
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1988-06

Petri net modeling and software safety
analysis: methodology for an embedded
military application.

Lewis, Alan D.

https://hdl.handle.net/10945/23349

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

BY, CAJ 3002

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

PETRI NET MODELING AND AUTOMATED
SOFTWARE SAFETY ANALYSIS: METHODOLOGY
FOR AN EMBEDDED MILITARY APPLICATION

by

Alan D. Lewis

June 1988

Thesis Advisor: Daniel L. Davis

Approved for public release; distribution is unlimited.

T242045

Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification I nclassiiied lb Restrictive Markings

2a Secuntv Classification Authority

2b Declassification Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

4 Performing Organization Report Numberis) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization

Naval Post graduate School

6b Office Symbol

(if applicable) 33

7a Name of Monitoring Organization

Naval Postgraduate School

6c Address (city, state, and ZIP code)

Monterey'. CA 93943-5000
~b Address (city, slate, and ZIP code)

Monterey! CA 93943-5000

8a Name of Funding Sponsoring Organization 8b Office Symbol
(if applicable)

9 Procurement Instrument Identification Number

Sc Address (city, state, and ZIP code) 10 Source of Funding Numbers

Program Element No Project No Task No Work Unit Accession No

li Title (include security classification, PETRI NET MODELING AND SOFTWARE SAFETY ANALYSIS: METHODOL
OGY FOR AN EMBEDDED MILITARY APPLICATION

12 Personal Author(s) Alan D. Lewis

13a Type of Report

Master's Thesis

13b Time Covered
From To

14 Date of Report {year, month, day)

June 1988

15 Page Count

98

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-

sition of the Department of Defense or the U.S. Government.

7 Cosati Codes

Field Group Subgroup

18 Subject Terms (continue on reverse If necessary and identify by block number)

Petri nets, software safety, missile fuze, safety arming device, Petri Net Utilities, P-NUT

19 Abstract i continue on reverse if necessary and identify by block number)

This thesis investigates the feasibility of software safety analysis using Petri net modeling and an automated suite of Petri

Net UTilities (P-NUT) developed at UC Irvine. We briefly introduce software safety concepts, Petri nets, reachability, and
the use of P-NUT. We then develop a methodology to combine these ideas for efficient and effective preliminary safety

analysis of a real-time, embedded software, military system.

20 Distribution Availability of Abstract

H unclassified unlimited D same as report DTIC users

22a Name of Responsible Individual

Daniel L. Davis

21 Abstract Security Classification

Unclassified

22b Telephone \ include Area code)

(408) 646-3390
22c Office Svmbol

52Dv

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

Petri Net Modeling and Software Safety Analysis:
Methodology for an Embedded Military Application

by

Alan D. Lewis
Lieutenant, United States Navy

B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

ABSTRACT

This thesis investigates the feasibility of software

safety analysis using Petri net modeling and an automated

suite of Petri Net UTilities (P-NUT) developed at UC Irvine.

We briefly introduce software safety concepts, Petri nets,

reachability theory, and the use of P-NUT. We then develop a

methodology to combine these ideas for efficient and

effective preliminary safety analysis of a real-time,

embedded software, military system.

111

TABLE OF CONTENTS

INTRODUCTION

II . INTRODUCTION TO SOFTWARE SAFETY 4

A. WHAT IS SOFTWARE SAFETY? 4

B. INTRODUCTION TO SOFTWARE SAFETY ANALYSIS 5

III . PETRI NETS AND REACHABILITY 8

A. INTRODUCTION TO PETRI NETS 8

B

.

PETRI NET THEORY 11

C

.

REACHABILITY 13

IV. PETRI NET UTILITIES (P-NUT) 15

A. INTRODUCTION TO P-NUT 15

B. TRANSLATING THE PETRI NET 16

C. BUILDING AND PRINTING REACHABILITY GRAPHS 19

D. REACHABILITY GRAPH ANALYZER (RGA) 21

V. THE SYSTEM UNDER ANALYSIS 27

A. A SOFTWARE-CONTROLLED REAL-TIME SYSTEM 27

B

.

SYSTEM BACKGROUND 27

C

.

SYSTEM OPERATION 29

IV

IJIA959

VI . MODELING AND ANALYSIS METHODOLOGY 33

A. PROBLEMS IN SOFTWARE SYSTEM MODELING 33

B

.

A BOTTOM-UP APPROACH 34

1

.

ITL Sensor Module 35

2. Analog to Digital Converter (ADC) Model 41

3

.

Solenoid Model 47

4

.

The System Petri Net Model 57

5. P-NUT Aided Safety Analysis of System Model 62

VTI . RESULTS AND CONCLUSIONS 64

A. RESULTS 64

B. CONCLUSIONS 65

C

.

RECOMMENDATIONS 69

APPENDIX A INTENT TO LAUNCH ITL SENSOR PETRI NET MODEL.. 72

APPENDIX B ANALOG TO DIGITAL CONVERTER (ADC) PETRI

NET MODEL 73

APPENDIX C SOLENOID PETRI NET MODEL 74

APPENDIX D SOLENOID PETRI NET TEXT FILE 75

APPENDIX E SOLENOID REACHABILITY GRAPH 77

APPENDIX F SAFETY AND ARMING (SA) SYSTEM 80

APPENDIX G SA SYSTEM PETRI NET TEXT FILE 83

APPENDIX H SUMMARY OF MODELING AND ANALYSIS METHODOLOGY 8 6

LIST OF REFERENCES 88

INITIAL DISTRIBUTION LIST 90

I. INTRODUCTION

Computers are increasingly being used as passive
(monitoring) and active (controlling) components of real-
time systems, e.g., air traffic control, aerospace,
aircraft, industrial plants, and hospital patient
monitoring systems. The problems of safety become
important when these applications include systems where the
consequences of failure are serious and may involve grave
danger to human life and property. [Leveson and Stolzy,
1987]

Unfortunately, little is known about applying safety

considerations to the design and evaluation of computer-

controlled real-time systems. The military relies heavily on

safety-critical, computer-controlled, real-time systems and

has published several standards for test and verification of

software system safety (MIL-STD-SNS, MIL-STD-882B, MIL-STD-

1574A) . MIL-STD-882B (DoD) contains requirements for software

hazard analysis and software safety verification, while MIL-

STD-1574A (USAF) lists the requirements for software safety

analysis and integrated system (hardware, software, and

interfaces) safety. MIL-STD-SNS (USN) covers software safety

analysis for nuclear weapons systems.

Problems with ascertaining and verifying the safety of a

software-controlled system include the difficulty of

providing realistic test conditions and simulating hardware

errors, transient faults, and system interfaces. There is no

existing language which incorporates the myriad system

facets, such as software, hardware, and the resulting

interfaces. This overall system view is critical, as the

greatest source of problems encountered in computer

controlled systems may be the lack of system level methods.

[Leveson, 1986]

There are several proposed techniques for software safety

analysis, including Petri net modeling [Leveson and Stolzy,

1987], Fault Tree Analysis [Vesely et al
. , 1981], and Real-

Time Logic (RTL) [Jahanian and Mock, 1986] . This thesis

follows the Leveson and Stolzy use of Petri Net modeling and

the other techniques will not be discussed further. For a

brief synopsis on the other methods, see Hayward [1987].

The system under investigation is a proposed air-to-air

guided missile safety and arming device, developed at the

Naval Weapons Center in China Lake, California. Although

this particular safety arming device was never actually

constructed, a software prototype was written and tested.

This device is excellent for developing a methodology to

analyze safety-critical computer/software-controlled systems.

The device is nontrivial, contains embedded software, and if

designed incorrectly or tested ineffectively might result in

personal injury or unwanted property destruction.

This thesis refines and continues the work of Duston

Hayward [1987], who initially investigated the practical

feasibility of using Petri nets, and the Leveson and Stolzy

[1987] analysis techniques to meet military standards.

Beginning with the safety and arming device software

assembler code, and verbal descriptions of the components,

Hayward [1987] constructed system and system software

flowcharts and Petri net models of system components. He

then combined the flowcharts into a single system description

by conversion to a Petri net model. Using the safety and

arming device, Hayward demonstrated techniques for manual

construction of partial reachability graphs and application

of Leveson and Stolzy [1987] safety analysis methods.

Following publication of Hayward [1987], the U. S. Naval

Postgraduate School received a set of automated Petri net

analysis and utility tools from the Department of Information

and Computer Science, University of California, Irvine

[Morgan and Razouk, 1985; Razouk, 1987; Morgan, 1987] . These

utilities construct the reachability graph of an entered net

and support automated reachability analysis through use of a

sophisticated reachability graph analyzer. Our work is the

first known application of these automated utilities to the

area of software safety analysis.

We begin with brief introductions to software safety,

Petri nets, reachability theory, and use of the Petri Net

UTilities (P-NUT) . We discuss refinements made to the

Hayward [1987] model and develop a methodology for efficient

and effective preliminary safety analysis of a complex,

safety-critical, software-controlled system.

II. INTRODUCTION TO SOFTWARE SAFETY

A. WHAT IS SOFTWARE SAFETY?

The American College Dictionary defines safety as the

quality of insuring against hurt, injury, danger, or risk.

It follows that software safety may be considered as freedom

from software causing danger or risk. Software, however, is

inherently safe, since alone it can do no physical damage.

Although it is the hardware that the software controls which

actually presents the hazard, we must treat software and

hardware as one entity for analysis purposes. "Software

engineering techniques that do not consider the system as a

whole, including the interactions between the hardware,

software, and human operators, will have limited usefulness

for real-time control software." [Leveson, 1986] The safety

of a software-controlled system is commonly referred to as

software safety.

Safety should not be confused with reliability. Safety

is the probability that a mishap (accident) will not occur

regardless of whether or not the intended function is

performed. Reliability is normally defined, in the

engineering community, as the probability that the system

will accomplish its intended function for a specified time

under specified environmental conditions [Ericson, 1981;

Konakovsky, 1978; Leveson, 1986] . These are quite different

concepts, as demonstrated in the analysis of munitions. One

would expect that when the reliability of a weapon is

improved, the weapon becomes less safe. Improvements that

increase the probability of detonation may very well increase

the likelihood of accidental firing, unless specific

precautions are made in the design to improve the safety as

reliability is improved. [Roland and Moriarity, 1983;

Leveson, 1986]

B . INTRODUCTION TO SOFTWARE SAFETY ANALYSIS

To ensure system safety, it is necessary to show that the

software and hardware will perform as required and verify

that the relationships between software, hardware, and system

behavior are correct.

Many of the system safety techniques that have been
developed to aid in building electromechanical systems with
minimal risk do not seem to apply when computers are
introduced. The major differences appear to stem from the
lack of system-level approaches to building software
controlled systems. [Leveson 1986]

Current system safety techniques do not consider human

design errors in system failures. Human errors are assumed

never to have occurred or to have been removed prior to

delivery and operation. With the growth of embedded software

systems and powerful microprocessors, the complexity of

software and hardware has grown tremendously and resulted in

a nonlinear increase in human error design flaws. Due to

system complexity, it may be impossible to prove correctness

and safety of a realistic control system. [Lauber, 1980]

Based on this situation, Leveson [1986] argued the need

for a new approach to the software safety analysis problem.

The "black box" approach to software is not valid. A total

system concept must be employed to properly account for

software effects on the system.

The initial stage of the analysis is to focus on system

failures that have the most drastic consequences. This is

especially useful in situations where the system under

investigation has relatively few failures leading to mishaps.

The technique is to start with a given set of unacceptable

failures and then by means of a "backward" approach ensure

that the failures are eliminated, or at least minimized.

[Leveson, 1986]

One method for combining software, hardware, human

operators, and system interfaces is by timed and untimed

Petri net modeling [Leveson and Stolzy, 1987] . The Petri net

model successfully treats all aspects of the system as

integral parts of the whole.

This thesis will follow Hayward' s [1987] work, which

employed Leveson' s untimed Petri net approach to system

modeling. We will focus on the initial stages of the safety

analysis, e.g., potential "catastrophic" failure

determination and evaluation. Methodologies will be

presented for untimed Petri net modeling of nontrivial system

components and for using available automated techniques in

preliminary safety analysis.

III. PETRI NETS AND REACHABILITY

A. INTRODUCTION TO PETRI NETS

Petri nets were originally developed by A. W. Holt and

others, based on the theories of Carl Adam Petri [Petri,

1962]. Petri's efforts were directed to presenting a theory

for the asynchronous flow of communication between computer

components. Holt demonstrated that Petri nets could be used

to effectively model concurrent systems because they have the

ability to model parallelism and synchronization. This

thesis will assume the reader has little familiarity with

Petri nets. An excellent source for more information can be

found in Peterson [1981].

In computer science terminology, Petri nets are directed

graphs whose nodes are transitions and places. Places model

conditions, and transitions model the occurrence of events.

The firing of a transition is considered to be instantaneous,

therefore no two events can happen simultaneously. Inputs to

a transition represent the preconditions of the event, while

outputs of the transition are the postconditions. In Figure

3-1, the arcs of the graph (denoted by arrows) denote those

places (denoted by circles) which are inputs to the

transitions (denoted by bars) and those which are outputs.

Each place contains zero or more tokens, which represent the

holding of a condition. The number of tokens contained in a

8

place is called the marking of that place [Peterson, 1981].

The marking or "state" of the entire net consists of the set

of markings of all individual places within the net.

tl t2

CK) O*
Figure 3-1. Basic Petri Net Structures

Figure 3-1 shows two basic arrangements of Petri net

primitives. In Figure 3-1, arrows (arcs) coming out of the

circles (precondition places) and terminating into the

vertical bars (transitions) represent the number of input

tokens required to enable the transitions. The number of

arcs coming out of the transitions signifies the number of

tokens that will be created when the transitions occur.

These newly created tokens will be deposited into the circles

(postcondition places) where the arrows terminate. Note that

there is no dependency between the number of input arcs

required to enable a given transition and that transition's

number of output arcs. When a Petri net transition fires,

the enabling tokens are consumed and the output tokens are

created.

A transition is "enabled" when there is a minimum of one

token on each of its input arcs. Figure 3-2 shows the

structures of Figure 3-1 with tokens in the input places.

These are examples of enabled transitions because there is

one token for each transition input arc. If there are less

input tokens than there are input arcs to the transition, the

transition is not enabled and cannot fire.

t2 ^-^®*0
Figure 3-2. Examples of Enabled Transitions

Figure 3-3 depicts the basic structures from Figure 3-2

after the transitions have fired. When a transition

"fires," one token is placed in the output place (s) for each

output arc. Notice that the input tokens have been consumed

and output tokens created.

Figure 3-3. Basic Petri Net Structures After
Transitions Firing

It is important to understand nondeterminism as it

relates to untimed Petri nets. An enabled transition may fire

instantly, at some later time, or never. In a situation such

as Figure 3-4, either tl or t2 may fire, and either

transition has equal probability of occurring or never

10

occurring. Furthermore, if more than one transition in a

given net is enabled, then any of the enabled transitions may

be the next to fire. It is this feature that makes Petri

nets particularly suitable for concurrent system modeling

[Peterson, 1981]

.

tl t2

Figure 3-4. Either tl or t2 May Fire

Timed Petri nets remove much of the nondeterministic

nature of the net by adding minimum and maximum allowable

transition firing times. In the scope of our work in control

and information flow modeling, only untimed nets were used.

Modeling and automated safety analysis of timed nets is left

for future research.

Since Petri nets are used to model events and activities

in a given system, they are particularly suited to model flow

of information or control.

B . PETRI NET THEORY

The formal definition of Petri nets, using the notation

of Peterson [1981], follows. A Petri net is composed of a

set of places P, a set of transitions T, an input function I,

an output function 0, and an initial marking, jaq.

11

Definition: Petri net structure, $, is a 5-tuple
C=(P,T f I,0,^o) •

P = {pi, P2r • •

.

rPn) is a finite set of places, n > 0.

T = {ti,t2, • .,tm] is a finite set of transitions, m > 0.

The set of places and the set of
transitions are disjoint, P (1 T = null

set, 0.

I : T -* P°° is the input function, a mapping from
transitions to bags of places

.

: T -* P°° is the output function, a mapping from
transitions to bags of places.

|!o : P ~* N is the initial marking for the net
where N is the set of nonnegative
integers

.

Definition: A transition tj can fire if and only if
it is enabled. An enabled transition may
fire at any time or may never fire.

Definition: The multiplicity of an input place pi
for a transition tj is the number of
occurrences of the place in the input
bag of the transition, # (pi, I (tj)) .

Definition: transition tj is an input of place pi if

Pi is an output of tj.

(tj, I (pi)) = # (Pi, O(tj))

1 : P -> T°°

: P -* T°°

transition tj is an output of place pi if pi is an input of
tj-

(tj, O (pi)) = # (pi, I (tj))

Definition: The state of the net, 6, consists of the
marking of all places within the net.

12

C. REACHABILITY

The state of a system is defined by the set of conditions

or markings that exist within the Petri net representation of

the system at any given instant. Consequently, the state of

a system is always well defined by the the set of states of

individual places within the system.

In fundamental terms, reachability is the possibility

that a given initial condition (state) could lead to a given

final condition (state) . If there is any possible state

sequence from the initial state to the specified state, the

specified state is said to be reachable from the initial

state. A Petri net reachability graph is a directed

graphical depiction of all possible state sequences beginning

with the initial state of the net. In a reachability graph,

nodes represent states and the root node is the initial

state. Arcs between state nodes represent sets of transi-

tions which, if fired, would take the net sequentially from

one state to another. State reachability analysis is solely

concerned with the possibility of any sequence of states

(graph nodes) and transition firings (graph arcs) taking the

system from a given initial state to a specified final state.

Petri net safety analysis uses reachability to determine

the possibility of mishap states. A Petri net reachability

state set is the set of all states in the net reachability

graph. This set can be further divided into two disjoint

13

subsets. One subset of states has the possibility of

reaching either high- or low-risk states, while the other

subset can reach only low-risk states. A critical state is

a low-risk state which can either lead to a set of high-risk

states or to a set of other low-risk states. If the final

critical state on a path leading to a set of high-risk states

follows the high-risk path, there is no further possibility

of returning to the low-risk state set. If a reachable high-

risk state exists, there must be a critical state somewhere

on the state sequence path from the initial state to the

high-risk state. [Leveson, 1986]

One approach for the elimination of paths terminating in

high-risk states is proposed by Leveson [1986]. This method

begins with high-risk state determination and works backward

along the state sequence to identify the first critical state

encountered. Design techniques are then used to ensure that

the high-risk path is never taken. This approach is

appropriately named Backward Reachability Analysis.

Our safety analysis work was primarily concerned with

identifying mishap states of the system and determining their

reachability from the initial state. For a formal

description of reachability theory see Peterson [1981] or

Leveson [1986]

.

14

IV. PETRI NET UTILITIES (P-NUT)

A. INTRODUCTION TO P-NUT

The Petri Net UTilities (P-NUT) were developed by the

computer science department of the University of California,

Irvine. The tools were constructed to assist researchers in

applying Petri net analysis techniques to the design of

complex concurrent systems. Our work employed P-NUT Version

2.2 installed on a SUN 3 computer with an enhanced UNIX

4.2BSD operating system. User manuals [Razouk, 1987; Morgan,

1987] contain necessary installation information and provide

guidelines for the translation of graphical Petri nets to P-

NUT compatible input text files.

P-NUT creates and manipulates three usable object types:

Petri nets, reachability graphs, and execution traces

[Razouk, 1987]. Our work did not use execution traces and

they will not be discussed further.

Petri nets are input to P-NUT in a text format and

transformed to an internal representation using the

translation!, (transl) tool. The Reachability Graph Builder

(RGB) uses the translated file to build a reachability graph,

which can then be analyzed by the Reachability Graph Analyzer

^GA)
\

Our work consisted of creating an untimed Petri net text

file, translating the file to RGA internal representation

15

form, constructing the reachability graph, and analyzing the

reachable states. We will present only the necessary

methodology, from Razouk [1987] and Morgan [1987], to

accomplish these tasks.

B . TRANSLATING THE PETRI NET

The first step in creating a Petri net on P-NUT is to

provide a textual version of the graphical net. The

translator tool (transl) is then used to transform this

textual net to suitable internal RGA format. Any text editor

may be used for initial text file creation. The textual file

consists of a net transition listing. Each transition's

inputs (precondition places) and outputs (postcondition

places) are specified, one transition per line. To promote

effective analysis, we highly recommend numbered transitions

and meaningful place names.

The text listing of each transition must begin with the

transition number (or name) enclosed by colons, i.e., :t0:.

The transition number is followed by a comma-separated list

of input places required to enable the transition. If more

than one token is required in any input place, the number is

specified by enclosing it in parentheses following the input

place name. Following the last input place of a transition,

the symbol "->" signifies that the output places follow.

Output places are listed in the same manner as input places.

As with input places, if more than one token will be gained

16

by an output place after the transition fires, the number

must be specified in parentheses following that output place.

Following a listing of all transitions, the initial

conditions, or marking, of the net must be specified. The

initial conditions consist of a comma-separated list of

places that contain tokens and are enclosed by w< >." If any

place initially contains more than one token, that number

must be specified in parentheses as described above.

Comments are allowed but must be indicated by enclosure

within "/* */"
. If any transition requires more than one

line, the use of a reverse diagonal "\" followed by a

carriage return is interpreted by P-NUT as a space character.

An example of a simple Petri net is given in Figure 4-1.

place-1

place_2

place_4

t3

Figure 4-1. A Simple Petri Net

17

The P-NUT textual input file version of the Figure 4-1

Petri net is contained in Figure 4-2.

tO: place _K2) -> pl<ace 2 , place _3

:tl: place ?. Pi ace _3 -> pi ace 4

:t2: place _4 -> Pi ace _5

:t3: place _5 -> Pi ace _1(2)

<place_l (2) > /* initial conditions */

Figure 4-2. P-NUT Text Version of Figure 4-1 Petri Net

The net in Figure 4-1 contains four transitions and five

places. The initial transition is numbered zero, reflecting

the internal transition numbering sequence used within P-NUT.

Note that transition tO is not enabled unless two tokens are

contained in place_l, and that when transition t3 fires, two

tokens will be gained by place_l. The initial conditions are

two tokens in place_l

.

Assume this file is named "example_l." pnl (P-NUT lint)

is a tool that scans the initial text file for syntactic and

semantic errors prior to translation. The command to invoke

pnl for example 1 is pnl example_l . The output of this

tool will be a short error description. To translate the

text file and redirect output to another file (rather than to

the terminal) the command is transl example_l >

example l.pn. If no input text file is specified, transl

will expect terminal entry. transl does not tolerate input

errors, therefore exclusive use of input text files is

recommended. The choice of output file name is at the

discretion of the user, but we recommend the ".pn" suffix to

denote that the file is in correct internal P-NUT Petri net

format. Any P-NUT tool output can be redirected using the

above method.

C . BUILDING AND PRINTING REACHABILITY GRAPHS

Reachability graph nodes represent states and the edges

represent possible state transitions. The Reachability Graph

Builder (RGB) takes a translated net text file as input and

creates an internal representation of the Petri net

reachability graph. In the untimed graph, the state of the

system is completely described by the token distribution on

places. Arcs in the reachability graph denote the path

between source and destination states in the system. The

basic command to build the reachability graph of translated ^~J

file is rgb example_l.pn > example_l . rg . The "
. rg"

suffix is recommended. If the Petri net is known to always

have less than 127 tokens possible in any given place, it is

called "bounded" at 127, and the command, rgb -b

example_l.pn > example_l.rg should be used. This option

saves both memory and processor time. If the net is known to

be bounded at 1, it is called "safe" (not to be confused with

low risk), and the command rgb -s example_l.pn >

19

example_l.rg will save even more CPU time and memory. Use

of a file for redirected output is recommended for all

commands, otherwise output will default to the standard

output device.

After building the reachability graph, it can be printed

and viewed using the Reachability Graph Printer (RGP) . The

command rgp example_l .rg > example_l.g will print our

example graph and redirect output. The ".g" suffix is

recommended for informational purposes and to differentiate

the file from the internal format of the reachability graph.

The important consideration in choosing suffix names for any

P-NUT output file is uniformity.

RGP output is a schematic of the reachability graph.

Figure 4-3 is RGP output for the Figure 4-2 Petri net text

file.

0->l->2->3->0

0. place_l (2)

1. place 2, place 3

2. place 4

3. place 5

Figure 4-3. RGP Reachability Graph for Figure 4-1

Petri Net

20

In Figure 4-3, notice that the states are numbered from

zero to three. The arcs signify which states are reachable

from other states and describe all possible state sequences.

The marked places comprising each numbered state are listed

below the graph.

Although reachability graph printouts and state

descriptions proved invaluable in the design and verification

of our system component modules, the value of the RGP

diminished significantly as complexity and size of the Petri

net grew. Our final model had more than 13,000 reachable

states and resulted in an RGP output file of over 80,000

lines. Such a large net was impractical to analyze by

inspection and required the use of the Reachability Graph

Analyzer (RGA)

.

D . REACHABILITY GRAPH ANALYZER (RGA)

The RGA is a very powerful, interactive interpreter which

allows dynamic identifier typing, recursion, and functions.

The RGA enables model debugging and proofs of correctness

through interactive analysis with the reachability graph.

Through the RGA, the user gains access to place names,

reachable states, and even the structure of the reachability

graph. The RGA functions and capabilities discussed in this

section are but a few of those found in Morgan [1987],

To invoke RGA, simply type rga <file.rg>. The entered

file must be in P-NUT internal reachability graph format.

21

When the user enters an expression in RGA, the interpreter

immediately evaluates it and returns the result. After

evaluation, the interpreter discards the previous input and

prompts the user for a new command. The prompt symbol is

w>". The user can also define expressions and functions for

later use.

There are three possible errors that can be encountered

while using RGA: syntax errors, run-time errors, and

internal RGA errors. Syntax errors result in the message

"command ignored" and a prompt. Run-time errors normally

result in an appropriate message and a prompt. Internal RGA

errors were never encountered in our work.

RGA has a case-sensitive language. Command key words and

predefined function names are always written in lower case,

while user-defined identifiers may be written in lower,

upper, or mixed case. All identifiers must begin with an

alphabetic letter and can be followed by zero or more

letters, underscores, digits, or periods. A number is one or

more digits preceded by an optional minus sign and may be

floating point as well as integer.

The RGA interpreter normally recognizes the end of a

command by the End Of Line character (EOL) . If an expression

or function definition is too long for a single line, the use

of a reverse diagonal character "\" followed by EOL is

treated as a space character. Multiple spaces and tabs are

22

interpreted as a single space. Comments are signified by

enclosure in "/* */", i.e., /* this is a comment */.

Although the expressions and functions in RGA language

are evaluated to many different types, our work used only

integers, states, Booleans, and sets. If an identifier is

assigned a value of any of these types, it will take on the

appropriate type.

The value of a place is evaluated as the integer number

of tokens it contains in a specified state. To specify the

state, the place identifier must be followed by a state-

valued expression in parentheses.

State constants are written as a number sign "#" followed

by an integer. The first state in a reachability graph is

denoted in RGA as #0. Places are referenced by the name

given in the original input text file used for eventual

reachability graph construction. Unnamed transitions are

referenced by the dollar sign "$". The RGA standard is to

reference the initial transition as the number "0"

transition, signified by $0. We found that naming places and

numbering transitions (beginning with number zero) enhanced

readability and ease of analysis with RGA.

A state in the reachability graph consists of the

markings of all places in that state and the sets of arcs to

and from predecessor and successor states. The showstate

function displays the marking of all places in a given state.

23

Only places that contain one or more tokens are considered to

be marked. If a place is marked with more than one token,

the number of tokens, enclosed in parentheses, follows the

place name.

The most powerful RGA language type we used was sets.

Elements of an RGA set must be of the same type and are

maintained and displayed by RGA in ascending numerical order.

This display feature greatly aids readability and analysis.

The predefined set variable used exclusively in our work was

S, the set of all reachables net states. Set constants are

written as a comma-separated list of states and are enclosed

within curly braces, i.e., {#0,#2..#5}. This example set

consists of the initial state and the sequence of states two

through five. If the set is empty, it will be displayed as

an empty set of curly braces "{}".

The capability to construct and display subsets of the

reachable state space proved invaluable in our research. The

method for creating a subset is to specify the parent set

followed by Boolean selection criteria. After expression

evaluation, RGA will display all elements of the set meeting

the Boolean criteria. Uncapitalized s is the predefined

subset variable of the set of all reachable states S. The

syntax for creating and displaying a desired subset s of S

which meets a specific Boolean requirement is {s in S
|

<boolean-expression>} . RGA will evaluate this expression

24

by calculating and displaying all elements of the subset. To

view the place marking of any state, simply use the pre-

defined function showstate (#<state>)

.

Variable assignment can be used to store the value of a

desired subset. The assignment operator is the colon

followed by an equal sign, ":=". Assignment allows the user

to later recall the current value of the variable by simply

typing the variable identifier following the RGA prompt. RGA

will print the current value to the the standard output

device

.

Available in-fix Boolean operators are standard

arithmetic comparison tests: <, <=, =, >, >—, and <>.

While the equal and not equal tests can be applied to any of

the data types, the other operators apply only to integers,

floating point, and strings. Boolean expression operators

and and or are also included in RGA. The Boolean operator

we used most frequently was exists, the existential

qualifier. An example of the syntax of this operator is:

exists <id> in <set-expres sion> [<boolean-

expression>] . RGA evaluates the expression by looping

through each element of the set expression until it either

evaluates an element as true and halts or checks all

elements of the set and returns false.

RGA contains several predefined functions. Two functions

with substantial safety analysis value are succ (state) and

25

pred (state) . succ(state) and pred(state) respectively

return the sets of immediate successor and predecessor states

for a specified state. RGA also supports user defined

functions. Morgan [1987] contains an example user-defined

function which successfully uses succ to determine

reachability of a given state from any other specified

initial state reachable (initial-state, final-state) .

We altered the code of this function slightly by substituting

pred(state) for succ (state) and produced a working

backward reachability function.

The RGA language is highly extensible through its support

of user-defined functions and function libraries. Libraries

can be created as text files and entered by typing the file

names following the reachability graph file name at RGA

invocation. An example of an RGA invocation that will

include two such libraries is: rga <file.rg>

<function_libraryl> <funct ion_library2> . RGA will

accept the predefined user functions in these libraries and

allow their use in the interactive analysis process.

Although we did not use functions in our preliminary

investigation, we highly recommend that their capabilities

and usefulness be investigated in future research.

26

V. THE SYSTEM UNDER ANALYSIS

A. A SOFTWARE-CONTROLLED REAL-TIME SYSTEM

The real-time system under analysis is a interrupted-

explosive train safety-arming (SA) device for an air-to-air

guided missile. The system was the first attempt by the

Naval Weapons Center in China Lake, California, to replace a

mechanical safe separation distance calculator with a

microprocessor and software. The motivations for the

conversion are the potential for greater accuracy, tremendous

cost reduction, programmability, and the desire to apply

state-of-the-art technology to fuzing design.

B . SYSTEM BACKGROUND

Hayward [1987] contains an excellent introduction to the

system under analysis. The following discussion is a brief

review of that introduction.

A safety arming device is a precision system which

incorporates mechanical, electronic, and explosive

components. The purpose of the device is to arm the warhead

at the correct time in tactical use and to prevent

inadvertent high-explosive warhead detonation. The device

must operate with high precision and be able to function cor-

rectly for the logistic life cycle of the weapon. [McVay,

1987]

27

MIL-STD-1316C states that a safety arming device must

independently prevent unintentional arming and provide forces

to remove safety features originating from other

environments. At least one of these features must depend on

sensing the post-launch environment. The system must also

provide an arming delay to ensure safe separation distance is

achieved in all defined operational conditions.

In mechanical SA devices, the system is locked in the

safe position until unlocked by application of current to a

solenoid. The device contains a setback weight, connected by

the gears of an escapement mechanism to a rotor. The rotor

contains the interrupt element. When the missile's rocket

motor fires, the acceleration boost drives the setback weight

and causes the movement of the gears. The escapement

mechanism serves as a pseudo-integrator to enable movement of

the rotor from the interrupted (safe) position to armed after

the missile has traveled a preset distance from the launch

vehicle. Figure 5-1 shows the block diagram for a standard

guided missile SA device [McVay, 1987]. The interruptors

have mechanical and direct locking as required by MIL-STD-

1316C.

28

Energy
Source

Interruptor Interruptor Intejrruptor

Mover Locking
^^^ Mechanism

Mover

'ower
;onditioning
System

Energy
Interruptor

Firing
Capacitor

Energy
Interruptor

f
r

^jswitch 1

Fuze
Logic

—1

Detonator I

Figure 5-1. Noninterrupted Explosive Train SA Device

C . SYSTEM OPERATION

Figure 5-2 is a system flowchart for the SA device under

analysis. [Hayward, 1987]

In Figure 5-3, we modified the original Hayward [1987]

software flowchart by abstracting the hardware/software

control port interface and removing the assembler code

identifiers . The firing sequence in Figures 5-2 and 5-3

originates with the missile on an aircraft rack. An intent

to launch (ITL) signal initiates a sequence which fires the

thermal battery, charges the firing capacitor, powers the

computer, and unlocks the SA device. The software then

builds a preset safe separation distance lookup table for

current distance comparisons.

29

Missile on fl/C Rock

H/C signolslntent to

Launch (ITL)

I
ITL unlocks SR,

Fires thermal battery,
Poiuers Computer

v

Rocket Motor Fires

ir

Launch

i r

4* G Boost

1 r

Software computes
Safe Separation Distance

1 r

SR Deuice Rrms

1 r

SR Locked in Rrm

1 r

Target Detection

I
Detonation ^

Firing Capacitor

Charged

Figure 5-2 . SA Device System Flowchart

After missile launch, the software uses inputs from an

analog to digital converter (ADC) and a timing loop to

compute current separation distances from the launch vehicle.

30

tnablo

»olenoi(J

Buna lookup
UDIO

X imtioiiz* lookup loDie pointer

itert at lout

lookup toon
pointer

Irue *

(noble R/D
Conuorlor

Input Curront

flmlcraimn

Oitobie

H/D Conuerter

i
Input

Hccoiarotlon biat

Update Currant

ueioclty

i
Update separation

dutanca

Increment
lookup labia

Pointer

loggia

Solenoid left

IKoit 200
lor Soienoid

looole

Enable

H/0 Conuerter

Input Current

Deceleration biei

Diteble

R'D Conuerter

update Initial

Deceleration

to in It

true

Figure 5-3. SA Device Software Flowchart

31

A minimum 4G boost is required before the program will

compare the calculated separation distance with the lookup

table values. If the calculated value exceeds the current

tabular value, the lookup table entry pointer is advanced to

the next table value. The software then commands the

solenoid to toggle, resulting in a ball lock mechanism

rotating the interruptor by a one-third increment. Next, the

software enters a delay loop to provide sufficient time for

the solenoid to toggle. The program then loops back, updates

the acceleration bias from the ADC output, and starts over.

If the calculated value is less than the lookup table entry,

the software delays, updates the calculated separation dis-

tance, and conducts a second comparison. If the tabular

distance is then exceeded, the solenoid is toggled as

previously described. Three solenoid toggles are required to

remove the interruptor. In addition, the warhead can not

detonate unless the SA device is unlocked (which occurs after

ITL is signalled) and the firing capacitor is charged.

32

VI. MODELING AND ANALYSIS METHODOLOGY

A. PROBLEMS IN SOFTWARE SYSTEM MODELING

The major problem in software system modeling is that the

model must be sufficiently accurate and detailed to provide

meaningful safety analysis results. The model must

incorporate the software flowchart, important environmental

features, the nature of system components, and any initial

conditions. Modeling should be a process of cooperation and

continuous feedback between the designer and the modeler.

Since the modeling process is difficult, nonessential details

should be omitted. Although it is quite difficult to

determine detail significance, the reduction of the system

scope is important for minimizing required modeling time. If

any system facet's significance is unknown, it is best to

incorporate it into the model. The system designer must

provide feedback to the modeler to ensure a sufficiently

accurate model.

Hayward [1987] presented a methodology for building Petri

net models of real-time, software-controlled systems. He

provides detailed instructions for translation of software

flowcharts to Petri nets and discusses a methodology for

combining hardware and software system functions into a

single Petri net model.

33

While preparing the Hayward system model for automated

analysis, we discovered several modeling flaws and corrected

them. Our work reflects those improvements.

B . A BOTTOM-UP APPROACH

Our initial research plan was to familiarize ourselves

with the the fuzing system, convert the Hayward [1987] model

to entry text file, and conduct P-NUT aided automated safety

analysis. Although the Hayward [1987] model was an excellent

first attempt, serious shortcomings were soon discovered in

the system component models. Following this discovery, we

expanded our plan to include corrections to the Hayward

model

.

After familiarization with the software and components of

the safety arming device, we accepted the basic system

framework and began at the module level of the Hayward model.

We examined the functionality of the existing Petri net

modules and compared this with our knowledge of actual

component behaviors. This is not the method we recommend for

conducting first-time modeling and analysis of a system. As

stated in Hayward [1987], the initial modeling process should

be a top-down approach, beginning with system and software

flowcharts and interfaces, and abstracting out internal

component functions. The final step prior to safety analysis

should be component modeling and verification. Since we were

given an essentially correct system framework, we began our

34

work from the bottom up. We redefined component interfaces,

created the internal component Petri nets, and verified

correctness with P-NUT.

1 . ITL Sensor Module

We studied the Intent To Launch (ITL) sensor first.

The Hayward model is shown in Figure 6-1.

tl

T 0n4>
t2

•^

Figure 6-1. Hayward ITL Sensor Model

Figure 6-1 effectively models a two-state device, but

an ITL sensor must do more than simply toggle. The sensor

must have a means for outputting its current state. In the

SA device under analysis, the software program checks the ITL

sensor to determine which of two control flow paths to

follow. The model in Figure 6-1 has no mechanism to allow

NonDestructive Readout (NDRO) of its stored state and clearly

needed this addition.

35

A component model must reflect system interface

requirements and accurately represent behavior of the actual

device. As an initial step, the modeler should analyze

component functionality and document required system

interfaces. He must then ensure that the model accurately

represents all significant aspects of function and control

flow.

After adding NDRO capability to the ITL sensor, we

realized that a proper model of a multifunction device

requires a system lock. The lock ensures that once the

component receives a command, it prevents new command

processing until completion of the original input command.

In the ITL sensor, this is critical. Without a system lock,

NDRO could occur while the device was toggling and result in

erroneous ITL indication. The diagram for the revised ITL

sensor is shown in Figure 6-2.

To increase readability and connectivity of the Petri

net diagram, we recommend a standard input/output convention

for all system modules. This convention is reflected in

Figure 6-2 and consists of distinctly shaded input and output

places.

36

ITL

Toggle

Received

ITL Sensor
Ready

mi

ITL NDRO
Input

tt Read
ITL Status

t2

Op-
ITL

Toggle

Enabledo t3

no ITL

-iM

t5

t6

3

ITL Is

true

ITL

Is raise

Figure 6-2 . Refined ITL Sensor Model

In the complete system net, the contents of the

modules should be abstracted. The modules are depicted as

"black-boxes" with only interface places shown. This

convention encourages regular component and system modeling.

37

Regularity is important due to the nontrivial nature of real-

time systems.

In large systems projects, modeling teams could be

employed. In these projects, it is both appropriate and

necessary to apply software engineering methods for module

specification, namely clearly defined and consistent module

interfaces.

Beginning with the ITL sensor module in Figure 6-2, we

adapted the electrical engineering wiring schematic

convention to our modeling of intersecting Petri net arcs.

Transitions t3, t4, t5, and t6 create and place tokens in the

system-ready place. To conserve space and improve

readability, we use intersections with nodes to denote common

arcs between several transitions and a single place. It is

important to note that this convention is inappropriate for

representing arcs between multiple places and a single

transition, as this would violate standard Petri net

conventions. Additionally, the number of transition inputs

and outputs must be readily apparent to an analyst without

requiring a count of scattered intersecting lines.

Creation of the ITL sensor in Figure 6-2 was a multi-

step process. We began with the Hayward model of a two-state

device and through a trial-and-error approach developed the

model with NDRO capability.

38

The fundamental idea of a nondestructive read is to

allow the sensor to output its state without changing that

state. In Petri net terminology, the device must output state

indication and simultaneously return to the marking held

prior to the commanded read. Since no modeling of control or

information flow is possible without token consumption and

creation, the modeler must be innovative but should resist

the temptation to build a baroque structure. The addition of

places in a net can significantly add to reachability state

space size and correspondingly increase analysis difficulty.

(There are exceptions to this statement, such as in the use

of interlocks, which actually restrict the reachable state

space.

)

After creating the ITL sensor model, we converted the

Petri net to a textual file, built a reachability graph of

the system using P-NUT, and analyzed the reachable states by

printing the graph. The textual Petri net for the ITL sensor

model is shown in Figure 6-3.

To reduce file size, we shortened most place

descriptions. We follow this procedure throughout our work.

In more complicated Petri nets, ten or more marked places per

state are common, often filling several output lines for each

state description. Modelers must be uniform selecting place

name abbreviations. The pnl tool is extremely useful for

39

uncovering notational discrepancies and should be used prior

to translating all text files to internal P-NUT format.

tl: ITL_toggl_rcvd, ITL_snsr_rdy ->ITL_toggl_enabld
t2: ITL_NDRO_inpt, ITL_snsr_rdy -> rd_ITL_status
t3

:

ITL_toggl_enabld, ITL -> no_ITL, ITL_snsr_rdy
t4: ITL_toggl_enabld, no_ITL -> ITL, ITL_snsr_rdy
t5: rd_ITL_status, ITL -> ITL_is_true, ITL, ITL_snsr_rdy
t6: rd_ITL_status,no_ITL -> ITL_is_false,no_ITL, ITL_snsr_rdy

/* following code is for test looping purposes only */

t7 : ITL_is_true -> ITL_toggl_rcvd
t8: ITL_is_true -> ITL_NDRO_inpt
t9: ITL_is_false -> ITL_toggl_rcvd
tlO: ITL_is_false -> ITL_NDRO_inpt

<ITL_NDRO_inpt, no_ITL, ITL_snsr_rdy>

Figure 6-3. Textual ITL Sensor Petri Net

To ensure all reachable states were identified, we

added a looping structure at the end of the input text file.

These added transitions simply feed the output back into all

possible input places, ensuring all inputs and outputs are

possible. This procedure is recommended for testing any

module that has multiple inputs and outputs. The same effect

could be achieved by creating a separate text file and

reachability graph for each possible initial condition,

however our approach accomplishes this with one text file and

reachability graph. We translated the ITL sensor textual net

using transl, built the reachability graph with the RGB, and

used RGP to print it in readable form. This reachability graph

is shown in Figure 6-4. The ITL sensor graph and state space

40

were sufficiently small to allow verification by hand tracing

and inspection, thus the RGA was not used.

0->l->2-
1

+

->o

->3->4 ->5

0. ITL snsr rdy,ITL NDRO inpt, no ITL
1. rd ITL status, no ITL
2. ITL snsr rdy,no '.CTL, ITL is fal se
3. ITL toggl rcvd, ITL snsr rdy ,no ITL
4. ITL toggl enabld, no ITL
5. ITL snsr rdy, ITL

Figure 6-4. ITL Sensor Reachability Graph/State Space

2 . Analog to Digital Converter (ADC) Model

The Hayward [1987] model for ADC, Solenoid, and

Solenoid Control devices is shown in Figure 6-5.

enable
tl

Off
t2

disable
processed

Figure 6-5. Hayward Two-State Device Model With
Response

41

Unfortunately the model in Figure 6-5 inadequately

represents the actual devices. Our methodology for modeling

the ADC follows.

First, we analyzed the function of the ADC in our SA

device. The ADC converts an analog input signal (from

accelerometers) to a digital acceleration output. It should

provide digital acceleration information when enabled and no

output when disabled. The ADC has two interfaces with the

overall SA system. It outputs digital acceleration values

and provides feedback that it has been enabled or disabled.

To represent control flow, we created a model that

could be enabled or disabled and provide necessary feedback

following command processing. Our approach was limited in

that we did not attempt to model the information flow of the

module. We assumed that if the ADC was enabled it would

provide correct acceleration information, and if disabled it

would not. This significant assumption was made to reduce

the scope of the model in view of time constraints. It

should not adversely affect the credibility of the analysis.

If the ADC malfunctioned and provided incorrect acceleration

in excess of the actual value, the separation distance would

be overestimated and could result in insufficient safe

separation distance at detonation. This is an obvious result

and there is little need to expend the extra effort and time

required to model it. To ascertain correctness and

42

reliability of hardware components is not the goal in

software system analysis. The safety analyst's concern

should be for "design safety" or the effect of the

component's behavior within the context of the system

environment. Figure 6-6 shows the refined ADC model.

DISABLE
INPUT

Unable
INPUT

\f \J

01

Co

Rec

U <r

KJ.» System
Disabled

•able ^*v sK
immand (\ I \

•ceiued /V_y\ /v_x"

Enable

Command
Receiued

\? u

GkJ
System
Enabled

H

OUTPUT

System
Ready

Figure 6-6. Refined Analog to Digital Converter (ADC^
Model

43

In Figure 6-6, the system lock, ADC-Ready, reflects

device inability to process simultaneous enable and disable

commands

.

The ADC control structure is more than a simple

toggle. It must differentiate between enable and disable

commands and allow redundant command processing. This was

modeled by adding transitions t2 and t4 . If redundant enable

or disable commands are received, the model will not change

states. It will, however, process the redundant command and

signify that it has done so. This is analogous to a

component with on and off switches. If the on switch is

pressed a second time, it does not cause the system to shut

down. If a real-time system has multiple components which

can enable or disable a critical component, it normally

allows redundant enable/disable commands for insurance

purposes. It is our assumption that the ADC is such a

device. If redundant commands were not allowed, this could

easily be modeled by eliminating the redundant transition's

ability to deposit a token in the command-processed place.

To accomplish this, simply remove the appropriate arcs. This

would eliminate redundant command feedback.

Following model creation, we again turned to P-NUT to

verify correctness. We followed the same steps as in

analysis of the ITL sensor and produced a printout of the

reachability graph and state space. The textual file for the

44

ADC module is contained in Figure 6-7, while Figure 6-8

depicts the resulting Petri net reachability graph. This was

a small listing and analysis began with manual state

examination. We examined all reachable states and validated

the module. As a final check, we briefly analyzed the module

with the RGA.

:t0
:tl
:t2

:t3

:t4

:t5

:t6

disable_input, system_ready -> disable_cmd_received
enable_input, system_ready -> enable_cmd_received
disable_cmd_received, system_disabled -> system_disabled,

cmd_jprocessed
enable_cmd_received, system_disabled -> system_enabled,

cmd_processed
enable_cmd_received, system_enabled -> system_enabled,

cmd_processed
disable_cmd_received, system_enabled -> system_disabled,

cmd_processed
cmd_processed -> output, system_ready

/* the following code is for test loop purposes only */

:t7: output -> enable_input
:t8: output -> disable_input

<disable_input, system_enabled, system_ready>
/* initial markings */

Figure 6-7. Textual Version of ADC Petri Net

Could this model be simultaneously disabled and

enabled? We knew this to be impossible from our state

inspection and verified it with the RGA. The translation of

this question to RGA language is exists s in S

[ADC_enabld(s) = 1 and ADC_disabld(s) = 1] .

45

0->l->2->3->5->7->2
I

+->4->6->8->9->0
I

+->10->ll->8

. disable_input, system_ready, system_enabled
1

.

disable_cmd_received, system_enabled
2. system_disabled, cmd_processed
3

.

system_ready , system_disabled, output
4

.

system_ready, enable_input, system_disabled
5

.

disable_input, system_ready, system_disabled
6. enable_cmd_received, system_disabled
7

.

disable_cmd_received, system_disabled
8. cmd_processed, system_enabled
9

.

system_ready , system_enabled, output
10

.

system_ready, enable_input, system_enabled
11. enable cmd received, system enabled

Figure 6-8. Reachability Graph for ADC Module

The question is interpreted by RGA as: Is there any

reachable state in which there is one token in the ADC

enabled place and one token in the ADC disabled place? RGA

response was false. We then asked the same question using a

set variable assignment and assigned the variable name

malfunctionl to this particular malfunction. The RGA input

for this question is: malfuntionl := {s in S
|

ADC_enabld(s) = 1 and ADC_disabld (s) = 1}. RGA

interpreted this as: Evaluate all elements of the set of

reachable states in which both of listed places contain one

token and assign this set to the variable malfunctionl. RGA

responded with a set of empty curly braces, "{}"/ signifying

46

that malfunctionl was currently of type set and had the value

of null. To redisplay the variable value later in the

session, we entered the variable identifier, malfunctionl,

and RGA again responded with the empty set.

We then tested for system deadlocks: deadlocks :=

{s in S |nsucc(s) = 0}. nsucc(s) is a predefined integer

expression that returns the number of successor states to a

specified state s. The above expression is interpreted by

RGA as: Assign to the variable deadlocks all elements of the

subset of reachable states that have no possible successor

states. The RGA responded with the empty or null set.

3 . Solenoid Model

We next turned our attention to the problem of

modeling the SA solenoid. The solenoid is a two-state device

with enable/disable and NDRO capabilities. Two states refer

to status left and status right. When the SA software

determines the launched missile has achieved a proper

increment of safe separation distance, it checks the solenoid

status (right or left) and commands the appropriate toggle.

The solenoid toggles, causing the ball lock mechanism to drop

a ball and move the fuze interruptor by a one-third

increment. Following three toggles, the interruptor is

removed. The solenoid system input commands consist of

enable/disable, read, and toggle left/right. As in the ITL

sensor and ADC, the system accepts only one command at a

47

time. If a second command is received prior to completion of

the first, it is ignored.

Hayward [1987] modeled the solenoid by creating three

separate modules: solenoid control, solenoid, and solenoid

status toggler. These three independent Petri net models

were intended to model a single system component. The

solenoid control and solenoid modules were replicas of the

two-state device in Figure 6-3. The solenoid control module

modeled enable/disable functions and the solenoid module

modeled the left/right toggle functions. The third module

represented software status indication of the solenoid but

toggled independently of the solenoid module.

Since the SA device was never actually constructed,

the software prototype required a method to simulate the

toggle position. It accomplished this by toggling a status

bit in a memory register. The Hayward solenoid status

toggler is the model of this register function.

We attempted to analyze safety of the completed

software controlled SA device. Accordingly, we modeled the

system with all designed software/hardware interfaces

incorporated in a single full-function module.

Creation of the solenoid model required several

revisions and two weeks of intensive effort. The basic

functions were defined and all interfaces specified. We then

attempted to abstract another level of the device. Since the

48

solenoid performed three separate functions, we broke the

project functionally into NDRO, left/right toggle, and

enable/disable capabilities. Rather than attempt module

creation in one step, we combined the ADC "smart" toggle

function and the ITL sensor's NDRO capability as our first

step. The resulting module is shown in Figure 6-9.

Disabled

Status

Enabled
Status

Actuate

NORO

IW.
16

Read f\
Enabledl J

\7

t8

Disable

Input

t if

Enable

Input

System
Ready

i Output

©

Figure 6-9. ITL Sensor and ADC Modules Combined

49

We then converted the the enable/disable toggle in

Figure 6-9 to a left/right function and added another two-

state module for enable/disable capability. We added a model

feature which would disallow any accumulation of input place

tokens. Token accumulation in the model could result from

multiple input commands. Since Petri net transitions fire

nondeterministically, these input commands might be handled

out of order. The actual solenoid has no memory and can not

respond to commands received while "in process". In Petri

net model terminology, the additional input tokens must be

consumed. Figure 6-10 shows the final solenoid model. The

solenoid model in Figure 6-10 has three fundamental operating

states: ready (enabled), disabled, or in use. System_ready

is the equivalent of the system_ready places of the ITL

sensor and ADC models in Figures 6-2 and 6-6. A token in

this place indicates the solenoid is enabled (has power) and

is ready to process input commands. A token in the

solenoid__in_use place indicates that the solenoid is

processing an input and will not accept further inputs until

processing is complete. A marking of the system-disabled

place represents power is off and no processing is possible.

50

m 3
c a.
z c

SB

w BE

IX Z

~rt

TX r -

RF
'VJT

1 ±rj-

• l*

fr

K>

T ~~

T

<3

cK>

tti;

t, ,t

O^

jMrt

z s

£ =>

Figure 6-10. Final Solenoid Model

51

The token accumulation problem described above is

solved by the addition of token consumption loops. If the

solenoid in Figure 6-10 is in use, transitions tl3 to tl7

ensure consumption of all incoming tokens without altering

the command in process. If the solenoid is disabled,

transitions tl8 to t21 ensure that only an enable command

will be processed. All other input tokens will be consumed

and the system will remain disabled.

After the solenoid token consumption scheme was

incorporated, we did not "backfit" this feature to the ITL

sensor and ADC Petri net models. This was solely due to time

constraints. Our goal was to demonstrate procedure validity

for preventing input token accumulation in any "no-input-

memory" device.

In Figure 6-10, no input transitions can fire unless

there is an enabling token in the system_ready place. When

an input transition fires, this token is consumed and a token

is created and placed in the in_use place.

The method for returning the solenoid model to ready

state after processing is shown in all the output firing

transitions of Figure 6-10. Any transition that fires to a

place outside the module requires an input token from

thein_use place. When an output transition fires, a token is

created and placed in the system ready place.

52

A major difference exists between the ADC

enable/disable toggle in Figure 6-6 and the solenoid

left/right toggle in Figure 6-10. The ADC must treat

redundant enable/disable commands no differently than genuine

toggles in terms of feedback to the system. (In the solenoid

system-ready/disabled toggle, redundant commands are allowed

and reflect this philosophy.) Redundant solenoid left/right

toggles are not handled in the same manner. If the actual

solenoid received a redundant toggle input and provided

feedback, no toggle or resulting movement by the interruptor

would occur, but system software would erroneously proceed as

if these required events had taken place. For this reason,

redundant solenoid toggle transition firings do not create a

token in the toggled place.

Following model creation, we converted the Petri net

to textual form and input it into P-NUT. We translated the

file, constructed the reachability graph, printed the

graph/state space, and analyzed the graph on RGA. Although

larger than the ADC and ITL sensor graphs, the solenoid

reachable state listing and graph still permitted manual

state inspection and graph tracing. The text file and

reachability graph are contained in Appendices D and E.

The final solenoid model in Figure 6-10 reflects a

major change from our original module. The error was

discovered during solenoid RGA analysis. We asked for the

53

set of system deadlock states (see Chapter VI) and were

surprised when RGA responded with a two-state set. To

enhance analysis and prevent deadlocks, we had added

transitions to return output tokens back to any input place.

One deadlock state had markings in left_toggle_received,

toggle_is_left, and in_use, while the other deadlock was the

equivalent redundant right toggle state. Redundant

left/right toggle transitions, t2 and t4, originally had not

required an enabling token from in_use or an output arc back

to system_ready . This resulted in the model deadlocking in

the in_use condition whenever a redundant toggle was

received. This was clearly not our intention. Although we

wanted the solenoid model to withhold redundant toggle

feedback, we never intended it to result in module deadlock.

From a system view, this was equivalent to disabling the

solenoid permanently. The correction was easily made and the

final text input version is shown in Appendix D. Appendix E

contains the resulting reachability graph printout and

reachable state descriptions.

We input the corrected model net to RGA. We again

asked for the set of deadlocked states and RGA responded with

the null set. We then tested for possible accumulation of

tokens. More than one token in a given place would signify

that the model had failed to prevent command inputs while in

use. We changed the input text file (Appendix D) initial

54

conditions by adding a second token to the toggle_left_input

place. A new internal net was created and a reachability

graph built. This procedure is required every time changes

are made to the input text file. The new reachability graph

was then analyzed on RGA. The input expression was

excesstokens := {s in S | tokens (s) >= marked(s)}.

The predefined RGA expression tokens (s) is evaluated as the

integer number of total tokens present in a given state.

marked(s) is evaluated as the integer number of places

containing at least one token in a given state. If the

number of tokens ever exceeds the number of marked places in

any state, it indicates token accumulation in at least one

place. When RGA evaluates the expression, it returns the

subset of reachable states which satisfy the specified

Boolean condition. As in previous examples, showstate (s)

function is then used to display individual place markings

within a given state. RGA evaluated our entered expression

and returned a set of states in which only the

toggle_left_input place contained more than one token. As

this was our initial condition, it validated our multiple

input token prevention scheme.

We returned to analysis of the model with single token

initial markings and asked if it were possible to have the

solenoid simultaneously ready and disabled, in use and

disabled, or in use and ready. If these supposedly mutually

55

exclusive markings were possible it would represent a serious

design flaw. We labeled this subset identifier as errorl

.

Since we had shown that there was never more than one token

in any place, we were able to simplify our input expression.

The RGA input for this question was: errorl := { s in S
|

(system_ready (s) + system__disabled (s) > 1) or

(in_use(s) + system_disabled (s) > 1) or (in_use(s) +

system_ready (s) > 1)}. RGA evaluated the expression and

returned the null set. Since we had proven a maximum of one

token in each marked place, arithmetically adding the place

values in the first half of the Boolean expression was simply

a shorthand expression for those states in which any were

marked. If any of the places could have contained more than

one token, this expression could not be used. The proper

expression would then be errorl := {s in S
|

(system_ready (s) =1 and system_disabled (s) =1) or

(system_ready (s) =1 and in_use(s) =1) or (in_use(s) =1

and system_disabled(s) =1)}.

We performed a similar test for the erroneous state

resulting from any two of the following places simultaneously

marked: r e ad_e n ab 1 ed

,

1 e f t_t ogg 1 e_r e ce i ved ,

right_toggle_received, system__ready, system_disabled. This

expression was entered as error2 := {s in S
|

read_enabled (s

)

+ left_toggle_received (s

)

+

right_toggle_received (s) + system_ready (s) +

56

system_disabled(s) > 1}. RGA again responded with the

null set.

To prove that the module returned to a ready state

following output, we asked RGA to return the set of all

states in which any of the output status or toggled places

was marked simultaneously with the in-use place. We named

the subset identifier output_error . The RGA expression of

this question was output_error := {s in S
|

(status_is_left(s) + status_is_r ight (s) +

toggled_output (s) + en_dis_output = 1) and (in_use(s)

= 1)

}

. RGA evaluated the expression and returned the null

set. This final check completed module correctness

validation. To confirm our assessment, we hand-traced the

reachability graph and examined all possible state sequences.

4 . The System Petri Net Model

Following Solenoid testing, we refined the Hayward

[1987] overall system model.

The original Hayward model specified no requirement

for missile release prior to the occurrence of a 4G boost.

The attainment of this great an acceleration is impossible

with the missile on the rack. The interlock between

transitions til and tl2, in Figure 6-11, reflects the

necessary sequence of rack release prior to the boost

occurring.

57

4+G

boost

occurred
missile

released

Figure 6-11. Modeled 4+G Boost Interlock

In a phone conversation with NWC China Lake, the

fuzing system designer, Mr. Steve Rohde, specified a minimum

4G acceleration boost as a precondition to separation

distance update calculation. This precondition prevents any

toggling of the solenoid or interruptor movement without the

required accelerative boost. This feature is modeled in our

system Petri net (Appendix F) by making the 4+G boost

occurred a required input place to the update separation

distance transition, t59. 4+G boost occurred must be an

output place of t59 to ensure accurate reflection that this

precondition has been met in any subsequent separation

updates

.

In Figure 6-12, ITL locks 1 and 2 and no-ITL locks

1 and 2 were added after conversion of the net to P-NUT

textual input form. While entering the net, we discovered

that there was no current method to describe and maintain

which of several paths was being taken on ADC entry and exit.

In the system control flow, the ADC is enabled following a

58

read of ITL status. In Figure 6-11, if ITL is true, control

flow follows the left path, and if false, the right path is

traversed.

If ITL is true, the ADC is enabled, current

acceleration is input to the software, and the ADC is

disabled. After the ADC is disabled, control and information

flow continue along the ITL path toward possible detonation.

If ITL is false, the ADC is enabled, current

acceleration bias is sent to the software, and the ADC is

disabled. The control and information flow then updates the

acceleration and loops back to recheck ITL status.

Although there are four ADC instantiations in the net,

the SA system contains only one physical device. The ADC is

enabled/ disabled via one set of input places and feedback to

the system is via a single set of output places. Since a

Petri net is nondeterministic, there must be a modeling

methodology to ensure correct path maintenance. The method

we devised is to place system locks at module entry and exit

points whenever there was a path choice. This lock

guaranteed that only the correct transition would be enabled

upon module output. Figure 6-12 shows the ADC portion of the

final system net with path locks in place.

59

no-ITL

lock 1

Input current

acceleration

acceleration/ A

Inputted V^)

disable

RDC

input current

acceleration

bias

t54

RDC

disable

input

(t45 - t5

RDC
OUTPUT

Obias
inputted

t55_}^_ disable
" RDC

t45 - t5l) 6 no-ITL

lock 2

t57
Input

acceleration

bias

RDC
OUTPUT

156
update initial

acceleration

Figure 6-12. Portion of Final Petri Net Model With
Path. L££X&

Since three solenoid toggles will result in removing

the interruptor, we have used the model proposed in Peterson

60

[1981] to count the three required software commanded toggles

(iteration counter). This counter models the system

software trap and halts the program following the third

software-commanded solenoid toggle. In Figure 6-13, the

presence of two tokens in the counter reflects first

iteration completion prior to transition t79. Accordingly,

this counter will enable t79 for only two firings.

await
sep

distance

check

check

sep

distance

iteration

counter

Figure 6-13. Petri Net Model of a Counter

There is an aspect of the actual system that we

intentionally omitted to reduce model scope and complexity.

Actual system software enables the solenoid prior to, and

disables it following, each read/toggle. We enable the

solenoid initially and do not disable it on each iteration.

This should not affect model validity, since we proved

earlier that the disabled solenoid model could neither toggle

nor output status.

61

5 . P-NUT Aided Safety Analysis of System Model

We converted the graphical net to P-NUT text file

format, translated it, built the reachability graph, and

printed the reachability graph to an output file. The

resulting RGP output contained over 13,000 states and

required over five megabytes of memory storage. The sheer

magnitude of the reachability graph precluded manual

examination and forced total reliance on automated RGA

analysis. The textual version of the system Petri net is

shown in Appendix G.

Due to time constraints, we limited our RGA safety

analysis to reachability of major hazardous and mishap

states

.

To determine the possibility of missile detonation

while attached to aircraft wing we entered: hazardl := { s

in S | missl_on_rack (s) = 1 and detonation (s) = 1}.

RGA responded with the null set, meaning it was not a

reachable state of our model.

To determine if detonation could occur when ITL was

false, we entered the expression: hazard2 := { s in S
|

no_ITL(s) = and detonation (s) = 1] . RGA responded

with the null set.

We next determined the possibility of detonation

occurring without a minimum 4G boost. We entered hazard3 :=

62

{ s in S | fourG_bst_occrrd(s) = and detonation (s) =

1}, and RGA returned the null set.

As a final question, we asked if detonation could

occur if no power was routed to the computer. The expression

hazard4 := { s in S | cmptr_off (s) = 1 and

detonation (s) =1} also resulted in the null set.

63

VII. RESULTS AND CONCLUSIONS

A. RESULTS

This thesis has proposed a methodology for Petri net

modeling and automated safety analysis of a real-time

concurrent system. The sample system is a proposed air-to-

air guided missile Safety and Arming (SA) device. The

methodologies for initial modeling and safety analysis of

this representative real-time system methodology were

originally presented in Hayward [1987]. Our goal was to

refine the modeling methodology presented by Hayward and to

demonstrate the methodology for, and the feasibility of,

automating the safety analysis.

We introduced software safety, Petri nets, and

reachability theory. We demonstrated steps required to use

the Petri Net Utility Tools (P-NUT) and discussed the

extensibility of the P-NUT Reachability Graph Analyzer (RGA)

.

We next discussed P-NUT potential for automating detailed

safety analysis.

We have presented a methodology for system safety

analysis using Petri net modeling. Using this methodology,

we initially analyzed all aspects of system functionality and

documented internal interfaces. We then abstracted the

individual components and constructed Petri net component

models based on a thorough study of their operation, control

64

flow, and system interfaces. We converted each Petri net

model to textual form, entered it into P-NUT, and validated

model design using P-NUT automated tools. After all system

component models were verified, we examined the system Petri

net, as presented in Hayward [1987] . After comparing the

control flow of the net with our understanding of actual

system operation, we discussed the basis for several

refinements and demonstrated use of P-NUT to construct the

reachability graph. Function and use of various RGA

expressions and predefined functions for examination of

hazardous state reachability were then presented. We

concluded by demonstrating, from a preliminary standpoint,

how to determine system safety.

B. CONCLUSIONS

As previously stated, our initial research goal was the

automated analysis of a preexisting real-time system Petri

net model. Unfortunately, the preexisting system model

[Hayward 1987] was incomplete, requiring remodeling of

components and refinement of the system Petri net structure.

We essentially accepted the Hayward system framework and

employed a bottom-up approach. We redesigned component

interfaces and internals and verified correctness on the

module scale prior to refining the system net structure and

conducting automated safety analysis.

65

The recommended chronology for Petri net modeling and

automated safety analysis follows. A brief summary is

contained in Appendix H.

Initially, the modeler/analyst should study system

function and the designer's description of possible mishap or

hazardous states. He must then reduce the scope of the

system to include only significant aspects and details

pertinent to stated hazards. Although this is possibly the

most difficult step in the entire process, it is critical to

reducing scope and complexity of the resulting net. By the

very nature of mishaps, it is extremely difficult to

ascertain the relative import of individual components or

processes. It is therefore imperative to incorporate any

features of the system that may contribute to reaching

hazardous or mishap states. If more model detail is desired

after initial net construction, it is possible to refine the

original Petri net. Continuous feedback from the system

designer is critical to accurate modeling and safety

analysis

.

The modeler must study system and software flowcharts

thoroughly. He must document all software/hardware

interfaces and incorporate the flowcharts into a single Petri

net system description. Component internals should initially

be abstracted with "black-box" descriptions and incorporate

only required system interfaces. Multiple instantiations of

66

a component should be presented in the system net as separate

"black-box" descriptions.

After the framework is complete and approved by the

designer, system component functionality should be studied

and modeled. As in the system framework approach, one must

incorporate only the desired aspects of component behavior

and attempt to further divide the individual components into

submodules, i.e., NDRO module, toggle modules, etc. An

example of this second level of abstraction is found in our

solenoid module (Appendix C) . This Petri net model is

basically a combination of three two-state devices with

appropriate internal interfacing.

As each component model is completed, P-NUT should be

used to verify desired behavior. Proving component function

and interface correctness on the module level permits easy

and accurate incorporation into the system net.

After completing the initial system model, P-NUT should

be employed to construct the reachability graph. RGA

automated safety analysis is then possible and can verify

desired system behavior and safety.

Manual construction of a 13,000-state reachability graph

would be an arduous, lengthy, and error-prone process. P-NUT

can construct this size graph on a Sun 2 computer in under

two minutes of CPU time.

67

P-NUT is an extremely powerful suite of tools for Petri

net analysis. One of the major drawbacks of the Petri net

safety analysis methods cited in Leveson and Stolzy [1987] is

the difficulty of constructing reachability graphs for

complex concurrent-system Petri nets. The Reachability Graph

Builder eliminates this problem, while the Reachability Graph

Analyzer permits detailed analysis of the graph and reachable

state space. The extensibility of the RGA language makes it

extremely powerful and allows safety analysts to create and

use predefined function libraries. We have shown how RGA

quickly evaluates sensible and important safety questions.

Answering these questions for complex reachability graphs

would be extremely difficult, if not impossible, based on

manual construction and analysis.

While conducting our research, we came to fully

appreciate the feasibility and suitability of Petri nets for

software system modeling and safety analysis. In the course

of modeling system components, Petri nets were versatile

enough to enable accurate modeling of any system aspect

desired. Petri nets captured every essential feature of

system interface and control/information flow. Petri net

modeling requirements for full specification of system inter-

actions and dependencies forced us to explicitly state all

control flow or behavior assumptions. Often, by merely

68

converting our ideas to a Petri net structure, we observed

previously unnoticed assumption irregularities.

Methodologies presented in Hayward [1987] and this thesis

show that real-time system safety analysis is feasible using

Petri nets and the automated P-NUT suite. We have endeavored

to introduce the reader to these techniques and strongly

encourage further research in the area.

C. RECOMMENDATIONS

We have attempted to demonstrate the feasibility of

applying automated analysis tools to Petri net software

system modeling and safety analysis. The methodologies

presented are only a preliminary step in creating a complete

methodology for successful and accurate real-time system

Petri net modeling and automated safety analysis.

We strongly recommend that the next refinement of these

techniques incorporate timed Petri nets. The synchronization

facets of real-time concurrent systems can only be modeled

and analyzed completely if timing constraints are included.

Leveson and Stolzy [1987] discuss the application of timed

Petri nets to the modeling process. P-NUT contains tools

capable of construction and analysis of timed Petri net

reachability graphs. [Razouk, 1987; Morgan, 1987]

Leveson [1986] presents an algorithm for determination

and elimination of Petri net critical states. A logical next

step in automating software safety analysis is conversion of

69

this algorithm to RGA language. Translation should be

possible, given RGA language extensibility.

Leveson and Stolzy [1987] introduced the methodology of

simulating system faults within a Petri net model. The

technique consists of adding fault transitions to cause

unintended events or prevent occurrence of intended events.

Automated safety analysis is particularly suitable for this

technique as a new net reachability graph must be constructed

for any Petri net change. Although this is a very difficult

manual task, automation enables complex graph creation in

several minutes. The analyst could quickly model and analyze

a variety of specific component or software malfunctions.

This would allow for more complete and accurate assessment of

overall system safety.

Gaining familiarity with P-NUT is a difficult process.

We strongly recommend the creation of an automated user

interface. This interface might allow user construction and

storage of a graphical Petri net via P-NUT. The software

could use a graph-drawing capability with predefined place,

transition, and arc components. It could then cue the user

for suitable identifiers and interface with the Reachability

Graph Builder and Reachability graph analyzer for translation

of user reachability questions. With current user interface

technology this capability seems reasonable. P-NUT is a very

powerful and effective collection of Petri net analysis

70

tools. The only drawback to large-scale employment in

further safety analysis research is the current awkwardness

and difficulty of the user interface.

71

APPENDIX A

INTENT TO LAUNCH (ITL) SENSOR PETRI NET MODEL

ITL

TOGGLE

RECEIUED

r0n
ITL SENSOR
REROV

mr

ITL

TOGGLE

ENABLED

ITL

NO ITL

ITL NORO
INPUT

REflO

t2 ITL STATUS

t3

t5

16

ITL

IS TRUE

ITL

IS FRLSE

72

APPENDIX B

ANALOG TO DIGITAL CONVERTER (ADC) PETRI NET MODEL

ADC
DISABLE

INPUT

ADC
ENABLE
INPUT

M5
<r ir

t46
V V

HOC
DISABLE

RECEIUEO

rx
RDC
ENABLE
RECEIUEO

t47

t48

noc
OISRBLEO

tso

V JT

RDC (W
COMMAND V^_X^

0-
RDC

ENRBLED

149

PROCESSED

tSl -

©
'k Ready

ADC

RDC
Output

73

APPENDIX C

SOLENOID PETRI NET MODEL

J?

° 0; c

Li^
a*

JT
n rr

^ ° z

o
c»

JT

cr
9*

»J^JL
11

V v

o
JUL!?

=> *• —

1SI
sJSS

74

APPENDIX D

SOLENOID PETRI NET TEXT FILE

tO : toggle_left , system_ready -> left_toggle_received, in_use
tl: toggle_right, system_ready -> right_toggle_received, in_use
t2 : in_use, left_toggle_received, toggle_is_left ->toggle_is_left,

\

system_ready
:t3: right_toggle_received, toggle__is_left -> toggle_is_right,

\

toggled
:t4 :in_use,right_toggle_received, toggle_is_right, toggled ->\

toggle_is_right, system_ready
:t5: left_toggle_received, toggle_is_right -> toggle_is_left,

\

toggled
:t6: read_status, system_ready -> read_enabled, in_use
:t7: in_use, read_enabled, toggle_is_left -> status_is_left,

\

toggle_is_left, system_ready
:t8: in_use, read_enabled, toggle_is_right -> status_is_right, \

toggle_is_right, system_ready
t9: in_use, toggled -> toggled_output, system_ready
tlO: disable_input, system_ready -> system_disabled, en_dis_output
til: enable_input, system_ready -> system_ready
tl2: enable_input, system_disabled -> system_ready,en_dis_output
tl3: enable_input,in__use -> in_use
tl4: disable_input, in_use -> in_use
tl5: toggle_right, in_use -> in_use
tl6: toggle_left, in_use -> in_use
tl7: read_status, in_use -> in_use
tl8: disable_input, system_disabled -> system_disabled
tl9: read_status, system_disabled -> system_disabled
t20 : toggle_left, system_disabled -> system_disabled
t21: toggle_right, system_disabled -> system_disabled

/* the following code is for test loop purposes only*/

t22: status_is_left -> read_status
t23: status_is_left -> toggle_left
t24: status_is_left -> toggle_right
t25: status_is_left -> enable_input
t26: status_is_left -> disable_input

t27: status_is_right -> read_status
t28: status_is_right -> toggle_left
t29: status_is_right -> toggle_right
t30: status_is_right -> enable_input
t31: status_is_right -> disable_input

t32 : toggled_output -> read_status
t33 : toggled_output -> toggle_lef

t

t34: toggled_output -> toggle_right

75

:t35: toggled_output -> enable_input
:t36: toggled_output -> disable_input

t37 : en_dis_output -> read_status
t38: en_dis_output -> toggle_left
t39: en_dis_output -> toggle_right
t40: en_dis_output -> enable_input
t41: en_dis_output -> disable_input

<toggle_left (1) , toggle_is_right (1) , system_ready (1) > /*initial
markings*/

76

APPENDIX E

SOLENOID REACHABILITY GRAPH

0->l->2->3->8->13->20->22
I

+->19->23->8

+->7->12

+->6->ll->15->21->27->31->37->38

+->36->39->27

+->2 6

I

+->25

+->0

I

+->24

+->5->10->12

+->4->9->14->8

+->7

I

+->26->30

+->25->29->30
I

+->0

I

+->24->2l

+->35->38
I

+->34->38
I

+->33->38

->32->27

I

+->26
I

+->25

I

+->0

I

+->24

77

(from #3)

+->6 (from #14)

I

+->5

I

+->4

+->18->22 (from #13)

+->17->22

I

+->16->22

+->7

+->6

+->5

+->4

0. toggle_left, system_ready, toggle_is_right
1

.

left_toggle_received, in_use, toggle_is_right
2. in_use,toggle_is_left, toggled
3

.

system__ready, toggle_is_left, toggled_output
4

.

system_ready , toggle_is_left , read_status
5

.

toggle_left, system_ready, toggle_is_left
6. system_ready, toggle_right, toggle_is_left
7 . system_ready, toggle_is_left, enable_input
8

.

system_ready, toggle_is_left, disable_input
9. in_use, toggle_is_left, read_enabled
10. left_toggle_received, in_use, toggle_is_left
11

.

in_use, right_toggle_received, toggle_is_left
12. system_ready, toggle_is_left
13. toggle_is_left, system_disabled, en_dis_output
14

.

system_ready, toggle_is_left, status_is_left
15. in_use, toggle_is_right, toggled
16. toggle_is_left, read_status, system_disabled
17

.

toggle_left, toggle_is_left, system_disabled
18

.

toggle_right, toggle_is_left, system_disabled
19. toggle_is_left, system_disabled / enable_input
20

.

toggle_is_left,disable_input, system_disabled
21

.

system_ready, toggle_is_right, toggled_output
22

.

toggle_is_left, system_disabled
23

.

system_ready, toggle_is_left, en_dis_output
24 . system_ready, toggle_is_right, read_status
25

.

system_ready , toggle_right , toggle_is_right
26. system_ready, toggle_is_right, enable_input
27 . system_ready, toggle_is_right, disable_input
28. in_use, toggle_is__right, read_enabled
29. in_use, right_toggle_received, toggle_is_right
30. system ready, toggle is right

78

31

.

toggle_is_right, system_disabled, en_dis_output
32 . system_ready , toggle_is_right, status_is_right
33. toggle_is_right, read_status, system_disabled
34

.

toggle_left, toggle_is_right, system_disabled
35

.

toggle_right, toggle_is_right, system_disabled
36. toggle_is_right, system_disabled, enable_input
37. toggle_is_right,disable_input, system_disabled
38

.

toggle_is_right, system_disabled
39. system ready, toggle is right, en dis output

79

APPENDIX F

SAFETY AND ARMING (SA) SYSTEM

l lh.1 f.fflM . ml l

charga

Tiring

capacitor

firing I
j

capacitor \^ ^/
chorgad

to oatonata f t»3)

to

datonata

(t83)

arm
misula

USUI

bagin

loiimari

program

tofturara

program
ttartad 6

initiaiiza

I/O

ragutari

anobia

toianoid

I/O ragntart

initianzad

toianoid

anobie

racamad

'{ SOLENOID J ;

mimia
ralaasad

to and from

updata taporation

dutanca

(159)

to and from
updata

tap dutanca
(tS9)

to chack in itatut M42I

from updata
initial accal

U56)

80

from awaiting III status chack

from
firing

capacitor

chargad

from
sh uniockad

from

chick
foparatton

distanca

It 791

ITl

lock 2

from
chack

•ap
out

(t79l

to

detonata

(1851

to

arm
mittila

(1801

dalay

>r «r

,„ A
lock i vv

6

to

awaiting

ITl

status

chack

6
J^ no-Ill

lock I

input currant

accaiaration

accalaratio

inputtad

input currant

accaiaration

HOC

disabla

input

X"*N no- ITl

f] lock 2

ROC

OUIPUT

awaiting z' N

t56 I

fc, . input

157 iL- accaia

updata initial

accaiaration

"iK>
. . to raedu
* for wait

to «G

boost

occurrad

4 to

ITL it

trua

from
4G boost #
occurrad

from
no sap dist

ouorflow

(t 73)

81

(from loltnoid

NORO input)

ou«r1louf

ouarfloitf

ntoui l/3incrim«nti
ntarruptor of intorruptor

1/3 of u*oy ^ ^ arm
muiilo, f \

'

'

fc
mini

DUONflllON

82

APPENDIX G

SA SYSTEM PETRI NET TEXT FILE

:tO: aircrft -> rdy_to_fire_therm_btry,awaitng_SA_unlck_cmd,

\

awaitng_sig_to_fire_rckt_mtr,ITL_toggl_rcvd

/* following is ITL sensor module, tl - t6 */

tl

:

ITL_toggl_rcvd, ITL_snsr_rdy -> ITL_toggl_enabld
t2: ITL_NDRO_inpt,ITL_snsr_rdy -> rd_ITL_status
t3: ITL_toggl_enabld, ITL -> no_ITL, ITL_snsr_rdy
t4: ITL_toggl_enabld, no_ITL -> ITL, ITL_snsr_rdy
t5: rd_ITL_status,ITL -> ITL_is_true, ITL_snsr_rdy, ITL
t6: rd_ITL_status,no_ITL -> ITL_is_false, ITL_snsr_rdy, no_ITL,

\

awaitng_cmptr_jpwr
:t8: awaitng_SA__unlck_cmd, SA_lckd -> SA_unlckd
:t9: awaitng_sig_to_fire_rckt_mtr -> awaitng_4G_bst, \

awaitng_rack_rel
tlO: awaitng_cmptr_pwr, cmptr_of f -> cmptr_on
til: awaitng_rack_rel,missl_on_rack -> missl_rlsd
tl2: awaitng_4G_bst,missl_rlsd -> fourG_bst_occrrd
tl3: awaitng_frng_cap_chg -> frng_cap_chgd
tl4

:

cmptr_on -> sftwre_prgrm_startd
tl5: sftwre_prgrm_startd -> IO_reg_initlzd
tl6: IO_reg_initlzd -> solnoid_enabl_inpt

/* following is Solenoid module, tl7 _ t38 */

:tl7: toggl_lft_inpt, solnoid_rdy -> Ift_toggl_rcvd, solnoid_in_use
:tl8: toggl_rt_inpt, solnoid_rdy -> rt_toggl_rcvd, solnoid_in_use
:tl9: lft_toggl_rcvd, toggl_is_lft, solnoid_in_use -> toggl_is_lft, \

solnoid_rdy
:t20: rt_toggl_rcvd, toggl_is_lft -> toggl_is_rt, solnoid_toggld
:t21: rt_toggl_rcvd, toggl_is_rt, solnoid_in_use -> toggl_is_rt,

\

solnoid_rdy
:t22: lft_toggl_rcvd, toggl_is_rt -> toggl_is_lft, solnoid_toggld
:t23: solnoid_NDRO_inpt, solnoid__rdy -> solnoid_rd_enabld, \

solnoid_in_use
:t24: solnoid_rd_enabld, toggl_is_lft, solnoid_in_use -> \

status_is_lft,

\

toggl_is_lft, solnoid_rdy
:t25: solnoid_rd_enabld, toggl_is_rt, solnoid_in_use -> \

status_is_rt, \

toggl_is_rt, solnoid_rdy
:t26: solnoid_toggld, solnoid_in_use -> \

solnoid_toggld_outpt , solnoid_rdy
:t27: solnoid_disabl_inpt, solnoid_rdy -> solnoid_disabld,

\

solnoid_en_dis_outpt
:t28: solnoid_enabl__inpt, solnoid_rdy -> \

83

solnoid_rdy, solnoid_en_dis_outpt
:t29: solnoid_enabl_inpt, solnoid_disabld -> solnoid_rdy,

\

solnoid_en_dis_outpt

/* following transitions, t30 - t34, consume incoming tokens while
*/
/* solenoid is in use. this prevents accumulation at the input
places */

t30
t31
t32
t33
t34

solnoid_disabl_inpt, solnoid_in_use -> solnoid_in_use
solnoid_enabl_inpt, solnoid_in_use -> solnoid_in_use
toggl_rt_inpt, solnoid_in_use -> solnoid_in_use
toggl_lft_inpt, solnoid_in_use -> solnoid_in_use
solnoid NDRO inpt, solnoid in use -> solnoid in use

:t39:
:t40:
:t41:
:t42:
:t43:
:t44:

/* following transitions, t35 -t38, consume incoming tokens while
*/

/* solenoid is disabled */

:t35: solnoid_disabl_inpt , solnoid_disabld -> solnoid_disabld,

\

solnoid_en_dis_outpt
t36: solnoid_NDRO_inpt, solnoid_disabld -> solnoid_disabld
t37 : toggl_lft_inpt, solnoid_disabld -> solnoid_disabld
t38 : toggl_rt_inpt, solnoid_disabld -> solnoid_disabld

solnoid_en_dis_outpt -> lkup_tbl_blt
lkup_tbl_blt -> ptr_cnt_initlzd
ptr_cnt_initlzd -> awaitng_ITL_status_chck
awaitng_ITL_status_chck -> ITL_NDRO_inpt
ITL_is_true -> ADC_enabl_inpt, ITL_lock_l
ITL_is_false -> ADC_enabl_inpt,no_ITL_lock_l

/* following transitions, t45 - t51, are contained in ADC module */

t45: ADC_disabl_inpt, ADC_rdy -> ADC_disabl_rcvd
t4 6: ADC_enabl_inpt, ADC_rdy -> ADC_enabl_rcvd
t47: ADC_disabl_rcvd, ADC_disabld -> ADC_disabld, ADC_cmd_procssd
t48: ADC_enabl_rcvd, ADC_disabld -> ADC_enabld, ADC_cmd_j)rocssd
t49: ADC_enabl_rcvd, ADC_enabld -> ADC_enabld, ADC_cmd__procssd
t50: ADC_disabl_rcvd, ADC_enabld -> ADC_disabld, ADC_cmd_procssd
t51: ADC_cmd_j>rocssd -> ADC_outpt , ADC_rdy

t52: ADC_outpt,ITL_lock_l -> accel_inpttd
t53: ADC_outpt, no_ITL_lock_l -> accel_bias_inpttd
t54: accel_inpttd -> ADC_disabl_inpt, ITL_lock_2
t55: accel_bias_inpttd -> ADC_disabl_inpt,no_ITL_lock_2
t56: ADC_outpt,no_ITL_lock_2 -> awaitng_ITL_status_chck
t57: ADC_outpt, ITL_lock_2 -> awaitng_vel_updat
t58: awaitng_vel_updat -> awaitng_sep_dist_updat
t59: awaitng_sep_dist_updat, fourG_bst_occrrd -> sep_dist_updatd,

\

fourG_bst_occrrd
t60: sep_dist_updatd -> rchd_toggl_dist
t61: sep_dist_updatd -> not_rchd_toggl_dist

84

t62: rchd_toggl_dist -> ptr_cnt_incrmntd
t63: not_rchd_toggl_dist -> awaitng_tmr_strt
t64 : ptr_cnt_incrmntd -> solnoid_NDRO_inpt, await_timr_delay
t65: awaitng_tmr_strt -> tmr_running
t66: tmr_running -> awaitng_elpsd_time_chck
t67: awaitng_elpsd_time_chck -> tmr_running
t68: awaitng_elpsd_time_chck -> tmr_wait_ovr
t69: status_is_lft -> toggl_rt_inpt
t70: status_is_rt -> toggl_lft_inpt
t71: tmr_wait_ovr -> sep_dist_chckd
t72: sep_dist_chckd -> rchd_toggl_dist
t73: sep_dist_chckd -> ITL_is_true
t74: solnoid_toggld_outpt -> ball_lck_toggld
t75: ball_lck_toggld -> ball_rlsd
t76: ball_rlsd -> one_third_incrs_of_intrptor
t77: await_timr_delay -> rdy_for_wait200
t78: rdy_for_wait200 -> awaitng_sep_dist_chck
t79: awaitng_sep_dist_chck, iter_counter -> ITL_is_true
t80: one_third_incrs_of_intrptor (3) , SA_unlckd -> missl_armd
t81: missl_armd -> missl_lckd_in_arm
t82: missl_lckd_in_arm, snsr_detcts_tgt -> det_sig_rcvd
t83: frng_cap_chgd, det_sig_rcvd -> detonation

/* initial markings follow */

<aircrft (1) ,SA_lckd(l) ,missl_on_rack (1) , cmptr_off (1) ,no_ITL(l) , ITL_
snsr_rdy (1) , \

toggl_is_rt (1) , solnoid_rdy (1) ,ADC_rdy(l) , ADC_disabld(l) ,\
snsr_detcts_tgt (1) , iter_counter (2) >

85

APPENDIX H

SUMMARY OF MODELING AND ANALYSIS METHODOLOGY

The recommended chronology and methodology for Petri net

modeling and automated safety analysis of a software-

controlled real-time system follows.

1. Study system functions. Have the designer explicitly
identify all perceived hazardous conditions.

2. Study system and software flowcharts thoroughly.
Attempt to reduce system scope to include only
significant aspects pertinent to the stated hazards. If
in doubt as to significance of any detail, include it.

3. Document system interfaces. Incorporate all flowcharts
into a single Petri net system description. Abstract
component internal functions by including only "black-
box" component descriptions with external system
interfaces. To increase readability, multiple component
instantiations should be represented as separate "black-
box" descriptions.

4. Once the initial Petri net system framework is complete,
obtain verification from the designer. Study and model
component functionality with Petri nets. As in system
framework approach, incorporate only significant
aspects. Attempt a second level of abstraction by
further division of components into submodules and
internal interfaces.

5. Following completion of individual component Petri net
models, convert the nets to textual form. Any text
editor can be used. Chapter VI gives detailed
instructions for the conversion process.

6. Translate the component text file to internal Petri Net
UTilities (P-NUT) format. Redirect output to a second
file for later use. The appropriate translation command
is transl <filel> > <filel.pn>. The .pn suffix
identifies the file as an internal Petri net
representation

.

86

7. Build the reachability graph from the translated Petri
net file using the Reachability Graph Builder (RGB) and
redirect output. The proper command is rgb [-bs]
<filel.pn> > <filel.rg>. The optional suffix b
signals that the net is bounded at 127, while the s

suffix signals that the net is safe, or bounded at 1.

The .rg suffix denotes the file being in internal P-NUT
reachability graph form. Note that the input file must
be in internal P-NUT format.

8. The component's reachability graph can be printed in
readable form using the Reachability Graph Printer
(RGP) . Redirect output to a new file. The proper
command is rgp <filel.rg> > <filel.g>. The .g
suffix is a recommendation only.

9. Study the reachability graphs and state spaces of each
component. Verify that functionality has been
accurately modeled.

10. If the component is complex and has a large reachability
graph, use the Reachability Graph Analyzer to assist in
the analysis. The command to invoke RGA is rga
<filel.rg> [function libraries]. Notice that user-
defined function libraries may be invoked and used with
RGA. The input file to RGA must be in internal P-NUT
reachability graph format. Chapter VI gives several
detailed examples of analysis expression syntax for the
RGA language.

11. After validating component models, incorporate them into
a textual file version of the overall net. Repeat steps
6 through 10 for the system model. The final
reachability graph may contain several thousand states
necessitating analysis solely with the RGA. Translation
of safety analysis questions to RGA net terminology and
syntax is discussed in Chapter VI

.

87

LIST OF REFERENCES

Department of Information and Computer Science, University of
California, Irvine, CA, Report 85-06, Computer-Aided
Analysis of Concurrent Systems, by E . T. Morgan and R.
Razour, 8 Feb. 1985.

Department of Information and Computer Science, University of
California, Irvine, CA, Report 87-04, RGA User's Manual
Version 2.3, by E. T. Morgan, 13 Jan. 1987.

Department of Information and Computer Science, University of
California, Irvine, CA, Report 86-25, A Guided Tour of P-
NUT (Release 2.2), by R. R. Razour, Jan. 1987.

Ericson, C. A., "Software and System Safety", Proceedings of
the 5th International System Safety Conference (Denver,
CO), vol. 1, part 1, System Safety Society, Newport
Beach, CA, pp. III-B-1 to III-B-1, 1981.

Hayward, D. F., "A Practical Application of Petri Nets in the
Software Safety Analysis of a Real-Time Military System",
M.S. Thesis, Naval Postgraduate School, Monterey, CA,
December 1987.

Jahanian, F. and Mok, A. K., "Safety Analysis of Timing
Properties in Real-Time Systems", IEEE Transactions on
Software Engineering, SE-12, 9 Sept. 1986, pp. 890-904.

Konakovsky, R., Safety Evaluation of Computer Hardware and
Software . Proceedings of Compsac '78, IEEE, New York,
pp. 559-564, 1978.

Lauber, R., "Strategies for the Design and Validation of
Safety-Related Computer-Controlled Systems", Real-Time
Data Handling and Process Control, G. Meyer, ed., North-
Holland Publishing, Amsterdam, pp. 305-310, 1980.

Leveson, N. G., "Software Safety: Why, What, and How",
Computing Surveys, vol. 18, no. 2, June 1986.

Leveson, N. G., and Stolzy, J. L., "Safety Analysis Using
Petri Nets", IEEE Transactions on Software Engineering,
vol. SE-13, no. 3, Mar. 1987.

McVay, J., Point Paper on Conducting a Design, Development,
and Safety Review of a Guided Missile Safety-Arming
Device Utilizing a Noninterrupted Explosive Train, NWC TM
(draft), NWC, China Lake, CA, 1987.

MIL-STD-1316C, Safety Criteria for Fuze Design, Dept . of
Defense, GPO, Wash., DC, 3 Jan. 1984.

MIL-STD-1574A (USAF) , System Safety Program for Space and
Missile Systems, Dept. of Air Force, GPO, Wash., DC, 15
Aug. 1979.

MIL-STD-882B Notice 1, System Safety Program Requirements,
Dept. of Defense, GPO, Wash., DC, 1 July 1987.

MIL-STD-SNS (Navy), Software Nuclear Safety (draft),
available from Naval Weapons Evaluation Facility,
Kirtland Air Force Base, NM, 1986.

Peterson, J. L . , Petri Net Theory and the Modeling of
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

Petri, C, Kommunikation mit Automaten, Ph.D. dissertation,
University of Bonn, Bonn, West Germany, 1962.

Roland, H. E., and Moriarity, B., System Safety Engineering
and Management, Wiley, NY, 1983.

Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D.
F., Fault Tree Handbook, US Nuclear Regulatory
Commission, Report NURTEG-0492, Jan. 1981.

89

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

3. Commander (Code 34)
Naval Air Test Center
Patuxent River, MD 20 670

4. Commander (Code 31C)
Naval Weapons Center
China Lake, CA 93555

5. Commander (Code 3353)
Naval Weapons Center
China Lake, CA 93555

6. LCDR John Yurchak, USN (Code 52YY)
Naval Postgraduate School
Monterey, CA 93943-5002

7. Daniel Davis
MBARI
160 Central Avenue
Pacific Grove, CA 93950

8. Nancy Leveson
Department of Information and Computer Science
University of California
Irvine, CA 92717

9. Rami Razouk
Department of Information and Computer Science
University of California
Irvine, CA 92717

90

10. Duston Hayward
Naval Ocean Systems Command
Code 423
271 Catalina Boulevard
San Diego, CA 92152-5000

11. Robert Wasilausky
Naval Ocean Systems Command
Code 423
271 Catalina Boulevard
San Diego, CA 92152-5000

12. Uno Kodres (Code 52)
Naval Postgraduate School
Monterey, CA 93943-5002

13. LT Alan D. Lewis, USN
c/o LTG B. L. Lewis, USA (Ret.)
1928 Relda Court
Falls Church, VA 22043

91

thesis

Wis
?etri net

Thesis

L6046 Lewis

c.l Petri net modeling and

software safety analysis:

Methodology for an embed-

ded military application.

