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ABSTRACT

The Configurable Fault Tolerant Processor (CFTP) team at Naval Postgraduate
School (NPS), Monterey, was created to develop, test, and implement reliable computing
solutions for the space environment. The CFTP team seeks to design reliable circuits
using Field Programmable Gate Arrays (FPGA) to include designs that mitigate the
radiation hazards posed to FPGAs. A significant challenge faced by the CFTP team has
been the integration and subsequent software development of the CFTP architecture,
which includes a “Controller” and an “Experiment” FPGA.

This thesis investigates some of the specific design issues that must be considered
for future experiments, to include timing between the two FPGAs, and data throughput of
the CFTP architecture.  Procedures for the development and implementation of
experiments are detailed for the benefit of future experimenters who may be new to
designing for FGPAs. Lastly, the Controller program is streamlined such that only minor
modifications are required by prospective users in order to conform to specific
experiments.

Over the years the CFTP team has produced several experiments that will provide
reliable computing solutions for the space environment. Now, in addition to the “what”

IS to be used in space, this thesis presents “how” to run them in space.
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EXECUTIVE SUMMARY

The Configurable Fault Tolerant Processor (CFTP) project was created for the
purpose of developing and testing fault tolerant circuits in space. Redundancy is one
solution to the hazards that radiation in the space environment presents to electronic
circuits. Field Programmable Gate Arrays (FPGA) provides a viable test bed for fault
tolerant experiments due to their flexibility and ability to be programmed multiple times.
The CFTP team created a robust architecture specifically designed to test and evaluate
fault tolerant circuits through the use of FPGAs [4].

The primary components of this architecture are; two FPGAs, a PC/104 bus, an
ARM processor, and Flash Memory. One FPGA is designated as the Controller FPGA,
such that it controls the loading and running of experiments, as well as data transport over
the PC/104 bus. The other FPGA is designed to be the Experiment FPGA, dedicated

solely for the implementation of fault tolerant circuits.

Designers for the CFTP team over the years have created many interesting
experiments that provide viable solutions for fault tolerant circuits. However, in addition
to the design phase of an experiment, much effort has been spent understanding how a
circuit on the Experiment FPGA interfaces with the Controller FPGA. Often times
getting an experiment to properly integrate within the CFTP architecture proved much
tougher than the design of the experiment itself. The original goal of this thesis was to
provide future designers with the necessary insight into the inner workings of the
Controller such that more effort can be directed towards designing experiments and less

effort towards how they are implemented.

This thesis begins with an overview of the architecture and discussion of the code
that is the design of the Controller. The purpose and functions of the Controller FPGA
are discussed in detail to include clocking issues and how it interfaces with other
components on the CFTP architecture. Emphasis is provided on portions of the
Controller code that prospective designers will have to consider modifying to meet the

needs of their experiments.

XVii



Beyond how the Controller FPGA, X1, interfaces with the Experiment FPGA,
X2, this thesis explores timing and synchronization between the two chips. Several
designs are implemented on both X1 and X2 showing that the two chips can be
synchronized to run at the same clock rate, successfully transferring data without the use
of handshaking signals. Also investigated is the maximum safe data rate that can be
achieved across the PC/104 bus.

Finally, this thesis provides an example design that is implemented onto the CFTP
architecture.  This example design highlights the functionality of TMR while
demonstrating how to account for many of the integration issues within the CFTP
architecture.  More importantly, the design demonstrated in Chapter V provides
prospective designers a clear example of how the code within X1 is modified to suite the

needs of an experiment implemented on X2.

The experimental design presented in Chapter V has been implemented on both
the Flight and Development Boards, and its output is included toward the end of Chapter
IV. This design has been installed on the Flight Board and will be the first experiment to

provide output from the CFTP project shortly after its launch on 18 January 2007.
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l. INTRODUCTION

Computing in the space environment is a challenge due to the inherent radiation
environment and the subsequent adverse effects on electronic circuits. Additionally, long
development schedules for space circuits have created a growing demand for increased
flexibility. Field Programmable Gate Arrays (FPGASs) are one answer due to their
inherent flexibility and their capability to be reconfigured. However, the radiation
susceptibility of FPGAs can lead to data and configuration errors. This is most
commonly caused by Single Event Upsets (SEU), where radiation causes logical bit

values to change.

The Configurable Fault Tolerant Processor (CFTP) program at Naval
Postgraduate School (NPS), Monterey, was initiated several years ago, and has evolved
into a robust experimental platform [4]. Two separate architectures, both containing two
Xilinx Virtex FPGA chips for implementing experiments, have been designed by the
CFTP team and are fully functional. These architectures are structured to effectively
enable the implementation of space-born experiments, and more importantly, to easily
store and download the results for evaluation. The main components of the two
architectures are as follows: Experiment FPGA, Control FPGA, PC/104 Bus interface,
Flash Memory, EEPROM (Electronically Erasable & Programmable Memory), and an
ARM (Advanced RISC Machine) Processor running an embedded Linux operating
system [1].

The control FPGA is designed to be a controller for the loading of experiments,
and passing data to the ARM processor through a PC/104 interface. The experimental
FPGA is just that — an FPGA that is used to test various radiation-hardened designs that
mitigate the effects of SEUs [4].

The CFTP team strives to design radiation hardened circuits that mitigate the
effects SEUs have on FPGAs. This approach within the CFTP architecture presents other
challenges beyond finding viable techniques for reliable computing, to include the
integration among two FPGAs, a PC/104 bus, and an ARM processor. This thesis



explores those issues as well as the processes by which experiments are actually
implemented. Specifically, this thesis will serve as a manual for future prospective
experimenters on the CFTP team.
A. CFTP OBJECTIVE

The objective of the CFTP program at Naval Postgraduate School is to design
reconfigurable and reliable space-based computer systems through the use of
commercial-of-the-shelf (COTS) FPGAs. Because of the need for reliable electronic
circuits in space, it is essential to have the ability to reconfigure and/or redesign space-
born processors. FPGAs provide an ability to perform reconfigurations, and therefore
offer great flexibility. The CFTP team seeks to design radiation hardened circuits
through software solutions in order to counter one of the primary limitations of FPGAs —
susceptibility to SEUs.
B. RESEARCH OBJECTIVES

This objective of this thesis is to detail the tools and techniques for implementing
experiments, and to investigate timing constraints and integration issues on the CFTP
architecture. The past years of development by students working on the CFTP team have
created many lessons learned and produced many interesting designs. As a result, this
thesis provides a formal document detailing the complicated and sometimes intricate
procedures for developing and implementing experiments.
C. BACKGROUND

For the past several years numerous students on the CFTP team have concentrated
on the mitigation of SEUs. The work up to this point has primarily focused on creating
reliable computing solutions for the space environment using triple modular redundancy
(TMR). Pete Majewicz created a processor for implementation on an FPGA that uses
internal TMR, which he named the PIX processor [2]. James Coudeyras concentrated on
a design that uses the entire FPGA chip to increase the probability of an SEU occurring,
thereby enabling the testing of the process by which an SEU is detected and corrected [3].

Dean Ebert’s thesis is the initial work that determined the design of the current
CFTP architecture [4]. This work defined many of the issues considered in the initial
design, and provided the solutions and final integration decisions that made up what the

CFTP architecture is today.



D. CFTP ENVIRONMENT

Within the CFTP development environment there are two separate architectures
that provide two separate functions. One of the architectures is named the “Development
Board,” and its function is self-descriptive; to provide a platform for developing and
testing experiments before implementation in space. The other architecture is named the
“Flight Board,” and is function is self-descriptive as well; a platform for running
experiments in space. The basic architecture of the Development Board and the Flight

Board is identical. Both contain two FPGAs and the interface and support components.

The primary difference between the Development Board and the Flight Board are
the FPGAs themselves. The two FPGAs on the Flight Board are total-dose RADHARD
(radiation hardened), and are therefore intended for flight in space. The Development
Board uses two MILSPEC (military specification) FPGAs that are not designed to
survive the space environment. The two types of FPGAs are mounted in two different
types of packages, which means that their pinouts differ. Therefore, the FPGA design
files and constraint files must be slightly different (see Appendix B for specific constraint
file (UCF) considerations).

Though the development of an experiment can theoretically involve the creation
of a circuit on one FPGA alone, this is not sufficient for evaluating experiments in space.
A means to control the implementation of various experiments, as well as data collection,
is essential for evaluation and analysis. This requires not only the integration between
two FPGAs, but the other support items as well, such as Flash Memory, the PC/104 bus,
and the ARM processor. The procedures for creating and implementing experiments that
take these integration issues into account dictates that prospective experimenters become
familiar with how the architecture is integrated, and the specific limitations that result

from that integration.

The primary limitation of the CFTP architecture is the maximum data rate that
can be achieved across the PC/104 bus. This limitation is bounded by the interaction
between the PC/104 bus and the ARM processor, and more specifically, the ability of the
Linux operating system on the ARM to perform reads on the PC/104 bus while keeping



other processes running in the background. This thesis specifically addresses these
limitations, providing detailed guidance for future CFTP team experimenters.
E. IMPLEMENTING EXPERIMENTS

Successfully designing an experiment that produces output on an FPGA is merely
the first milestone that must be completed. This is usually accomplished via logic design
and simulation with Computer Aided Design (CAD) software, tailored to the specific
type of FPGA for which the experiment is to be implemented. The CFTP architecture
design has some limitations, which will be addressed in this thesis, and those limitations

must be taken into account when designing an experiment.

Once an experiment is successfully tested via simulation, which must include the
creation of an accompanying constraint file, the controller code, code that runs the
Control FPGA, must be modified to work with the experiment. Though the
modifications may be few and relatively trivial, the controller code must be changed and
compiled so that it will pass the proper number of bits of data, and will pass that data at
an appropriate data rate. Also, the constraint file within the controller code must be
modified to match the constraint file of the experiment.

F. OVERVIEW

Chapter 1l of this thesis gives the reader a brief overview of the CFTP
architecture; how it is organized and some of the specifics of the various components.
Chapter 111 discusses in detail the design of X1, the Controller. It provides future CFTP
designers the necessary details to understand how the Controller interfaces with the rest
of the CFTP architecture, and more importantly, the portions of the Controller code that
must be modified when creating an experiment. Chapter IV provides even more insight
into the inner workings of the CFTP architecture as it addresses timing and some key
limitations of the Flight and Development Board. Chapter V reviews the processes for
implementing an experiment onto the CFTP architecture, from the first stages of a
Hardware Description Language (HDL) description and/or schematic development, to
implementation on an FPGA chip. Finally, Chapter VI provides conclusions and some

suggestions for future work.



Il. CFTP ARCHITECTURE

Though two architectures have been developed by the CFTP team, they are nearly
identical in layout, and they are functionally identical. The two architectures, the
Development Board and Flight Board, were designed to accomplish the missions their
names imply; the Development Board is for the development and testing of experiments
on the ground, and the Flight Board is designed to implement experiments in space.
Figure 1 is representative of both the Development and Flight boards.

Experiment  Control FPGA EEPROM

WYHds
shg I’ﬂ'lﬂ]'d

r e -]

Flash Memnr}'_:

Figure 1. CFTP Development Board (From Ref. [1]).

The two FPGA chips on the Flight Board are Xilinx Virtex I QPro Radiation
Hardened FPGAs, with the specific Xilinx device number XQVR600 [6]. Table 1 shows
the specifications for three Xilinx devices, showing where the XQVR600 falls with
respect to other available devices. This highlights the number of programmable assets
available within these FPGAs. Though the XQVR1000 would allow for larger and more

complex designs, the XQVR600 was chosen due to architectural and costing constraints.

Maximum Max Select
Device System Gates | CLB Array | Logic Cells Awvailable I/O Block RAM Bits RAM Bits
XQVR300 322970 32%48 6,912 316 65,536 98,304
XQVRE00 661,111 48x72 15,652 316 98,304 221,184
XKQVR1000 1,124 022 64x596 27,648 404 131,072 383,216

Table 1. Xilinx RADHARD FPGA Gate Counts (From Ref. [6].)



The only difference between the Development Board and Flight Board, as
previously mentioned in the introduction, are the FPGA chips; Development Board
FPGAs are MILSPEC and the Flight Board FPGAs are RADHARD. This difference
resulted in different physical pin layouts between the two FPGA chips located on each
printed circuit board. On the Development Board, there exist 45 physical pin connections
for the passing of data bits (one pin equals one bit) between the two FPGAs. However,
on the Flight Board there are only 43 pins available for the passing of data bits, and the
pin layout is slightly different.

The physical difference in the pin assignments were specifically for the
SelectMap processes performed by the Controller FPGA. SelectMap is a hardware
configuration mode that provides the fastest option for presenting data to an FPGA from
a microprocessor [8]. Discussed in detail in Chapter 111 and Appendix B, the different
pin numbers are assigned within the UCF files.

A. CONTROL FPGA

Also known as X1, this is the heart of the CFTP architecture. It provides the
necessary interface for operations and data flow between the Experiment FPGA, the
PC/104 Bus and the ARM processor. It controls the loading of an experiment’s
configuration from the Flash Memory to the Experiment FPGA. It is named the
Controller FPGA because that is its overall function; to control the loading and running

of experiments on the Experiment FPGA.

The Controller FPGA also has the responsibility to perform periodic scrubbing,
(comparing the configuration stored in the Flash Memory with the configuration loaded
on the Experiment FPGA) and can reconfigure the Experiment FPGA if warranted. The
existence of a Controller FPGA provides a crucial capability for prospective
experimenters; the ability to evaluate the reliability of space-born designs.

B. EXPERIMENT FPGA

Also known as X2, this is the FPGA for the implementation of specific fault-
tolerant circuits. Designers can create a fault-tolerant circuit, implement it on the
Experiment FPGA, and determine the ability of their design to function reliably as a
standalone circuit. The existence of two FPGAs is central to the philosophy of the CFTP



architecture. In order to evaluate the reliability of a design, data produced from that
design has to be evaluated. More specifically, the integrity of the design’s configuration

has to be monitored.

SEUs are a problem for FPGAs, not just because data might be altered, but
because the configuration can become corrupt and change the operation of a circuit. It is
this reason that the design of a circuit must implement some form of fault tolerance to
mitigate, if not completely eliminate, the effects of SEUs in data and by detecting

repeated faults caused by configuration errors so as to initiate configuration repair.

Note: RADHARD FPGAs are tolerant to large total dose radiation exposure, but
are just as susceptible to SEUs as are non-RADHARD versions.
C. PC/104 BUS

The PC/104 bus is an 8-bit data bus, version 2.4, and is a trademark of the
Embedded Consortium [5]. This is the interface between the Controller FPGA and the
ARM processor. This is where data is transferred, and more importantly, it is the avenue
through which the FPGAs are configured. A total of 104 signal contacts exist, though
only 8 (8-bits) are for data transfers to and from an experiment. The other 96 pins are
dedicated for functions such as handshaking between the PC/104 and X1, and other
programming and loading processes.
D. EEPROM

This is a Xilinx component, XC18V04, and holds the initial configuration for X1,
the Controller FPGA [4]. The purpose of this device is to configure X1 upon initial boot
up for the CFTP architecture. The load within the EEPROM can not be changed once the
Flight Board is attached to the satellite.
E. FLASH MEMORY

This device is an Intel Flash Configuration Memory (TE28F320C3), and is where
the configurations for experiments to be implemented onto X2 are stored [4]. There is
enough space in this memory module to store four separate configurations specifically for
X2.
F. ARM PROCESSOR

The ARM processor is installed on a printed circuit board separate from the

FPGAs, with a direct connection to the PC/104 bus. This is the interface between the
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satellite and the two FPGAs, via the PC/104 bus. The ARM processor stores the
programs that write and read to/from X1, and provides temporary storage of output data

files, as well as the configurations for both X1 and X2.

The operating system on the ARM processor is an embedded Linux operating
system that handles the various aforementioned processes. Various shell scripts and C-
code programs have been developed to read data from the PC/104 bus, and to load
configurations across the PC/104 bus for X1 and X2. One of the important processes the
ARM must manage is a read program that performs constant polling to detect when data
becomes available for reading on the PC/104 bus. Another important process the ARM
manages is a write program that is invoked by the ARM to program X1 with its
configuration file. The ARM uses this process to write data across the PC/104 bus and
onto X1.

Without the ARM, it would not be possible to program X1 or X2, nor would it be
possible to collect data from experiments on X2 and to pass that data to the satellite
computer for eventual downlink to Earth. The two ARM processors on the Flight and
Development Boards are identical and differ only in the number of processes they are
required to run. These differences do not affect how experiments are designed, or how
the code for X1 is implemented.

G. SDRAM

This is a memory module available for the use of experiments on X2. Total
random access memory (RAM) available is 16 megabytes (16 MB).
H. CHAPTER SUMMARY

This chapter provided an overview of the organization of the CFTP architecture
and its functionality. Very brief explanations of only the primary components were
provided. The next chapter details the VHDL code that programs X1 into a controller.
Also covered are considerations for future CFTP designers when developing code for

programming an experiment onto X2.



1. MODIFYING CODE

VHDL (Very high speed integrated circuit Hardware Description Language) code
describing the functions of the Controller, X1, has been developed and tested over the
past years and is largely reliable. This VHDL code provides specific functions, all of
which will be covered in this chapter. An understanding of the functionality of all the
VHDL modules is essential as prospective experimenters are required to make minor
modifications to three of the six modules that make up the VHDL code for X1 so that it

will properly interface with their experiments.

The primary purpose of the Controller is to control the implementation and
evaluation of experiments on X2, and it is arguably the most important component of the
CFTP architecture. Without proper operation of X1, data from the experiments can not
be collected. Although a designer should fully develop and test an experiment before
making any modifications to X1, the functionality and required modifications to its
VHDL code are covered first because of its importance. Section B provides some
important considerations for the development of experiments for X2.

Beyond its purpose mentioned above, the Controller can also be modified to
provide data to a circuit implemented on X2. This requires the designer to create and
implement a new module, or a new process within an existing module, within the
Controller code for X1. Chapter 4 provides methods for accomplishing this, as well as
other scenarios describing how the Controller code can be modified to aid in the
evaluation of circuits implemented on X2. This chapter limits its scope to the code that
defines the Controller.

A. CONTROLLER

The required capabilities of the Controller go beyond the simple functionality of a
“pipe” for data transfer. Not only does the Controller transfer data, it controls the rate at
which that data is transferred. More importantly, the Controller is designed to configure
X2, the Experiment FPGA, as well as to perform periodic scrubbing and reconfiguration
of X2 [4].



The VHDL code for the Controller is separated into six modules, as shown in
Figure 2. These modules are; the Top Level module, which instantiates the other five
modules and provides specific signal assignments, the X2 Interface, which contains the
processes by which the two chips interface, the PC/104 Interface module, which provides
the processes for data transfer across the PC/104 bus, two SelectMap modules, which
provide processes for the loading and comparing of configurations, and a Clock

Generator module, which performs clock division.
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Figure 2. Graphical Depiction of X1 Modules with X2 (From Ref. [1].)

1. Top Level
As mentioned, aside from instantiation of the other five modules, the primary

purpose of the top level code, named top_level.vhd, is simply signal assignment for the
various modules. Prospective designers will only need to modify signals to suite the
needs of an experiment within three sections in the top level code. Appendix B shows
the specific sections of code containing the signals to be modified, with approximate line

numbers denoting where the sections are located, within top_level.vhd. As is noted again
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in subsection 2 for emphasis, these signal names exactly match the signal names in the
port section of the X2 interface. Chapter V provides an example experiment which

shows how these signals are named.

An important signal within the top level code that designers will not alter is the
specific clock signal assignment. It is vital to have a full understanding of this clocking
signal and how it can potentially affect design decisions for experiments.

The primary oscillator for the Flight and Development Boards comes from the
ARM processor, and runs at 51 megahertz (MHz). This speed presented an early
engineering dilemma for the CFTP team. Xilinx’s application note 138 titled “Virtex
FPGA Series Configuration and Readback” states that the SelectMap process can not
perform simultaneous configurations of two devices at speeds equal to or greater than 50
MHz [7]. As a result of this constraint, the design decision was ultimately made to run
all modules on the Controller at half the speed of the primary oscillator, using clock
division performed via the clock generator module, discussed in subsection 7. The
decision to clock-divide the primary oscillator by two, rather than fractional division to
provide greater speed, was made in favor of simplicity. All of the Controller’s VHDL
modules run off this clock-divided signal, with the exception of initial clock signal
coming into the top level module, because operating some modules at 51 MHz with the
SelectMap modules at 25.5 MHz can lead significant timing problems.

For most situations, the use of this clock signal on X1 does not affect the speed at
which experiments operate on X2. Designers can still use the primary oscillator and
operate their circuits at 51 MHz. Chapter 4 shows how the timing between the two
FPGAs shape some of the design decisions for experiments, proving that circuits on X2
can run at 51 MHz, and also providing a situation when X2 should be clock-divided to
the same rate as X1.

2. X2 Interface

This VHDL module is the workhorse for X1, and it requires the greatest amount
of modification by the designer. Within this module, x2Int.vhd, the designer will

determine the byte size of the data stream, as well as the data rate across the PC/104 bus.
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This module also determines how often a SelectMap read-back occurs, and when a
SelectMap reconfiguration should take place.

The first consideration of any designer when modifying X1 should be the naming
of signals to properly describe what type of data the experiment produces. It is worth
emphasizing that any signal names modified within the primary port section of X1 must
also be modified within three sections of the file “top_level.vhd.” A complete listing of

the X2 interface code is located in Appendix B for reference.

Once the proper signal-naming is complete, the designer next should consider
what level of handshaking is required between the two FPGAs, if any at all. Because the
two chips are synchronous, (their clocking signals are derived from the same 51 MHz
oscillator), specific handshaking is not required, as is shown in Chapter 4, to transfer data
from X2 across X1 and onto the PC/104 bus. The most common handshaking signal
employed is an error-occurrence signal. This allows X1 to read data from X2 and write it
to the PC/104 bus only upon the occurrence of a specific event. It is left up to the
designer when the circuit on X2 should assert this specific signal high — perhaps upon the

occurrence of a data error, or perhaps when the circuit finishes a calculation.

The module x2Int.vhd receives a reset signal from the top level code, named
“RESET_i” in the x2Int.vhd port signal names, which resets all signals and vectors to
predetermined values, defined within the behavioral of x2Int.vhd, when this signal goes
high. The same purpose for X2 is served with the signal name
“DATA _TO X2 RESET o.” This signal is the same reset signal mentioned above, and
both are derived from X1’s clock. Therefore this is a synchronous signal, and sending it
to X2 to start X2’s processes in the same manner it is used to start the processes within
X1, ensures that circuits running on both FPGAs are synchronized. Chapter 1V details

the importance of implementing this simple programming procedure.

Next the data size, the number of bytes to be transferred per write cycle, must be
modified within x2Int.vhd to match the requirements of the experiment in X2. There are
two variables with the X2 interface module which determine the data rate across the

PC/104 bus. One variable determines the data size, and the other variable determines the
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sampling rate. The sampling rate is defined as such; the periodicity at which X1 reads
data from X2 and writes that data to the PC/104 bus.

The data rate, (refer to Chapter 1V, “Timing,” for the maximum safe data rate), is
determined by multiplying the sampling rate times the data size. The sampling rate is set

by changing the integer value assigned to a constant signal within x2Int.vhd, as below.
CONSTANT ERR_RPT_TIME :integer := 38250000;

A process within x2Int.vhd uses this number as the final value of an internal
counter. The counter increments on the 25.5 MHz clock, and when the count equals the
constant ERR_RPT_TIME, the X2 interface module reads the appropriate signals for any
data produced by X2, and the count resets to zero. The sampling rate is therefore

determined as follows:

25.5MHz
ERR_RPT_TIME

=Sample Rate

Also, when the count equals “ERR_RPT_TIME,” a vector of bytes, the length of
which is determined by the designer, is written to X1’s output signals. The number of
bytes written at each sample is determined by setting an integer value assigned to a
constant signal.

CONSTANT REPORT_OUT_LENGTH : integer := 15;

The last two considerations for the experimenter are how often to perform a
SelectMap read-back of the configuration of X2, and when a reconfiguration should take
place. The standard within the CFTP development environment has been to perform a
read-back of X2’s configuration and compare it to the contents of the flash every 30
seconds. This timing is also determined through the use of a counter operating on the
25.5 MHz clock signal. The final value of this counter is another constant signal that can

be modified by the designer if needed.
CONSTANT DLY_TIME : integer := 765000000;

Dividing this integer into 25.5 MHz yields the resulting timing for a read-back. In
this case, 25,500,000 divided by 765,000,000 yields a rate of 0.0333 Hz. This translates

to a read-back every 30 seconds.
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Performing read-backs and comparing configurations every 30 seconds has not
proven detrimental to the operations of X1 or X2. It is a relatively quick process, it does
not interrupt operations of the circuit implemented on X2, and provides assurance that a
configuration error will be caught and corrected in a timely fashion. To further guarantee
the integrity of X2’s configuration, the X2 interface can also initiate a reconfiguration if a

certain number of data errors accumulate.

The number of data errors from the output of X2 is another threshold that can be
set by the experimenter. The basic principle behind redundant computing allows for the
occurrence and correction of data errors. Configuration errors on the other hand will
cause repeated occurrence of the same data error, thus, repeated data errors are an
indication of a potential configuration error. Therefore it must be decided when enough
data errors have occurred such that the circuit should be reconfigured. The constant
signal for that threshold within X2 is named “err_cnt,” appropriately, and is a 24-bit
standard logic vector. The specific value assigned to the threshold for this signal is
located towards the end of the x2Int.vhd code, within an “IF” statement. The experiment
implemented on X2 must define and calculate what this threshold should be; there is no
definitive answer as experiments can vary greatly. However, the current practice within
the CFTP project has been to set this value to hex 80.

3. Constraint File

The constraint file for X1, named control.ucf, is where signals are assigned to the
specific pin locations on the X1 FPGA. All signal assignments within this file must
exactly match the names of all signals within the port assignments in the top level code.

The two different architectures within the CFTP program, the Development and
Flight boards, only differ within this file. As briefly mentioned on Chapter Il, it is the
physical pin assignments for the SelectMap processes that differ. Care must be taken by
CFTP designers to ensure that the proper constraint file is being used for the Flight Board
or Development Board. Though using the incorrect ucf-file is a mistake easily made, it is
also just as simple to confirm that the correct ucf-file is being used. The top of each file
is clearly commented on the top line as being designed for the Flight or Development
Board, and deep into the files there exist comments denoting pin differences.
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For the Development Board, two pins are available for assignment as the primary
input clock for the top level code as there are two clocks available for use, a 50 and a 51
MHz clock. The example constraint file located in Appendix B points this out. For the
Flight Board, the input clock assignment is straight forward as there is only one choice,
the 51 MHz clock. For simplicity and compatability with the Flight Board, it is highly
recommended that only the 51 MHz clock be used for the Development Board.

Lastly, the pin assignments between X1 and X2 for data flow must match in
physical location, though the names themselves do not have to match exactly. A level of
confusion can present itself here in that some of the corresponding signals are not the
same pin numbers within the X2 and X1 constraint files. However, referring to the
specific control.ucf code located in Appendix B, comments next to the respective line
numbers within this file clearly denote how the signals correspond to one another. Signal
names within X1’s VHDL top level code must match the signal names in the X1
constraint file, and signal names within X2’s VHDL top level code must match the signal
names in the X2 constraint file.

4. PC/104 Interface

The sole purpose of this module, pc104IntArm.vhd, is to provide a means for
interfacing between X1 and the PC/104 bus. To accomplish this, the PC/104 interface
module employs a FIFO (first in, first out) buffer. This FIFO is 32-bits wide and 64-
words deep. It was generated by CoreGen, an intellectual property of the Xilinx’s Project
Navigator Software. Experimenters are not required to make any modifications to this

module.

A “maximum safe data rate” exists across the PC/104 bus and is defined as: the
maximum rate at which output can be written to the PC/104 bus without any loss of data.
This maximum safe data rate is a CFTP architecture limitation vice a specific limitation
of the PC/104 bus itself. The interaction between the PC/104 Bus and the ARM
processor, and specifically the processes running on the ARM, is what limits the data

rate.

The FIFO employed with the PC/104 interface module is designed to stop
accepting data if it becomes full. If the maximum rate at which the ARM can read is
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exceeded, then data accumulates within the FIFO buffer. If data accumulates to the
maximum size of the FIFO buffer, then it stops accumulating data until more space is
available. This results in a loss of data. The procedures for determining the maximum

safe data rate are described in Chapter 1V.

The PC/104 bus is asynchronous therefore handshaking is employed to ensure
proper data transfer. These handshaking signals, employed within the X2 interface
module, identify when the PC/104 is being written to and therefore in a busy state, when
it is ready to be written to, ready to be read from, as well as a signal that acknowledges a
read. These four signals can be located in the port assignment section of “x2Int.vhd,” and
their respective functions are clearly commented.

5. SelectMap Configure

This module, SelectMap_config.vhd, performs the actual configuration of X2.
When X1 is programmed with the Controller code described in this chapter, the first
process executed is this module. The SelectMap configuration module reads the flash
memory, starting at address zero, and takes the first 900 kilo-bytes (KB) of the flash
memory and loads it into X2. It performs this process when commanded by the X2
interface module. Experimenters are not required to make any modifications to this
module.

6. SelectMap Read Back

This module, SelectMap_readback.vhd, also performs as its name implies; it reads
the configuration data loaded in the flash memory and compares it to the actual
configuration loaded into X2. This process, known as scrubbing, is run periodically by
the X2 interface module to ensure that the configuration in X2 has not been corrupted.
This provides an extra layer of reliability to a fault-tolerant circuit programmed on X2.
Experimenters are not required to make any modifications to this module, though they
may wish to modify the interval at which scrubbing occurs.

7. Clock Generator

The only function of this module, “clockGen.vhd,” is clock division of the
primary oscillator, for reasons previously discussed. Two clock signals are generated
from this module, one at 25.5 MHz and one at 3.1875 MHz. The specific assignment of

the 25.5 MHz signal occurs with the top level module, “top_level.vhd,” and is named
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“s_clock.” The 3.1875 MHz signal is provided as a convenience for designers who might
require a slower clock. It is also assigned within *“top_level.vhd” and is named
“s_clock x2.” Designers are not required to make any modifications to this module.
B. EXPERIMENT

Prospective designers, when creating a circuit for the Experiment FPGA, have to
first decide if the design will be created via CAD software, or if the design can be created
via command-line editing in VHDL exclusively. If the design requires the use of
schematics, then CAD software will be used. However, even if the design is exclusively
created using VHDL, CAD software should be used unless the designer is an
accomplished VHDL programmer. CAD software gives, in addition to a user friendly
compiler, ready access to simulations which can be invaluable in verifying the proper
operation of a circuit. The CFTP team has a license with the following software
programs; 1) Xilinx’s Project Navigator for project creations, compiling, place and route
and mapping onto an FPGA. 2) ModelSim by Mentor Graphics for circuit simulation.

1. Implementation

Once a design has been successfully compiled and simulated, it must be
implemented; the circuit has to be mapped, placed and routed onto the FPGA. All of the
CLBs (configurable logic blocks) have to be configured to perform the desired operations
of a prospective circuit. This is accomplished within Project Navigator with the
command “Implement Design.” If performed within Project Navigator, this will produce
a file with an “.ncd” extension. This “experiment.ncd” file will need further
modification, which is accomplished within the Linux operating environment on the
CFTP server (see Appendix A for details). It is vitally important that any circuit created
for implementation onto X2 has a constraint file (experiment.ucf) added as a source to
the respective project within Project Navigator BEFORE running ““Implement Design.”

2. Flash File

The final file from any experiment to be implemented onto X2 is known as a flash
file within the CFTP development environment, and has an “.fwr” file extension. This
file is either created from the Project Navigator .ncd file or directly within Linux if
command line editing of VHDL was used as the development process (See Appendix A).

Whatever method is employed, this “experiment.fwr” file is what will be written to the
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flash. It is the file that contains X2’s final configuration. This is the file that X1 will use
to program X2 and to verify the integrity of X2’s configuration by using the SelectMap
modules within X1.

3. Constraints

When creating a circuit for X2, there are a few constraints that the designer must
consider for proper operation on either CFTP stack (Development or Flight). The
number of pins available for data transfer between X1 and X2 vary slightly depending
upon which specific architecture is used. If using the Flight Board, then 43 pins (43 bits)
are available for data transfer between the two chips. However, if using the Development
Board, then 45 pins (45 bits) are available. It is recommended that developers only use
43 pins when designing circuits for either stack as that is all that is available for space-
born experiments. However, the extra two pins are available for the Development Board
should a developer need those for specific trouble shooting.

Appendices A and B cover in detail how these pins are assigned. Developers
must modify two constraint files (.ucf files); one for the Experiment design and one for
the Controller design. Though the signal names within each file for each pin do not have
to match by name, they must exactly match functionally. For example, output from X2
could be named “mult_out” for X2’s constraint file, while that same signal could be
named “input_from_X2” within X1’s constraint file. These signals much match by pin
number, and comments within the constraint files show how the pins on the two chips are

connected by means of the circuit-board wiring.

A design policy within the CFTP project that experimenters should adhere to is:
all signals traveling between X1 and X2, in the initial input or final output, must pass
through clocked registers. In addition to being a policy within the CFTP project, using
registers to collect data is an example of good programming as it ensures timing
constraints are met which preserves the integrity of data. This requirement is discussed in
Chapter IV.
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C. CHAPTER SUMMARY
This chapter covered the inner-workings of the modules that comprise the circuit

for X1, as well as some important considerations when developing code for experiments
on X2. The next chapter provides a detailed analysis of timing within the CFTP

architecture, and shows how the maximum safe data rate was determined.
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V. TIMING

Timing within the CFTP architecture, for both the Development and Flight Board,
has required designers to carefully set values for counters that control the sampling rate
within the Controller to ensure accurate data flow through the PC/104 bus. Even though
no specific timing issues have been formally documented, it has been common practice
within the CFTP team to keep the data rate low to prevent large accumulations of output
data.

This chapter explores and subsequently demonstrates the maximum safe data rates
that can be achieved across the PC/104 bus. As will be shown, this is not a limitation of
the FPGA chips themselves. Data can be transferred between the two chips at the full
rate of the oscillator. This maximum safe data rate limitation exists due to the interaction
between the PC/104 bus and the ARM processor. This thesis defines the maximum safe
data rate as: the maximum rate at which output from X2 can be transferred across the
PC/104 bus without the loss of any data.

Though this chapter establishes a maximum safe data rate, it is also important to
note that this data rate can change. The other processes running on the ARM limit the
ability of the ARM to perform reads on the PC/104 bus. If processes within the ARM are
added, removed, or altered, then the maximum safe data rate will change.

In general, experimenters have not been concerned with recording large volumes
of sequential data produced by X2 at a high clock rate because most often the only
important results are data that show the detection and/or correction of an SEU within a
redundant circuit. Designers have generally verified results by one of three methods:
comparing intermediate values derived from simulations, comparing a final result derived
from several iterations (ignoring the intermediate values that lead to a final result), or

comparing results by exception (output occurs only if triggered by a specific event).

This chapter demonstrates the procedures required to record sequential data
produced from X2 and, in the process, determines the maximum safe data rate. This

chapter also explores synchronization of the two FPGA chips, specifically addressing the
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presence of clock skew between the two chips, showing through mathematical and
empirical analysis that the clock skew is manageable at the full clock rate of 51 MHZ.
A. CONTROLLER FUNCTIONS

Beyond the primary responsibilities of the Controller, there are four plausible
scenarios for which the Controller can be programmed to facilitate the evaluation of
experiments implemented on X2. All four of these scenarios are driven by timing — how
the primary oscillator is used to drive the timing requirements of the circuits on X1 and
X2. Of these four scenarios discussed in this section, three were implemented in support
of experiments discussed in this chapter, and those results are included. The fourth
scenario is left to future designers for potential implementation.

1. Sampling Data

Circuits implemented on X2 can operate and produce data at the full rate, 51
MHz, of the primary oscillator. Because all of the modules on X1, except for the top
level module, are clocked at 25.5 MHz, the data output from X2 must be sampled. This
is demonstrated towards the end of Section C, and the methods for assigning the
sampling rate have already been discussed in Chapter IlI.

2. Clock Dividing X2

A circuit on X2 can be clock-divided for a myriad of reasons. One scenario that
requires clock-division within X2 is when a designer wishes to view all data produced
from an experiment in sequential order, rather than just a sampling of that data. To
accomplish this, the designer slows the circuit on X2 down to the sampling rate on X1,
such that X1 is reading at the same rate that the circuit on X2 is writing data. To do this,
two levels of clock-division are required for the experiment; once down to the 25.5 MHz
clock so that the two FPGASs run at the same rate, and the second division equal to the
signal ERR_RPT_TIME discussed in Chapter 111, so that the data can be passed through
the ARM processor. This method is demonstrated in Section C.

3. New Module for X1

Another method available to evaluate circuits is by creating a copy of the circuit
on X2 and implementing it on X1 in a new module clocked at 51 MHz while the other
preexisting modules on X1 remain at 25.5 MHz, and then using a voter clocked at 51
MHz to compare the outputs of the duplicate circuits. Then, if no errors are reported
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from the voters on X2 and X1, the designer has increased assurance of correct data. This
method still requires the final output of data across the PC/104 bus to be sampled as in

method 1, but that sampling will contain two streams of data from two voters.

This method is employed in this chapter on a small scale using simple counters.
A more interesting and complex example of this method can be reviewed in the
Dissertation by Josh Snodgrass, where the Cordic algorithm is implemented on both X1
and X2 [10]

4, Buffer on X1

Another design consideration that would allow all sequential data to be collected
from a circuit on X2 running at 51 MHz is the implementation of a buffer on X1 that
would temporarily store data. To implement this scenario, the circuit on X2 would need
to be programmed to run for a certain time period then go into a wait state. The
maximum safe data rate still can not be exceeded. The circuit on X2 would need to wait
for the data within the buffer on X1 to be read before more data could be written. This
method has not been explored by the author, although the FIFO discussed earlier provides
this capability.
B. DATA RATE

To determine the maximum safe data rate within the CFTP architecture,
experiments were conducted in two phases. The first phase involved a simple design that
was implemented on X1, temporarily removing X2 from the equation. This isolation of
X1 simplified the design process and allowed for direct data collection through clock
division. The second phase involves the implementation of the same experiment on X2,
comparing the outputs of both X1 and X2 on both chips concurrently, and subsequently
directing all outputs across the PC/104 bus. The second phase is important as it
demonstrates that sequential data can be produced concurrently by both chips. In other
words, phase two demonstrates that it is possible to synchronize both FPGAs such that
they produce the same sequential data at the full rate of the CFTP oscillator, 51 MHz,
without any handshaking. Phase two addresses the issues of clock skew.

1. Phase One

A simple counter was implemented on the Controller, located within the counter

that controls the sampling rate, and its sequential output recorded. Locating this counter
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internal to the primary sampling rate counter within x2Int.vhd allowed for precise control
over the rate at which the count is executed. A counter was used for this experiment
because the output of a counter simplifies the verification of any disruptions in data flow;

a number out of sequence is relatively easy to locate.

Referring to Table 2, the number of bytes outputted across the PC/104 bus
remained constant throughout this phase, and the sampling rate, (defined in Chapter 3),
was adjusted to achieve various data rates. For the purposes of this phase of the
experiment, as noted in Table 2, the sampling rate served as the effective clock rate of X1
as no data was being produced from X2 for sampling. The signal ERR_RPT_TIME,
(also defined in Chapter 3), was adjusted to achieve the data rates noted in Table 2. This
signal was adjusted from a high sampling rate to a low sampling rate, incrementally, until

no errors were detected in the output.

To summarize; this experiment was designed such that adjusting the signal
ERR_RPT_TIME directly changes the speed of the count, as well as the rate at which
data is written to the PC/104 bus.

As noted in the Observation section of Table 2, the higher data rates produce
multiple, easy to recognize errors. For all the test runs, the errors themselves are the
same in that there are large gaps of missing numbers, followed by a continuation of the
count. The severity of these errors is directly related to the data rate; the higher data rates
produce a greater number of errors and an earlier occurrence in the count sequence. The
higher data rates also produce a greater gap between numbers before the count sequence

continues in the output.
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EF_%_?I_I\I/TET EffeCtIIQ\;?eCIOCk Bytes EZI:CS;/; Observation
(bytes/sec)
None 51 MHz 15 765 M Multiple errors
5,000 10.2 KHz 15 153 K Errors noted early in count
12,000 4.25 KHz 15 63.75 K | Errors noted later in the count
25,000 2.04 KHz 15 30.6 K Less errors, occurring later
51,000 1.0 KHz 15 15K Less errors, occurring later
102,000 500 Hz (figure 3) 15 75K Error at number 0227
510,000 100 Hz (figure 4) 15 15K Error at number 0227
1,020,000 | 50 Hz 15 750 Error at number 0227
1,530,000 | 33.33Hz (figure5) 15 500 Perfect Data — no errors noted
2,550,000 |20 Hz 15 300 Perfect Data — no errors noted

Table 2.  Data Rate Results from X1 Output.

These results are indicative of the FIFO buffer performing its job correctly. The
FIFO buffer implemented within the PC/104 interface module, discussed in Chapter 3, is
designed to stop accepting data when the capacity of the FIFO buffer is reached. At data
rates that are well above the limits of the CFTP architecture, it is not unexpected that that
the FIFO buffer will reach its capacity much faster than at rates that are closer to, but still

above, the data rate limits.

Further inspection of the results in Table 2 reveals a pattern as the data rate was
reduced closer to the limit; at 7500 bytes/sec (Bps) and lower, the first noted error began
occurring at the same number. Referring to Figures 3, 4, and 5, the output of the count
should be sequential. In other words, an error is defined as an interruption in the count
sequence. Figure 5 provides two separate streams of output data with no errors, while
Figures 3 and 4 show two streams of data with red circles denoting the locations of an

error.
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The red circle on the left data stream in Figure 3 denotes the first location of an
error (interruption of sequential count) at number hex 0227. Referring to the left data
stream in Figure 4 on the following page, a red circle again shows the first error
occurring at hex 0227. Comparing the data within the red circles on the left in Figures 3
and 4, the amount of missing data after number 0227, the gap before the count sequence
resumes, is greater in Figure 3 than in Figure 4. This clearly shows how the FIFO is able
to recover quicker at slower data rates; the data in Figure 3 was output at a greater rate
(7500 Bps) than the data in Figure 4 (1500 Bps). For the data in Figure 4, the FIFO
recovered quicker and hence, the gap before the count sequence resumes is significantly

shorter.

gwcaldwe@cfip: Thomelgw... g@@

45 02 00 00 00 04 £3 00 00 00 00 04 1

45 52 00 00 00 04 £5 00 00 00 00 04 1? F1 50
45 52 00 00 00 04 fb 00 00 00 00 04 13 b3 83
45 62 00 00 00 04 fo 00 00 00 00 04 139 7F cl
45 02 00 00 00 04 £4 00 00 00 00 04 15 46 £9
45 G2 00 00 00 04 fe 00 00 00 00 04 1b Oe 32
45 02 00 00 00 04 £F 00 00 00 00 04 1b d5 Ea
45 52 00 00 00 05 00 00 00 00 00 04 1c ¢ a3
45 52 00 00 00 05 01 00 00 00 00 04 1d 63 db
45 02 00 00 00 05 02 00 00 00 00 04 1e 2B 14
45 02 00 00 00 05 03 00 00 00 00 04 1e £2 4c

', pwcaldwe@cfip: fhomefgwc. ..

45 52 00 00 00 02 1b 00 00 00 00 01 db & 18
45 52 00 00 00 02 1c 00 00 00 00 01 dc bd 51
45 02 00 00 00 02 1d 00 00 00 00 01 dd 84 83
45 02 00 00 00 02 1e 00 00 00 00 01 de 4b c2
45 02 00 00 00 02 1f 00 00 00 00 01 df 12 fa
45 02 00 00 00 02 20 00 00 00 00 01 df da 33
45 02 00 00 00 02 21 00 00 00 00 01 e0 a1 Eb
45 02 00 00 00 02 22 00 00 00 00 01 el B2 ad
45 62 00 00 00 02 22 00 00 00 00 01 e2 2f dc
45 52 00 00 00 02 24 00 00 00 00 01 e2 £7 15
45 52 00 00 00 02 25 00 00 00 00 01 &3 be 4d

45 52 00 00 ooooo oo 0l e4 B5 85 45 52 00 ooo00 00 04 1F B 85
45 52 00 00 00000 00 0l &5 4c be (47 D2 Q0 00 00 00 04 20 80 bd
45 52 00 00 D oo o0 o) 02 7R EL 75 Q40 SE 00 Qo 00 00 04 bE b2 56
45 52 00 00 0O 00 00 02 79 28 ad (45 52 00 Qo 00 00 04 b7 73 8e

45 02 00 00 00 05 c8 00 00 00 00 04 b3 40 &7
45 02 00 00 00 05 8 00 00 00 00 04 b3 OF fF
45 02 00 00 00 05 ca 00 00 00 00 04 b3 of 23
45 52 00 00 00 05 ch 00 00 00 00 04 ba 36 7O
45 52 00 00 00 05 co 00 00 00 00 04 bb 5d a3
45 62 00 00 00 05 cd 00 00 00 00 04 b 24 1
45 02 00 00 00 05 ce 00 00 00 00 04 bo ec 1a
45 G2 00 00 00 05 of 00 00 00 00 04 bd BE &2
45 02 00 00 00 05 40 00 00 00 00 04 be Fa 8b
45 52 00 00 00 05 41 00 00 00 00 04 bf 41 c3
45 52 00 00 00 05 42 00 00 00 00 04 c0 08 fc
45 02 00 00 00 05 43 00 00 00 00 04 =0 40 24
45 02 00 00 00 05 d4 00 00 0O 00 04 =1 97 Ed
45 62 00 00 00 05 d5 00 00 00 00 04 c2 Be ab
45 52 00 00 00 05 48 00 00 00 00 04 3 25 de
45 52 00 00 00 05 47 00 00 00 00 04 c3 ed 16
45 G2 00 00 00 05 48 00 00 00 00 04 cd b4 4F
45 02 00 00 00 05 43 00 00 00 00 04 b 7B 87
45 02 00 00 00 05 da 00 00 00 00 04 cE 42 c0
45 62 00 00 00 05 db 00 00 00 00 04 =7 09 £3
45 52 00 00 00 05 de 00 00 00 00 04 o7 d1 31
45 52 00 00 00 05 dd 00 00 00 00 04 <8 33 B3
45 62 00 00 00 05 de 00 00 00 00 04 3 5F a2
45 02 00 00 00 05 df 00 00 00 00 04 ca 26 da

Figure 3. Output from X1’s Counter at 7500 Bytes/sec
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45 G2 00 00 00 02 eb 00 00 00 00 02 79 ef eB
45 02 00 00 00 02 &7 00 00 00 00 02 7a b? le
45 02 00 00 00 02 28 00 00 00 00 02 Vb Ye BY
45 52 00 00 00 02 23 00 00 00 00 02 7o 45 8f
45 52 00 00 00 02 ea 00 00 00 00 02 7d Oc cB
45 52 00 00 00 02 eb 00 00 00 00 02 Fd d4 00
45 02 00 00 00 02 ec 00 00 00 00 02 Fe 9b 39
45 02 00 00 00 02 ed 00 00 00 00 02 FF B2 71
45 02 00 00 00 02 ee 00 00 00 00 02 80 29 aa
45 02 00 00 00 02 ef 00 00 00 00 02 80 fO &2
45 02 00 00 00 02 f0 00 00 00 00 02 81 b2 1b
45 02 00 00 00 02 £1 00 00 00 00 02 82 7f bE
45 52 00 00 00 02 £2 00 00 00 00 02 83 46 Sc
45 52 00 00 00 02 £3 00 00 00 00 02 84 0d cd4
45 52 00 00 00 02 £4 00 00 00 00 02 84 d4 fd
45 02 00 00 00 02 £5 00 00 00 00 02 85 9c 35
45 02 00 00 00 02 FE 00 00 00 00 02 896 B2 EBe
45 02 00 00 00 02 £7 00 00 00 00 02 87 2a a6
45 02 00 00 00 02 £2 00 00 00 00 02 87 f1 df
45 02 00 00 00 02 £3 00 00 00 00 02 83 b3 17
45 02 00 00 00 02 £z 00 00 00 00 02 89 20 50
45 62 00 00 00 02 fb 00 00 00 00 02 83 47 98
45 52 00 00 00 02 fo 00 00 00 00 02 8b 0= cl
45 52 00 00 00 02 £4 00 00 00 00 02 8b 45 £3

—HMore——




Worth noting in Figures 3 and 4 are the data circled in red on the right side of the
figures. At the higher data rate, (7500 Bps), the output of Figure 3 shows a second error
sooner than the output in Figure 4. The lower data rate, (1500 Bps), for the data output of

Figure 4 did not produce a second error until much later.

N gwcaldwe@cftp: fhomelgw... g@@ 2o, gwcaldwe@cfip: Thomelgw... g@@
52 00 00 00 16 00 o0 02 Bc be 25 000 a1 00 o0 1a 0B 85 0B

0z oo o0 45 02 00 0 0E o0 00
45 52 00 00 45 52 00 00 Da B3 21
45 02 00 00 45 02 00 00 De 4d 29
45 52 00 00 45 &2 00 00 12 31 52
45 52 00 00 45 52 00 00 16 15 Ba
45 02 00 00 45 02 00 00 13 f3 432
45 52 00 00 45 52 00 00 1d dd b
45 52 00 00 45 52 Q0 00 21 cl bd
45 02 00 00 45 02 00 00 25 &b co
45 52 00 00 45 52 00 00 2383 eh
45 02 00 00 45 02 00 00 2d Bd fd
45 52 00 00 45 &2 00 00 21 62 18
45 52 00 00 45 52 00 00 35 36 2e
45 02 00 00 45 02 00 00 di da 02
45 52 00 00 45 52 00 00 d4 be 1b
45 52 00 00 45 52 Q0 00 dd a2 33
45 02 00 00 45 02 00 00 dc 86 4c
45 52 00 00 45 52 00 00 el Ba 64
45 02 00 00 45 02 00 00 ed 42 7d
45 52 00 00 45 &2 00 00 ed 32 94
45 52 00 00 45 52 00 00 ec 16 ae
45 02 00 00 45 02 00 00 ef fa ck
45 52 00 00 45 52 00 00 f3 de df
45 52 00 00 45 52 Q0 00 f7 c2 f7
45 02 00 00 45 02 00 00 fb a7 10
45 52 00 00 45 52 00 00 ff b 23
45 02 00 00 45 02 00 00 03 BF 41
45 52 00 00 45 &2 00 00 07 62 09
45 52 00 00 45 52 00 00 Ob 37 72
45 02 00 00 45 02 00 00 Of 1b 8a
45 52 00 00 45 52 00 00 12 ff a3
45 52 00 00 45 52 Q0 00 16 &3 bb
45 02 00 00 45 02 00 00 la 7 d4
45 52 00 00 45 52 00 00 le ab ec
45 02 00 00 45 02 00 00 22 90 04
45 52 00 00 45 &2 00 00 2 74 1d
45 52 00 00 45 52 00 00 2a 58 36
45 02 00 00 45 02 00 00 2e 3o de
45 52 00 00 45 52 00 00 32 20 67

Figure 4. Output from X1’s Counter at 1500 Bytes/sec

Figure 5 shows output produced with no errors noted. Though this figure only
shows the first sequence and the sequence with the common trend, (error at number 0227,
the output was run for several minutes producing thousands of lines of data, and no errors
were noted. Though this does not present irrefutable evidence that 500 Bps is the

maximum safe data rate for the CFTP architecture, it is basis enough to conclude that the
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noted data rate is slow enough for accurate data flow. More importantly, designers
should not exceed this data rate if assurance is desired that no data has been lost, (FIFO

stops accepting data until its size is reduced), before being written to the PC/104 bus.

&5 pwcaldwe@cftp: fhomefgw... g@@ ;
de 04 45 52 0d 0a 4c 41 53 54 20 05 50 44 41 J Q45
04 45 44 35 20 0d 0a 46 52 49 20 53 45 50 20 45 52 00 00
22032 20 21 34 23 31 34 23 2% 32 20 50 44 D4 Q45 52 00 00
20 32 30 30 36 0d Oa 50 41 52 54 20 53 55 43 Q45 52 00 00
43 40 03 52 4B Bh 4o 4o B9 20 GO 02 4f 47 G2 Q45 52 00 00
41 4d 4d 45 44 0d 05 43 58 0d 53 63 42 42 00 Q45 52 00 00
Q0 0 00 00 0o Q0 00 00 00 07 07 a4 ad de de 45 52 00 00
45 02 00 00 00 00 00 00 00 00 00 00 4b 4c 14 45 52 00 00
45 52 00 00 00 00 01 00 00 00 00 00 S5e c0 Sc 45 52 00 00
45 52 00 00 00 00 02 00 00 00 00 00 72 35 05 45 52 00 00
45 02 00 00 00 00 0F 00 00 00 00 00 85 53 7d f 45 52 00 00
45 52 00 00 00 00 04 00 00 00 00 00 33 1d £6 f 45 52 00 00
45 02 00 00 00 00 05 00 00 00 00 00 ac 592 Be [ Q45 52 00 00
45 02 00 00 00 00 05 00 00 00 00 00 c0 05 eF J Q45 52 00 00
45 52 00 00 00 Q0 OF 00 00 00 00 00 42 Fh 5F f 45 52 00 00
45 02 00 00 00 00 08 00 00 00 00 00 6 =f d3 Q45 52 00 00
45 52 00 00 00 00 03 00 00 00 00 00 fa 64 S0 45 52 00 00
45 52 00 00 00 00 Oa 00 00 00 00 01 0d d5 c3 [ 45 52 00 o0
45 02 00 00 00 00 Ob 00 00 00 00 01 21 44 41 § 45 52 00 00
45 52 00 00 00 00 Oc 00 00 00 00 01 24 c1 ba § 45 52 00 00
45 02 00 00 00 00 Od 00 00 00 00 01 48 26 32 45 52 00 00
45 62 00 00 00 00 Os 00 00 00 00 01 5b a3 ab § 45 52 00 00
45 52 00 00 00 Q0 Of 00 00 00 00 01 6f 1f 23 § 45 52 00 00
45 02 00 00 00 00 10 00 00 00 00 01 82 92 9c f 45 52 00 00
45 52 00 00 00 00 11 00 00 00 00 01 36 03 14 J 45 52 00 00
45 52 00 00 00 00 12 00 00 00 00 01 a3 Fo Bd [ 45 52 00 00
45 02 00 00 00 00 12 00 00 00 00 01 be £1 05 § 45 52 00 00
45 52 00 00 00 00 14 00 00 00 00 01 40 B5 Ve {45 52 00 00
45 02 00 00 00 00 15 00 00 00 00 01 &2 43 F& Q45 52 00 O
45 02 00 00 00 00 16 00 00 00 00 01 £f7 4e BF Q45 52 00 00
45 52 00 00 00 Q0 17 00 00 00 00 02 0z c2 eF f 45 52 00 00
45 02 00 00 00 00 18 00 00 00 00 02 1e 27 BO Q45 52 00 00
45 52 00 00 00 00 13 00 00 00 00 02 21 ab d3 45 52 00 00
45 52 00 00 00 00 1a 00 00 00 00 02 45 20 5L 45 52 00 00
45 02 00 00 00 00 16 00 00 00 00 02 58 594 9 45 52 00 00
45 52 00 00 00 00 1c 00 00 00 00 02 6o 03 42 § 45 52 00 00
45 02 00 00 00 00 1d 00 00 00 00 02 7F 7d ba {45 52 00 00
45 02 00 00 00 00 1e 00 00 00 00 02 92 £2 22 Q45 52 00 00
45 52 00 00 00 Q0 1F 00 00 00 00 02 a6 B6 ab § 45 52 00 00

“Hore—
Figure 5. Output from X1’s Counter at 500 Bytes/sec

2% gwealdwe @cftp: fhomelgw. .. g@@
52 00 00 00 13 o0 00 00 23 1a 9c d8

29 2e 11 51
29 41 85 9
29 54 fa 42
29 B3 Be ba
29 7h e3 33
23 8f 57 ab
29 a2 oo 24
29 b6 40 9o
29 9 bh 16
29 dd 29 8d
29 0 9e 06
2a 04 12 Fe
2a 17 86 f7
2a 2a fb BF
Z2a Ze Bf =B
2a 51 ed BO
2a B9 52 d9
2a 7™ ecd Bl
Za o 41 ca
2a 9F bE 42
2a b3 2a bb
2a chb 9f 33
Z2a da 13 ac
Za ed 88 24
2b 00 fo 9d
2b 14 71 16
2b 27 ebh 8e
2b 3b Ba 0B
Zb 42 ce 7f
2b B2 42 f7
2b 75 b7 FO
Zb 89 2b &8
2b 9c ah B1
2b b0 14 d9
2b c3 89 52
2b d6 fd ca
2b ea 72 43
2b fd e6 bb

Though a maximum safe data rate of 500 Bps might initially appear to be a
significant limitation, it is actually an acceptable parameter for the CFTP architecture.
Because of memory limitations of the satellite platform, and available bandwidth with the
uplink and downlink to the satellite, the amount of output data that can be collected at
any one time is limited. The data rate of 500 Bps is a limitation that must be considered

by designers if assurance of data integrity is desired when developing experiments for the
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CFTP architecture. However, the actual output collection rate might need to be slower
due to other limitations in space, or differences among the demands of the ARM
processor on the Flight Board or Development Board.

2. Phase Two

For phase two, a counter was created for implementation on X2 with a voter to
compare the results of the counter from X1 with the counter on X2. This was also done
on X1; a voter added to compare X2’s counter output with the counter on X1. To
accomplish this, X1’s counter output was directed to X2, and X2’s counter output was
directed to X1. The voters on each circuit are identical; they compare the two counter
outputs and report the number three if the counters differ, else the voters produce the

number zero if the counter outputs agree.

To synchronize the two voters on X1 and X2 only one signal needs to be passed
from X1 to X2 - the reset signal discussed in Chapter Ill. For this dual-counter
experiment, the reset signal generated by X1’s top level VHDL module is passed to X2.
This signal is also incorporated into the voter circuit on X2, initiating the count. The
same thing was already written into the code for the counter on X1. This allows for

synchronization of the two circuits upon initial startup.

In order to achieve a data rate at the rate of the oscillator between the two FPGAs,
the SelectMap processes were disabled within x2int.vhd. This allowed the clock that
runs the X2 interface module, located on X1, to be the 51 MHz oscillator instead of the
25.5 MHz signal coming from the Clock Generator module, which is required for the
SelectMap processes as mentioned on Chapter I11.

X1 can and normally does run off of two clocks, the primary oscillator signal, and
the 25.5 MHz signal generated by the Clock Generator module. Therefore, in normal
operations, X2 can produce data at 51 MHz and X1 can read that data at 51 MHz, and
then sample it and send it across the PC/104 bus as previously discussed. For the
purposes of this experiment only, all processes on X1 were clocked at 51 MHz to

demonstrate that X1 and X2 can be synchronized without handshaking.

Figure 6 shows the first output sequence achieved with a data transfer at 51 MHz
between the two FPGA chips. Even though the two counters are producing a count at 51
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MHz, and the two voters are comparing those counts at the same rate, the output is only
sampled because of the maximum safe data rate. Specifically, the output shows the

following, in order:

1) An error-counter located in X1 that will increment only if the voter in
X1 or the voter in X2 reports a value other than “00.” This value will remain at “00”
unless one of the voters reports an error. This error-counter is standard within X1 and is

specifically addressed in Appendix B.

2) The results from the Voter located in X1 — this will report “00” if both
counter outputs from X1 and X2 agree, otherwise it will report “03” if the counts differ.

3) The results from the Voter located in X2 — this will report “00” if both

counter outputs from X1 and X2 agree, otherwise it will report “03” if the counts differ.
4) The count from the Counter located in X1.
5) The count from the Counter located in X2.

6) A timestamp generated in the Top Level code within X1.
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gwecaldwe@cftp: fhomelfgwcaldwelresults/dual _count

JERRY'S DUAL COUNTER

LAST UPTIATED;

WED SEF 27 03:20:37 PIT 2006
PRET SUCCESSFULLY PROGRAMMED

timestampi O007IcED
Selectmap Reconfig,..

Errar Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ¥1: 000a  Counter in H23 O00a Timeztamp: 00859de?
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 O01E  Counter in ¥23 Q016 Timestampi O0d36FcE
Error Count: 00 Yoter in K13 00 Yoter in X2: OO Counter in ¥13 0022 Counter in ¥23 0022 Timestamp: 01214153
Error Count: (0 Voter in K13 00 Yoter in X¥2: 00 Counter in ¥1: 00Ze  Counter in H23 00Ze Timestamp: (0161382
Errar Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ¥1: 0033 Counter in H23 003a Timeztamp: OlbceBEb
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0048  Counter in ¥23 0046 Timestampi 020abidc
Error Count: 00 Yoter in K13 00 Yoter in X2: OO Counter in ¥13 0052  Counter in ¥23 0052 Timestamp: 0Z53352d
Error Count: (0 Voter in K13 00 Yoter in X¥2: 00 Counter in ¥1: 00Be  Counter in X23 005e Timestamp: (Z2aBoboe
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0005  Counter in X23 000G Timestampy O02f42cef
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0011  Counter in ¥23 0011 Timestampi 0341fed)
Error Count: 00 Yoter in K13 00 Yoter in X2: OO Counter in ¥1: 001d  Counter in ¥23 001d Timestamp: 028Fd0b1
Error Count: (0 Voter in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0023  Counter in X23 0023 Timestamp: 03ddaz92
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0035  Counter in X23 0035 Timestamp: O042b7473
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0041  Counter in ¥23 0041 Timestampi 04794654
Error Count: 00 Yoter in K13 00 Yoter in X2: OO Counter in ¥1: 004d  Counter in ¥23 004d Timestamp: 0471830
Errar Count: 00 Yoter in ¥l: 00 Voter in M2 00 Counter in ¥1: 053 Counter in X2: 0053 Timestamp: 05ldeslf
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0000  Counter in X23 0000 Timestamp: OSE2bEFT
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 O00c  Counter in ¥23 O00c Timestampi 0Bb0OSddS
Error Count: 00 Yoter in K13 00 Yoter in X2: OO Counter in ¥1: 0018  Counter in ¥23 0018 Timestamp: 05febfbd
Errar Count: 00 Yoter in ¥l: 00 Voter in M2 00 Counter in ¥1: 024 Counter in X23 0024 Timestamp: 064c319a
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0030  Counter in X23 0030 Timestamp: 0E9a0Z7h
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 O03c  Counter in ¥23 003c Timestampi 0Be7dSbc
Error Count: 00 Yoter in K13 00 Yoter in X2: OO Counter in ¥1: 0048  Counter in X23 0048 Timestamp: 0730al3d
Errar Count: 00 Yoter in ¥l: 00 Voter in M2 00 Counter in ¥1: 054 Counter in X2:3 0054 Timestamp: 0793751e
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 000 Counter in X23 000 Timestampy O7dldaff
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0007 Counter in ¥23 Q007 Timestampi 081fF1lcel
Error Count: 00 Yoter in K13 00 Yoter in X2 OO Counter in ¥1: 0012 Counter in ¥23 0013 Timestamp: (08Ecescl
Error Count: OO Yoter in K13 00 Yoter in XH2: OO Counter in ¥1: O01f  Counter in X23 OOLf Timestamp: OSbaclal
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0026 Counter in X23 00Zb Timestamp: (09089283
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0037 Counter in ¥23 Q037 Timestampi (095EE4E4
Error Count: 00 Yoter in K13 00 Yoter in X2 OO Counter in ¥1: 0042 Counter in X231 0043 Timestamp: (09543645
Error Count: OO Yoter in K13 00 Yoter in XH2: OO Counter in ¥1: O04f  Counter in H23 004f Timestamp: O3F20526
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 005b  Counter in ¥23 005b Timestamp: Oa3fda07?
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0002  Counter in ¥23 0002 Timestampi 0aBdabel
Error Count: (0 Yoter in ¥13 00 Yoter in X2 00 Counter in ¥13 000e  Counter in X231 000e Timestamp: Oadbyded
Error Count: OO Yoter in K13 00 Yoter in XH2: OO Counter in ¥1: 00la  Counter in X2 00la Timestamp: O0b234faa
Error Count: (0 Vater in K13 00 Yoter in X¥2: 00 Counter in ¥1: 0026  Counter in X23 0026 Timestamp: Ob77218b
Error Count: (0 Voter in K1 00 Voter in ¥23 00 Counter in ®13 0032  Counter in ¥23 0032 Timestampi Obcdf3Ec
Error Count: (0 Yoter in ¥13 00 Yoter in X2 00 Counter in ¥13 0032 Counter in X231 003e Timestamp: Ocl12c54d
Error Count: (0 Voter in K13 00 Yoter in X¥2: OO Counter in ¥1: 00d4a  Counter in X2 004a Timestamp: OcE03 2

Figure 6. Dual Counter Output at 170 Bytes/sec (sampling rate of 10 Hz)

The output in Figure 6 clearly shows that data can be transferred at high rates
across the two FPGA chips. It also demonstrates that data produced from X2 can be
verified at a much lower rate — sampled below the rate at which it is produced. The data
rate for the data produced in Figure 6 was set to 170 Bytes/sec by setting the signal
ERR_RPT_TIME to 5,100,000. This establishes the sampling rate to be 10 Hz. The
total number of bytes transferred per sample was 17; therefore the data rate produced is
170 Bytes/sec. However, the fact that no errors were detected verifies that the counters

were running and transferring data between the two chips at the full rate of 51 MHz.

The data in Figure 6 demonstrates that two circuits, located separately in each

FPGA chip, can be synchronized to run at the same rate. This synchronization phase of
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the experiment was important for two reasons; one, it shows that data can be transferred
between the two chips at the full rate of the oscillator, and two, it shows that clock skew

is manageable, as discussed in section 3, below.

. gwcaldwe@cftp: /homelgwealdwefresultsidual_count

JERRY'S DUAL COUNTER

LAST UPDATED:

WED SEP 27 03:10:34 PIT 2006
PART SUCCESSFULLY PROGRAMMED

timestampy O007cff2
Selectmap Reconfig,,.

Error Count: 00 Voter in $1p 00 Voter in H2p 00 Coumter in ¥13 0001 Counter in ¥23 0001 Timestamp; 00381316
Erraor Count: 00 Yoter in $1: 00 VMoter in H2: 00 Counter in ¥1: 0004 Counter in H2: 0004 Timestamp; 0038269
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in %13 0007  Counter in 2@ 0007 Timeztamp: 003832328
Error Counts 00 Voter in K13 00 Voter in ¥2: 00 Counter in ¥1: 000a Counter in 23 0003 Timeztampy 00284db1
Error Count: 00 Vaoter in K1lp 00 Voter in H2p 00 Coumter in X1y 000d  Counter in ¥23 000d Timestamp; O038613a
Error Counti 00 Voter in K1t 00 Yoter in ¥23 00 Counter in ¥1: 0010 Counter in ¥2: 0010 Timestamp: 003874c3
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in #1: 0013 Counter in 2@ 0013 Timeztamp: 0038884c
Error Count: 00 Voter in $1p 00 Voter in H2p 00 Coumter in X1y 0016 Counter in ¥2: 001E Timestamp; 00329045
Erraor Count: 00 Yoter in $1: 00 VMoter in H2: 00 Counter in ¥1: 0013 Counter in ¥2: 0013 Timestamp; 0038afbe
Error Counti 00 Voter in K1t 00 Yoter in ¥23 00 Counter in ¥1: 00lc  Counter in ¥2: 001c Timestamp: 003BcZer
Error Counts 00 Voter in K13 00 Voter in ¥2: 00 Counter in ¥1: O0LF  Counter in 23 OOLF Timeztampy O0Z8d670
Error Count: 00 Voter in $1p 00 Voter in H2p 00 Coumter in X1y 0022 Counter in H23 0022 Timestamp; 0038239
Error Count: 00 Voter in ¥1: 00 Voter in ¥2: 00 Counter in ¥1: 0025 Counter in X¥2: 0025 Timeztamp: O038Fd82
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in #1: 0028  Counter in 2@ 0023 Timeztamp: 00331100
Error Count: 00 Voter in $1p 00 Voter in H2p 00 Coumter in ¥13 00Zb  Counter in ¥2: 00Zb Timestampy 00392494
Erraor Count: 00 Yoter in $1: 00 VMoter in H2: 00 Counter in ¥1: 00Ze  Counter in H2: 00Z2e Timestamp; 0033381d
Error Counti 00 Voter in K1t 00 Yoter in ¥23 00 Counter in %13 0031  Counter in ¥2: 0031 Timestamp: 00334bab
Error Counts 00 Voter in K13 00 Voter in ¥2: 00 Counter in ¥1: 0034 Counter in 23 0034 Timeztampy O0Z99F2F
Error Count: 00 Voter in $1p 00 Voter in H2p 00 Coumter in X1y 0027 Counter in H23 0037 Timestamp; O03372b8
Error Counti 00 Voter in K13 00 Voter in ¥23 00 Counter in ¥1: 003a Counter in ¥2: 003a Timestamp: 00338641
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in #1: 003d  Counter in 2@ 003d Timeztamp: 003339ca
Error Counts 00 Voter in K13 00 Voter in ¥2: 00 Counter in ¥1: 0040  Counter in ¥2: 0040 Timeztampy 0033ad53
Erraor Count: 00 Yoter in $1: 00 VMoter in H2: 00 Counter in ¥1: 0043 Counter in H2: 0043 Timestamp; 0033cidc
Error Counti 00 Voter in K1t 00 Yoter in ¥23 00 Counter in %13 0046  Counter in ¥2: 0046 Timestamp: 0033d4E5
Error Count: 00 Yoter in K13 00 Voter in ¥2p 00 Counter in ¥1: 0049  Counter in %27 0043 Timeztamp: 003%eVee
Error Count: 00 Voter in $1p 00 Voter in H2p 00 Coumter in ¥13 00dc  Counter in H23 O0dc Timestamp; O033Fb77
Erraor Count: 00 Yoter in $1: 00 VMoter in H2: 00 Counter in ¥1: 004f  Counter in H2: O04F Timestamp; 003a0f00
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in #1: 0052 Counter in 2@ 0062 Timeztamp: 00332289
Error Counts 00 Voter in K13 00 Voter in ¥2: 00 Counter in ¥1: 00BS  Counter in 23 0055 Timeztampy 00323612
Errar Count: 00 Yoter in K1p 00 Voter in H23 00 Coumter in ¥13 0058 Counter in ¥23 0068 Timestamp; 003243590
Error Counti 00 Voter in K1t 00 Yoter in ¥23 00 Counter in %13 005b Counter in ¥2: 005b Timestamp: 003abdz4
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in #1: 0052  Counter in 2@ 005e Timeztamp: 003a70ad
Errar Count: 00 Voter in $1p 00 Voter in H2p 00 Counter i E PIEEr LT sk Timestamp: 00328436
Error Count: 00 Yoter in $1: 00 VMoter in H2: 00 Counter j TNypestamp: 003a37bf
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter Counter in ¥2: 0003 ymestamp? 003ad25a
Error Count: 00 Voter in K13 00 Voter in ¥2: 00 Counter in 2ok ounter in ¥ g Timestamp: 003aebed
Error Count: 00 Vaoter in K1lp 00 Voter in H2p 00 Coumter in ¥13 000e  Counter in H23 O00= Timestamp; O03afI6c
Error Counti 00 Voter in K1t 00 Yoter in ¥23 00 Counter in %13 0011 Counter in ¥2: 0011 Timestamp: 003b0cfh
Error Counti 00 Voter in K1 00 Yoter in ¥23 00 Counter in #1: 0014 Counter in 2@ 0014 Timeztamp: 003b207e
Error Count: 00 Woter in K13 00 Voter in H2p 00 Coumter in ¥13 0017 Counter in H2y 0017 Timestampy O03b3407

L] [
Counter

+

Figure 7. Dual Counter Output at 173,400 Bytes/sec (sampling rate of 10.2 KHz)

The data in Figure 7 provides more evidence why designers should keep the
sampling rate within X1 low enough such that the data rate is below 500 Bps. The data
in Figure 7 was output across the PC/104 at 173,400 Bps — well above the maximum safe
data rate. Referring to the area circled in red, it is clear that some data is missing.
Closely inspecting the count from the top portion of this figure down to this area in red, it
is clear that the sampling rate set in X1 produced a number on every third count.

However, the area in red shows a gap much larger than three counts. This is evidence
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that the FIFO buffer in the PC/104 interface module reached its capacity and stopped
accepting data for a period of time. This gap of data is lost, and in this scenario, a

designer would not know what this data might have shown.

JERRY'S DUAL COUMTER

LAST LPTATED:

WED SEP 27 12:07:43 PIT 2008
PRART SUCCESSFULLY PROGRAMMED

timestanpy Q007340
Selectmap Reconfig,,.

Erraor Count: 00 Woter in ¥lp 00 Voter in H2: 00 Counter in ¥1: 0022 Counter in H2: 0022 Timestampi O037f2ed
Error Count: 00 Woter in K13 00 Voter in 23 00 Counter in ¥1: 0002 Counter in ®2: 0003 Timestamp: OO37F310
Error Coumts 00 Woter in Hly 00 Voter in H2p 00 Coumter in ¥1p; 0049 Counter in ¥23 0049 Timestampy O037F333
Error Counti 00 Voter in ¥1: 00 Yoter in ¥2: 00 Counter in ¥1: 002a Counter in ¥2: 002a Timeztamp: (O37FI5E
Errar County OO Voter in ¥1: 00 Yoter in H2: OO0 Counter in ¥l: 002a Counter in ¥2: 002a Timestamp: 0037FHI2
Erraor Count: 00 Woter in ¥lp 00 Voter in H2: 00 Counter in ¥1: 0026 Counter in H2: 00Z6 Timestampi 0037fbbb
Error Count: 00 Woter in K13 00 Voter in 23 00 Counter in ¥1: 0022  Counter in ®2: Q022 Timestamp: 00330154
Error Coumts 00 Woter in ¥ly 00 Voter in H2p 0 Coumter in ¥l 00le  Counter in ¥23 00le Timestampy O035073d
Error Count: 00 Woter in K13 00 Voter in ¥23 00 Counter in ¥1: 00la  Counter in ¥2: 00la Timestamp: 00330426
Errar County OO Voter in ¥1: 00 Yoter in H2: OO0 Counter in ¥l: 0016  Counter in ¥2: O0LE Timestamp: 0035130F
Erraor Count: 00 Woter in ¥lp 00 Voter in H2: 00 Counter in ¥1: 0012 Counter in H2: 0012 Timestampi 003518f8
Error Count: 00 Woter in K13 00 Voter in 23 00 Counter in ¥1: 000e  Counter in ®2: O00e Timestamp: 003831esl
Error Coumts 00 Woter in ¥ly 00 Voter in H2p 0 Coumter in ¥l 000z Counter in H23 000& Timestampy 003524ca
Error Count: 00 Woter in K13 00 Voter in ¥23 00 Counter in ¥1: 0006  Counter in X2 O00B Timestamp: 003832ab3
Error Coumt: (0 Woter in Hly 00 Voter in M2y OO Coumter in $1p; 0002 Counter in ¥2p 0002 Timestampy 0035303c
Error Counti 00 Voter in ¥13 00 Yoter in 23 00 Counter in ¥13 0063  Counter in 23 00B3 Timeztamp: (0383685
Error Count: 00 Woter in K13 00 Voter in 23 00 Counter in ¥1: 00BF  Counter in ®2: O0GF Timestamp: 00333cEe
Error Coumts 00 Woter in ¥ly 00 Voter in H2p 0 Coumter in ¥l 008k Counter in ¥23 00Sh Timestampy 00354257
Error Count: 00 Woter in K13 00 Voter in ¥23 00 Counter in ¥1: 0057  Counter in X2 Q057 Timestamp: 00334840
Error Coumt: (0 Woter in Hly 00 Voter in M2y OO Coumter in ¥1p; 0083 Counter in ¥2p 0053 Timestampy 00354223
Error Counti 00 Voter in ¥13 00 Yoter in 23 00 Counter in ¥13 004f  Counter in ¥2: O04f Timeztamp: (0385412
Error Count: OO Woter in ¥1p 00 Yoter in 21 OO0 Counter in ¥l: 00d4b  Counter in 21 004b Timestamp: 003859Fb

Figure 8. Dual Counter Output at 867 MBytes/sec.

Figure 8 shows data output at the full rate of the oscillator, 51 MHz, which is a
data rate in this case of 867 Megabytes/sec. This output illustrates the danger of
programming X1 to write to the PC/104 bus in excess of the maximum safe data rate.
The output in Figure 8 appears to be good output — the counts match and the voters do not
report any errors. However, as has been shown from the previous test results, data is
missing from the output in Figure 8, even though it is not evident. It has been
demonstrated that at rates well above 500 Bps, the maximum data rate of the PC/104 Bus
is exceeded and the FIFO Buffer stops accepting data when at capacity. Though the data
in Figure 8 is accurate, there are in fact thousands of bytes of missing data, which could
be crucial to the evaluation of the reliability of a circuit. If there were errors in this
missing data, then the error counter, (left column in Figure 8), would produce a number,

but the data would not be available for analysis.
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3. Clock Skew

Because the two FPGA chips on the CFTP architecture are run by the same
oscillator, the potential exists for clock-skew caused errors. Determining the precise
clock skew over the short distance between the two chips is a non-trivial matter, though
certainly not impossible. However, if it can be shown that the clock skew is manageable,
in other words, that the clock period inequality, Equation 1, is not violated, then the
precise clock skew can be ignored for the purposes of experimental development. This
section shows, via mathematical and empirical analysis, that this is indeed the case, that
any clock skew present is not large enough to be of concern when developing an
experiment for implementation onto the CFTP architecture. For mathematical analysis,

the meta-stability equation was used, which is as follows:

T>2S +tde+t +tpd,B+tdeB+t +t

pdLogic pdWiring S

In the meta-stability equation, also know as the clock period inequality, T stands
for the clock period, which at 51 MHz is approximately 19.6 nanoseconds (ns), and S
stands for the clock skew, which is not known. The purpose for multiplying clock skew

times 2 is explained later. For the remaining terms, t .. is the flip-flop gate delay, t , ...
is the logic delay, t . is the delay of input buffers and t . is the delay of output

buffers, t i, represents path delay for wiring, and finally, t; is the flip-flop setup time.

As mentioned at the end of Chapter 111, it is policy within the CFTP project that
signals passed between X1 and X2 must pass through clocked registers. With this policy
in mind, Figure 9 depicts how the terms within the clock period inequality apply to a
signal passing from X2 to X1 regardless of how complex a circuit design might be on
either chip. Figure 9 is not to scale as the two D flip-flops are significantly enlarged for
clarity. The red arrows depict the path of the primary clock signal, and the data in the
scenario depicted in Figure 9 is flowing from the D flip-flop on X2 to the D flip-flop on
X1. This scenario would be precisely the same for data flowing in the opposite direction;
the labels for X1 and X2 could merely be swapped.
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Figure 9. Clock Skew Signal Paths

Values for the terms in the clock period inequality were determined via a
synthesis report generated by the Xilinx compiler on the CFTP server, as well as within
Xilinx’s Project Navigator [10]. Two synthesis reports for two separate designs on X2
were reviewed, as well as a synthesis report for the typical circuit on X1, and the values
for the terms were nearly identical for all the designs. One of those reports was for the

dual counter experiment in the phase 2 discussion in Section B of this chapter.

Referring to Figure 9, the relation of each term from Equation 1 to a signal

passing between X2 and X1 is depicted. Note the omission of the logic delay, t ;..

because all signals passing between X1 and X2 are the outputs of registers and only wires

exist between the two chips. The gate delay, t Is 1.372 nanoseconds (ns). The input

pdR !

buffer delay, t ,, , is 2.53ns and the output buffer delay, t . , is 5.672ns. The wiring

delay between the buffers and the flip-flips, t is 0.057ns, but the wiring delay

pdWiring !

between the two chips is an unknown quantity.
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The setup time is defined as the time during which data input to a latch or flip
must remain stable in order to guarantee the latched data is correct. The synthesis report
does not provide a specific value called setup time. However, it does provide the delay of
the signal at the D-input of the D flip-flop on X1, which is 0.84ns. If you include the
delay of this D-input to the flip-flop, it appears in the inequality just like the setup time.
Thus, it was concluded that the setup time for the FPGA flip-flops is 0.84ns.

As noted earlier, the skew is multiplied by 2 in the inequality. This is done to
account for a worst case scenario. Referring to Figure 9, the path of the signal from the
intersection circled in red to the input of a flip-flip represents the skew. Multiplying this

value by 2 ensures that the longer of those two paths is taken into account.

Substituting the known values in Equation 1 and solving for S will yield a value
for the allowable clock skew. However, there is still one unknown that must be
accounted for before doing so; the wiring delay between the two chips. This unknown

value can be conservatively estimated.

The distance between the two FPGAs is within a few millimeters, and the
propagation of signals along wires is often calculated at the speed of light. To remain
conservative, a distance of one centimeter is used, and one-half of the speed of light.
This yields the following propagation delay between the two chips:

Travel Time = 0.01m/1.5*10° m/s = 0.0667ns

Adding the values for each term, and omitting the logic delay and using three

values for the wiring delay, the inequality is evaluated as follows:

19.6ns > 25+1.372ns+2.53ns +5.672ns + (0.057ns +0.057ns + 0.0667ns) + 0.84ns

Adding the known terms on the right side, subtracting them from the clock period
on the left side, and then dividing by two, yields an allowable clock skew of 4.503ns.

S <£4.503ns

Referring again to Figure 9, the travel time of the clocking signal from the

intersection circled in red to the input of either flip-flop is likely to be quicker than 4ns.
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To demonstrate this with another conservative calculation, a distance of ten centimeters is

used this time with the same speed.
Travel Time = 0.1m/1.5*10° m/s = 0.667ns

The signal from the intersection in Figure 9 must also pass through an input
buffer, the delay of which was already determined to be 2.53ns, and the internal wiring
delay was already determined to be 0.057ns. Adding the three terms together yields a

value of 3.254ns.

As can be seen, even when using overly conservative values, it is likely that any
skew between the two chips is not large enough to violate the clock period inequality.
Further, phase 2 in Section B of this chapter provides empirical evidence that the

inequality is not being violated.

Using these two forms of analysis (mathematical and empirical) it is clear that
clock skew between the two FPGAs is manageable and does not need to be accounted for
when designing experiments for the CFTP architecture, provided that signals that pass
between the two FPGAs are the outputs of registers and go directly to register inputs.
Specifically, it was shown that X2 can write data at 51 MHz, and X1 can read that same
data at 51 MHz without any specific handshaking signals denoting the availability of that
data. The only requirement for this to happen is the synchronization of the two chips
with a reset signal generated by X1’s top level module upon the initial startup of both
circuits.

C. CLOCK DIVISION

This section shows that precise, sequential data can be produced from X2 and
output across the PC/104 bus as long as the circuit on X2 outputs data within the
constraints of the maximum safe data rate. Producing sequential data from X2 is
performed by implementing a circuit on X2 that runs at the same clock rate as the
sampling rate on X1. In other words, ERR_RPT_TIME which sets the sampling rate
should be equal to the clock division on X2, provided that X2 has already been clock
divided to 25.5 MHz, for reasons discussed in section 2 below. As will be shown, using

the reset signal discussed in Chapter 11l and equal clock-division on the two chips,
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precise sequential data can be produced on the output across the PC/104 bus without any
handshaking between the two chips.

1. Circuit Design

The circuit designed to demonstrate this synchronous capability of the two FPGA
chips is the same circuit that is discussed in detail in Chapter VV, An Example Experiment,
and shown in the block diagram of Figure 10 below. This circuit, implemented on X2,
employs the TMR design that has become commonplace within CFTP experiments.
However, this circuit was also designed to provide an output that is easy to verify as

correct or erroneous.

Multiplier
Counter \
> Count Squared
Counter — AL > Multiplier ’ Voter a
/ / " Mult_check
Counter Multiplier
Register Register
> > Count
Register Register
> > Cnt_check

Figure 10. TMR Multiplier

Though the circuit is discussed in Chapter V, a review of the output produced is
necessary for this section. This circuit, named “TMR Multiplier,” produces six distinct
data outputs, four of which are illustrated in the block diagram of Figure 10, in the
following order from left to right: error report that increments if either voter reports an
error, a voter error report from the counter voter (Cnt_check), a voter error report from
the multiplier voter (Mult_check), the counter output from the counter voter (Count), the
multiplier output from the multiplier voter (Count Squared), and the standard timestamp

produced by the top level module within X1.
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The output of this circuit makes it easy to verify proper operation. The count can
be squared, and that should equal the multiplier result.

2. Clock Division

Because many of the modules on X1 run at 25.5 MHz, any circuit implemented
on X2 must be initially clock-divided down to 25.5 MHz if the two chips are to be
synchronized. For most experiments implemented on the CFTP architecture, X2 is not
normally clock divided. The following discussion on clock division within X2 is
provided should future designers desire to run both chips at a reduced clock rate. This is
required only if there is a desire to produce precise, sequential data from a circuit on X2,
across X1, then across the PC/104 bus.

Synchronizing the two chips by speeding X1 back up to 51 MHz, as was done
for the dual counters, would not allow the SelectMap processes to properly run (see
Chapter 111). Therefore, the initial clock signal coming into the circuit on X2 is clock-
divided down to 25.5 MHz. The timing diagram in Figure 11 provides a simple

illustration of this clock division.

A A A A
51 MHz

clock —  — S TTTTTTTTTTTT

25.5 MHz
Clock

Figure 11. 25.5 MHz Timing Diagram.

The next level of clock division was set to match the value of the signal
ERR_RPT_TIME located in x2Int.vhd. Clarification of how this signal works is required
at this point. As mentioned in Chapter 3, clock-division on X2 is not required to get
accurate data output across X1 and the PC/104 bus. What is required is that the constant
signal ERR_RPT_TIME within x2Int.vhd is set to a value low enough to ensure the
maximum safe data rate is not exceeded. The constant signal ERR_RPT_TIME
determines the sampling rate — the rate at which data is read within X1 and subsequently
written to the PC/104 bus.
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For this particular experiment, X2 is clock-divided twice; once to match the 25.5
MHz clock signal on X1, and again to match the sampling rate, set by adjusting
ERR_RPT_TIME. As a result of these adjustments, functionally X1 is no longer
sampling data; rather, X1 is reading and writing data at the rate of the clock on X2. The
dual-counter experiment demonstrated that X1 and X2 could operate synchronously at 51
MHz. This experiment shows that the two chips can operate synchronously under equal
clock-division.

3. The Results

Several iterations of clock-division were implemented on the TMR Multiplier on
X2, with each change accompanied by a change to the constant signal ERR_RPT_TIME
in x2Int.vhd on X1. The results provide more solid evidence that the two chips can be
synchronized, and shows that handshaking is not required to get precise, sequential data
from a circuit on X2. Referring to Table 3, the results also provide more evidence that
the maximum safe data rate for the CFTP architecture is approximately 500 Bps. The
clock divisions shown in Table 3 are divisions on both chips beyond the initial division
down to 25.5 MHz.

Clock Effective Clock Bytes | Effective .
Division Rate Data Rate Observation
(bytes/sec)
1,020,000 25 Hz 18 450 No errors, sequential count
10,200,000 2.5 Hz 18 45 No errors, sequential count
38,250,000 0.667 Hz 18 12 No errors, sequential count
76,500,000 0.337 Hz 18 6 No errors, sequential count
510,000 50 Hz 18 900 Missing data beyond hex 95

Table 3.  Data Rate Results from TMR Multiplier.

The output in Figure 12 was generated with both X1 and X2 operating at 25 Hz,
which in this case equates to a data rate across the PC/104 bus of 450 Bps. Because the

counters for the TMR Multiplier are designed to restart after reaching hex FF, it is
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relatively simple to inspect the output data for errors. The data in Figure 12 was

reviewed extensively, and no errors were noted.

gwcaldwe@citp: fhomelgwcaldwelfresulisimuli

Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 2f  Count Squared: 0008al  Timestamp: 034F33h7
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 30 Count Squared: 000900 Timestamp: 035f2418
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 31 Count Squared: 000961  Timestamp: (36eb473
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 32 Count Squared: 0009c4  Timestamp: 037eddda
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 33 Count Squared: 000323  Timestamp: 033dd53b
Error Count: 00 Count_voter: 00 Mult_voter: 00 Count: 34 Count Squared: 00030  Timestamp; 039d659c
Error Count: 00 Count_vwoter: 00 Mult_voter: 00 Count: 35 Count Squared: 000af3  Timestamp: 03acfBSfd
Error Count: 00 Count_woter: 00 Mult_voter: 00 Count: 36  Count Squared: 000bE4  Timestamp: 03bcBEhe
Error Count: 00 Count_woter: 00 Mult_voter: 00 Count: 37 Count Squared: 000bdl  Timestamp: 03cclBbf
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 38 Count Squared: 000cd4  Timestamp: 03dba720
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 33 Count Squared: 000chl  Timestamp: 03eb3781
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 33 Count Squared: 000d24  Timestamp: 03facie?
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 3b Count Squared: 000d33  Timestamp: 040253432
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 3¢ Count Squared: 000eld  Timestamp: 0419e8a4
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 3d  Count Squared: 000e83  Timestamp: 04237300
Error Count: 00  Count_voter: 00 Mult_voter: 00  Count: 32 Count Squared: 000f04  Timestamp; 04330966
Error Count: 00 Count_voter: 00 Mult_voter: 00 Count: 3F  Count Squared: 000F31  Timestamp: 04483907
Error Count: 00 Count_voter: 00 Mult_voter: 00 Count: 40 Count Squared: 001000  Timestamp: 04582228
Error Count: 00 Count_woter: 00 Mult_voter: 00 Count: 41 Count Squared: 001081  Timestamp: 0467baB9
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 42 Count Squared: 001104  Timestamp: 04774aea
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 43 Count Squared: 001183 Timestamp: 0486db4b
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 44 Count Squared: 001210 Timestamp: 04966bac
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 45 Count Squared: 001293 Timestamp: 04abfcOd
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 46 Count Squared: 001324 Timestamp: (4b53cEe
Error Count: 00 Count_woter: 00 Mult_woter: 00 Count: 47 Count Squared: 0013bl  Timestamp: 0dchlccf

Figure 12. Output from TMR Multiplier at 450 Bytes/sec.

Figure 13 shows data produced by X2 at 900 Bps, significantly higher than the
established maximum safe data rate. X1 was adjusted to read at the same rate, and the
results show once again that the two chips can operate synchronously. The data in Figure
13 also shows that 900 Bps is in excess of the maximum safe data rate. Looking at the
red circle, data is missing. This is the same symptoms noted from running the counter on
X1 at a rate that is too high.
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gwcaldwe@cfip: fThomelgwcaldwelresults/mult

Count: 00 Count_woter: 00 Mult_woter: 00 Count: Ba  Count Squared: 004364 Timestamp: 0488d7be
Count: 00 Count_woter: 00 Mult_wvoter: 00 Count: 8b  Count Squared: 004b73  Timestamp: 049059fef
Count: 00 Count_woter: 00 Mult_woter: OO Count: B Count Squared: 004c30  Timestamp: 04386820
Count: 00 Count_woter: 00 Mult_wvoter: 00 Count: 8d  Count Squared; 004dad  Timestamp; 042030501
Count: 00 Count_woter: 00 Mult_woter: OO Count: Be  Count Squared: 004ecd Timestamp: 04a37F88Z2
Count: 00 Count_woter: 00 Mult_voter: 00 Count: 8F  Count Squared: O04fel Timestamp: 04afcib3
Count: 00  Count_woter: 00 HMult_woter: OO Count: 90 Count Squared: 005100  Timestamp: 04br88ed
Count: 00 Count_woter: 00 Mult_wvoter: 00 Count: 91 Count Squared: Q05221 Timestamp: 04bf5115
Count: 00 Count_woter: 00 Mult_woter: 00 Count: 92 Count Squared: 005344 Timestamp: 04c71946
Count: 00 Count_woter: 00 Mult_woter: 00 Count: 93 Count Squared: 009463 Timestamp: 04ceel??
Count: 00 Count_woter: 00 Mult_wvoter: o0 4 Count Squared: 008530 Timestamp: (04d6a9a3
Count: 00 Count_woter: 00 Mult_woberi OO Count. Squared: O05Eb3  Timestamp: 04derld3
Count: 00 Count_woter: 00 Mult_woter: o Count. Squared: 005240 Timestamp: 04fBcabc
Count: 00 Count_woter: 00 Mult_woberi OO Count. Squared: O05b7L  Timestamp: 04fd323d
Count: 00 Count_woter: 00 Mult_wvoter: 00 Count: 9a  Count Squared; O05cad  Timestamp: 0505Dace
Count: 00 Count_woter: 00 Mult_woter: OO Count: 9b Count Squared: 009dd3  Timestamp: 090d2Z2FF
Count: 00 Count_woter: 00 Mult_voter: 00 Count: 9c  Count Squared: QO05f10  Timestamp: 051deb30
Count: 00  Count_woter: 00 HMult_woter: OO Count: 9d  Count Squared: 006043 Timestamp: 051ch3B1
Count: 00 Count_woter: 00 Mult_voter: 00 Count: 92 Count Squared: Q06184  Timestamp: 095247h9Z
Count: 00 Count_woter: 00 Mult_woter: 00 Count: 3F  Count Squared: 0062cl  Timestamp: 052cd3c3
Count: 00 Count_woter: 00 Mult_woter: 00 Count: a0 Count Squared: Q0B400 Timestamp: 05340bF4
Count: 00 Count_woter: 00 Mult_woter: 00 Count: &l Count Squared: 006541 Timestamp: 053bd425
Count: 00 Count_woter: 00 Mult_wober: OO Count: a2 Count Squared: Q0BE84  Timestamp: 094339chE
Count: 00 Count_woter: 00 Mult_wvoter: 00 Count: a2 Count Squared: O0E7cY  Timestamp: 054bE487
Count: 00 Count_woter: 00 Mult_woter: OO0 Count: a4 Count Squared: Q0B310  Timestamp: 09532chbl

Figure 13. Output from TMR Multiplier at 900 Bytes/sec.

4, Sampling Data

In order to demonstrate that a circuit can be run on X2 at 51 MHz and its data
collected by X1 running at 25.5 MHz, producing X2’s data at an even slower sampling
rate, the clock-division was removed from the TMR multiplier. Figure 14 below is the
result of running the TMR multiplier at 51 MHz while its data was collected by X1 at
only 0.667 Hz. To verify the correctness of this data, one of the results next to “Count”
can be squared, and it will equal the result next to “Count Squared.” Note that the results

in Figure 14 are in hexadecimal format.
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. pwecaldwe@cftp: fhomefgwecaldwelfresults/mult

JEREY'S MULTIFLIER

LAST UPDATED:

WED OCT 11 1E:34:30 POT 2008
PART SUCCESSFULLY PROGRAMMED

timestamp; Ol4blacd
Selectmap Reconfia, ..

Errar Count: 00  Count_voter: OO Mult_woter: 00 Count: 1d  Count Squared: 000343  Timestamp: 03cZef8h
Ertor Count: 00  Count_voter: 00 Mult_woter: 00 Count: 3F  Count Squared: O00F31  Timestampi (OB029598
Errar Count: 00  Count_woter: OO Mult_woter: 00 Count: 61 Count Squared: 0024cl  Timestamp: 08523ba?
Ertor Count: 00 Count_voter: 00 Mult_woter: 00 Count: 83 Count Squared: 0043203  Timestampi 0a99elb3
Errar Count: 00  Count_woter: OO Mult_woter: 00 Count: ab  Count Squared: 006a58  Timestamp: OcelB87ci
Errar Count: Q0  Count_voter: OO Mult_woter: 00 Count: cf  Count Squared: 003abl  Timestamp: 0Ff292dda
Errar Count: 00 Count_woter: OO Mult_woter: 00 Count: &9 Count Squared: 00dd4ll  Timestamp: 1170d3eb
Errar Count: 00  Count_voter: OO Mult_woter: 00 Count: Qb Count Squared; 000073  Timestamp: 13b873fc
Ertror Count: 00  Count_woter: 00 Mult_woter: 00 Count: 2d  Count Squared: 000Fe3 Timestampi 1B00200d
Errar Count: 00  Count_voter: OO Mult_woter: 00 Count: 4f  Count Squared: 001861 Timestamp: 1847cBle
Ertor Count: 00 Count_voter: 00 Mult_woter: 00 Count: 71 Count Squared: 0021lel  Timestampi 1a8fBc2f
Errar Count: Q0 Count_voter: OO Mult_woter: 00 Count: 93 Count Squared: 005469  Timestamp: 1od7l240
Ertor Count: 00 Count_voter: 00 Mult_woter: 00 Count: bS5 Count Squared: 007FFS  Timestampi 1f1ebB85H1
Errar Count: 00  Count_woter: OO Mult_woter: 00 Count: d7  Count Squared: 00b491  Timestamp: 216EDeG2
Errar Count: Q0  Count_voter: OO Mult_woter: 00 Count: f3 Count Squared: 00F231 Timestamp: 23ae0473
Errar Count: 00  Count_woter: OO Mult_woter: 00 Count: 1b Count Squared: 0002d9  Timestamp: 25fDaaBd
Errar Count: 00  Count_voter: OO Mult_woter: 00 Count: 3d  Count Squared; 000e83  Timestamp: 28345035
Ertor Count: 00  Count_woter: 00 Mult_woter: 00 Count: 5F Count Squared: 0023241  Timestamp: ZaB4fBab
Errar Count: 00  Count_voter: OO Mult_woter: 00 Count: 81 Count Squared: 004101  Timestamp: Z2cccSch?

timestanp; 2f144308
Selectmap Readback:
0 total readback errors, 0 total SM readbacks

Selectmap Reconfig...

Ertor Count: 00  Count_woter: 00 Mult_woter: 00 Count: a3 Count Squared: O0E7cS Timestamp: 2f1442c8
Errar Count: 00  Count_voter: OO Mult_woter: 00 Count: cB  Count Squared: 003739  Timestamp: 315befBd3d
Ertor Count: 00  Count_woter: 00 Mult_woter: 00 Count: eF  Count Squared: 00d071l  Timestamp: 33a38eca
Errar Count: Q0 Count_voter: OO Mult_woter: 00 Count: 03 Count Squared: 000051  Timestamp: 35eb34fh

Figure 14. TMR Multiplier at 51 MHz with Sampled Output at 0.667 Hz

5. Final Analysis

The results from the experiments conducted in this chapter are significant. These
results clearly show that the two FPGAs can be programmed to read and write
synchronously without any handshaking. Specifically, X1 can be programmed to simply
read data from specific pins at the same rate that X2 is writing data to those same pins,
and X1 will record that data without error. These results therefore show that any clock
skew present between the two chips is less than x ns, and that the clock skew inequality is
not violated. Further, actual clock skew between the two chips is not large enough for
future designers on the CFTP team to have to account for when creating experiments.
D. CHAPTER SUMMARY

This chapter provided the required detail for designers to understand that timing
with the CFTP architecture is a vital consideration when designing experiments.
Specifically, the maximum safe data rate must be taken into account, and if precise,

sequential data is desired from X2, the circuit on X2 must be clock-divided to match the
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sampling rate on X1. The next chapter provides an example experiment, reviewing the
process from beginning to end of how an experiment is implemented onto the CFTP

architecture.
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V. AN EXAMPLE EXPERIMENT

To aid future designers to fully understand the process by which an experiment is
designed and implemented on the CFTP architecture, an example experiment is provided.
This chapter will cover the basics, from beginning to end, of the processes by which an
experiment is created, the Controller code modified, and output collected.

A. TRIPLE MODULAR REDUNDANCY

The overriding philosophy behind any experiment created within the CFTP team
is reliability. Specifically, experiments are designed such that they not only can detect
the occurrence of an SEU, but also they must be able to correct any erroneous data
produced as a result of an SEU. Though specific implementations have varied, the
primary method that designers have used to provide this reliability is TMR (triple
modular redundancy). Circuits, or components within circuits, are produced in triplicate,
and their outputs sent to a voter for comparison. As long as two of the three outputs
agree, the data is considered reliable. This is how errors are detected and corrected. The
voter identifies data that does not agree with two other streams of data, then decides what

is reliable and identifies the component that provided unreliable data.

The circuit designed for this example experiment performs the functions
described above; it employs TMR and provides data that shows if an error is detected and
the specific component where that error occurred. However, this experiment was not
designed specifically to test the applicability of TMR. This TMR Multiplier was
designed with two goals in mind; one, to affectively demonstrate how a TMR experiment
is implemented on the CFTP architecture, and two, to provide an output so that the CFTP
team can verify proper operation of the Flight Board once in space.

B. TMR MULTIPLIER

One of the needs of the CFTP team is a circuit that is simple both in its operation
and its output. It is important to be able to simply confirm that the two FPGASs on the
Flight Board in space are operational. This circuit was designed with that requirement in
mind. However, in the event that this becomes the only operational circuit in flight, TMR
was included so reliability could still be evaluated. With these goals in mind, the TMR
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Multiplier was designed to generate a count, square that count, and provide an output that
verifies proper operation and the presence of any data errors.

Referring to Figure 15, this circuit, the TMR Multiplier, generates its own input
via the use of a counter. The counter is produced in triplicate and the outputs voted. The
voter produces two outputs; the count and a 3-bit data steam that identifies if any of the
counters disagreed. It then takes this count and uses it for both inputs into a multiplier,
thereby squaring the count. The multiplier was also produced in triplicate, those outputs
fed to a voter, and two data streams are produced from that voter. As described in
Chapter IV and shown in Figures 12, 13 and 14, five sets of data are produced by this
circuit. This provides a data stream that simplifies the identification of errors, and

provides easy confirmation of proper operation.

To further simplify the process of data verification, the counter not only counts in
increments of one, base 16, from zero to “FF,” but it then resets to zero and restarts the
count. Section D provides details on the design of this circuit, to include how TMR
works as well as the design decision behind the inclusion of registers, and Figure 15
should be referred to extensively when reading that section.

C. WORKING IN PROJECT NAVIGATOR

Though some of the important steps are included, the following is not intended as
a manual for the use of Xilinx’s Project Navigator [10]. A summary of the creation of the
design within Project Navigator is included, but emphasis is on the specifics of the TMR
Multiplier design followed by the required modifications of the Controller code to

conform to the requirements of the experiment.
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Figure 15.

TMR Multiplier Final Design
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1. Creating a Design

To begin the design process for this TMR Multiplier, a project was created in
Xilinx’s Project Navigator. When creating a design, the user begins by going to “File,”
then selecting “New Project.” After naming the project, it is important that the proper
device and other options are chosen correctly. Looking at Figure 16, these are the
options that should always be chosen for all projects created for the CFTP architecture,
assuming the use of a Virtex | chip. Should future CFTP projects include the use of a

later Virtex part (Virtex Il or 111 or 1V), then these options will change slightly.

For the current CFTP architecture, the options chosen are specific to the Virtex |
chips; xqv600, cb228, and speed -4. These options are the same both the Flight and
Development Boards. After this step is complete, the user will then be sent to a window
and asked if a new source is to be created for the project. This step can be skipped and

the user can add new sources in the Process View window.

New Project g]

Select the Device and Design Flow for the Project

Property HName | Yalue |

Device Family
Device
Package

Speed Grade

Top-Level Module Type HOL

Synthesis Tool =5T WHO LAY erilog)
Simulator todelsim
Generated Simulation Language WHOL

< Back | Mest > | Cancel | Help |

Figure 16. Project Options in Xilinx’s Project Navigator [10]

2. Processes in Project Navigator
In Figure 17, the process for editing/creating VHDL is shown, as well as the
Process View window where sources can be added or created. In this Process View
window are two processes of note for designers; Synthesize — XST, and Create Schematic
Symbol. These two processes are also available for schematics. Once the designer has
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finished editing a VHDL file, or wiring a schematic, the component then needs to be
synthesized (compiled), and a schematic symbol created for addition to a higher level
schematic. To perform either of these tasks, the specific component in the window,

Sources in Project, must be highlighted.

Xilinx - Project Navigator, - C:\Classes_Labs_Lectures\Thesis\projects\multiplier\B30_proj.npl - [count_voter.vhd]
[A Eile Edit View Project Source Process Window Help »l _|a x
o =i [ = Iz . L
Led g = Nk EE & K B M2 3 % )
=l=l
1 ~
Sources in pm‘ac_t l» 2 - Voter for the counters within THR Multiplier
[ 4830_proj 3 - created by Terry Caldwell, CFTP Team, September 2006
= £ xeqvB00-4ch228 4
=1 [B] trr_multiply (tmr_multiply. sch) 5 library IEEE;
trnr_multiply_TB {tmr_multiply_TE. thw] S  use IEEE.3TD_LOGIC_1164.ALL:
[ tr_multiply. ucf 7  use IEEE.STD_LOGIC_ARITH.ALL;
[] behaviour_array_multiplierbehavioral [ 2  use IEEE.STD_LOGIC_UNSIGNED.ALL;
[ clock_divider-behavioral (clock_divide 2
[#] clock_halibehavioral [clock_hall. vhd] 10  --—— Tncomment the following library declaration if instantiating
[#) court_off-behavioral (court_off.vhd) — 11 P g REVRR ST ST RRR BRI LAbe) Gl
[#) count_voter-behavioral (count_voter.v 12 --library UNIZIN;
[#) counter-behaviors (courter vihd) . e B TH N Eonnonen sty
1 e} Jsch| hd
4 ‘ ) reg 3 freq 3scl ]| "— 150 entity count vorter iz
1= 16 Port { count_out_l : in std_logic_wector(? dowmto 0);
S ol Yiew | I Srapshet View | () Library View 17 count_out_2 : in std_logic vectar(7 downto 0);
12 count_out 3 @ in scd logic wectox(? downto 0):
=l 19 clock : in std_logic;
em——p woter behavioral” =0 result ¢ out std logic westor(? dewmto 0);
o 21 count_check @ out std logic wector(2 dowmto 0)):
Rl 4cd Eisting Source 22  end count_woter;
[ Create Mew Saurce o
=@ Design Enty Utiities | 28 architecture Behavioral of count_voter is
3% Create Schematic Symbol 25
W Launch ModelSim Simulator 258 pegin
B %2 View Command Line Log Fils 27 process {clock] begin
B ViewVHDL Instantiation Template 25 if { clock'event and clock='l' ) then
=&  UserConstraints 29 if | count_out_ 1 = cownt _out 2 ) and [ count_out_l = count_out 3 ) then
Create Timing Constraints =20 result <= count_out_l;
% Assign Package Pins i count_check <= "0007;
BB  Create Area Constaints 22 elsif ( count_out_l = count out_Z ) and { count_out_l /= count _out_3 ] then
%  Edit Constraints (Text) B result <= count_out_2;
53D Syrthesize-xaT 34 count_check <= "0117;
M % 2 iew Syrthesis Report - 36 elsif { count out 1 = count out 3 ) and ( count out_l /= count out 2 ) then ¥
L1 | o] | 12 >
B Process View @ count_voter...
| -~
| Launching Application for process "Edit Constraints [Test]"
-
£ >
[ATF TP Console £ Findin Fles Wamings
For Help, press F1 Ln 3 Col 64 =

Figure 17. Working with VHDL in Project Navigator [10]

The schematic for one of the registers from Figure 15 is included in Figure 18.
Once all editing has been completed, and the schematic saved, the designer has to return
to the window in Figure 16, highlight the component, and then synthesize and create a
schematic symbol. The result is the symbol located in Figure 15, “reg_8.” This symbol
was added to the top level schematic by clicking on the tab labeled “Symbols,” which can

be seen in Figure 17.
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Figure 18. Schematic for Register in TMR Multiplier Design [10]

3. The Critical UCF Source

To ensure an experiment can properly interface with X1 in the CFTP architecture,
the designer must include the constraint file discussed in Chapter Il as a source to the
project. This file is critical to the proper operation of an experiment within the CFTP
architecture, because it identifies the FPGA pins with the signal names used in the design.
The simplest way to get a constraint file is to copy one off of the CFTP server, then
rename it specifically for the experiment (see Appendix A for detailed specifications of
the path to the most current X1 ucf files for the Development and Flight Boards). For the
TMR Multiplier design, the constraint file was re-named “tmr_mutliplier.ucf.” Once this
file was copied to the same directory where all the other files are located for the project, it

was simply added as a source to the project.

Referring to Figure 19, once the constraint file has been added as a source to the
project, it can then be edited by highlighting the file, then selecting “Edit Constraints
(Text) in the process window. While editing this file, it is suggested that the designer
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have a copy of the constraint file for X1 available to ensure that the pins within the
respective files are properly matched with respect to functionality. See Appendix B for

@ File Edit “ew Project Source Process ‘Window Help » _ | & x
2 =4 z| ),
DG =FE 2B | s Jle%nn|Q
2=
- - 1  # Pin assimments for X2 (TR Multiplier) ”~
" -
Sources in F‘ro|ec.l. I_ 3 ¢ by Jerry Caldwell
E 4830_praj a g4
--£d xcqvE00-dch22a 4 # Double-check all pin assignments!
= @ trar_raltiply [brar_roultiply. sch) & @
tror_multiply_TE [trr_multiphy_TE. thiw] 5 ¢ All pin agzignuents in the comments following the actual pin
@ trar_rnultiphy. ucf 7 # locations must natch same commented locations on control.ucf
@ behaviour_array_rultiplier-behavioral (| 8 # Example: "pl32" on twr_pultiply.ucf matches "pl53™ on control.uct
@ clock_divider-behavioral (clock_divide a
[ clock_hali-behavioral (clack_half vhd) 10 # systen clock
@ caunt_off-behavioral [count_off vhd) 11 NET "clock™ LOC = "PL99": # use this one for the 51 MHz oscillator
@ count_vater-behavioral [count_wvoter.v 1; zNET"CliCK; LID)ER;D;PE—J‘;S # use this one for a 50 MHz clock
[ i wnbarhab svices) fom e bl h "clock” = ;
| »[ ]| '* #MNET "s_clock” PERIOD = &0;
= 15
(5 il view | 10 Snapshot view | [ Lirary view | 0 4 signals tosErom X1
EE 17  NET "mult_check«<0:" LOC = "pl32": # X1 X2 A0
— 18 NET "mult check<l>" LOC = "pl34"; # X1 X2 A1
Processes for Source: "tmr_multiply. ucf | 18  NET "mult_check<2>" LOC = "pl3s™; # M1 _XZ_AH<Z»
B AddExisting Source 20  NET "ont check<0>" LOC = "pl36™; # X1 M2 AE>
B Create New Source 21 NET "cnt_check<l>" LOC = "pl38"; # Xl X2 AN
<-§@  UserConstraints 22 NET "cnt check<Z2>" LOC = "pl39™; # X1 X2 AM<E>
Creat Timing Conshiaints 23 NET "xl_reset” LOC = "pldl"™; § ¥l X2 A6
= sssion Package Pins 24  4NET "data_rdy” LOC = "pldd”: # X1_X¥Z_AIETs
E§| Deagte Aren Cgonshaints 25 $NET "CCCT LOC = "pldé™;  # X1_X2_AUM<E»
|-_°° Edit Constraints [T ext 28 #NET "0 LOC = "pld7™: # K1 _XZ_ A9
R [ Gt (Ve 27 NET "result<0>" LOC = "pl53"; 4§ X1_X2_AUX<LO>
28 NET "result<l>" LOC = "pl54": # X1 _XZ_AM<11:
28 NET "result<2>" LOC = "plS07; # X1 W2 AN{12>
20 NET "result<3>" LOC = "ple0™; § X1 X2 AIN4C13
=1 NET "result<d=" LOC = "plEl™; # X1 W2 AIT4C14-
22 NET "result<5>" LOC = "pl777: # X1 _WZ AINGC15: w
4 ¥
T B prncess view [0 tme_mwltply...
x| 2
e
Launching Application for process "Edit Constraints [Text]". &
¥
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Figure 19. A portion of the Constraint File [10]

DETAILS OF THE EXPERIMENT
The design decisions behind the TMR Multiplier were driven by three important

requirements, in addition to the goals stated in Section A: self-generated input, ability to
synchronize the circuit with X1, and an output that is easy to verify as correct.
1.
The counter provides self-generated input, and the TMR design is used on the

Input & Synchronization

counter to ensure a reliable input. Using a counter as the input also allowed for a simple
way to synchronize the circuit with X1. As discussed in Chapter I11, the top level code of

X1 produces a reset signal upon the initial start up. Referring to Figure 20, this signal,
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aptly named “x1_reset,” is fed to each counter. The counter is designed to begin the
count at zero when this reset signal goes high. Figure 21 shows the process for this,
written in VHDL code.

counter
——{chock eat st o ] count_voter
xi_reset — ek ey o ——]
counter —entaion
—chek et sy 0 ——3 ——cont o 27,
ri_reset — T (L cont checkny ——]
counter
—chek et res iy 0 ——3
[*1_reset Bl_teset

Figure 20. Reset Signal and TMR Counter

T Ll oL L 1

20

21 architecture Behavioral of counter is

22

23  sigmal clock_cnt @ std logic_wector (7 downto 0);
24

25  hegin

26 process (clock, x1_reset] begin

27 if (xl_reset = 'l')] then

Z3 clock_cnt <= x"00";

24 elsif { clock'event and clock='l' ) then
=0 if | clock_cnt = x"FF" | then

21 clock_cnt <= x"00";

22 else

33 cnt_result <= clock_cnt;

=4 clock_cnt <= clock_cnt + 1;

25 end if:

26 end if:

a7 end process;

38  end Behawioral:

29

Figure 21. VHDL Code for Counter.

2. Voter Logic
The voters, both for the counter output and multiplier output, were also produced
via VHDL code. Referring to the VHDL code in Figure 22, this is a simple process of
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using “if statements” to determine which inputs agree, and assigning those to the output.
This is data error correction, determining the output based upon an input where a

majority (2 out of 3) agrees.

14
1505 entity count woter is
18 Port | count out 1 : in std logic wector (7 dowmto 0);
17 count_out 2 @ in std logic_wector(? dowmto 0);
18 count_out 3 @ in std logic wector(? dowmto 0);
18 clock :in std_logic:
20 result i out std logic vector (7 dowmto Q)
21 count check : out std logic vector (2 downto 0));
e end count_woter;
23
24  architecture Behavioral of count wvoter is
25
28 hegin
27 procesz (clock) begin
29 if { clock'event and clock='l' ) then
=9 if [ count_out_l = count_out_2 ) and [ count_out 1 = count out 3 ) then
=0 result <= count_out_1:
21 count check <= "000";
Sz elzif [ count _out_l = count out 2 ) and [ count out 1 /= count out_3 ] then
33 result <= count_out_2:
=4 count_check <= "011":
=5 elsif [ count_out_l = count out_3 ) and [ count_out_ 1 /= count out_Z | then
El= result <= count_out 1:
37 count check <= "010";
S8 elsif [ count_out_2 = count out_3 ) and [ count_out_l /= count _out_3 ] then
=9 result <= count_out_3:
40 count_check <= "001":
41 else
a2 result <= count_out 1:
3 count check <= "111";
=4 end if;
45 end if:
g end process;
47  end Behavioral: ,
<13
Figure 22. Voter Logic
The portion of the voter that provides the location of the component which
produced the error is located in the output vector “count_check.” If the voter logic

detects that one of the inputs do not agree, or worse, that all three inputs disagree, then an
appropriate signal is assigned to “count_check.” For example, looking at the first “elsif”
statement in Figure 22, if inputs one and two agree, but disagree with input three, then the
output “result” is assigned with the majority input, and “count_check” is assigned the
number three, signifying that counter number three is in error. This voter logic was also

used to determine the multiplier output, with the only difference being the signal names.
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3. Multiplier & Pipelining
The multiplier was created with one line of VHDL code; input “x” multiplied

times input “y” is assigned to output “p.”
p(23 downto 0) <= x(11 downto 0) * y(11 downto 0);

This one simple line of code performs two functions. First, Xilinx’s VHDL
compiler will create a hardware multiplier, optimized by the compiler. Second, it
automatically creates a register to hold the product until the next clock signal. This is
important because, as per Chapter Ill, all outputs produced in X2 needs to be held in a
register. Though the input from the counters are only 8 bits, they were converted to12

bits to provide a 24-bit output merely to aid in data stream formatting on the final output.

The VHDL compiler does not create a pipelined multiplier, and because the
multiplier performs correctly at 51 MHz, pipelining internal to the multiplier was not
required. However, pipelining was needed in the top level schematic. Referring back to
Figure 14, two levels of registers were incorporated into the design. Because the output
of the multipliers and the output of the second voter are held in registers, the output of the
first voter had to be slowed down by two clock cycles to ensure all data produced from

X2 arrived at X1 on the same clock.

To ensure complete reliability of the output of this circuit, the registers located in
Figure 14 should also be produced in triplicate and the outputs voted. However, this was
not done for two reasons; as mentioned, this experiment was not designed as validation of
TMR, and two, even within the philosophy of TMR, at some point a decision must be
made when TMR will not be incorporated to prevent overly complex circuits or circuits
that are too large. Though not applicable to this circuit, at some point if too many
components are duplicated, the design becomes too large and cumbersome. Additionally,
registers take up only a small portion of the chip, so the probability of a data error due to
an SEU within a register is minimal.

4, Signal Names

Referring to Figure 18, the tmr_multiply.ucf file, it is critical that the signal names
in this constraint file exactly match final naming of signals in the top level schematic,
Figure 14. This ensures that each signal is passed to the appropriate output pin on X2,
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which enables the passing of proper data to X1 and ultimately across the PC/104 bus onto
the ARM processor.

5. Sequential Data

In keeping with one of the initial stated goals, to verify proper operation of this
circuit it is important that data is collected in the precise order is it produced. This
provides verification that all components are functioning properly; the counters are
verified if the count is produced sequentially, and the proper operation of the remaining

components is verified via the normal TMR design principles.

To accomplish sequential output, as mentioned in Chapter 4, the circuit on X2
required the appropriate clock division. Two modules located in Figure 14 accomplish
this. The module “clock_half” clock-divides the main clock down to the 25.5 MHz clock
that drives the components on X1, and the module “clock _divider” can be adjusted to
produce a signal at the same rate of the signal “ERR_RPT_TIME” located on X1, which
is the sampling rate mentioned throughout this thesis.

6. Finishing the Experiment

The final step in Project Navigator, after the circuit has been simulated and
checked for proper operation, is to “Implement” the design as discussed at the end of
Chapter 3. This function performs four processes in the following order; translate, map,
and then place and route (PAR). The translate process merges all of the input net-lists
and design constraint information into one file. The map process maps the design to the
FPGA, creating the ncd file, discussed in section 7, below. The PAR process takes this
ncd file and performs the placing and routing of the design, connecting and routing all the
wiring. The PAR process does not produce a different file extension; it modifies the
existing ncd file. After this final step, the ncd file, in this case named multiply.ncd, will
then be transferred to the CFTP server for two more processes, discussed in section 7,
below.

7. Flash File

The last step for the experiment is to create a flash file, which is the configuration
for X2 that will be stored on the flash memory module. This is performed on the CFTP
server with two programs: bitgenpersist.sh, and mkflash.sh. The file that was transferred

from the designer to the CFTP server has an “ncd” file extension. At the completion of
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the last two processes, the experiment file will have a “fwr” file extension. The exact

command line entries for these two processes are covered in detail in Appendix A.

The reason for executing bitgenpersist.sh and mkflash.sh is to create a bit file; a
file that contains the configuration of the FPGA chip. The two processes accomplish this
as bitgenperist.sh creates the bit file, and mkflash.sh strips off the headers, making the
file ready for the loading of the configuration [1].

E. MODIFYING THE CONTROLLER

As discussed in Chapter 1ll, there are three VHDL modules within the Controller
code (X1) that must be specifically modified by the designer; x2Int.vhd, top_level.vhd,
and control.ucf. This section will list the specific code modified for the TMR multiplier
with an accompanying explanation.

1. X2 Interface

Within the file x2Int.vhd, the first changes to be made are the signal names going
to or coming from X2, the experimental circuit. For the TMR Multiplier, only one signal
goes to X2, the rest are signals coming into X1, the Controller. These signal names are
located near the beginning of the code, and are easily identified as a result of the

comments and the standard naming conventions discussed in Appendix A.
-- FOR EXPERIMENTAL DESIGN, signals coming from and going to X2

DATA _TO_X2_RESET_o : std_logic;
DATA_FROM_X2_OUTPUT_i : instd_logic_vector(31 0);
DATA FROM_X2 MULTCHK i : i1 std logic_ vector(2 0);
DATA FROM_X2 CNTCHK i : instd logic vector(2 0);

The first signal name, “DATA_TO_X2_RESET _o0,” is the reset signal discussed
in Chapter 111 that is generated via X1’s top level code. This signal allows the circuits on

X1 and X2 to begin at the same time.

The signal name, “DATA_FROM_X2 OUTPUT _i,” is precisely what it implies;
output generated from X2. Notice, however, that the end of the signal name has an
underscore with the letter “i.” In accordance with the naming conventions for CFTP, this
signifies an incoming signal to X1. An underscore followed by the letter “0” was added

to the outgoing reset signal as it is a signal that is outgoing from X1.

There are two specific streams of data within the 32 bits of the output signal

name. This signal could have been broken up into those two streams of data, but for
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programming simplicity, all the data was lumped into one 31-bit stream. Recall that the
TMR Multiplier design on X2 outputs the count as well as the result of that count
squared. The count is 8 bits and the square of the count is allotted 24 bits. As long as the
designer knows what portion of the 32-bit data stream belongs to the count and to the

multiplier, then it can be sorted out in the output data stored on the ARM processor.

This simplification of signal naming also allowed for simpler editing of the ucf

file, which will be covered shortly.

Flowing down through the code in sequence, the next decisions to be made by the
designer is the frequency for SelectMap read-backs and the data rate across the PC/104

bus.

DLY_TIME . integer := 765000000 -- 30 seconds
--CONSTANT ERR_RPT_TIME : integer := 76500000 -- (0.337 Hz)

ERR_RPT_TIME : integer := 38250000 -- (0.667 Hz)
--CONSTANT ERR_RPT_TIME : integer :=10200000 -- (2.5 Hz)
--CONSTANT ERR_RPT_TIME : integer :=1020000 -- (25 Hz)

The signal DLY_TIME is the rate at which a SelectMap read-back occurs. The
standard within the CFTP development environment has been to leave this at 30-second
intervals. It can be changed to suit the needs of specific experiments. The signal
ERR_RPT_TIME is how the sampling rate is set (recall discussion from Chapter Il1).
Above are four examples of data rates utilized for the output of the TMR Multiplier.
Three of the sampling rates remain commented out of the code (in blue). The final one

used for flight is uncommented and it generates an output every 1.5 seconds.

Recall also from Chapter |11 that the data rate across the PC/104 bus is determined
by multiplying the sampling rate times the number of bytes to be transferred across the
PC/104 bus per write cycle. The signal RPT_OUT_LENGTH is where this integer is set,
and is located in the code just below where ERR_RPT_TIME resides.

RPT_OUT_LENGTH : integer :=18

Next the designer will modify the portion of the code in x2Int.vhd that actually
writes data to the PC/104 bus. As illustrated with the code below, these signal names
must exactly match the signal names near the beginning of the code in the port section.
Notice there are 18, 8-bit words, assigned to an output vector. The first three words are

usually not modified by designers. The “E,” “R” and “00” are output merely for
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formatting and identification purposes (E R identifies that relevant data follows). The
fourth word is an error count, described shortly, and the next six words were added
specifically for the TMR Multiplier. This portion of the data stream, highlighted in red,
the number of words and specific signal names will vary to match specific experiments.
The last eight words are a timestamp produced in the output stream, and is not modified

by designers.

if (report_out_vect ='0'and SM_CONFIG_STATUS i="'0'
and dly_timer = ERR_RPT_TIME ) then
out_vect(0) <= x"45"; --E
out_vect(1) <= x"52"; --R
out_vect(2) <= x"00";
out_vect(3) <= err_cnt(7 downto 0); -- parameters set by designer
out_vect(4) <="00000" & DATA_FROM_X2 CNTCHK i(2 downto 0);
out_vect(5) <="00000" & DATA_FROM_X2_MULTCHK _i(2 downto 0);
out_vect(6) <= DATA_FROM_X2_OUTPUT _i(31 downto 24); -- counter output
out_vect(7) <= DATA_FROM_X2_OUTPUT _i(23 downto 16); -- mult output
out_vect(8) <= DATA_FROM_X2 OUTPUT _i(15 downto 8); -- mult output
out_vect(9) <= DATA_FROM_X2 OUTPUT _i(7 downto 0); -- mult output
out_vect(10) <= TIMESTAMP _i (63 downto 56); --timestamp
out_vect(11) <= TIMESTAMP _i (55 downto 48); --timestamp
out_vect(12) <= TIMESTAMP _i (47 downto 40); --timestamp
out_vect(13) <= TIMESTAMP _i (39 downto 32); --timestamp
out_vect(14) <= TIMESTAMP _i (31 downto 24); --timestamp
out_vect(15) <= TIMESTAMP _i (23 downto 16); --timestamp
out_vect(16) <= TIMESTAMP _i (15 downto 8); --timestamp
out_vect(17) <= TIMESTAMP _i (7 downto 0); --timestamp
report_out_vect <="'1"
————————— Parameter for increasing the error count
((DATA_FROM_X2_MULTCHK_i /="000") or (DATA_FROM_X2_CNTCHK i /="000") )
err_cnt<=err_cnt+ 1;

Signal names that correctly describe the output, like CNTCHK, do not require
comments. However, to clarify what portion of the output is from the counter and the
multiplier, comments were included next to the signals DATA_FROM_X2 OUTPUT _i.
Specifically, the output of the counter occupies the top 8 bits of the 32-bit output stream,
and the multiplier output occupies the remaining 24 bits.

The last portion of the code, located beneath the comment “parameters for
increasing the error count,” is important for two reasons; one, it provides data across the
PC/104 bus that verifies a voter reported an error, giving the designer additional
verification of a data error. Two, it counts the number of errors that occur so that a

SelectMap reconfiguration can eventually take place when a set number of these data
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errors have occurred. As can be seen above, the parameter for a data error from the TMR
Multiplier is if one of the voters reports a number other than zero. Designers will have to

modify the parameters within the IF statement specific to their experiments.

The threshold for the number of data errors before a reconfiguration is the last
modification a designer needs to consider within x2Int.vhd. This threshold is located
within an “if” statement, and is usually set to hex FF.

-- Set the threshold (# of data errors) for a reconfiguration
-- If we have 256 errors, reconfigure
(err_cnt=x"FF")

For most experiments, including the TMR Multiplier, this threshold can probably
remain as is. However, designers are free to change this number if a specific experiment
requires a higher or lower threshold before a SelectMap reconfiguration.

2. The UCF File

A portion of the specific control.ucf file for the TMR multiplier design is included
below, specifying the signal naming of data coming from and going to X2 that pertain to
the TMR multiplier. The control.ucf file is significantly larger than the experiment.ucf
file (tmr_multiplier.ucf) because of the various SelectMap and other pins. The complete

control.ucf is located in Appendix B.

This specific control.ucf file is for the Development Board. The differences
between the Development Board and Flight Board are not apparent here, but are covered

in Appendix B.

NET "DATA_FROM_X2_MULTCHK_i<0>" LOC = "p153"; # X1 _X2_AUX<0>
NET "DATA_FROM_X2_MULTCHK_i<1>" LOC = "p151"; # X1 _X2_AUX<1>
NET "DATA_FROM_X2_MULTCHK_i<2>" LOC = "p150"; # X1_X2_AUX<2>
NET "DATA_FROM_X2_CNTCHK_i<0>" LOC = "p149"; # X1_X2_AUX<3>
NET "DATA_FROM_X2_CNTCHK_i<1>" LOC = "pl47"; # X1_X2_AUX<4>
NET "DATA_FROM_X2_CNTCHK_i<2>" LOC = "p146"; # X1_X2_AUX<5>
NET "DATA_TO_X2_RESET 0" LOC = "p145"; # X1_X2_AUX<6>

#NET "DATA_FROM_X2_READY_i" LOC = "p144"; # X1_X2_AUX<7>
#NET "XXX" LOC = "p135"; # X1_X2_AUX<8>

#NET "XXX" LOC = "p134"; # X1_X2_AUX<9>

NET "DATA_FROM_X2 OUTPUT i<0>" LOC = "p132"; # X1 X2 AUX<10>
NET "DATA_FROM_X2_OUTPUT i<1>" LOC = "p127"; # X1 X2 _AUX<11>
NET "DATA_FROM_X2_OUTPUT i<2>" LOC = "p126"; # X1_X2_AUX<12>
NET "DATA_FROM_X2_OUTPUT i<3>" LOC = "p120"; # X1_X2_AUX<13>
NET "DATA_FROM_X2_OUTPUT i<4>" LOC = "p119"; # X1 X2 _AUX<14>
NET "DATA_FROM_X2_OUTPUT i<5>" LOC = "p112"; # X1_X2_AUX<15>
NET "DATA_FROM_X2_OUTPUT i<6>" LOC = "p111"; # X1_X2_AUX<16>
NET "DATA_FROM_X2_OUTPUT_i<7>" LOC = "p110": # X1_X2_AUX<17>
NET "DATA_FROM_X2_OUTPUT _i<8>" LOC = "p109": # X1_X2_AUX<18>
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NET "DATA_FROM_X2_OUTPUT_i<9>" LOC ="p108"; # X1_X2_AUX<19>
NET "DATA_FROM_X2_OUTPUT_i<10>" LOC = "p107"; # X1_X2_AUX<20>
NET "DATA_FROM_X2_OUTPUT_i<11>" LOC = "p105"; # X1_X2_AUX<21>
NET "DATA_FROM_X2_OUTPUT_i<12>" LOC = "p104"; # X1_X2_AUX<22>
NET "DATA_FROM_X2_OUTPUT_i<13>" LOC = "p103"; # X1_X2_AUX<23>
NET "DATA_FROM_X2_OUTPUT_i<14>" LOC = "p102"; # X1_X2_AUX<24>
NET "DATA_FROM_X2_OUTPUT_i<15>" LOC = "p101"; # X1_X2_AUX<25>
NET "DATA_FROM_X2_OUTPUT _i<16>" LOC ="p98"; # X1_X2_AUX<26>
NET "DATA_FROM_X2_OUTPUT _i<17>" LOC ="p97"; # X1_X2_AUX<27>
NET "DATA_FROM_X2_OUTPUT _i<18>" LOC ="p96"; # X1_X2_AUX<28>
NET "DATA_FROM_X2_OUTPUT _i<19>" LOC ="p94"; # X1_X2_AUX<29>
NET "DATA_FROM_X2_OUTPUT_i<20>" LOC ="p93"; # X1_X2_AUX<30>
NET "DATA_FROM_X2 OUTPUT _i<21>" LOC ="p92"; # X1 X2 AUX<31>
NET "DATA_FROM_X2_OUTPUT _i<22>" LOC ="p91"; # X1_X2_AUX<32>
NET "DATA_FROM_X2_OUTPUT _i<23>" LOC ="p90"; # X1_X2_AUX<33>
NET "DATA_FROM_X2_OUTPUT _i<24>" LOC ="p89"; # X1_X2_AUX<34>
NET "DATA_FROM_X2_OUTPUT _i<25>" LOC ="p88"; # X1_X2_AUX<35>
NET "DATA_FROM_X2_OUTPUT _i<26>" LOC ="p82"; # X1_X2_AUX<36>
NET "DATA_FROM_X2_OUTPUT _i<27>" LOC ="p81"; # X1_X2_AUX<37>
NET "DATA_FROM_X2_OUTPUT _i<28>" LOC ="p80"; # X1_X2_AUX<38>
NET "DATA_FROM_X2_OUTPUT _i<29>" LOC ="p79"; # X1_X2_AUX<39>
NET "DATA_FROM_X2_OUTPUT _i<30>" LOC ="p78"; # X1_X2_AUX<40>
NET "DATA_FROM_X2_OUTPUT _i<31>" LOC ="p77"; # X1_X2_AUX<41>
#NET "XXX" LOC ="p75"; # X1_X2_AUX<42> -- available on Flight Board
#NET "XXX" LOC = "p74"; # X1_X2_AUX<43> -- not avail on Flight Board
#NET "XXX" LOC = "p71"; # X1_X2_AUX<44> -- not avail on Flight Board

Notice that the signal names in the control.ucf file exactly match the signal names
in the section “FOR EXPERIMENTAL DESIGN” in x2Int.vhd. Note also that in the
constraint file, the pound symbol is used to comment out code, while in normal VHDL
code, two dashes are used. This is an important note to show how unused pins are
handled in the constraint file; simply comment them out of the code. Also, notice all the
comments next to each pin declaration. As mentioned in Chapter I11, these comments are
located within both constraint files for X1 and X2. This is the method by which data is

correctly declared and passed to the appropriate pins on both chips.

Once the ucf file has been properly edited, it is time to compile the X1 code.

3. Makefile_Control

In the Linux environment, compiling of code, whether it be “C” code, or VHDL
code, is performed via the command “make.” Further, this process can be enhanced to
suite the needs of specific projects by creating/editing a specific “makefile.” This is the
function of the Makefile_control and Makefile_experiment files for the CFTP team. The

Makefile_control file is the last file the designer will need to modify.
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# 1D is used by the rd.sh program to determine how the output from
# your code should be formatted. It is any 2 digit string
# Already taken:
#JS: Josh's Cordic
# IM: Jerry's Multiplier
# SR: James' Shift Register
# FD: Flash Dump
#VT: V2 Test code
# FE: Flash Erase

=M

="Jerry's Multiplier"

Above is the specific section of code from the file “Makefile_control” which must
be modified by the designer. The two lines of code that have not been commented out
need to be changed specific to the experiment, as per instructions in the commented
section, with 2 digits (letters or numbers), followed by what they stand for. This is done
for the purpose of “C” code that reads and formats output data. This “C” code is located
in Appendix C.

4, Compiling Code

At this stage, it is time to compile the X1 code and correct any noted errors by the
compiler. Before beginning this process, all files and directories located within directory
“control_out” must be deleted. This is performed with the following Linux command:

rm -r *

Care must be exercised when using this command. It will delete ALL files and
directories located within the directory where the command is issued. The contents of the
control_out directory need to be removed as that is where the compiler sends history files
from its previous compile. DO NOT use this delete command, “rm,” in a directory above
(higher level) control_out. Once this command is used the files CAN NOT be recovered.
Ensure that this command is entered ONLY within the directory control_out.

After removing the contents of the directory control_out, the compile command is
entered one level up from the control_out directory, where the Makefile control file is

located. The specific command is as follows: make -f Makefile_control

When the good fortune of a compile with no errors is achieved, then a file named

“control.bin” exists in the control_out directory.
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F. PROGRAMMING THE BOARD

Now it is time to physically program both chips and collect data. The designer
has two important files, the fwr file for the flash, (X2’s configuration), and the bin file
which is X1’s configuration. As noted previously, the fwr file was named to specifically
identify the experiment, tmr_multiply_dev.fwr. This should be done as well for the

control.bin file. For the multiplier, it was named, “tmr_mult_dev.bin.”

Appendix A contains the specific procedures to program the chips and collect data
for both the Development Board on the ground, and the Flight Board while on the
Satellite.

G. CHAPTER SUMMARY

This chapter provided the overall procedures behind the development of an
experiment for implementation onto the CFTP architecture. Most importantly, it covered
the specific modifications that are required for the Controller code in order for
experiments to properly interface with X1 and the PC/104 bus. The next chapter
summarizes the work of this thesis and provides recommendations for future CFTP

designers.
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VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis detailed the processes by which experiments are developed and
implemented on the CFTP architecture. The structure of that architecture was discussed,
as well as the inner-workings of the code that drives the Controller portion of the CFTP
architecture. Finally, some of the limitations of the CFTP architecture were investigated,
and an example experiment was detailed for the benefit of future CFTP designers.

A. SUMMARY

The CFTP architecture was designed around the framework of a key concept; two
FPGA chips, one that implements fault tolerant experiments, and one that acts as a
controller for the implementation of experiments and control of data produced from
experiments.  Significant components included to support this design are; a flash
memory module, an EEPROM, a PC/104 bus, and an ARM Processor.

Within the CFTP environment, the Controller FPGA is named X1, and the FPGA
for the implementation of experiments is named X2. Experiments implemented onto X2
can transfer data to and from X1 at the full rate of the CFTP oscillator, which is 51 MHz.
However, the rate at which data can be transferred across the PC/104 bus is significantly
less than 51 MHz due to the limitations of the ARM Processor and its ability to manage

resources.

One of the most significant developments for the CFTP architecture was the
VHDL code that creates the circuit on the Controller FPGA. This code is generic to the
largest extent possible, which allows designers to make only minor changes such that X1
will interface properly with X2. The significance of the Controller code, beyond its
ability to be modified specific to experiments, is its inherent ability to control the flow of
experiments, compare configurations from what is stored in flash memory to what is
running on X2, and perform a reconfiguration of X2 should a configuration error occur.
It was the development of this code that made X1 a true controller and not just a pipe for

data transfer, thanks to the tireless efforts of Mindy Surrat [1].

Despite the minor changes required to interface with an experiment, designers

should become familiar with the Controller code. Specifically, a working knowledge of
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all the VHDL modules, as well as the processes within the X2 Interface module, will give
future CFTP designers a better understanding of the modifications required, and more
importantly, will reduce the probability of making a change that creates an output of

erroneous data.

Future designers for the CFTP team should also understand the limitations of the
CFTP architecture, and how those limitations can potentially affect the design of an
experiment. By knowing how the Controller interfaces with X2, designers have a greater
chance of creating an experiment that produces results and provides insight to the
viability of creating fault tolerant circuits for the space environment.
B. CONCLUSIONS

The results discussed throughout this thesis were accomplished via detailed
engineering analysis. The maximum safe data rate for the CFTP architecture was
determined to be a result of the interactions between the ARM processor, the PC/104 bus,
and X1 the Controller FPGA. Procedures to synchronize and clock-divide both FPGAS
were investigated by implementing identical circuits on X1 and X2 and comparing their
outputs. Finally, detailed mathematical and empirical analysis was employed to show
that clock skew between the two FPGASs is manageable.

In addition to determining maximum safe data rate, the procedures for running
experiments at 51 MHz and sampling output data were explored and documented. This
provides future designers the necessary details to implement a myriad of designs such
that they will properly interface with the components of the CFTP architecture.

C. RECOMMENDATIONS

There is still work to be done within the CFTP architecture. Fortunately, some of
the areas that still need to be explored can be done with software implementations, so
having the Flight Board on a satellite in space is not a limiting factor.

1. Use SDRAM Available to X2

As mentioned in Chapter IlI, 16 megabytes of RAM exist on the CFTP
architecture. This RAM is available to X2, though it is has not yet been utilized in a
formal experiment. Future designers should consider a use for this memory as this

provides an expanded capability for potential fault tolerant designs.
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2. Multiple Configurations on Flash Memory

The Flash Memory employed on the CFTP architecture has enough memory
space to hold the configurations of four experiments. To date, the Controller only uses
the first 900 KB of space on this memory module, loading one experiment on X2 and
collecting data. The potential exists to modify the X1 code such that it can write four
configurations to the Flash Memory, and then load an experiment onto X2, collect data
for a set period of time, then load the next experiment. This would require modifications
to the Flash Write Code, and as well as modifications to the primary Controller Code.
This is an important capability of the CFTP architecture that should be explored as soon
as possible.

3. Passing Data from the ARM

Currently, no process exists on the CFTP architecture that is capable of sending a
data stream from the ARM processor to a circuit on X2 for processing. As a result, the
only two methods the CFTP project has to provide input data to a circuit on X2 is to; one,
create a circuit on X2 to generate the required data, as was done for this thesis (the TMR
Multiplier), or two, implement a process on X1 to send the data to X2. This capability
should be explored and implemented on the CFTP architecture. Circuits are generally
designed to accept and process data, not to self generate data. Also, if possible, X1
should be left to perform its functions as a Controller and additional responsibilities
added to X1 should be limited as much as possible.
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APPENDIX A: CFTP EXPERIMENT MANUAL

Appendix A is a manual designed as a “hands-on tool” for conducting CFTP
experiments on the ground or in space. This manual assumes a level of knowledge by the
user which, if not the case, references sections in Appendix B so the user can gain the

necessary level of detail to understand the procedures contained herein.

This manual should also be viewed as “Standard Operating Procedures” for the
CFTP team. This document contains standard naming conventions within the CFTP
development environment for directories, file names, and signal names, which should be
followed to the maximum extent possible. Many of the procedures listed were developed

from years of lessons learned and therefore should be followed in detail.

Though Appendix B contains code for specific examples to aid in the sections
throughout this manual, each Experimenter will also be given copies of previously

operational code, as well as access to the CFTP server.

At the end of this manual is a checklist containing helpful reminders that can be
used as an aid for running experiments on the ground, as well as a flow diagram.
However, thorough familiarity of this manual is required in order to successfully run an

experiment on either the development board or flight board.
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A. NAMING CONVENTIONS

Each experiment, and each modified version of the Controller Code, should reside
in a set of directories with specific names. The top level directory for an experiment
within the user’s directory path should be the name of the respective project, for example,
tmr_multiplier. This directory should contain two sub-directories, dev_board and
flight_board. Both dev_board and flight board should contain the files
Makefile_control, Makefile_experiment, and sub-directories named control_src,
control_out, experiment_src, and experiment_out. These names should not ever
change. Only the specific file names within the experiment directories will change

depending upon the name of the experiment.

A hierarchical representation of the directory structure is shown below:

...Iproj_name/

dev_board/
Makefile_control
Makefile_experiment
control_src/
control_out/
experiment_src/
experiment_out/

flight_board/
Makefile_control
Makefile_experiment
control_src/
control_out/
experiment_src/
experiment_out/

Top-level directory ----------------- Project name

g N

2" _level directories ---------- dev_board flight_board

files within 2" —level directories  Makefile_control Makefile_experiment

N\ /

3" _level directories control_src control_out

3" -level directories - experiment_src experiment_out
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Linux directory tree examples — command-line prompt
$username/proj_name/dev_board/control_src
$username/proj_name/flight_board/experiment_src

B. DEVELOPMENT BOARD & FLIGHT BOARD

Two different boards exist for the implementation and testing of experiments.
One is named the “Development Board” and the other is the “Flight Board.” The Flight
Board is named as such because the FPGAs are identical to the ones in space, and
therefore the pin layouts are identical. The Development Board has two FPGAs that are
not designed for the space environment, and their differences, though minor, result in

slightly different pin layouts between the two chips.

Appendix B addresses these differences in the constraint files. Throughout this
manual, the Development Board is referred to as “dev_board” and the Flight Board as
“flight_board” in accordance with the CFTP naming conventions.

C. THE EXPERIMENT
1. Simulation and Compilation
This phase of any experiment must be complete before beginning work within the

CFTP development environment and modifying any X1 code. The standard program, for
which the CFTP has a software license, is Xilinx’s Project Navigator and ModelSim XE.

A working knowledge of Project Navigator and ModelSim, or another similar
program, is up to the individual. If using Project Navigator, it is important that the
following project properties within Project Navigator are set to the Xilinx part xcqv600-
4cb228, whether designing for the Development or Flight Board.

a. Naming Conventions

Specific experiments are where the greatest flexibility in file and signal
naming exists. It is, however, important that file names for experiments represent what
the experiment does, for example, tmr_multiplier. For the purpose of this manual, the

word “experiment” will be used throughout.
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b. Constraint File

The constraint file, denoted with an “ucf” file extension, (experiment.ucf),
is a critical portion of the experiment. If this file does not properly match the “ucf” file
for the X1 controller code (control.ucf) then the experiment WILL NOT WORK.

Once the constraint file is properly written and added as a source in the
respective project in Project Navigator and simulated with proper operation noted, the
next step is to “implement” the design. This function in Project Navigator performs the
necessary compiling, and then performs the required translate, map, place, and route
portion for the code (schematics and/or VHDL) to run on an FPGA.

2. Compiling within Linux (“make” files)
Note: Skip this part and go to part 3, “The NCD file,” if using Xilinx’s Project
Navigator or other equivalent software. Refer to flow diagram at the end of the checklist.

The “make” files within the CFTP programming environment (e.g.,
Makefile_experiment) are designed to perform all the same functions that Project
Navigator performs. This process of compiling, translating, mapping and routing should
only be utilized on fully tested experiments which only require small modifications. It is
highly recommended that Project Navigator, or an equivalent program, be used for the

initial development of an experiment.

The advantage of compiling an experiment within the CFTP Linux environment is
the consolidation of various procedures. The file “Makefile_experiment” performs
“bitgenpersist.sh” and “mkflash.sh” immediately following the compiling and place and
route operations. This allows the Experimenter to go directly to part 4, “Copy the fwr
file,” of this section. This method should only be used if enough experience has been
gained such that a level of comfort exists within the CFTP development environment, as
well as standard Linux operations.

a. Modify the Makefile_experiment and experiment_prj files
The “experiment_prj” file lists the VHDL files and modules to be
compiled. Simply modify a previously used “experiment_prj” file, ensuring that all

required VHDL files for the respective experiment are listed in this file.
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There is normally only one modification required within
“Makefile_experiment.” At the top, next to “ENTITYNAME =,” needs to be the entity
name of the top level code for the experiment. All VHDL code begins with “entity ......
is,” followed by the top level signals with the port declarations. The name following
“entity” is what must be entered next to “ENTITYNAME” within the file
“Makefile_experiment.”

b. Compile

Compiling is performed one directory up from *“experiment_src.” All
outputs generated from the compiling will go to the “experiment_out” directory. While
in the dev_board or flight_board directory, the following command will be entered
exactly as follows, with an example directory hierarchy followed by the “$” denoting a

command prompt:
.Iproject_name/dev_board$ make -f Makefile_experiment

If using this process (compiling within Linux), then once compiling is
complete with no errors, skip to part 4, paragraph c, of this section, titled “Copy ‘fwr’ file
for ground run.”

3. The NCD file (experiment.ncd)

At the completion of the development and compilation phase (Part 1, Section A),
an “ncd” file is created (experiment.ncd). The file now needs to be copied into the
experiment_out directory of the CFTP programming environment.

4, Creating the Flash File

This is the last step in the experiment development phase. Perform the following
steps in sequence.

a. Run bitgenpersist.sh

This command is entered exactly as follows with an example directory

hierarchy followed by the “$” denoting a command prompt:
.Iproject_name/dev_board$ bitgenpersist.sh experiment

As in all Linux commands, there must be at least one space between
commands and parameters. Though you are performing this on a file with an “.ncd”

extension, the extension is omitted when performing this operation. For example, if the
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experiment name is “tmr_multiplier,” and the file tmr_multiplier.ncd is the name of the

file copied to the experiment_out directory, then the command would be as follows:
Itmr_multiplier/flight_board/experiment_out$ bitgenpersist.sh tmr_multiply

This command creates a number of files in the experiment_out directory,
the same directory where the command was executed, but only two are needed. The two
important files for the next part are the “.bin” and “.msk” files.

Note: “dev_board” and “flight_board” have been used, and will continue
to be used, in examples to illustrate that the commands are the same for both directories.

b. Run mkflash.sh

This command creates the file that will be written to the flash, and is

performed exactly as follows, with the “$” denoting a command prompt:
.Jexperiment_out$ mkflash.sh experiment.bin experiment.msk > experiment.fwr

In this case the name of the output file must be entered with the “.fwr”
extension. For example, if the experiment name is “tmr_multiplier,” then the command

would be as follows:

.[flight_board$ mkflash.sh tmr_multiplier.bin tmr_multiplier.msk > tmr_multiplier.fwr
C. Copy “fwr” file for ground run
If running your experiment on the ground, then the “.fwr” file needs to be
copied to the /arm_mnt/flash_files/ directory on the CFTP server. It is important that
the project name is unique as many “.fwr” files reside in this directory. If an experiment
is to be compiled with different configuration files for the Development Board and the
Flight Board, then consideration might be given to further appending the name during
this copy process as such; “experiment_dev.fwr,” or “experiment_flight.fwr.”
D. THE CONTROLLER
1. Compilation
The code for the controller (X1) does not need to be simulated, though doing so is
not prohibited. This code has been developed and tested over time and is largely proven.
Though the X1 code, specifically x2Int.vhd and control.ucf, are largely generic files,

they must be modified to conform to the Experimental Design. At a minimum, the two
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above files along with top_level.vhd will need to be modified to suit the needs of the
Experiment. See Appendix B for specific details on the modifications of these programs.

Files within the control_src directory are listed below. The names of these files
will never change:

bitfile_V1.cmd
clockGen.vhd
control.ucf

control.xcf

control_prj
impact.cmd
pcl04intArm.vhd
SelectMap_config.vhd
SelectMap_readback.vhd
top_level.vhd
x2Int.vhd

xstcmd. xst

a. Modify the Makefile_control file

For the example shown in Appendix B, change “ID” to two initials that
best reflect your experiment, and change “DESCR” to the exact name of your
experiment. No other changes should be required.

b. Compile

Compilation is performed one directory up from control_src. All outputs
generated from the compile process will go to the control_out directory. While in the
dev_board or flight_board directory, the following command should be entered exactly
as follows, with an example directory hierarchy followed by the “$” denoting a command

prompt:
.Iproject_name/dev_board$ make -f Makefile_control

This process will create a “.bin” file in the control_out directory, named
control.bin. This is the file that is used to program X1.

C. Copy the “.bin” file
The file control.bin needs to be renamed to have the username appended

on the end. An example of this Linux command is as follows:

.[flight_board$ cp control.bin control_jerry_flight.bin
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The renaming of this file is important as many different “.bin” files reside
in the /arm_mnt/arm_bin directory. As noted when copying the experiment.fwr file,
consideration should be given to modifying this filename according to its use for either
the Flight or Development Board. The file should be copied to the /arm_mnt/arm_bin

directory. An example “copy” command is as follows:

.Iflight_board$ cp control_jerry _dev.bin /arm_mnt/arm_bin
E. GROUND RUN

1. Naming conventions

Once proj_name.fwr and control_name_flight.bin, or
(control_name_dev.bin), have been copied to the appropriate directory, there are a few
more important naming conventions to discuss. The program rd_arm_poll will be used
to read data output via the PC104 bus from the ARM processor. This output should be

redirected to a file, and is done as follows:
Jarm_bin/rd_arm_poll > filename

Because many files reside in the /arm_mnt directory, it is essential that this file

be named as follows: experiment_name_dev or experiment_name_flight

Example: multiplier_jerry_flight

2. ARM Commands via Telnet

At this point it is time to actually write the experiment to the flash and program
X1 and X2. Before doing so, it is important to ensure that no one is using the ARM and

programming X1 and/or X2.

Note: While connected to the CFTP server, before beginning a “telnet” session to
the ARM, the “who” command MUST be entered. Only one experiment can be
programmed at a time. At a command-line prompt, a “w” can be entered and all users
and their specific processes running will be listed. If any users are listed as connected to

the ARM via “telnet,” then exit and try again later.

Open three secure shell (ssh) windows. (The most commonly used ssh client
within CFTP is “PuTTY.”) Two of these windows will be dedicated to “telnet,” and the

other window is user preference, but normally the /arm_mnt directory is open in the
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third window. The following commands must be entered exactly as below, from any
directory within the CFTP server:

$ telnet arm

(none) login: default

# su

# cd /mnt/

The next figure is a screen shot depicting the typing of these commands to open a
“telnet” window.

e - - ‘- -
gucaldwelcftp: ™ projects/multiplier/flight_board$ telnet arm
Truing 192,168,4.2, ..

Connected to arm,

Escape character is '™]',

(hone) login: default

BusyBox 1,01 (2006, 04, 20-17:11+0000) Built-in shell {ash)
Enter 'help’ for a liszt of built-in commandsz,

-zh: id; not found

-zh: id: not found
# =zu

BuzyBox w101 (2006,04,20-17:11+0000)1 Built-in shell (ash)
Enter 'help' for a list of built-in commands.

# cd Smnt/
+ 1

a. Running “write_flash.bin”
X1 must first be programmed to write an experiment to the flash. This is

done with the following command, via the “telnet” window:
# .Jarm_bin/jtag arm_bin/write_flash.bin

At the same time this command is run, in the other “telnet” window the

rd_arm_poll should be run as follows:
# .Jarm_bin/rd_arm_poll

When the jtag program is done programming X1 with write_flash.bin, a

message will appear below the “rd_arm_poll” in “telnet” window 2.
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telnet window 1 telnet window 2

gwcaldwe@cftp: /homelgwcaldwe

\ gwcaldwe@cftp: fhomelgwcaldwe

# Jarn_bin/jtag arm_binfwrite_flash,.bin # ,/arm_bindrd_arm_pall
WOTICE: ACTIVE mode! FLASH ERASE AND WRITE
LAST UPDATED:
Setting up JTAG ... ¢ WED JUL 5 16:47:20 PIT 2006
writing the bitstream,., PART SUCCESSFULLY PROGRAMMED
word FEFFFFFF FRFFFFFF $11111419121949419191449411111111 t
word 6E5599aa 22995566 $10101010100110010101010101100110
word 1800030 20002001 0011000000000 0A0LA0GOANONN0N0T
word OFGOG000 QOAOD0GT  $A00000000A0ANCANANNANA0NNN000111
word 0100130 20016001 $0011000000000001011000000M00N00L
word 1000000 QO00001d 3 G00000000A0AGCANANNANANNNN011101
word 01200130 20012001 0011000000000 001001000000M00N00T
word 2d3Fa000 00a03F2d $00000000101000000011111100101101, .. ...
131072, ihinas
262144, .. ....
293216
JSTART startup part,..
#1

Looking closely at the top of the two pictures, particular attention should be paid
to exactly how the commands are entered. Notice the “./” before “arm_bin/jtag” and
“arm_bin/rd_arm_poll.” In Linux this invokes the execution of the named program
residing in the current directory.

b. Running wr_arm_poll
Now that X1 is ready to write to the flash, it is time to do so. This
command will program the flash with a file which was copied to the

/farm_mnt/flash_files directory. In “telnet” window one, it is performed as follows:
# .Jarm_bin/wr_arm_poll flash_files/experiment.fwr -i 10000

While this is running, rd_arm_poll should be run in “telnet” window 2 as
done above during the write_flash.bin operation.

C. Optional — running dump_flash.bin

This operation is performed to ensure that the flash was properly
programmed. It is not required and should ONLY be used if problems exist with an

experiment and verification of proper flash programming is desired.
In “telnet” window one, run the following command:
# .Jarm_bin/jtag arm_bin/dump_flash.bin

In “telnet” window two, run the rd_arm_poll command with the

output redirected to a uniquely named file. For example:

# .Jarm_bin/rd_arm_poll > experiment_dump_flash
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The rd_arm_poll process needs to continue to run once the dump flash
portion is complete. However, in “telnet” window one, where dump_flash.bin just
finished running, the file size of experiment_dump_flash needs to be monitored with
the Linux command “Is I filename.” This should be done until the file size exceeds 900
KB, which occurs fairly quickly. See paragraph (d) of this section for an example of the
“Is —I” command in Linux. Preventing the file size from growing much beyond 900 KB
is not critically important. This is simply a good habit to maintain for reasons that will

become apparent as experience is gained in this process.

Now compare the file experiment_dump_flash to experiment.fwr that
was written to the flash. Before that can be done, the experiment_dump_flash file has
to be slightly modified. This requires the use of a binary file editor. A good example of
such an editor is the program hexer. It is a hex-editor program, which was used to

produce the figure below. It is entered by typing the command
hexer filename

Open the experiment_dump_flash file and delete the first few lines all the
way up to, but not including, the first “ff,” as shown in the below figure with the red
arrow. Use the “x” key to perform the delete operation. Saving the file is similar to
saving a file in the Linux editor “vi.” Enter a colon, which will give you a line at the
bottom to enter another command. Enter a “w” followed by a space and a new filename.
The file created by dump_flash.bin is read-only, therefore a new filename has to be

created when saving the dump-flash file.
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Delete all the way to here.

gwcaldwe@cftp: farm_mnt

LFLASH DUMP. L
T UFDATED: ..T

sravarsarallify
trEEEEEEE SR
T b rreireee
o
P L
P T TP TR,
trtrereretr et
*+ O'OO'O'O'OOI'-'IO
091'1'0091'1'0"-"9

[d

)
PN
PO P
F
F
F
F
F
trrearereetteaat
trrearereetteaat
trrearereetteaat
trrearereetteaat
trrearereetteaat
trrearereetteaat
trasateesatteeat
trasateesatteeat
trsrabeesatteeat
09"-"'1'0091'1'009
trasateesatteeat

A bR R

If performing this editing in “vi,” delete all the way up to and including,

the “FD~M” symbols. Again, the file will have to be saved under a different name.

gwaldwe@cftp: farm_mnt

e
LASH DUHP~H

ST UPDATED: “H

JUM 29 16:37:19 POT 20057M

SUCCESSFULLY PROGRAMMED™M i

EEGEGEGGEG GGG~ RV RY - AG " RY “RY " RYGYOYAY O A0 RY R RE S TE00Ag O
T N T R e i R e e o I
PO R R B R R R BA B~ [ R PR H TR A R YRR
R R RG R R R B R R U R R RE SRR BR L RV EOR R, S I RE R
PO R R R R R R TR R R, R R R TR IR TR N RE B LRI R R R
SRECECHOE R R RE R BE R R R TR RV E R RO R R R RR, B CECK R TR R R
B0 Ry RY B R R RO RO B E ] PR EVCDRE “OVH R H IR B R R R TR
PO R RO B RERERE R CRE,
~EEEDEERP CRUH DR RS R TR R P R

STHE B RER RO - BUR R PA TR T BB AP R R - B R P R e B AR R OH
00~ BB RGBT B R R T SRR RE R BE R | L R LR R
I PR P e T e T e B e e PR g P e i
O R R R BB R ROH SRR, AL B R C B R R RA D RAG T RE L H B TR R
~PO R R R B R R R R R E S R RV HE R PR R H DD R B R R R R
B0 BB R RGBT BB HY R I T R R R (R CPER

AIPE B ATR i @ B H R 3 PP H IR BV E AR B @R 0 R, PR kI P2 B Ad i

L!
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Now compare the two files. This is done with the executable
checkflash.sh and is run as in the following example:

/arm_mnt$ checkflash.sh multiply_dump flash_files/tmr_multiply_dev.fwr

In the previous example, /arm_mnt is the current directory and the two
filenames follow “checkflash.sh” with spaces in between. Running this will produce a
long output. Continue pressing the space bar until the bottom of the output is reached.
At address line 000dc360, there should be a string of 00’s and ff’s, as in the next figure

with the red circle.

gwcaldwe@cftp: farm_mnt

00l0ed30 02 Ol Oc 10 01 00 B3 44 00 00 2c 11 cO 00 Ob 04
O0l0ed40 30 40 02 0l o4 10 00 00 bl 44 00 OO 24 11 B0 00
0010ed30  9b 04 00 40 02 01 cc 10 10 00 aa 44 10 00 24 11
O010ed60 o 00 Ob 04 30 40 02 01 cc 10 00 00 a3 44 00 00
O01l0ed70 2e 11 cO 00 28 04 36 40 22 01 ac 10 00 00 a3 44
0010ed30 00 00 20 11 cl 00 0z 04 10 40 02 01 84 10 00 00
0010ed30 bl 44 00 00 24 11 cO 00 Ob 04 30 40 02 01 cc 10
O0l0edal 00 00 b3 44 00 00 2c 11 <0 00 Ob 04 08 40 02 01
0010edb0 oo 10 00 00 21 44 80 00 24 11 20 00 Ob 04 20 40
O0l0edc 02 01 co 10 00 00 B3 44 00 00 2c 11 cO 00 Ob 04
0010eddd 30 40 02 01 cc 10 00 00 B3 44 00 00 2o 11 cO 00
0010eded  Ob 04 20 40 02 01 B 20 04 0z 30 8F 00 £F 00 f£F
O0L0edf0 00 £F Q0 £F 00 £F 00 £F 00 Ff 3 00 15 2a af 00
O010ee00 00 00 c3 00 2 00 32 00 30 00 Sc 00 b0 00 03 00
O010ecl0  fo OO 02 00 chb 00 00 00 Ze 00 cO Q0 OF OO 80 00
0010ec20 03 00 24 00 00 00 bb 00 00 00 3e 00 cO 00 OFf 00
0010ee30 b OO0 03 00 ec 00 00 OO0 fb 00 00 OO0 32 00 91 00
O0l0eed(  OF 00 3c 00 03 00 ec 00 00 00 £3 00 40 00 22 00
001050 cO 00 OF 00 B0 00 03 00 ec 00 00 00 bb 00 00 00
O01l0eeB0  3F 00 cO 00 Oc 00 33 00 32 00 ed OO0 30 00 ca 00
O01l0ee?( 00 00 32 00 00 00 Oc 00 BO 00 10 00 ec OO0 OO 00
001080 £a 00 00 00 02 00 cO 00 Ob 00 b0 00 02 00 ec 00
O010ee30 00 00 Fb 00 00 00 3e 00 cO 00 Ob OO0 3c 00 03 00
O0l0eeal  es 00 20 00 d3 00 cB 00 36 00 cO OO0 OF OO0 bO 00
0010echd  0Z 00 ec 00 00 00 fb OO0 00 00 Ze 00 <0 00 OF 00
O0l0eec(d b OO0 03 00 ec 00 00 00 fb 00 00 00 3e OO0 cO 00
O0l0eedd  OF OO0 bO 00 03 00 ea 00 04 Oa BO 8F 00 £F 00 fF
0010eec0 OO FF 00 FF OO0 £F 00 FF 00 £F 30 00 00 2e &9 00
O010esf) 6O 00 fa 00 04 00 3z 00 20 00 OF Q0 b0 00 03 00
Q010ef00  ec OO0 00 OO Fb OO 00 00 3e 00 cO 00 OF OO a4 00
Q0l0efl0 23 00 e0 00 00 00 fb 00 00 00 Ze 00 cO OO OFf 00
O010ef20 b0 00 0F 00 20 00 10 00 £2 00 42 00 3e 00 04 00
Q0l0ef30  OF 00 bl 00 3 00 ec 00 00 00 fb OO0 48 00 36 00
O0l0ef40 o 00 OF 00 b0 00 03 00 ec 00 00 OO0 eb OO OO 00
0010ef50  3e 00 cO 00 O 00 Oc OO0 03 00 e0 00 30 00 fb 00
Q010efE0 00 00 3 00 00 00 OF 00 80 00 13 00 23 00 00 00
Q010ef70  fb 00 01 00 16 00 cO 00 OFf 00 bO 00 03 00 ec 00
O010ef30 00 00 fb 00 00 00 2o 00 cO 00 OF Q0 b0 00 0F 00
Q010ef30 00 o 00 OF 00 b0 00
El

B N N N N N N N N N

ec
[CEe]

a0 £F 00 £F 00 £F

la8.5.5. 5841

guwcaldwelcf tpl arm_

The checkflash.sh results, produced in the previous figure, serve as
confirmation that the flash was properly programmed. If this precise line is not produced
at the aforementioned line number, then that is evidence that the configuration was not
properly written to the flash. Perform the wr_arm_poll operations in Section F,

paragraph b, again, and then repeat this section on checking the flash configuration.
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d. Running control_name.bin and collecting output
Now it is time to program X1 once again, and finally collect your much
anticipated output from your experiment. Listed below are both commands that need to

be executed, one in each “telnet” window:
# .Jarm_bin/jtag arm_bin/control_name_flight.bin
# .Jarm_bin/rd_arm_poll > project_name_flight

After the jtag command completes its process, the experiment is running!
If your programs operate properly, then data is collecting in the file
project_name_flight. The rate at which the file increases in size needs to be monitored.
This is done with the Linux command, “Is —I filename,” which will give you the size of

the file, along with other information.

Warning: Monitoring the file size is important during the first 30
seconds. If you have SelectMap readback enabled in your X1 code, then it is possible for

this file to increase in size rapidly due to a SelectMap readback error.

gwcaldwe@cftp: farm_mnt

qucaldeelcftp:darm_mntd 1z -1 jerry_mult_dew
-ru—r——r-— 1 nobody nogroup 1041 2006-07-24 20:29 jerry_mult_dev

qucaldwelcftp:sarn_mnts JJ \

The above screen shot is an example of what you will see after running the

Size of file in bytes

command “Is —I” on a specific file from the /arm_mnt directory. If the file size begins to
rapidly increase 30 seconds after the jtag command completed its process, then the
rd_arm_poll program needs to be immediately terminated by pressing Ctrl-C while in

that window.

If after 30 seconds the file appears to be collecting data at an acceptable
rate, then the output file can be viewed as it progresses with the command hexdump.
This command should be executed from the window with the /arm_mnt directory open.

It is entered as follows:
/farm_mnt$ hexdump -C project_name_flight | more
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The “-C” option provides standard formatting to display 16 bytes per line,
and the “more” command following the pipe character (“|”) causes the output to be
displayed a page at a time that fits the size of the screen. Press the space bar to scroll

down to the next page of data.

Note: This hexdump command can be executed while rd_arm_poll is
still running and outputting data to the same file that is being viewed via hexdump.

Data from a counter Timestamp

gwcaldwe@cftp: fhomefgwealdwelfresultsfX1

00000240 45 52 00 00\DO 00 1d 00 00 00 00 00 Zh ef ed 00 /IER, .. ..hhhe 211
OOOOO250 45 52 00 00 40 00 1e 00 00 00 00 00 3o 16 fe 00/ [ER. . .uviiaetabnl
OOOOOZ2E0 45 G2 00 00 Of 00 1f 00 00 00 00 00 Z2c Ze OF 000 [ER.......aec2il]
OOOOOZF 45 52 00 00 O0\OO 20 00 00 00 00 00 3c B% 20 00 [ER.... .....%8 L]
00000230 45 L2 00 00 00 VO 21 00 00 00 00 00 2c Bc 31 90 [ER....0.... 00000
00000290 48 B2 00 00 00 0 22 00 00 00 00 00 3c b3 42 DO IER....".... TR

OOOO0Za0 45 B2 00 00 00 ONZZ 00 00 00 00 00 3o da B3/00 IER....%.....<05. 1
OOOOO2E0 45 G2 00 00 00 Q0724 00 00 00 00 00 24 01 64 00 [ER....%.....=.d0]
0OOO0Z2c0 45 52 00 00 00 00 25 00 Q0 00 00 00 34 23 00 (ER. . B =tu
OO0O02d0 45 52 00 00 00 00 26 Q0 00 00 00 00 3d 4F 86 00 |ER. .8 m000]

OOOO02e0 45 G2 00 00 00 00 27 00 Q0 00 00 00 24 7 97 00 |ER,... +++++—u++l
OOOOOZFD 45 52 00 00 00 00 28 00 00 00 00 00 34 3d a3 00 |ER,,.. o
Q0000300 45 G2 00 G0 00 00 23 00 00 00 00 00 3d od B9 00 IER.... 0. ... =B
OOOOOZL0 45 G2 00 00 00 00 2z 00 Q0 00 00 00 2d eb ca 00 |ER,,,. +HH:éEJ
OOOO0Z20 45 52 00 00 00 00 Zb 00 00 00 00 00 3Ze 12 db 00 IER....*. ...l
OOOOOZZ0 45 G2 00 00 00 00 2c 00 00 00 00 00 22 29 ec 00 [ER..........2091.]
00000340 45 B2 00 00 00 00 2d 00 00 00 00 00 3e B0 fd 00 IER....-..eeor 0
OO0OO350 45 52 00 00 00 00 2e Q0 00 00 00 00 3e 33 02 00 |ER. . .aiiiaeitaand
OOOOOZED 45 42 00 00 00 00 2F 00 00 00 00 00 Ze af 1f 00 [ER..../ .. ..2 .
OODOOZF0 45 B2 00 00 00 00 30 00 00 00 00 00 3e dE 30 00 |ER....0,.... 200,
00000230 45 L2 00 00 00 00 31 00 00 00 00 00 Z2e £d 41 00 [ER,...L1.....290, ]
0OOOOZI0 45 G2 00 00 00 00 22 00 00 00 00 00 EF 24 52 00 [ER....Z2..... 73R, ]
OOOOOZa0 45 52 00 00 00 00 33 00 00 00 00 00 3 4b 63 00 [ER....3.....7Kc, ]
OOOOOZE0 45 G2 00 00 00 00 24 00 00 00 00 00 EF 72 74 00 [ER....4....0 00
0000030 45 52 00 00 00 00 35 00 00 00 00 00 3 33 85 00 [ER....B5.....%00]

E

7

g

9

LR

1

e

+

QOOO0ZA0 45 52 00 00 00 00 35 00 00 00 00 00 3F o0 95 00 1ER....B..... PR
000003e0 45 G2 00 00 00 00 37 00 00 00 00 00 3f eF &7 00 IER....7.....7cE.
OOOOOZFD 45 52 00 00 00 00 33 00 00 00 00 00 40 0= bS 00 [ER,...8.....B, .|
OOO00400 45 G2 00 G0 00 00 33 00 00 00 00 00 40 35 <9 00 IER....9,....B5E, |

F. SATELLITE RUN

Once an experiment has been implemented on X2 with correctly operating code
on X1, (on the Development Board), and data has been collected and verified, it is time to
send the code for evaluation in space. Designers will work with the CFTP Research
Associate to send the experiment.fwr and control.bin files to the satellite and implement

their design on the Flight Board.
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The procedures used to implement experiments on the Flight Board, while in orbit
on the satellite, can also be used to implement an experiment on the Development Board.
However, designers should first learn and use the “telnet” procedures contained within
this Appendix to gain an appreciation of how the integration process occurs, and to aid in

troubleshooting should errors in the implementation process surface.

Once an experiment has been successfully implemented via the “telnet”
procedures and the designer has gained comfort with that process, then the procedures for
implementing an experiment on the Flight Board should be practiced on the Development
Board.

1. Implementing Experiments on the Satellite

To first practice implementing a design on the Development Board using the same
procedures for the Flight Board in flight, the Development Board needs to be placed in
the “flight mode.” Contact the CFTP Research Associate to have the Development Board

placed in flight mode.

Once the Development Board is in flight mode, programming the two chips is
done via one command. This command is a program that takes all the telnet commands
and streamlines them into one process. Before performing this command, the two files
that program the two chips, the fwr file for X2 and bin file for X1, need to be moved to
the same directory. The command, “load_flight _exper” is entered from the same
directory where the two files are now located. The command is followed by the two files,

experiment.fwr and control.bin, with a space in between, as seen in the example below:
$ load_flight_exper experiment.fwr control.bin

After a few minutes both FPGAs will be programmed and outputting data. The
difference from the telnet procedures is that there will not be a uniquely named file
collecting the output data. Data is now output into a generic file with a number appended
on the end. The specific name of this output file will be provided by the CFTP Research

Associate.

This program is how the Flight Board is programmed on the satellite. Once these
procedures have been practiced on the Development Board, developers will work with

the CFTP Research Associate to coordinate upload to the satellite.
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G. CHECKLIST FOR RUNNING EXPERIMENTS
1. Run “bitgenpersist.sh” on the “ncd” file generated from Xilinx

./dev_board/experiment_out$ bitgenpersist.sh experiment

2. Run “mkflash.sh” on the “bin” and “msk” files created from “bitgenpersist.sh.”
.Jexperiment_out$ mkflash.sh experiment.bin experiment.msk > experiment.fwr

3. Copy the “experiment.fwr” file to the “/arm_mnt/flash_files” directory

4, Run “make —f Makefile_control” from one directory above “control_src.”

5. Rename *“control.bin” to “control_name_dev.bin” or “_flight,” located in the
“control_out” directory, and then copy said file to the “/arm_mnt/arm_bin” directory.

6. Perform the “who” command, or “w” to ensure the “arm” is not in use.

7. Open two additional “ssh” windows for a total of three.

8. Telnet to the “arm” in two of the windows.

9. Execute the *“write_flash.bin” program in window 1, and the “rd_arm_poll”

program in window 2.
Telnet Window 1: # ./arm_bin/jtag arm_bin/write_flash.bin
Telnet Window 2: # ./arm_bin/rd_arm_poll

10. Execute the “wr_arm_poll” program in window 1, and the “rd_arm_poll”

program in window 2.
Telnet Window 1: # ./arm_bin/wr_arm_poll flash_files/experiment.fwr -i 10000
Telnet Window 2: # ./arm_bin/rd_arm_poll

11. OPTIONAL - run “dump_flash.bin” to check that the flash was properly
programmed. This is more of a troubleshooting step than procedural.

12. Execute the “control_name_flight.bin” program in window 1, and the

“rd_arm_poll > name_project” in window 2.
Telnet Window 1: # ./arm_bin/jtag arm_bin/control_name_flight.bin

Telnet Window 2: # ./arm_bin/rd_arm_poll > project_name_flight
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13. Monitor file size and output of file in the “/arm_mnt” window as “rd_arm_poll”

runs in telnet window 2.

14. Return to the “/arm_mnt” and run “hexdump” to view the output results.

Flow Diagram

Create Experiment
/ T, | cFUnm

CAD Software Environment

Compile, Place & Route,
Translate & Map

Bitgenpersist & Mkflash /
Copy “.fwr” file
Modify Controller Code

Compile Controller Code ——» /Errors

— i
Errors Compile —*/Enors

A4

Copy “.hin" file

Telnet to arm, write to Flash
Program X1 & X2
Gather Data
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APPENDIX B: CONTROLLER CODE

This appendix contains important segments of code from the Controller.
Specifically, the portions of the code that designers are required to modify or verify are
included, and are highlighted in red. The entire code listing of x2Int.vhd is included, but
only three specific portions of top_level.vhd because of its extensive length. All of the
code from the control.ucf file for the development board is included, followed by the
specific section for the flight board that differs.

TOP LEVEL

Only three areas within top_level.vhd need to be modified, and those coincide
with signal naming. These signal names are located at the beginning of top_level.vhd in
the port declaration section, and again in the component port declaration section for the
x2Int module. The third area is specific signal assignment of the x2Int module located
very near the bottom of top level.vhd. All three areas are listed below — note the

repeated naming of each signal for simplicity.

Also included is the approximate line number within the code where these areas
are located. The comments are highlighted in blue to emphasize the location of these

sections as the same blue comments appear in the code.

Located near the top of the code, near line #52

entity cftp_ ARM is
port (

-- To/From X2 for Experimental Design, signals going to pins on X2
-- change/add/remove as needed, also change control.ucf file to match
DATA TO X2 RESET o :outstd_logic;
DATA _FROM_ X2 COUNT_i :instd_logic_vector (31 downto 0);
DATA_FROM_X2 _CNTCHK i :instd_logic_vector (2 downto 0);

Located just below the above section, near line #122

component x2Int port (

CLOCK i :instd_logic; --50 MHz system clock
RESET _i :instd_logic;
TIMESTAMP_i instd_logic_vector(63 downto 0);
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-- for EXPERIMENTAL DESIGN signals going to pins on X2

-- change/add/remove as needed also change control.ucf file to match
DATA _TO_X2 RESET o :outstd_logic;
DATA_FROM_X2 COUNT_i :instd_logic_vector (31 downto 0);
DATA_FROM_X2 _CNTCHK i :instd_logic_vector (2 downto 0);

Located very near the bottom of the code, near line #598

x2Int0 : x2Int port map (

CLOCK i =>T clock i, --;instd_logic;
RESET _i => ver_done_reset, --: in std_logic;
TIMESTAMP_i => timestamp,

-- for EXPERIMENTAL DESIGN - signals going to pins on X2

-- change/add/remove as needed - change control.ucf file to match
DATA TO X2 RESET o =>DATA TO X2 RESET o,
DATA FROM_X2 COUNT i => DATA_FROM_ X2 COUNT i,
DATA _FROM_X2 CNTCHK_i=>DATA_FROM_X2 CNTCHK i,

X2 INTERFACE

The entire listing of x2Int.vhd is included below for the specific X1/X2 interface
module used for the TMR multiplier. The portions highlighted in red are areas that
require modification by designers for the CFTP team, and have been discussed
throughout this thesis. The comments only for the areas that designers are required to
modify are highlighted in blue to emphasize the location of these sections, and because

the same blue comments appear in the code.

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity x2Int is

port (
CLOCK i instd_logic; -- 25.5 MHz signal
-- CLOCK _X2_i :instd_logic; -- Additional clock if necessary
-- add appropriate clock to clockGen
RESET _i :instd_logic; -- Reset signal
TIMESTAMP_i s instd_logic_vector(63 downto 0);

-- FOR EXPERIMENTAL DESIGN, signals coming directly from X2
DATA _TO_X2 RESET o :outstd logic;
DATA FROM_X2 OUTPUT i :instd_logic_vector(31 downto 0);
DATA FROM_X2 MULTCHK i :instd_logic_vector(2 downto 0);
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DATA FROM_X2 CNTCHK i :instd_logic_ vector(2 downto 0);

-- STANDARD TOP LEVEL SIGNALS - DO NOT CHANGE!

STALL > in std_logic;

DATA o :out std_logic_vector(7 downto 0);-- Data bus out of X2 interface,
--in this case used to write to PC104

DATA i :instd_logic_vector(7 downto 0); -- Data bus into X2 interface,

--in this case used to read from PC104

PC104_ WR_EN_o :out std_logic; -- Active high, if WR_RDY ="1', then set WR_EN ="1"
-- for one clock and whatever is on DATA_o when WR_EN
-- is high will get written to PC104

PC104 WR_RDY_i :instd_logic; -- Active High, ok to write to PC104
-- if WR_RDY is high, whatever you write to PC104
-- will definitely get printed (your component has priority)

PC104 RD RDY_i :instd_logic; -- Active high, if RD_RDY ="1,
-- then there is data on the PC104 bus ready to be read.
-- Once you read the data (from DATA i), set RD_ACK high
-- for one clock to release the PC104

PC104_RD_ACK_ o :outstd_logic; -- Active high

SM_CONFIG_RQST o :outstd_logic; -- Active high, set config_rgst high for one clock if
-- you want to start a SelectMap config/reconfig

SM_CONFIG_STATUS i :instd_logic; -- Active high, stays '1' as long as a SelectMap config
-- is going on (don't request a readback or reconfig
-- while either is still active, it won't hurt anything,
-- but it won't go through)

SM_RB_RQST o :out std_logic;-- Active high, set rb_rgst high for one clock if you
-- want to start a SelectMap readback

SM_RB_STATUS i :instd_logic -- Active high, stays '1' as long as a SelectMap rb
-- is going on (don't request a readback or reconfig
-- while either is still active, it won't hurt anything,
-- but it won't go through)

).

end x2Int;
architecture rtl of x2Int is

-- DLY_TIME counter and reset signals, might need adjustment to
-- meet the needs of an experiment

CONSTANT DLY_TIME - integer := 765000000; -- 30 seconds
signal stall_d : std_logic;

signal s_reset_exp : std_logic;

signal first_reset : std_logic;

signal sm_rb_status_d : std_logic;

signal dly_cnt . integer range 0 to DLY_TIME;

signal dly_start_rb . std_logic;
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signal sm_config_status_d : std_logic;

-- error report timer signals
-- time between automatic error reports, adjust as needed
-- to meet specific needs of an experiment on X2
-- CONSTANT ERR_RPT_TIME : integer := 76500000; -- (0.33337 Hz = 3.0 sec)
CONSTANT ERR_RPT_TIME : integer := 38250000; -- (0.66667 Hz = 1.5 sec)
-- CONSTANT ERR_RPT_TIME : integer := 10200000; -- (2.5 Hz, 45 Bps)
-- CONSTANT ERR_RPT_TIME :integer := 1020000; -- (25 Hz, 450 Bps)
-- set to the number of bytes included in your output vector that needs
-- to be printed to PC104
CONSTANT REPORT_OUT _LENGTH : integer := 18;
signal dly_timer : integer range 0 to ERR_RPT_TIME;
signal count_out_vect : integer range 0 to REPORT_OUT_LENGTH;
signal report_out_vect  :std_logic;

type output_vector
is array(REPORT_OUT_LENGTH-1 downto 0)
of std_logic_vector(7 downto 0);

signal out_vect : output_vector;

--readback/reconfig process
-- For external JTAG error injection, we must pause for a time before
-- trying to readback/reconfig. The part can become active before
-- programming is complete, and errors can start accumulating. Readback
-- DOES NOT work while JTAG is active. This can be 0 when we're not using
-- JTAG error injection.

CONSTANT DLY_RECONFIG : integer := 153000000; -- 6 seconds
-- readback/reconfig process, CLOCK_X2_i signals

signal err_cnt : std_logic_vector(23 downto 0);

signal exp_start_rb - std_logic;

signal reconfig_from_error :std_logic;

signal reconfig_from_error_save :std_logic;

signal rb_started - std_logic;

signal reconfig_timer : integer range 0 to DLY_RECONFIG;
begin

-- Asynchronous assignments of top level signals
DATA_TO_X2 RESET_o0<=s_reset_exp;
SM_RB_RQST o <=exp_start_rbor dly start_rb;
SM_CONFIG_RQST_o <= reconfig_from_error;

-- Timer to determine how frequently to print out heart beat error reports
process(CLOCK _i, s_reset_exp) begin
if (s_reset_exp ='1") then
dly_timer <=0;
elsif(CLOCK _i'event and CLOCK _i ='1") then
if (dly_timer = ERR_RPT_TIME) then
dly_timer <=0;
else
dly_timer <=dly_timer + 1;
end if;
end if;
end process;
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-- Do reset for experiment
process (CLOCK _i,RESET _i) begin
if (RESET _i ='1") then
S_reset_exp <="'1}
stall_d<="0"
elsif (CLOCK _i'event and CLOCK _i ='1") then
sm_config_status_d <= SM_CONFIG_STATUS i;
stall_d <= STALL;
S_reset_exp <="'0,
-- if (first_reset="0' or (stall = '0' and stall_d = '1") or (SM_CONFIG_STATUS i = '0' and
sm_config_status_d ='1")) then
-- MLS 2005.11.27 taking out reset after stall! hopefully will have partial active
-- reconfig working so it won't be necessary
if (first_reset="0" or (SM_CONFIG_STATUS i ='0"and sm_config_status_d ="1") ) then
S_reset_exp <="'1}
end if;
end if;
end process;

--MLS 2005.09.15 wait until after X2 is done configuring to do first reset (instead of 30s)
process(CLOCK _i,RESET _i) begin
if (RESET _i ='1) then
first_reset <='0
elsif (CLOCK _i'event and CLOCK _i = '1") then
if (first_reset ='0"and SM_CONFIG_STATUS i ='0"and sm_config_status_d = '1") then
first_reset <="'1";
end if;
end if;
end process;

-- Every DLY_TIME clocks after that, do a SelectMap readback
--don't start dly_cnt until s_reset_exp goes low (after version is done and x2 config is done)
process(CLOCK _i,s_reset_exp) begin
if (s_reset_exp ='1") then
sm_rb_status_d <="'0";
dly_cnt<=0;
dly_start_rb <="'0"; --Signal to notify that the delay counter wants to perform a SMRB
elsif(CLOCK _i'event and CLOCK _i ='1") then
dly_start_rb <='0"
sm_rb_status_d <= SM_RB_STATUS i;

-- If we just finished a SMRB, start the counter over
if (SM_RB_STATUS i="0"and sm_rb_status_d ="'1") then
dly cnt<=0;

elsif (dly_cnt < DLY_TIME) then
dly_cnt<=dly_cnt + 1;

elsif (dly_cnt = DLY_TIME) then
dly _cnt<=0;
dly_start_rb <="1";--After DLY_TIME clocks, start a readback

end if;

end if;
end process;

--Process to write error reports out to the PC104
process (CLOCK i, s_reset_exp) begin
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--hold off printing error reports until experiment is reset
if (s_reset_exp ='1") then
count_out_vect <=0;
report_out_vect <="0";
PC104_ WR_EN_o <='0%
DATA_o <=x"31";
err_cnt <= x"000000";
elsif (CLOCK _i'event and CLOCK _i ='1") then
PC104 WR_EN_o <="'0"; --default assignment for WR_EN
-- divided_clock <= DATA_FROM_X2 CLKDIV _i;

-- Whenever we've gone through ERR_RPT_TIME clocks or we get an error from X2
-- (a signal coming directly from X2), and we've already finished printing out
-- the last error report (report_out_vect ='0"), set the output error report
-- vector to the correct values MLS debug change back to t_err_from_x2_i="1'
if (report_out_vect ='0'and SM_CONFIG_STATUS i="0'
and dly_timer = ERR_RPT_TIME ) then
out_vect(0) <= x"45"; --E
out_vect(l) <= x"52"; --R,
out_vect(2) <=x"00";
out_vect(3) <=err_cnt(7 downto 0);
out_vect(4) <="00000" & DATA FROM_X2 CNTCHK i(2 downto 0);
out_vect(5) <= "00000" & DATA_FROM_X2_MULTCHK_i(2 downto 0);
out_vect(6) <= DATA_FROM_X2_OUTPUT_i(31 downto 24); -- counter output
out_vect(7) <= DATA_FROM_X2_OUTPUT_i(23 downto 16); -- mult output
out_vect(8) <= DATA_FROM_X2_OUTPUT _i(15 downto 8); -- mult output
out_vect(9) <= DATA_FROM_X2_OUTPUT _i(7 downto 0); -- mult output
out_vect(10) <= TIMESTAMP_i (63 downto 56); --timestamp
out_vect(11) <= TIMESTAMP_i (55 downto 48); --timestamp
out_vect(12) <= TIMESTAMP_i (47 downto 40); --timestamp
out_vect(13) <= TIMESTAMP_i (39 downto 32); --timestamp
out_vect(14) <= TIMESTAMP_i (31 downto 24); --timestamp
out_vect(15) <= TIMESTAMP_i (23 downto 16); --timestamp
out_vect(16) <= TIMESTAMP_i (15 downto 8); --timestamp
out_vect(17) <= TIMESTAMP_i (7 downto 0); --timestamp

report_out_vect <="'1"
if ((DATA_FROM_X2_MULTCHK i /="000") or (DATA_FROM_X2_CNTCHK i /= "000")
) then
err_cnt<=err_cnt+ 1;
end if;
end if;
-- If we've set the output vector (report_out_vect ='1"), then print the output vector to the PC104
-- one byte at a time (REPORT_OUT_LENGTH bytes will be printed)
-- Be sure to set REPORT_OUT_LENGTH to proper value in signal definitions above
if (report_out_vect="1") then
if (count_out_vect < REPORT_OUT_LENGTH and PC104_ WR_RDY _i ='1") then
DATA o0 <= out_vect(count_out_vect);
PC104 WR_EN_o <="'1"; --write byte
count_out_vect <= count_out_vect + 1,
elsif (count_out_vect = REPORT_OUT_LENGTH) then
count_out_vect <= 0;
report_out_vect <="'0"
end if;
end if;
end if;
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end process;

-- Process to signal SM RB/RC from an experiment error.
-- Note that if you have your experiment running at a different speed than
-- 25 MHz (the speed of CLOCK i), you must be VERY careful about moving
-- between clock domains. Basically have another process on your experiments'
-- clock that sets a flag to trigger a readback, then put that signal on the
-- 25 MHz clock in this process (see Josh's x2Int.vhd for an example)
process(CLOCK _i, s_reset_exp) begin
if (s_reset_exp ='1") then
reconfig_from_error <="'0";
exp_start_rb <='0"
rb_started <="'0"; --make sure exp_start_rb only 1 clock
elsif (CLOCK _i'event and CLOCK _i ='1") then
exp_start_rb <="0"
reconfig_timer <= reconfig_timer + 1;
reconfig_from_error <="'0";

-- Set the threshold (# of data errors) for a reconfiguration
-- If we have 256 errors, reconfigure
if (err_cnt=x"FF") then
reconfig_from_error_save <="'1",
reconfig_timer <= 0;

-- Wait until SMRB is done, and then request a reconfig from the top level
elsif ( reconfig_from_error_save ='1'
and SM_RB_STATUS i ="0'
and sm_rb_status_d ="1") then
reconfig_from_error <="'1";
reconfig_from_error_save <="'0';
rb_started <="'0";

-- Wait until last error report is printed out before starting readback
-- Once readback has started, don't start another one!
-- Wait to start readback for ~3s (ERR_RPT_TIME) after reaching critical
-- number of errors, this is for JTAG external error injection, errors
-- begin accumulating before it is done programming, so 128 errors could
-- be reached before partial reconfig complete, so tries to readback
-- while JTAG still going on.
elsif (reconfig_from_error_save ='1'
and reconfig_timer = DLY_RECONFIG
and report_out_vect ='0'
and SM_RB_STATUS_i ='0'
and rb_started ='0") then
exp_start_rb <="1"
rb_started <="'1",
end if;
end if;
end process;
end rtl;
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CONTROL.UCF - DEVELOPMENT BOARD

The entire code listing for X1’s constraint file used for the TMR multiplier is
included below. Immediately following is X2’s constraint file for the TMR multiplier.
Notice the blue comments on X2’s constraint file for comparison with X1’s constraint

file and how those comments denote how the pins correspond between the two chips.

# Pin assignments for X1 - development board

# Jerry Caldwell's TMR Multiplier

# Created 21 August 06.

#

# Modified on 22 July 06 for use on the Development Board.

#

# Aux pins 42 to 44 were added, which are not available on the

# flight board, many other pin changes are different from the

# flight board, and are notated in comments to the right of the

# affected pin assignments

#

# All pin assignments in the comments following the actual pin

# locations must match same commented locations on cftp_x1.ucf

# Example: "p153" on control.ucf matches "p132" on experiment.ucf
#

# The following are new Pin Assignments for the Flight Configuration
# where the PC104 bus is used with a JTAG interface - these are not
# use very often.

#NET "T_CARD_BLEO i" LOC ="p44"; # only needed for writing low byte
#NET "CARD_BLE1" LOC ="p12";

#NET "CARD_RESET" LOC = "p54";

#NET "CARD_DATA_HIGH<10>" LOC = "p24";
#NET "CARD_DATA_ HIGH<11>" LOC ="p26";
#NET "CARD_DATA_ HIGH<12>" LOC ="p31";
#NET "CARD_DATA_ HIGH<13>" LOC ="p33";
#NET "CARD_DATA_HIGH<14>" LOC = "p35";
#NET "CARD_DATA_HIGH<15>" LOC = "p38";
#NET "CARD_DATA_HIGH<8>" LOC = "p20";
#NET "CARD_DATA_HIGH<9>" LOC = "p22";
#NET "CLOCK_OUT" LOC ="p70";

NET "T_VPPEN_o" LOC ="P60"; # only needed for writing FLASH
NET "T_PROM_ENABLE_o" LOC ="P62"; # drive high to save power on EEPROM

# The below signal is to be used if you need a clock other than
# the 50 MHz clock. Comment this out if you are not using an
# additional clock.

#NET "s_clock_X2" PERIOD = 160;

# Signals to/from X2 - this is specifically for the X2

# experimental design, which is AUX<0> to AUX<41>, and
# these pins must match the experiment.ucf file, not by

# pin number, but by X1_X2_AUX<#>
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NET "DATA_FROM_X2_MULTCHK_i<0>" LOC = "p153"; # X1_X2_AUX<0>
NET "DATA FROM_X2 MULTCHK i<1>" LOC ="p151"; # X1 X2_AUX<1>
NET "DATA_FROM_X2 MULTCHK i<2>" LOC ="p150"; # X1_X2_AUX<2>
NET "DATA_FROM_X2 CNTCHK i<0>" LOC ="p149"; # X1 X2 _AUX<3>
NET "DATA_FROM_X2 CNTCHK i<1>" LOC ="p147"; # X1 _X2_AUX<4>
NET "DATA_FROM_ X2 CNTCHK i<2>" LOC ="p146"; # X1_X2_AUX<5>
NET "DATA_TO_X2 RESET 0" LOC ="p145"; # X1_X2_AUX<6>

#NET "DATA_FROM_X2 READY_i" LOC = "p144"; # X1 _X2_AUX<7>
H#NET "XXX" LOC = "p135"; #X1_X2_AUX<8>

H#NET "XXX" LOC = "p134"; #X1_X2_AUX<9>

NET "DATA_FROM_X2_OUTPUT i<0>" LOC = "p132"; # X1_X2_AUX<10>
NET "DATA _FROM_X2 OUTPUT i<1>" LOC ="pl27"; # X1 X2 AUX<11>
NET "DATA FROM_X2 OUTPUT i<2>" LOC ="pl126"; # X1 X2 AUX<12>
NET "DATA_FROM_X2 OUTPUT _i<3>" LOC ="p120"; # X1 X2 _AUX<13>
NET "DATA_FROM_X2 OUTPUT _i<4>" LOC ="p119"; # X1 X2 _AUX<14>
NET "DATA_FROM_X2 OUTPUT _i<5>" LOC ="p112"; # X1 X2 AUX<15>
NET "DATA_FROM_ X2 OUTPUT i<6>" LOC ="p111"; # X1_X2_AUX<16>
NET "DATA_FROM_X2 OUTPUT i<7>" LOC ="p110"; # X1_X2_ AUX<17>
NET "DATA_FROM_ X2 OUTPUT _i<8>" LOC ="p109"; # X1 X2 AUX<18>
NET "DATA_FROM_X2_OUTPUT i<9>" LOC = "p108"; # X1_X2_AUX<19>
NET "DATA_FROM_X2_OUTPUT i<10>" LOC = "p107"; # X1_X2_AUX<20>
NET "DATA_FROM_X2_OUTPUT i<11>" LOC = "p105"; # X1_X2_AUX<21>
NET "DATA _FROM_X2 OUTPUT _i<12>" LOC ="p104"; # X1 X2 _AUX<22>
NET "DATA_FROM_X2 OUTPUT i<13>" LOC = "p103"; # X1_X2_AUX<23>
NET "DATA_FROM_X2 OUTPUT _i<14>" LOC ="p102"; # X1 X2 AUX<24>
NET "DATA_FROM_X2 OUTPUT _i<15>" LOC ="p101"; # X1_X2_AUX<25>
NET "DATA_FROM_X2 OUTPUT _i<16>" LOC ="p98"; # X1_X2_ AUX<26>
NET "DATA_FROM_X2 OUTPUT _i<17>" LOC ="p97"; # X1_X2_AUX<27>
NET "DATA_FROM_X2 OUTPUT _i<18>" LOC ="p96"; # X1 X2 AUX<28>
NET "DATA_FROM_X2 OUTPUT _i<19>" LOC ="p94"; # X1 X2 AUX<29>
NET "DATA_FROM_X2 OUTPUT _i<20>" LOC ="p93"; # X1 X2 AUX<30>
NET "DATA_FROM_X2 OUTPUT i<21>" LOC = "p92"; # X1_X2_AUX<31>
NET "DATA_FROM_X2 OUTPUT i<22>" LOC = "p91"; # X1_X2_AUX<32>
NET "DATA_FROM_X2 OUTPUT i<23>" LOC = "p90"; # X1_X2_AUX<33>
NET "DATA_FROM_X2 OUTPUT i<24>" LOC = "p89"; # X1_X2_AUX<34>
NET "DATA_FROM_X2_OUTPUT i<25>" LOC = "p88"; # X1_X2_AUX<35>
NET "DATA_FROM_X2 OUTPUT _i<26>" LOC ="p82"; # X1_X2_AUX<36>
NET "DATA_FROM_X2 OUTPUT _i<27>" LOC ="p81"; # X1_X2_ AUX<37>
NET "DATA_FROM_X2 OUTPUT _i<28>" LOC ="p80"; # X1_X2_ AUX<38>
NET "DATA_FROM_X2 OUTPUT _i<29>" LOC ="p79"; # X1_X2_AUX<39>
NET "DATA_FROM_ X2 OUTPUT _i<30>" LOC ="p78"; # X1_X2_AUX<40>
NET "DATA_FROM_ X2 OUTPUT _i<31>" LOC ="p77"; # X1_X2_AUX<41>
#NET "XXX" LOC ="p75"; # X1_X2_AUX<42> -- available on Flight Board
#NET "XXX" LOC ="p74"; # X1_X2_AUX<43> -- not avail on Flight Board
#NET "XXX" LOC ="p71"; # X1_X2_AUX<44> -- not avail on Flight Board

# X1/X2 Aux 43, and 44 are NOT available on the Flight Board
# Aux 42 is still available on the Flight Board if needed.

#**************************************************************

# END signals to/from X2

#**************************************************************

#Flash Interface Signals

NET "T_FLASH_DATA_i<0>" LOC ="P207";
NET "T_FLASH_DATA_i<1>" LOC ="P209";
NET "T_FLASH_DATA_i<2>" LOC = "P212";
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NET "T_FLASH_DATA_i<3>" LOC = "P216";
NET "T_FLASH_DATA_i<4>" LOC = "p218";
NET "T_FLASH_DATA_i<5>" LOC = "P220";
NET "T_FLASH_DATA_i<6>" LOC = "p223";
NET "T_FLASH_DATA_i<7>" LOC = "P226";
NET "T_FLASH_DATA_i<8>" LOC = "P208";
NET "T_FLASH_DATA_i<9>" LOC ="P211";
NET "T_FLASH_DATA_i<10>" LOC = "P213";
NET "T_FLASH_DATA_i<11>" LOC = "P217";
NET "T_FLASH_DATA_i<12>" LOC = "P219";
NET "T_FLASH_DATA_i<13>" LOC = "P222";
NET "T_FLASH_DATA_i<14>" LOC = "P224";
NET "T_FLASH_DATA_i<15>" LOC = "P225";

NET "T_FLASH_ADDRESS_0<0>" LOC = "P206";
NET "T_FLASH_ADDRESS_o<1>" LOC = "P205";
NET "T_FLASH_ADDRESS_0<2>" LOC = "P204";
NET "T_FLASH_ADDRESS_0<3>" LOC = "P198";
NET "T_FLASH_ADDRESS_o<4>" LOC = "P197";
NET "T_FLASH_ADDRESS_0<5>" LOC = "P196";
NET "T_FLASH_ADDRESS_0<6>" LOC = "P195";
NET "T_FLASH_ADDRESS_0<7>" LOC = "P194";
NET "T_FLASH_ADDRESS_0<8>" LOC = "P182";
NET "T_FLASH_ADDRESS_0<9>" LOC = "P183";
NET "T_FLASH_ADDRESS_0<10>" LOC = "P184";
NET "T_FLASH_ADDRESS_o<11>" LOC = "P185";
NET "T_FLASH_ADDRESS_0<12>" LOC = "P188";
NET "T_FLASH_ADDRESS_0<13>" LOC = "P189";
NET "T_FLASH_ADDRESS_o<14>" LOC = "P190";
NET "T_FLASH_ADDRESS_o<15>" LOC = "P192";
NET "T_FLASH_ADDRESS_0<16>" LOC = "P193";
NET "T_FLASH_ADDRESS_0<17>" LOC = "P177";
NET "T_FLASH_ADDRESS_0<18>" LOC = "P178";
NET "T_FLASH_ADDRESS_0<19>" LOC = "P179";
NET "T_FLASH_ADDRESS_0<20>" LOC = "P181";

NET "T_FLASH_WE_o" LOC = "P165";
NET "T_FLASH_RP_o" LOC = "P166";
NET "T_FLASH_WP_o" LOC ="P167",
NET "T_FLASH_CE_A_o" LOC ="P164";

#NET "T_Flash_CE_B_o0" LOC = "P125"; # doesn't do anything!

NET "T_FLASH_OE_o" LOC = "P162";

#PC/104 Interface Signals

NET "T_Data_io<0>" LOC ="P11";
NET "T_Data_io<1>" LOC ="P10";
NET "T_Data_io<2>" LOC ="P9";
NET "T_Data_io<3>" LOC ="P7";
NET "T_Data_io<4>" LOC ="P6";
NET "T_Data_io<5>" LOC ="P5";
NET "T_Data_io<6>" LOC = "P4";
NET "T_Data_io<7>" LOC ="P3";
NET "T_Address_i<0>" LOC = "P47";
NET "T_Address_i<1>" LOC = "P46";
NET "T_Address_i<2>" LOC = "P45";
NET "T_Address_i<3>" LOC = "P39";
NET "T_Address_i<4>" LOC = "P36";
NET "T_Address_i<5>" LOC = "P34";

#ISA Data Bit 0

p. 11

#ISA Data Bit1 p. 10

#ISA Data Bit 2
#1SA Data Bit 3
#1SA Data Bit 4
#ISA Data Bit 5
#ISA Data Bit 6
#ISA Data Bit 7
#ISA Address 0
#ISA Address 1
#ISA Address 2
#ISA Address 3
#ISA Address 4
#ISA Address 5
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NET “T_Address_i<6>" LOC = "P32"; #ISA Address 6 p-32

NET "T_Address_i<7>" LOC = "P29"; #ISA Address 7 p. 29
NET "T_Address_i<8>" LOC = "P25"; #ISA Address 8 p.- 25
NET "T_Address_i<9>" LOC = "P23"; #ISA Address 9 p. 23
#NET "T_Address_i<10> LOC ="p21"; ~ #ISA Address 10 p. 21

NET “T_IORead_i" LOC = "P19"; #CARD_OE p- 19
NET "T_IOWRITE_i" LOC = "P17"; #CARD_WE p. 17

NET "T_IOCS_i" LOC = "P16"; #CARD_CS3, used to be p. 13

NET "T_INTRPT_o" LOC ="P54"; # T_INTRPT_o is "p43" on the flight board
# This is ISA Interrupt 0, IRQ 7
# NOTE: on the development board, 10 Pin 5(P54)
# is jumpered to card interrupt 0
# actually is interrupt 6 on ARM side!

# SelectMap interface signals

NET "T_CCLK_ 0" LOC ="P69"; #Drive X2's CCLK pin, flight_board = p65

NET "T_SELECTMAP_INIT_o0" LOC ="P117";  #Drive X2's INIT pin, flight_board = p124
# schematic says 124 = "10_VREF 3" ???

NET "T_SELECTMAP_WRITE_o0" LOC ="P176"; #Drive X2's WRITE pin, flight_board = p63
# schematic says 63 = "IO_VREF_5" ???

NET "T_SELECTMAP_CS 0" LOC ="pP175"; #Drive X2's CS pin, flight_board = p64

# MLS swap pins so D(0) is LSB

NET "T_SELECTMAP_DATA io<7>" LOC = "P169"; # X2_DO0, flight_board = p68
NET "T_SELECTMAP_DATA io<6>" LOC = "P128"; # X2_D1, flight_board = p69
NET "T_SELECTMAP_DATA io<5>" LOC = "P131"; # X2_D2, flight_board = p70
NET "T_SELECTMAP_DATA io<4>" LOC = "P137"; # X2_D3, flight_board = p71
NET "T_SELECTMAP_DATA i0<3>" LOC = "P148"; # X2_D4, flight_board = p74
NET "T_SELECTMAP_DATA io<2>" LOC = "P155"; # X2_D5, flight_board = p75
NET "T_SELECTMAP_DATA io<1>" LOC = "P158"; # X2_D#, flight_board = p121
NET "T_SELECTMAP_DATA i0o<0>" LOC = "P168"; # X2_D7, flight_board = p122
#NET "T_SELECTMAP_BUSY_i" LOC = "P118"; #not sure what this does

NET "T_clock_i" LOC ="P87"; # Flight_board = P87
# P87 isa51 MHz CARD_BCLK from ARM board
# IF used on the development board
# For the flight board, P199 is unconnected.
# P87 has to be used on the flight board.
# If using P87 on the development board, then
# ensure P199 is used on X2 for dev_board.
# For the flight board, X2's clock MUST be
# tied to P199, and X1's clock to P87.

NET "T_X2_MODE<0>" LOC ="P160";
NET "T_X2_MODE<1>" LOC ="P159";
NET "T_X2_MODE<2>" LOC = "P161";
NET "T_X2_PROG_o" LOC = "P49";
#NET "T_clock_i" PERIOD = 20;

#NET "s_clock” PERIOD = 20;
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X2 CONSTRAINT FILE

This is the code listing for X2’s constraint file in support of the TMR Multiplier.
Pay particular attention to the blue comments next to the pin assignments, and compare

these to X1’s constraint file and corresponding pin assignments.

# Pin assignments for X2 (TMR Multiplier)

# by Jerry Caldwell

#

# Double-check all pin assignments!

#

# All pin assignments in the comments following the actual pin

# locations must match same commented locations on control.ucf

# Example: "p132" on tmr_multiply.ucf matches "p153" on control.ucf

# system clock

NET "clock" LOC = "P199"; # use this one for the 51 MHz oscillator
#NET "clock” LOC = "P87"; # use this one for a 50 MHz clock

# NET "clock™ PERIOD = 40;

#NET "s_clock" PERIOD = 80;

# signals to/from X1

NET "mult_check<0>" LOC = "p132"; # X1_X2_AUX<0>
NET "mult_check<1>" LOC ="p134"; # X1_X2_AUX<1>
NET "mult_check<2>" LOC ="p135"; # X1_X2_AUX<2>
NET "cnt_check<0>" LOC ="p136"; # X1_X2_AUX<3>
NET "cnt_check<1>" LOC ="p138"; # X1 X2 AUX<4>
NET "cnt_check<2>" LOC ="p139"; # X1_X2_AUX<5>
NET "x1_reset" LOC ="p141"; # X1_X2_AUX<6>
#NET "data_rdy" LOC ="p144"; # X1_X2_AUX<7>
#NET "XXX" LOC = "pl46"; # X1_X2_AUX<8>

H#NET "XXX" LOC = "p147"; # X1_X2_AUX<9>

NET "result<0>" LOC = "p153"; # X1_X2_AUX<10>
NET "result<1>" LOC = "p154"; # X1_X2_AUX<11>
NET "result<2>" LOC = "p159"; # X1_X2_AUX<12>
NET "result<3>" LOC ="p160"; # X1_X2_AUX<13>
NET "result<4>" LOC ="p161"; # X1_X2_AUX<14>
NET "result<5>" LOC ="pl77"; # X1_X2_AUX<15>
NET "result<6>" LOC ="p178"; # X1_X2_AUX<16>
NET "result<7>" LOC ="p179"; # X1_X2_AUX<17>
NET "result<8>" LOC = "p181"; # X1_X2_AUX<18>
NET "result<9>" LOC = "p182"; # X1_X2_AUX<19>
NET "result<10>" LOC = "p183"; # X1_X2_AUX<20>
NET "result<11>" LOC = "p184"; # X1_X2_AUX<21>
NET "result<12>" LOC = "p185"; # X1_X2_AUX<22>
NET "result<13>" LOC = "p188"; # X1_X2_AUX<23>
NET "result<14>" LOC ="p189"; # X1_X2_AUX<24>
NET "result<15>" LOC ="p190"; # X1_X2_AUX<25>
NET "result<16>" LOC ="p192"; # X1_X2_AUX<26>
NET "result<17>" LOC ="p193"; # X1_X2_AUX<27>
NET "result<18>" LOC ="p194"; # X1_X2_AUX<28>
NET "result<19>" LOC = "p195"; # X1_X2_AUX<29>
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NET "result<20>" LOC = "p196"; # X1 X2_AUX<30>
NET "result<21>" LOC = "p197"; # X1 X2_AUX<31>
NET "result<22>" LOC = "p198"; # X1_X2_AUX<32>
NET "result<23>" LOC = "p204"; # X1_X2_AUX<33>
NET "count<0>" LOC = "p205"; # X1_X2_AUX<34>
NET "count<1>" LOC = "p206"; # X1_X2_AUX<35>
NET "count<2>" LOC = "p207"; # X1_X2_AUX<36>
NET "count<3>" LOC = "p208"; # X1_X2_AUX<37>
NET "count<4>" LOC = "p209"; # X1_X2_AUX<38>
NET "count<5>" LOC = "p211"; # X1_X2_AUX<39>
NET "count<6>" LOC = "p212"; # X1_X2_AUX<40>
NET "count<7>" LOC ="p213"; # X1_X2_AUX<41>

#NET "XXX" LOC ="p216"; # X1_X2_AUX<42> # available on dev board
#NET "XXX" LOC ="p217"; # X1_X2_AUX<43> # available on dev board
#NET "XXX" LOC ="p218"; # X1_X2_AUX<44> # available on dev board

# X1 X2 _AUX<42,43,44> NOT availabe on flight board
# 42 was replaced by CE_B for flash

CONTROL.UCF - FLIGHT BOARD

Included below is the section of the constraint file for X1 for the Flight Board that
differs from the Development Board. The below section of code can be compared to the
constraint file for Development Board listed previously. It is easy to recognize that the
only differences are in the actual numbers assigned to the pins below. The specific signal

names remain exactly the same.

NET "T_INTRPT_o" LOC ="P54"; # T_INTRPT_o is "p43" on the flight board
# This is ISA Interrupt 0, IRQ 7
# NOTE: on the development board, 10 Pin 5(P54)
# is jumpered to card interrupt 0
# actually is interrupt 6 on ARM side!

# Selectmap interface signals

NET "T_CCLK_o" LOC ="P69"; #Drive X2's CCLK pin, flight_board = p65

NET "T_SELECTMAP_INIT_o0" LOC ="P117";  #Drive X2's INIT pin, flight_board = p124
# schematic says 124 = "10_VREF_3" ???

NET "T_SELECTMAP_WRITE_o" LOC = "P176"; #Drive X2's WRITE pin, flight_board = p63
# schematic says 63 = "IO_VREF_5" ???

NET "T_SELECTMAP_CS_o" LOC ="P175"; #Drive X2's CS pin, flight_board = p64

# MLS swap pins so D(0) is LSB

NET "T_SELECTMAP_DATA _io<7>" LOC = "P169"; # X2_DO0, flight_board = p68
NET "T_SELECTMAP_DATA io<6>" LOC = "P128"; # X2_D1, flight_board = p69
NET "T_SELECTMAP_DATA _io<5>" LOC = "P131"; # X2_D2, flight_board = p70
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137"; # X2_D3, flight_board = p71
NET "T_SELECTMAP_DATA _io<3>" LOC = "P148"; # X2_D4, flight_board = p74
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155"; # X2_D5, flight_board = p75
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NET "T_SELECTMAP_DATA io<1>" LOC = "P158"; # X2_D6, flight_board = p121
NET "T_SELECTMAP_DATA i0<0>" LOC = "P168"; # X2_D7, flight_board = p122
#NET "T_SELECTMAP_BUSY_i" LOC = "P118"; #not sure what this does

NET "T_clock_i" LOC ="P199"; # Flight_board = P87

MAKEFILE FOR THE CONTROLLER CODE

Below is only the first portion of the Makefile that is used to compile the
Controller Code. The code highlighted in red is the only part that needs to be changed by
prospective Designers. These changes are done to identify specifics experiments in the

output data stream and are therefore important.

###Makefile for compiling VHDL code

PR R R R R
i Paths P

PR R R R R
# Top level project name (used also in naming source/output files below
# You don't have to use projname as root of filenames (you can change
# them below if you'd like), but it

# makes it easy to reuse this Makefile for a different design
PROJNAME = control

ENTITYNAME =cftp ARM

# 1D is used by the rd.sh program to determine how the output from

# your code should be formatted. It is any 2 digit string, tell

# Mindy what you chose and she will add it to the rd.sh program.

# Already taken:

#JS: Josh's Cordic

# JM: Jerry's Multiplier

# SR: James' Shift Register

# FD: Flash Dump

#VT: V2 Test code

# FE: Flash Erase

ID =M

DESCR ="Jerry's Multiplier"

#L ocation of all local source files

# MUST BE FULL PATH, XST doesn't like relative paths
SRCPATHLOC = $(PROJNAME)_src
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APPENDIX C: DATA FORMATTING CODE

Programs specifically designed for viewing data output from the CFTP
architecture have been written in “C” code, and are included for the benefit of future
designers who desire formatted output, such as that located in Figures 6 — 8 and 10 and
11. To view output data in this format, three files must be slightly modified. One is a
Makefile, and the other two are “C” code programs that perform the function of reading
data and outputting it in a clear, organized format.

The majority of the modifications of these three files merely require copying a
section of code and pasting it, then slightly modifying it specific to an experiments output
stream. The portion that will be edited in the top level program, rd_top_arm.c, ties into
the modification designers make to the file Makefile_control for the Controller code,
described in Chapter VV and Appendix B. Specifically, the program rd_top_arm.c looks
for the two initials added to Makefile_control, and then will call another c-code program

that directly formats the data.

The sections of the three files that require modification are highlighted in red,

followed by a description of what the code does.

TOP LEVEL C-CODE PROGRAM - rd_top_arm.c

#include<sys/io.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<stdio.h>
#include<unistd.h>

int printusageandexit() {
printf("Usage: rd_top_arm\n"
"with options: \n"
"-f FILENAME full path to filename to read\n"
"-s SPEED SPEED times real time\n");

return O;
}
main(int argc, char **argv)
{
unsigned char bytel,byte2,dummy,string[]="PART SUCCESSFULLY
PROGRAMMED",synch_word[]="PART SUCCESSFULLY PROGRAMMED";
int synch_len,i;

char *fn, *cp, *speed, *cfn;
FILE *child, *datafile;

99



fn = "/home/msurratt/work/arm_code/test™;
speed ="1";

for (i=1; i<argc; i++) {
if (stremp(argv[i], "-f") == 0) {
if (++i <= argc-1) { fn=argv([i]; }
else { return printusageandexit(); }

3

else if (strcmp(argv[i], "-s") == 0) {
if (++i <= argc-1) { speed = argv[i]; }
else { return printusageandexit(); }

3

else { return printusageandexit(); }

}
datafile = fopen(fn,"r");

fflush(NULL);

if ((child = popen(“cat","w")) < 0) {
printf("Failed to open child process\n™);
exit(0);

}

synch_len = strlen(synch_word);
while(1) {

for (i=0;i<synch_len-1;i++) {
string[i] = string[i+1];

fread(&string[synch_len-1],1,1,datafile);
fflush(NULL);
fprintf(child,"%c",string[synch_len-1]);
fflush(NULL);

if (stremp (string,synch_word) == 0) {
fread(&bytel,1,1,datafile); // 0x0a
fread(&byte2,1,1,datafile); // 0x0d
fprintf(child,"%c%c\n" bytel,byte2);
fflush(NULL);
fread(&bytel,1,1,datafile); // ID 1
fread(&byte2,1,1,datafile); // ID 2
fread(&dummy,1,1,datafile); // 0x0d
pclose(child);
// for EXPERIMENTAL DESIGN
/I add an entry for your unique id, and executable
/I Josh's cordic, ID JS
if (bytel =="J' && byte2 =="'S") {
fflush(NULL);
if ((child = popen(“cordic_out","w")) < 0) {
fprintf(stderr,"Failed to open child process\n");
exit(0);
}

}
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/I Jerry's Dual Counter ID JD
if (bytel =="J' && byte2 =="'D") {
fflush(NULL);
cp = "dualcount_out_arm ";
if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc
failed"); return 0; }
strcpy(cfn,cp);
strcat(cfn,speed);
if ((child = popen(cfn,"w")) < 0) {
fprintf(stderr,"Failed to open child process\n");
exit(0);
}

}
/[ Jerry's Multiplier ID JM

if (bytel =="J' && byte2 =='M") {
fflush(NULL);
cp = "mult_out_arm ",
if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc
failed™); return O; }
strcpy(cfn,cp);
strcat(cfn,speed);
if ((child = popen(cfn,"w")) <0) {
fprintf(stderr,"Failed to open child process\n™);
exit(0);
}
}

The above section beginning with the comment *“//Jerry’s Multiplier ID JM,” was
copied and only two lines were modified. In the first “if” statement, “J” and “M” were
inserted next to the double-equal symbols. This tells the rd_top_arm program to look for
these two initials in a given file of data, which are included in that data because these two
initials were added to the file Makefile_control. Two lines below that, mult_out_arm was
inserted in between the quotation marks. This tells the rd_top_arm program to call the

specific c-code program that reads the multiplier output, named appropriately.

/I Mindy's Counter ID MS
if (bytel =='M' && byte2 =='S") {
fflush(NULL);
cp = "mindy_out ";
if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc
failed"); return O; }
strcpy(cfn,cp);
strcat(cfn,speed);
if ((child = popen(cfn,"w")) < 0) {
fprintf(stderr,"Failed to open child process\n™);
exit(0);
}
}
/I Josh's cordic with timestamp (for flight), ID JA
if (bytel =="J' && byte2 =="A") {
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fflush(NULL);
cp = "cordic_out_arm ";
if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc
failed™); return O; }
strcpy(cfn,cp);
strcat(cfn,speed);
if ((child = popen(cfn,"w")) < 0) {
fprintf(stderr,"Failed to open child process\n");
exit(0);

SPECIFIC C-CODE PROGRAM - “name”_out_arm.c

The file included below is named mult out arm.c, and is the file that
rd_top_arm.c will call when rd_top_arm.c encounters a “J” and an “M” in an output file.
The portion in red is the area that requires modification if data is to be organized into an

easily readable format.

/Imult_out_arm.c modified by Jerry Caldwell
/121 Sept 06

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include "rd_sub.h"

#include "smrb_locs.h"

int getER();
void getPC();

int main(int argc, char **argv){

unsigned char synch_word[]="AA";
unsigned char string[]="PART SUCCESSFULLY PROGRAMMED";
long timestamp,oldTime = 0;
int speed,;
int total SM=0;
smrb_locs locs;

locs.wrptr = 0;
locs.end_of array = 0;
locs.data = NULL;
speed = atoi(argv[1]);
while (1) {
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synch_word[0] = synch_word[1];
fread(&synch_word[1],1,1,stdin);

if (new_output(&string[0],synch_word[1]) ) {
return O;
}
if (stremp(synch_word,"ER") ==0){
if((timestamp = getER(oldTime,speed)) ==0) {
fprintf(stderr,"getER failed");

oldTime = timestamp;

}
else if (strcmp(synch_word,"SM™) ==0) {
oldTime = getTS();
printf("\ntimestamp: %08x ",o0ldTime);
fflush(NULL);
/I return last read value: beginning of SC or ER
if( ( synch_word[1] = getSM(&Iocs,total SM) ) ==0) {
fprintf(stderr,"getSM failed");

}
SMRC(&locs);
total_SM++;

}

else if (strcmp(synch_word,"SC") ==0) {
oldTime = getTS();
printf("timestamp: %08x \n",0ldTime);
SMRC(&locs);

else if (stremp(synch_word,"PC") ==0) {
getPC();
SMRC(&locs);
}
}

}
void getPC() {

unsigned char c;

fread(&c,1,1,stdin); //BLOCK NUM
printf("BLK#: %02x ".c);
fread(&c,1,1,stdin); //IMJA

printf("MJA#: %02x ".c);
fread(&c,1,1,stdin); //MNA

printf("MNA#: %02x "c);
fread(&c,1,1,stdin); //BIT Upper
printf("BIT#: %02x",c);
fread(&c,1,1,stdin); //BIT Lower
printf("%02x ",c);

fread(&c,1,1,stdin); //[FLASH Offset Upper
printf("FLASH OFFSET: %02x",c);
fread(&c,1,1,stdin); //FLASH Offset Middle
printf("%02x",c);

fread(&c,1,1,stdin); //[FLASH Offset Lower
printf("%02x\n",c);

}
int getER(long oldTime, int speed) {
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unsigned char c;
long timestamp;

/I Use the below portion to read the TMR multipliers
fread(&c,1,1,stdin); // this reads the padded zeros before
[/l err_cnt, if those are output from the X1 code
fread(&c,1,1,stdin);
printf(" Error Count: ");
printf(*%02x "c);
printf(" ");

printf("Count_voter: ");
fread(&c,1,1,stdin);
printf("%02x ",c);
printf(" ");

printf("Mult_voter: ");
fread(&c,1,1,stdin);
printf("%02x ",c);
printf(" ");

printf("Count: );
fread(&c,1,1,stdin);
printf("%02x "c);
printf(" ");

printf("Count Squared: ");
fread(&c,1,1,stdin);
printf("%02x",c);
fread(&c,1,1,stdin);
printf("%02x",c);
fread(&c,1,1,stdin);
printf("%02x ",c);
printf(" ");

The above portion of code uses “fread” and “printf” to read bytes of data and print
it next to the strings in quotation marks. It should be self evident how the strings in
quotation marks are altered to identify specific data. For each byte of data that is read, a
corresponding “printf” statement is needed to print that data. The location of the “printf”
statement determines the order in which the data will be printed. Notice the uses of
quotation marks to format the bytes of data as well as spaces to provide additional
formatting.

printf("Timestamp: ");
timestamp = getTS();

printf("%08x\n" timestamp);
fflush(NULL);

if (timestamp == 0) { timestamp =1, }
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return(timestamp);

}

MAKEFILE

This file must be modified to so that rd_top_arm.c and the specific c-file created,
mult_out_arm.c for this particular example, can be compiled. The portions in red are the

lines of code requiring modification.

INC=./include
FLASH_SRC=./mkflash_src
RD_SRC-=./process_output_src
INJERR_SRC=./inject_error_src
BIN=.

all: rd_top_arm mult_out_arm count_out_arm dualcount_out_arm
The only change made to the above line was to add the filename mult_out_arm.

inject_error: $(INJERR_SRC)/inject_error.c
gce -1$(INC) -o $(BIN)/inject_error $(INJERR_SRC)/inject_error.c

interleave_files: $(FLASH_SRC)/interleave_files.c
gcc -1$(INC) -o $(BIN)/interleave_files $(FLASH_SRC)/interleave files.c

strip_mask: $(FLASH_SRC)/strip_mask.c
gce -1$(INC) -o $(BIN)/strip_mask $(FLASH_SRC)/strip_mask.c

mult_out_arm: $(RD_SRC)/mult_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c

gce -1$(INC) -o $(BIN)/mult_out_arm $(RD_SRC)/mult_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -Im

The above portion of code was merely copied and pasted, and “mult_out_arm”
and “mult_out_arm.c” was substituted in the appropriate places. Studying the code
below makes is evident where these substitutions take place.
count_out_arm: $(RD_SRC)/count_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c

gce -1$(INC) -o $(BIN)/count_out_arm $(RD_SRC)/count_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -Im

dualcount_out_arm: $(RD_SRC)/dualcount_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c

gce -1$(INC) -o $(BIN)/dualcount_out_arm $(RD_SRC)/dualcount_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -Im
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cordic_out_arm: $(RD_SRC)/cordic_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c

gce -1$(INC) -o $(BIN)/cordic_out_arm $(RD_SRC)/cordic_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -Im

sr_out: sr_out.c smrb.c smrc.c new_output.c smrb_locs.c rd_sub.h
gcc -0 $(BIN)/sr_out $(RD_SRC)/sr_out.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c -Im

sr_out_c2: $(RD_SRC)/sr_out.c $(RD_SRC)/smrb_c2.c $(RD_SRC)/smrc.c $(RD_SRC)/new_output.c
$(RD_SRC)/smrb_locs.c $(RD_SRC)/rd_sub.h

gce -0 $(BIN)/sr_out_c2 $(RD_SRC)/sr_out.c $(RD_SRC)/smrb_c2.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c -Im

rd_top: $(RD_SRC)/rd_top.c
gce -0 $(BIN)/rd_top -g $(RD_SRC)/rd_top.c

rd_top_arm: $(RD_SRC)/rd_top_arm.c
gce -0 $(BIN)/rd_top_arm -g $(RD_SRC)/rd_top_arm.c

COMMAND -LINE ENTRIES

Examples of the specific command-line entries to compile the c-code, and to read

and print out data from a file, are included.

To compile the code, you must be in the same directory where the make file

exists. Then the command-line entry is as simple as typing “make,” as below.

cftp:~/directory$ make

To read the contents of a file and print them to a screen using these programs, use

the command “rd_top_arm” followed by a “-f” denoting a file name to follow, then the

exact name of the file to read.

cftp:~/directory$ rd_top_arm —f filename
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