
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1992-12

An introduction to Doppler effect and fading in
mobile communication

de Paula, Abdon B.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/23709

Copyright is reserved by the copyright owner

Downloaded from NPS Archive: Calhoun











UNCLASSIFIED

SECURITY CLASSlF'CATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION < DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

EC

7a NAME OF MONITORING ORGAIM'ZAT'ON

Naval Postgraduate School

6c. ADDRES', (City. State, and ZIP Code)

Monterey, CA 939^3-5000

7b ADDRESS(C/fy, State and ZIPCode)

Monterey, CA 93943-5000

3a NAME OF FUNDING /SPONSORING
ORGANIZATION

Jb OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) '0 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

1 1 TITLE (Include Security Classification)

AN INTRODUCTION TO DOPPLER EFFECT AND FADING IN MOBILE COMMUNICATION

12 PERSONAL AUTHOR(S)
De Paula, Abdon B c

13a TYPE OF REPORT

Master's Thesis
3b TIME COVERED
FROM ,|an 9? to ppr 32

4 DATE OF REPORT (Year, Month Day)

December 1992

15 PAGE COUNT

98

6 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department nf n P fPnc P or thp U.S. nnvprnm^ni-
1 7 COSATI CODES

FIELD GROUP SUB-GROUP

SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Mobile communications with Doppler effect, fading
channels

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

In this research we present an introductory analysis of a complex aspect of mobile
communications: Doppler effect is evaluated in both Ricean and Rayleigh channels, A
noncoherent 2-FSK scheme is selected to evaluate the behavior of the system under very
strong fading channel conditions. The analysis is conducted for the binary case due to
the possibility of developing closed form solutions. Therefore, the approach is
simplified avoiding long lasting simulations that may obscure the concepts. The
probability of bit error for the 2-FSK case can also be used as an initial bound for a
M-FSK scheme. Diversity is evaluated as a means of combating fading and Doppler
effects. Error correcting codes, in the form of a convol ut ional codes, are also used
and applied to both effects.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

C)} UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL

Tri Ha
22b TELEPHONE (Include Area Code)

(408) 656-2788
22c OFFICE SYMBOL

EC-HA
DDForm 1473, JUN 86 Prev/ous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE



Approved for public release; distribution is unlimited

An Introduction to Doppler Effect and Fading in Mobile
Communication

by

Abdon B. de Paula

Lieutenant Commander, Engineer Corps, Brazilian Navy

B. S., Brazilian Naval Academy

B. S., Sao Paulo University

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1992



ABSTRACT

In this research we present an introductory analysis of a complex aspect of

mobile communications: Doppler effect is evaluated in both Ricean and Rayleigh

fading channels. A noncoherent 2-FSK scheme is selected to evaluate the behavior of

the system under very strong fading channel conditions. The analysis is conducted

for the binary case due to the possibility of developing closed form solutions. There-

fore, the approach is simplified avoiding long lasting simulations that may obscure

the concepts. The probability of bit error for the 2-FSK case can also be used as an

initial bound for a M-FSK scheme. Diversity is evaluated as a means of combating

fading and Doppler effects. Error correcting codes, in the form of convolutional

algorithms, are also used and applied to both effects.
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I. INTRODUCTION

The term "mobile communication" is used to describe the radio communica-

tion link between two terminals of which one or both are in motion.

In urban areas, we observe the growth of cellular terrestrial mobile com-

munication systems. Such systems are also employed where base stations can be

located relatively close to mobile users. However, in rural or remote areas, with low

population density, cellular systems are not economically feasible.

Satellite technology has reached the ability to bridge the gap of communica-

tions between mobile elements, complementing the existing cellular systems. Mobile

satellite systems are not restricted to land coverage. They include aeronautical and

maritime services as well.

Mobile land communication is greatly affected not only by the losses encoun-

tered in atmospheric propagation, but also by the general topography of the terrain.

The texture and roughness of the terrain tend to dissipate propagated energy, reduc-

ing the received signal strength at both mobile and fixed units. Shadowing caused

by trees and other natural or man made obstacles also affects the strength of the

received signal.

In addition, there is multipath fading, which is caused by the reflecting of

various types of signal scatterers. The effects of multipath phenomena are more

significant in terrestrial communications than in air-to-base station or satellite-to-

earth station communications.

In this thesis, we assume that there are multiple propagation paths in the

model of the mobile link. A propagation delay and an attenuation factor are asso-

ciated with each path.

1



The fading phenomenon is basically a result of time variations in the phase of

signals in each path. Sometimes, the components from the paths add constructively

so that the received signal is large. Other times, they add destructively, resulting in

a very small or practically zero signal. Thus, fading, the amplitude variation in the

received signal, is due to the time-variant multipath characteristic of the channel

II].

To generalize the model for the practical cases of mobile communications, we

also consider the presence of a direct component of the signal. We define a direct-

to-diffuse ratio r = a 2/2a 2 using the channel parameters. Physical interpretations

can be given to those parameters: a 2
is associated with the strength of the direct

component and 2<r
2

is associated with the diffuse component.

Therefore, we consider a Ricean fading channel which is general enough to

allow us to solve the following types of problems:

a) Non-fading channel,

b) Rayleigh fading channel,

c) Ricean fading channel.

Another major concern in mobile communications is the Doppler effect. It is

well known that this effect occurs due to the relative speed between the elements

in the communication system. The effect of the Doppler is directly proportional to

the magnitude of the relative speed. Therefore, this effect can only be considered

significant when high speeds apply, i.e., in airplanes.

The Doppler effect is modeled here as a contribution to the carrier frequency.

This contribution will be either positive or negative, according to the direction of

the relative movement between the communications elements.



Both fading and Doppler effects can impair the reception of the transmitted

signal. The error rate, as shown in [1], is only inversely proportional to the SNR in

a Rayleigh fading channel, in contrast with the exponential decrease in AWGN.

Diversity, as stated by Proakis [1], is an effective way of improving error rate

performance in fading channels. By supplying to the receiver several replicas of the

same information bit over independently fading channels, the probability that the

signals will fade at the same time is considerably reduced.

We only use time diversity in the form of signal repetition or in an equivalent

form of sampling the same bit several times at a rate greater than the bit rate.

To further improve the reception of a Doppler affected signal, we no longer use

matched filters, but use bandpass filters instead. We will verify that time diversity,

can be used to combat the fading characteristics of the channel and the Doppler

effect.

Finally, we consider the use of a convolutional code as a way of providing error

corrections. A convolutional code is generated by passing the information sequence

through a linear finite-state shift register. The input data is shifted into the shift

registers £ bits at a time. As an output, we obtain n bits for each set of t input bits.

Thus, the code rate is defined as Rc
= tjn.

Observing the tree that is generated by the convolutional encoder, we notice

that the structure repeats itself after the i/
th

stage, where v is the code constraint

length.

The distance properties and the error rate performance of a convolutional

code can be obtained from its state diagram. The same diagram is used to compute

the code transfer function. From there, we obtain the minimum distance, df, and

bounds for the probability of error rate.



Proakis has already shown that a convolutional code can be viewed as a type

of repetition scheme [1]. Thus, it is equivalent to time diversity. We will apply this

characteristic of the convolutional code over Doppler effect.

Due to the strong fading nature of the channels we want to analyze, we have

selected a non-coherent signaling scheme in which it is not required to estimate

the phase of the received signal. Nor will we be estimating the channel parame-

ters. Under these assumptions, our system can be simplified and has very robust

characteristics.

In our analysis, we consider a constant Doppler, i.e., we develop a bit error

probability for Ricean fading channels conditioned on the Doppler effect coefficient.

In our approach, we obtain closed form solutions that may bring some insight and

avoid long lasting simulations.

The binary frequency shift keying (2-FSK) schemes proposed is well-suited

for further development of the initial base for future M-ary frequency shift keying

(M-FSK) base extension or to obtain M-FSK error performance bounds.

In Figure 1 we present the basic system on which we conduct our analysis.

It shows two energy detectors followed by a possible (non- coherent) average. The

two upper branches are responsible for the detection of the first signal of the binary

scheme and the two lower branches take care of the second signal. In our analysis

we will assume that the signal corresponding to the frequency / is sent. Therefore

the two upper branches will have the signal present and the two lower branches will

only have noise.

In Chapter II, we develop the probability of bit error for a square law detector,

2-FSK scheme, with diversity L, under Rayleigh and Ricean fading, and without

Doppler shifts. In Chapter III, the Doppler effect is added to the previous result in

the form of a Doppler effect coefficient.



In Chapter IV, we extend the already developed conditional probability by

accounting for the convolutional error correcting code.

Finally, in Chapter V, we present verifications of the equations with some

numerical results, including some special cases, and compare them with results in

the literature. We evaluate the influence of the diversity size over the performance of

error rate. Also, we verify the performance of Rc = 1/2 and Rc = 2/3 convolutional

codes under the same conditions. In addition, we confirm the influence of the code

constraint length on the performance.
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II. DIVERSITY AND FADING CHANNELS

In this chapter we derive the error rate performance of binary FSK over a

frequency-nonselective, slowly fading Ricean channel. We assume that each diversity

signal fades independently. The signal can be considered as the sum of two com-

ponents, a nonfaded (direct) component and a Rayleigh-faded (diffuse) component,

hence the amplitude of the signal is a Ricean random variable.

We will analyze the bit error probability of the proposed system in Figure 1.

The Doppler effect will not be taken into consideration in this chapter but it will be

considered in Chapter 3.

For mathematical convenience we adopt the complex envelope notation for a

real signal. Therefore, the summer outputs are (under signal / present condition):

L

Yo = ^2 \

Xk + nCok +jn 3ok \

2
,

(2.1a)

fc=i

L

Yi = J2\n Cik +jn Slk \\ (2.16)

where Xk, assuming a Doppler shift of Wd, is given by

V2 J(k-i)T

and all the quadrature noise samples n c^, n 3,jt are independent and identically dis-

tributed (i.i.d.) zero-mean Gaussian random variables (RV) with variance N T/2.

Each amplitude Ak of the signal is assumed to fade independently for each bit du-

ration T

.

Since Y\ is the sum of squares of 2L i.i.d. Gaussian RVs with zero-mean and

variance a\ = N T/2, Yi is chi-square distributed with the following probability



density function (pdf) [1]

fY' {yi)= (L-l)\2^
~'

e
~*,l2°1

'
y^°- <2 - 3 >

On the other hand, Y is the sum of squares of L independent Gaussian RVs

with variance g\ and mean TZe [Xk], and L independent Gaussian RVs with variance

(j\ but with mean Xm [Xk]- Thus Y is non-central chi-square distributed with the

following conditional pdf [1]

/,(W,) = ^(f)
(L- 1,/2

e-^/.-,(^f), ,o,0, (2,)

where Il-i{-) is the (L — l)
th order modified Bessel function of the first kind and v

is the value assumed by the random variable V defined as

V = J2\Xk
\i.

(2.5)

k=i

The conditional probability of error is given by

roo roo

Vb (v) = Pr {Y1 >y \v}=
/ fYl {yi/v)fYo{yo\v)dyidy • (2.6)

JO Jyo

The inner integral can be evaluated as follows (see Appendix A)

Substituting (2.4) and (2.7) into (2.6) we obtain (see Appendix C)

^^iMU^-i)^- (2 - 8)

where the random variable Z is defined as:

rp2 L L

k=l Jk= l

z =^E^ = 0£4, (2-9)

where (3 = T2 j\a\.



Equation (2.8) has been derived in [2] for the case of fixed amplitude Ak = A.

For such cases equation (2.9) reduces to

T2

Z = -^LA2 = L
4<rf

/ „ „\2t2A2T

v
4—

J

'(S)-'(f). <->

where E/N is the signal energy-to-noise density ratio and E = A 2T/2.

For the Ricean channel the signal amplitude Ak is Ricean-distributed with

pdf

fAk{ak) = ^e-(4+«l)/>*l Io (^) , ak >0, (2.11)

V 4 J

where a 2
, is the average power of the nonfaded (direct) component of the signal and

2a 2
. is the average power of the Rayleigh- faded (diffuse) component of the signal.

The total average received power in the interval (k — \)T < t < kT is

(AH (a2
k + 2<rl)E

\i~)
=

2
' (212)

and it is assumed to be constant for any integer k, 1 < k < L.

Note that if a2
k
= 0, the channel is a Rayleigh fading model and if 2a 2

. —

there is no fading.

The random variable W defined below

W=J2A\ (2.13)

k=i

has a noncentral chi- square pdf given by [1]

M»/?) =
2^(^)

<1" 1,/2

e- (™+P,/2''/
i- 1 (^) , »>0, (2.14)

where

p="5>J. (2.15)

k=i



Consequently, the pdf of the random variable Z — (3W in (2.9) is

1 (—\fz(z) =
2(3al \ppj

(*<-i)/2 / nrz

V fal
z > (2.16)

Taking the expected value of Vb{z) in (2.8) (see Appendix D) by using (2.16)

we obtain

1 e
-(p/2^)[l-l/(l+/3<r2)] L-l

x
k

I k + L _ x
\

W) =

Ef m + L — 1

2^(i + ^)y n

Let

f = ^(oJ + 2^)

(2.17)

(2.18)

be the average signal energy with the assumption that a\ and 2<r| are constant for

any 1 < k < L (hereafter we drop the (3 argument of P(,(/?) to simplify the notation).

Also let the ratio r of the direct component power to the diffuse component power

during a bit time be defined as follows:

r =
ak

2*1
(2.19)

Combining (2.10), (2.18), and (2.19) we obtain

E

P*l =
No

(2.20)
2(r + l)

Substituting (2.15), (2.19), and (2.20) into (2.17) we get the average bit error

probability (zero Doppler) as follows:

! e
-Lr[l-(l+(£/iVo)/2(r+ l))->] ^Jl'*/jb + L-l\

Pb ^r x " — — TL L X L^L
2L

1 +

x

E/N
2(r + l).

\ 771

k=o'>
k ^o\ rn + L - 1

1 +

1

2(r + l)
x

»=o

m + L - 1

z + L - 1

V
Lr

E/N

V ' 2(r + l)/
1 +

77 (2.21)
i\

10



As a check we observe that when L = 1 and r = oo (no fading condition)

equation (2.21) reduces to [1]

Pb
= L-^o/2

.
(
2.22)

For a non-fading channel with diversity L, equation (2.21) can be reduced to

the next equation. Even though a similar equation is found in [2] we also developed

it in Appendix C. By replacing the value of Z given by (2.10) leads to:

(
LE/N \

m

Pt= * k»E{ *-» ) m!
' <2 ' 23)

For a Rayleigh fading channel (r = 0) and assuming L = 1 we get the result

of [1]:

For a Ricean fading channel and assuming L = 1 we obtain the result

R - r+1 -rfl-2(r+ l)/(2(r+ l)+ g/iVo)l /« orxn
-2(r + l) + E/iVo

e • (2^ 5)

Also for a Rayleigh fading channel and diversity L, equation (2.21) reduces

to the result obtained in [1, 4, 5]:

Pb = (2+m) t?E ( m+ x -
1 ) (srfe) •

(226)

11
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III. THE PROBABILITY OF BIT ERROR
CONDITIONED ON THE DOPPLER EFFECT

IN A RICEAN FADING CHANNEL

In a real mobile communication system, the signal may be distorted by

Doppler, which can seriously increase the bit error probability. In this chapter,

we investigate the system performance when Doppler is present.

The received signal affected by the Doppler in a fading channel with diversity,

at time k, can be represented as follows:

rk (t) = A k cos(2x# + 2*

f

d t + t ) , i = 0, 1
, (3.1)

where fd is the Doppler frequency and 6
X

is the signal phase.

Equation (3.1) can be manipulated as follows:

rk {t) = Ak cos(2tt[/, + fd]t + 0<) , i = 0, 1 . (3.2)

The orthogonality condition for 2-FSK (no Doppler shift) requires:

A/ = fi — /o = — (minimum frequency spacing) (3-3)

and

k
fi+fo =

7f,
A: is a positive integer . (3.4)

In practice we may use an approximation to orthogonality condition by im-

posing that

/i + /o»^. (3.5)

To study the Doppler effect, we assume a wideband 2-FSK, that is, A/ ^>

1/T. This ensures that the orthogonality condition is almost satisfied, and we can

analyze the performance as if we have an ideal orthogonal 2-FSK.

13



Returning now to the complex envelope notation, we see that equations (2.1)

and (2.2) remain the same with Xk given below:

Xk = -± e
JWdt

dt . (3.6)

Equation (2.5) will give us (see Appendix E):

v = j:\xk
\

2

fe=i

The definition of equation (2.9) remains the same but now the value of j3 is

given by:

4<7'£=(t-i x
sin irfdT

2

^ J sinc
2

(M) , (3.8)

sin(Trx)
where sine (x) = .

7T3;

Thus equation (2.10) is transformed to:

Z = L UjA x sinc
2
(/,r) . (3.9)

Equation (2.17) is still valid and if we use the value of flcr\ given below:

E_

P*l = ^r^ smc 2

(fdT) . (3.10)

14



We get the average bit error probability conditioned on a given Doppler shift

h

Pb =
1 e

-Lr[l-(l +(E/N ) sinc^/dT^r+l))" 1
]
L-l j

2L

1 +
AV

smc 2
(fdT)

2(r+l)

k=o

m-0

k + L-1
m + L - 1

E(
m + L — \

:=0
i + L - 1

1 +
(£/iVo) 8inc

i
(/iT)

1

[3.11)

2(r + l)

Again we may now obtain from equation (3.11) the equation corresponding

to (2.23) with the Doppler shift accounted for:

e
-(L/2)(E/N ) sinc2 (/d T) L-l

J
k

f k + L-1
2^> nk 1^
k=0 m=02L

" * fe 2 k .?„ \

f (I)
s,nc2(^T)

m!

(3.12)

For a Rayleigh fading channel (r = 0) and an L of 1, we get the following

equation which corresponds to (2.24)

Pb=
2 + (ElN )s\nc\jdT)-

(3 " 13)

For a Ricean fading channel and an L of 1, we obtain the following equations

which corresponds to (2.25)

r + 1

Ph =
2(r + 1) + (E/N ) sine

2

(fdT)
-r(l-2(r+l)/(2(r+l)+(E/JVo) sinc 2

(/d T)))
(3.14)

15



For a Rayleigh fading channel and diversity L we get the following equation

which corresponds to (2.26)

D / 1 \
LL^ 1 X( k + L-l\( (E /No) smc 2

(fd t)

2 + {El

N

Q )
smc2

(fdT)J fo 2 " ^o V
m + L ~ l

J \2 + (E/N ) smc
2
(fdT)

(3.15)

Again, as a fast check we observe that for L = 1, r = oo and fdT — (no

Doppler effect) in equation (3.11), we obtain (2.22).

For a Rayleigh fading channel (r = 0), L = 1, and fdT = we obtain (2.23).

For a Ricean fading channel, L = 1 and fdT = 0, we obtain (2.25).

Also from (3.11) we observe that the Doppler effect reduces the signal-to-

noise ratio (SNR) by a factor equal to sinc
2
(/jT). SNR is defined to be E/N .

For example, when the Doppler frequency fd is an integer multiple of l/T, then

sinc
2

(/dr) = 0.

Therefore, when the Doppler frequency is large the receiver should sample

the signal faster than the bit time T to reduce the Doppler perturbation. Such an

adaptive change in the sampling rate is equivalent to changing the diversity number

of the system. The receiver would modify the system resultant diversity.

We can also combine the diversity that we obtain by sending L replicas of

the signal with the diversity we obtain by sampling at a rate faster than the bit

rate. In other words, letting T' be the sampling interval (where T' = T/N and N

is a positive integer) and replacing the receiver of Figure 1 with a receiver whose

integration time (and sampling time) is T' and whose diversity is NL.

16



Letting E' be E/N, using equation (3.11) with L, E, and T replaced by NL,

E' and T', respectively, we get:

-NLr\l-(l+((E/NN ) sinc2 (/dT/iV))/2(r+l))-
1

] NL-1

Pb =
1 C"

2ATL

1 + A)
sinc2

{
f
'Jr

2(r + l)

ATL E 1
fc=0 ^

E
m=0

fc + NL - 1

m + iVL-1
1 +

2(r+ l)

o)
Slnc2

(
/dS.WJV,

A / m + TV! - 1

t=0
i + iVX - 1

NLr

m) s™2

{
f4

1 +

x (3.16)

2(r + l)

Using again the same interpretation as before, we obtain the counterpart to

equation (3.12) for a non-fading channel with Doppler perturbation:

T

e
-(L/2)(E/N ) sine2 for/TV) NL-1

j
k

( k + NL-l
Pb = T^Tr E ^ E

L (E_

2 Uo
— — sinc /d -

n

2^1

In that case we have:

2k *-"A m + NL - 1
/t=0 m= \

m!

(3.17)

2 = NL {m) sinc2 (4)
= L

(f

)

sinc2 (4) •

(3 ' 18)

We can see in equation (3.18) the influence of increasing the sampling rate

(i.e., increasing N). Sampling at rate faster than the bit rate reduces the argument

of the sinc function. Therefore, the value of the sinc function is increased.
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IV. CODED PERFORMANCE

In this chapter the performance of the L-fold diversity receiver with error

correction code is investigated. Specifically we consider convolutional codes with

Viterbi soft decision decoding.

For a rate l/n code the bit error probability P\, is upper bounded by the

following union bound [1, 6, 7]:

1 °°

Pb<jT, adPd, (4-1)

d=df

where df is the fine distance of the code, a^ is the information weight of a code path

of weight d, and Pj is the probability the all-zero path is eliminated by a path of

weight d merging with it on the code trellis.

We observe that P& is exactly the probability that the sum of d samples of Y\

is greater than the sum of d samples of Y in Figure 1, that is, P^ is the probability

of error for noncoherent combining of d transmissions where each transmission has

L-fold diversity.

Thus the expansion for Pj is exactly the same as P^ in (3.11) with dL replacing

_ _ »

L, (£/n)E/N replacing E/Nq and £T/n replacing T, that is
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Pa = 1 e
-dLr[l-(l+(l/n)(E/N ) sin^l^/n)

/

dT)/2(r+l))-
1

]

2dL

1 +
2(r + l)

ciL-1 i fc

x £ ^£
jfc=0 m=0

fc + dL - 1

77i 4- dL — 1

dL

1

1 +
2(r + l)

.3 5 sinc2 u/dT

i=

m + dL — 1

i + dL - 1

c?Lr

9 To
sinc2 u^,

1 +
2(r + l)

(4.2)
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V. ANALYSIS OF RESULTS

In this chapter, we analyze the performance (probability of bit error, Pf,) for

the 2-FSK, square law detector system of Figure 1. We assume that the signal is

transmitted L times. We recall that by sampling faster than the bit rate we may

produce an equivalent diversity to sending the signal L times.

In Figure 2, the results for an additive white Gaussian noise (AWGN) channel

are presented. The curve for a 2-FSK signal, L = 1 and no Doppler perturbation

is shown as a reference. This plot provides us with a numerical check of the results

presented in Proakis [1].

Varying the diversity size has proven to be an efficient way to improve the

performance in the presence of Doppler. The curves we have obtained by setting

L = 1 to L = 10, show worse performance than the mentioned 2-FSK curve.

Sending the signal twice (i.e., L = 2) provides a Pj, = 0.10 at an SNR of 10.

We can see an improvement when comparing this value to P& = 0.50 which is the

bit error probability for an L of 1 (i.e., no diversity).

Note that a larger L may give poorer performance at low SNR than a smaller

L would provide. On the other hand, at high SNR, increasing L gives better perfor-

mance. Hence, there are crossovers among the various diversity rates in an AWGN

channel, as illustrated in Figure 2, for L = 3 and L — 4.

In addition, we notice that the best relative improvement occurs when we

increase diversity from L = 1 to L — 2. The next best improvement is obtained by

increasing L from 2 to 3, representing a 2 dB gain at large SNR.

At large SNR, we can see that the improvement is less than 0.50 dB when

going from L = 4toL = 10ina non-fading channel.
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In Figure 3, the bit error probability for a Rayleigh fading channel (r = 0)

is presented. Again we plot the 2-FSK, no Doppler perturbation curve, in order to

provide a numerical check with the results of [1].

Now, we can see that increasing diversity will result in even better perfor-

mance than the mentioned 2-FSK reference curve (L = 1 and no Doppler effect).

Again, the best improvement occurs when we change from L = 1 to L == 2.

The next best improvement is obtained by changing from L — 2 to L = 3 (i.e.,

about 4 dB at a large SNR).

Moving from L = 3 to L = 4 and from L = 4toL = 10 gives us approximately

a gain of 2 dB at a large SNR.

In Figures 4 through 11, the probability of bit error as a function of diversity

size is presented. We show the results for two cases: zero Doppler and f/T = 0.5.

Also, we present four plots in each figure: SNR = 3, 10, 30, 100.
1

The same kind of behavior that we see in a Rayleigh fading channel [1] occurs

in a Ricean fading channel, i.e., for low SNR there is a point of minimum P^.

Besides, we notice that the Doppler perturbation reduces the value of L where

the minimum appears. This is consistent with the fact that the Doppler coefficient

is a factor that reduces the SNR.

Therefore, increasing the diversity at low SNR may result in a reduction in

performance in a Rayleigh or Ricean fading channel.

By sampling the received signal at a rate faster than the bit rate we may

reduce the influence of the Doppler perturbation. We note that increasing the

diversity order results into an increased value of L where the minimum Pf, is located.

^hose values are in linear units and allow easy comparison with [1, 2, 7, 9].
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The behavior of the curves in a Ricean fading channel tends to resemble the

behavior of a non-fading channel as we increase the r value. This effect is presented

in Figures 12 through 15.

Figures 15 and 16 allow us a quick numerical verification of equation (4.2)

with the results of [1] and [7]. We have used fdT = 0, which means the Doppler

coefficient (i.e., sine part of equation (3.16)) equals to 1. By using r = 10,000 we

approach the AWGN channel. Therefore, the uncoded signal represents a 2-FSK in

an AWGN channel. Also, both figures present the comparison of the performance of

the system without convolutional code ('uncoded signal') and the rate 1/2, v = 2,

dj = 5 convolutional code. The systems have the same L. For the initial verification

we used L = 1, and no Doppler effect. Figure 16 provides a comparison for a

Rayleigh fading channel. By inspecting the values of P^ from Figures 15 and 16

we notice that diversity does not improve performance in AWGN channel, thus

confirming Proakis' observations [1]. The results obtained for both the coded and

uncoded signal agree with the one presented by [7].

At large SNR we obtain a gain of about 2.5 dB over the uncoded signal in an

AWGN channel.
2 We recall Doppler has not been considered yet.

Thereafter, we consider the maximum reduction, due to Doppler (i.e., Doppler

coefficient equals zero). In our approach, we identify an effective and efficient way

of combating Doppler and fading. We compared sending L copies of the same

information bit (or sampling the received signal at a rate faster than the bit rate)

or the use of error correcting code (we also tried some combinations of diversity and

coding).

We propose to use the information about the minimum Pb (see Figures 4-11)

to select candidate convolutional codes so as not to mae the system diversity large.

2The gain is a bound due to equation (4.1).
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The comparisons that follow are between a coded system and an uncoded

system. Of course, both systems have the same energy, SNR, and diversity L. We

want to verify how much improvement we may obtain by using a code over the

existent system that contains diversity only.

We evaluate two types of convolutional code: rate 1/2, v = 2, and rate 2/3,

i/ = 2.

As we have seen before, the minimum values for P& occur for diversity value

between 5 and 20. Choosing the rate 1/2, u = 2, convolutional code, we obtain

df = 5 [7]. We use L = 2. Therefore, observing equation (4.2) we verify a reduction

to 1/4 of the original Doppler frequency in this case.

Figure 17 presents the results for zero Doppler. This result agrees with the

one presented in [7].

Figure 18 presents the details mentioned above in a Rayleigh fading chan-

nel (r = 0). At low SNR we see a possible loss. Since the code rate is 1/2 we

have expanded the system bandwidth two times over the bandwidth of the uncoded

system.

Figure 19 shows that for a Ricean fading channel (r = 10) the bound on the

gain is very much reduced in comparison with the one obtained in the Rayleigh case.

There is still a chance of loss at low SNR. Figures 19 and 21 show that an increase

in diversity size improves the performance of the uncoded system more than the one

of the coded system in a Ricean fading channel with r = 10 (which is getting close

to a practical AWGN channel). For Rayleigh fading, the improvement is about the

same as for Ricean fading.

Figure 22 provides a numerical check with the literature [1, 7] for the rate

2/3, v = 2, convolutional code. The same type of performance improvement using

diversity is also observed in this code (Figures 23 to 26).
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We analyze two other convolutional codes that are more suitable for practical

use (due to the fact that they have larger value for df): rate 1/2, u = 6 with dj = 10

and rate 2/3, v = 6 with dj = 6.

We consider a Rayleigh fading (r = 0) and Ricean fading channels for some

values of L. The results are presented in Figures 27 to 42.

The gains we obtain here are much greater than the ones obtained before.

We point out that such selected codes have greater free distance than the previous

ones.

The coding gains are greater in a Rayleigh fading channel than in a Ricean

fading channel, confirming what we have seen in the other codes. P\> can be reduced

by increasing the system diversity L and the direct-to-diffuse ratio r, but the relative

gain is reduced as r increases, i.e., as the channel tends to an AWGN channel.

The rate 1/2 codes presented here perform better than the rate 2/3 codes,

although the gain per bandwidth expansion ratio in the rate 2/3 code is greater

than the rate 1/2 code.

Finally, we notice that there are crossovers among the various uncoded and

coded schemes. This is illustrated in Figures 15 through 41.
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VI. CONCLUSION

A closed form expression for the probability of bit error was independently

derived for 2-FSK, square law detector, conditioned on Doppler in a Ricean fading

channel. We have shown how to obtain the Rayleigh fading channel and AWGN

cases (with Doppler) from that expression. The equations agree with the ones

presented in the literature for the zero Doppler cases.

The equation can also be used in a Jensen's inequality [9] to obtain a lower

bound if the Doppler frequency is assumed to be a random variable. In this situation,

it may also be used to estimate Pb by some statistical simulation method.

The probability density function that was developed can be used to get an

expression for a Pb in a M-FSK scheme. We can directly apply the equation for Pb

for the binary case in a bound for the M-ary case [1].

In addition, we have demonstrated the use of convolutional codes to address

both fading and Doppler effects. We have verified that a bandwidth expansion, due

to coding rate, is the price that we pay for obtaining the SNR gains.

Finally, we suggest the use of non-linear schemes, similar to Trellis Coded

Modulation, to keep the SNR gain and provide a savings in terms of bandwidth

expansion.

In addition, it seems a natural extension of the present research is to study

the application of a dual-k convolutional code [1, 7] coupled with a noncoherent

detection M-FSK scheme.
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APPENDIX A
EVALUATION OF THE INNER INTEGRAL OF

EQUATION 2.6

Evaluation of the inner integral of Equation (2.6):

L-l- yi /2a
:

dy\

2/i
L-l

Jy 2<7 2(L-1)!
^

Jyo

Changing variables in (A.l):

2/i
L-l

(L-l)!
,-(yi/2^

2
)

dy x

2a- 2
(A.l)

x = 1L
2a 2

(A.2)

X = yo_

2<j 2
(A.3)

dx = —dVl =
<fyi

2a 2
(A.4)

-Lxo (L-l)!
rdx = tl (V -

-1 Vfro*!. J x

= lim

"

e-* /^i*'
xq—*oo

.it=0
MSir - - £i

e
-xo /^x*'

vit=

^s*E^ (A-5)

fc=0
fc!

Substituting (A.3) in (A.5):

/ fr1 (yi)dyi -
-'yo

,-yo/2a

yo

A:=0
fc!

(A.6)
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APPENDIX B

BESSEL FUNCTION PROPERTIES

where

J°°
xm+^ 2e^Ju (2/?v^) dx (B.l)

m\^e-^l^1
-m - u- l L v

m (—
J

[ro + v > -1] (B.2)

n=0 \ /

Iv(x)=j-
n
Ju{jx) (B.4)

£ = ja (B.5)

Jv (2^x/x) = Jv (i2«v^) = —/„ (2a\/^) (B.6)

Substituting (B.6) in (B.l)

J
00

xm+l/l2e^xJv (j2ay/x) dx = f°° x™+»/* e-'r*j'>

l

v (2a^) dx

= j
v r xm+l/ l2 e-lxIu (2ay/x) dx = m\j vave^ i"1^^^Um (—

)

(B.7)
1

Thus:

J°°
x^Pe-viy (2ay^) dx = m\av

e
a2^1

~x'u'1Lv
m (—

j

(B.8)

31



where

*== =£<->• {:i:)i&.

a 2

=2-"-(;-")Mt)'<-"-=s(.--:.)ha <»

Substituting (B.9) in (B.8)
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J°°
x™+"/*cTIv (2av^) <fx = mlc^e"

2/^-™-"- 1 £ (

"
+^ J

llf- (B.10)



APPENDIX C

DEVELOPMENT OF Pb EQUATION

Substituting Equation (A.4) and Equation (A. 6) of Appendix A in Equation (2.6)

of Chapter 2:

A:=0

(C.l)

Let

2/o ,
1

, ax = —
2a 2 ' 2<r 3

x '-'
7T~7 i

dx -- ^—^dy

^f-l^fe) " -*«*MV53*

/•oo ^-1 1 / T \ (£-l)/2

/„ ^E^'(f) ."«*>*,, (**=)*

e- "2 i.— 1 1 -oo

w^h.l - ((i-1)/2+t,^4- 1 (2V5J)^. (C.2)
Z

fc=0

Using Equation (A. 10) of Appendix A, let

v = L-l
,

n = fc
,

7 = 2,

33



z(L-,)/2 £o
M

x »- 1,t^ 1

)s ,
- ll"(^ <C3 >

n -^£*,£A *-•» J~ (C -4)

^-^S^SU+i-iJ^r- (C ' 5)

Equations (C.4) and (C.5) agree with the results presented in [2] and [7].
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APPENDIX D
AVERAGE BIT ERROR PROBABILITY FOR A
NON-COHERENT 2-FSK IN A RICEAN FADING

CHANNEL

/oo fOO

Vh (z,P)fz(z)dz= Vb (z,{3)fz (z)dz (D.l)
-oo JO

,lPj_
7o 2L ^2 L̂

nU + L-l m! 23*1 \0p

k / , , r , \ (
"

) 1 / - \ (^"l)/2

(^+/3p)/2/3<72

^jiju/jb+i-i
OL Z-^ Ofc ^2L

ito
2t

ntol m + L - 1 / m!(2/9^)(^)(L - 1 )/ 2 2"1

f°° z
m+ (L-l)/2

e-(P*l
+ l)z/2{3<rl

e -0p/20<Tl j
IV3Pf\ fa

JO \ Prf J

1
L_1

1 - ( k + L — l \ e~
p/2ff

*

= ^S^S V m + L-1 J m!(2/^ )(/3p)
(L-i)/ 2™

X FW (D/2)

F(z) = jH z
-+(i-i)/2

c
-(i/2+i/2K)vL_ 1

f^f •^ <fc (D3)

Using Equation (B.8) of Appendix B and making the following change of

variables:

v = L-\

1 1

7 "
2
+
2^f

35



a
20*1

we get:

F{z) =m! >/3p

2/?<t
2
fej

L-l

;

- P/2^2[1+ /3<t2]
1 1

2 2/9<rJJ

-m-(L-l)-l

L*

(D.4)

Further applying (B.10) of Appendix B to (D.4):

— rn —L m

F(z) = ,(/?p)
(L 1)/2

-P/2^[i+/?gg]

Substituting (D.5) in (D.2):

l

2 2/? f̂cj

m + V

(D.5)

e -p/2^
m!K^./2«,

2L fo
2k ^o \ m + L ~ l J m\(20olKfoY>-WV* ' (2^)^-i

2/fcr?

—m —L

£ m + i/ \ \2^[1 +^fc]

k J t=0
m — i i\

(D.6)

W) =
1 C -(P/2^)[1+ 1/[1+^]]

L-l
i K f k + L-1

9L (20*2)
2\L

fc=0 m=0 \

1 1

+

n —m — L

2 20*1fej

1 A / m + L-1 \ 1

«=o
m-i y i! V2^[1+/3<tJ]

L-l i ifc

_Lp-(p/2^)[1 + (1+/3^)-1] y- J_
2L ?"£ 2* n̂ V m + L-1

it=0 m= \

[1 + P°l]
21 _m_L(2^r

+L

2m {2i3a
2

k )

L

m+L-1 \

1

X
SV ; ^[H
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1 e
-(P/2^)[i+(i+/^)-

1

]
^i

i
* ( k+L-1 0*2

1+^J

E/
m + L — 1 Mi +M]

i=0
m — i i\

(D.7)

Note:

(m + L-1)! f m + L-lm+L-l\ (ro + L-1)!

m-z J

= =

(m _*)!(,- + £_!)!
=I

(j + X - i)!(m _ »)!

==
I i + L-1

Substituting (D.8) in (D.7):

1 e
-(P/^)[i+(i+/^)-i] ^i i

* /
fc + £ _ i

(D.8)

0*2

1+^2

J

E/
m -\- L — \

i=0
i + L-1

P

,2^[1+^ 2

i!

(D.9)
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APPENDIX E

DOPPLER EFFECT COEFFICIENT

Doppler effect coefficient:
1

Ai. rkT

y/2 J(k-l)T
(E.l)

k=l Z k=l

•fcT

/ e
JWdtdt

J(k-1)T
(E.2)

rkT e
Ju>dkT _ jwd (k-l)T

/ e
3v
"*dt = (-j) (fort^O)

J(k-l)T Wd

— ( — ^\^wd(k-l)T(-j)e
z
]wdT _ y

wd

(E.3)

rkT

/ e
JWdt

dt
J(k-1)T

jwdT _ y

wd

= r
JwdT _ |

wdT

= T 2
cos wdT 4- j sin wdT — 1

WdT
= T (cos wdT — 1 ) + j sin wdT

wdT

= T cos 2 WdT + sin
2
WdT +1—2 cos WdT

(wdTy
= r 2 — 2 cos WdT

(wdTy

= 2T'

2 sin
2
wdT

(wdTy
= 4T 7

2 sin
2
wdT

(wdTy
= T 7

sin
wdT

wdT
= T2

l

sm
wdT\

'

wjT

(E.4)

^ote that here u/<j = 2^/^.
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When u>d = 0:

[ e°dt
J(k-1)T

= T"

Taking the limit of (E.4) when Wd — 0:

wdT\)
2

lim T 2

w—-0

sm

wdT
= T

Thus the expression (E.4) is valid also for Wd = 0.

Substituting (E.4) in (E.2):

2 sm
V = T

2 I fwdT

wdT\ 1

A:=l

(E.5)

(E.6)

(E.7)
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APPENDIX F
FIGURES
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Figure 1: An L-fold diversity 2-FSK receiver.
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Figure 2: Probability of bit error conditioned on the Doppler effect

coefficient in an AWGN channel as a function of the system diversity.
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Figure 3: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) as a function of the system
diversity.
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Figure 4: Probability of bit error conditioned on the Doppler effect

coefficient {fjT = 0) in a Rayleigh fading channel (r = 0) as a function of

the system diversity.
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Figure 5: Probability of bit error conditioned on the Doppler effect

coefficient (faT = 0.5) in a Rayleigh fading channel (r = 0) as a function

of the system diversity.
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the system diversity.
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Figure 7: Probability of bit error conditioned on the Doppler effect

coefficient (f/T = 0.5) in a Ricean fading channel (r = 1) as a function of

the system diversity.
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the system diversity.
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Figure 11: Probability of bit error conditioned on the Doppler effect

coefficient (f^T = 0.5) in a Ricean fading channel (r = 10) as a function of

the system diversity.
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Figure 12: Probability of bit error conditioned on the Doppler effect

coefficient in a Ricean fading channel (r = 1) as a function of the system

diversity.

53



CQ

Z
on

qd

Figure 13: Probability of bit error conditioned on the Doppler effect

coefficient in a Ricean fading channel (r = 5) as a function of the system
diversity.
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Figure 14: Probability of bit error conditioned on the Doppler effect

coefficient in a Ricean fading channel (r = 10) as a function of the system

diversity.

55



CO O
PC

Oo O
a
o
U

II

>

II

<**

T3

o
I—

1

II

II

2

00

\o

CO
•a

a:
z

- cs

O O 6

qj uojjg \\q jo XjinqEqojj

Figure 15: Probability of bit error conditioned on the Doppler effect

coefficient in an almost AWGN channel (r = 10,000) and no Doppler
effect for a rate 1/2, v = 2 convolutional code and system diversity L = 1.
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Figure 16: Probability of bit error conditioned on the Doppler effect

coefficient in an almost AWGN channel (r = 10,000) and no Doppler
effect for a rate 1/2, v = 2 convolutional code and system diversity L = 2.
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Figure 17: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and no Doppler effect for

a rate 1/2, v = 2 convolutional code and system diversity L = 2.
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Figure 18: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler

effect, i.e., minimal Doppler effect coefficient for a rate 1/2, v — 2 convo-

lutional code and system diversity L = 2.
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Figure 19: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, u = 2 convolutional

code and system diversity L = 2.
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Figure 20: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler
effect, i.e., minimal Doppler effect coefficient for a rate 1/2, v = 2 convo-

lutional code and system diversity L = 3.
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Figure 21: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, v = 2 convolutional

code and system diversity L = 3.
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Figure 22: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and no Doppler effect for

a rate 2/3, v = 2 convolutional code and system diversity L = 2.
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Figure 23: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler

effect, i.e., minimal Doppler effect coefficient for a rate 2/3, v = 2 convo-

lutional code and system diversity L = 2.
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Figure 24: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v = 2 convolutional

code and system diversity L = 2.
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Figure 25: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler
effect, i.e., minimal Doppler effect coefficient for a rate 2/3, v = 2 convo-

lutional code and system diversity L = 3.
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Figure 26: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v = 2 convolutional

code and system diversity L = 3.
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Figure 27: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler

effect, i.e., minimal Doppler effect coefficient for a rate 1/2, u = 6 convo-

lutional code and system diversity L = 2.
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Figure 28: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 1) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convolutional
code and system diversity L = 2.
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Figure 29: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convolutional

code and system diversity L = 2.
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Figure 30: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler
effect, i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convo-

lutional code and system diversity L = 3.
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Figure 31: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 1) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convolutional

code and system diversity L = 3.
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Figure 32: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convolutional

code and system diversity L = 3.
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Figure 33: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler
effect, i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convo-

lutional code and system diversity L = 4.
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Figure 34: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 1/2, v = 6 convolutional

code and system diversity L = 4.
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Figure 35: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler

effect, i.e., minimal Doppler effect coefficient for a rate 2/3, v = 6 convo-

lutional code and system diversity L = 2.
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Figure 36: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 1) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v — 6 convolutional

code and system diversity L = 2.
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Figure 37: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v = 6 convolutional

code and system diversity L = 2.
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Figure 38: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler

effect, i.e., minimal Doppler effect coefficient for a rate 2/3, v = 6 convo-

lutional code and system diversity L = 3.
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Figure 39: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 1) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v = 6 convolutional

code and system diversity L = 3.
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Figure 40: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v = 6 convolutional

code and system diversity L = 3.
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Figure 41: Probability of bit error conditioned on the Doppler effect

coefficient in a Rayleigh fading channel (r = 0) and maximum Doppler

effect, i.e., minimal Doppler effect coefficient for a rate 2/3, v — 6 convo-

lutional code and system diversity L = 4.
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Figure 42: Probability of bit error conditioned on the Doppler effect co-

efficient in a Ricean fading channel (r = 10) and maximum Doppler effect,

i.e., minimal Doppler effect coefficient for a rate 2/3, v = 6 convolutional

code and system diversity L = 4.
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