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ABSTRACT

Traditionally, the design and implementation of a conventional database system

begins with the selection of a data model, followed by the specification of a model-based

data language. Hence, the database system is restricted to a single data model and a

specific data language. One alternative to this traditional approach to database-system

development is the multi-lingual database system (MLDS). This alternative approach

affords the user the ability to access and manage a large collection of databases, via

several data models and their corresponding data languages, without the aforementioned

limitations.

This thesis presents a methodology for supporting the Functional Data Model and

the Data Language DAPLEX for the MLDS. Specifically, we design an interface which

translates DAPLEX data language calls into attribute-based data language (ABDL)

requests. A description of the software engineering aspects of the implementation and an

overview of the modules which comprise our DAPLEX language interface are provided.
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I. INTRODUCTION

A. MOTIVATION

During the past twenty years database systems have been designed and implemented

using what we refer to as the traditional approach. The first step in the traditional

approach involves choosing a data model. Candidate data models include the hierarchical

data model, the relational data model, the network data model, the entity-relationship data

model, or the attribute-based data model to name a few. The second step specifies a

model-based data language, e.g., SQL for the relational data model, or DL/I for the

hierarchical data model.

Numerous database systems have been developed utilizing this methodology. For

example, in the sixties, IBM introduced the Information Management System (IMS),

which supports the hierarchical data model and the hierarchical model-based data

language, Data Language I (DL/I). In the early seventies, Sperry Univac introduced the

DMS-1100, which supports the network data model and the network model-based data

language, CODASYL Data Manipulation Language (CODASYL-DML). Recently, IBM

introduced the SQL/Data System which supports the relational model and the relational

model-based data language, Structured English Query Language (SQL). The result of this

traditional approach to database system development is a homogeneous database system

that restricts the user to a single data model and a specific model-based data language.



An unconventional approach to database system development, is referred to as the

Multi-Lingual Database System (MLDS) [Ref. 1], alleviates the aforementioned

restriction. This new system affords the user the ability to access and manage a large

collection of databases via several data models and their corresponding data languages.

The design goals of MLDS involve developing a system that is accessible via a

hierarchical/DL/I interface, a relational/SQL interface, a network/CODASYL interface,

and a functional/DAPLEX interface.

There are a number of advantages in developing such a system. Perhaps the most

practical of these involves the reusability of database transactions developed on an

existing database system. In MLDS, there is no need for the user to convert a transaction

from one data language to another. MLDS permits the running of database transactions

written in different data languages. Therefore, the user does not have to perform either

a manual or an automated translation of existing transactions in order to execute a

transaction in the MLDS. The MLDS provides the same results even if the data language

of the transaction originates at a different database system.

A second advantage deals with the economy and effectiveness of hardware upgrade.

Frequently, the hardware supporting the database system is upgraded because of

technological advancements or system demands. With the traditional approach, this type

of hardware upgrade has to be provided for all of the different database systems in use,

so that all of the users may experience system performance improvements. This is not

the case in MLDS, where only the upgrade of a single system, i.e., MLDS itself, is



necessary. In MLDS, the benefits of a hardware upgrade are uniformly distributed across

all users, despite their use of different models and data languages.

A third advantage is that a multi-lingual database system allows users to explore the

desirable features of the different data models and then use these to better support their

applications. This is possible because MLDS supports a variety of databases structured

in any of the well-known data models.

It is apparent that there exists ample motivation to develop a multi-lingual database

system with many data model/data language interfaces. In this thesis, we are developing

a functional/DAPLEX interface for MLDS. We are extending the work of Shipman [Ref.

4], who has shown the feasibility of this particular interface in a MLDS.

B. THE MULTI-LINGUAL DATABASE SYSTEM (MLDS)

A detailed discussion of each of the components of MLDS is provided in subsequent

chapters. In this section we provide an overview of the organization of MLDS. This

assists the reader in understanding how the different components of MLDS are related.

Figure 1 shows the system structure of a multi-lingual database system. The user

interacts with the system through the language interface layer CLIP , using a chosen user

data model (UDM) to issue transactions written in a corresponding model-based user data

language (UDL) . LIL routes the user transactions to the kernel mapping system (KMS) .

KMS performs one of two possible tasks. First, the KMS transforms an UDM-based

database definition to a database definition of the kernel data model (KDM) , when the

user specifies that a new database is to be created. Second, when the user specifies that



an UDL transaction is to be executed, KMS translates the UDL transaction to a

transaction in the kernel data language (KDL) . In the first task, KMS forwards the KDM

data definition to the kernel controller (KC) . KC, in turn, sends the KDM database

definition to the kernel database system (KDS) . When KDS is finished with processing

the KDM database definition, it informs KC. KC then notifies the user, via LIL, that the

database definition has been processed and that loading of the database records may

begin. In the second task, KMS sends the KDL transactions to the KC. When KC

receives the KDL transactions, it forwards them to KDS for execution. Upon completion,

KDS sends the results in the KDM form back to KC. KC routes the results to the kernel

formatting system (KFS) . KFS reformats the results from KDM form to UDM form.

KFS then displays the results in the correct UDM form via LIL.

The four modules, LIL, KMS, KC, and KFS, are collectively known as the model

language interface, for short, interface. Four similar modules are required for each of the

model/language interface of MLDS. For example, there are four sets of these modules

where one set is for the hierarchical/DL/I interface, relational/SQL interface,

network/CODASYL interface, and the functional/DAPLEX interface. However, if the

user writes the transaction in the native mode (i.e., in KDL), there is no need for an

interface.



UDM : USER DATA MODEL
UDL: USER DATA LANGUAGE
LIL: LANGUAGE INTERFACE LAYER
KMS: KERNEL MAPPING SYSTEM
KC: KERNEL CONTROLLER
KFS: KERNEL FOMATTING SYSTEM
KDM: KERNELDATA MODEL
KDL: KERNEL DATA LANGUAGE
KDS: KERNEL DATABASE SYSTEM

Figure 1. The Multi-Lingual Database System



C. THE KERNEL DATA MODEL AND LANGUAGE

The choice of a kernel data model and a kernel data language is the key decision in

the development of a multi-lingual database system. The overriding question, when

making such a choice, is whether the kernel data model and kernel data language is

capable of supporting the required data-model transformations and data-language

translations for the language interfaces.

The attribute-based data model proposed by Hsiao [Ref. 5], extended by Wong [Ref.

6], and studied by Rothnie [Ref. 7], along with the attribute-based data language (ABDL),

defined by Banerjee [Ref. 8], have been shown to be acceptable candidates for the kernel

data model and kernel data language, respectively.

Why is the determination of a kernel data model and kernel data language so

important for a MLDS? No matter how multi-lingual the MLDS may be, if the underlying

kernel database system (i.e., KDS) is slow and inefficient, then the interfaces may be

rendered useless and untimely. Hence, it is important that the kernel data model and

kernel language be supported by a high-performance and great-capacity database system.

Currently, only the attribute-based data model and the attribute-based data language are

supported by such a system. This system is the multi-backend database (MBDS) [Ref.

1].



D. THE MULTI-BACKEND DATABASE SUPERCOMPUTER

The multi-backend database supercomputer (MBDS) has been designed to overcome

the performance problems and upgrade issues related to the traditional approach of

database computer design. This goal is realized through the utilization of multiple

backends connected in a parallel fashion. These database backends have identical

hardware, replicated software, and their own disk systems. In a multiple-backend

configuration, there is a backend controller, which is responsible for supervising the

execution of database transactions and for interfacing with the hosts and users. The

backends perform the database operations with the database stored on the disk systems

of the respective backends. The controller and backends are connected by a

communication bus. Users access the system through either the hosts or the controller

directly. MBDS is depicted in Figure 2.

Performance gains are realized by increasing the number of backends. If the size of

the database and the size of the responses to the transactions remain constant, then MBDS

produces a reciprocal decrease in the response times for the same user transactions when

the number of backends is increased. On the other hand, if the number of backends is

increased proportionally with the increase in databases and responses, then MBDS

produces invariant response times for the same transactions. A more detailed discussion

of MBDS is found in [Ref. 9].
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In this thesis, we investigate the design of the functional-data-model and the

functional-data language, i.e., (DAPLEX) interface for MLDS. Shipman [Ref. 41,

provided the initial specification of DAPLEX. We are extending his specification to

support the requirements of MLDS. In particular, we present a specification for the

kernel mapping system (KMS) that will be used in the interface.

Throughout this thesis, we provide examples of DAPLEX requests and their translated

ABDL equivalents. All examples involving database operations presented in this thesis

are based on the education database described in Date [Ref. 10 pp. 644l> as shown in

Figure 3 - COURSE

OFFERING

STUDENT TEACHER

EMPLOYEE

FIGURE 3. REFERENTIAL DIAGRAM FOR THE EDUCATION
DATABASE



II. THE DATA MODELS

The choice of a kernel data model and a corresponding kernel data language is of vital

importance in developing the multi-lingual database system (MLDS). The kernel data

model and the kernel data language must be capable of supporting all the necessary data-

model transformations and data-language translations required by the MLDS language

interfaces.

It is our intention in this chapter to provide a description of the data models and

languages related to the functional/DAPLEX interface, namely, the functional data model

and the attribute-based data model and the DAPLEX data language and the attribute-based

data language. A conceptual view of both models and languages is presented herein with

a brief discussion of the data structures and language constructs associated with each

model and language pair.

A. THE FUNCTIONAL DATA MODEL

The functional data model uses the concept of a mathematical function as its

fundamental modeling construct. Any request for information can be visualized as a

function call with certain arguments, and the function returns the required information.

The main modeling primitives are entities and functional relationships among those

entities. The functional data model and the functional language DAPLEX [Ref. 5] are

selected for the functional interface of MLDS.

10



As defined in [Ref. 5], the basic concept of the functional data model consists of the

entity and the function. These are intended to model conceptual objects and their

properties. A function, in general, maps a given entity into a set of target entities. There

are several standard types of entities at the most basic level; these are STRING,

INTEGER, CHARACTER, REAL, etc. and are called printable entity types . Abstract

entity types that correspond to real-world objects are given the type ENTITY as also

described by Elmasri and Navathe [Ref. 6: pp. 444].

As discussed by Shipman [Ref 5: p. 141], some properties of an object are derived

from properties of other objects to which it is related. For example, assume that each

course has an "instructor of property. We may then consider an "instructor of property

which relates students to their individual instructors. Such a property would be based on

the "instructor of property of those courses in which the student is enrolled. The

principle of conceptual naturalness dictates that it be possible for users to treat such

derived properties as if they were primitive. This follows, for example, even though the

same real-world situation is being modeled, that properties which are "derived" in one

database formulation may be "primitive" in another, and are termed derived functions .

The problem of database representation is complicated by the fact that no single

model of reality may be appropriate for all users and problem domains. The properties

which are considered relevant and the mechanisms by which they are most naturally

referenced vary. Even the decision as to what constitutes an object depends on the real

world is viewed assumed. To cope with these issues, the functional data model provides

for the construction of separate user views of the database. Because user views are

11



specified in terms of derived functions, complex interrelationships among views may be

accommodated.

Further, the functional data language DAPLEX, provides the user to specify the way

the user models the problems. For example, consider the education database in Figure

3; we will show how some of the entity types and relationship types in that schema can

be specified in a functional DAPLEX-like notation. The COURSE, OFFERING,

STUDENT, TEACHER, EMPLOYEE entity types are declared in Figure 4.

COURSEO -> ENTITY
OFFERING!) -> ENTITY
STUDENTO -> ENTITY
TEACHERO -> ENTITY
EMPLOYEEQ -> ENTITY

Figure 4. A DAPLEX-like Specification

The statements in Figure 4 specify that the functions, COURSE, OFFERING,

STUDENT, TEACHER, and EMPLOYEE return abstract entities, and hence these

statements serve to define the corresponding entity types.

B. THE ATTRIBUTE-BASED DATA MODEL

The attribute-based data model was originally described by Hsiao [Ref.10]. It is a

very simple but powerful data model capable of representing many other data models

without loss of information. It is this simplicity and universality that makes the attribute-

12



based model the ideal choice as the kernel data model for MLDS, and the attribute-based

data language (ABDL) as the kernel language for MLDS as well.

1. A Conceptual View of the Model

The attribute-based data model is based on the notions of attributes, and values

for these attributes. An attribute and its associated value is therefore referred to as an

attribute-value pair or keyword . These attribute-value pairs are formed from a Cartesian

product of the attribute names and the domains of the values for the attributes. Using this

approach, any logical concept can be represented by the attribute-based model.

A record , in the attribute-based model represents a logical concept. In order to

specify the concept thoroughly, keywords must be formed. A record then, is simply a

concatenation of the resultant keywords, such that no two keywords in the record have

the same attribute. Additionally, the model allows for the inclusion of textual

information, called the record body , in the form of a possibly empty string of characters

describing the record or concept. The record body is not used for search purposes.

Figure 5 gives the format of an attribute-based record:

(<attributel,valuel>, ...,

<attributen,valuen>,

{ text })

Figure 5: An Attribute-Based Record

13



The angled brackets, <,>, are used to enclose a keyword where the attribute is first

followed by a comma and then the value of the attribute. The record body is then set

apart by curly brackets, {,}. The record itself is identified by the enclosure within

parentheses. As can be seen from the above, this is quite a simple way of representing

information.

In order to access the database, the attribute-based model employees an construct

called predicates. A keyword predicate, or simply predicate is a triple of the form

(attribute, relational operator, value). These predicates are then combined in disjunctive

normal form to produce a query of the database. In order to satisfy a predicate , the

attribute of a keyword in a record must be identical to the attribute in the predicate. Also,

the relation specified by the relational operator of the predicate must hold between the

value of the predicate, and the value of the keyword. A record satisfies a query if all

predicates of the query are satisfied by certain keywords of the record. A query of two

predicates as below

(TYPE = CSET) and (CNUM = Kl)

would be satisfied by any record of TYPE CSET (course type) whose CNUM (course

number) is Kl, and it would have the following form,

14



(<attributel,valuel>, ...,<TYPE,CSET>, ... ,

<CNUM,K1>, ... ,<attributen,valuen>,{text}).

2. The Attribute-Based Data Language (ABDL)

ABDL as defined by Banerjee, Hsiao, and Kerr [Ref. 11] was originally

developed for use with the Database Computer (DBC). This language is the kernel

language used in MLDS. ABDL supports the five primary database operations, INSERT,

DELETE, UPDATE, RETRIEVE, and RETRIEVE-COMMON. Those of importance

to us in this portion of the MLDS work, however, are INSERT, DELETE, UPDATE,

and RETRIEVE. A user of this language issues either a request or a transaction. A

request in ABDL consists of a primary operation with a qualification. The qualification

specifies the portion of the database that is to be operated on. When two or more

requests are grouped together and executed sequentially, we have a transaction in ABDL.

There are four types of requests, corresponding to the four primary database operations

listed above. They are referred to by the same names.

A record is inserted into the database with an INSERT request. The qualification for

this request is a list of keywords and a record body. Records are removed from the

database by a DELETE request. The qualification for this request is a query.W hen

records in the database are to be modified, the UPDATE request is utilized. There are

two parts to the qualification for this request. They are the query and modifier. The

query specifies the records to be modified while the modifier specifies how the records

are to be modified.

15



The final request to be mentioned here is the RETRIEVE request. As its name

implies, it retrieves records from the database. The qualification for this request consists

of a query, a target-list, and an optional by-clause. The query specifies the records to be

retrieved. The target-list contains the output attributes whose values are required by the

request, or it may contain an aggregate operation, i.e., AVG, COUNT, SUM, MIN, or

MAX, on one or more output attribute values. The by-clause is optional and is used to

group records when an aggregate operation is specified.

As indicated, ABDL consists of some very simple database operations. These

operations, nevertheless, are capable of supporting complex and comprehensive

transactions. Thus, ABDL meets the requirement of capturing all of the primary

operations of a database system, and is quite useful for our purposes.

C. THE DATA STRUCTURES

The functional/DAPLEX language interface has been developed to provide two kinds

of data: (1) data shared by all users, and (2) data specific to each user. The reader

should realize that the data structures used in our interface, and described below, have

been deliberately made generic. Hence, these same structures support not only our

functional/DAPLEX interface, but the other model/language interfaces as well, i.e.,

relational/SQL, network/CODASYL-DML, and hierarchical/DL/I.

1. Data Shared by AH Users

The data structures that are shared by all users, are the database schemas defined

by the users thus far. In our case, these are functional schemas, consisting of segments

16



and attributes. These are not only shared by all the functional database users, but also

shared by the four modules of MLDS, i.e., LIL, KMS, KC, and KFS. Figure 6 depicts

the first data structure used to maintain data.

union dbid_node

{

struct rel_dbid_node *rel;

struct hiedbidnode *hie;

struct net_dbid_node *net;

struct ent_dbid_node *ent;

}

Figure 6. The dbid_node Data Structure.

It is important to note that this structure is represented as a union. Hence, it is generic

in the sense that a user may utilize this structure to support other model/language

interfaces. However, we concentrate only on the functional/DAPLEX interface. In this

regard, the fourth field of this structure points to a record that contains information about

an entity dbid node for a functional database. Figure 7 illustrates this record.

17



struct ent_dbid
r

node

char name[DBNLength + 1];

struct ent_non_node nonentptr;

int edn_num_nonent
struct ent_node entptr;

int ednnument
struct gen_sub_node *subptr;

int ednnumgen
struct sub_non_node *nonsubptr;

int ednnumnonsub
struct der_non_node nonderptr;

int edn_num_der
struct over!ap_node *overptr;

int edn_num_ovr
struct ent dbid node *next_db;

Figure 7. The ent_dbid_node Data Structure.

The first field is simply a character array containing the name of the functional database.

The next pointer field establishes each base-type nonentity node, followed by its integer

value field of nonentity types. The next field pointer is for each entity node, followed

by an integer value field of entity types. The next field defines for each generalization

(supertype/subtype) nodes, followed by an integer value field of generalized subtypes.

The next field is a pointer for each subtype nonentity node, followed by an integer value

field of nonentity subtypes. The tenth field points to each derived type nonentity node,

followed by an integer value field of nonentity derived types. The eleventh field points

to the overlapping constraints in the database, followed by an integer value field of

overlap nodes. The final field is simply a pointer to the next database.

18



Figure 8. is the structure definition for each base-type nonentity node. The first

field of the record holds the name of the node. The next field serves as a flag to indicate

the attribute type. For instance, an entity may either be an integer, a string, a floating

point number, or boolean. The characters "i", "s", "f ', "b" are used, respectively. The

third field indicates the maximum length of base_type value. For example, if this field

is set to ten and the type of this attribute is a string, then the maximum number of

characters that a value of this attribute type may have is ten. The fourth field can be true

or false depending on whether there is a range. If range exists, there must be two entries

into ent_value. The fifth field indicates the number of actual values, and the six field

indicates the actual value of base_type. The seventh field is boolean to reflect constant

value. The last field is simply a pointer to the next ent_non_node.

struct ent_non_node

{

char enn_name[ENLength + 1 ];

char enn_type;

int enntotallength;

int enn_range;

int enn_num_values;

struct ent_value *enn_value

int enn_constant;

struct ent non node *enn next node;

Figure 8. The entnonnode Data Structure.
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Figure 9 is the structure definition for each entity node. The first field is an

array which holds the name of the node. The second field keeps track of the unique id

assigned to each entity type in the database. The third field indicates the number of

associated functions. The fourth field if proven to be true (=1), indicates a terminal type.

The fifth field is a function node pointer and the last field points to the next entity node.

struct ent node

{

char en_name[ENLength + 1 ];

int en_last_ent_id;

int ennumfunct;
int en_terminal;

struct function_node *en_ftnptr;

struct ent_node *en_next_ent;

Figure 9. The ent_node Data Structure.

Figure 10 is the structure definition for each generalization (supertype/subtype)

node. The first field is an array which holds the name of the node. The second field

indicates the number of associated functions. The third field if proven to be true (=1),

indicates a terminal type. The fourth field is a pointer to an entity supertype, whereas the

fifth field provides the number of entity supertypes. The next field indicates a function

node pointer, followed by the seventh field which indicates a pointer to a subtype

supertype. The next field indicates the number of subtype supertypes present and the last

field points to the next gen_sub node.
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struct gen_sub_node

char gsn_name[ENLength + 1 ];

int gsn_num_funct;

int gsn_terminal;

struct ent_node_list *gsn_entptr;

int gsn_num_ent;

struct functionnode *gsn_ftnptr;

struct sub_node_list *gsn_subptr;

int gsnnumsub;
struct gen_sub_node *gsn_next_genptr;

Figure 10. The gen_sub_node Data Structure.

Figure 11. is the structure definition for each subtype nonentity nodes. The first field

of the record holds the name of the node. The next field serves as a flag to indicate the

attribute type. For instance, an entity may either be an integer, a string, a floating point

number, or boolean. The characters "i", "s", "f ', "b" are used, respectively. The third

field indicates the maximum length of subtype value. The fourth field can be true or false

depending on whether there is a range. If range exists, there must be two entries into

ent_value. The fifth field indicates the number of actual values, and the six field

indicates the actual value of subtype. The last field is simply pointer to the next

sub non node.

21



struct subnonnode
{

char snn_name[ENLength + 1 ];

char snntype;

int snntotallength;

int snn_range;

struct snn_num_values;

struct ent_value *snn_value;

struct sub_non_node *snn_next_node;

}

Figure 11. The sub_non_node Data Structure.

Figure 12. is the structure definition for each derived type nonentity node. The

first field of the record holds the name of the node. The next field serves as a flag to

indicate the attribute type. For instance, an entity may either be an integer, a string, a

floating point number, or boolean. The characters "i", "s", "f ', "b" are used, respectively.

The third field indicates the maximum length of subtype value. The fourth field can be

true or false depending on whether there is a range. If range exists, there must be two

entries into ent_value. The fifth field indicates the number of actual values, and the six

field indicates the actual value of subtype. The last field is simply pointer to the next

der non node.
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struct der_non_node

{

char dnn_name[ENLength + 1 ];

char dnntype;

int dnntotallength;

int dnn_range;

struct dnnnumvalues;
struct ent_value *dnn_value;

struct der non node *dnn next node;

Figure 12. The der_non_node Data Structure.

Figure 13 is the structure definition for overlapping constraints. The first field

)f the record holds the name of the node. The second field indicates a pointer to subtype

;upertype. The third field indicates the number of subtype supertypes and the last field

s simply a pointer to the next node.

struct overlapnode

{

char base_type_name[ENLength + 1 ];

struct sub_node_Iist *snlptr;

int num_sub node;

struct overlapnode *next;

}

Figure 13. The overlap_node Data Structure.
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2. Data Specific to Each User

This category of data represents information required to support each user's

particular interface need. The data structures used to accomplish this need may be

thought of as forming a hierarchy. At the root is the user_info record, shown in Figure

14, which maintains information on all current users of a particular language interface.

The user_info record holds the ID of the user, a union that describes a particular interface,

and a pointer to the next user.

struct user_info

{

char uid[UIDLength + 1];

union li_infoli_type;

struct user_info*next_user;

}

Figure 14. The userjnfo Data Structure.

The union field is of particular interest to us. As noted earlier, a union serves

as a generic data structure. In this case, the union may hold the data for a user accessing

any one of the model/language interface via LIL. The li_info union is shown in Figure

15.
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union Ii_info

{

struct sqlinfolisql;

struct dIi_infoIi_dli;

struct dmlinfolidml;

struct dapinfolidap;

}

Figure 15. The li_info Data Structure.

We are only interested in the data structures containing user information that

certain to the functional/DAPLEX interface. This structure is referred to as dap_info and

is depicted in Figure 16. The first field of this structure, curr_db, is itself a record and

contains currency information on the database being accessed by a user. The second

field, file, is also a record. The file record contains the file descriptor and file identifier

Df a file of DAPLEX transactions, i.e., either requests or database descriptions. The field,

iml_tran, is also a record, and holds information that describes the DAPLEX transactions

to be processed.

25



in. THE LANGUAGE INTERFACE LAYER (LIL)

LIL is the first module in the functional/DAPLEX mapping process, and is used to

control the order in which the other modules are called. LIL allows the user to input

transactions from either a file or the terminal. A transaction may take the form of either

a database description (DBD) of a new database, or a DAPLEX request against an

existing database. A transaction may contain multiple requests. This allows a group of

requests that perform a single task, such as a looping construct in DAPLEX, to be

executed together as a single transaction. The mapping process takes place when LIL

sends a single transaction to KMS. After the transaction has been received by KMS, KC

is called to process the transaction. Control always returns to LIL, where the user may

close the session by exiting to the operating system.

LIL is menu-driven. When transactions are read from either a file or the terminal,

they are stored in a data structure called dap_req_info. If the transactions are DBDs, they

are sent to KMS the in sequential order. If the transactions are DAPLEX requests, the

user is prompted by another menu to selectively choose an individual request to be

processed. The menus provide an easy and efficient way for the user to view and select

the methods of request processing desired. Each menu is tied to its predecessor, so that

by exiting one menu the user is moved up the "menu tree." This allows the user to

perform multiple tasks in one session.
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\. THE LIL DATA STRUCTURES

LIL uses two data structures to store the user's transactions and control which

ransaction is to be sent to KMS. It is important to note that these data structures are

shared by both LIL and KMS.

The data structure used by LIL is named dap_req_info and is shown in Figure 17.

Each copy of this record represents a user transaction, and thus, is an element of the

ransaction list. The first field of this record, req, is a character string that contains the

ictual DAPLEX transaction. After all the lines of a transaction have been read, the line

ist is concatenated to form the actual transaction, req. The second field of this record,

eq_len, contains the length of this transaction. It is used to allocate the correct and

runimal amount of the memory space for the transaction. The third field, in_req, is a

jointer to a list of character arrays that each contains a single line of one transaction,

f a transaction contains multiple requests, the fourth field, sub_req, points to the list of

equests that make up the transaction. In this case, the field in_req is the first request of

he transaction. The last field, next_req, is a pointer to the next transaction in the list of

ransaction.

char *dri_req;

int dri_req_Ien;

struct temp_str_info *dri_in_req;

struct dri_req_info *dri_sub_req;

struct dri_req_info *dri_next_req;

Figure 17. The dap_req_info Data Structure.
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B. FUNCTIONS AND PROCEDURES

LIL makes use of a number of functions and procedures in order to create the

transaction list, pass elements of the list to KMS, and maintain the database schemas. We

describe these functions and procedures briefly in the following sections.

1. Initialization

MLDS is designed to be able to accommodate multiple users, but is

implemented to support only a single user. To facilitate the transition from a single-user

system to a multiple-user system, each user possesses his or her own copy of the user

data structure when entering the system. This user data structure stores all of the relevant

data that the user may need during the session. All four modules of the language

interface make use of this structure. The modules use many temporary storage variables,

both to perform their individual tasks, and to maintain common data between modules.

The transactions, in the user-data-language form, and the mapped-kernel-data-language

form, are also stored in each user data structure. It is easy to see that the user structure

provides consolidated, centralized control for each user of the system. When a user logs

onto the system, a user data structure is allocated and initialized. The user ID becomes

the distinguishing feature to locate and identify different users. The user data structures

for all users are stored in a linked list. When new users enter the system, their user data

structures are appended to the end of the list. In our current environment there is only
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i single element on the user list. In a future environment, when there are multiple users,

ive simply expand the user list as described above.

2. Creating the Transaction List

There are two operations the user may perform. A user may define a new

iatabase or process DAPLEX requests against an existing database. The first menu that

s displayed prompts the user to select the operation desired. Each operation represents

i separate procedure to handle specific circumstances. The menu looks like the

bllowing:

Enter type of operation desired

(1) - load a new database

(p) - process existing database

(x) - return to the operating system

ACTION —

>

For either choice (i.e., I or p), another menu is displayed to the user requesting

he mode of input. This input may always come from a data file. If the operation

selected from the previous menu had been " p" , then the user may also input transactions

nteractively from the terminal. The generic menu looks like the following:

Enter mode of input desired

(f) - read in a group of transactions from a file

(x) - return to the main menu

ACTION —->
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Each mode of input selected corresponds to a different procedure to be performed. The

transaction list is created by reading from the file or terminal, looking for an end-of-

transaction marker or an end-of-file marker. These flags tell the system when one

transaction has ended, and when the next transaction begins. When the list is being

created, the pointers to the list are initialized. The pointers are then set to the first

transaction read, in other words, the head of the transaction list.

3. Accessing the Transaction List

Since the transaction list stores both DBDs and DAPLEX requests, two different

access methods have to be employed to send the two types of transactions to KMS. We

discuss the two methods separately. In both cases, KMS accesses a single transaction

from the transaction list. It does this by reading the transaction addressed by the request

pointer. Therefore, it is the job of LIL to set this pointer to the appropriate transaction

before calling KMS.

a. Sending DBDs to KMS

When the user specifies the filename of DBDs (input from a file only),

any further user intervention is not required. To produce a new database, the transaction

list of DBDs is sent to KMS via a program loop. This loop traverses the transaction list,

calling KMS for each DBD in the list.

b. Sending DAPLEX Requests to KMS

In this case, after the user has specified the mode of input, the user

conducts an interactive session with the system. First, all DAPLEX requests are listed

30



:o the screen. As the requests are listed from the transaction list, a number is assigned

:o each transaction in ascending order, starting with the number one. The number appears

:>n the screen to the left of the first line of each transaction. Note that each transaction

nay contain multiple requests. Next, an access menu is displayed which looks like the

Allowing:

Pick the number or letter of the action desired

(num) - execute one of the preceding transactions

(d) - redisplay the list of transactions

(r) - reset the currency pointer to the root

(x) - return to the previous menu
ACTION —->

Since DAPLEX requests are independent items, the order in which they are processed

ioes not matter. The user has the option of executing any number of DAPLEX requests.

^\ loop causes the menu to be redisplayed after any DAPLEX request has been executed

>o that further choices may be made. The "r" selection causes the currency pointer to

oe. repositioned to the root of the functional schema so that subsequent requests may

iccess the complete database, rather than be limited to the beginning of a current position

established by previous requests.

4. Calling KC

As mentioned previously, LIL acts as the control module for the entire system.

When KMS has completed its mapping process, the transformed transactions must be sent

:o KC to interface with the kernel database system. For DBDs, KC is called after all
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DBDs on the transaction list have been sent to KMS. The mapped DBDs have been

placed in a mapped transaction list that KC is going to access. Since DAPLEX requests

are independent items, the user should wait for the results from one DAPLEX request

before issuing another. Therefore, after each DAPLEX request has been sent to KMS,

KC is immediately called. The mapped DAPLEX requests are placed on a mapped

transaction list, which KC may easily access.

5. Wrapping-Up

Before exiting the system, the user data structure described in Chapter II must

be deallocated. The memory occupied by the user data structure is freed and returned to

the operating system. Since all of the user structures reside in a list, the node for the

exiting user must be removed from the list also.

struct dap info

{

struct curr_db_info curr db;

struct fiIe_info file;

struct tran_info drni tran;

struct ddHnfo *ddl_files;

int operation;

int answer;

int error;

int buff_count;

union kms_info kms_data;

union kfs_info kfs_data;

union kc_info kcdata;

Figure 16. The dapinfo Data Structure.
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The next field, ddl_files, is a pointer to a record describing the descriptor and

template files. These fields contain information about the ABDL schema corresponding

to the current functional database being processed, i.e., the ABDL schema information for

a newly defined functional database. The next field of the dap_info record, operation, is

a flag that indicates the operation to be performed. This may be either the loading of a

new database or the execution of a request against an existing database. The next field,

answer, is used by LIL to record answers received through its interaction with the user

of the interface. The next field, error, is an integer value representing a specific error

type. The buff_count field is a counter variable used in KC to keep track of the result

buffers. The following fields, kms_data, and kfs_data, are unions that contain information

required by KMS and KFS.
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IV. THE KERNEL MAPPING SYSTEM (KMS)

KMS is the second module in the DAPLEX mapping interface and is called from the

language interface layer (LIL) when LIL has received DAPLEX requests input by the

user. The function of KMS is to (1) parse the request to validate the user's DAPLEX

syntax, (2) translate or map the request to equivalent ABDL request(s), and (3) perform

a semantic analysis of the current ABDL request(s) generated during a previous call to

KMS. Once an appropriate ABDL request or a set of requests has been formed, it is

made available to the kernel controller (KC) which then prepares the request for execution

by MBDS. KC is discussed in Chapter V.

A. AN OVERVIEW OF THE MAPPING PROCESS

From the description of the KMS functions above we immediately see the requirement

for a parser as a part of KMS. This parser validates the DAPLEX syntax of the input

request. The parser grammar is the driving force behind the entire mapping system.

1. The Parser / Translator

As the low-level input routine, we utilize a Lexical Analyzer Generator (LEX)

[Ref. 16]. LEX is a program generator designed for lexical processing of character input

streams. Given a regular-expression description of the input strings, LEX generates a
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program that partitions the input stream into tokens and communicates these tokens to the

parser.

The KMS parser has been constructed by utilizing Yet-Another-Compiler

Compiler (YACC) [Ref. ]. YACC is a program generator designed for syntactic

processing of token input streams. Given a specification of the input language structure

(a set of grammar rules), the user's code is to be invoked when such structures are

recognized. YACC generates a program that syntactically recognizes the input language

ind allows invocation of the user's code throughout this recognition process. The class

Df specifications accepted is a very general one such as the LALR(l) grammars. It is

important to note that the user's code mentioned above is our mapping code that is going

to perform the DAPLEX-to-ABDL translation.

The parser produced by YACC consists of a finite-state automaton with a stack

and performs a top-down parse, with left-to-right scan and one token look-ahead. Control

of the parser begin initially with the highest-level grammar rule. Control descends

through the grammar hierarchy, calling lower and lower-level grammar rules which search

for appropriate tokens in the input. As the appropriate tokens are recognized, some

portions of the mapping code may be invoked directly. In other cases, these tokens are

propagated back up the grammar hierarchy until a higher-level has been satisfied, at

which time further translation is accomplished, when all of the necessary lower-level

grammar rules have been satisfied and control has ascended to the highest-level rule, the

parsing and translation processes are complete.
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2. The KMS Data Structures

KMS utilizes, for the most part, just five structures defined in the interface. It,

naturally, requires access to the DAPLEX input request structure discussed in Chapter II,

the dap_req_info structure. However, the five data structures to be discussed here are

only those unique to KMS.

The first of these, shown in Figure 18, is a record that contains information

accumulated by KMS during the grammar-driven parse that is not of immediate use. This

record allows the information to be saved until a point in the parsing process where it

may be utilized in the appropriate portion of the translation process. The first fields in

this record, tempt_ptr, namel_ptr and id, are pointers to the head of the list of attribute

and the initial name selected. This is the name of the attribute whose values are retrieved

from the database. The third field, overfirst_ptr, is a pointer of the general sub_node list,

the fourth field, der_non points to each derived type nonentity nodes. The next field is

a pointer for each subtype nonentity node, followed by a pointer which establishes each

base-type nonentity nodes. The next field is a pointer for each function type declaration,

followed by the next field which indicates the actual value of base_type. The remaining

structures are described in the remaining text.
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struct dap

{

struct

kms_info

idenMist *dki_temp_ptr;

struct idenMist *dki_namel_ptr;

struct idenMist *dki_id_ptr;

struct subnodelist *dki_overfirst_ptr;

struct der_non_node *dki_der_non;

struct sub_non_node *dki_sub_non;

struct entnonnode *dki_ent_non;

struct function_node *dki_funct;

struct ent_value *dki_ev_ptr;

struct dap_create_Iist *dki_create;

struct req_line_list *dki_req_ptr;

struct createentlist dkicelptr;
struct overlap_node *dki_create_ovrptr;

struct ent_value_list dkievlptr;
struct dml_statement *dml_statement_ptr;

struct Ioop_info *loop_info_ptr;

Figure 18. The dapkmsinfo Data Structure

Figure 19 is the structure for dap_create_list. It contains an integer field to hold the req_type

from an insert or a retrieve request. The structures that support this list is the dap_av_pair_list and the

dap_create_list. The dap_av_pair_list generally contains a single item, which points to a single insert

list. However, in the case of multiple path insertion, the list contains an item that points to each insert

list, corresponding to each entity type to be inserted. The create_list is a pointer to the next list to be

inserted.
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struct dapcreatelist

{

int req_type;

char en_name[ENLength + 1];

struct dap_av_pair_Iist *av_pair_ptr;

struct dap_create_Iist *next;

}

Figure 19. The dap_create_list Data Structure.

The dap_av_pair_list contains a character string to receive the name length to include a stru

define the function node to determine the number of values to be inserted for a given av_pair

also contains an entity value pointer to determine the entity values in the insert lists. The last

the dap_av_pair_list pointer to the next list to be evaluated.

struct dapavpairlist

{

char name[ENLength + 1 ];

struct function_node *ftnptr;

intnum_value

struct ent_value *valptr;

struct dap_av_pair_list *next;

};

Figure 20. The dapavpairlist Data Structure.

The req_line_list structure contains the REQLength constant for defining the

maximum lengths of entity names, respectively. The last field is a pointer to the next entity in
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struct req_Iine_list

{

char req_line[REQLength];

struct req_Iine_list *next;

}

Figure 21. The req_line_list Data Structure.

The create_ent_list contains two pointer structures, one for the entity nodes in the list and one

or the subtypes with one or more entity supertypes. The last field is a pointer to the next node in the

LSt.

struct create_ent_Iist

{

struct ent_node_list *enl_ptr;

struct sub_node_list *snl_ptr;

struct create_ent_list *next;

}

Figure 22. The create_ent_list Data Structure.

The ent_value_list was discussed in Chapter n. The dml_statement is a pointer

which points to any DAPLEX expression. This structure provides an integer for any type of expression

hat is in the list such as Assignment, Include, Exclude, Destroy, Move, Procedure, and Create. The

econd field is the expression pointer followed by the field to check the index to see if the component

s indexed. This is followed by the basic expression list field to check for literary context. The last

tructure compares the expression with associated expression in the list.
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struct dml statement

int type;

struct dap_expr_info*dap_expr_ptr;

struct indexed_component*indexed_comp_ptr;

struct basic_expr_Iist*basic_expr_ptr;

struct comp_assoc_list*comp_assoc_ptr;

Figure 23. The dmlstatement Data Structure.

The loop_info structure is the last structure in kms_info. This structure

contains a structure for the domain_info. This establishes the fact that only one of the first tw<

is active at one time. The next structure order_comp_list is a pointer that defines the sort ordei

list. It indicates if the order of the list is ascending or descending. The last field in the structur

dml_statement2 pointer to the next statement list.

B. The Attribute-Based Data Language (ABDL)

The access and manipulation of a database are performed through five primary operations

delete, update, retrieve and retrieve-common). Four of these operations are formed by utiliz

queries as just described. A brief description of each operation follows.

The INSERT request is used to insert a new record into a specified file of an existing datab

takes the form:

INSERT Record

40



\n example of an INSERT operation which inserts a student record into a file named Student is:

INSERT(<FILE = Student>, <SNAME = Baker>,<SNUM = 8942>)

The DELETE operation is used to remove one or more records from the database. A DELETE

>peration takes the form:

DELETE Query

\n example operation is used to remove one or more records from the database. A DELETE which

emoves all students named 'Jackson' from the Student file is:

DELETE ((FILE = Student) and (SNAME = Jackson))

An UPDATE is used to modify records of the database. An UPDATE request consists of two parts.

The syntax is:

UPDATE Query Modifier

\n example of an UPDATE request which changes the grade of a student named Margaret to an 'A'

s:
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UPDATE ((FILE = Student) and (SNAME = Oliver) (GRADE = 'A'))

A RETRIEVE request is used to retrieve records from the database. The database is not altered]

operation. A RETRIEVE consists of three parts, a query, a target-list and an optional by-clam

target list specifies the set of attribute values to be output to the user. It may consist of an ag

operation (avg, count, sum, min, or max). The by-clause is used to group the output record

syntax for a RETRIEVE request is:

RETRIEVE (Query) (Target-list) (By-clause)

For example:

RETRIEVE (FILE = Student) (SNAME) BY SNUM

would retrieve the names of all students, ordered by their student number.

The final operation is the RETRIEVE-COMMON request. It is used to merge two

common attribute values. The syntax for a RETRIEVE-COMMON request is:

RETRIEVE (Query 1) (Target-list 1)

COMMON (attribute 1, attribute 2)

RETRIEVE (Query 2) (Target-list 2)
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A.n example of such a request is:

RETRIEVE (FILE = STUDENT) (SNAME)
COMMON (SNAME, TNAME)
RETRIEVE (FILE = TEACHER) (TNAME)

Oris request would display a list of students and teachers that share a common name. As with the

-etrieve command, the database is not modified by this operation.

C. The Data Manipulation Language (DAPLEX)

1. The Retrieve Query

Data retrieval is the most basic operation of DAPLEX. Mapping indicates that a known

quantity (DEPARTMENT) = 'Math', is to be transformed into a desired quantity

[LNAME) by means of an attribute (L). The entities to be returned are listed in the RETRIEVE clause.

The WHERE clause specifies the retrieval conditions. As an example, if we desire to retrieve the last

names of all students majoring in 'Math'; we could write the following DAPLEX query:

RETRIEVE LNAME(MAJORING_IN(DEPARTMENT))
WHERE DNAME(DEPARTMENT) = 'Math'

This is because the inverse function MAJORING_IN(DEPARTMENT) returns STUDENT entities, so

we can apply the derived function LNAME(STUDENT) to those entities.

The RETRIEVE construct allows the user great flexibility in data retrieval operations. To declare

composite attributes, such as NAME, we have to declare them to be entities and then declare their
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component attributes as functions. There are many other possible variations to the RETRIEVE op

including the extremely useful nested functional notation. In the nested RETRIEVE, the result

RETRIEVE request is embedded in the declaration clause to which it is applied.

2. The Insert Query

The INSERT request allows the user to insert a new argument or attributes about a j

Insertion of a single attribute can be accomplished through the use of a query. For example,

suppose we want to insert the middle initial of a student majoring in Computer Science named 1

A. Tucker.

FOR A Student

BEGIN
LET Name (Student) = "Michael Tucker"

LET MINIT(Student) = "A"
LET Dept (Student) = THE Department SUCH THAT
Name (Department) = "Computer Science"

INSERT MINIT(Name(Student))
PRINT Name(Student)

3. The Update Query

UPDATE statements are used to specify the value returned by a function when

applied to particular entities. Some examples illustrate the syntax involved.

"Add a new student named Fred the Math department."

FOR A NEW STUDENT
BEGIN
LET Name (Student) = "Bill"

LET Dept (Student) = THE Department SUCH THAT
Name (Department) = "Math"
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In order to enroll the above student in a particular course in the Math department such

is Differential Equations; use the above syntax and add the following:

LET Course (Student) = THE Course SUCH THAT
Name (Course) = "Differential Equations"

END

The following illustrates the incremental updating of multi-valued functions.

Drop 'Introductory Calculus' from Fred's courses and add 'Calculus II',"

FOR THE Student SUCH THAT Name (Student) = "Fred"

BEGIN
EXCLUDE Course (Student) =

THE Course SUCH THAT Name (Course) =

"Introductory Calculus"

INCLUDE Course (Student) =

THE Course SUCH THAT Name (Course) =

"Calculus II"

END

UPDATE statements set the value that a function is to return when it is applied

3 particular arguments. In the context of a DAPLEX expression, however, a function's

rguments are not always individual entities but rather sets of entities. This is simply a

;sult of the fact that the argument to a function is an expression which in general

valuate to a set. When a function is evaluated, the result is the union of all entities
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returned by the function applied to all members of its argument set. Thus, "List all

courses taken by CS students,"

FOR EACH
Course (Student SUCH THAT Dept (Student) = "CS")

PRINT Title (Course)

The argument to the "Course" function here is a set of "Student" entities. The

evaluation of the function returns the set of all courses taken by any of these students.

Note that each course is listed only once. Shipman [Ref. 2, pp. 151].

4. The Delete Query

The DELETE specifies attributes to be removed from the database. The

attributes are indicated by means of an expression value and the an expression role. The

expression value is the set of entities returned by evaluating the expression. The

expression role is the entity type under which these entities are to be interpreted when

resolving external function name ambiguities. As an example, to DELETE Fred Forest

from the course database for the math curriculum mentioned above, we may use the

following query.

DELETE NAME(MAJORING_IN(DEPARTMENT))
WHERE DNAME(DEPARTMENT) = "Math" AND
NAME(PERSON) = "Fred Forest"
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The Name 'Fred Forest' is deleted from the database for the math department, not from

the university's database.

D. The DAPLEX-to-ABDL Mapping

When the user wishes LEL to process requests against an

existing database, the first task of KMS is to map the user's DAPLEX requests to

equivalent ABDL requests.

1. The DAPLEX RETRIEVE Calls to the ABDL RETRIEVE

KMS maps each DAPLEX RETRIEVE request into as in most cases, a series

of ABDL RETRIEVE requests. An operator identification flag is set during the

translation process which allows KC to associate the appropriate operation to these

requests for controlling their execution.

If we take the retrieve query stated in section C:

RETRIEVE LNAME(MAJORING_IN(DEPARTMENT))
WHERE DNAME(DEPARTMENT) = 'Math'

This call retrieves information concerning the first occurrence the last name of a student

enrolled in the math department. The series of ABDL requests generated for such a call

is as follows:
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[ RETRIEVE ((TEMPLATE = DEPARTMENT) and
(DNAME = Math))

(DNUM) BY DNUM ]

[ RETRIEVE ((TEMPLATE = MAJORING_IN) and

(DNUM = ****))

(DATE) BY DATE ]

[ RETRIEVE ((TEMPLATE = STUDENT) and

(DNUM = ****) and

(DATE = ******))

(SNUM, LNAME, GRADE) BY SNUM ]

Notice that only the firstt RETRIEVE request generated is fully-formed, i.e., may be

submitted to MBDS "as-is." Subsequent sequence-field values have been obtained from

the execution of previous requests. This process takes place in KC. KMS uses asterisks,

as place holders, to mark the maximum allowable length of such sequence fields. Each

RETRIEVE request, with the exception of the first, is generated solely to extract the

functional path to the desired record node. (By doing this, they allow KC to establish and

maintain the current position within each record referenced in a DAPLEX call).

Consequently, the only attribute in each target list is that of the record sequence field.

Of course, the target list of the last request contains all the attributes of the desired node.

It is the information obtained from the execution of the final request which is returned

to the user, via KFS. Also of note is that each request includes the optional ABDL "BY

Attribute_name" clause. The work of Weishar [Ref. : pp. 39-42] has proposed that the

results obtained from each RETRIEVE request would be sorted by sequence-field value

in the language interface. We chose to let KDS (i.e., MBDS) perform this operation
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through the inclusion of a "BY sequence_field" clause on all ABDL RETRIEVE

requests.

2. The DAPLEX INSERT Calls to the ABDL RETRIEVE

This call retrieves information concerning the next occurrence of the last name

)f a student in the math department, and the majoring in department which have been

established as the current DEPARTMENT and MAJOPJNG_IN records within the

latabase by the previous RETRIEVE operation (of any type) or INSERT operation. If

/alues are to be inserted for each attribute of the record type, there is no requirement to

ist the attribute names. Only the attribute values need be listed. However, they have to

ippear in the same order in which they were defined during the original definition of the

latabase. Due to the ABDL requirement that the INSERT request include values for all

ittributes, in the case where the user does not specify values for all attributes in the

•ecord, the KMS translator inserts default values. We use a zero (0) and a "z" as the

iefault values for the data types integer and character, respectively.

The DAPLEX INSERT consists of attributes, the first of which is preceded by the

eserved word INSERT. This sequence of attributes has to specify the complete

:

unctional path from the parent to the node to be inserted. An example of such a call is

is follows:
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LET NAME(STUDENT) = "Michael Tucker"

LET MINIT(STUDENT) = "A"
INSERT MINIT(NAME(STUDENT))

The ABDL request generated for such a call is as follows:

[ RETRIEVE ((TEMPLATE = STUDENT) and

(SNAME = Michael Tucker))

(SNUM) BY SNUM ]

[ INSERT (<TEMPLATE, MINIT>,
<SMINIT, A>,

<FNAME, Michael>,

<LNAME, Tucker>) ]

There is no indication, from the ABDL request generated, that the DAPLEX call

contained a looping construct. However, a loop pointer is set during the translation

process which allows KC to discern that a looping construct exists and the extent of such

a construct. The KMS translator recognizes that the first node of search argument of this

DAPLEX call does not specify the parent node as its record type. Consequently, it

performs a walk of the functional schema, in reverse order, to obtain the sequence fields

required to complete the translation process, i.e., those that specify the complete path

from the parent to the record concerned; in this case SNUM.
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3. The DAPLEX UPDATE Calls to the ABDL RETRIEVE

The DAPLEX UPDATE call is used to retrieve a given record occurrence into

a work area, and hold it there so that it may subsequently be updated or deleted. ABDL

does not have this requirement. Therefore, when the KMS parser encounters one of these

alls, the KMS translator treats them as a corresponding RETRIEVE call. Thus the

mapping processes described in the previous subsection are applicable to the INSERT

;alls. Such a call has no meaning with an INSERT operator.

4. The DAPLEX DELETE Calls to the ABDL RETRIEVE

The DAPLEX DELETE consists of a UPDATE call, together with the reserved

word DELETE immediately following the last attribute in the UPDATE portion of the

:all. When the KMS parser encounters the EXCLUDE portion of the call, the KMS

translator generates the appropriate ABDL RETRIEVE requests. Then, when the

reserved word DELETE is parsed, the KMS translator generates appropriate ABDL

DELETE requests to delete the current record occurrence (i.e., for the current position

just established by the UPDATE portion of the call), as well as all of the children,

grandchildren, etc. (i.e., the descendants) of the current record occurrence. For example,

using the example in section

C, subsection 4:

DELETE NAME(MAJORING_IN(DEPARTMENT))
WHERE DNAME(DEPARTMENT) = "Math" AND
NAME(PERSON) = "Fred Forest"
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Assuming that there is only one person named Fred Forest, this call deletes the

occurrences of that name within the Math department, but does not delete it from the

university's database.

[ RETRIEVE ((TEMPLAE = PERSON) AND
(PNAME = Fred Forest))

(SNUM) BY SNUM ]

[ RETRIEVE ((TEMPLATE = MAJORINGJN) AND
(DNUM = ****))

(DATE) BY DATE ]

[ DELETE ((TEMPLATE = MAJORING_IN) AND
(DNUM = ****))

(DATE = ******))
]

[ DELETE ((TEMPLATE = DEPARTMENT) AND
(DNUM = ****) AND
(DATE = ******))

]

[ DELETE ((TEMPLATE = PERSON) AND
(DNAME = Math))

(DNUM) BY DNUM ]

[ DELETE ((TEMPLATE = STUDENT) AND
(DNUM = ****) AND
(DATE = ******))

]

In general , a single RETRIEVE request is generated in the UPDATE portion of the

DAPLEX DELETE: (1) if the node type is a child, a single ABDL DELETE is

generated for that node, and (2) if the node is not a child, a pair of ABDL requests are

generated for that node, one RETRIEVE and one DELETE. Notice that each
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RETRIEVE request simple retrieves the sequence-field attribute for the appropriate node

ype. The sequence-field values are all that is required, since no information is returned

o the user as a result of these RETRIEVE requests. These values required to complete

he DELETE requests, specifying the complete functional path from the parent to the node

o be deleted.

53



V. THE KERNEL CONTROLLER

The Kernel Controller (KC) is the third module in the DAPLEX language interface

and is called by the language interface layer (LIL) when a new database is being created

or when an existing database is being manipulated. In either case, LIL first calls the

Kernel Mapping System (KMS) which performs the necessary DAPLEX-to-ABDL

translations. KC is then called to perform the task of controlling the submission of the

ABDL transactions to the multi-backend database system (MBDS) for processing. If the

transaction involves inserting, deleting or updating information in an existing database,

the control is returned to LIL after MBDS processes the transaction. If the transaction

involves a set of retrieval requests, KC sends the translated ABDL requests (which are

equivalent to the DAPLEX transaction) to MBDS, receives for the requests the results

from MBDS, loads the results into the appropriate file buffer, and displays the results to

the user.

These ideas may best be illustrated by examining the following example. Suppose the

user issues the following DAPLEX request:

FOR EACH Course

SUCH THAT FOR SOME Offering(Course)

CNUM(Course) = "Mlds" AND
OFFERING(Date(Course)) = "920326" AND
GRADE(Student) = "A"

54



rhis request is translated to the following series of ABDL requests:

[ RETRIEVE ((TEMPLATE = COURSE) AND
(CTITLE = Mlds))

(CNUM) BY CNUM ]

[ RETRIEVE ((TEMPLATE = OFFERING) AND
(CNUM = ****) AND
(DATE = 920326))

(DATE) BY DATE ]

[ RETRIEVE ((TEMPLATE = STUDENT) AND
(CNUM = ****) AND
(DATE = ******) AND
(GRADE = A))

(SNUM, SNAME, GRADE) BY SNUM ]

ECC is now called to control the transmission of these requests to MBDS for execution.

Generally, this is accomplished by forwarding the first RETRIEVE request to MBDS.

Results are gathered and placed in a file buffer. Notice that the next RETRIEVE is not

r
ully-formed. Therefore, it is necessary to replace the asterisks with a value that is

extracted from the first RETRIEVE request in the file buffer. In this example, the value

is a course number of CNUM. Again, the request is forwarded to MBDS, and appropriate

*esults are obtained. The last RETRIEVE request is also not fully-formed. In this case,

attribute values from both the first and second RETRIEVE requests are utilized to

complete the ABDL request. Thus, a value is pulled from the file buffer associated with

the second request, and the same number of CNUM is used to form the final request.
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The fact that a new value is not pulled from the first request in the file buffer illustrates

the currency within the functional database. Specifically, the values that are used in

subsequent RETRIEVE requests have to be consistent with those values used in earlier

requests. This ensures that the path used to retrieve values from the database is consistent

with previous retrievals and the database functions.

The procedures that make up the interface to KDS (therefore, MBDS) are contained

in the test interface (TI) of MBDS. To fully integrate KC with KDS, KC calls procedures

which are defined in TI.

In this chapter we discuss the processes performed by KC. This discussion is in two

parts. First, we examine the data structures relevant to KC, followed by an examination

of the functions and procedures found in KC.

A. THE KC DATA STRUCTURES

In this section we review some of the data structures discussed in Chapter II, focusing

on those structures that are accessed and used by KC. The first data structure used by

KC is the dap_info record shown in Figure 19. The first field, curr_db, is a pointer to

the current user of the system; the second field, file, indicates the DAPLEX files

requested. The third field, dml_tran, indicates the dml transactions, and the fourth field,

ddl_files, indicates to KC where execution of a group of abdl ddl files is to begin. The

next three fields are integer fields that contain what DAPLEX operation to be performed

(INSERT, DELETE, RETRIEVE, UPDATE), the final answer given to the user, or an
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;rror message for the given request. The next field of interest, buff_count, is an integer

lsed to maintain the control of the file buffers associated with the results of each

RETRIEVE request. For instance, the results associated with the first RETRIEVE

equest of our last example are placed in a file buffer with an extension of "0." The

)uff_count is incremented by one, and the results associated with the second request are

>laced in a file buffer with an extension of "1."

struct dap_info

{

struct curr_db_infodpi_curr_db;

struct file_info dpi_file;

struct tran_info dpi_dml_tran;

struct ddMnfo *dpi_ddl_files;

int dap_operation;

int dap_answer;

int dap_error;

int dap_buff_count;

union kms_info dpi_kms_data;

union kfs_info dpi_kfs_data;

union kcjnfo dpi_kc_data;

};

Figure 16. The dapinfo Data Structure.

There is also a structure that supports the tracking of many-to-many relationships in

)APLEX. This structure indicates to KC where the linkage on the group of nodes takes

)lace. The first field is a pointer to a character string. The second field is an integer

ield for the linkage number, and the final field is a pointer to the next many_to_many

tode.

57



struct many_to_many_node

{

char name[ENLength + 1];

int link_number;

struct many_to_many_node*next_m_m;

};

Figure 24. The many_to_many_node Data Structure.

The next data structure is the run_unit structure, which maintains all information about

the ancestry of the nodes presently being accessed in the system. The first field is a

pointer to the ru_rec_type character string. The second field is also a character string for

the ancestor node. Information about the ancestor node is required by the delete and

special-retrieve procedures for a proper execution. The next field is a integer that holds

the run_unit dbkey request. The last field, is a pointer to the run_unit member.

struct ru_unit

{

char ru_rec_type[RNLength + 1];

char ancestor[ANLength + 1];

int ru_dbkey;

struct rumem *ru_memkey;

};

Figure 25. The rununit Data Structure.
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The next structure, ru_mem, is the structure that maintains the member information.

struct rumem
{

char *memkey;
struct ru_mem*next_mem;

};

Figure 26. The rumem Data Structure.

The next data structure, cur_record, establishes the current record that is being

jrocessed by the system. The first and second fields are pointers to character strings

>ositions in the memory. The next field is an integer field that is the placement holder

>f the actual current record key. The last structure is a pointer to the next cr_record.

struct cur_record

{

char cr_type[RNLength + 1];

char ancestor[ANLength +1];

int crdbkey;
struct cur_record*cr_next_rec;

};

Figure 27. The currecord Data Structure.
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The next structure, cur_set, contains the information needed by KC to process a

DAPLEX request. The first five fields are pointers for the current set type. This

information is utilized by KC to obtain information about the name, ancestor, type, owner

and member of the current set. These are all character strings. The next field, own, is

a boolean field, and can be true or false. The next field is the current key integer field

and the owner key field. The last structure is a pointer to next set of nodes.

struct cur_set

{

char cs_set_name[SNLength + 1];

char ancestor[ANLength + 1];

char cs_type[SNLength + 1];

char cs_owner[RNLength + 1];

char cs_member[RNLength + 1];

int cs_own;

int cs_dbkey;

int cs_owner_dbkey;

struct cur set *cs next set;

Figure 28. The cur_set Data Structure.

B. FUNCTIONS AND PROCEDURES

KC makes use of a number of different functions and procedures to manage the

transmission of the translated DAPLEX requests (i.e., ABDL requests) to KDS. Not all

of these functions and procedures are discussed in detail. Instead, we provide the reader

with an overview of how KC controls the submission of the ABDL requests to MDBS.
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1. Controlling Requests.

The dap_kc procedure is called whenever LIL has an ABDL transaction for KC

o process. This procedure provides the master control over all other procedures used in

CC. The first portion of this procedure initialize's global pointers that are used

hroughout KC. Specifically, kc_curr_pos is set to point to the first node that is to be

)rocessed by KC, and kc_ptr is set to the address of the li_dap structure for a particular

lser. The remainder of this procedure is a case statement that calls different procedures

?ased upon the type of ABDL transaction being processed. If a new database is being

rreated, the load_tables procedure is called. If the transaction is of any other type, the

equests_handler is called. If the transaction is none of the above, there is an error and

m error message is generated with the control returned to LIL.

2. Creating a New Database

The creation of a new database is the least difficult transaction that KC handles.

The load_tables procedure is called, which performs two functions. First, the test

nterface (TI) dbl_template procedure is called. This procedure is used to load the

latabase-template file created by KMS. Next, the TI dbl_dir_tbls procedure is called.

This procedure loads the database-descriptor file. These two files represent the attribute-

)ased metadata that is loaded into KDS, i.e., MBDS. After execution of these two

)rocedures, the control returns to LIL.
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3. The Insert Request

The INSERT requests are all handled in a similar manner. Suppose the

following DAPLEX request is issued by the user:

FOR EACH Course

SUCH THAT FOR SOME Course(Student)

OFFERING(Date(Course)) = "920326" AND
GRADE(Student) = "A"

This request is translated to the following series of ABDL RETRIEVE requests:

[ RETRIEVE ((TEMPLATE = COURSE) AND
(CNUM) BY CNUM ]

[ RETRIEVE ((TEMPLATE = OFFERING) AND
(CNUM = ****) AND
(DATE = 920326))

(DATE) BY DATE ]

[ RETRIEVE ((TEMPLATE = STUDENT) AND
(CNUM = ****) AND
(DATE = ******) AND
(GRADE = A))

(SNUM, SNAME, GRADE) BY SNUM ]
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\lso suppose this is the first request the user issues against the database. The

cc_curr_pos is set to point to the first ABDL RETRIEVE request shown above. If the

cc_curr_pos and cs_set point to the same dap_info node, then KC knows that this is the

irst request issued by the user, and that the first RETRIEVE is fully-formed .

Since the first RETRIEVE request is complete, it may be immediately forwarded to

£DS for execution. This is accomplished by calling run_unit. This procedure uses two

H procedures and the dap_chk_requests_left procedure. In general, the run_unit sends

:he ABDL request to KDS and waits for the last response to be returned.

After the last response is returned, the control is returned to the cur_record. Now, the

;ur_rec has to process the remaining RETRIEVE requests until the end-of-request flag

s detected. Therefore, the kc_curr_pos now points to the kc_curr_pos -> next, i.e, the

second RETRIEVE. However, this RETRIEVE request may not be forwarded to KDS

3ecause it is incomplete. Hence, the build_request procedure is called to complete the

request. In this instance, a course number (CNUM) is substituted for the place-holding

asterisks. This value is obtained from the first RETRIEVE in the file buffer. This

RETRIEVE may now be forwarded to KDS for execution in the same fashion as the first

RETRIEVE.

4. The Exclude (Delete) Requests

Exclude (Deletes) are the most difficult operations for KC to process. The

problem with handling these operations is that they affect the entire database hierarchy

is opposed to just a linear path within the database. Suppose the user issues the

Allowing DAPLEX request:

63



FOR EACH Course

SUCH THAT Oftering(Course)

EXCLUDE CNUM(Course) = "Mlds" AND
OFFERING(Date(Course)) = "920326"

This request is translated to the following series of ABDL requests:

[ RETRIEVE ((TEMPLATE = COURSE) AND
(CTITLE = Mlds))

(CNUM) BY CNUM ]

[ RETRIEVE ((TEMPLATE = OFFERING) AND
(CNUM = ****) AND
(DATE = 920326))

(DATE) BY DATE ]

[ DELETE ((TEMPLATE = OFFERING) AND
(CNUM = ****) AND
(DATE = ******)

]

[ DELETE ((TEMPLATE = TEACHER) AND
(CNUM = ****) AND
(DATE = ******))

]

[ DELETE ((TEMPLATE = STUDENT) AND
(CNUM = ****) AND
(DATE = ******))

]

This request first retrieves all course numbers for which the course title is "mlds." This

is followed by another RETRIEVE request that gathers all dates for a course number
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retrieved above) and an offering data equal to 920326. These RETRIEVES are used to

gather the results needed to process the EXCLUDE for this record and its children.

The reader may easily discern that we are not only deleting those records for which the

course name is "mlds" and the offering date is 920326, but we are also deleting the

children of any records for which these conditions are true. Our solution to this problem

s the use of the mutual recursion.
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VI. CONCLUDING REMARKS

In this thesis, we have concentrated on the model/language interface aspects of using

an attribute-based database system, MDBS, as a kernel for the support of the functional

data model and the functional query language, DAPLEX. This work is part of the

ongoing research being conducted in the Laboratory for Database Systems Research under

the direction of Dr. David K. Hsaio. As stated in [Ref. 1], the goal of this phase of the

laboratory's research "is to provide increased utility in database computers. A centralized

repository of data is made available to multiple, dissimilar hosts. Furthermore, the

database is also made available to transactions written in multiple, similar data

languages".

The rapid evolution of database technology has provided the motivation for this

research. Commercial database management systems have only been available since the

1960's. Today, organizations of all types are critically dependent on the operation of

these systems. This dependency comes from the need to centrally control large quantities

of operational data. The information must be accurate and readily accessible by relatively

inexperienced end-users.

There are three generally known approaches to the design of database systems. These

are the network, hierarchical, relational approaches. An organization normally chooses

a commercial system based on one of these models. The database must be created and
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operator and user personnel must be trained. Because of the re-programming and re-

training effort (and money) required, an organization is unlikely to change to a system

based on one of the other models.

We have discussed an alternative to the development of separate stand-alone systems

for specific data models. In this proposal, the four generally known models and

their model-based data languages are supported by the attribute-based data model and data

anguage. We have shown (in the functional case) how a software interface can be built

for such support.

Specific contributions of this thesis include extremely thorough explanations of

DAPLEX operations, and showing how many of the constructs are directly supportable

by ABDL and MDBS. A major design goal has been to design a functional/DAPLEX

interface to MDBS without requiring that changes be made to the MDBS system. We

have shown that the complete interface can be implemented on a host computer. All

translations are accomplished in the functional/DAPLEX interface. MDBS continues to

receive and process requests written in the syntax of ABDL. We have also shown that

the interface can be designed to utilize existing ABDL constructs (either one or a series

Df ADBL requests). No changes to the ABDL syntax are required. We have designed

:he interface to be transparent to the functional/DAPLEX user. The intention is that a

"unctional/DAPLEX user needs to know nothing of the existence of the interface or of

MDBS. The user can log in at a system terminal, input a DAPLEX query, and obtain

Result data in a functional format.
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The data modeling capabilities of functional/DAPLEX incorporate those of the

hierarchical, relational, and network models. According to Shipman [Ref. 4], the principal

characteristics of functional/DAPLEX can be summarized and quoted as follows:

(1) Data is modeled in terms of entities. Database entities are meant to bear a one-

to-one correspondence to the "real-world" entities in the user's mental conception of

reality.

(2) Relationships between data are expressed as functions, exploiting an established

programming metaphor. Identical functional notation is used to reference both "primitive"

and "derived" relationships. Conceptual conciseness is enhanced through the use of

nested function reference. Functions may be multivalued, returning sets of entities.

(3) The request language is based on the notion of looping through entity sets.

Expressions in the language are, in general, set valued. Sets are specified using the

functional notation with special operators for qualification and quantification. A simple

aggregation semantics, also based on looping, is incorporated. Looping variables are

typically declared implicitly.

(4) Computational power is provided through the general-purpose operators of a high-

level language. While not emphasized in this paper, this capability is crucial to the

development of realistic applications systems.
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(5) Derived functions allow users to represent arbitrary entity relationships directly

by defining them in terms of existing relationships. In effect, the derived function

capability allows application semantics to be encoded into the data description, thereby

allowing requests to be expressed directly in terms of those semantics. Updating of

derived relationships is supported through procedures explicitly supplied by the user.

(6) Entity types are defined as functions taking no arguments. Notions of subtype

and supertype follow naturally from this formulation.

(7) User views are implemented in terms of derived functions.

We have shown that the attribute-based system supports functional/DAPLEX

applications. We have provided DAPLEX-to-ABDL translations for selected database

operations, and we have proposed a software structure to facilitate implementation, by

utilizing MDBS as a kernel database system.
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APPENDIX A - THE STRUCTURE DEFINITIONS

Udefine Overlap

Udefine Unique 1

Udefine New 2

Udefine Entity 3

Udefine Create 4

Udefine Enum 5

Udefine String 6

Udefine Boolean 7

Udefine Integer 8

Udefine Float 9

Udefine Typels 10

Udefine SubTypels 11

Udefine Checklds 12

Udefine NonEnt 13

Udefine Derived 14

Udefine SubNon 75

Udefine GenSub 16

Udefine Insert 17

Udefine Retrieve 18

Udefine LoopParameter 19

Udefine Function 20

Udefine Assignment 21

Udefine Include 22

Udefine Exclude 23

Udefine Destroy 24

Udefine Move 25

Udefine Print 26

Udefine PrintLine 27

Udefine Relation 1

Udefine AndRelation 2

Udefine OrRelation 3

Udefine INTLength 8

Udefine FLTLength 16

Udefine REQLength 300 I* ABDL request tine length */

Udefine UTLength 128 /* literal length */
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tract ent_dbid_node

/* structure deffor each entity-relationship dbid node */

char edn_name[DBNLength + 1];

struct ent_non_node *edn_nonentptr;

int edn_num_nonent; I* number of nonentity types */

struct entjnode *edn_entptr;

int edn_num_ent; I* number of entity types */

struct gen_sub_node *edn_subptr;

int edn_num_gen; /* number of gen_subtypes *l

struct sub_non_node *edn_nonsubptr;

int ednjnumjnonsub; I* number of nonentity subtypes */

struct der_non_node *edn_nonderptr;

int edn_num_der; I* number or nonentity derived types */

struct overlapjnode *edn_pvrptr;

int edn_num_ovr; I* number of overlapjnodes *i

struct ent_dbid_node *edn_next_db;

truct ent_node

I* structure definition for each entity node */

char en_name[ENLength + 1];

int enlast_entj.d; I* keeps track of the unique id

assigned to each entity type in the database *l

int enjnumjunct; I* number of assoc. functions */

int enjerminal; /* if true (=1) it is a terminal type */

struct function node *en_ftnptr;

struct entjnode *en_next_ent;

iruct gen_sub_node

I* structure deffor each generalization (supertypelsubtype) node */

char gsn_name[ENLength + 1};

int gsn_num_Junct; /* number of assoc. functions*/

int gsn_terminal; I* if true (=1) it is a terminal type */

struct ent_node_list *gsn_entptr; I* ptr to entity supertype */

int gsn_num_ent; I* number of entity supertypes */

struct functionjnode *gsn_flnptr;

struct sub_node_list *gsn_subptr; I* ptr to subtype supertype */

int gsn_num_sub; I* number of subtype supertypes */

struct gen_sub_node *gsn_next_genptr;
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int ennjnumjvalues;

struct ent_yalue *e

int enn_constant;

struct ent_non_node

};

struct entjnonjnode

I* structure deffor each base-type nonentity node */

{

char enn_name[ENLength + 1J;

char ennjtype; I* either integer), s(tring),

f(loat), e( numeration), or b(oolean) */

int ennjotaljength; I* max length of base-type value */

int ennjrange; I* true or false depending

on whether there is a

range. If range exists,

there must be two entries

into ent_value *l

/* number of actual values */

*enn_value; I* actual value of base-type */

/* boolean to refelect constant value *l

*ennjnextjnode;

struct subjnonjnode

I* structure deffor each subtype nonentity node */

I

char snn_name[ENLenglh + 1);

char snnjype; I* either integer), s(tring),

f(loat), e< numeration), or b(oolean) */

int snn__total_length; /* max length of subtype value */

int snnjrange; I* true or false depending

on whether there is a

range. If range exists,

there must be two entries

into ent_value */

int snn_num values; I* number of actual values */

struct ent value *snn_value; /* actual value of subtype */

struct subjnonjnode *snn_next_node;

1:

struct derjnonjnode

/* structure deffor each derived type nonentity node */

{

char dnn_name[ENLength + 1];

char dnnjype; I* either integer), s(tring),

f(loat), ^numeration), or bfoolean) */

int dnnjtotal length; I* max length of derived type value */

int dnn_range; I* true or false depending on whether

there is a range. If range exists,

there must be two entries in the

ent value *l

int dnn_num_values; I* number of actual values *l

struct ent_value *dnn_value; /* actual value of derived type *7

struct derjnonjnode *dnn_next_node;

};
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true t overlapjnode

I* structure dejfor overlapping constraint */

i

char base_type_name[ENLength+l];

struct sub_node_list *snlptr;

int num_sub_node; I* number of subjnode in the above list *I

struct overlapjnode *next;

};

truct function_node

I* structure definition for each function type declaration */

char fn_name[ENLength+l];

char fnjtype; I* either filoat), i(nleger), s(tring),

b(oolean), or e(numeration) */

int fn_range; I* Boolean if range of values */

int fn_sel; I* Boolean if set of values *l

int fn_total_length; /* max length */

int fn_num_value; I* number of actual values *l

struct ent_value *fn_value; I* actual value *l

struct ent_node *fn_entptr; /* ptr to entity type */

struct genjsubjnode *fn_subptr; I* ptr to entity subtype */

struct entjionjnode *fn_nonentptr; I* ptr to nonentity type */

struct sub_non_node *fn_nonsubptr; I* ptr to nonentity subtype *l

struct der_non_node *fn_nonderptr; I* ptr to nonentity dertype */

int fn_entnull; I* initialized false set true for no

value *l

int fn_unique; I* init false - unique if true */

struct functionjnode *next;

struct sub_nodejlist /* list of ponters */

I* structure definition for terminal subtypes that define one or more

subtypes */

/

struct gen_sub_node *subptr; /* only terminal subtypes */

struct sub_node_list *next;

);

struct ent_node_list I* list of pointers */

/* structure definition for subtypes with one or more entity supertypes */

I

struct entjnode *entptr;

struct entjnode_list *next;

);
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struct entvalue

I* struct deffor value of 'i','s','f,'e', or 'b' *l

(

char *ev_value; I* pointer to character string only *l

struct ent value *next;

h

struct identjlist

I

char name [ENLength + 1};

struct identjist *next;

);

struct ent_valuejlist

(

char type;

int num values,

struct ent_value

};

*ev_ptr;

struct dapJims info

(

struct identjist

struct identjist

struct identjlist

struct sub_nodeJist

struct der_non_node

struct sub_non_node

struct entjnonjnode

struct functionjnode

struct ent_value

struct dap_createJist

struct reqjinejist

struct create_entJist

struct overlapjnode

struct entvaluejist

struct dml_slatement

struct loopjnfo

};

*d\djempjplr;

*dki_nameljtr;

*dkijd_ptr;

*didjo verfirst_ptr;

dkx_der_non;

dkijsub_non;

dkijentjnon;

dkij'unct;

*dla_ev_ptr;

*dld_create;

*dki_req_ptr;

*dld_cel_ptr;

*d\djcreate_qvrptr;

dki_evl_ptr;

*dml_staiement_plr;

*loopjnfo_ptr;

struct dap_createJist

{

int reqjype; /* Insert or Retrieve */

char en_name[ENLength + 1];

struct dap_av_pairJist *avjpairj>tr;

struct dap_createJist *next;
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struct dap_av_pair_list

I

char name[ENLength + 1J;

struct function_node

int num_value;

struct ent_value

struct dap_av_pairJisl

*ftnptr;

*valptr;

*next;

)i

\truct req_line_list

t

char reqJine[REQLength];

struct reqjineJisl *next;

};

struct createjent list

{

struct ent_node_list

struct sub_nodeJist

struct create_ent_list

);

*enl_ptr;

*snl_ptr;

*next;

struct dap_exprJnfo

{

int relation_type

;

struct relationJisl

I* Relation, AndRelation or OrRelation *l

*reljist_ptr;

struct relation_list

I

struct simple_exprl

struct simple_expr2

struct simple_expr3

struct simple_expr4

struct relationJisl

);

*simple_exprl_ptr;

*simple_expr2_plr;

*simple_expr3_ptr;

* simple_expr4_ptr;

*next;
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struct simple_exprl

I

char lit_array[LITLength+l];

struct setconstructor *set_construct_ptr;

struct indexed_component *indexed_comp_ptr;

struct functjappln *funct_appln_ptr;

J;

struct functjappln

(

int type; I* COUNT, SUM, AVG, MIN, MAX *l

I* The fallowings are structures for exprjypes in the grammar */

char name_id[ENLength + 1];

struct set_constructor *set_construct_ptr;

struct indexed_component *indexed_comp_ptr;

struct indexedjcomponenl

(

char name id[ENLength + 1];

char type; I* Entity, GenSub, LoopParameter, Function */

char parent_name[ENLenglh + 1];

struct indexed^component *next;

);

struct set_constructor

{

struct basicjexpr list

struct set_construct2

struct set_construct3

);

*basic_expr_ptr;

*set_construcl2_ptr;

*set_construcl3_ptr;

struct set_construct2

{

struct simple exprl

char name I[ENLength + 1];

struct dap_expr_info

};

*simple_ exprl _ptr;

dap_expr_ptr;

struct dapjrange_info

I

int range type; I* Integer or Float */

char firsl_value[FLTLength + 1];

char second_value[FLTLength + 1];

);
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struct set_construct3

I

struct simplejexprl

struct dapjrangejinfo

struct dapjexprjnfo

h

*simplejexprl_ptr;

dap_range;

dap_expr_ptr;

struct basicexprjlist

[

char lit_array[LJTLength+l];

struct indexed_component *indexed_comp_ptr;

struct fundjappln *funct_appln_ptr;

struct basic_expr_list *next;

};

struct compjassocjUst

(

char name[ENLength + 1];

struct simple_exprl simple_expr;

struct comp_assoc_list *next;

);

struct simple_expr2

(

struct simple_exprl

int rel_operator;

struct simple_exprl

*firsljsxpr;

*second_expr;

struct simple_expr3

(

struct simplejexprl

int in_op;

struct dapjrangejinfo

};

*simplejexpr;

I* INOp or NINOp */

*dap_range;

truct simplejexpr4

struct simplejexprl

int in_op;

char name_id[ENLength + 1];

};

*'simplejexpr;

/* INOp or NINOp *l
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struct domainJnfo

I

/* only one of the first two fields is active at one time */

I* see loop_expr in grammar *l

struct indexed component *indexed_comp_ptr;

char name[ENLength + 1];

struct dap_expr_info *dap_expr_ptr; /* optional field */

struct loop_info

{

char loop_parameter[ENLength + I];

struct enljnode

struct gen_subjnode

struct domainjnfo

struct order_comp_list

struct dml statement! list

h

*entplr;

*subptr;

domain;
*order_comp_ptr;

*dml_statement2_list_ptr;

struct order comp _lisl

(

int sort_order;

struct indexed^component

struct order comp list

};

I* ASCENDING or DESCENDING */

*indexed_comp_ptr;

*next;

struct dmljslatementl _list

I

struct dmlstatement *dml_statement2_ptr;

struct dml_statement2_list *next;

};

struct dml statement

I

int type;

struct dap_expr_info

struct indexed_component

struct basic exprjist

struct compjotssoc__list

/;

Assignment, Include, Exclude,

Destroy, Move, Procedure, Create *l

*dap_expr_ptr;

*indexed_compj>lr;

* basic_expr_ptr;

*comp_assoc_ptr;
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APPENDIX B. THE LIL SPECIFICATIONS

module DAPLEX-INTERFACE

f_build_ddl_filesO

/* This routine is used to create the MBDS template and descriptor files */

struct ddl_info *ddl_info_alloc();

Wfdef EnExFlag

printf("Enter f_build_ddl_fileW);

frendif

if (dap_info_ptr->dpi_ddl_files == NULL)
dap_info_ptr->dpi_ddl_files = ddl_info_allocO;

f_build_template_fileO;

f_build_desc_fileO;

Pifdef EnExFlag

printf("Exit f_build_ddl_file\n");

ndif

Lbuild_template_file()

(

/* This routine builds the MBDS template file for a new daplex */

/* database that was just created. */

struct ent_dbid_node *db_ptr;

struct ent_node *ent_ptr;

struct gen_sub_node *gen_ptr;

struct function_node *funct_ptr;

struct file_info *f_ptr;

char temp_str[NUMDIGIT + 1];

char get_fun_type();

int i;

fifdef EnExFlag

printf("Enter f_build_template_file\n");

tendif
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I* Begin by setting the pointers to the dap_info data structure */

I* that is maintained for each user of the system. */

db_ptr = dap_info_ptr->dpi_curr_db.cdi_db.dn_fun;

f_ptr = &(dap_info_ptr->dpi_ddl_files->ddli_temp);

I* Next, copy the filename where the MBDS template information will */

/* be stored. This filename is constant and was obtained from */

/* licommdata.def. */

strcpy(f_ptr->fi_fhame, FTEMPFname);

I* Next, open the template File to be created: */

if ((f_ptr->fi_fid = fopen(f_ptr->fi_fname,"w")) = NULL)

{

printf("Unable to open %s\n", FTEMPFname);

#ifdef EnExFlag

printf("Exitl f_build_template_fileW);

#endif

return;

};

I* Next, write out the database name & number of files : */

fprintf(f_ptr->fi_fid , "%s\n", db_ptr->edn_name);

num_to_str(db_ptr->edn_num_ent + db_ptr->edn_num_gen, temp_str);

fprintf(f_ptr->fi_fid, "%s\n", temp_str);

/* Next, set the pointer to the first entity: */

ent_ptr = db_ptr->edn_entptr;

/* While there are more entities to process, write out the number */

I* of functions (+2 for the attribute "TEMP" and the key value attribute) */

/* and the entity name: */

while (ent_ptr)

{

num_to_str((ent_ptr->en_num_funct + 2), temp_str);

fprintf(f_ptr->fi_fid, "%s\n", temp_str);

fprintf(f_ptr->fi_fid, "%s\n", ent_ptr->en_name);

/* Print out the constant attribute "TEMP s" and key value attribute */

fprintf(f_ptr->fi_fid, "TEMP s\n");

fprintf(f_ptr->fi_fid, "%s f\n", ent_ptr->en_name);

/* Now, set the pointer to the first function: */

funct_ptr = ent_ptr->en_ftnptr;

wr_all_funct_attr(f_ptr->fi_fid, funct_ptr);
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/* set the pointer to the next entity: */

ent_ptr = ent_ptr->en_next_ent;

} /* end while ent_ptr */

I* Next, set the pointer to the first gen sub node : */

gen_ptr = db_ptr->edn_subptr;

/* While there are more sub nodes to process, write out the number */

/* of functions (+2 for the attribute "TEMP" and the key value attribute) */

/* and the entity name: */

while (gen_ptr)

{

num_to_str((gen_ptr->gsn_num_funct + 2), temp_str);

fprintf(f_ptr->fi_fid, "%s\n", temp_str);

fprintf(f_ptr->fi_fid, "%s\n", gen_ptr->gsn_name);

/* Print out the constant attribute "TEMP s" and key value attribute */

fprintf(f_ptr->fi_fid, "TEMP s\n");

fprintf(f_ptr->fi_fid, "%s iSn", gen_ptr->gsn_name);

/* Now, set the pointer to the first function: */

funct_ptr = gen_ptr->gsn_fmptr,

wr_all_funct_attr(f_ptr->fi_fid, funct_ptr);

/* set the pointer to the next gen sub node: */

gen_ptr = gen_ptr->gsn_next_genptr,

} /* end while gen_ptr */

/* Finally, close out the file and exit this routine: */

fclose(f_ptr->fi_fid);

ttfdef EnExFlag

printf("Exit2 f_build_template_file\n");

Itendif

vr_all_funct_attr(fid, funct_ptr)

FILE *fid;

struct function_node *funct_ptr;

fifdef EnExFlag

printf("Enter wr_all_funct_attr\n");

tendif

81



/* While there are more attributes to process, */

/* print out attr. name & type: */

while (funct_ptr)

{

fprintf(fid, "%s %c\n", funct_ptr->fn_name, get_fun_type(funct_ptr));

I* Set the pointer to the next function: */

funct_ptr = funct_ptr->next;

} /* end while funct_ptr */

#ifdef EnExFlag

printf("Exit wr_all_funct_attr\n");

#endif

char get_fun_type(fptr)

struct function_node *fptr;

{

char fun_type;

#ifdef EnExFlag

printf("Enter get_fun_type\n");

#endif

switch (fptr->fn_type)

{

case Y : ;

case T : ;

case 's' : fun_type = fptr->fn_type;

break;

case 'b' : fun_type = T;
break;

case 'e' : if (fptr->fn_entptr II

fptr->fn_subptr)

fun_type = 'i';

else if (fptr->fn_nonentptr)

fun_type = fptr->fn_nonentptr->enn_type;

else if (fptr->fn_nonsubptr)

fun_type = fptr->fn_nonsubptr->snn_type;

else if (fptr->fn_nonderptr)

fun_type = fptr->fn_nonderptr->dnn_type;

if (fun_type ='e')/* still not i or f type */

fun_type = 's';

} I* end switch */
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Wfdef EnExFlag

printf("Exit get_fun_type\n");

tfendif

return(fun_type);

/* end get_fun_type */

'* builddesc.c */

_build_desc_file()

/* This routine builds the Descriptor File to be used by the MBDS in the *,

I* creation of indexing clusters: */

struct ent_dbid_node *db_ptr; /* database pointer */

struct ent_node *ent_ptr, /* entity node ptr */

struct gen_sub_node *gen_ptr; /* gen sub node ptr */

struct descriptor_node *desc_head_ptr, /* pointers to Desc_node..*/

*ask_all_fun_nodesO;

struct file_info *f_ptr; I* File pointer */

int index,

str_len;

fifdef EnExFlag

printf("Enter f_build_desc_file\n");

feldif

/* Begin by setting the pointers to the dap_info data structure that is */

/* maintained for each user of the system: */

db_ptr = dap_info_ptr->dpi_curr_db.cdi_db.dn_fun;

f_ptr = &(dap_info_ptr->dpi_ddl_files->ddli_desc);

/* Next, copy the filename where the MBDS Descriptor File information

/* will be stored. This filename is Constant, and was obtained from */

/* licommdata.def: */

strcpy(f_ptr->fi_fname, FDESCFname);

/* Now, open the Descriptor File to be created:

f_ptr->fi_fid = fopen(f_ptr->fi_fname, "w");

7
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f* The next step is to traverse the Linked List of entities in the data- */

/* base. There are two reasons for doing so: First, to write the */

I* entity Names to the Descriptor File as EQUALITY Descriptors; this is */

/* done automatically with any Daplex Database, is a necessary element */

/* of any Descriptor File created from such a Database, and requires */

I* no user involvement. Second, it allows us to present the Entity */

/* Names (without their respective Attributes) to the User, as a memory */

/* jog: */

system("clear");

fprintf(f_ptr->fi_fid, "%s\n", db_ptr->edn_name);

fprintf(f_ptr->fi_fid, "TEMP C s\n");

printf("ViThe following are the Entities in the ");

printf("%s Database:\n\n", db_ptr->edn_name);

ent_ptr = db_ptr->edn_entptr;

I* Traverse all entity nodes */

while (entj)tr)

{

fprintf(f_ptr->fi_fid, "! %c", ent_ptr->en_name[0] );

str_len = strlen( ent_ptr->en_name );

for(index = 1; index < str_len; index++)

if (isupper(ent_ptr->en_name[index]))

fprintf(f_ptr->fi_fid, "%c", tolower( ent_ptr->en_name [index] ));

else

fprintf(f_ptr->fi_fid, "%c", ent_ptr->en_name[index]);

fprintf(f_ptr->fi_fid, "\n");

printf("Vi\t%s", ent_ptj->en_name);

ent_ptr = ent_ptr->en_next_ent;

} /* End "while (ent_ptr)" */

gen_ptr = db_ptr->edn_subptr;

I* Traverse all gen sub nodes */

while (gen_ptr)

{

fprintf(f_ptr->fi_fid, "! %c", gen_ptr->gsn_name[0] );

strjen = strlen( gen_ptr->gsn_name );

for(index = 1; index < str_len; index++)

if (isupper(gen_ptr->gsn_name[index]))

fprintf(f_ptr->fi_fid, "%c", tolower( gen_ptr->gsn_name[index] ));

else

fprintf(f_ptr->fi_fid, "%c", gen_ptr->gsn_name[index]);

fprintf(f_ptr->fi_fid, "\n");

printf("\n\t%s", gen_ptr->gsn_name);

gen_ptr = gen_ptr->gsn_next_genptr,

} /* End "while (gen_ptr)" */
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/* Each Descriptor Block must be followed by the "@" sign: */

fprintf(f_ptr->fi_fid, "@\n");

/* Now, inform the user of the procedure that must be followed to create */

/* the Descriptor File: */

printf("\n\nBeginning with the first Entity, we will present each");

printf('Vifunction of the entity. You will be prompted as to whether");

printf("\nyou wish to include that function as an Indexing Attribute,");

printf("Viand, if so, whether it is to be indexed based on strict");

printf("\nEQUALITY, or based on a RANGE OF VALUES. If you do not want");

printf("Vito enter any indexes for your database, type an V when");

printf("\nthe Action --> prompt appears");

printf("Nn\nStrike RETURN or 'n' when ready to continue.");

dap_info_ptr->dap_answer = get_ans(&index);

/* Initialize the pointer to a Linked List that will hold the results */

/* of the Descriptor Values, then return to the first entity of the */

/* database and begin cycling through the individual attributes: */

desc_head_ptr = NULL;

ent_ptr = db_ptr->edn_entptr;

while ((ent_ptr) && (dap_info_ptr->dap_answer != 'n'))

{

desc_head_ptr =

ask_all_fun_nodes(desc_head_ptr, ent_ptr->en_name, ent_ptr->en_ftnptr);

ent_ptr = ent_ptr->en_next_ent;

) I* End while */

gen_ptr = db_ptr->edn_subptr;

while ((gen_ptr) && (dap_info_ptr->dap_answer != 'n'))

{

desc_head_ptr =

ask_all_fun_nodes(desc_head_ptr, gen_ptr->gsn_name, gen_ptr->gsn_ftnptr);

gen_ptr = gen_ptr->gsn_next_genptr,

} /* End while */

/* Now, we will traverse the Linked List of Descriptor Attributes and */

/* Values which was created, writing them to our Descriptor File: */

wr_all_desc_values(f_ptr->fi_fid, desc_head_ptr);

fclose(f_ptr->fi_fid);

#ifdef EnExFlag

printf("Exit f_build_desc_file\n");

#endif

}
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struct descriptor_node *ask_all_fun_nodes(desc_head_ptr, en_name, funct_ptr)

struct descriptor_node *desc_head_ptr;

char en_name[ENLength + 1];

struct function_node *funct_ptr;

{

struct descriptor_node *desc_node_ptr,

*descriptor_node_allocO; I* Allocates Nodes */

struct value_node *valuenode_ptr; /* points to Value Node */

int num, /* */

found, [* Boolean flag */

goodanswer; /* Boolean flag */

#ifdef EnExFlag

printf("Enter ask_all_fun_nodes\n");

#endif

while (funct_ptr)

(

if (funct_ptr->fn_entptr == NULL && funct_ptr->fn_subptr == NULL)

{

system("clear");

printf("Entity name: %s\n", en_name);

printf("Function Name: %s\n\n", funct_ptr->fn_name);

/* Now, traverse the Attribute linked list that is being created, */

/* to see if the current Attribute has already been established as */

/* a Descriptor Attribute. If so, offer the user the opportunity */

I* to add additional EQUALITY or RANGE OF VALUE values; otherwise, */

I* offer the user the opportunity to establish this as a Descriptor */

/* Attribute: */

desc_node_ptr = desc_head_ptr,

found = FALSE;
while ((desc_node_ptr) && (found == FALSE))

{

if (strcmp(funct_ptr->fn_name, desc_node_ptr->attr_name) == 0)

/* The Attribute HAS already been chosen as a Descriptor. */

/* Allow the user the option of adding additional Descriptor */

/* values, after listing those already entered: */

printf("\nThis Attribute has been chosen as an Indexing Attribute.Nn");

printf("The following are the values that have been specified:W\n");

found = TRUE;
valuenode_ptr = desc_node_ptr->first_value_node;
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while (valuenode_ptr)

{

if (desc_node_ptr->descriptor_type == 'A')

printf("\t%s %s\n", valuenode_ptr->valuel,

valuenode_ptr->value2);

else

printf("\t%s\n", valuenode_ptr->value2);

valuenode_ptr = valuenode_ptr->next_value_node;

} /* End "while (valuenode_ptr)" */

printf("\nDo you wish to add more ");

if (desc_node_ptr->descriptor_type == 'A')

printf("RANGE");

else

printf("EQUALITY");

printf(" values? (y or n)W);

dap_info_ptr->dap_answer = get_ans(&num);

if ((dap_info_ptr->dap_answer == 'y') II

(dap_info_ptr->dap_answer = 'Y'))

/* The user DOES wish to add more descriptors to the */

/* currently existing list: */

{

if (desc_node_ptr->descriptor_type == 'A')

build_RAN_descrip(desc_node_ptr, funct_ptr->fn_total_length);

else

build_EQ_descrip(desc_node_ptr, funct_ptr->fn_total_length);

} /* End "if ((dap_info_ptr->dap_answer = 'y') II

(dap_info_ptr->dap_answer = 'Y')) */

} /* End "if (strcmp(...) = 0)" */

desc_node_ptr = desc_node_ptr->next_desc_node;

} /* End "while ((desc_node_ptr) && (found..))" */

if (found = FALSE)

/* The Attribute has NOT previously been chosen as a Descriptor. */

/* Allow the user the option of making this a Descriptor Attn- */

I* bute, with appropriate Descriptor Values: */

{

printf("\nDo you wish to install this function as an ");

printf("Indexing Attribute?\n\n");

printf("\t(n) - no; continue with next Attribute/RelationNn");

printf("\t(e) - yes; establish this as an EQUALITY AttributeW);

printf("\t(r) - yes; establish this as a RANGE AttributeW);

goodanswer = FALSE;
while (goodanswer == FALSE)

{

dap_info_ptr->dap_answer = get_ans(&num);
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switch(dap_info_ptr->dap_answer)

{

case 'n': /* User does NOT want to use this as an */

/* Indexing (Descriptor) Attribute: */

goodanswer = TRUE;
break;

case 'e': I* User wants to use this as an EQUALITY */

/* Attribute: */

goodanswer = TRUE;
desc_node_ptr = descriptor_node_allocO;

desc_node_ptr->next_desc_node = desc_head_ptr;

desc_head_ptr = desc_node_ptr,

strcpy(desc_node_ptr->attr_name, funct_ptr->fn_name);

desc_node_ptr->descriptor_type = 'B';

desc_node_ptr->value_type = get_fun_type(funct_ptr);

desc_node_ptr->first_value_node = NULL;
build_EQ_descrip(desc_node_ptr,

funct_ptr->fn_total_length);

break;

case V: /* User wants to use this as a RANGE Attribute: */

goodanswer = TRUE;
desc_node_ptr = descriptor_node_allocO;

desc_node_ptr->next_desc_node = desc_head_ptr;

desc_head_ptr = desc_node_ptr,

strcpy(desc_node_ptr->attr_name, funct_ptr->fn_name);

desc_node_ptr->descriptor_type = 'A';

desc_node_ptr->value_type = get_fun_type(funct_ptr);

desc_node_ptr->first_value_node = NULL;
build_RAN_descrip(desc_node_ptr,

funct_ptr->fn_total_length)

;

break;

default: I* User did not select a vahd choice: */

printfCViErTor - Invalid operation selected;\n");

printf("Please pick again\n");

break;

} I* End Switch */

} /* End "While (goodanswer = FALSE)" */

) /* End "if (found == FALSE)" */

} /* End "if (funct_ptr->fn_entptr ...." */
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funct_ptr = funct_ptr->next;

} /* End "while (funct_ptr)" */

#ifdef EnExFlag

printf("Exit ask_all_fun_nodesW);

#endif

return(desc_head_ptr)

;

}

wr_all_desc_values(fid, desc_head_ptr)

/* This routine traverse the linked list of descriptor attributes */

/* and write all descriptor values out to the Descriptor fde */

FILE *fid;

struct descriptor_node *desc_head_ptr;

{

struct descriptor_node *desc_node_ptr;

struct value_node *valuenode_ptr; /* points to Value Node */

#ifdef EnExFlag

printf("Enter wr_all_desc_values\n");

#endif

desc_node_ptr = desc_head_ptr,

while (desc_node_ptr)

{

if (desc_node_ptr->first_value_node)

(

fprintf(fid, "%s %c %cVi", desc_node_ptr->attr_name,

desc_node_ptr->descriptor_t>pe,

desc_node_ptr->value_type);

valuenode_ptr = desc_node_ptr->frrst_value_node;

while (valuenode_ptr)

{

fprintf(fid,"%s %s\n", valuenode_ptr->valuel,

valuenode_ptr->value2);

valuenode_ptr = valuenode_ptr->next_value_node;

} /* End "while (valuenode_ptr)" */

fprintf(fid,"@\n");

} /* End "if (desc_node_ptr->first_value_node) */
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desc_node_ptr = desc_node_ptr->next_desc_node;

} /* End "while (desc_node_ptr)" */

fprintf(fid, "$\n");

#ifdef EnExFlag

printf("Exit wr_all_desc_valuesW);

#endif

}
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