAL RESULTS .....................................57 
F. STATISTICAL COMPARISON ............................63 

V. CONCLUSION .............................................67 
A. SUMMARY ...........................................67 
B. RECOMMENDATIONS ...................................68 

APPENDIX ....................................................71 
LIST OF REFERENCES ..........................................79 
INITIAL DISTRIBUTION LIST ...................................85 



 viii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



 ix

LIST OF FIGURES 
 
 
Figure 1. Effects of aircraft icing on flight (from USAF 

1997)............................................1 
Figure 2. Example of NCAR’s GOES icing potential 

detection product.  Icing regions appear in 
black............................................4 

Figure 3. Percentage of clouds containing no ice (1 & 2) 
and clouds containing ice (3-6) with respect to 
cloud-top temperature.  (From Pruppacher 1995)...8 

Figure 4. Spectral irradiance (dW/dλ).  The sun’s 
radiative temperature is 6000°K. (from 
Encyclopaedia Britannica 2005)..................10 

Figure 5. Terrestrial Planck curve with crossover region 
of solar Planck curve. (CIRA-CSU 2005)..........13 

Figure 6. Real index of refraction for ice and water 
particles.  (From Hobbs and Deepak 1981)........14 

Figure 7. Thermal radiation Planck function at 300°K and 
301°K, given in units of W/m2. ..................15 

Figure 8. Imaginary index of refraction for water and 
ice, which determines emittance of EM energy.  
(from Hobbs and Deepak 1981)....................16 

Figure 9. Imaginary index of refraction for ice and water 
between 0.5µm and 2.5µm (Baum et al. 2000)......21 

Figure 10. Mean ice water content for clouds found at 
temperatures between -20°C and -60°C (Liou 
1992)...........................................23 

Figure 11. Absorption coefficient, 8-13µm (from Ackerman 
1990)...........................................30 

Figure 12. Imaginary index of refraction for water and ice 
in the 8-13µm window region (from Baum et al 
2000)...........................................31 

Figure 13. Icing Probability vs. visible reflectance for 
MODIS Channel 1.................................36 

Figure 14. Icing probability test for MODIS Channel 31 
brightness temperature..........................36 

Figure 15. Depiction of PIREP-region used for algorithm 
comparison and verification.....................40 

Figure 16. (a) Visible MODIS image for 16:25Z on 24 
November, 2003.  (b) Matching IR MODIS image 
with verification PIREPS overlaid...............42 

Figure 17. Icing potential probability test for Channel 1 
reflectance (P01)...............................43 

Figure 18. Icing probability for Channel 6 reflectance 
(P06) test......................................44 



 x

Figure 19. Icing probability for Channel 7 reflectance 
(P07) test......................................45 

Figure 20. Channel 22 reflectance (P22) icing probability 
test............................................46 

Figure 21. Channel 26 reflectance (P26) icing probability 
test............................................47 

Figure 22. Group I results, indicating each pixel’s 
maximum icing probability score for the 5 
reflectance tests...............................48 

Figure 23. Channel 6 versus Channel 1 reflectance ratio 
(P61) test for icing probability................49 

Figure 24. Channel 7 versus Channel 1 reflectance ratio 
(P71) test for icing probability................50 

Figure 25. Group II results, indicating each pixel’s 
maximum icing probability score for the 2 
reflectance ratio tests.........................51 

Figure 26. Channel 31 brightness temperature (T31) test 
for icing probability. Figure also represents 
Group III results...............................52 

Figure 27. Channel 22 - Channel 31 brightness temperature 
difference (BTD1) test for icing probability....53 

Figure 28. Channel 29 - Channel 31 brightness temperature 
difference (BTD2) test for icing probability....54 

Figure 29. Channel 31 - Channel 32 brightness temperature 
difference (BTD3) test for icing probability....55 

Figure 30. Trispectral brightness temperature difference 
(BTD4) test for icing probability...............56 

Figure 31. Group IV results, indicating each pixel’s 
maximum icing probability score for the 4 
reflectance ratio tests.........................57 

Figure 32. Final MODIS icing probability test results......58 
Figure 33. GOES icing potential algorithm results for 

November 24, 2003.  Icing areas are shaded 
white; otherwise, Channel 31 brightness 
temperature is used.............................59 

Figure 34. (a) MODIS icing probability test results for 
November 11, 2003. (b) GOES icing potential 
test results (icing areas in white) for 
November 11, 2003.  Positive and negative icing 
PIREPS for November 11th are overlaid. ..........60 

Figure 35. (a) MODIS icing probability test results for 
November 28, 2003. (b) GOES icing potential 
test results (icing areas in white) for 
November 28, 2003.  Positive and negative icing 
PIREPS for November 28th are overlaid. ..........61 



 xi

Figure 36. (a) MODIS icing probability test results for 
November 30, 2003. (b) GOES icing potential 
test results (icing areas in white) for 
November 30, 2003.  Positive icing PIREPS for 
November 30th are overlaid. .....................62 

Figure 37. Icing probability test for Channel 1 
reflectance.....................................71 

Figure 38. Icing probability test, Chan. 6 reflectance.....71 
Figure 39. Icing probability test for Channel 7 

reflectance.....................................72 
Figure 40. Icing probability test for Channel 22 

reflectance.....................................72 
Figure 41. Icing probability test for Channel 26 

reflectance.....................................73 
Figure 42. Icing probability test for Channel 6 vs. 

Channel 1 reflectance ratio.....................73 
Figure 43. Icing probability test for Channel 7 vs. 

Channel 1 reflectance ratio.....................74 
Figure 44. Icing probability test for Channel 31 

brightness temperature..........................74 
Figure 45. Icing probability test for Channel 22-31 

brightness temperature difference...............75 
Figure 46. Icing probability test for Channel 29-31 

brightness temperature difference...............75 
Figure 47. Icing probability test for Channel 31-32 

brightness temperature difference...............76 
Figure 48. Icing probability test for trispectral 

brightness temperature difference...............76 
Figure 49. Final icing probability determination test......77 

 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

LIST OF TABLES 
 
 
Table 1. Frequency and duration of detection of ice and 

water in clouds during ECLIPS (after Young et 
al 2000).........................................8 

Table 2. Characteristics of the 36 channels available on 
the MODIS platform. (after MODIS Web 2004)......19 

Table 3. GOES channels used in the current icing 
detection algorithm and the equivalent channels 
available on the MODIS platform.................20 

Table 4. Ice water content and maximum particle 
dimensions for given temperature ranges (after 
Heymsfield and Platt 1984)......................23 

Table 5. January 1979 temperature statistics obtained 
from ECMWF analyses (from Curry and Liu 1992)...27 

Table 6. MODIS icing tests, with test group and 
thresholds......................................35 

Table 7. MODIS mean and median and GOES algorithm 
statistics for all PIREPS on November 11, 24, 
28, and 30, 2003................................64 

Table 8. MODIS mean and median and GOES test results for 
PIREPS on November 11, 24, 28, and 30, 2003, 
within 3 hours of MODIS image valid times.......65 

Table 9. MODIS mean and median and GOES algorithm 
statistics for those PIREPS on November 11, 24, 
28, and 30, 2003, reported within 1 hour of the 
MODIS image valid times.........................65 

 



 xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

LIST OF SYMBOLS, ACRONYMS AND ABBREVIATIONS 
 

 
 
AFCCC AF Combat Climatology Center 
AFSC  Air Force Safety Center 
AIRS-II Alliance Icing Research Study - II 
ASF  Air Safety Foundation 
ATReC Atlantic THORpex Regional Campaign 
AWS  Air Weather Service 
CIRA Cooperative Institute for Research in the 

Atmosphere 
CSU Colorado State University 
ECLIPS Experimental Cloud Lidar Pilot Study 
FAA  Federal Aviation Administration 
GOES  Geostationary Earth Observing Satellite 
IDEA  Interactive Digital Environmental Laboratory 
IIDA  Integrated Icing Diagnostic Algorithm 
MODIS Moderate Resolution Imaging Spectroradiometer 
NASA  National Aeronautical and Space Administration 
NCAR  National Center for Atmospheric Research 
NOGAPS Navy Operational Global Atmospheric Prediction 

System 
NPS Naval Postgraduate School 
RAL Research Applications Laboratory 
USAF  United States Air Force 
 
BTD  Brightness Temperature Difference 
EM  Electromagnetic  
ICN  Ice Crystal Nuclei 
IR  Infrared 
IWC  Ice Water Content 
NIR  Near-Infrared 
SLD  Super-cooled Liquid Drops 
SNR  Signal-to-Noise Ratio 
km  Kilometers 
mb  Millibars 
µm  Micrometers or Microns 
 
 



 xvi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xvii

ACKNOWLEDGMENTS 
 

The author would like to thank Professor Phil Durkee 

for his thorough guidance and patience through the research 

process.  Tom Lee provided initial brainstorming and 

background information that helped bring the thesis topic 

and goal into view.  Professor Mary Jordan was instrumental 

in editing and writing the MATLAB programs to process the 

algorithm, none of which would have been possible if not 

for the amazing set of MODIS MATLAB programming that had 

previously been accomplished by Dr. Shaima Nasiri.  Kurt 

Nielsen provided endless support in the gathering and 

processing of MODIS and GOES imagery during the preparatory 

stages of research. 

From the National Center for Atmospheric Research, 

thanks to Greg Thompson for providing the initial GOES 

algorithm and for suggesting fuzzy set theory as a possible 

improvement to the algorithm.  Julie Haggarty was always 

quick to provide assistance and guidance as needed 

throughout the process.  Marcia Politovich, Jothiram 

Vivekanandan, and Merritt Deeter were especially helpful 

during discussions of the MODIS channel selection process.  

Their guidance and expertise allowed for greater focus on 

the proper channels from the beginning of the thesis 

process.   

From the Naval Research Laboratory, thanks to Joe 

Turk, Steve Miller, and Jeff Hawkins, who provided much 

needed input into discussion of the channel properties for 

the GOES and MODIS platforms. 

The author extends special thanks to his wonderful bride 

for her love, patience, encouragement, and understanding 

throughout the 18-month master’s program. 



 xviii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



1 

I. INTRODUCTION 

A. BACKGROUND 

As aircraft use increases in both civilian and 

military operations, weather hazards continue to be a 

critical planning factor.  Among the major weather flight 

hazards, aircraft icing ranks near the top of most lists in 

terms of costliness, fatalities, and occurrence.  As seen 

in Figure 1, icing accretion increases aircraft drag and 

weight while decreasing lift and thrust, making the 

aircraft less able to sustain flight (USAF 1997). As a 

result, even the most experienced pilots can fall victim to 

aircraft icing once it is encountered and ice buildup 

begins.  According the Federal Aviation Administration’s 

Air Safety Foundation (ASF), one in eight weather-related 

aircraft accidents in the 1990’s resulted from aircraft 

icing with 67 percent involving highly-experienced pilots 

and 27 percent involving fatalities (ASF 2002).   

 

Figure 1.   Effects of aircraft icing on flight (from 
USAF 1997). 
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B. MOTIVATION 

The United States Air Force (USAF) has managed to keep 

icing-related losses relatively low – only about $400,000 

and no fatalities since 2000 according to the Air Force 

Safety Center (AFSC 2004) – by strictly avoiding any 

forecasted icing regions (USAF 1997).  This policy requires 

precise knowledge of where to expect icing conditions.  

However, Air Force meteorologists generally use very 

spatially broad model output maps of atmospheric moisture 

and temperatures as the only tools to create icing 

forecasts.  If these products suggest clouds with 

temperatures within the thresholds set for potential icing, 

the large majority of forecasters are trained to use them 

without viewing other data.  Thompson et al. (1997) found 

the areas covered by model-based icing forecasts to be more 

than twice as large as necessary for an aircraft to avoid 

icing conditions.  The only other information available for 

icing avoidance are pilot reports, which are ineffective 

due to lack of coverage, detail, accuracy, and timeliness 

(Erickson 1997). 

Though these conservative criteria lead to the Air 

Force’s very low icing accident rate by creating a large 

avoidance cushion around actual icing areas, such expansive 

forecasts undoubtedly result in excessive fuel consumption, 

protracted flights, and unnecessary wear on aircrafts and 

aircrews.  This method also bases icing detection, solely 

on model output without adequate confirmation that expected 

icing conditions actually exist.  Thompson et al. (1997) 

found that the Navy Operational Global Atmospheric 

Prediction System (NOGAPS) icing forecasts generally 
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captured only 70 percent of icing encounters by aircraft, 

leaving a large margin for error. 

C. PURPOSE 

The goals of any effort to remotely sense in-flight 

icing conditions are the increased flight safety, military 

readiness, and aircraft utilization while decreasing flight 

delays (Ryerson 2000).  Thompson et al. (1997) showed that 

the objective use of satellite data to detect icing 

conditions can reduce the spatial extent of model-

forecasted icing regions by nearly 50 percent with a 

minimal loss in forecast accuracy of only a few percent.  

Using the Advanced Very-High Resolution Radiometer, they 

showed that 3 of the 5 channels on the Geostationary Earth 

Observing Satellite (GOES) platform can be used to develop 

a multispectral algorithm to detect potential icing 

conditions based on temperature thresholds, cloud optical 

properties, and reflectance and differential emittance 

properties of water and ice particles in clouds.  The 

resulting product is available operationally online by 

selecting “Icing Product” and clicking “Contiguous US” at 

http://www.rap.ucar.edu/weather/satellite/.  An example of 

this product is shown in Figure 2.  It is likely that 

better multispectral products can be developed as stand-

alone detection methods. 

The GOES algorithm, like other icing detection 

techniques, has several limitations that are discussed in 

Section II.  In an effort to make up for these limitations, 

the GOES algorithm is currently used along with model 

outputs, radar mosaics, and surface observations as part of 

the NCAR Integrated Icing Diagnostic Algorithm (IIDA) 

product in the capacity described by Thompson et al (1997) 



4 

and Bernstein et al (2000).  Improvements made in sensor-

based icing potential detection techniques would in turn 

lead to the enhancement of products such as IIDA. 

 

Figure 2.   Example of NCAR’s GOES icing potential 
detection product.  Icing regions appear in black. 

Since its launch in 1999, much research has gone into 

investigating the capabilities and usefulness of the 

Moderate Resolution Imaging Spectroradiometer (MODIS).  

With 36 available wavelengths, superior spatial resolution, 

and global coverage, MODIS provides an opportunity to 

improve the 3-channel, GOES-based icing potential detection 

algorithm currently being used.  Several channels have 

shown the capability to detect a wide variety of cloud 

properties that would assist in satellite-based icing 

potential detection.  Many of the channels currently used 
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on MODIS will also be chosen for the next generation of 

GOES satellites.   

D. THESIS PLAN 

The 36 MODIS channels are researched to determine 

which channels provide potentially useful information for 

detecting icing conditions, specifically cloud-top 

temperature, cloud optical depth, thermodynamic phase, and 

effective particle radius.  The applicable channels are 

tested either individually or in concert with other 

channels to develop a fuzzy algorithm that provides icing 

probability within a given cloud scene.  Aircraft icing and 

channel selection theory are discussed in Chapter II.  

Chapter III explains the data, investigation and 

verification procedures used, followed by results in 

Chapter IV and concluding remarks in Chapter V. 
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II. THEORY 

A. ICING OVERVIEW 

Aircraft icing cannot be detected directly via remote 

sensing methods.  Relevant detection techniques applied to 

determine icing potential must therefore focus on detecting 

ideal atmospheric conditions that generally result in 

icing, the most pertinent of which are air temperature, 

cloud phase, and drop size.  Icing occurs when large 

(diameter > 30µm), liquid water drops freeze upon contact 

with the surface of an aircraft, causing the accretion of 

ice on the airframe.  Because the aircraft’s surface 

temperature must be below freezing, these drops – referred 

to as super-cooled liquid drops (SLD) – must exist in 

temperatures below freezing while remaining in the liquid 

phase (AWS 1980). 

Water droplets smaller than 5µm in diameter 

spontaneously freeze at about –40°C in the absence of ice 

crystal nuclei (ICN) or a frozen surface, while larger 

droplets may freeze at slightly warmer temperatures.  This 

is different from the bulk water freezing point of 0°C 

because the distribution of cloud water mass among a large 

quantity of individual drops limits the surface area 

available for homogeneous nucleation.  Statistical research 

shows that due to heterogeneous nucleation caused by the 

presence of ICN in the atmosphere, clouds generally consist 

of an appreciable number of ice crystals below –15°C 

(Rogers 1989).  Earlier research showed that clouds 

generally consist of ice crystals below –20°C, (Sand 1984). 

Pruppacher (1995) combined data from several previous 

investigations of super-cooled water drops in clouds with 
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his own data collection, shown in Figure 3, to demonstrate 

that no cloud with cloud-top temperatures less than –20°C 

contain only water drops.  Furthermore, he found that fewer 

than 10 percent of clouds with cloud-top temperatures 

between –25°C and –40°C may partially consist of super-

cooled liquid drops.  Young et al. (2000) further 

substantiated these results using ground-based lidar 

measurements during the Experimental Cloud Lidar Pilot 

Study (ECLIPS), finding no water droplets in mid-level 

clouds below -25°C, as indicated in Table 1. 

  

Figure 3.   Percentage of clouds containing no ice (1 & 
2) and clouds containing ice (3-6) with respect to 
cloud-top temperature.  (From Pruppacher 1995) 

 
Table 1.   Frequency and duration of detection of ice 

and water in clouds during ECLIPS (after Young et 
al 2000). 

Temperature 
Interval  

Frequency of detection
(%) 

Duration of detection
(minutes) 

(°C) Water Ice Water Ice 
-30 to -25 0 100 0 15 
-25 to -20 21 79 20 75 
-20 to -15 56 44 79 61 
-15 to -10 33 67 61 122 
-10 to -5 41 59 30 44 
-5 to 0 92 8 170 14 
0 to 5 100 0 96 0 
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Heterogeneous nucleation caused by the presence of ice 

crystals and ICN quickly depletes liquid water drops in 

mixed phase clouds, as water generally freezes when it 

comes into contact with any particle in sub-freezing 

temperatures.  Because the saturation vapor pressure of ice 

is lower than that of liquid water, once ice crystals begin 

to form liquid water attrition occurs very rapidly (Rogers 

1989).  Any remaining liquid water existing below –25°C is 

generally below the 30µm threshold for SLD, decreasing the 

potential for significant aircraft icing in ice clouds to 

near zero (AWS 1980).  This operationally restricts the 

potential for icing to clouds containing super-cooled 

liquid drops with temperatures between 0°C and –25°C. 

B. GOES-BASED ICING POTENTIAL DETECTION ALGORITHM 

The current algorithm used by the National Center for 

Atmospheric Research – Research Applications Laboratory 

(NCAR-RAL 1994) uses 3 of the 5 channels available on the 

GOES satellite imager to detect possible icing conditions.  

The algorithm was originally developed as a tool to reduce 

the spatial coverage of forecasted icing conditions created 

by models, which tend to overforecast aircraft icing 

potential regions.  The 3 GOES channels (0.65µm, 3.9µm, and 

10.7µm) are applied to detect the presence of clouds, their 

thermodynamic phase, and the temperature of the cloud top 

(NCAR 1994).  The molecular structure of water drops and 

ice crystals affect how they absorb, scatter, and emit 

electromagnetic (EM) energy at a given wavelength.  

Differential properties of ice and water particles make it 

possible to distinguish ice cloud from water cloud, as well 

as determine properties such as particle size and cloud 

thickness.  To assess cloud phrase, the current algorithm 

employed at NCAR uses the 0.65µm, 3.9µm, and 11µm channels. 



10 

1. Channel 1 (0.65µm) 

GOES Channel 1 is centered at 0.65µm and detects the 

amount of visible solar energy reflected by the earth’s 

surface and clouds back into space.  This wavelength falls 

within a window region in atmospheric transmittance, where 

solar radiation peaks and the earth’s atmosphere is 

virtually transparent to incident visible energy (Figure 

4).  This leads to a direct correlation between incident 

and reflected visible energy (Kidder 1995).  The amount of 

energy reflected by a cloud is a function of sun-satellite 

geometry and cloud optical depth.  Once corrected for 

satellite viewing angle and solar incident angle, cloud 

reflectance can be measured directly as the percentage of 

energy incident energy reflected toward the satellite 

(Allen 1987). 

 

Figure 4.   Spectral irradiance (dW/dλ).  The sun’s 
radiative temperature is 6000°K. (from Encyclopaedia 
Britannica 2005) 
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The sole remaining determinant of reflectance is cloud 

optical depth, which is a function of particle size and 

cloud thickness.  Cloud particles, with an average radius 

of approximately 10µm, act as geometric scatterers when 

visible radiation impinges on them.  This suggests that a 

cloud must only be a few dozen meters thick to scatter all 

incident visible radiation (Kidder 1995).  A generally 

accepted study of cloud radiative properties calculated 

that a 2-km thick stratus cloud scattered approximately 80 

percent of incident visible energy out of the top of the 

cloud toward space and only absorbed about 0.3 percent, 

which is in effect negligible (Welch 1980).  Therefore, 

clouds with a thickness greater than about 2-km will have 

relatively large reflectance values when compared thin 

clouds or land and ocean surfaces, regardless of the 

thermodynamic phase of the cloud particles.   

Often a thick cloud may contain few water droplets and 

ice crystals, while a thin cloud may lack of coverage but 

have a high water or ice content.  In both cases, the cloud 

is optically thick and reflects most of the incident energy 

at this wavelength.  Only snow-covered land surfaces and 

deserts have similar reflectance values as clouds.  Snow 

cover has similar characteristics as atmospheric ice 

crystals in the visible channel and must be distinguished 

by using the near-infrared (NIR) wavelength.  Deserts are 

distinguished by thresholds for brightness temperature.  

The GOES-based icing detection algorithm uses Channel 1 

reflectance values greater than 25 percent to delineate 

regions where clouds with high water content, i.e. clouds 

containing SLD drops or ice crystals may exist (NCAR 1994). 
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2. Channel 2 (3.9µm) 

GOES Channel 2 is perhaps the most complex window 

region used in satellite remote sensing.  Centered at a 

wavelength of 3.9µm, this channel lies within the crossover 

region between incoming solar and outgoing terrestrial 

radiation (Figure 5).  Therefore, the radiance values 

sensed by the satellite at this wavelength will have nearly 

equal contributions from the incident solar energy and 

average emitted terrestrial energy.  In order to determine 

the magnitude of one energy source, the other source must 

be filtered or removed from the scene.  In this case, a 

cloud’s reflectance at 3.9µm can only be determined by 

removing the cloud’s emittance.  The removal of emittance 

is complicated by radiative variability caused by 

atmospheric transmittance, emissivity, optical depth, cloud 

effective radius, and blackbody emission temperature.  

Typically, assumptions are made to remove variability 

caused by the first three factors, such that atmospheric 

transmittance is 1.0, cloud emissivity is 1.0, and clouds 

are optically thick (Allen 1987).  Cloud effective radius 

can be idealized as well, leaving all radiance variability 

to be a result of blackbody emission temperature.  

Accounting for this blackbody temperature is critical in 

retrieving information about cloud thermodynamic phase 

using 3.9µm reflectance. 

Allen et al. (1987) developed a method to determine 

the reflected radiance of clouds at 3.9µm by estimating and 

removing of the emitted EM energy.  First, the Planck 

blackbody emission temperature of a given pixel is assumed 

to be equal to that measured by GOES Channel 4.  Using this 

temperature, an idealized Planck function curve is used to 
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determine the expected emittance of the pixel at 3.9µm.  

This value is then subtracted from retrieved GOES Channel 3 

radiance, with incident solar radiation and sun-satellite 

geometry taken into account, to determine the reflectance 

value (Allen 1987).  Based on the real index of refraction 

of water (Figure 6), clouds made up of water droplets 

reflect more energy at this wavelength than ice clouds.  

This is enhanced by the fact that water clouds tend to be 

made up of smaller particles than ice clouds, and smaller 

particles scatter more solar energy because their radii are 

close to solar wavelengths (CIRA-CSU 2005).  The GOES icing 

algorithm uses Channel 3 reflectance values greater than 6 

percent to delineate water clouds (NCAR 1994). 

 

Figure 5.   Terrestrial Planck curve with crossover 
region of solar Planck curve. (CIRA-CSU 2005) 
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Figure 6.   Real index of refraction for ice and water 
particles.  (From Hobbs and Deepak 1981)  
 

3. Channel 4 (11µm) 

GOES Channel 4, centered at 10.7µm, provides the 

typical infrared imagery used for the depiction of clouds 

at night.  The earth’s blackbody emission peaks near this 

wavelength as it radiates EM energy out to space (Figure 

7).  This peak coincides with a relative minimum in 

atmospheric interference because atmospheric transmittance 

at this wavelength is greater than 0.8 (Kidder 1995).   

Utilizing Mie scattering theory, the imaginary index of 

refraction (Figure 8) of both ice and water is large in 

this spectral region, signifying that ice and water clouds 

are strong absorbers, and thus strong emitters at 10.7µm 

(Hobbs 1981).  Due to these optical characteristics, the 

radiance detected at this wavelength indicates the true 
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radiance emitted by ice and water clouds, which can then be 

converted to cloud temperature via Schwarzchild’s equation. 

Energy detected from a cloud at 10.7µm will only be 

emitted by the top few meters of a cloud, given that the 

cloud is not optically thin (Kidder 1995). Therefore, 

passive satellite measurements can only measure the 

temperature of cloud tops.  Thompson et al. (1997) showed 

that while this is not ideal, cloud top temperature is a 

valuable tool in determining whether temperatures within a 

cloud region are favorable for icing (Thompson 1997).  This 

allows the GOES algorithm to use Channel 4 brightness 

temperature to determine whether cloud tops detected within 

a scene have temperatures within the 0°C to –25°C threshold 

determined to be most favorable for the existence of SLD 

drops, and therefore potential aircraft icing (NCAR 1994). 

 

Figure 7.   Thermal radiation Planck function at 300°K 
and 301°K, given in units of W/m2. 
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Figure 8.   Imaginary index of refraction for water and 
ice, which determines emittance of EM energy.  (from 
Hobbs and Deepak 1981)  
 

4. Channel 2 – Channel 4 Difference (3.9-11µm)  

The final piece of the GOES-based icing potential 

detection algorithm is the difference between the Channel 2 

and Channel 4 brightness temperatures (referred to as 2-

4BTD).  As discussed previously, an object considered to be 

a blackbody has an idealized Planck curve based on its 

temperature.  This curve was used to determine Channel 2 

reflectance; however, this reflectance value is only 

available during daylight hours.  The 2-4BTD may be used to 

assist in determining the thermodynamic phase of clouds, 

regardless of the presence of reflected solar radiation. 

At night, differences sensed between water clouds and 

ice clouds are solely based on emission. As NCAR (2005) 

explains water drops emit less energy at 3.9µm than at 11µm 
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while emissions at the two wavelengths are nearly the same 

for ice particles. The 2-4BTD produces negative values for 

water clouds and near-zero values for ice clouds (NCAR 

2005).  Therefore, the GOES icing algorithm uses 2-4BTD 

values less than -2°C to denote water clouds (NCAR 1994).  

In daytime imagery, both reflected and emitted energy 

contributes to the 3.9µm brightness temperature.  As 

mentioned above in Section 2, water clouds are much more 

reflective at this wavelength than ice clouds.  The amount 

of energy emitted by clouds at 3.9µm is roughly 20 percent 

of the amount available to be reflected (Figure 4).  The 

increased spectral radiance causes the sensed brightness 

temperature of water clouds to appear much warmer at 3.9um 

than at 11um due to the reflected solar energy.  As 

discussed in Section 2, ice crystals reflect much less 

energy at 3.9µm than water clouds (Hobbs 1981).  The 

nighttime 2-4BTD has already shown that the emittance 

difference between 3.9µm and 11µm for ice crystals is 

nearly zero (NCAR 2005).  The daytime 2-4BTD product will 

thus have near zero values for ice crystals and large 

positive values for water clouds.  Therefore, the GOES 

algorithm uses a 2-4BTD greater than 10°C during daylight 

hours to delineate water clouds (NCAR 1994). 

C. APPLICABLE MODIS CHANNELS 

The first MODIS was launched in 1999 as one of five 

instruments aboard NASA’s Terra satellite.  The satellite 

has a sun-synchronous, polar orbit with a descending-pass 

equator crossing of 10:30 local.  Though its time 

resolution only allows it to see the same general area once 

per day, MODIS afford the opportunity to view the bulk of 

the earth’s surface on a daily basis at up to 16 times the 
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spatial resolution of GOES.  MODIS also has the added value 

of 36 channels from 0.4µm to 14.4µm, listed in Table 2, 

fine-tuned to view a vast array of land, ocean, and 

atmospheric phenomena (NASA 1999a).  Distinctive cloud 

properties can be detected using each of the 36 MODIS 

channels either individually or using various multispectral 

techniques.  This opens up a wide range of research 

opportunities that are currently unavailable using the GOES 

platform. 

     Any effort to improve the GOES-based icing potential 

detection algorithm must be built on the foundation of the 

original algorithm.  Therefore, the MODIS channels 

corresponding to the GOES channels described in section B 

will be used exactly as above, except where described in 

Section III.  The GOES-equivalent channels available on 

MODIS are listed in Table 3.  Beyond these channels, MODIS 

channels 6, 7, 26, 29, and 32 have been shown in prior 

research to have applications in the detection of potential 

icing conditions. 
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Table 2.   Characteristics of the 36 channels available 
on the MODIS platform. (after MODIS Web 2004). 

Primary Use Band Bandwidth1 Spectral Radiance2 Required SNR3 

1 0.62 – 0.67 21.8 128 Land/Cloud/Aerosols 
Boundaries 2 0.841 - 0.876 24.7 201 

3 0.459 - 0.479 35.3 243 

4 0.545 - 0.565 29.0 228 

5 1.23 – 1.25 5.4 74 

6 1.628 – 1.652 7.3 275 

Land/Cloud/Aerosols 
Properties 

7 2.105 – 2.155 1.0 110 

8 0.405 - 0.420 44.9 880 

9 0.438 - 0.448 41.9 838 

10 0.483 - 0.493 32.1 802 

11 0.526 - 0.536 27.9 754 

12 0.546 - 0.556 21.0 750 

13 0.662 - 0.672 9.5 910 

14 0.673 - 0.683 8.7 1087 

15 0.743 - 0.753 10.2 586 

Ocean Color/ 
Phytoplankton/ 
Biogeochemistry 

16 0.862 - 0.877 6.2 516 

17 0.89 - 0.92 10.0 167 

18 0.931 - 0.941 3.6 57 
Atmospheric 
Water Vapor 

19 0.915 - 0.965 15.0 250 

20 3.66 - 3.84 0.45(300K) 0.05 

21 3.929 - 3.989 2.38(335K) 2.00 

22 3.929 - 3.989 0.67(300K) 0.07 

Surface/Cloud 
Temperature 

23 4.02 - 4.08 0.79(300K) 0.07 

24 4.433 - 4.498 0.17(250K) 0.25 Atmospheric 
Temperature 25 4.482 - 4.549 0.59(275K) 0.25 

26 1.36 - 1.39 6.00 150(SNR) 

27 6.535 - 6.895 1.16(240K) 0.25 
Cirrus Clouds 
Water Vapor 

28 7.175 - 7.475 2.18(250K) 0.25 

Cloud Properties 29 8.4 - 8.7 9.58(300K) 0.05 

Ozone 30 9.58 - 9.88 3.69(250K) 0.25 

31 10.78 - 11.28 9.55(300K) 0.05 Surface/Cloud 
Temperature 32 11.77 - 12.27 8.94(300K) 0.05 

33 13.185 - 13.485 4.52(260K) 0.25 

34 13.485 - 13.785 3.76(250K) 0.25 

35 13.785 - 14.085 3.11(240K) 0.25 

Cloud Top 
Altitude 

36 14.085 - 14.385 2.08(220K) 0.35 
1 Bands are in µm 
2 Spectral Radiance values are (W/m2 -µm-sr) 
3 SNR = Signal-to-noise ratio 
4 NE(delta)T = Noise-equivalent temperature difference 

Note: Performance goal is 30-40% better than required 
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Table 3.   GOES channels used in the current icing 
detection algorithm and the equivalent channels 
available on the MODIS platform. 

GOES Channel Wavelength (µm) MODIS Channel 

1 0.65 1 

2 3.9 22 

4 10.7 31 

 

1. Reflectance Tests  

Cloud particles interact readily with solar 

wavelengths due to their small size.  This makes the 

wavelengths between 0.4µm and 4.0µm very useful in 

identifying cloud cover over the earth’s surface.  In 

general, clouds reflect or scatter most of the solar energy 

that impinge upon their surfaces regardless of phase.  

However, there are scattering property differences between 

ice and water at several wavelengths in the solar spectrum 

that allow for phase discrimination of cloud tops.  The 

GOES algorithm makes use of just two wavelengths within 

this window, 0.65µm and 3.9µm, of which only 3.9µm provides 

information about cloud phase.  MODIS provides both of 

these channels within the solar spectrum, as well as 21 

additional channels between 0.4µm and 4.0µm.  Of these, 3 

channels show great promise in assisting in the problem of 

icing potential detection: Channels 6 (1.6µm), 7 (2.1µm), 

and 26 (1.38µm). 

a. Channel 6 (1.6µm) 

Though limited to daytime, 1.6µm exhibits 

radiative properties that are extremely valuable in 

distinguishing cloud thermodynamic phase.  The real index 

of refraction near 1.6µm, which drives scattering 
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properties, is fairly similar for ice and water.  However, 

Figure 9 shows that the imaginary index of refraction for 

ice is nearly an order of magnitude larger than that of 

water.  This causes the ice to absorb 40 percent more 

incident energy than water at this wavelength.  Therefore, 

water clouds will usually be more reflective than ice 

clouds (Baum et al 2000). 

Particle size also factors into reflectance by 

ice and water clouds.  Baum et al. (2000) found that 

single-scatter albedo for water was larger than that of ice 

for a given effective particle size.  However, as water 

droplet radius grew, reflectance values decreased anywhere 

from 5 percent for optically thin clouds to 60 percent for 

optically thick clouds.  Similar reflectance decreases were 

measured for increasing ice particle effective size.  This 

sharp decrease with increasing particle or droplet size 

makes it possible for a large water drop to have 

reflectance values equal to that of smaller ice particles. 

 

Figure 9.   Imaginary index of refraction for ice and 
water between 0.5µm and 2.5µm (Baum et al. 2000). 
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Earlier research indicates that it may be 

possible to eliminate some of the reflectance crossover 

between large water droplets and small ice crystals.  

Heymsfield and Platt (1984) found a nearly direct 

correlation between temperature, ice water content (IWC) 

and maximum ice particle size, summarized in Table 4 and 

Figure 10.  As temperature increases, both IWC and the 

maximum dimensions of the ice particle increase.  This is 

probably due to the existence of larger SLD, which makes it 

possible for ice crystals to grow faster and larger than at 

lower temperatures.  Therefore, the largest ice particles 

will tend to reside in air temperatures necessary for high 

icing potential.  Any cloud region where small ice 

particles are present will tend to be much colder than the 

-25°C threshold required for icing potential.  An 

appropriate test to screen out low cloud-top temperature 

would significantly decrease the probability of 

misidentifying icing potential for such clouds.  This test 

makes it possible to lower the reflectance threshold for 

detecting water clouds to as low as 0.2 since clouds 

containing the smallest ice particle size will have already 

been screened out (Baum et al 2000).  The 0.5 reflectance 

value will be applied here as an initial threshold. 
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Table 4.   Ice water content and maximum particle 
dimensions for given temperature ranges (after 
Heymsfield and Platt 1984). 

Temperature Range Maximum Particle 

Dimensions 

Range of IWC 

(°C) (mm) (g m-3) 

-20  -25 2.6 0.001-0.063

-25  -30 1.8 0.001-0.066

-30  -35 2.4 0.008-0.043

-35  -40 2.0 0.009-0.025

-40  -45 1.8 0.0004-0.008

-45  -50 1.2 0.0002-0.008

-50  -55 1.6 0.0002-0.004

-55  -60 1.0 0.0002-0.0018

 
Figure 10.   Mean ice water content for clouds found at 

temperatures between -20°C and -60°C (Liou 1992). 
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b. Channel 7 (2.1µm) 

The bulk scattering properties of ice and water 

at 2.1µm are similar to those discussed for Channel 6.  As 

is the case for 1.6µm, the real index of refraction is 

nearly identical for ice and water.  The imaginary index of 

refraction for ice is larger than that of water, making ice 

less reflective at this wavelength, as well.  However, 

2.1µm has many subtle differences from 1.6µm that are worth 

noting.   

The imaginary index of refraction is larger at 

2.1µm than at 1.6µm, causing increased absorption that 

reduces the reflectance of both ice and water clouds at 

2.1µm.  The increase in the imaginary refractive index of 

water is much greater than that of ice.  Therefore, the 

difference between the imaginary refractive indices is only 

half that of the difference at 1.6µm, reducing the ability 

of 2.1µm to distinguish between ice and water (Liou 1992).  

Nonetheless, Baum et al. (2000) found that a reflectance 

threshold of 0.4 can be used to distinguish water clouds 

from ice clouds at 2.1µm. 

Increases in effective particle size also cause 

2.1µm reflectance to decrease for both ice and water, as 

was the case for 1.6µm reflectance.  Furthermore, the same 

research discussed for Channel 6 with regards to particle 

size, IWC, and temperature can be applied to 2.1µm.  

Smaller ice particles are generally found at temperatures 

much lower (higher altitudes) than those where icing 

potential is high (Heymsfield and Platt 1984).  Cloud-top 

temperature tests will greatly screen out higher clouds 

characterized by high 2.1µm reflectance.  The screened-out 

pixels probably contain either large water droplets or 



25 

small ice particles.  By eliminating the high reflectance 

values caused by just the smallest ice particle effective 

size from Baum et al. (2000), the threshold for determining 

water clouds can be lowered to 0.25 with a negligible 

possibility of mistaking ice crystals for water droplets.  

However, the given threshold of 0.4 will be used here. 

c. Channel 26 (1.38µm)  

Unlike the other NIR wavelengths presented here, 

water and ice clouds have nearly identical radiative 

properties at 1.38µm.  Both water and ice are highly 

reflective at this wavelength due to absorption (Bunting 

1984).  What makes this wavelength useful to this problem 

is that it is strongly absorbed by the presence of water 

vapor in the atmosphere.  Many studies have shown the 

usefulness of the 1.38µm band in detecting cirrus clouds, 

and therefore regions where no icing would be expected. 

More than 90 percent of the atmosphere’s water 

vapor is found in the troposphere below 7 kilometers (km).  

Cirrus clouds generally reside above 400 millibars (mb), 

which equates to roughly 7 km.  The use of this level as a 

threshold for icing potential of clouds was validated by 

Curry and Liu (1992).  Their statistical analyses of 

January 1979 North Atlantic temperature fields obtained 

from the European Centre for Medium-Range Weather Forecasts 

(ECMWF), shown in Table 5, indicated that the warmest 

temperature found at 7 km is about -25°C, which is the 

lower limit given for aircraft icing potential. 

Water vapor’s strong absorption of EM energy at 

1.38µm allows very little energy reflected by the earth’s 

surface or clouds below 7 km to reach the top of the 

atmosphere.  However, most of the energy reflected by 
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clouds near or above 7 km would be transmitted to a 

satellite sensor, as two-way atmospheric transmittance is 

about 0.6 above 7 km.  An additional benefit of using this 

channel is that the strong absorption energy reflected by 

low-level surfaces creates a uniform background that causes 

thin cirrus to be detected 40 times better than possible 

with IR emission techniques such as the 11-12µm brightness 

temperature difference technique discussed in section 3 

below (Gao and Kaufman 1995).  Gao et al. (2003) later 

determined that 1.38µm reflectance values greater than 0.02 

denote high clouds so long as the atmosphere is not dry  

(i.e. having more than 0.4 cm of column precipitable water 

vapor).  However, Gao’s threshold was developed to include 

all possible pixels containing cirrus clouds, whereas the 

goal here is to exclude cirrus clouds.  Pavolonis and 

Heidinger (2004) used a threshold of 0.08 to determine when 

to use multilayered cloud tests to eliminate regions where 

thick cirrus obscured the scene.  Based on previous 

discussions on the low likelihood that clouds above 7 km 

have temperatures above -25°C, a lower limit of 0.08 is 

used here to detect regions where icing potential is 

negligible. 
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Table 5.   January 1979 temperature statistics obtained 
from ECMWF analyses (from Curry and Liu 1992). 

Pressure 

Level 

Average 

Height 

Mean 

Temperature

Maximum 

Temperature

Minimum 

Temperature 

Standard 

Deviation

(mb) (m) (°C) (°C) (°C) (°C) 

1000 115 3.3 18.4 -10.7 4.47 

850 1419 -2.9 11.8 -21.6 5.65 

700 2937 -10.1 4.4 -32.2 6.38 

500 5457 -24.0 -12.5 -46.3 6.38 

400 7038 -37.2 -24.9 -55.9 5.50 

300 8974 -49.8 -39.2 -61.4 3.63 

200 11557 -58.9 -43.0 -70.1 5.06 

 

2. Reflectance Ratio Tests 

While much can be gleaned from using reflectance 

values at 1.6µm and 2.1µm, these two wavelengths can 

provide even more significant information when compared to 

the reflectance at 0.65µm for a given scene.  Reflectance 

values for both Channel 6 and Channel 7 will tend to be 

less than visible reflectance for all clouds, but will be 

larger for water clouds than ice clouds.  When taking a 

ratio of either channel versus Channel 1 reflectance, large 

values will tend to be water clouds, while lower values 

will be ice clouds or background features.  The only 

exception to this is vegetated surfaces, which are more 

reflective in Channels 6 and 7 than in Channel 1, causing 

the ratios described to be greater than zero.  Therefore, 

large values of this ratio on a scale between 0 and 1 will 

indicate clouds with high icing potential.  These ratios 
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have been used by King et al. (2002) in their final 

thermodynamic phase determination on the MODIS platform. 

3. Infrared Difference Tests 

The tests recommended to this point have focused on 

wavelengths located in the solar portion of the EM 

spectrum.  This limits retrievals to imagery gathered 

during daytime.  IR tests can extend the usefulness of the 

icing potential detection algorithm to nighttime, providing 

24-hour data availability while roughly doubling the number 

of useful passes made by a polar orbiting satellite over a 

given location. Both GOES and MODIS algorithms need 3.9µm 

and 11µm.  However, there is a high possibility of 

ambiguity in 3.9µm values because the wavelength is located 

in the crossover region of the solar and terrestrial 

blackbody emission curves.  Furthermore, the radiance 

values in this channel are quite low when compared to 11µm, 

so small errors can have a large impact on 3.9µm retrieved 

properties.   

Strabala et al (1994) showed that the atmospheric 

window region between 8µm and 13µm located near the peak of 

the terrestrial radiation curve maintains useful 

differences in the absorption/emission properties of ice 

and water particles (Figure 6).  The imaginary index of 

refraction for both ice and water are relatively low 

between 8µm and 10µm, then increases sharply toward 12µm 

(Figure 8).  The absorption coefficient for ice and water 

closely follows the shape of the imaginary index of 

refraction.  However, ice absorption between 10µm and 12µm 

increases by more than two times that of water, such that 

various BTD calculations taken within this window region 

yield divergent values for ice crystals and water droplets.  
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Applicable BTD measurements include 8µm minus 11µm (8-

11BTD), 11µm minus 12µm (11-12BTD), and the difference 

between the 8-11BTD and 11-12BTD tests (trispectral BTD). 

a. Channel 29 – Channel 31 (8.5-11µm) 

Strabala et al. (1994) showed that as wavelength 

increases from 8.5µm to 11µm, the imaginary index of 

refraction for both ice and water increases.  The 

absorption coefficient, seen in Figure 11, is directly 

proportional to the imaginary index of refraction and 

therefore also increases between 8.5µm and 11µm for ice and 

water.  Absorption by ice particles increases more than 

water droplets of the same size when the particle size is 

less than 30µm, which is true for most water droplets in 

cloud tops since droplets larger than 30µm tend to reside 

below cloud top (Liou 1992).  Clouds are assumed to have 

the properties of a blackbody at these wavelengths, and 

thus ice clouds will emit better than water clouds based on 

the absorption efficiency.  The combination of these 

effects results in a positive 8.5-11BTD for relatively 

opaque (optical thickness > 1) ice clouds, while opaque 

water clouds will have negative 8.5-11BTD values (Strabala 

et al 1994).  Because water clouds generally reside lower 

in the atmosphere, the tendency for increased water vapor 

absorption above water clouds will further separate ice and 

water clouds by causing lower water clouds to have more 

negative values (Platnick 2003). 
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Figure 11.   Absorption coefficient, 8-13µm (from 
Ackerman 1990). 

 

b. Channel 31 – Channel 32 (11-12µm) 

This test can be somewhat difficult to use 

because the 11-12BTD tends to be positive for all land and 

ocean backgrounds as well as all cloud types (Ackerman 

1990).  Yet subtle differences in the imaginary index of 

refraction for ice and water are present and can help 

distinguish ice and water clouds.  The imaginary index of 

refraction – and thus the absorption coefficient for both 

ice and water particles is increasing from 11µm to 12µm 

(Figure 10).  This means that clouds will be more 

absorptive, i.e. emit at a colder temperature at 12µm, 

causing the generally positive 11-12BTD.  However, Inoue 
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(1987) showed that while thick cirrus clouds have an 11-

12BTD similar to water clouds, thin cirrus clouds have BTD 

values greater than about 1°K.  Building on Inoue’s 

research, Wieman (1990) found that while cloud-free and 

multi-layered cloud scenes have an 11-12BTD less than 

0.8°K, cirrus clouds have an 11-12BTD greater than 0.81°K, 

with thin cirrus being greater than 1.51°K.  Therefore, 

this test may be helpful in identifying some ambiguous thin 

cirrus.  

 
Figure 12.   Imaginary index of refraction for water and 

ice in the 8-13µm window region (from Baum et al 
2000). 

 

c. Trispectral – Channels 29-31 vs. 31-32 (8.5-
11µm vs. 11-12µm) 

Strabala et al. (1994) demonstrated that it can 

be very beneficial to combine 8.5-11BTD and 11-12BTD data 

using either a scatter plot test or a difference between 

the 8.5-11BTD and 11-12BTD (trispectral BTD).  Water 
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droplet absorption increases more between 11 and 12µm than 

between 8.5 and 11µm, such that the 11-12BTD for water 

clouds are larger than the 8.5-11BTD.  The opposite is true 

for ice particle absorption.  Because water clouds tend to 

have a negative 8.5-11BTD and a larger, positive 11-12BTD, 

the trispectral BTD for water clouds will tend to be 

negative.  In a scatter diagram comparing 8.5-11BTD to 11-

12BTD, pixels containing water clouds will cluster together 

along a line with slope less than 1.  Ice clouds, on the 

other hand, will generally have a positive trispectral BTD, 

and will cluster along a line with slope greater than 1 in 

the 8.5-11BTD vs. 11-12BTD scatter diagram.  Mixed-phase 

clouds or pixels containing both ice and water clouds will 

cluster near the unity line between water and ice clouds.  

For the purpose of the icing potential detection algorithm, 

the difference between 8.5-11BTD and 11-12BTD is 

calculated.  The thresholds used to discriminate between 

water and ice clouds are the same as the 8.5-11BTD 

thresholds.  Large negative values (below -2°C) are 

generally water clouds, while large positive values (above 

3°C) denote ice clouds. 
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III.  PROCEDURES 

MODIS imagery was gathered for November 11, 24, 28, 

and 30, 2003, over the northeastern U.S. and southeastern 

Canada (40-50°N, 65-85°W).  These coincide with the dates 

and operating area of the 2003 Atlantic THORpex Regional 

Campaign / Alliance Icing Research Study II (ATReC/AIRS-II) 

conducted by NASA’s Langley Flight Ops Center in Bangor, 

Maine.  ATReC/AIRS-II personnel focused their research on 

mid-latitude cyclones passing through the region on these 

dates in which icing conditions were forecasted as likely 

(ATReC 2005). GOES imagery was not used to eliminate error 

induced by spatial and spectral resolution differences 

(Ellrod and Bachmaier 2003, Chavez et al. 2002), allowing a 

direct comparison of algorithm performance rather than the 

satellite platforms. 

A. INVESTIGATION 

Initial imagery analysis was conducted to exhibit a 

confidence in using the thresholds suggested in Section II.  

Image processing was performed using Terascan at the Naval 

Postgraduate School (NPS) Interactive Digital Environmental 

Analysis (IDEA) Laboratory.  5 sub-regions were selected in 

the November 24 image based on the satellite interpretation 

of images: 

1. Ice clouds located within a thick cirrus shield. 
2. Low-level water clouds with above-freezing 

temperatures to ensure the absence of ice crystals. 

3. Mixed clouds where differentiation of cloud 
composition and phase was difficult using 
conventional satellite analysis techniques. 

4. Cloud-free land background. 
5. Cloud-free ocean background. 
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Channel data for the pixels within each sub-region were 

ingested into Microsoft Excel and analyzed for cloud phase 

discrimination trends similar to those discussed in Section 

II.  Regions 1, 2, and 3 were used to settle on channel 

radiance tendencies that indicate the transition from ice 

clouds to water clouds, while regions 4 and 5 provided each 

channel’s threshold to separate clouds from background 

surfaces. 

 The test thresholds suggested by previous research are 

listed in column 3 of Table 6.  Each of the 12 tests were 

placed into one of 4 groups:  reflectance tests (Group I), 

reflectance ratio tests (Group II); brightness temperature 

test (Group III), and brightness temperature difference 

tests (Group IV).  For all tests, the differentiation of 

ice, water, and mixed cloud regions from one another and 

from land and ocean backgrounds matched very closely with 

the previously discussed thresholds, though minor changes 

were implemented and are listed in column 4 of Table 6. 
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Table 6.   MODIS icing tests, with test group and 
thresholds. 

Test 
Group 

Test (no units 
unless noted) 

Old Icing 
Thresholds 

New Icing 
Thresholds 

I 
0.65µm Reflectance 

(P01) 
> 0.25 

Min < 0.10 
Max > 0.25 

I 
1.63µm Reflectance 

(P06) 
> 0.5 

Same 

I 
2.1µm Reflectance 

(P07) 
> 0.4 

Same 

I 
3.9µm Reflectance 

(P22) 
> 0.06 

Same 

I 
Cirrus Reflectance 

(P26) 
< 0.08 

Same 

II 1.63µm Ratio (P61) > 0.75 
Min < 0.2 
Max > 0.9 

II 2.1µm Ratio (P71) > 0.65 
Min < 0.15 
Max < 0.65 

III 
Temperature (°C) 

(P31) 
<-25 & < 0 

Min > 0 & <-40 
Max @ -10 

IV 
3.9-11µm BTD (°C) 

(BTD1) 
> 10 (Day) 

same 

IV 
8-11µm BTD (°C) 

(BTD2) 
< 0 

Min > 3 
Max < -2 

IV 
11-12µm BTD (°C) 

(BTD3) 
< -0.5 & > 4.5

same 

IV 
Trispectral BTD (°C)

(BTD4) 
< 0 

Same as 8-11 
BTD 

  Eleven of the tests are straightforward linear 

scales, as shown by the example using visible reflectance 

in Figure 13.  However, the cloud top temperature test 

based on Channel 31 BT is somewhat more involved based on 

research by Sand et al. (1984).  Their research found that 

the chance of icing conditions peaks near -10°C, drops 

significantly through -25°C to about 5 percent, and tails 

off to 0 percent by -40°C, rather than decreasing linearly 

from 0°C to -40°C.  The Channel 31 BT test is designed to 

incorporate their results, and is illustrated in Figure 14. 



36 

 

Figure 13.   Icing Probability vs. visible reflectance 
for MODIS Channel 1. 

 

Figure 14.   Icing probability test for MODIS Channel 31 
brightness temperature. 

Visible Reflectance (%)
0 100 25

0 

100 

Icing P
robability (%

)

Ch 31 BT (°C)

-40 0 -25 0 

100 Ic
i
n
g
 
P
r
o
b
a
b
i
l
i
t
y
 
(
%
)
 

-10



37 

Using these thresholds as a baseline value and the 

region analysis as guidance, a range of values for each 

channel was selected to allow for a linear scaling test 

based on fuzzy set theory to determine the likelihood of 

icing conditions for each pixel. This method allows the 

algorithm to derive a probability of icing based on the 

combination of several tests, rather than hard, on/off 

thresholds for each pixel that can be dominated by a single 

test or measurement.  Hard thresholds are currently applied 

in the GOES icing potential algorithm such that icing 

conditions are only detected when all of the tests are 

true, i.e. that icing detection criteria for that channel 

are met.  A similar threshold algorithm for MODIS would 

only add to the number of tests that must be true, which 

mathematically could only restrict the number of pixels 

flagged for potential icing conditions.  A fuzzy algorithm 

would still flag the pixels meeting given thresholds as 

having high icing potential, but also allow many of the 

pixels that do not meet the desired thresholds to be given 

a degree of uncertainty based on the distance of test 

values from the required criteria (Lai and Hwang 1992).  

This method also provides the advantage of adding new 

testing techniques as well as removing those found to be 

untrustworthy by future research. 

The fuzzy method of calculating each pixel’s icing 

probability is similar to the calculation of the MODIS 

cloud mask confidence score described in Ackerman et al. 

(1998) and later in Memmen (2000).  Each pixel was given an 

icing probability score based on each of the 12 tests.  The 

maximum test scores from each group were multiplied, and 

the fourth root of the product yielded the overall icing 
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probability.  The use of the maximum test score in each 

group biases the algorithm toward higher icing potential 

scores, imparting a conservative, safety-minded slant to 

the algorithm.  This parallels the MODIS cloud mask, which 

is biased toward a higher likelihood of cloudiness, i.e. 

the mask is more likely to determine a pixel to be cloudy 

than clear (Ackerman et al. 1998).  Furthermore, the 

Channel 31 BT test, being the sole member of Group III, 

will tend to have more weight on the results than the other 

individual tests.  This is useful for the overall test, 

because air temperature is a driving force behind whether 

or not icing conditions exists within a given cloud.  

Decision tree diagrams illustrating the 12 tests can be 

viewed in Appendix I. 

B. VERIFICATION  

Once the MODIS algorithm was created, the raw MODIS 

files for each scene were processed using MATLAB.  Several 

steps of the MODIS processing were performed using a series 

of program files created by Dr. Shaima Nasiri and used in 

research at CIMSS at the University of Wisconsin (Nasiri 

2005).  The GOES algorithm was also converted for use with 

MODIS imagery using MATLAB.  Forty-six pilot reports 

(PIREPs) containing either positive (39) or negative (7) 

icing reports, provided by the Air Force Combat Climatology 

Center (AFCCC), were collected for the 4 selected dates 

within the 40-50°N, 65-85°W test region.  PIREPS were used 

for verification because they are the only current measure 

of actual icing events.  However, as discussed by Brown 

(1996), there are several biases and limitations of PIREPs 

that reduce their statistical usefulness,  such that false 

alarm rate and bias are not considered completely reliable. 
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Three statistical tests recommended by Brown (1996) 

and Brown et al. (1997) to compare the accuracy of icing 

algorithms were used here:  the probability of detection 

(POD), probability of correct null (POD-no) and area 

efficiency (AE).  POD determines the percentage of icing 

encounters correctly detected by the algorithm (correct 

positive icing reports detected per total number of 

positive icing reports), POD-no determines the percentage 

of negative icing reports correctly detected by the 

algorithm (correct negative icing reports detected per 

total number of negative icing reports), and AE determines 

how much area was covered by the algorithm in order to 

achieve its POD score (POD per unit area). For example, if 

an algorithm obtains an extremely high POD by labeling an 

enormous area as having high icing potential, the algorithm 

will have a low AE because the algorithm needed a broad 

coverage to achieve its high POD.  While these tests were 

not ideal to assess the accuracy of each algorithm 

individually, they were appropriate for algorithm 

comparisons, as was the goal here.   

Pixels within 2500 square miles of each PIREP were 

used to compute each algorithm’s POD and POD-no for 

comparison, as illustrated in Figure 15.  The 25-mile 

radius used to obtain the 2500 square mile region was 

selected based on AF regulations, which state that weather 

personnel must notify aircrews of weather hazards occurring 

within 25 miles of the expected flight path (USAF 2004). 

Then the POD was divided by the total area of detected 

icing within the entire 40-50°N, 65-85°W region to 

establish AE.  For each PIREP-centered region, the mean and 

median icing probability scores were calculated for the 
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MODIS algorithm, and the percentage of the region 

determined by the GOES algorithm to contain icing was 

calculated.  For verification purposes, the algorithm was 

said to have high icing probability, and thus detected 

positive icing conditions, if the MODIS mean or median was 

greater than 50 percent, meaning that the MODIS algorithm 

concluded that the region likely contained icing.  Areas 

with MODIS mean and median values below 50 percent were 

said to have detected negative icing conditions.  For the 

GOES algorithm, if the percentage of the PIREP-centered 

area covered by icing was above 50 percent, the region was 

said to have detected positive icing conditions, while 

percentages below 50 percent were considered to be negative 

icing conditions.  The MODIS mean and median, and the GOES 

percentages were compared to positive and negative PIREPS 

to determine POD, POD-no, and AE for all PIREPS on each 

day, those within 3 hours of the MODIS image time, and 

those within 1 hour of MODIS image time. 

 

Figure 15.   Depiction of PIREP-region used for algorithm 
comparison and verification. 
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IV. RESULTS 

Verification results for the MODIS and GOES icing 

potential detection algorithms are compared here.  Data 

from November 24, 2003, is used as a case study to examine 

the merits of each test in the MODIS algorithm.  The 24 

November case will be followed by overall statistics for 

the two algorithms. 

The MODIS visible and IR images from the November 24 

16:25 UTC descending pass over the northeast U.S. and 

southeast Canada are shown in Figure 16(a) and (b), 

respectively.  A cold front is positioned over the Great 

Lakes, moving toward New England with icing conditions 

anticipated in the vicinity of the front based on model 

forecasts at the time (ATReC 2005).  A cirrus shield is 

present along the front, with an area of cumulus clouds 

over Michigan, and a wedge of clearing ahead of the front 

covering much of New England. A mixed cloud region is 

present from Maine into eastern Quebec, with an area of 

stratus over central Pennsylvania and fog off the 

Massachusetts coast.   

This particular case is useful for analysis because 

the scene contains many varying cloud features associated 

with a passing extratropical cyclone:  warm and cold cloud 

tops, liquid and ice clouds, thin and thick cloud decks, 

and cloud-free regions with varying backgrounds.  This 

variability can help to illustrate some of the strengths 

and weaknesses of the tests used by the MODIS algorithm.  

The location of the verification PIREPS are superimposed on 

the IR image in Figure 16(b) for reference. 
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Figure 16.   (a) Visible MODIS image for 16:25Z on 24 
November, 2003.  (b) Matching IR MODIS image with 
verification PIREPS overlaid. 
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A. GROUP I RESULTS 

The Channel 1 reflectance (P01) test detects regions 

where highly reflective clouds are present.  The test gives 

pixels with reflectance greater than 25 percent a score of 

1, and decreases the score linearly for reflectance values 

below 25 percent.  In Figure 17, bright areas are those 

with visible reflectance near or greater than 25 percent.  

It is evident that while high LWC clouds which may contain 

icing conditions have higher scores for P01, this test 

cannot discriminate between optically thick water clouds 

and optically thick cirrus clouds, evident in the multi-

level clouds over the eastern Great Lakes, as well as the 

mid-level clouds and fog in the Atlantic Ocean. 

 

Figure 17.   Icing potential probability test for Channel 
1 reflectance (P01). 

The Channel 6 reflectance (P06) test is one of many 

used to discriminate between SLD clouds and clouds composed 
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of ice crystals.  Water clouds containing droplets of a 

given size will be more reflective than ice crystals of the 

same size.  This causes water clouds to have higher values 

based on the P06 test.  Notice in the P06 output image in 

Figure 18 that the cloud-free land over New England has a 

reflectance nearly identical to the cirrus in the scene.  

This would be problematic when using P06 alone, because non-

cloud pixels could be misidentified as icing.  However, the 

reflectance of the land surface remains weak when compared 

to water cloud regions, which have values at or above 50 

percent.  Also, other tests such as the P01 test 

successfully remove cloud-free pixels from the output.  

 

Figure 18.   Icing probability for Channel 6 reflectance 
(P06) test. 

 

The reflectance test for Channel 7 (P07) has results 

very similar to those of the P06 test.  The threshold for 

water clouds is 40 percent due to increased absorption by 

I
c
i
n
g
 
P
r
o
b
a
b
i
l
i
t
y
 
(
%
)
 



45 

both water and ice clouds than for Channel 6.  Water clouds 

are more reflective than ice clouds, and thus high 

reflectance regions will have a greater probability of 

icing.  The mid-level clouds over Michigan, the low-level 

stratus over central Pennsylvania, and the coastal fog 

along the Atlantic coast all have high icing probabilities 

(Figure 19).  The test also reveals ship tracks in fog off 

the coast of Massachusetts, which show up due to the 

presence of smaller cloud droplets formed on ship exhaust 

particles. 

 

Figure 19.   Icing probability for Channel 7 reflectance 
(P07) test. 

The Channel 22 reflectance (P22) test uses the 

thresholds for the GOES algorithm.  SLD clouds are more 

reflective at 3.9µm than ice clouds, so the P22 test gives 

higher icing probability scores to high reflectance areas 

associated with water, not ice, clouds (Fig. 20). This test 
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does not mask the cloud-free regions from the high icing 

probability regions due to a high surface reflectance 

greater than the 6 percent threshold.  This is most evident 

over the Atlantic Ocean and central New England.  This is 

similar to the P06 test; however, water clouds and cloud-

free surface are both identified as icing.  A higher 

threshold would likely eliminate most cloud-free surface 

pixels, since water clouds are more reflective than the 

surface at this wavelength. 

 
Figure 20.   Channel 22 reflectance (P22) icing 

probability test. 

The Channel 26 reflectance (P26) test is an inverse 

test when compared to the other 4 reflectance tests.  

Channel 26 reflectance will be high for clouds that reside 

higher in the atmosphere, which are most likely to consist 

of ice crystals.  Therefore, low reflectance regions are 

given high values of icing probability, as opposed to the 

high reflectance regions in the other reflectance tests.  
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Like P22, this test does not separate low-level water 

clouds from the land surface, because water vapor 

absorption causes both surface and low-cloud features to 

have low reflectance.  Shown in Figure 21, this test 

effectively reduces the icing probability for cirrus 

clouds. 

 

Figure 21.   Channel 26 reflectance (P26) icing 
probability test. 

When each pixel’s maximum test score from the 5 

reflectance tests is selected, the results of Group I 

indicate that as a whole, the reflectance tests do little to 

discriminate between water and ice clouds.  This is due to 

the lack of an effective cloud screen, as well as the high 

reflectance of ice clouds in the Channel 1 test, as is 

obvious from Figure 22.  It is expected that Group I would 

not need the Channel 1 test when placed in a sequence after 

an effective cloud mask such as the one developed by 

Ackerman et al (1998), since the P01 test is essentially a 
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weak cloud mask.  If cloud-free regions and the Channel 1 

test are eliminated, the Group I results would likely show 

better differentiation between water and ice clouds. 

 

Figure 22.   Group I results, indicating each pixel’s 
maximum icing probability score for the 5 reflectance 
tests. 

 
B. GROUP II RESULTS 

The Channel 6/1 reflectance ratio (P61) test has 

results that are very similar to the P06 test.  However, due 

to the lower reflectance ratio of land, the masking of 

cloud-free regions has improved dramatically over central 

New England.  The icing probability difference between water 

and ice clouds has also increased.  In Figure 23, the 

contrast between the low icing probability scores of the 

cirrus shield over the eastern Great Lakes and the high 

probability scores of the fog in the Atlantic Ocean is quite 

evident. 
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Figure 23.   Channel 6 versus Channel 1 reflectance ratio 
(P61) test for icing probability. 

Like the P61 test, the test of reflectance ratios 

between Channel 7 and Channel 1 reflectance (P71) is very 

effective at water versus ice cloud discrimination.  The 

P71 test also allows more thin cloud or partly cloudy 

regions to be considered in the icing potential 

determination.  While some of the thin fog over northeast 

New England and along Long Island is washed out in the P61 

results, these regions are correctly identified as SLD 

clouds in the P71 results.  As Figure 24 illustrates, this 

inclusion of thin and partly cloudy pixels is successful 

without diminishing the contrast between high and low icing 

probability regions discussed for the P61 test. 
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Figure 24.   Channel 7 versus Channel 1 reflectance ratio 
(P71) test for icing probability. 

The maximum scores from the 2 reflectance ratio tests 

indicate that Group II effectively screens out the majority 

of cloud free regions while allowing a sharper distinction 

between clouds with high and low icing potential.  Figure 25 

demonstrates the results of Group II.  The inclusion of thin 

and partial cloud pixels by the P71 test is replicated in 

the final Group II scores. 
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Figure 25.   Group II results, indicating each pixel’s 
maximum icing probability score for the 2 reflectance 
ratio tests. 

 

C. GROUP III RESULTS 

The lone test in Group III is the Channel 31 

brightness temperature (T31) test.  The importance of 

temperature to the determination of icing potential has 

been noted previously in Section II.  The T31 test limits 

the potential icing region to cloud tops within the range 

of temperatures for which SLD clouds are possible.  Figure 

26 shows that while the water clouds found over Michigan 

fall within the SLD limits, the fog and stratus over 

central Pennsylvania and off the New England coast have 

cloud top temperatures above freezing.  Although in this 

case the land surface temperature over central New England 

is above freezing, high latitude or mountainous regions 

with sub-zero surface temperatures can have anomalous icing 
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potential in other cases.  This indicates that in future 

work the T31 test should be applied after the application 

of cloud mask to remove cloud-free pixels.  Because Group 

III only contains the T31 test, the Group III icing 

probability results are identical to those for T31 (Figure 

26). 

 

Figure 26.   Channel 31 brightness temperature (T31) test 
for icing probability. Figure also represents Group 
III results. 

 

D. GROUP IV RESULTS 

The final group of tests is a series of brightness 

temperature difference tests to discriminate between water 

and ice clouds.  The first such test is the Channel 22 – 

Channel 31 brightness temperature difference (BTD1) test.  

This test is one of the original GOES algorithm tests 

discussed in Section II.  As shown by the P22 test, water 
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clouds reflect more incident solar energy than ice clouds.  

Pixels with BTD greater than 10°C will have high icing 

potential in the BTD1 test.  This test is ineffective at 

eliminating regions of thin cirrus, as evident over Maine 

and eastern Canada in Figure 27.  These are regions where 

reflected energy from possible water clouds below the 

cirrus causes higher icing potential than other tests have 

indicated.  The BTD1 test successfully removes cloud-free 

regions. 

 

Figure 27.   Channel 22 - Channel 31 brightness 
temperature difference (BTD1) test for icing 
probability.  

The Channel 29 – Channel 31 brightness temperature 

difference (BTD2) test displays results that are somewhat 

opposite from those of the BTD1 test.  In this case, 

distinct ice cloud regions have low icing probability, such 

as the cirrus over much of Quebec in Figure 28.  Water 
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clouds are given much higher icing probabilities than the 

cirrus regions; however, the cloud-free regions are 

difficult to discriminate from water clouds.  There is also 

some evidence of higher BTD values in regions of higher 

surface temperature (i.e. to the south).  This effect 

bolsters the need for a cloud mask to remove cloud-free 

areas from the test region.  

 
Figure 28.   Channel 29 - Channel 31 brightness 

temperature difference (BTD2) test for icing 
probability.  

The test for Channel 31 – Channel 32 brightness 

temperature differences (BTD3) was introduced as a thin 

cirrus test, however it is useful for delineating regions 

of water clouds, as well.  Regions with low BTD values, as 

seen over Michigan, central Pennsylvania, and the fog deck 

in the Atlantic Ocean in Figure 29, have a high icing 

probability.  Regions within +/- 1.5°C of a BTD value of 

2°C will have low icing probability, as is evident in the 
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cirrus shield over the Great Lakes and eastern New England.  

Like the BTD2 test, land regions have comparable BTD values 

to water clouds, though the surface temperature change does 

not seem to modify the icing probability results.  Also, 

the ocean surface BTD values for the BTD3 test result in 

low icing probability, which was not the case with the BTD2 

test.  Regions of thin water cloud, as seen along the edges 

of the stratus clouds over central Pennsylvania, have icing 

probabilities that are too low.  This is expected to be 

nullified by the other BTD tests once the final Group IV 

test is run. 

 

Figure 29.   Channel 31 - Channel 32 brightness 
temperature difference (BTD3) test for icing 
probability.  

The final test in Group IV is the trispectral 

brightness temperature difference (BTD4) test, which takes 

the difference between the Channel 29 – 31 BTD and the 
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Channel 31 – 32 BTD.  The BTD4 test is heavily weighted by 

the results of the BTD2 test.  There are slight increases 

in icing potential in regions of thin cirrus, where high 

icing potential clouds below the cirrus clouds are more 

likely to be visible and thus increase the BTD4 icing 

probability score.  This is especially true over Maine as 

shown in Figure 30, where the cloud type varies across the 

state.  As the BTD2 test indicated, land surfaces are 

difficult to discriminate from water clouds, and icing 

probability over cloud-free regions apparently increases 

with surface temperature.  

 

Figure 30.   Trispectral brightness temperature 
difference (BTD4) test for icing probability. 

The Group IV results reveal conclusively that a cloud 

mask will drastically improve the effectiveness and 

efficiency of the tests (not demonstrated here).  The BTD2 

and BTD4 tests severely inhibit the differentiation of 
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water clouds from surface features.  As Figure 31 

demonstrates, the BTD1 test results weaken the 

discrimination of ice and water clouds, though the thickest 

cirrus over the Great Lakes is correctly flagged as having 

low icing probability.  This test’s thresholds were based 

on the GOES algorithm, and should be re-evaluated for use 

with MODIS imagery to account for thin cirrus effects like 

those exhibited over Maine and southeastern Canada.   

 

Figure 31.   Group IV results, indicating each pixel’s 
maximum icing probability score for the 4 reflectance 
ratio tests. 

 

E. FINAL RESULTS 

Despite the weaknesses indicated for several of the 12 

tests used in the MODIS icing potential detection 

algorithm, the final icing probability product calculated 

with the maximum values from each group displays remarkable 
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accuracy.  Regions of thick cirrus clouds, such as those 

stretching from the eastern Great Lakes northward into 

eastern Ontario have low icing probability scores in Figure 

32.  The SLD clouds over Michigan, northern Ohio, eastern 

Maine, and New Brunswick are given high icing 

probabilities, while the low-level water clouds over 

Pennsylvania and off the New England coast have low icing 

probabilities due to the lack of sub-zero cloud top 

temperatures.  Regions of thin cirrus over water clouds and 

mixed cloud scenes are given icing probabilities between 30 

and 70 percent.   

 
Figure 32.   Final MODIS icing probability test results. 

In comparison, the GOES algorithm’s hard thresholds 

place spatial limitations on the regions that are 

considered to have high icing potential.  Figure 33 depicts 

MODIS imagery processed with a GOES-equivalent icing 

potential detection algorithm exhibiting the same 
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thresholds and characteristics as the test used by NCAR.  

Pixels where the GOED algorithm detects icing potential are 

shaded white, while pixels with no icing potential are 

shaded based on false-color IR brightness temperature. 

While the region considered by the GOES test to have high 

icing potential roughly matches the region of high icing 

probability on the MODIS test, the area covered by the GOES 

icing potential flag is one-third the size of MODIS 

algorithm’s high icing potential region for this case. 

  The November 11, 28, and 30, 2003, cases also have 

large coverage differences, allowing the MODIS algorithm to 

assign an icing probability to 2 to 3 times as much area as 

the GOES algorithm.  The final results of the MODIS and 

GOES algorithms for these cases are shown in Figures 34–36. 

 

Figure 33.   GOES icing potential algorithm results for 
November 24, 2003.  Icing areas are shaded white; 
otherwise, Channel 31 brightness temperature is used. 
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Figure 34.   (a) MODIS icing probability test results for 

November 11, 2003. (b) GOES icing potential test 
results (icing areas in white) for November 11, 2003.  
Positive and negative icing PIREPS for November 11th 
are overlaid. 
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Figure 35.   (a) MODIS icing probability test results for 

November 28, 2003. (b) GOES icing potential test 
results (icing areas in white) for November 28, 2003.  
Positive and negative icing PIREPS for November 28th 
are overlaid. 
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Figure 36.   (a) MODIS icing probability test results for 

November 30, 2003. (b) GOES icing potential test 
results (icing areas in white) for November 30, 2003.  
Positive icing PIREPS for November 30th are overlaid. 
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F. STATISTICAL COMPARISON 

Statistical results for the final MODIS and GOES icing 

potential algorithms were gathered for all 4 cases.  The 

MODIS and GOES algorithm outputs were verified using PIREPs 

in the region to determine the probability of detection for 

positive icing PIREPS (POD), the POD for negative icing 

PIREPS (POD-no), and the area efficiency (AE) of both 

algorithms, defined as POD per unit area.  These statistics 

were calculated within 25 miles of each PIREP.  The results 

were grouped into 3 time ranges on each day:  all PIREPS on 

the date of the MODIS image; PIREPS reported within 3 hours 

of the MODIS image valid time, and PIREPS reported within 1 

hour of image valid time.  The use of reports within 3 hours 

and 1 hours of image valid time is straightforward.  The use 

of all PIREPS reported on the day of an image is sometimes 

appropriate given the low time resolution of Terra MODIS 

imagery (Two products per day are possible when the MODIS 

sensor onboard Aqua is included). 

Table 7 shows the results of the GOES algorithm and the 

MODIS algorithm mean and median scores within 25 miles of 

all PIREPS on November 11, 24, 28, and 30, 2003.  The MODIS 

algorithm detects icing potential within 25 miles of 

positive icing PIREPS throughout the day much better than 

the GOES algorithm.  This is likely a result of the limited 

coverage allowed by the hard thresholds used in the GOES 

algorithm as discussed in Section III.  The GOES algorithm 

correctly determines that all negative icing PIREPS are in 

regions of low icing potential, though the MODIS results for 

POD-no are higher than for POD. The MODIS algorithm is twice 

as efficient as the GOES algorithm in its detection of high 

icing probability areas.  This result is the opposite of 

that found by Brown (1996), who indicated that generally 

algorithms with smaller POD values will have higher AE 

values.  This discrepancy is likely due to POD for the GOES 

algorithm being sufficiently small to drive the GOES 
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algorithm’s AE much lower than that of the MODIS algorithm.  

Small differences in POD and AE between the MODIS mean and 

median results indicate that the distribution of algorithm 

values is fairly normal for pixels within 25 miles of each 

PIREP.  The POD-no score displays a wider difference of 

scores; however, this test is not as reliable as POD and AE 

due to the limited number of negative PIREPs available.  The 

mean provides a more favorable score for all 3 tests despite 

the concerns with the sample size for POD-no. 

Table 7.   MODIS mean and median and GOES algorithm 
statistics for all PIREPS on November 11, 24, 28, 
and 30, 2003. 

Test POD (%) POD-no (%) AE (km-2) 

MODIS Mean 46.2 71.4 0.1041 

MODIS Median 41.0 57.1 0.0925 

GOES 7.7 100.0 0.0453 

The statistics for PIREPS reported within 3 hours of 

the MODIS image’s valid time are displayed in Table 8.  The 

POD for both algorithms increase substantially; however, the 

MODIS scores for POD-no dropped to 33.3 percent due to 

correctly identifying only one negative icing PIREP out of 3 

that were reported.  This small number of reported negative 

PIREPS renders the POD-no test statistically insignificant, 

and suggests that broader statistical comparison over a 

larger region and/or more dates be conducted to further 

check these results.  While the number of positive PIREPS 

reported fell slightly below the accepted goal of 30 test 

cases, the POD results suggest a 2-to-1 ratio of correctly 

identified positive icing PIREPS to missed positive icing 

PIREPS.  Again, the MODIS POD was more than twice that of 

the GOES algorithm.  As a result of the increase in the GOES 

POD and the very small area flagged by the GOES algorithm as 

having icing potential, the AE of the GOES algorithm 

slightly surpasses that of the MODIS algorithm.  This agrees 

with Brown’s (1996) assessment of the trade-off between POD 
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and AE mentioned previously.  At this point, MODIS mean and 

median values are equal, indicating an even distribution of 

MODIS icing algorithm scores around the PIREPS. 

Table 8.   MODIS mean and median and GOES test results 
for PIREPS on November 11, 24, 28, and 30, 2003, 
within 3 hours of MODIS image valid times. 

Test POD (%) POD-no (%) AE (km-2) 

MODIS Mean 62.5 33.3 0.1409 

MODIS Median 62.5 33.3 0.1409 

GOES 25.0 100.0 0.1472 

Though only 8 PIREPS were reported within 1 hour of the 

MODIS image valid times on the dates of the 4 cases, general 

trends can be identified from the results, which are 

depicted in Table 9.  The POD for the MODIS mean and median 

values increased to 71.4 percent, while the MODIS algorithm 

incorrectly detected high icing probability for the one 

negative PIREP reported during this period.  The GOES 

algorithm POD nearly doubled to 42.9 percent, causing a 

subsequent doubling of the GOES algorithm’s AE.  The AE for 

the GOES algorithm seems to continue to be higher than 

indicated by the POD due to the very small area covered by 

the icing potential flag. 

Table 9.   MODIS mean and median and GOES algorithm 
statistics for those PIREPS on November 11, 24, 
28, and 30, 2003, reported within 1 hour of the 
MODIS image valid times. 

Test POD (%) POD-no (%) AE (m-2) 

MODIS Mean 71.4 0.0 0.1611 

MODIS Median 71.4 0.0 0.1611 

GOES 7.7 100.0 0.2523 

The overall statistical comparison of the MODIS and 

GOES algorithms indicates that the MODIS algorithm better 

identifies regions of high icing potential as indicated by 

positive icing PIREPS.  This is expected since the use of 
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maximum values in each test group biases the algorithm 

toward finding more icing.  The GOES algorithm’s hard 

thresholds limited the area determined to have high icing 

potential, but this small detection region resulted in a 

much lower POD for GOES than MODIS and a very high POD of 

negative icing PIREPS.  This indicates a bias of the GOES 

algorithm in finding regions of high icing potential, as the 

algorithm is much more likely to flag a pixel as having low 

icing potential.  The POD for both algorithms increases as 

the difference between the PIREP reporting time and the 

image valid time decreases.   

The AE of both algorithms increases as the time between 

the PIREP and image valid times decreases, as would be 

expected due to increasing POD.  However, the substantial 

increase in the GOES algorithm’s AE with decreasing time 

difference is easily attributed to the small area detected 

as having high icing potential.  In theory, for every 50 

percent drop in area covered, the AE would double given the 

same POD.  In this case, the GOES algorithm’s detected icing 

region is 1/3 of the size of the MODIS algorithm’s high 

icing probability region, thus drastically inflating the AE 

for GOES.  This adds emphasis to the restrictive nature of 

the hard thresholds used in the GOES algorithm. 
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V. CONCLUSION 

A. SUMMARY 

The 36 channels available on MODIS provide increased 

opportunity to study and measure terrestrial and 

atmospheric features.  The high spatial and spectral 

resolution of MODIS’ sensors allows for high quality, fine-

scale analyses, though only once or twice per day for a 

given region.  The current version of GOES icing potential 

detection algorithm allows for continual analysis of a 

given region, but with lower spatial resolution using only 

5 wavelengths.  Three of these GOES channels are used by 

NCAR to derive icing potential.  However, 9 channels from 

the MODIS platform can be put to use to detect likely 

icing.  In addition to providing an improved satellite-

based icing potential detection algorithm, this research 

can support efforts ongoing efforts to determine which 

channels are employed on the next generation of GOES 

satellites. 

Four MODIS scenes were investigated to compare a 

MODIS-based version of the 3-channel GOES icing potential 

detection algorithm with a new 9-channel MODIS icing 

probability detection algorithm.  The MODIS algorithm 

contains 12 tests, placed in 4 test groups:  reflectance 

tests, reflectance ratio tests, brightness temperature 

test, and brightness temperature difference tests.  The 

tests were compared to positive and negative icing PIREPS. 

While some of the individual tests appear to have 

inherent weaknesses in discriminating between SLD clouds 

other scenes (i.e. ice clouds, land or ocean backgrounds), 

the final MODIS algorithm outperformed the GOES in 
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detecting positive icing PIREPS.  The GOES algorithm was 

better able to identify regions of negative icing.  This 

was a combined result of its bias towards negative icing 

detection caused by the use of hard thresholds, as well as 

the very small areas flagged by the GOES algorithm as 

having high icing potential.  These small icing potential 

areas also drove the area efficiency of the algorithm much 

higher than its POD suggests.  Both algorithms improve as 

difference between PIREP valid time and imagery valid time 

decreases. 

The MODIS algorithm’s increased responsiveness to 

regions of high icing probability produces a more 

conservative approach, for potentially increased aircrew 

safety when compared to the GOES algorithm’s output.  

However, by limiting high icing potential regions to 

clouds, the MODIS algorithm could easily diminish the 

diagnosed icing regions within spatially broad model output 

fields, allowing for better nowcast support. 

B. RECOMMENDATIONS 

Several of the tests that make up the MODIS algorithm 

fail to discriminate between clouds and cloud-free regions.  

While the end result of the MODIS algorithm shows favorable 

results, these results could be improved dramatically by 

running the imagery through the current MODIS cloud mask 

before the MODIS icing algorithm is processed.  The then 

redundant Channel 1 test could then be removed from the 

MODIS icing probability algorithm.  The thresholds for two 

of the tests transferred from the GOES algorithm caused 

weaker delineations between ice and water clouds for Groups 

I and IV than is possible without these tests.  These 

therefore may require elimination or modification.  Further 

research is needed for the Channel 22 reflectance and 
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Channel 22 – 31 BTD tests to establish more sensible 

thresholds for use with MODIS data. 

 While the results support initial the usefulness of 

MODIS icing detection, a broader statistical study could 

improve confidence in the algorithm output.  Increasing the 

number of cases to acceptable statistical standards could 

help fine tune the MODIS algorithm.  There are also other 

observation methods that would allow for better 

verification, such as using radiosonde observations, 

research aircraft measurements, and additional PIREP data 

such as flight level and temperature.  Filtering the PIREP 

dataset to exclude PIREPS taken above or below cloud layers 

would purge problem validation data points.  

 While satellite-based icing potential detection is 

very accurate over regions of SLD cloud tops, cirrus 

contamination of SLD remains a problem.  Until other remote 

sensing techniques are effectively applied to solve this 

problem, it may be useful to troubleshoot problematic 

pixels from the MODIS icing algorithm.  A study into the 

use of the MODIS algorithm in multivariate techniques such 

as IIDA, especially for regions where observations are 

sparse, would likely produce excellent results based on the 

statistics presented here.  

 Finally, there may be some merit to investigating 

whether the restricted spatial coverage of the GEOS 

algorithm can be improved by replacing the hard thresholds 

with a set of fuzzy tests as demonstrated here.  Based on 

the increased coverage allowed by using fuzzy set theory for 

the MODIS algorithm, it could also improve the GOES 

algorithm’s POD and AE. 
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APPENDIX 

 

Figure 37.   Icing probability test for Channel 1 
reflectance. 

 

Figure 38.   Icing probability test, Chan. 6 reflectance. 
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Figure 39.   Icing probability test for Channel 7 
reflectance. 

 

Figure 40.   Icing probability test for Channel 22 
reflectance. 
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Figure 41.   Icing probability test for Channel 26 
reflectance. 

 

Figure 42.   Icing probability test for Channel 6 vs. 
Channel 1 reflectance ratio. 
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Figure 43.   Icing probability test for Channel 7 vs. 
Channel 1 reflectance ratio. 

 

Figure 44.   Icing probability test for Channel 31 
brightness temperature. 
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Figure 45.   Icing probability test for Channel 22-31 
brightness temperature difference. 

 
Figure 46.   Icing probability test for Channel 29-31 

brightness temperature difference. 
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Figure 47.   Icing probability test for Channel 31-32 

brightness temperature difference. 

 
Figure 48.   Icing probability test for trispectral 

brightness temperature difference. 
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Figure 49.   Final icing probability determination test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Icing = (G1max*G2max*G3max*G4max)
1/4

G1max = largest of Group I icing probability values 
G2max = largest of Group II icing probability values 
G3max = largest of Group III icing probability values 
G4max = largest of Group IV icing probability values 

Input:
 Group I: Reflectance Tests 

Group II: Reflectance Ratio Tests
Group III: Temperature Test 

Group IV: BTD Tests 
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