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ABSTRACT 

The Configurable Fault Tolerant Processor (CFTP) team at Naval Postgraduate 

School (NPS), Monterey, was created to develop, test, and implement reliable computing 

solutions for the space environment.  The CFTP team seeks to design reliable circuits 

using Field Programmable Gate Arrays (FPGA) to include designs that mitigate the 

radiation hazards posed to FPGAs.  A significant challenge faced by the CFTP team has 

been the integration and subsequent software development of the CFTP architecture, 

which includes a “Controller” and an “Experiment” FPGA.   

This thesis investigates some of the specific design issues that must be considered 

for future experiments, to include timing between the two FPGAs, and data throughput of 

the CFTP architecture.  Procedures for the development and implementation of 

experiments are detailed for the benefit of future experimenters who may be new to 

designing for FGPAs.  Lastly, the Controller program is streamlined such that only minor 

modifications are required by prospective users in order to conform to specific 

experiments. 

Over the years the CFTP team has produced several experiments that will provide 

reliable computing solutions for the space environment.  Now, in addition to the “what” 

is to be used in space, this thesis presents “how” to run them in space. 
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EXECUTIVE SUMMARY 

The Configurable Fault Tolerant Processor (CFTP) project was created for the 

purpose of developing and testing fault tolerant circuits in space.  Redundancy is one 

solution to the hazards that radiation in the space environment presents to electronic 

circuits.  Field Programmable Gate Arrays (FPGA) provides a viable test bed for fault 

tolerant experiments due to their flexibility and ability to be programmed multiple times.  

The CFTP team created a robust architecture specifically designed to test and evaluate 

fault tolerant circuits through the use of FPGAs [4]. 

The primary components of this architecture are; two FPGAs, a PC/104 bus, an 

ARM processor, and Flash Memory.  One FPGA is designated as the Controller FPGA, 

such that it controls the loading and running of experiments, as well as data transport over 

the PC/104 bus.  The other FPGA is designed to be the Experiment FPGA, dedicated 

solely for the implementation of fault tolerant circuits. 

Designers for the CFTP team over the years have created many interesting 

experiments that provide viable solutions for fault tolerant circuits.  However, in addition 

to the design phase of an experiment, much effort has been spent understanding how a 

circuit on the Experiment FPGA interfaces with the Controller FPGA.  Often times 

getting an experiment to properly integrate within the CFTP architecture proved much 

tougher than the design of the experiment itself.  The original goal of this thesis was to 

provide future designers with the necessary insight into the inner workings of the 

Controller such that more effort can be directed towards designing experiments and less 

effort towards how they are implemented. 

This thesis begins with an overview of the architecture and discussion of the code 

that is the design of the Controller.  The purpose and functions of the Controller FPGA 

are discussed in detail to include clocking issues and how it interfaces with other 

components on the CFTP architecture.  Emphasis is provided on portions of the 

Controller code that prospective designers will have to consider modifying to meet the 

needs of their experiments. 



 xviii

Beyond how the Controller FPGA, X1, interfaces with the Experiment FPGA, 

X2, this thesis explores timing and synchronization between the two chips.  Several 

designs are implemented on both X1 and X2 showing that the two chips can be 

synchronized to run at the same clock rate, successfully transferring data without the use 

of handshaking signals.  Also investigated is the maximum safe data rate that can be 

achieved across the PC/104 bus. 

Finally, this thesis provides an example design that is implemented onto the CFTP 

architecture.  This example design highlights the functionality of TMR while 

demonstrating how to account for many of the integration issues within the CFTP 

architecture.  More importantly, the design demonstrated in Chapter V provides 

prospective designers a clear example of how the code within X1 is modified to suite the 

needs of an experiment implemented on X2. 

The experimental design presented in Chapter V has been implemented on both 

the Flight and Development Boards, and its output is included toward the end of Chapter 

IV.  This design has been installed on the Flight Board and will be the first experiment to 

provide output from the CFTP project shortly after its launch on 18 January 2007. 
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I. INTRODUCTION 

Computing in the space environment is a challenge due to the inherent radiation 

environment and the subsequent adverse effects on electronic circuits.  Additionally, long 

development schedules for space circuits have created a growing demand for increased 

flexibility.  Field Programmable Gate Arrays (FPGAs) are one answer due to their 

inherent flexibility and their capability to be reconfigured.  However, the radiation 

susceptibility of FPGAs can lead to data and configuration errors.  This is most 

commonly caused by Single Event Upsets (SEU), where radiation causes logical bit 

values to change. 

The Configurable Fault Tolerant Processor (CFTP) program at Naval 

Postgraduate School (NPS), Monterey, was initiated several years ago, and has evolved 

into a robust experimental platform [4].  Two separate architectures, both containing two 

Xilinx Virtex FPGA chips for implementing experiments, have been designed by the 

CFTP team and are fully functional.  These architectures are structured to effectively 

enable the implementation of space-born experiments, and more importantly, to easily 

store and download the results for evaluation.  The main components of the two 

architectures are as follows: Experiment FPGA, Control FPGA, PC/104 Bus interface, 

Flash Memory, EEPROM (Electronically Erasable & Programmable Memory), and an 

ARM (Advanced RISC Machine) Processor running an embedded Linux operating 

system [1]. 

The control FPGA is designed to be a controller for the loading of experiments, 

and passing data to the ARM processor through a PC/104 interface.  The experimental 

FPGA is just that – an FPGA that is used to test various radiation-hardened designs that 

mitigate the effects of SEUs [4]. 

The CFTP team strives to design radiation hardened circuits that mitigate the 

effects SEUs have on FPGAs.  This approach within the CFTP architecture presents other 

challenges beyond finding viable techniques for reliable computing, to include the 

integration among two FPGAs, a PC/104 bus, and an ARM processor.  This thesis  
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explores those issues as well as the processes by which experiments are actually 

implemented.  Specifically, this thesis will serve as a manual for future prospective 

experimenters on the CFTP team. 

A. CFTP OBJECTIVE  
The objective of the CFTP program at Naval Postgraduate School is to design 

reconfigurable and reliable space-based computer systems through the use of 

commercial-of-the-shelf (COTS) FPGAs.  Because of the need for reliable electronic 

circuits in space, it is essential to have the ability to reconfigure and/or redesign space-

born processors.  FPGAs provide an ability to perform reconfigurations, and therefore 

offer great flexibility.  The CFTP team seeks to design radiation hardened circuits 

through software solutions in order to counter one of the primary limitations of FPGAs –  

susceptibility to SEUs. 

B. RESEARCH OBJECTIVES 

This objective of this thesis is to detail the tools and techniques for implementing 

experiments, and to investigate timing constraints and integration issues on the CFTP 

architecture.  The past years of development by students working on the CFTP team have 

created many lessons learned and produced many interesting designs.  As a result, this 

thesis provides a formal document detailing the complicated and sometimes intricate 

procedures for developing and implementing experiments.   

C. BACKGROUND 
For the past several years numerous students on the CFTP team have concentrated 

on the mitigation of SEUs.  The work up to this point has primarily focused on creating 

reliable computing solutions for the space environment using triple modular redundancy 

(TMR).  Pete Majewicz created a processor for implementation on an FPGA that uses 

internal TMR, which he named the PIX processor [2].  James Coudeyras concentrated on 

a design that uses the entire FPGA chip to increase the probability of an SEU occurring, 

thereby enabling the testing of the process by which an SEU is detected and corrected [3]. 

Dean Ebert’s thesis is the initial work that determined the design of the current 

CFTP architecture [4].  This work defined many of the issues considered in the initial 

design, and provided the solutions and final integration decisions that made up what the 

CFTP architecture is today. 
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D. CFTP ENVIRONMENT 
Within the CFTP development environment there are two separate architectures 

that provide two separate functions.  One of the architectures is named the “Development 

Board,” and its function is self-descriptive; to provide a platform for developing and 

testing experiments before implementation in space.  The other architecture is named the 

“Flight Board,” and is function is self-descriptive as well; a platform for running 

experiments in space.  The basic architecture of the Development Board and the Flight 

Board is identical.  Both contain two FPGAs and the interface and support components.   

The primary difference between the Development Board and the Flight Board are 

the FPGAs themselves.  The two FPGAs on the Flight Board are total-dose RADHARD 

(radiation hardened), and are therefore intended for flight in space.  The Development 

Board uses two MILSPEC (military specification) FPGAs that are not designed to 

survive the space environment.  The two types of FPGAs are mounted in two different 

types of packages, which means that their pinouts differ.  Therefore, the FPGA design 

files and constraint files must be slightly different (see Appendix B for specific constraint 

file (UCF) considerations).  

Though the development of an experiment can theoretically involve the creation 

of a circuit on one FPGA alone, this is not sufficient for evaluating experiments in space.  

A means to control the implementation of various experiments, as well as data collection, 

is essential for evaluation and analysis.  This requires not only the integration between 

two FPGAs, but the other support items as well, such as Flash Memory, the PC/104 bus, 

and the ARM processor.  The procedures for creating and implementing experiments that 

take these integration issues into account dictates that prospective experimenters become 

familiar with how the architecture is integrated, and the specific limitations that result 

from that integration. 

The primary limitation of the CFTP architecture is the maximum data rate that 

can be achieved across the PC/104 bus.  This limitation is bounded by the interaction 

between the PC/104 bus and the ARM processor, and more specifically, the ability of the 

Linux operating system on the ARM to perform reads on the PC/104 bus while keeping 
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other processes running in the background.  This thesis specifically addresses these 

limitations, providing detailed guidance for future CFTP team experimenters. 

E. IMPLEMENTING EXPERIMENTS 
 Successfully designing an experiment that produces output on an FPGA is merely 

the first milestone that must be completed.  This is usually accomplished via logic design 

and simulation with Computer Aided Design (CAD) software, tailored to the specific 

type of FPGA for which the experiment is to be implemented.  The CFTP architecture 

design has some limitations, which will be addressed in this thesis, and those limitations 

must be taken into account when designing an experiment. 

 Once an experiment is successfully tested via simulation, which must include the 

creation of an accompanying constraint file, the controller code, code that runs the 

Control FPGA, must be modified to work with the experiment.  Though the 

modifications may be few and relatively trivial, the controller code must be changed and 

compiled so that it will pass the proper number of bits of data, and will pass that data at 

an appropriate data rate.  Also, the constraint file within the controller code must be 

modified to match the constraint file of the experiment. 

F. OVERVIEW 
Chapter II of this thesis gives the reader a brief overview of the CFTP 

architecture; how it is organized and some of the specifics of the various components.  

Chapter III discusses in detail the design of X1, the Controller.  It provides future CFTP 

designers the necessary details to understand how the Controller interfaces with the rest 

of the CFTP architecture, and more importantly, the portions of the Controller code that 

must be modified when creating an experiment.  Chapter IV provides even more insight 

into the inner workings of the CFTP architecture as it addresses timing and some key 

limitations of the Flight and Development Board.  Chapter V reviews the processes for 

implementing an experiment onto the CFTP architecture, from the first stages of a 

Hardware Description Language (HDL) description and/or schematic development, to 

implementation on an FPGA chip.  Finally, Chapter VI provides conclusions and some 

suggestions for future work.    



II. CFTP ARCHITECTURE 

Though two architectures have been developed by the CFTP team, they are nearly 

identical in layout, and they are functionally identical.  The two architectures, the 

Development Board and Flight Board, were designed to accomplish the missions their 

names imply; the Development Board is for the development and testing of experiments 

on the ground, and the Flight Board is designed to implement experiments in space.  

Figure 1 is representative of both the Development and Flight boards.  

 
Figure 1. CFTP Development Board (From Ref. [1]). 

 

 The two FPGA chips on the Flight Board are Xilinx Virtex I QPro Radiation 

Hardened FPGAs, with the specific Xilinx device number XQVR600 [6].  Table 1 shows 

the specifications for three Xilinx devices, showing where the XQVR600 falls with 

respect to other available devices.  This highlights the number of programmable assets 

available within these FPGAs.  Though the XQVR1000 would allow for larger and more 

complex designs, the XQVR600 was chosen due to architectural and costing constraints. 

 
Table 1. Xilinx RADHARD FPGA Gate Counts (From Ref. [6].) 
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The only difference between the Development Board and Flight Board, as 

previously mentioned in the introduction, are the FPGA chips; Development Board 

FPGAs are MILSPEC and the Flight Board FPGAs are RADHARD.  This difference 

resulted in different physical pin layouts between the two FPGA chips located on each 

printed circuit board.  On the Development Board, there exist 45 physical pin connections 

for the passing of data bits (one pin equals one bit) between the two FPGAs.  However, 

on the Flight Board there are only 43 pins available for the passing of data bits, and the 

pin layout is slightly different. 

 The physical difference in the pin assignments were specifically for the 

SelectMap processes performed by the Controller FPGA.  SelectMap is a hardware 

configuration mode that provides the fastest option for presenting data to an FPGA from 

a microprocessor [8].  Discussed in detail in Chapter III and Appendix B, the different 

pin numbers are assigned within the UCF files. 

A.   CONTROL FPGA 
 Also known as X1, this is the heart of the CFTP architecture.  It provides the 

necessary interface for operations and data flow between the Experiment FPGA, the 

PC/104 Bus and the ARM processor.  It controls the loading of an experiment’s 

configuration from the Flash Memory to the Experiment FPGA.  It is named the 

Controller FPGA because that is its overall function; to control the loading and running 

of experiments on the Experiment FPGA. 

The Controller FPGA also has the responsibility to perform periodic scrubbing, 

(comparing the configuration stored in the Flash Memory with the configuration loaded 

on the Experiment FPGA) and can reconfigure the Experiment FPGA if warranted.  The 

existence of a Controller FPGA provides a crucial capability for prospective 

experimenters; the ability to evaluate the reliability of space-born designs. 

B.   EXPERIMENT FPGA 
 Also known as X2, this is the FPGA for the implementation of specific fault-

tolerant circuits.  Designers can create a fault-tolerant circuit, implement it on the 

Experiment FPGA, and determine the ability of their design to function reliably as a 

standalone circuit.  The existence of two FPGAs is central to the philosophy of the CFTP  
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architecture.  In order to evaluate the reliability of a design, data produced from that 

design has to be evaluated.  More specifically, the integrity of the design’s configuration 

has to be monitored. 

SEUs are a problem for FPGAs, not just because data might be altered, but 

because the configuration can become corrupt and change the operation of a circuit.  It is 

this reason that the design of a circuit must implement some form of fault tolerance to 

mitigate, if not completely eliminate, the effects of SEUs in data and by detecting 

repeated faults caused by configuration errors so as to initiate configuration repair. 

Note:  RADHARD FPGAs are tolerant to large total dose radiation exposure, but 

are just as susceptible to SEUs as are non-RADHARD versions. 

C.   PC/104 BUS 

The PC/104 bus is an 8-bit data bus, version 2.4, and is a trademark of the 

Embedded Consortium [5].  This is the interface between the Controller FPGA and the 

ARM processor.  This is where data is transferred, and more importantly, it is the avenue 

through which the FPGAs are configured.  A total of 104 signal contacts exist, though 

only 8 (8-bits) are for data transfers to and from an experiment.  The other 96 pins are 

dedicated for functions such as handshaking between the PC/104 and X1, and other 

programming and loading processes. 

D.   EEPROM 
 This is a Xilinx component, XC18V04, and holds the initial configuration for X1, 

the Controller FPGA [4].  The purpose of this device is to configure X1 upon initial boot 

up for the CFTP architecture.  The load within the EEPROM can not be changed once the 

Flight Board is attached to the satellite. 

E.   FLASH MEMORY 
 This device is an Intel Flash Configuration Memory (TE28F320C3), and is where 

the configurations for experiments to be implemented onto X2 are stored [4].  There is 

enough space in this memory module to store four separate configurations specifically for 

X2. 

F.   ARM PROCESSOR 
The ARM processor is installed on a printed circuit board separate from the 

FPGAs, with a direct connection to the PC/104 bus.  This is the interface between the 
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satellite and the two FPGAs, via the PC/104 bus.  The ARM processor stores the 

programs that write and read to/from X1, and provides temporary storage of output data 

files, as well as the configurations for both X1 and X2. 

The operating system on the ARM processor is an embedded Linux operating 

system that handles the various aforementioned processes.  Various shell scripts and C-

code programs have been developed to read data from the PC/104 bus, and to load 

configurations across the PC/104 bus for X1 and X2.  One of the important processes the 

ARM must manage is a read program that performs constant polling to detect when data 

becomes available for reading on the PC/104 bus.  Another important process the ARM 

manages is a write program that is invoked by the ARM to program X1 with its 

configuration file.  The ARM uses this process to write data across the PC/104 bus and 

onto X1. 

Without the ARM, it would not be possible to program X1 or X2, nor would it be 

possible to collect data from experiments on X2 and to pass that data to the satellite 

computer for eventual downlink to Earth.  The two ARM processors on the Flight and 

Development Boards are identical and differ only in the number of processes they are 

required to run.  These differences do not affect how experiments are designed, or how 

the code for X1 is implemented. 

G. SDRAM 
 This is a memory module available for the use of experiments on X2.  Total 

random access memory (RAM) available is 16 megabytes (16 MB). 

H. CHAPTER SUMMARY 
This chapter provided an overview of the organization of the CFTP architecture 

and its functionality.  Very brief explanations of only the primary components were 

provided.  The next chapter details the VHDL code that programs X1 into a controller.  

Also covered are considerations for future CFTP designers when developing code for 

programming an experiment onto X2. 
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III. MODIFYING CODE 

VHDL (Very high speed integrated circuit Hardware Description Language) code 

describing the functions of the Controller, X1, has been developed and tested over the 

past years and is largely reliable.  This VHDL code provides specific functions, all of 

which will be covered in this chapter.  An understanding of the functionality of all the 

VHDL modules is essential as prospective experimenters are required to make minor 

modifications to three of the six modules that make up the VHDL code for X1 so that it 

will properly interface with their experiments. 

The primary purpose of the Controller is to control the implementation and 

evaluation of experiments on X2, and it is arguably the most important component of the 

CFTP architecture.  Without proper operation of X1, data from the experiments can not 

be collected.  Although a designer should fully develop and test an experiment before 

making any modifications to X1, the functionality and required modifications to its 

VHDL code are covered first because of its importance.  Section B provides some 

important considerations for the development of experiments for X2. 

Beyond its purpose mentioned above, the Controller can also be modified to 

provide data to a circuit implemented on X2.  This requires the designer to create and 

implement a new module, or a new process within an existing module, within the 

Controller code for X1.  Chapter 4 provides methods for accomplishing this, as well as 

other scenarios describing how the Controller code can be modified to aid in the 

evaluation of circuits implemented on X2.  This chapter limits its scope to the code that 

defines the Controller. 

A.   CONTROLLER 
The required capabilities of the Controller go beyond the simple functionality of a 

“pipe” for data transfer.  Not only does the Controller transfer data, it controls the rate at 

which that data is transferred.  More importantly, the Controller is designed to configure 

X2, the Experiment FPGA, as well as to perform periodic scrubbing and reconfiguration 

of X2 [4]. 



The VHDL code for the Controller is separated into six modules, as shown in 

Figure 2. These modules are; the Top Level module, which instantiates the other five 

modules and provides specific signal assignments, the X2 Interface, which contains the 

processes by which the two chips interface, the PC/104 Interface module, which provides 

the processes for data transfer across the PC/104 bus, two SelectMap modules, which 

provide processes for the loading and comparing of configurations, and a Clock 

Generator module, which performs clock division. 

 

 

Figure 2. Graphical Depiction of X1 Modules with X2 (From Ref. [1].) 
 

1. Top Level 
As mentioned, aside from instantiation of the other five modules, the primary 

purpose of the top level code, named top_level.vhd, is simply signal assignment for the 

various modules.  Prospective designers will only need to modify signals to suite the 

needs of an experiment within three sections in the top level code.  Appendix B shows 

the specific sections of code containing the signals to be modified, with approximate line 

numbers denoting where the sections are located, within top_level.vhd.  As is noted again 
10 
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in subsection 2 for emphasis, these signal names exactly match the signal names in the 

port section of the X2 interface.  Chapter V provides an example experiment which 

shows how these signals are named. 

An important signal within the top level code that designers will not alter is the 

specific clock signal assignment.  It is vital to have a full understanding of this clocking 

signal and how it can potentially affect design decisions for experiments. 

The primary oscillator for the Flight and Development Boards comes from  the 

ARM processor, and runs at 51 megahertz (MHz).  This speed presented an early 

engineering dilemma for the CFTP team.  Xilinx’s application note 138 titled “Virtex 

FPGA Series Configuration and Readback” states that the SelectMap process can not 

perform simultaneous configurations of two devices at speeds equal to or greater than 50 

MHz [7].  As a result of this constraint, the design decision was ultimately made to run 

all modules on the Controller at half the speed of the primary oscillator, using clock 

division performed via the clock generator module, discussed in subsection 7.  The 

decision to clock-divide the primary oscillator by two, rather than fractional division to 

provide greater speed, was made in favor of simplicity.  All of the Controller’s VHDL 

modules run off this clock-divided signal, with the exception of initial clock signal 

coming into the top level module, because operating some modules at 51 MHz with the 

SelectMap modules at 25.5 MHz can lead significant timing problems. 

For most situations, the use of this clock signal on X1 does not affect the speed at 

which experiments operate on X2.  Designers can still use the primary oscillator and 

operate their circuits at 51 MHz.  Chapter 4 shows how the timing between the two 

FPGAs shape some of the design decisions for experiments, proving that circuits on X2 

can run at 51 MHz, and also providing a situation when X2 should be clock-divided to 

the same rate as X1. 

2. X2 Interface 
This VHDL module is the workhorse for X1, and it requires the greatest amount 

of modification by the designer.  Within this module, x2Int.vhd, the designer will 

determine the byte size of the data stream, as well as the data rate across the PC/104 bus.  
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This module also determines how often a SelectMap read-back occurs, and when a 

SelectMap reconfiguration should take place. 

The first consideration of any designer when modifying X1 should be the naming 

of signals to properly describe what type of data the experiment produces.  It is worth 

emphasizing that any signal names modified within the primary port section of X1 must 

also be modified within three sections of the file “top_level.vhd.”  A complete listing of 

the X2 interface code is located in Appendix B for reference. 

Once the proper signal-naming is complete, the designer next should consider 

what level of handshaking is required between the two FPGAs, if any at all.  Because the 

two chips are synchronous, (their clocking signals are derived from the same 51 MHz 

oscillator), specific handshaking is not required, as is shown in Chapter 4, to transfer data 

from X2 across X1 and onto the PC/104 bus.  The most common handshaking signal 

employed is an error-occurrence signal.  This allows X1 to read data from X2 and write it 

to the PC/104 bus only upon the occurrence of a specific event.  It is left up to the 

designer when the circuit on X2 should assert this specific signal high – perhaps upon the 

occurrence of a data error, or perhaps when the circuit finishes a calculation. 

The module x2Int.vhd receives a reset signal from the top level code, named 

“RESET_i” in the x2Int.vhd port signal names, which resets all signals and vectors to 

predetermined values, defined within the behavioral of x2Int.vhd, when this signal goes 

high.  The same purpose for X2 is served with the signal name 

“DATA_TO_X2_RESET_o.”  This signal is the same reset signal mentioned above, and 

both are derived from X1’s clock.  Therefore this is a synchronous signal, and sending it 

to X2 to start X2’s processes in the same manner it is used to start the processes within 

X1, ensures that circuits running on both FPGAs are synchronized.  Chapter IV details 

the importance of implementing this simple programming procedure. 

Next the data size, the number of bytes to be transferred per write cycle, must be 

modified within x2Int.vhd to match the requirements of the experiment in X2.  There are 

two variables with the X2 interface module which determine the data rate across the 

PC/104 bus.  One variable determines the data size, and the other variable determines the 



sampling rate.  The sampling rate is defined as such; the periodicity at which X1 reads 

data from X2 and writes that data to the PC/104 bus. 

The data rate, (refer to Chapter IV, “Timing,” for the maximum safe data rate), is 

determined by multiplying the sampling rate times the data size.  The sampling rate is set 

by changing the integer value assigned to a constant signal within x2Int.vhd, as below. 

CONSTANT   ERR_RPT_TIME     : integer := 38250000; 

A process within x2Int.vhd uses this number as the final value of an internal 

counter.  The counter increments on the 25.5 MHz clock, and when the count equals the 

constant ERR_RPT_TIME, the X2 interface module reads the appropriate signals for any 

data produced by X2, and the count resets to zero.  The sampling rate is therefore 

determined as follows: 

25.5MHz =Sample Rate
ERR_RPT_TIME

 

Also, when the count equals “ERR_RPT_TIME,” a vector of bytes, the length of 

which is determined by the designer, is written to X1’s output signals.  The number of 

bytes written at each sample is determined by setting an integer value assigned to a 

constant signal. 

CONSTANT   REPORT_OUT_LENGTH  : integer := 15; 

The last two considerations for the experimenter are how often to perform a 

SelectMap read-back of the configuration of X2, and when a reconfiguration should take 

place.  The standard within the CFTP development environment has been to perform a 

read-back of X2’s configuration and compare it to the contents of the flash every 30 

seconds.  This timing is also determined through the use of a counter operating on the 

25.5 MHz clock signal.  The final value of this counter is another constant signal that can 

be modified by the designer if needed. 

CONSTANT   DLY_TIME  : integer := 765000000; 

Dividing this integer into 25.5 MHz yields the resulting timing for a read-back.  In 

this case, 25,500,000 divided by 765,000,000 yields a rate of 0.0333 Hz.  This translates 

to a read-back every 30 seconds. 

13 
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Performing read-backs and comparing configurations every 30 seconds has not 

proven detrimental to the operations of X1 or X2.  It is a relatively quick process, it does 

not interrupt operations of the circuit implemented on X2, and provides assurance that a 

configuration error will be caught and corrected in a timely fashion.  To further guarantee 

the integrity of X2’s configuration, the X2 interface can also initiate a reconfiguration if a 

certain number of data errors accumulate. 

The number of data errors from the output of X2 is another threshold that can be 

set by the experimenter.  The basic principle behind redundant computing allows for the 

occurrence and correction of data errors.  Configuration errors on the other hand will 

cause repeated occurrence of the same data error, thus, repeated data errors are an 

indication of a potential configuration error.  Therefore it must be decided when enough 

data errors have occurred such that the circuit should be reconfigured.  The constant 

signal for that threshold within X2 is named “err_cnt,” appropriately, and is a 24-bit 

standard logic vector.  The specific value assigned to the threshold for this signal is 

located towards the end of the x2Int.vhd code, within an “IF” statement.  The experiment 

implemented on X2 must define and calculate what this threshold should be; there is no 

definitive answer as experiments can vary greatly.  However, the current practice within 

the CFTP project has been to set this value to hex 80. 

3. Constraint File 
The constraint file for X1, named control.ucf, is where signals are assigned to the 

specific pin locations on the X1 FPGA.  All signal assignments within this file must 

exactly match the names of all signals within the port assignments in the top level code. 

The two different architectures within the CFTP program, the Development and 

Flight boards, only differ within this file.  As briefly mentioned on Chapter II, it is the 

physical pin assignments for the SelectMap processes that differ.  Care must be taken by 

CFTP designers to ensure that the proper constraint file is being used for the Flight Board 

or Development Board.  Though using the incorrect ucf-file is a mistake easily made, it is 

also just as simple to confirm that the correct ucf-file is being used.  The top of each file 

is clearly commented on the top line as being designed for the Flight or Development 

Board, and deep into the files there exist comments denoting pin differences. 
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For the Development Board, two pins are available for assignment as the primary 

input clock for the top level code as there are two clocks available for use, a 50 and a 51 

MHz clock.  The example constraint file located in Appendix B points this out.  For the 

Flight Board, the input clock assignment is straight forward as there is only one choice, 

the 51 MHz clock.  For simplicity and compatability with the Flight Board, it is highly 

recommended that only the 51 MHz clock be used for the Development Board. 

Lastly, the pin assignments between X1 and X2 for data flow must match in 

physical location, though the names themselves do not have to match exactly.  A level of 

confusion can present itself here in that some of the corresponding signals are not the 

same pin numbers within the X2 and X1 constraint files.  However, referring to the 

specific control.ucf code located in Appendix B, comments next to the respective line 

numbers within this file clearly denote how the signals correspond to one another.  Signal 

names within X1’s VHDL top level code must match the signal names in the X1 

constraint file, and signal names within X2’s VHDL top level code must match the signal 

names in the X2 constraint file. 

4. PC/104 Interface 
The sole purpose of this module, pc104IntArm.vhd, is to provide a means for 

interfacing between X1 and the PC/104 bus.  To accomplish this, the PC/104 interface 

module employs a FIFO (first in, first out) buffer.  This FIFO is 32-bits wide and 64-

words deep.  It was generated by CoreGen, an intellectual property of the Xilinx’s Project 

Navigator Software.  Experimenters are not required to make any modifications to this 

module. 

A “maximum safe data rate” exists across the PC/104 bus and is defined as: the 

maximum rate at which output can be written to the PC/104 bus without any loss of data.  

This maximum safe data rate is a CFTP architecture limitation vice a specific limitation 

of the PC/104 bus itself.  The interaction between the PC/104 Bus and the ARM 

processor, and specifically the processes running on the ARM, is what limits the data 

rate. 

The FIFO employed with the PC/104 interface module is designed to stop 

accepting data if it becomes full.  If the maximum rate at which the ARM can read is 
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exceeded, then data accumulates within the FIFO buffer.  If data accumulates to the 

maximum size of the FIFO buffer, then it stops accumulating data until more space is 

available.  This results in a loss of data.  The procedures for determining the maximum 

safe data rate are described in Chapter IV. 

The PC/104 bus is asynchronous therefore handshaking is employed to ensure 

proper data transfer.  These handshaking signals, employed within the X2 interface 

module, identify when the PC/104 is being written to and therefore in a busy state, when 

it is ready to be written to, ready to be read from, as well as a signal that acknowledges a 

read.  These four signals can be located in the port assignment section of “x2Int.vhd,” and 

their respective functions are clearly commented. 

5.  SelectMap Configure 

This module, SelectMap_config.vhd, performs the actual configuration of X2.  

When X1 is programmed with the Controller code described in this chapter, the first 

process executed is this module.  The SelectMap configuration module reads the flash 

memory, starting at address zero, and takes the first 900 kilo-bytes (KB) of the flash 

memory and loads it into X2.  It performs this process when commanded by the X2 

interface module.  Experimenters are not required to make any modifications to this 

module. 

6.  SelectMap Read Back 
This module, SelectMap_readback.vhd, also performs as its name implies; it reads 

the configuration data loaded in the flash memory and compares it to the actual 

configuration loaded into X2.  This process, known as scrubbing, is run periodically by 

the X2 interface module to ensure that the configuration in X2 has not been corrupted.  

This provides an extra layer of reliability to a fault-tolerant circuit programmed on X2.  

Experimenters are not required to make any modifications to this module, though they 

may wish to modify the interval at which scrubbing occurs. 

7.  Clock Generator 
The only function of this module, “clockGen.vhd,” is clock division of the 

primary oscillator, for reasons previously discussed.  Two clock signals are generated 

from this module, one at 25.5 MHz and one at 3.1875 MHz.  The specific assignment of 

the 25.5 MHz signal occurs with the top level module, “top_level.vhd,” and is named 
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“s_clock.”  The 3.1875 MHz signal is provided as a convenience for designers who might 

require a slower clock.  It is also assigned within “top_level.vhd” and is named 

“s_clock_x2.”  Designers are not required to make any modifications to this module. 

B. EXPERIMENT 
Prospective designers, when creating a circuit for the Experiment FPGA, have to 

first decide if the design will be created via CAD software, or if the design can be created 

via command-line editing in VHDL exclusively.  If the design requires the use of 

schematics, then CAD software will be used.  However, even if the design is exclusively 

created using VHDL, CAD software should be used unless the designer is an 

accomplished VHDL programmer.  CAD software gives, in addition to a user friendly 

compiler, ready access to simulations which can be invaluable in verifying the proper 

operation of a circuit.  The CFTP team has a license with the following software 

programs; 1) Xilinx’s Project Navigator for project creations, compiling, place and route 

and mapping onto an FPGA.  2) ModelSim by Mentor Graphics for circuit simulation. 

1. Implementation 
Once a design has been successfully compiled and simulated, it must be 

implemented; the circuit has to be mapped, placed and routed onto the FPGA.  All of the 

CLBs (configurable logic blocks) have to be configured to perform the desired operations 

of a prospective circuit.  This is accomplished within Project Navigator with the 

command “Implement Design.”  If performed within Project Navigator, this will produce 

a file with an “.ncd” extension.  This “experiment.ncd” file will need further 

modification, which is accomplished within the Linux operating environment on the 

CFTP server (see Appendix A for details).  It is vitally important that any circuit created 

for implementation onto X2 has a constraint file (experiment.ucf) added as a source to 

the respective project within Project Navigator BEFORE running “Implement Design.” 

2. Flash File 
The final file from any experiment to be implemented onto X2 is known as a flash 

file within the CFTP development environment, and has an “.fwr” file extension.  This 

file is either created from the Project Navigator .ncd file or directly within Linux if 

command line editing of VHDL was used as the development process (See Appendix A).  

Whatever method is employed, this “experiment.fwr” file is what will be written to the 
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flash.  It is the file that contains X2’s final configuration.  This is the file that X1 will use 

to program X2 and to verify the integrity of X2’s configuration by using the SelectMap 

modules within X1. 

3. Constraints 
When creating a circuit for X2, there are a few constraints that the designer must 

consider for proper operation on either CFTP stack (Development or Flight).  The 

number of pins available for data transfer between X1 and X2 vary slightly depending 

upon which specific architecture is used.  If using the Flight Board, then 43 pins (43 bits) 

are available for data transfer between the two chips.  However, if using the Development 

Board, then 45 pins (45 bits) are available.  It is recommended that developers only use 

43 pins when designing circuits for either stack as that is all that is available for space-

born experiments.  However, the extra two pins are available for the Development Board 

should a developer need those for specific trouble shooting. 

Appendices A and B cover in detail how these pins are assigned.  Developers 

must modify two constraint files (.ucf files); one for the Experiment design and one for 

the Controller design.  Though the signal names within each file for each pin do not have 

to match by name, they must exactly match functionally.  For example, output from X2 

could be named “mult_out” for X2’s constraint file, while that same signal could be 

named “input_from_X2” within X1’s constraint file.  These signals much match by pin 

number, and comments within the constraint files show how the pins on the two chips are 

connected by means of the circuit-board wiring.  

A design policy within the CFTP project that experimenters should adhere to is: 

all signals traveling between X1 and X2, in the initial input or final output, must pass 

through clocked registers.  In addition to being a policy within the CFTP project, using 

registers to collect data is an example of good programming as it ensures timing 

constraints are met which preserves the integrity of data. This requirement is discussed in 

Chapter IV. 
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C. CHAPTER SUMMARY 
This chapter covered the inner-workings of the modules that comprise the circuit 

for X1, as well as some important considerations when developing code for experiments 

on X2.  The next chapter provides a detailed analysis of timing within the CFTP 

architecture, and shows how the maximum safe data rate was determined. 
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IV. TIMING 

Timing within the CFTP architecture, for both the Development and Flight Board, 

has required designers to carefully set values for counters that control the sampling rate 

within the Controller to ensure accurate data flow through the PC/104 bus.  Even though 

no specific timing issues have been formally documented, it has been common practice 

within the CFTP team to keep the data rate low to prevent large accumulations of output 

data. 

This chapter explores and subsequently demonstrates the maximum safe data rates 

that can be achieved across the PC/104 bus.  As will be shown, this is not a limitation of 

the FPGA chips themselves.  Data can be transferred between the two chips at the full 

rate of the oscillator.  This maximum safe data rate limitation exists due to the interaction 

between the PC/104 bus and the ARM processor.  This thesis defines the maximum safe 

data rate as: the maximum rate at which output from X2 can be transferred across the 

PC/104 bus without the loss of any data. 

Though this chapter establishes a maximum safe data rate, it is also important to 

note that this data rate can change.  The other processes running on the ARM limit the 

ability of the ARM to perform reads on the PC/104 bus.  If processes within the ARM are 

added, removed, or altered, then the maximum safe data rate will change. 

In general, experimenters have not been concerned with recording large volumes 

of sequential data produced by X2 at a high clock rate because most often the only 

important results are data that show the detection and/or correction of an SEU within a 

redundant circuit.  Designers have generally verified results by one of three methods: 

comparing intermediate values derived from simulations, comparing a final result derived 

from several iterations (ignoring the intermediate values that lead to a final result), or 

comparing results by exception (output occurs only if triggered by a specific event). 

This chapter demonstrates the procedures required to record sequential data 

produced from X2 and, in the process, determines the maximum safe data rate.  This 

chapter also explores synchronization of the two FPGA chips, specifically addressing the 
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presence of clock skew between the two chips, showing through mathematical and 

empirical analysis that the clock skew is manageable at the full clock rate of 51 MHZ.  

A. CONTROLLER FUNCTIONS 
Beyond the primary responsibilities of the Controller, there are four plausible 

scenarios for which the Controller can be programmed to facilitate the evaluation of 

experiments implemented on X2.  All four of these scenarios are driven by timing – how 

the primary oscillator is used to drive the timing requirements of the circuits on X1 and 

X2.  Of these four scenarios discussed in this section, three were implemented in support 

of experiments discussed in this chapter, and those results are included.  The fourth 

scenario is left to future designers for potential implementation. 

1. Sampling Data 
Circuits implemented on X2 can operate and produce data at the full rate, 51 

MHz, of the primary oscillator.  Because all of the modules on X1, except for the top 

level module, are clocked at 25.5 MHz, the data output from X2 must be sampled.  This 

is demonstrated towards the end of Section C, and the methods for assigning the 

sampling rate have already been discussed in Chapter III.  

2. Clock Dividing X2 
A circuit on X2 can be clock-divided for a myriad of reasons.  One scenario that 

requires clock-division within X2 is when a designer wishes to view all data produced 

from an experiment in sequential order, rather than just a sampling of that data.  To 

accomplish this, the designer slows the circuit on X2 down to the sampling rate on X1, 

such that X1 is reading at the same rate that the circuit on X2 is writing data.  To do this, 

two levels of clock-division are required for the experiment; once down to the 25.5 MHz 

clock so that the two FPGAs run at the same rate, and the second division equal to the 

signal ERR_RPT_TIME discussed in Chapter III, so that the data can be passed through 

the ARM processor.  This method is demonstrated in Section C. 

3. New Module for X1 
Another method available to evaluate circuits is by creating a copy of the circuit 

on X2 and implementing it on X1 in a new module clocked at 51 MHz while the other 

preexisting modules on X1 remain at 25.5 MHz, and then using a voter clocked at 51 

MHz to compare the outputs of the duplicate circuits.  Then, if no errors are reported 
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from the voters on X2 and X1, the designer has increased assurance of correct data.  This 

method still requires the final output of data across the PC/104 bus to be sampled as in 

method 1, but that sampling will contain two streams of data from two voters. 

This method is employed in this chapter on a small scale using simple counters.  

A more interesting and complex example of this method can be reviewed in the 

Dissertation by Josh Snodgrass, where the Cordic algorithm is implemented on both X1 

and X2 [10] 

4. Buffer on X1 
Another design consideration that would allow all sequential data to be collected 

from a circuit on X2 running at 51 MHz is the implementation of a buffer on X1 that 

would temporarily store data.  To implement this scenario, the circuit on X2 would need 

to be programmed to run for a certain time period then go into a wait state.  The 

maximum safe data rate still can not be exceeded.  The circuit on X2 would need to wait 

for the data within the buffer on X1 to be read before more data could be written.  This 

method has not been explored by the author, although the FIFO discussed earlier provides 

this capability. 

B. DATA RATE 
To determine the maximum safe data rate within the CFTP architecture, 

experiments were conducted in two phases.  The first phase involved a simple design that 

was implemented on X1, temporarily removing X2 from the equation.  This isolation of 

X1 simplified the design process and allowed for direct data collection through clock 

division.  The second phase involves the implementation of the same experiment on X2, 

comparing the outputs of both X1 and X2 on both chips concurrently, and subsequently 

directing all outputs across the PC/104 bus.  The second phase is important as it 

demonstrates that sequential data can be produced concurrently by both chips.  In other 

words, phase two demonstrates that it is possible to synchronize both FPGAs such that 

they produce the same sequential data at the full rate of the CFTP oscillator, 51 MHz, 

without any handshaking.  Phase two addresses the issues of clock skew. 

1. Phase One 
A simple counter was implemented on the Controller, located within the counter 

that controls the sampling rate, and its sequential output recorded.  Locating this counter 
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internal to the primary sampling rate counter within x2Int.vhd allowed for precise control 

over the rate at which the count is executed.  A counter was used for this experiment 

because the output of a counter simplifies the verification of any disruptions in data flow; 

a number out of sequence is relatively easy to locate. 

Referring to Table 2, the number of bytes outputted across the PC/104 bus 

remained constant throughout this phase, and the sampling rate, (defined in Chapter 3), 

was adjusted to achieve various data rates.  For the purposes of this phase of the 

experiment, as noted in Table 2, the sampling rate served as the effective clock rate of X1 

as no data was being produced from X2 for sampling.  The signal ERR_RPT_TIME, 

(also defined in Chapter 3), was adjusted to achieve the data rates noted in Table 2.  This 

signal was adjusted from a high sampling rate to a low sampling rate, incrementally, until 

no errors were detected in the output. 

To summarize; this experiment was designed such that adjusting the signal 

ERR_RPT_TIME directly changes the speed of the count, as well as the rate at which 

data is written to the PC/104 bus.  

As noted in the Observation section of Table 2, the higher data rates produce 

multiple, easy to recognize errors.  For all the test runs, the errors themselves are the 

same in that there are large gaps of missing numbers, followed by a continuation of the 

count.  The severity of these errors is directly related to the data rate; the higher data rates 

produce a greater number of errors and an earlier occurrence in the count sequence.  The 

higher data rates also produce a greater gap between numbers before the count sequence 

continues in the output. 
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ERR_RPT
_TIME 

Effective Clock 
Rate 

Bytes  Effective 
Data Rate
(bytes/sec) 

Observation 

None 51 MHz  15 765 M Multiple errors 

5,000 10.2 KHz 15 153 K Errors noted early in count 

12,000 4.25 KHz 15 63.75 K Errors noted later in the count 

25,000 2.04 KHz 15 30.6 K Less errors, occurring later 

51,000 1.0 KHz 15 15 K Less errors, occurring later 

102,000 500 Hz   (figure 3) 15 7.5 K Error at number 0227 

510,000 100 Hz   (figure 4) 15 1.5 K Error at number 0227 

1,020,000 50 Hz 15 750 Error at number 0227 

1,530,000 33.33 Hz   (figure 5) 15 500 Perfect Data – no errors noted 

2,550,000 20 Hz 15 300 Perfect Data – no errors noted 

Table 2. Data Rate Results from X1 Output. 
 

These results are indicative of the FIFO buffer performing its job correctly.  The 

FIFO buffer implemented within the PC/104 interface module, discussed in Chapter 3, is 

designed to stop accepting data when the capacity of the FIFO buffer is reached.  At data 

rates that are well above the limits of the CFTP architecture, it is not unexpected that that 

the FIFO buffer will reach its capacity much faster than at rates that are closer to, but still 

above, the data rate limits. 

Further inspection of the results in Table 2 reveals a pattern as the data rate was 

reduced closer to the limit; at 7500 bytes/sec (Bps) and lower, the first noted error began 

occurring at the same number.  Referring to Figures 3, 4, and 5, the output of the count 

should be sequential.  In other words, an error is defined as an interruption in the count 

sequence.  Figure 5 provides two separate streams of output data with no errors, while 

Figures 3 and 4 show two streams of data with red circles denoting the locations of an 

error. 



The red circle on the left data stream in Figure 3 denotes the first location of an 

error (interruption of sequential count) at number hex 0227.  Referring to the left data 

stream in Figure 4 on the following page, a red circle again shows the first error 

occurring at hex 0227.  Comparing the data within the red circles on the left in Figures 3 

and 4, the amount of missing data after number 0227, the gap before the count sequence 

resumes, is greater in Figure 3 than in Figure 4.  This clearly shows how the FIFO is able 

to recover quicker at slower data rates; the data in Figure 3 was output at a greater rate 

(7500 Bps) than the data in Figure 4 (1500 Bps).  For the data in Figure 4, the FIFO 

recovered quicker and hence, the gap before the count sequence resumes is significantly 

shorter. 
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Figure 3. Output from X1’s Counter at 7500 Bytes/sec 



Worth noting in Figures 3 and 4 are the data circled in red on the right side of the 

figures.  At the higher data rate, (7500 Bps), the output of Figure 3 shows a second error 

sooner than the output in Figure 4.  The lower data rate, (1500 Bps), for the data output of 

Figure 4 did not produce a second error until much later. 

 
Figure 4. Output from X1’s Counter at 1500 Bytes/sec 

 

Figure 5 shows output produced with no errors noted.  Though this figure only 

shows the first sequence and the sequence with the common trend, (error at number 0227, 

the output was run for several minutes producing thousands of lines of data, and no errors 

were noted.  Though this does not present irrefutable evidence that 500 Bps is the 

maximum safe data rate for the CFTP architecture, it is basis enough to conclude that the 
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noted data rate is slow enough for accurate data flow.  More importantly, designers 

should not exceed this data rate if assurance is desired that no data has been lost, (FIFO 

stops accepting data until its size is reduced), before being written to the PC/104 bus. 

  
Figure 5. Output from X1’s Counter at 500 Bytes/sec 

 

Though a maximum safe data rate of 500 Bps might initially appear to be a 

significant limitation, it is actually an acceptable parameter for the CFTP architecture.  

Because of memory limitations of the satellite platform, and available bandwidth with the 

uplink and downlink to the satellite, the amount of output data that can be collected at 

any one time is limited.  The data rate of 500 Bps is a limitation that must be considered 

by designers if assurance of data integrity is desired when developing experiments for the 
28 
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CFTP architecture.  However, the actual output collection rate might need to be slower 

due to other limitations in space, or differences among the demands of the ARM 

processor on the Flight Board or Development Board. 

2. Phase Two 
For phase two, a counter was created for implementation on X2 with a voter to 

compare the results of the counter from X1 with the counter on X2.  This was also done 

on X1; a voter added to compare X2’s counter output with the counter on X1.  To 

accomplish this, X1’s counter output was directed to X2, and X2’s counter output was 

directed to X1.  The voters on each circuit are identical; they compare the two counter 

outputs and report the number three if the counters differ, else the voters produce the 

number zero if the counter outputs agree. 

To synchronize the two voters on X1 and X2 only one signal needs to be passed 

from X1 to X2 – the reset signal discussed in Chapter III.  For this dual-counter 

experiment, the reset signal generated by X1’s top level VHDL module is passed to X2.  

This signal is also incorporated into the voter circuit on X2, initiating the count.  The 

same thing was already written into the code for the counter on X1.  This allows for 

synchronization of the two circuits upon initial startup. 

In order to achieve a data rate at the rate of the oscillator between the two FPGAs, 

the SelectMap processes were disabled within x2int.vhd.  This allowed the clock that 

runs the X2 interface module, located on X1, to be the 51 MHz oscillator instead of the 

25.5 MHz signal coming from the Clock Generator module, which is required for the 

SelectMap processes as mentioned on Chapter III. 

X1 can and normally does run off of two clocks, the primary oscillator signal, and 

the 25.5 MHz signal generated by the Clock Generator module.  Therefore, in normal 

operations, X2 can produce data at 51 MHz and X1 can read that data at 51 MHz, and 

then sample it and send it across the PC/104 bus as previously discussed.  For the 

purposes of this experiment only, all processes on X1 were clocked at 51 MHz to 

demonstrate that X1 and X2 can be synchronized without handshaking. 

Figure 6 shows the first output sequence achieved with a data transfer at 51 MHz 

between the two FPGA chips.  Even though the two counters are producing a count at 51 
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MHz, and the two voters are comparing those counts at the same rate, the output is only 

sampled because of the maximum safe data rate.  Specifically, the output shows the 

following, in order: 

1)  An error-counter located in X1 that will increment only if the voter in 

X1 or the voter in X2 reports a value other than “00.”  This value will remain at “00” 

unless one of the voters reports an error.  This error-counter is standard within X1 and is 

specifically addressed in Appendix B. 

 2)  The results from the Voter located in X1 – this will report “00” if both 

counter outputs from X1 and X2 agree, otherwise it will report “03” if the counts differ. 

 3)  The results from the Voter located in X2 – this will report “00” if both 

counter outputs from X1 and X2 agree, otherwise it will report “03” if the counts differ. 

 4)  The count from the Counter located in X1. 

 5)  The count from the Counter located in X2. 

 6)  A timestamp generated in the Top Level code within X1. 



 
Figure 6. Dual Counter Output at 170 Bytes/sec (sampling rate of 10 Hz) 

 

The output in Figure 6 clearly shows that data can be transferred at high rates 

across the two FPGA chips.  It also demonstrates that data produced from X2 can be 

verified at a much lower rate – sampled below the rate at which it is produced.  The data 

rate for the data produced in Figure 6 was set to 170 Bytes/sec by setting the signal 

ERR_RPT_TIME to 5,100,000.  This establishes the sampling rate to be 10 Hz.   The 

total number of bytes transferred per sample was 17; therefore the data rate produced is 

170 Bytes/sec.  However, the fact that no errors were detected verifies that the counters 

were running and transferring data between the two chips at the full rate of 51 MHz. 

The data in Figure 6 demonstrates that two circuits, located separately in each 

FPGA chip, can be synchronized to run at the same rate.  This synchronization phase of 
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the experiment was important for two reasons; one, it shows that data can be transferred 

between the two chips at the full rate of the oscillator, and two, it shows that clock skew 

is manageable, as discussed in section 3, below. 

 
Figure 7. Dual Counter Output at 173,400 Bytes/sec (sampling rate of 10.2 KHz) 

 

The data in Figure 7 provides more evidence why designers should keep the 

sampling rate within X1 low enough such that the data rate is below 500 Bps.  The data 

in Figure 7 was output across the PC/104 at 173,400 Bps – well above the maximum safe 

data rate.  Referring to the area circled in red, it is clear that some data is missing.  

Closely inspecting the count from the top portion of this figure down to this area in red, it 

is clear that the sampling rate set in X1 produced a number on every third count.  

However, the area in red shows a gap much larger than three counts.  This is evidence 
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that the FIFO buffer in the PC/104 interface module reached its capacity and stopped 

accepting data for a period of time.  This gap of data is lost, and in this scenario, a 

designer would not know what this data might have shown. 

 
Figure 8. Dual Counter Output at 867 MBytes/sec. 

 

Figure 8 shows data output at the full rate of the oscillator, 51 MHz, which is a 

data rate in this case of 867 Megabytes/sec.  This output illustrates the danger of 

programming X1 to write to the PC/104 bus in excess of the maximum safe data rate.  

The output in Figure 8 appears to be good output – the counts match and the voters do not 

report any errors.  However, as has been shown from the previous test results, data is 

missing from the output in Figure 8, even though it is not evident.  It has been 

demonstrated that at rates well above 500 Bps, the maximum data rate of the PC/104 Bus 

is exceeded and the FIFO Buffer stops accepting data when at capacity.  Though the data 

in Figure 8 is accurate, there are in fact thousands of bytes of missing data, which could 

be crucial to the evaluation of the reliability of a circuit.  If there were errors in this 

missing data, then the error counter, (left column in Figure 8), would produce a number, 

but the data would not be available for analysis. 
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3. Clock Skew 
Because the two FPGA chips on the CFTP architecture are run by the same 

oscillator, the potential exists for clock-skew caused errors.  Determining the precise 

clock skew over the short distance between the two chips is a non-trivial matter, though 

certainly not impossible.  However, if it can be shown that the clock skew is manageable, 

in other words, that the clock period inequality, Equation 1, is not violated, then the 

precise clock skew can be ignored for the purposes of experimental development.  This 

section shows, via mathematical and empirical analysis, that this is indeed the case, that 

any clock skew present is not large enough to be of concern when developing an 

experiment for implementation onto the CFTP architecture.  For mathematical analysis, 

the meta-stability equation was used, which is as follows: 

2 pdR pdLogic pdIB pdOB pdWiring sT S t t t t t t≥ + + + + + +  

In the meta-stability equation, also know as the clock period inequality, T stands 

for the clock period, which at 51 MHz is approximately 19.6 nanoseconds (ns), and  

stands for the clock skew, which is not known.  The purpose for multiplying clock skew 

times 2 is explained later.  For the remaining terms,  is the flip-flop gate delay,  

is the logic delay,  is the delay of input buffers and  is the delay of output 

buffers,  represents path delay for wiring, and finally, 

S

pdRt pdLogict

pdIBt pdOBt

pdWiringt st  is the flip-flop setup time. 

As mentioned at the end of Chapter III, it is policy within the CFTP project that 

signals passed between X1 and X2 must pass through clocked registers.  With this policy 

in mind, Figure 9 depicts how the terms within the clock period inequality apply to a 

signal passing from X2 to X1 regardless of how complex a circuit design might be on 

either chip.  Figure 9 is not to scale as the two D flip-flops are significantly enlarged for 

clarity.  The red arrows depict the path of the primary clock signal, and the data in the 

scenario depicted in Figure 9 is flowing from the D flip-flop on X2 to the D flip-flop on 

X1.  This scenario would be precisely the same for data flowing in the opposite direction; 

the labels for X1 and X2 could merely be swapped. 
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Figure 9. Clock Skew Signal Paths 

 

Values for the terms in the clock period inequality were determined via a 

synthesis report generated by the Xilinx compiler on the CFTP server, as well as within 

Xilinx’s Project Navigator [10].  Two synthesis reports for two separate designs on X2 

were reviewed, as well as a synthesis report for the typical circuit on X1, and the values 

for the terms were nearly identical for all the designs.  One of those reports was for the 

dual counter experiment in the phase 2 discussion in Section B of this chapter. 

Referring to Figure 9, the relation of each term from Equation 1 to a signal 

passing between X2 and X1 is depicted.  Note the omission of the logic delay,  , 

because all signals passing between X1 and X2 are the outputs of registers and only wires 

exist between the two chips.  The gate delay,  , is 1.372 nanoseconds (ns).  The input 

buffer delay,  , is 2.53ns and the output buffer delay,  , is 5.672ns.  The wiring 

delay between the buffers and the flip-flips,  , is 0.057ns, but the wiring delay 

between the two chips is an unknown quantity. 

pdLogict

pdRt

pdIBt pdOBt

pdWiringt
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 The setup time is defined as the time during which data input to a latch or flip 

must remain stable in order to guarantee the latched data is correct.  The synthesis report 

does not provide a specific value called setup time.  However, it does provide the delay of 

the signal at the D-input of the D flip-flop on X1, which is 0.84ns.  If you include the 

delay of this D-input to the flip-flop, it appears in the inequality just like the setup time.  

Thus, it was concluded that the setup time for the FPGA flip-flops is 0.84ns. 

As noted earlier, the skew is multiplied by 2 in the inequality.  This is done to 

account for a worst case scenario.  Referring to Figure 9, the path of the signal from the 

intersection circled in red to the input of a flip-flip represents the skew.  Multiplying this 

value by 2 ensures that the longer of those two paths is taken into account. 

Substituting the known values in Equation 1 and solving for S will yield a value 

for the allowable clock skew.  However, there is still one unknown that must be 

accounted for before doing so; the wiring delay between the two chips.  This unknown 

value can be conservatively estimated. 

The distance between the two FPGAs is within a few millimeters, and the 

propagation of signals along wires is often calculated at the speed of light.  To remain 

conservative, a distance of one centimeter is used, and one-half of the speed of light.  

This yields the following propagation delay between the two chips: 

8Travel Time = 0.01m 1.5*10 m/s = 0.0667ns  

Adding the values for each term, and omitting the logic delay and using three 

values for the wiring delay, the inequality is evaluated as follows: 

  19.6ns 2S+1.372ns + 2.53ns +5.672ns + (0.057ns + 0.057ns + 0.0667ns) + 0.84ns≥

Adding the known terms on the right side, subtracting them from the clock period 

on the left side, and then dividing by two, yields an allowable clock skew of 4.503ns. 

S 4.503ns≤  

Referring again to Figure 9, the travel time of the clocking signal from the 

intersection circled in red to the input of either flip-flop is likely to be quicker than 4ns.  
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To demonstrate this with another conservative calculation, a distance of ten centimeters is 

used this time with the same speed. 

8Travel Time = 0.1m 1.5*10 m/s = 0.667ns  

The signal from the intersection in Figure 9 must also pass through an input 

buffer, the delay of which was already determined to be 2.53ns, and the internal wiring 

delay was already determined to be 0.057ns.  Adding the three terms together yields a 

value of 3.254ns.   

As can be seen, even when using overly conservative values, it is likely that any 

skew between the two chips is not large enough to violate the clock period inequality.  

Further, phase 2 in Section B of this chapter provides empirical evidence that the 

inequality is not being violated. 

Using these two forms of analysis (mathematical and empirical) it is clear that 

clock skew between the two FPGAs is manageable and does not need to be accounted for 

when designing experiments for the CFTP architecture, provided that signals that pass 

between the two FPGAs are the outputs of registers and go directly to register inputs.  

Specifically, it was shown that X2 can write data at 51 MHz, and X1 can read that same 

data at 51 MHz without any specific handshaking signals denoting the availability of that 

data.  The only requirement for this to happen is the synchronization of the two chips 

with a reset signal generated by X1’s top level module upon the initial startup of both 

circuits. 

C. CLOCK DIVISION 
This section shows that precise, sequential data can be produced from X2 and 

output across the PC/104 bus as long as the circuit on X2 outputs data within the 

constraints of the maximum safe data rate.  Producing sequential data from X2 is 

performed by implementing a circuit on X2 that runs at the same clock rate as the 

sampling rate on X1.  In other words, ERR_RPT_TIME which sets the sampling rate 

should be equal to the clock division on X2, provided that X2 has already been clock 

divided to 25.5 MHz, for reasons discussed in section 2 below.  As will be shown, using 

the reset signal discussed in Chapter III and equal clock-division on the two chips, 
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precise sequential data can be produced on the output across the PC/104 bus without any 

handshaking between the two chips. 

1. Circuit Design 
The circuit designed to demonstrate this synchronous capability of the two FPGA 

chips is the same circuit that is discussed in detail in Chapter V, An Example Experiment, 

and shown in the block diagram of Figure 10 below.  This circuit, implemented on X2, 

employs the TMR design that has become commonplace within CFTP experiments.  

However, this circuit was also designed to provide an output that is easy to verify as 

correct or erroneous. 

 
Figure 10. TMR Multiplier 

 

Though the circuit is discussed in Chapter V, a review of the output produced is 

necessary for this section.  This circuit, named “TMR Multiplier,” produces six distinct 

data outputs, four of which are illustrated in the block diagram of Figure 10, in the 

following order from left to right: error report that increments if either voter reports an 

error, a voter error report from the counter voter (Cnt_check), a voter error report from 

the multiplier voter (Mult_check), the counter output from the counter voter (Count), the 

multiplier output from the multiplier voter (Count Squared), and the standard timestamp 

produced by the top level module within X1. 
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The output of this circuit makes it easy to verify proper operation.  The count can 

be squared, and that should equal the multiplier result. 

2. Clock Division 
Because many of the modules on X1 run at 25.5 MHz, any circuit implemented 

on X2 must be initially clock-divided down to 25.5 MHz if the two chips are to be 

synchronized.  For most experiments implemented on the CFTP architecture, X2 is not 

normally clock divided.  The following discussion on clock division within X2 is 

provided should future designers desire to run both chips at a reduced clock rate.  This is 

required only if there is a desire to produce precise, sequential data from a circuit on X2, 

across X1, then across the PC/104 bus. 

  Synchronizing the two chips by speeding X1 back up to 51 MHz, as was done 

for the dual counters, would not allow the SelectMap processes to properly run (see 

Chapter III).  Therefore, the initial clock signal coming into the circuit on X2 is clock-

divided down to 25.5 MHz.  The timing diagram in Figure 11 provides a simple 

illustration of this clock division. 

 
51 MHz 
Clock 

 
 

25.5 MHz 
Clock 

 
Figure 11. 25.5 MHz Timing Diagram. 

 

The next level of clock division was set to match the value of the signal 

ERR_RPT_TIME located in x2Int.vhd.  Clarification of how this signal works is required 

at this point.  As mentioned in Chapter 3, clock-division on X2 is not required to get 

accurate data output across X1 and the PC/104 bus.  What is required is that the constant 

signal ERR_RPT_TIME within x2Int.vhd is set to a value low enough to ensure the 

maximum safe data rate is not exceeded.  The constant signal ERR_RPT_TIME 

determines the sampling rate – the rate at which data is read within X1 and subsequently 

written to the PC/104 bus. 
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For this particular experiment, X2 is clock-divided twice; once to match the 25.5 

MHz clock signal on X1, and again to match the sampling rate, set by adjusting 

ERR_RPT_TIME.  As a result of these adjustments, functionally X1 is no longer 

sampling data; rather, X1 is reading and writing data at the rate of the clock on X2.  The 

dual-counter experiment demonstrated that X1 and X2 could operate synchronously at 51 

MHz.  This experiment shows that the two chips can operate synchronously under equal 

clock-division. 

3. The Results 
Several iterations of clock-division were implemented on the TMR Multiplier on 

X2, with each change accompanied by a change to the constant signal ERR_RPT_TIME 

in x2Int.vhd on X1.  The results provide more solid evidence that the two chips can be 

synchronized, and shows that handshaking is not required to get precise, sequential data 

from a circuit on X2.  Referring to Table 3, the results also provide more evidence that 

the maximum safe data rate for the CFTP architecture is approximately 500 Bps.  The 

clock divisions shown in Table 3 are divisions on both chips beyond the initial division 

down to 25.5 MHz.   

 

Clock 
Division 

Effective Clock 
Rate 

Bytes  Effective 
Data Rate
(bytes/sec) 

Observation 

1,020,000 25 Hz 18 450 No errors, sequential count 

10,200,000 2.5 Hz 18 45 No errors, sequential count 

38,250,000 0.667 Hz 18 12 No errors, sequential count 

76,500,000 0.337 Hz 18 6 No errors, sequential count 

510,000 50 Hz 18 900 Missing data beyond hex 95 

Table 3. Data Rate Results from TMR Multiplier. 
 

The output in Figure 12 was generated with both X1 and X2 operating at 25 Hz, 

which in this case equates to a data rate across the PC/104 bus of 450 Bps.  Because the 

counters for the TMR Multiplier are designed to restart after reaching hex FF, it is 



relatively simple to inspect the output data for errors.  The data in Figure 12 was 

reviewed extensively, and no errors were noted.   

 
Figure 12. Output from TMR Multiplier at 450 Bytes/sec. 

 

Figure 13 shows data produced by X2 at 900 Bps, significantly higher than the 

established maximum safe data rate.  X1 was adjusted to read at the same rate, and the 

results show once again that the two chips can operate synchronously.  The data in Figure 

13 also shows that 900 Bps is in excess of the maximum safe data rate.  Looking at the 

red circle, data is missing.  This is the same symptoms noted from running the counter on 

X1 at a rate that is too high. 
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Figure 13. Output from TMR Multiplier at 900 Bytes/sec. 

 
 
4. Sampling Data 
In order to demonstrate that a circuit can be run on X2 at 51 MHz and its data 

collected by X1 running at 25.5 MHz, producing X2’s data at an even slower sampling 

rate, the clock-division was removed from the TMR multiplier.  Figure 14 below is the 

result of running the TMR multiplier at 51 MHz while its data was collected by X1 at 

only 0.667 Hz.  To verify the correctness of this data, one of the results next to “Count” 

can be squared, and it will equal the result next to “Count Squared.”  Note that the results 

in Figure 14 are in hexadecimal format. 
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Figure 14. TMR Multiplier at 51 MHz with Sampled Output at 0.667 Hz 
 

 
5. Final Analysis 
The results from the experiments conducted in this chapter are significant.  These 

results clearly show that the two FPGAs can be programmed to read and write 

synchronously without any handshaking.  Specifically, X1 can be programmed to simply 

read data from specific pins at the same rate that X2 is writing data to those same pins, 

and X1 will record that data without error.  These results therefore show that any clock 

skew present between the two chips is less than x ns, and that the clock skew inequality is 

not violated.  Further, actual clock skew between the two chips is not large enough for 

future designers on the CFTP team to have to account for when creating experiments. 

D. CHAPTER SUMMARY 
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This chapter provided the required detail for designers to understand that timing 

with the CFTP architecture is a vital consideration when designing experiments.  

Specifically, the maximum safe data rate must be taken into account, and if precise, 

sequential data is desired from X2, the circuit on X2 must be clock-divided to match the 
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sampling rate on X1.  The next chapter provides an example experiment, reviewing the 

process from beginning to end of how an experiment is implemented onto the CFTP 

architecture. 
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V. AN EXAMPLE EXPERIMENT 

To aid future designers to fully understand the process by which an experiment is 

designed and implemented on the CFTP architecture, an example experiment is provided.  

This chapter will cover the basics, from beginning to end, of the processes by which an 

experiment is created, the Controller code modified, and output collected.   

A. TRIPLE MODULAR REDUNDANCY 
The overriding philosophy behind any experiment created within the CFTP team 

is reliability.  Specifically, experiments are designed such that they not only can detect 

the occurrence of an SEU, but also they must be able to correct any erroneous data 

produced as a result of an SEU.  Though specific implementations have varied, the 

primary method that designers have used to provide this reliability is TMR (triple 

modular redundancy).  Circuits, or components within circuits, are produced in triplicate, 

and their outputs sent to a voter for comparison.  As long as two of the three outputs 

agree, the data is considered reliable.  This is how errors are detected and corrected.  The 

voter identifies data that does not agree with two other streams of data, then decides what 

is reliable and identifies the component that provided unreliable data. 

The circuit designed for this example experiment performs the functions 

described above; it employs TMR and provides data that shows if an error is detected and 

the specific component where that error occurred.  However, this experiment was not 

designed specifically to test the applicability of TMR.  This TMR Multiplier was 

designed with two goals in mind; one, to affectively demonstrate how a TMR experiment 

is implemented on the CFTP architecture, and two, to provide an output so that the CFTP 

team can verify proper operation of the Flight Board once in space. 

B. TMR MULTIPLIER 
One of the needs of the CFTP team is a circuit that is simple both in its operation 

and its output.  It is important to be able to simply confirm that the two FPGAs on the 

Flight Board in space are operational.  This circuit was designed with that requirement in 

mind.  However, in the event that this becomes the only operational circuit in flight, TMR 

was included so reliability could still be evaluated.  With these goals in mind, the TMR 
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Multiplier was designed to generate a count, square that count, and provide an output that 

verifies proper operation and the presence of any data errors. 

Referring to Figure 15, this circuit, the TMR Multiplier, generates its own input 

via the use of a counter.  The counter is produced in triplicate and the outputs voted.  The 

voter produces two outputs; the count and a 3-bit data steam that identifies if any of the 

counters disagreed.  It then takes this count and uses it for both inputs into a multiplier, 

thereby squaring the count.  The multiplier was also produced in triplicate, those outputs 

fed to a voter, and two data streams are produced from that voter.  As described in 

Chapter IV and shown in Figures 12, 13 and 14, five sets of data are produced by this 

circuit.  This provides a data stream that simplifies the identification of errors, and 

provides easy confirmation of proper operation. 

To further simplify the process of data verification, the counter not only counts in 

increments of one, base 16, from zero to “FF,” but it then resets to zero and restarts the 

count.  Section D provides details on the design of this circuit, to include how TMR 

works as well as the design decision behind the inclusion of registers, and Figure 15 

should be referred to extensively when reading that section. 

C. WORKING IN PROJECT NAVIGATOR 
Though some of the important steps are included, the following is not intended as 

a manual for the use of Xilinx’s Project Navigator [10].  A summary of the creation of the 

design within Project Navigator is included, but emphasis is on the specifics of the TMR 

Multiplier design followed by the required modifications of the Controller code to 

conform to the requirements of the experiment. 



 
Figure 15. TMR Multiplier Final Design 
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1. Creating a Design 
To begin the design process for this TMR Multiplier, a project was created in 

Xilinx’s Project Navigator.  When creating a design, the user begins by going to “File,” 

then selecting “New Project.”  After naming the project, it is important that the proper 

device and other options are chosen correctly.  Looking at Figure 16, these are the 

options that should always be chosen for all projects created for the CFTP architecture, 

assuming the use of a Virtex I chip.  Should future CFTP projects include the use of a 

later Virtex part (Virtex II or III or IV), then these options will change slightly. 

For the current CFTP architecture, the options chosen are specific to the Virtex I 

chips; xqv600, cb228, and speed -4.  These options are the same both the Flight and 

Development Boards.  After this step is complete, the user will then be sent to a window 

and asked if a new source is to be created for the project.  This step can be skipped and 

the user can add new sources in the Process View window. 

 
Figure 16. Project Options in Xilinx’s Project Navigator [10] 

 
 

2. Processes in Project Navigator 
In Figure 17, the process for editing/creating VHDL is shown, as well as the 

Process View window where sources can be added or created.  In this Process View 

window are two processes of note for designers; Synthesize – XST, and Create Schematic 

Symbol.  These two processes are also available for schematics.  Once the designer has 
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finished editing a VHDL file, or wiring a schematic, the component then needs to be 

synthesized (compiled), and a schematic symbol created for addition to a higher level 

schematic.  To perform either of these tasks, the specific component in the window, 

Sources in Project, must be highlighted. 

 
Figure 17. Working with VHDL in Project Navigator [10] 

 

The schematic for one of the registers from Figure 15 is included in Figure 18.  

Once all editing has been completed, and the schematic saved, the designer has to return 

to the window in Figure 16, highlight the component, and then synthesize and create a 

schematic symbol.  The result is the symbol located in Figure 15, “reg_8.”  This symbol 

was added to the top level schematic by clicking on the tab labeled “Symbols,” which can 

be seen in Figure 17. 
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Figure 18. Schematic for Register in TMR Multiplier Design [10] 

 
 

3. The Critical UCF Source 
To ensure an experiment can properly interface with X1 in the CFTP architecture, 

the designer must include the constraint file discussed in Chapter III as a source to the 

project.  This file is critical to the proper operation of an experiment within the CFTP 

architecture, because it identifies the FPGA pins with the signal names used in the design.  

The simplest way to get a constraint file is to copy one off of the CFTP server, then 

rename it specifically for the experiment (see Appendix A for detailed specifications of 

the path to the most current X1 ucf files for the Development and Flight Boards).  For the 

TMR Multiplier design, the constraint file was re-named “tmr_mutliplier.ucf.”  Once this 

file was copied to the same directory where all the other files are located for the project, it 

was simply added as a source to the project. 

Referring to Figure 19, once the constraint file has been added as a source to the 

project, it can then be edited by highlighting the file, then selecting “Edit Constraints 

(Text) in the process window.  While editing this file, it is suggested that the designer 
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have a copy of the constraint file for X1 available to ensure that the pins within the 

respective files are properly matched with respect to functionality.  See Appendix B for 

specifics. 

 
Figure 19. A portion of the Constraint File [10] 

 
 
D. DETAILS OF THE EXPERIMENT 

The design decisions behind the TMR Multiplier were driven by three important 

requirements, in addition to the goals stated in Section A:  self-generated input, ability to 

synchronize the circuit with X1, and an output that is easy to verify as correct. 

1. Input & Synchronization 
The counter provides self-generated input, and the TMR design is used on the 

counter to ensure a reliable input.  Using a counter as the input also allowed for a simple 

way to synchronize the circuit with X1.  As discussed in Chapter III, the top level code of 

X1 produces a reset signal upon the initial start up.  Referring to Figure 20, this signal, 
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aptly named “x1_reset,” is fed to each counter.  The counter is designed to begin the 

count at zero when this reset signal goes high.  Figure 21 shows the process for this, 

written in VHDL code. 

 
Figure 20. Reset Signal and TMR Counter 

 

 
Figure 21. VHDL Code for Counter. 

 
 

2. Voter Logic 
The voters, both for the counter output and multiplier output, were also produced 

via VHDL code.  Referring to the VHDL code in Figure 22, this is a simple process of 
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using “if statements” to determine which inputs agree, and assigning those to the output.  

This is data error correction, determining the output based upon an input where a 

majority (2 out of 3) agrees. 

’ 

Figure 22. Voter Logic 
 

The portion of the voter that provides the location of the component which 

produced the error is located in the output vector “count_check.”   If the voter logic 

detects that one of the inputs do not agree, or worse, that all three inputs disagree, then an 

appropriate signal is assigned to “count_check.”  For example, looking at the first “elsif” 

statement in Figure 22, if inputs one and two agree, but disagree with input three, then the 

output “result” is assigned with the majority input, and “count_check” is assigned the 

number three, signifying that counter number three is in error.  This voter logic was also 

used to determine the multiplier output, with the only difference being the signal names. 
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3. Multiplier & Pipelining 
The multiplier was created with one line of VHDL code; input “x” multiplied 

times input “y” is assigned to output “p.” 

p(23 downto 0) <= x(11 downto 0) * y(11 downto 0); 

This one simple line of code performs two functions.  First, Xilinx’s VHDL 

compiler will create a hardware multiplier, optimized by the compiler.  Second, it 

automatically creates a register to hold the product until the next clock signal. This is 

important because, as per Chapter III, all outputs produced in X2 needs to be held in a 

register.  Though the input from the counters are only 8 bits, they were converted to12 

bits to provide a 24-bit output merely to aid in data stream formatting on the final output. 

The VHDL compiler does not create a pipelined multiplier, and because the 

multiplier performs correctly at 51 MHz, pipelining internal to the multiplier was not 

required.  However, pipelining was needed in the top level schematic.  Referring back to 

Figure 14, two levels of registers were incorporated into the design.  Because the output 

of the multipliers and the output of the second voter are held in registers, the output of the 

first voter had to be slowed down by two clock cycles to ensure all data produced from 

X2 arrived at X1 on the same clock. 

To ensure complete reliability of the output of this circuit, the registers located in 

Figure 14 should also be produced in triplicate and the outputs voted.  However, this was 

not done for two reasons; as mentioned, this experiment was not designed as validation of 

TMR, and two, even within the philosophy of TMR, at some point a decision must be 

made when TMR will not be incorporated to prevent overly complex circuits or circuits 

that are too large.  Though not applicable to this circuit, at some point if too many 

components are duplicated, the design becomes too large and cumbersome.  Additionally, 

registers take up only a small portion of the chip, so the probability of a data error due to 

an SEU within a register is minimal. 

4. Signal Names 
Referring to Figure 18, the tmr_multiply.ucf file, it is critical that the signal names 

in this constraint file exactly match final naming of signals in the top level schematic, 

Figure 14.  This ensures that each signal is passed to the appropriate output pin on X2, 



55

which enables the passing of proper data to X1 and ultimately across the PC/104 bus onto 

the ARM processor. 

5. Sequential Data 
In keeping with one of the initial stated goals, to verify proper operation of this 

circuit it is important that data is collected in the precise order is it produced.  This 

provides verification that all components are functioning properly; the counters are 

verified if the count is produced sequentially, and the proper operation of the remaining 

components is verified via the normal TMR design principles. 

To accomplish sequential output, as mentioned in Chapter 4, the circuit on X2 

required the appropriate clock division.  Two modules located in Figure 14 accomplish 

this.  The module “clock_half” clock-divides the main clock down to the 25.5 MHz clock 

that drives the components on X1, and the module “clock_divider” can be adjusted to 

produce a signal at the same rate of the signal “ERR_RPT_TIME” located on X1, which 

is the sampling rate mentioned throughout this thesis. 

6. Finishing the Experiment 
The final step in Project Navigator, after the circuit has been simulated and 

checked for proper operation, is to “Implement” the design as discussed at the end of 

Chapter 3.  This function performs four processes in the following order; translate, map, 

and then place and route (PAR).  The translate process merges all of the input net-lists 

and design constraint information into one file.  The map process maps the design to the 

FPGA, creating the ncd file, discussed in section 7, below.  The PAR process takes this 

ncd file and performs the placing and routing of the design, connecting and routing all the 

wiring.  The PAR process does not produce a different file extension; it modifies the 

existing ncd file.  After this final step, the ncd file, in this case named multiply.ncd, will 

then be transferred to the CFTP server for two more processes, discussed in section 7, 

below. 

7. Flash File 
The last step for the experiment is to create a flash file, which is the configuration 

for X2 that will be stored on the flash memory module.  This is performed on the CFTP 

server with two programs: bitgenpersist.sh, and mkflash.sh.  The file that was transferred 

from the designer to the CFTP server has an “ncd” file extension.  At the completion of 
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the last two processes, the experiment file will have a “fwr” file extension.  The exact 

command line entries for these two processes are covered in detail in Appendix A. 

The reason for executing bitgenpersist.sh and mkflash.sh is to create a bit file; a 

file that contains the configuration of the FPGA chip.  The two processes accomplish this 

as bitgenperist.sh creates the bit file, and mkflash.sh strips off the headers, making the 

file ready for the loading of the configuration [1]. 

E. MODIFYING THE CONTROLLER 
As discussed in Chapter III, there are three VHDL modules within the Controller 

code (X1) that must be specifically modified by the designer; x2Int.vhd, top_level.vhd, 

and control.ucf.   This section will list the specific code modified for the TMR multiplier 

with an accompanying explanation. 

1. X2 Interface 
Within the file x2Int.vhd, the first changes to be made are the signal names going 

to or coming from X2, the experimental circuit.  For the TMR Multiplier, only one signal 

goes to X2, the rest are signals coming into X1, the Controller.  These signal names are 

located near the beginning of the code, and are easily identified as a result of the 

comments and the standard naming conventions discussed in Appendix A. 
-- FOR EXPERIMENTAL DESIGN, signals coming from and going to X2 

DATA_TO_X2_RESET_o :  out std_logic; 
DATA_FROM_X2_OUTPUT_i :  in std_logic_vector(31 downto 0); 
DATA_FROM_X2_MULTCHK_i :  in std_logic_vector(2 downto 0); 
DATA_FROM_X2_CNTCHK_i :  in std_logic_vector(2 downto 0); 

-------------------------------------------------------------------------------------------------- 
The first signal name, “DATA_TO_X2_RESET_o,” is the reset signal discussed 

in Chapter III that is generated via X1’s top level code.  This signal allows the circuits on 

X1 and X2 to begin at the same time. 

The signal name, “DATA_FROM_X2_OUTPUT_i,” is precisely what it implies; 

output generated from X2.  Notice, however, that the end of the signal name has an 

underscore with the letter “i.”  In accordance with the naming conventions for CFTP, this 

signifies an incoming signal to X1.  An underscore followed by the letter “o” was added 

to the outgoing reset signal as it is a signal that is outgoing from X1. 

There are two specific streams of data within the 32 bits of the output signal 

name.  This signal could have been broken up into those two streams of data, but for 
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programming simplicity, all the data was lumped into one 31-bit stream.  Recall that the 

TMR Multiplier design on X2 outputs the count as well as the result of that count 

squared.  The count is 8 bits and the square of the count is allotted 24 bits.  As long as the 

designer knows what portion of the 32-bit data stream belongs to the count and to the 

multiplier, then it can be sorted out in the output data stored on the ARM processor. 

This simplification of signal naming also allowed for simpler editing of the ucf 

file, which will be covered shortly. 

Flowing down through the code in sequence, the next decisions to be made by the 

designer is the frequency for SelectMap read-backs and the data rate across the PC/104 

bus. 
CONSTANT    DLY_TIME :  integer  := 765000000   -- 30 seconds 
--CONSTANT    ERR_RPT_TIME   :  integer  := 76500000  -- (0.337 Hz) 
CONSTANT    ERR_RPT_TIME   :  integer  := 38250000  -- (0.667 Hz) 
--CONSTANT    ERR_RPT_TIME   :  integer  := 10200000  -- (2.5 Hz) 
--CONSTANT    ERR_RPT_TIME   :  integer  := 1020000  -- (25 Hz) 

The signal DLY_TIME is the rate at which a SelectMap read-back occurs.  The 

standard within the CFTP development environment has been to leave this at 30-second 

intervals.  It can be changed to suit the needs of specific experiments.  The signal 

ERR_RPT_TIME is how the sampling rate is set (recall discussion from Chapter III).  

Above are four examples of data rates utilized for the output of the TMR Multiplier.  

Three of the sampling rates remain commented out of the code (in blue).  The final one 

used for flight is uncommented and it generates an output every 1.5 seconds. 

Recall also from Chapter III that the data rate across the PC/104 bus is determined 

by multiplying the sampling rate times the number of bytes to be transferred across the 

PC/104 bus per write cycle.  The signal RPT_OUT_LENGTH is where this integer is set, 

and is located in the code just below where ERR_RPT_TIME resides. 
CONSTANT    RPT_OUT_LENGTH   :  integer  := 18  

Next the designer will modify the portion of the code in x2Int.vhd that actually 

writes data to the PC/104 bus.  As illustrated with the code below, these signal names 

must exactly match the signal names near the beginning of the code in the port section.  

Notice there are 18, 8-bit words, assigned to an output vector.  The first three words are 

usually not modified by designers.  The “E,” “R” and “00” are output merely for 
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formatting and identification purposes (E R identifies that relevant data follows).  The 

fourth word is an error count, described shortly, and the next six words were added 

specifically for the TMR Multiplier.  This portion of the data stream, highlighted in red, 

the number of words and specific signal names will vary to match specific experiments.  

The last eight words are a timestamp produced in the output stream, and is not modified 

by designers. 
        if ( report_out_vect = '0' and SM_CONFIG_STATUS_i = '0' 
             and dly_timer = ERR_RPT_TIME ) then 
             out_vect(0) <= x"45"; --E 
             out_vect(1) <= x"52"; --R 
             out_vect(2) <= x"00"; 
             out_vect(3) <= err_cnt(7 downto 0);  -- parameters set by designer 
             out_vect(4) <= "00000" & DATA_FROM_X2_CNTCHK_i(2 downto 0); 
             out_vect(5) <= "00000" & DATA_FROM_X2_MULTCHK_i(2 downto 0); 
             out_vect(6) <= DATA_FROM_X2_OUTPUT_i(31 downto 24); -- counter output 
             out_vect(7) <= DATA_FROM_X2_OUTPUT_i(23 downto 16); -- mult output 
             out_vect(8) <= DATA_FROM_X2_OUTPUT_i(15 downto 8);  -- mult output 
             out_vect(9) <= DATA_FROM_X2_OUTPUT_i(7 downto 0);   -- mult output 
             out_vect(10) <= TIMESTAMP_i (63 downto 56); --timestamp 
             out_vect(11) <= TIMESTAMP_i (55 downto 48); --timestamp 
             out_vect(12) <= TIMESTAMP_i (47 downto 40); --timestamp 
             out_vect(13) <= TIMESTAMP_i (39 downto 32); --timestamp 
             out_vect(14) <= TIMESTAMP_i (31 downto 24); --timestamp 
             out_vect(15) <= TIMESTAMP_i (23 downto 16); --timestamp 
             out_vect(16) <= TIMESTAMP_i (15 downto 8); --timestamp 
             out_vect(17) <= TIMESTAMP_i (7 downto 0); --timestamp 
             report_out_vect <= '1'; 
---------Parameter for increasing the error count--------------------------- 
if ( (DATA_FROM_X2_MULTCHK_i /= "000") or (DATA_FROM_X2_CNTCHK_i /= "000")  ) then 
                err_cnt <= err_cnt + 1; 
             end if; 
        end if; 

Signal names that correctly describe the output, like CNTCHK, do not require 

comments.  However, to clarify what portion of the output is from the counter and the 

multiplier, comments were included next to the signals DATA_FROM_X2_OUTPUT_i.  

Specifically, the output of the counter occupies the top 8 bits of the 32-bit output stream, 

and the multiplier output occupies the remaining 24 bits.  

The last portion of the code, located beneath the comment “parameters for 

increasing the error count,” is important for two reasons; one, it provides data across the 

PC/104 bus that verifies a voter reported an error, giving the designer additional 

verification of a data error.  Two, it counts the number of errors that occur so that a 

SelectMap reconfiguration can eventually take place when a set number of these data 



59

errors have occurred.  As can be seen above, the parameter for a data error from the TMR 

Multiplier is if one of the voters reports a number other than zero.  Designers will have to 

modify the parameters within the IF statement specific to their experiments. 

The threshold for the number of data errors before a reconfiguration is the last 

modification a designer needs to consider within x2Int.vhd.  This threshold is located 

within an “if” statement, and is usually set to hex FF.  
-- Set the threshold (# of data errors) for a reconfiguration 
-- If we have 256 errors, reconfigure 
            if ( err_cnt = x"FF" ) then 

For most experiments, including the TMR Multiplier, this threshold can probably 

remain as is.  However, designers are free to change this number if a specific experiment 

requires a higher or lower threshold before a SelectMap reconfiguration. 

2. The UCF File 
A portion of the specific control.ucf file for the TMR multiplier design is included 

below, specifying the signal naming of data coming from and going to X2 that pertain to 

the TMR multiplier.  The control.ucf file is significantly larger than the experiment.ucf 

file (tmr_multiplier.ucf) because of the various SelectMap and other pins.  The complete 

control.ucf is located in Appendix B. 

This specific control.ucf file is for the Development Board.  The differences 

between the Development Board and Flight Board are not apparent here, but are covered 

in Appendix B. 
NET "DATA_FROM_X2_MULTCHK_i<0>" LOC = "p153";  # X1_X2_AUX<0> 
NET "DATA_FROM_X2_MULTCHK_i<1>" LOC = "p151";  # X1_X2_AUX<1> 
NET "DATA_FROM_X2_MULTCHK_i<2>" LOC = "p150";  # X1_X2_AUX<2> 
NET "DATA_FROM_X2_CNTCHK_i<0>" LOC = "p149";  # X1_X2_AUX<3> 
NET "DATA_FROM_X2_CNTCHK_i<1>" LOC = "p147";  # X1_X2_AUX<4> 
NET "DATA_FROM_X2_CNTCHK_i<2>" LOC = "p146";  # X1_X2_AUX<5> 
NET "DATA_TO_X2_RESET_o" LOC = "p145";  # X1_X2_AUX<6> 
#NET "DATA_FROM_X2_READY_i" LOC = "p144";  # X1_X2_AUX<7> 
#NET "XXX" LOC = "p135";  # X1_X2_AUX<8> 
#NET "XXX" LOC = "p134";  # X1_X2_AUX<9> 
NET "DATA_FROM_X2_OUTPUT_i<0>" LOC = "p132";  # X1_X2_AUX<10> 
NET "DATA_FROM_X2_OUTPUT_i<1>" LOC = "p127";  # X1_X2_AUX<11> 
NET "DATA_FROM_X2_OUTPUT_i<2>" LOC = "p126";  # X1_X2_AUX<12> 
NET "DATA_FROM_X2_OUTPUT_i<3>" LOC = "p120";  # X1_X2_AUX<13> 
NET "DATA_FROM_X2_OUTPUT_i<4>" LOC = "p119";  # X1_X2_AUX<14> 
NET "DATA_FROM_X2_OUTPUT_i<5>" LOC = "p112";  # X1_X2_AUX<15> 
NET "DATA_FROM_X2_OUTPUT_i<6>" LOC = "p111";  # X1_X2_AUX<16> 
NET "DATA_FROM_X2_OUTPUT_i<7>" LOC = "p110";  # X1_X2_AUX<17> 
NET "DATA_FROM_X2_OUTPUT_i<8>" LOC = "p109";  # X1_X2_AUX<18> 
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NET "DATA_FROM_X2_OUTPUT_i<9>" LOC = "p108";  # X1_X2_AUX<19> 
NET "DATA_FROM_X2_OUTPUT_i<10>" LOC = "p107";  # X1_X2_AUX<20> 
NET "DATA_FROM_X2_OUTPUT_i<11>" LOC = "p105";  # X1_X2_AUX<21> 
NET "DATA_FROM_X2_OUTPUT_i<12>" LOC = "p104";  # X1_X2_AUX<22> 
NET "DATA_FROM_X2_OUTPUT_i<13>" LOC = "p103";  # X1_X2_AUX<23> 
NET "DATA_FROM_X2_OUTPUT_i<14>" LOC = "p102";  # X1_X2_AUX<24> 
NET "DATA_FROM_X2_OUTPUT_i<15>" LOC = "p101";  # X1_X2_AUX<25> 
NET "DATA_FROM_X2_OUTPUT_i<16>" LOC = "p98";  # X1_X2_AUX<26> 
NET "DATA_FROM_X2_OUTPUT_i<17>" LOC = "p97";  # X1_X2_AUX<27> 
NET "DATA_FROM_X2_OUTPUT_i<18>" LOC = "p96";  # X1_X2_AUX<28> 
NET "DATA_FROM_X2_OUTPUT_i<19>" LOC = "p94";  # X1_X2_AUX<29> 
NET "DATA_FROM_X2_OUTPUT_i<20>" LOC = "p93";  # X1_X2_AUX<30> 
NET "DATA_FROM_X2_OUTPUT_i<21>" LOC = "p92";  # X1_X2_AUX<31> 
NET "DATA_FROM_X2_OUTPUT_i<22>" LOC = "p91";  # X1_X2_AUX<32> 
NET "DATA_FROM_X2_OUTPUT_i<23>" LOC = "p90";  # X1_X2_AUX<33> 
NET "DATA_FROM_X2_OUTPUT_i<24>" LOC = "p89";  # X1_X2_AUX<34> 
NET "DATA_FROM_X2_OUTPUT_i<25>" LOC = "p88";  # X1_X2_AUX<35> 
NET "DATA_FROM_X2_OUTPUT_i<26>" LOC = "p82";  # X1_X2_AUX<36> 
NET "DATA_FROM_X2_OUTPUT_i<27>" LOC = "p81";  # X1_X2_AUX<37> 
NET "DATA_FROM_X2_OUTPUT_i<28>" LOC = "p80";  # X1_X2_AUX<38> 
NET "DATA_FROM_X2_OUTPUT_i<29>" LOC = "p79";  # X1_X2_AUX<39> 
NET "DATA_FROM_X2_OUTPUT_i<30>" LOC = "p78";  # X1_X2_AUX<40> 
NET "DATA_FROM_X2_OUTPUT_i<31>" LOC = "p77";  # X1_X2_AUX<41> 
#NET "XXX" LOC = "p75"; # X1_X2_AUX<42> -- available on Flight Board 
#NET "XXX" LOC = "p74"; # X1_X2_AUX<43> -- not avail on Flight Board 
#NET "XXX" LOC = "p71"; # X1_X2_AUX<44> -- not avail on Flight Board 

 

Notice that the signal names in the control.ucf file exactly match the signal names 

in the section “FOR EXPERIMENTAL DESIGN” in x2Int.vhd.  Note also that in the 

constraint file, the pound symbol is used to comment out code, while in normal VHDL 

code, two dashes are used.  This is an important note to show how unused pins are 

handled in the constraint file; simply comment them out of the code.  Also, notice all the 

comments next to each pin declaration.  As mentioned in Chapter III, these comments are 

located within both constraint files for X1 and X2.  This is the method by which data is 

correctly declared and passed to the appropriate pins on both chips. 

Once the ucf file has been properly edited, it is time to compile the X1 code. 

3. Makefile_Control 
In the Linux environment, compiling of code, whether it be “C” code, or VHDL 

code, is performed via the command “make.”  Further, this process can be enhanced to 

suite the needs of specific projects by creating/editing a specific “makefile.”  This is the 

function of the Makefile_control and Makefile_experiment files for the CFTP team.  The 

Makefile_control file is the last file the designer will need to modify. 
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# ID is used by the rd.sh program to determine how the output from 
# your code should be formatted.  It is any 2 digit string  
# Already taken: 
# JS: Josh's Cordic 
# JM: Jerry's Multiplier 
# SR: James' Shift Register 
# FD: Flash Dump 
# VT: V2 Test code 
# FE: Flash Erase 
ID          = JM 
DESCR       = "Jerry's Multiplier" 

Above is the specific section of code from the file “Makefile_control” which must 

be modified by the designer.  The two lines of code that have not been commented out 

need to be changed specific to the experiment, as per instructions in the commented 

section, with 2 digits (letters or numbers), followed by what they stand for.  This is done 

for the purpose of “C” code that reads and formats output data.  This “C” code is located 

in Appendix C. 

4. Compiling Code 
At this stage, it is time to compile the X1 code and correct any noted errors by the 

compiler.  Before beginning this process, all files and directories located within directory 

“control_out” must be deleted.  This is performed with the following Linux command:  

rm  -r  * 

Care must be exercised when using this command.  It will delete ALL files and 

directories located within the directory where the command is issued.  The contents of the 

control_out directory need to be removed as that is where the compiler sends history files 

from its previous compile.  DO NOT use this delete command, “rm,” in a directory above 

(higher level) control_out.  Once this command is used the files CAN NOT be recovered.  

Ensure that this command is entered ONLY within the directory control_out. 

After removing the contents of the directory control_out, the compile command is 

entered one level up from the control_out directory, where the Makefile_control file is 

located.  The specific command is as follows:  make -f Makefile_control 

When the good fortune of a compile with no errors is achieved, then a file named 

“control.bin” exists in the control_out directory. 
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F. PROGRAMMING THE BOARD 
Now it is time to physically program both chips and collect data.  The designer 

has two important files, the fwr file for the flash, (X2’s configuration), and the bin file 

which is X1’s configuration.  As noted previously, the fwr file was named to specifically 

identify the experiment, tmr_multiply_dev.fwr.  This should be done as well for the 

control.bin file.  For the multiplier, it was named, “tmr_mult_dev.bin.” 

Appendix A contains the specific procedures to program the chips and collect data 

for both the Development Board on the ground, and the Flight Board while on the 

Satellite. 

G. CHAPTER SUMMARY 
This chapter provided the overall procedures behind the development of an 

experiment for implementation onto the CFTP architecture.  Most importantly, it covered 

the specific modifications that are required for the Controller code in order for 

experiments to properly interface with X1 and the PC/104 bus.  The next chapter 

summarizes the work of this thesis and provides recommendations for future CFTP 

designers. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This thesis detailed the processes by which experiments are developed and 

implemented on the CFTP architecture.  The structure of that architecture was discussed, 

as well as the inner-workings of the code that drives the Controller portion of the CFTP 

architecture.  Finally, some of the limitations of the CFTP architecture were investigated, 

and an example experiment was detailed for the benefit of future CFTP designers. 

A. SUMMARY 
The CFTP architecture was designed around the framework of a key concept; two 

FPGA chips, one that implements fault tolerant experiments, and one that acts as a 

controller for the implementation of experiments and control of data produced from 

experiments.   Significant components included to support this design are; a flash 

memory module, an EEPROM, a PC/104 bus, and an ARM Processor.  

Within the CFTP environment, the Controller FPGA is named X1, and the FPGA 

for the implementation of experiments is named X2.  Experiments implemented onto X2 

can transfer data to and from X1 at the full rate of the CFTP oscillator, which is 51 MHz.  

However, the rate at which data can be transferred across the PC/104 bus is significantly 

less than 51 MHz due to the limitations of the ARM Processor and its ability to manage 

resources. 

One of the most significant developments for the CFTP architecture was the 

VHDL code that creates the circuit on the Controller FPGA.  This code is generic to the 

largest extent possible, which allows designers to make only minor changes such that X1 

will interface properly with X2.  The significance of the Controller code, beyond its 

ability to be modified specific to experiments, is its inherent ability to control the flow of 

experiments, compare configurations from what is stored in flash memory to what is 

running on X2, and perform a reconfiguration of X2 should a configuration error occur.  

It was the development of this code that made X1 a true controller and not just a pipe for 

data transfer, thanks to the tireless efforts of Mindy Surrat [1]. 

Despite the minor changes required to interface with an experiment, designers 

should become familiar with the Controller code.  Specifically, a working knowledge of 
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all the VHDL modules, as well as the processes within the X2 Interface module, will give 

future CFTP designers a better understanding of the modifications required, and more 

importantly, will reduce the probability of making a change that creates an output of 

erroneous data. 

Future designers for the CFTP team should also understand the limitations of the 

CFTP architecture, and how those limitations can potentially affect the design of an 

experiment.  By knowing how the Controller interfaces with X2, designers have a greater 

chance of creating an experiment that produces results and provides insight to the 

viability of creating fault tolerant circuits for the space environment. 

B. CONCLUSIONS 
The results discussed throughout this thesis were accomplished via detailed 

engineering analysis.  The maximum safe data rate for the CFTP architecture was 

determined to be a result of the interactions between the ARM processor, the PC/104 bus, 

and X1 the Controller FPGA.  Procedures to synchronize and clock-divide both FPGAs 

were investigated by implementing identical circuits on X1 and X2 and comparing their 

outputs.  Finally, detailed mathematical and empirical analysis was employed to show 

that clock skew between the two FPGAs is manageable. 

In addition to determining maximum safe data rate, the procedures for running 

experiments at 51 MHz and sampling output data were explored and documented.  This 

provides future designers the necessary details to implement a myriad of designs such 

that they will properly interface with the components of the CFTP architecture. 

C. RECOMMENDATIONS 
There is still work to be done within the CFTP architecture.  Fortunately, some of 

the areas that still need to be explored can be done with software implementations, so 

having the Flight Board on a satellite in space is not a limiting factor. 

1. Use SDRAM Available to X2 
As mentioned in Chapter II, 16 megabytes of RAM exist on the CFTP 

architecture.  This RAM is available to X2, though it is has not yet been utilized in a 

formal experiment.  Future designers should consider a use for this memory as this 

provides an expanded capability for potential fault tolerant designs. 
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2. Multiple Configurations on Flash Memory 
The Flash Memory employed on the CFTP architecture has enough memory 

space to hold the configurations of four experiments.  To date, the Controller only uses 

the first 900 KB of space on this memory module, loading one experiment on X2 and 

collecting data.  The potential exists to modify the X1 code such that it can write four 

configurations to the Flash Memory, and then load an experiment onto X2, collect data 

for a set period of time, then load the next experiment.  This would require modifications 

to the Flash Write Code, and as well as modifications to the primary Controller Code.  

This is an important capability of the CFTP architecture that should be explored as soon 

as possible. 

3. Passing Data from the ARM 
Currently, no process exists on the CFTP architecture that is capable of sending a 

data stream from the ARM processor to a circuit on X2 for processing.  As a result, the 

only two methods the CFTP project has to provide input data to a circuit on X2 is to; one, 

create a circuit on X2 to generate the required data, as was done for this thesis (the TMR 

Multiplier), or two, implement a process on X1 to send the data to X2.  This capability 

should be explored and implemented on the CFTP architecture.  Circuits are generally 

designed to accept and process data, not to self generate data.  Also, if possible, X1 

should be left to perform its functions as a Controller and additional responsibilities 

added to X1 should be limited as much as possible. 
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APPENDIX A:  CFTP EXPERIMENT MANUAL 

Appendix A is a manual designed as a “hands-on tool” for conducting CFTP 

experiments on the ground or in space.  This manual assumes a level of knowledge by the 

user which, if not the case, references sections in Appendix B so the user can gain the 

necessary level of detail to understand the procedures contained herein. 

This manual should also be viewed as “Standard Operating Procedures” for the 

CFTP team.  This document contains standard naming conventions within the CFTP 

development environment for directories, file names, and signal names, which should be 

followed to the maximum extent possible.  Many of the procedures listed were developed 

from years of lessons learned and therefore should be followed in detail. 

Though Appendix B contains code for specific examples to aid in the sections 

throughout this manual, each Experimenter will also be given copies of previously 

operational code, as well as access to the CFTP server. 

At the end of this manual is a checklist containing helpful reminders that can be 

used as an aid for running experiments on the ground, as well as a flow diagram.  

However, thorough familiarity of this manual is required in order to successfully run an 

experiment on either the development board or flight board. 



A. NAMING CONVENTIONS 
 Each experiment, and each modified version of the Controller Code, should reside 

in a set of directories with specific names.  The top level directory for an experiment 

within the user’s directory path should be the name of the respective project, for example, 

tmr_multiplier.  This directory should contain two sub-directories, dev_board and 

flight_board.  Both dev_board and flight_board should contain the files 

Makefile_control, Makefile_experiment, and sub-directories named control_src, 

control_out, experiment_src, and experiment_out.  These names should not ever 

change.  Only the specific file names within the experiment directories will change 

depending upon the name of the experiment. 

A hierarchical representation of the directory structure is shown below: 

…/proj_name/ 
dev_board/ 

Makefile_control 
Makefile_experiment 

 control_src/ 
 control_out/ 
 experiment_src/ 
 experiment_out/ 
flight_board/ 

Makefile_control 
Makefile_experiment 

 control_src/ 
 control_out/ 
 experiment_src/ 
 experiment_out/ 

Top-level directory  -----------------  Project name 

 

2nd -level directories ---------- dev_board   flight_board 

files within 2nd –level directories Makefile_control       Makefile_experiment 

 

3rd -level directories  --------------------------- control_src                   control_out 

3rd -level directories  --------------------------- experiment_src         experiment_out 
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Linux directory tree examples – command-line prompt 

 $username/proj_name/dev_board/control_src 

 $username/proj_name/flight_board/experiment_src 

 
B. DEVELOPMENT BOARD & FLIGHT BOARD 
 Two different boards exist for the implementation and testing of experiments.  

One is named the “Development Board” and the other is the “Flight Board.”  The Flight 

Board is named as such because the FPGAs are identical to the ones in space, and 

therefore the pin layouts are identical.  The Development Board has two FPGAs that are 

not designed for the space environment, and their differences, though minor, result in 

slightly different pin layouts between the two chips. 

 Appendix B addresses these differences in the constraint files.  Throughout this 

manual, the Development Board is referred to as “dev_board” and the Flight Board as 

“flight_board” in accordance with the CFTP naming conventions. 

C. THE EXPERIMENT  

1. Simulation and Compilation 
 This phase of any experiment must be complete before beginning work within the 

CFTP development environment and modifying any X1 code.  The standard program, for 

which the CFTP has a software license, is Xilinx’s Project Navigator and ModelSim XE. 

 A working knowledge of Project Navigator and ModelSim, or another similar 

program, is up to the individual.  If using Project Navigator, it is important that the 

following project properties within Project Navigator are set to the Xilinx part xcqv600-

4cb228, whether designing for the Development or Flight Board. 

a. Naming Conventions 
Specific experiments are where the greatest flexibility in file and signal 

naming exists.  It is, however, important that file names for experiments represent what 

the experiment does, for example, tmr_multiplier.  For the purpose of this manual, the 

word “experiment” will be used throughout. 
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b. Constraint File 
The constraint file, denoted with an “ucf” file extension, (experiment.ucf), 

is a critical portion of the experiment.  If this file does not properly match the “ucf” file 

for the X1 controller code (control.ucf) then the experiment WILL NOT WORK. 

Once the constraint file is properly written and added as a source in the 

respective project in Project Navigator and simulated with proper operation noted, the 

next step is to “implement” the design.  This function in Project Navigator performs the 

necessary compiling, and then performs the required translate, map, place, and route 

portion for the code (schematics and/or VHDL) to run on an FPGA. 

 2. Compiling within Linux (“make” files) 

Note:  Skip this part and go to part 3, “The NCD file,” if using Xilinx’s Project 

Navigator or other equivalent software.  Refer to flow diagram at the end of the checklist. 

The “make” files within the CFTP programming environment (e.g., 

Makefile_experiment) are designed to perform all the same functions that Project 

Navigator performs.  This process of compiling, translating, mapping and routing should 

only be utilized on fully tested experiments which only require small modifications.  It is 

highly recommended that Project Navigator, or an equivalent program, be used for the 

initial development of an experiment. 

The advantage of compiling an experiment within the CFTP Linux environment is 

the consolidation of various procedures.  The file “Makefile_experiment” performs 

“bitgenpersist.sh” and “mkflash.sh” immediately following the compiling and place and 

route operations.  This allows the Experimenter to go directly to part 4, “Copy the fwr 

file,” of this section.  This method should only be used if enough experience has been 

gained such that a level of comfort exists within the CFTP development environment, as 

well as standard Linux operations. 

a. Modify the Makefile_experiment and experiment_prj files 
The “experiment_prj” file lists the VHDL files and modules to be 

compiled.  Simply modify a previously used “experiment_prj” file, ensuring that all 

required VHDL files for the respective experiment are listed in this file. 
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There is normally only one modification required within 

“Makefile_experiment.”  At the top, next to “ENTITYNAME =,” needs to be the entity 

name of the top level code for the experiment.  All VHDL code begins with “entity …… 

is,” followed by the top level signals with the port declarations.  The name following 

“entity” is what must be entered next to “ENTITYNAME” within the file 

“Makefile_experiment.” 

b. Compile 
Compiling is performed one directory up from “experiment_src.”  All 

outputs generated from the compiling will go to the “experiment_out” directory.  While 

in the dev_board or flight_board directory, the following command will be entered 

exactly as follows, with an example directory hierarchy followed by the “$” denoting a 

command prompt: 

../project_name/dev_board$  make  -f  Makefile_experiment 

If using this process (compiling within Linux), then once compiling is 

complete with no errors, skip to part 4, paragraph c, of this section, titled “Copy ‘fwr’ file 

for ground run.” 

3. The NCD file (experiment.ncd) 
At the completion of the development and compilation phase (Part 1, Section A), 

an “ncd” file is created (experiment.ncd).  The file now needs to be copied into the 

experiment_out directory of the CFTP programming environment. 

4. Creating the Flash File 
This is the last step in the experiment development phase.  Perform the following 

steps in sequence. 

a. Run bitgenpersist.sh 
This command is entered exactly as follows with an example directory 

hierarchy followed by the “$” denoting a command prompt:   

../project_name/dev_board$  bitgenpersist.sh  experiment 

As in all Linux commands, there must be at least one space between 

commands and parameters.  Though you are performing this on a file with an “.ncd” 

extension, the extension is omitted when performing this operation.  For example, if the 
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experiment name is “tmr_multiplier,” and the file tmr_multiplier.ncd is the name of the 

file copied to the experiment_out directory, then the command would be as follows: 

../tmr_multiplier/flight_board/experiment_out$  bitgenpersist.sh  tmr_multiply 

This command creates a number of files in the experiment_out directory, 

the same directory where the command was executed, but only two are needed.  The two 

important files for the next part are the “.bin” and “.msk” files. 

Note:  “dev_board” and “flight_board” have been used, and will continue 

to be used, in examples to illustrate that the commands are the same for both directories. 

b. Run mkflash.sh 
This command creates the file that will be written to the flash, and is 

performed exactly as follows, with the “$” denoting a command prompt: 

../experiment_out$ mkflash.sh  experiment.bin  experiment.msk  >  experiment.fwr 

In this case the name of the output file must be entered with the “.fwr” 

extension.  For example, if the experiment name is “tmr_multiplier,” then the command 

would be as follows: 

../flight_board$ mkflash.sh  tmr_multiplier.bin  tmr_multiplier.msk  >  tmr_multiplier.fwr 

c. Copy “fwr” file for ground run 
If running your experiment on the ground, then the “.fwr” file needs to be 

copied to the /arm_mnt/flash_files/ directory on the CFTP server.  It is important that 

the project name is unique as many “.fwr” files reside in this directory.  If an experiment 

is to be compiled with different configuration files for the Development Board and the 

Flight Board, then consideration might be given to further appending the name during 

this copy process as such;  “experiment_dev.fwr,” or “experiment_flight.fwr.” 

D. THE CONTROLLER 

1. Compilation 
The code for the controller (X1) does not need to be simulated, though doing so is 

not prohibited.  This code has been developed and tested over time and is largely proven.  

Though the X1 code, specifically x2Int.vhd and control.ucf, are largely generic files, 

they must be modified to conform to the Experimental Design.  At a minimum, the two 
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above files along with top_level.vhd will need to be modified to suit the needs of the 

Experiment.  See Appendix B for specific details on the modifications of these programs. 

Files within the control_src directory are listed below. The names of these files 

will never change: 

• bitfile_V1.cmd 
• clockGen.vhd 
• control.ucf 
• control.xcf 
• control_prj 
• impact.cmd 
• pc104IntArm.vhd 
• SelectMap_config.vhd 
• SelectMap_readback.vhd 
• top_level.vhd 
• x2Int.vhd 
• xstcmd.xst 

 

a. Modify the Makefile_control file 
For the example shown in Appendix B, change “ID” to two initials that 

best reflect your experiment, and change “DESCR” to the exact name of your 

experiment.  No other changes should be required. 

b. Compile 
Compilation is performed one directory up from control_src.  All outputs 

generated from the compile process will go to the control_out directory.  While in the 

dev_board or flight_board directory, the following command should be entered exactly 

as follows, with an example directory hierarchy followed by the “$” denoting a command 

prompt: 

../project_name/dev_board$  make  -f  Makefile_control 

  This process will create a “.bin” file in the control_out directory, named 

control.bin.  This is the file that is used to program X1. 

c. Copy the “.bin” file 
The file control.bin needs to be renamed to have the username appended 

on the end.  An example of this Linux command is as follows: 

../flight_board$  cp  control.bin  control_jerry_flight.bin 
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.  The renaming of this file is important as many different “.bin” files reside 

in the /arm_mnt/arm_bin directory.  As noted when copying the experiment.fwr file, 

consideration should be given to modifying this filename according to its use for either 

the Flight or Development Board.  The file should be copied to the /arm_mnt/arm_bin 

directory.  An example “copy” command is as follows: 

../flight_board$  cp  control_jerry_dev.bin   /arm_mnt/arm_bin 

E. GROUND RUN 

1. Naming conventions 
Once proj_name.fwr and control_name_flight.bin, or 

(control_name_dev.bin), have been copied to the appropriate directory, there are a few 

more important naming conventions to discuss.  The program rd_arm_poll will be used 

to read data output via the PC104 bus from the ARM processor.  This output should be 

redirected to a file, and is done as follows:  

./arm_bin/rd_arm_poll  >  filename 

Because many files reside in the /arm_mnt directory, it is essential that this file 

be named as follows: experiment_name_dev or experiment_name_flight 

Example: multiplier_jerry_flight 

2. ARM Commands via Telnet 
At this point it is time to actually write the experiment to the flash and program 

X1 and X2.  Before doing so, it is important to ensure that no one is using the ARM and 

programming X1 and/or X2. 

Note:  While connected to the CFTP server, before beginning a “telnet” session to 

the ARM, the “who” command MUST be entered.  Only one experiment can be 

programmed at a time.  At a command-line prompt, a “w” can be entered and all users 

and their specific processes running will be listed.  If any users are listed as connected to 

the ARM via “telnet,” then exit and try again later. 

Open three secure shell (ssh) windows.  (The most commonly used ssh client 

within CFTP is “PuTTY.”)  Two of these windows will be dedicated to “telnet,” and the 

other window is user preference, but normally the /arm_mnt directory is open in the 



third window.  The following commands must be entered exactly as below, from any 

directory within the CFTP server: 

$ telnet arm 
(none) login:  default 
#  su 
#  cd /mnt/ 
The next figure is a screen shot depicting the typing of these commands to open a 

“telnet” window. 
 

 
 
 
 

a. Running “write_flash.bin” 
  X1 must first be programmed to write an experiment to the flash.  This is 

done with the following command, via the “telnet” window: 

  #  ./arm_bin/jtag  arm_bin/write_flash.bin 

  At the same time this command is run, in the other “telnet” window the 

rd_arm_poll should be run as follows: 

  #  ./arm_bin/rd_arm_poll 

  When the jtag program is done programming X1 with write_flash.bin, a 

message will appear below the “rd_arm_poll” in “telnet” window 2. 
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telnet window 1    telnet window 2 

    
 

 Looking closely at the top of the two pictures, particular attention should be paid 

to exactly how the commands are entered.  Notice the “./” before “arm_bin/jtag” and 

“arm_bin/rd_arm_poll.”  In Linux this invokes the execution of the named program 

residing in the current directory. 

b. Running wr_arm_poll 
  Now that X1 is ready to write to the flash, it is time to do so.  This 

command will program the flash with a file which was copied to the 

/arm_mnt/flash_files directory.  In “telnet” window one, it is performed as follows: 

#  ./arm_bin/wr_arm_poll  flash_files/experiment.fwr  -i  10000 

  While this is running, rd_arm_poll should be run in “telnet” window 2 as 

done above during the write_flash.bin operation. 

c. Optional – running dump_flash.bin 
This operation is performed to ensure that the flash was properly 

programmed.  It is not required and should ONLY be used if problems exist with an 

experiment and verification of proper flash programming is desired. 

In “telnet” window one, run the following command: 

# ./arm_bin/jtag  arm_bin/dump_flash.bin 

 In “telnet” window two, run the rd_arm_poll command with the 

output redirected to a uniquely named file.  For example: 

# ./arm_bin/rd_arm_poll > experiment_dump_flash 
76
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The rd_arm_poll process needs to continue to run once the dump flash 

portion is complete.  However, in “telnet” window one, where dump_flash.bin just 

finished running, the file size of experiment_dump_flash needs to be monitored with 

the Linux command “ls –l filename.”  This should be done until the file size exceeds 900 

KB, which occurs fairly quickly.  See paragraph (d) of this section for an example of the 

“ls –l” command in Linux.  Preventing the file size from growing much beyond 900 KB 

is not critically important.  This is simply a good habit to maintain for reasons that will 

become apparent as experience is gained in this process. 

Now compare the file experiment_dump_flash to experiment.fwr that 

was written to the flash.  Before that can be done, the experiment_dump_flash file has 

to be slightly modified.  This requires the use of a binary file editor. A good example of 

such an editor is the program hexer.  It is a hex-editor program, which was used to 

produce the figure below.  It is entered by typing the command  

hexer filename   

Open the experiment_dump_flash file and delete the first few lines all the 

way up to, but not including, the first “ff,” as shown in the below figure with the red 

arrow. Use the “x” key to perform the delete operation.  Saving the file is similar to 

saving a file in the Linux editor “vi.”   Enter a colon, which will give you a line at the 

bottom to enter another command.  Enter a “w” followed by a space and a new filename.  

The file created by dump_flash.bin is read-only, therefore a new filename has to be 

created when saving the dump-flash file. 

 

 

 

 

 

 

 



 

Delete all the way to here. 

   

  If performing this editing in “vi,” delete all the way up to and including, 

the “FD^M” symbols.  Again, the file will have to be saved under a different name. 
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Now compare the two files.  This is done with the executable 

checkflash.sh and is run as in the following example: 

/arm_mnt$ checkflash.sh multiply_dump flash_files/tmr_multiply_dev.fwr 

In the previous example, /arm_mnt is the current directory and the two 

filenames follow “checkflash.sh” with spaces in between.  Running this will produce a 

long output.  Continue pressing the space bar until the bottom of the output is reached.  

At address line 000dc360, there should be a string of 00’s and ff’s, as in the next figure 

with the red circle. 

 

The checkflash.sh results, produced in the previous figure, serve as 

confirmation that the flash was properly programmed.  If this precise line is not produced 

at the aforementioned line number, then that is evidence that the configuration was not 

properly written to the flash.  Perform the wr_arm_poll operations in Section F, 

paragraph b, again, and then repeat this section on checking the flash configuration.  
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d. Running control_name.bin and collecting output 
Now it is time to program X1 once again, and finally collect your much 

anticipated output from your experiment.  Listed below are both commands that need to 

be executed, one in each “telnet” window: 

#  ./arm_bin/jtag  arm_bin/control_name_flight.bin 

#  ./arm_bin/rd_arm_poll  >  project_name_flight 

After the jtag command completes its process, the experiment is running!  

If your programs operate properly, then data is collecting in the file 

project_name_flight.  The rate at which the file increases in size needs to be monitored.  

This is done with the Linux command, “ls –l filename,” which will give you the size of 

the file, along with other information. 

Warning:  Monitoring the file size is important during the first 30 

seconds.  If you have SelectMap readback enabled in your X1 code, then it is possible for 

this file to increase in size rapidly due to a SelectMap readback error. 

 
        Size of file in bytes 

The above screen shot is an example of what you will see after running the 

command “ls –l” on a specific file from the /arm_mnt directory.  If the file size begins to 

rapidly increase 30 seconds after the jtag command completed its process, then the 

rd_arm_poll program needs to be immediately terminated by pressing Ctrl-C while in 

that window. 

If after 30 seconds the file appears to be collecting data at an acceptable 

rate, then the output file can be viewed as it progresses with the command hexdump.  

This command should be executed from the window with the /arm_mnt directory open.  

It is entered as follows: 

/arm_mnt$  hexdump  -C  project_name_flight  |  more 
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The “-C” option provides standard formatting to display 16 bytes per line, 

and the “more” command following the pipe character (“|”) causes the output to be 

displayed a page at a time that fits the size of the screen.  Press the space bar to scroll 

down to the next page of data. 

Note:  This hexdump command can be executed while rd_arm_poll is 

still running and outputting data to the same file that is being viewed via hexdump. 

  Data from a counter    Timestamp 

 

 

F. SATELLITE RUN 
Once an experiment has been implemented on X2 with correctly operating code 

on X1, (on the Development Board), and data has been collected and verified, it is time to 

send the code for evaluation in space.  Designers will work with the CFTP Research 

Associate to send the experiment.fwr and control.bin files to the satellite and implement 

their design on the Flight Board. 
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The procedures used to implement experiments on the Flight Board, while in orbit 

on the satellite, can also be used to implement an experiment on the Development Board.  

However, designers should first learn and use the “telnet” procedures contained within 

this Appendix to gain an appreciation of how the integration process occurs, and to aid in 

troubleshooting should errors in the implementation process surface. 

Once an experiment has been successfully implemented via the “telnet” 

procedures and the designer has gained comfort with that process, then the procedures for 

implementing an experiment on the Flight Board should be practiced on the Development 

Board. 

1. Implementing Experiments on the Satellite 
To first practice implementing a design on the Development Board using the same 

procedures for the Flight Board in flight, the Development Board needs to be placed in 

the “flight mode.”  Contact the CFTP Research Associate to have the Development Board 

placed in flight mode. 

Once the Development Board is in flight mode, programming the two chips is 

done via one command.  This command is a program that takes all the telnet commands 

and streamlines them into one process.  Before performing this command, the two files 

that program the two chips, the fwr file for X2 and bin file for X1, need to be moved to 

the same directory.  The command, “load_flight_exper” is entered from the same 

directory where the two files are now located.  The command is followed by the two files, 

experiment.fwr and control.bin, with a space in between, as seen in the example below:  

$  load_flight_exper  experiment.fwr  control.bin 

 After a few minutes both FPGAs will be programmed and outputting data.  The 

difference from the telnet procedures is that there will not be a uniquely named file 

collecting the output data.  Data is now output into a generic file with a number appended 

on the end.  The specific name of this output file will be provided by the CFTP Research 

Associate. 

This program is how the Flight Board is programmed on the satellite.  Once these 

procedures have been practiced on the Development Board, developers will work with 

the CFTP Research Associate to coordinate upload to the satellite. 
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G. CHECKLIST FOR RUNNING EXPERIMENTS 
1. Run “bitgenpersist.sh” on the “ncd” file generated from Xilinx 

../dev_board/experiment_out$  bitgenpersist.sh  experiment 

2. Run “mkflash.sh” on the “bin” and “msk” files created from “bitgenpersist.sh.” 

../experiment_out$ mkflash.sh  experiment.bin  experiment.msk  >  experiment.fwr 

3. Copy the “experiment.fwr” file to the “/arm_mnt/flash_files” directory 

4. Run “make –f Makefile_control” from one directory above “control_src.” 

5. Rename “control.bin” to “control_name_dev.bin” or “_flight,” located in the 

“control_out” directory, and then copy said file to the “/arm_mnt/arm_bin” directory. 

6. Perform the “who” command, or “w” to ensure the “arm” is not in use. 

7. Open two additional “ssh” windows for a total of three. 

8. Telnet to the “arm” in two of the windows. 

9. Execute the “write_flash.bin” program in window 1, and the “rd_arm_poll” 

program in window 2. 

Telnet Window 1:   #  ./arm_bin/jtag  arm_bin/write_flash.bin 

Telnet Window 2:   #  ./arm_bin/rd_arm_poll 

10. Execute the “wr_arm_poll” program in window 1, and the “rd_arm_poll” 

program in window 2. 

Telnet Window 1:   #  ./arm_bin/wr_arm_poll  flash_files/experiment.fwr  -i  10000 

Telnet Window 2:   #  ./arm_bin/rd_arm_poll 

11. OPTIONAL – run “dump_flash.bin” to check that the flash was properly 

programmed.  This is more of a troubleshooting step than procedural. 

12. Execute the “control_name_flight.bin” program in window 1, and the 

“rd_arm_poll > name_project” in window 2. 

Telnet Window 1:   #  ./arm_bin/jtag  arm_bin/control_name_flight.bin 

Telnet Window 2:   #  ./arm_bin/rd_arm_poll  >  project_name_flight 



13.  Monitor file size and output of file in the “/arm_mnt” window as “rd_arm_poll” 

runs in telnet window 2. 

14. Return to the “/arm_mnt” and run “hexdump” to view the output results. 

 
 

Flow Diagram 
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APPENDIX B:  CONTROLLER CODE 

This appendix contains important segments of code from the Controller.   

Specifically, the portions of the code that designers are required to modify or verify are 

included, and are highlighted in red.  The entire code listing of x2Int.vhd is included, but 

only three specific portions of top_level.vhd because of its extensive length.  All of the 

code from the control.ucf file for the development board is included, followed by the 

specific section for the flight board that differs. 

TOP LEVEL  

Only three areas within top_level.vhd need to be modified, and those coincide 

with signal naming.  These signal names are located at the beginning of top_level.vhd in 

the port declaration section, and again in the component port declaration section for the 

x2Int module.  The third area is specific signal assignment of the x2Int module located 

very near the bottom of top_level.vhd.  All three areas are listed below – note the 

repeated naming of each signal for simplicity. 

Also included is the approximate line number within the code where these areas 

are located.  The comments are highlighted in blue to emphasize the location of these 

sections as the same blue comments appear in the code. 

Located near the top of the code, near line #52 
  entity cftp_ARM is 
      port ( 

 
-- To/From X2 for Experimental Design, signals going to pins on X2 
-- change/add/remove as needed, also change control.ucf file to match 

        DATA_TO_X2_RESET_o     : out std_logic;   
        DATA_FROM_X2_COUNT_i   : in std_logic_vector (31 downto 0); 
        DATA_FROM_X2_CNTCHK_i  : in std_logic_vector (2 downto 0); 
  
 
 
 
 Located just below the above section, near line #122 
  
component x2Int port ( 
        CLOCK_i             : in std_logic; --50 MHz system clock 
        RESET_i             : in std_logic; 
 
        TIMESTAMP_i         : in std_logic_vector(63 downto 0); 
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-- for EXPERIMENTAL DESIGN signals going to pins on X2 
-- change/add/remove as needed also change control.ucf file to match 
        DATA_TO_X2_RESET_o     : out std_logic;  
        DATA_FROM_X2_COUNT_i   : in std_logic_vector (31 downto 0); 
        DATA_FROM_X2_CNTCHK_i  : in std_logic_vector (2 downto 0); 
 
 
 Located very near the bottom of the code, near line #598 
   
x2Int0 : x2Int port map ( 
 
        CLOCK_i             => T_clock_i,         --: in std_logic; 
        RESET_i             => ver_done_reset,           --: in std_logic; 
        TIMESTAMP_i         => timestamp, 
 
-- for EXPERIMENTAL DESIGN - signals going to pins on X2 
-- change/add/remove as needed - change control.ucf file to match 
        DATA_TO_X2_RESET_o    => DATA_TO_X2_RESET_o,     
        DATA_FROM_X2_COUNT_i  => DATA_FROM_X2_COUNT_i,   
        DATA_FROM_X2_CNTCHK_i => DATA_FROM_X2_CNTCHK_i, 

  

X2 INTERFACE  

The entire listing of x2Int.vhd is included below for the specific X1/X2 interface 

module used for the TMR multiplier.  The portions highlighted in red are areas that 

require modification by designers for the CFTP team, and have been discussed 

throughout this thesis.  The comments only for the areas that designers are required to 

modify are highlighted in blue to emphasize the location of these sections, and because 

the same blue comments appear in the code. 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_std.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
 
entity x2Int is  
    port ( 
        CLOCK_i             : in std_logic;   -- 25.5 MHz signal 
--        CLOCK_X2_i          : in std_logic; -- Additional clock if necessary 
                                              -- add appropriate clock to clockGen 
        RESET_i             : in std_logic;   -- Reset signal 
        TIMESTAMP_i         : in std_logic_vector(63 downto 0); 
 
-- FOR EXPERIMENTAL DESIGN, signals coming directly from X2 
        DATA_TO_X2_RESET_o      : out std_logic; 
        DATA_FROM_X2_OUTPUT_i   : in std_logic_vector(31 downto 0); 
        DATA_FROM_X2_MULTCHK_i  : in std_logic_vector(2 downto 0); 
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        DATA_FROM_X2_CNTCHK_i   : in std_logic_vector(2 downto 0); 
-------------------------------------------------------------------- 
 
-- STANDARD TOP LEVEL SIGNALS - DO NOT CHANGE! 
     STALL               : in std_logic; 
 
     DATA_o              : out std_logic_vector(7 downto 0);-- Data bus out of X2 interface,  
                                           --in this case used to write to PC104 
     DATA_i              : in std_logic_vector(7 downto 0); -- Data bus into X2 interface, 
                                            --in this case used to read from PC104 
 
     PC104_WR_EN_o       : out std_logic; -- Active high, if WR_RDY = '1', then set WR_EN = '1'  
                                          -- for one clock and whatever is on DATA_o when WR_EN  
                                          -- is high will get written to PC104 
 
     PC104_WR_RDY_i      : in std_logic; -- Active High, ok to write to PC104 
                                         -- if WR_RDY is high, whatever you write to PC104 
                                         -- will definitely get printed (your component has priority) 
 
     PC104_RD_RDY_i      : in std_logic; -- Active high, if RD_RDY = '1',  
                                         -- then there is data on the PC104 bus ready to be read.   
                                         -- Once you read the data (from DATA_i), set RD_ACK high  
                                         -- for one clock to release the PC104 
 
     PC104_RD_ACK_o      : out std_logic; -- Active high 
 
     SM_CONFIG_RQST_o    : out std_logic; -- Active high, set config_rqst high for one clock if  
                                          -- you want to start a SelectMap config/reconfig 
 
     SM_CONFIG_STATUS_i  : in std_logic; -- Active high, stays '1' as long as a SelectMap config  
                                         -- is going on (don't request a readback or reconfig 
                                         -- while either is still active, it won't hurt anything, 
                                         -- but it won't go through) 
 
     SM_RB_RQST_o        : out std_logic;-- Active high, set rb_rqst high for one clock if you 
                                         -- want to start a SelectMap readback 
 
     SM_RB_STATUS_i      : in std_logic -- Active high, stays '1' as long as a SelectMap rb 
                                        -- is going on (don't request a readback or reconfig 
                                        -- while either is still active, it won't hurt anything, 
                                        -- but it won't go through) 
    ); 
end x2Int; 
 
architecture rtl of x2Int is 
 
-- DLY_TIME counter and reset signals, might need adjustment to 
-- meet the needs of an experiment 
    CONSTANT DLY_TIME           : integer := 765000000; -- 30 seconds 
 
    signal stall_d              : std_logic; 
    signal s_reset_exp          : std_logic; 
    signal first_reset          : std_logic; 
    signal sm_rb_status_d       : std_logic; 
    signal dly_cnt              : integer range 0 to DLY_TIME; 
    signal dly_start_rb         : std_logic; 
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    signal sm_config_status_d   : std_logic; 
 
-- error report timer signals 
-- time between automatic error reports, adjust as needed 
-- to meet specific needs of an experiment on X2 
--    CONSTANT ERR_RPT_TIME       : integer := 76500000; -- (0.33337 Hz = 3.0 sec)  
    CONSTANT ERR_RPT_TIME       : integer := 38250000; -- (0.66667 Hz = 1.5 sec)  
--    CONSTANT ERR_RPT_TIME       : integer := 10200000; -- (2.5 Hz, 45 Bps) 
--    CONSTANT ERR_RPT_TIME       : integer := 1020000; -- (25 Hz, 450 Bps) 
-- set to the number of bytes included in your output vector that needs  
-- to be printed to PC104 
    CONSTANT REPORT_OUT_LENGTH  : integer := 18;  
    signal dly_timer            : integer range 0 to ERR_RPT_TIME; 
    signal count_out_vect       : integer range 0 to REPORT_OUT_LENGTH; 
    signal report_out_vect      : std_logic; 
 
    type output_vector  
        is array(REPORT_OUT_LENGTH-1 downto 0)  
        of std_logic_vector(7 downto 0); 
 
    signal out_vect             : output_vector; 
  
--readback/reconfig process 
    -- For external JTAG error injection, we must pause for a time before  
    -- trying to readback/reconfig.  The part can become active before  
    -- programming is complete, and errors can start accumulating.  Readback 
    -- DOES NOT work while JTAG is active.  This can be 0 when we're not using 
    -- JTAG error injection. 
    CONSTANT DLY_RECONFIG               : integer := 153000000; -- 6 seconds  
-- readback/reconfig process, CLOCK_X2_i signals 
    signal err_cnt                : std_logic_vector(23 downto 0); 
    signal exp_start_rb                 : std_logic; 
    signal reconfig_from_error          : std_logic; 
    signal reconfig_from_error_save     : std_logic; 
    signal rb_started                   : std_logic; 
    signal reconfig_timer               : integer range 0 to DLY_RECONFIG; 
 
 
begin 
-- Asynchronous assignments of top level signals  
    DATA_TO_X2_RESET_o <= s_reset_exp; 
    SM_RB_RQST_o <= exp_start_rb or  dly_start_rb;  
    SM_CONFIG_RQST_o <= reconfig_from_error; 
 
-- Timer to determine how frequently to print out heart beat error reports 
    process(CLOCK_i, s_reset_exp) begin 
        if (s_reset_exp = '1') then 
            dly_timer <= 0; 
        elsif(CLOCK_i'event and CLOCK_i = '1') then 
            if (dly_timer = ERR_RPT_TIME) then 
                dly_timer <= 0; 
            else 
                dly_timer <= dly_timer + 1; 
            end if; 
        end if; 
    end process; 
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-- Do reset for experiment 
    process (CLOCK_i,RESET_i) begin 
        if (RESET_i = '1') then 
            s_reset_exp <= '1'; 
            stall_d <= '0'; 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
            sm_config_status_d <= SM_CONFIG_STATUS_i; 
            stall_d <= STALL; 
            s_reset_exp <= '0'; 
--            if (first_reset='0' or (stall = '0' and stall_d = '1') or (SM_CONFIG_STATUS_i = '0' and 
sm_config_status_d = '1' ) ) then 
-- MLS 2005.11.27 taking out reset after stall!  hopefully will have partial active 
-- reconfig working so it won't be necessary 
            if (first_reset='0' or (SM_CONFIG_STATUS_i = '0' and sm_config_status_d = '1' ) ) then 
                s_reset_exp <= '1'; 
            end if; 
        end if; 
    end process; 
 
--MLS 2005.09.15 wait until after X2 is done configuring to do first reset (instead of 30s) 
    process(CLOCK_i,RESET_i) begin 
        if (RESET_i = '1') then 
            first_reset <= '0'; 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
            if (first_reset = '0' and SM_CONFIG_STATUS_i = '0' and sm_config_status_d = '1') then 
                first_reset <= '1'; 
            end if; 
        end if; 
    end process; 
 
-- Every DLY_TIME clocks after that, do a SelectMap readback 
--don't start dly_cnt until s_reset_exp goes low (after version is done and x2 config is done) 
    process(CLOCK_i,s_reset_exp) begin  
        if (s_reset_exp = '1') then 
            sm_rb_status_d <= '0'; 
            dly_cnt <= 0; 
            dly_start_rb <= '0'; --Signal to notify that the delay counter wants to perform a SMRB 
        elsif(CLOCK_i'event and CLOCK_i = '1') then 
            dly_start_rb <= '0'; 
            sm_rb_status_d <= SM_RB_STATUS_i; 
         
-- If we just finished a SMRB, start the counter over 
            if (SM_RB_STATUS_i = '0' and sm_rb_status_d = '1') then 
             dly_cnt <= 0; 
            elsif (dly_cnt < DLY_TIME) then 
                dly_cnt <= dly_cnt + 1; 
            elsif (dly_cnt = DLY_TIME) then 
                dly_cnt <= 0; 
                dly_start_rb <= '1';--After DLY_TIME clocks, start a readback 
            end if; 
        end if; 
    end process; 
 
--Process to write error reports out to the PC104 
    process (CLOCK_i, s_reset_exp) begin 
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--hold off printing error reports until experiment is reset 
        if (s_reset_exp = '1') then  
            count_out_vect <= 0; 
            report_out_vect <= '0'; 
            PC104_WR_EN_o <= '0'; 
            DATA_o <= x"31"; 
            err_cnt <= x"000000"; 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
            PC104_WR_EN_o <= '0'; --default assignment for WR_EN 
--            divided_clock <= DATA_FROM_X2_CLKDIV_i;      
 
-- Whenever we've gone through ERR_RPT_TIME clocks or we get an error from X2 
-- (a signal coming directly from X2), and we've already finished printing out 
-- the last error report (report_out_vect = '0'), set the output error report 
-- vector to the correct values  MLS debug change back to t_err_from_x2_i = '1' 
            if ( report_out_vect = '0' and SM_CONFIG_STATUS_i = '0' 
                and dly_timer = ERR_RPT_TIME ) then 
                out_vect(0) <= x"45"; --E 
                out_vect(1) <= x"52"; --R, 
                out_vect(2) <= x"00"; 
                out_vect(3) <= err_cnt(7 downto 0); 
                out_vect(4) <= "00000" & DATA_FROM_X2_CNTCHK_i(2 downto 0); 
                out_vect(5) <= "00000" & DATA_FROM_X2_MULTCHK_i(2 downto 0); 
                out_vect(6) <= DATA_FROM_X2_OUTPUT_i(31 downto 24); -- counter output 
                out_vect(7) <= DATA_FROM_X2_OUTPUT_i(23 downto 16); -- mult output 
                out_vect(8) <= DATA_FROM_X2_OUTPUT_i(15 downto 8);  -- mult output 
                out_vect(9) <= DATA_FROM_X2_OUTPUT_i(7 downto 0);   -- mult output 
                out_vect(10) <= TIMESTAMP_i (63 downto 56); --timestamp 
                out_vect(11) <= TIMESTAMP_i (55 downto 48); --timestamp 
                out_vect(12) <= TIMESTAMP_i (47 downto 40); --timestamp 
                out_vect(13) <= TIMESTAMP_i (39 downto 32); --timestamp 
                out_vect(14) <= TIMESTAMP_i (31 downto 24); --timestamp 
                out_vect(15) <= TIMESTAMP_i (23 downto 16); --timestamp 
                out_vect(16) <= TIMESTAMP_i (15 downto 8); --timestamp 
                out_vect(17) <= TIMESTAMP_i (7 downto 0); --timestamp 
 
                report_out_vect <= '1'; 
                if ( (DATA_FROM_X2_MULTCHK_i /= "000") or (DATA_FROM_X2_CNTCHK_i /= "000")  
) then 
                    err_cnt <= err_cnt + 1; 
                end if; 
            end if; 
-- If we've set the output vector (report_out_vect = '1'), then print the output vector to the PC104  
-- one byte at a time (REPORT_OUT_LENGTH bytes will be printed) 
-- Be sure to set REPORT_OUT_LENGTH to proper value in signal definitions above 
            if (report_out_vect='1') then 
                if (count_out_vect < REPORT_OUT_LENGTH and PC104_WR_RDY_i = '1') then 
                    DATA_o <= out_vect(count_out_vect); 
                    PC104_WR_EN_o <= '1'; --write byte 
                    count_out_vect <= count_out_vect + 1; 
                elsif (count_out_vect = REPORT_OUT_LENGTH) then 
                    count_out_vect <= 0; 
                    report_out_vect <= '0'; 
                end if; 
            end if; 
        end if; 
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    end process; 
 
-- Process to signal SM RB/RC from an experiment error. 
-- Note that if you have your experiment running at a different speed than 
-- 25 MHz (the speed of CLOCK_i), you must be VERY careful about moving  
-- between clock domains.  Basically have another process on your experiments' 
-- clock that sets a flag to trigger a readback, then put that signal on the  
-- 25 MHz clock in this process (see Josh's x2Int.vhd for an example) 
    process(CLOCK_i, s_reset_exp) begin 
        if (s_reset_exp = '1') then 
            reconfig_from_error <= '0'; 
            exp_start_rb <= '0';  
            rb_started <= '0'; --make sure exp_start_rb only 1 clock 
        elsif (CLOCK_i'event and CLOCK_i = '1') then 
            exp_start_rb <= '0'; 
            reconfig_timer <= reconfig_timer + 1; 
            reconfig_from_error <= '0'; 
 
-- Set the threshold (# of data errors) for a reconfiguration 
-- If we have 256 errors, reconfigure 
            if ( err_cnt = x"FF" ) then 
                reconfig_from_error_save <= '1'; 
                reconfig_timer <= 0; 
 
-- Wait until SMRB is done, and then request a reconfig from the top level 
            elsif ( reconfig_from_error_save = '1'  
                    and SM_RB_STATUS_i = '0'  
                    and sm_rb_status_d = '1' ) then  
                reconfig_from_error <= '1'; 
                reconfig_from_error_save <= '0'; 
                rb_started <= '0'; 
 
-- Wait until last error report is printed out before starting readback 
-- Once readback has started, don't start another one! 
-- Wait to start readback for ~3s (ERR_RPT_TIME) after reaching critical 
-- number of errors, this is for JTAG external error injection, errors  
-- begin accumulating before it is done programming, so 128 errors could 
-- be reached before partial reconfig complete, so tries to readback 
-- while JTAG still going on. 
            elsif (reconfig_from_error_save = '1'  
                    and reconfig_timer = DLY_RECONFIG  
                    and report_out_vect = '0'  
                    and SM_RB_STATUS_i = '0'  
                    and rb_started = '0' ) then 
                exp_start_rb <= '1';                 
                rb_started <= '1'; 
            end if; 
        end if; 
    end process; 
end rtl; 
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CONTROL.UCF – DEVELOPMENT BOARD 

 The entire code listing for X1’s constraint file used for the TMR multiplier is 

included below.  Immediately following is X2’s constraint file for the TMR multiplier.  

Notice the blue comments on X2’s constraint file for comparison with X1’s constraint 

file and how those comments denote how the pins correspond between the two chips. 
 
# Pin assignments for X1 - development board 
# Jerry Caldwell's TMR Multiplier 
#  Created 21 August 06. 
#   
#  Modified on 22 July 06 for use on the Development Board. 
# 
#  Aux pins 42 to 44 were added, which are not available on the 
#    flight board, many other pin changes are different from the 
#    flight board, and are notated in comments to the right of the 
#    affected pin assignments 
# 
# All pin assignments in the comments following the actual pin 
#   locations must match same commented locations on cftp_x1.ucf 
#   Example:  "p153" on control.ucf matches "p132" on experiment.ucf 
# 
# The following are new Pin Assignments for the Flight Configuration 
#   where the PC104 bus is used with a JTAG interface - these are not 
#   use very often. 
 
#NET "T_CARD_BLEO_i" LOC = "p44";  # only needed for writing low byte 
#NET "CARD_BLE1" LOC = "p12"; 
#NET "CARD_RESET" LOC = "p54"; 
#NET "CARD_DATA_HIGH<10>" LOC = "p24"; 
#NET "CARD_DATA_HIGH<11>" LOC = "p26"; 
#NET "CARD_DATA_HIGH<12>" LOC = "p31"; 
#NET "CARD_DATA_HIGH<13>" LOC = "p33"; 
#NET "CARD_DATA_HIGH<14>" LOC = "p35"; 
#NET "CARD_DATA_HIGH<15>" LOC = "p38"; 
#NET "CARD_DATA_HIGH<8>" LOC = "p20"; 
#NET "CARD_DATA_HIGH<9>" LOC = "p22"; 
#NET "CLOCK_OUT" LOC = "p70"; 
 
NET "T_VPPEN_o" LOC = "P60";        # only needed for writing FLASH 
NET "T_PROM_ENABLE_o" LOC = "P62";  # drive high to save power on EEPROM 
 
# The below signal is to be used if you need a clock other than 
#   the 50 MHz clock.  Comment this out if you are not using an 
#   additional clock. 
#NET "s_clock_X2" PERIOD = 160; 
 
# Signals to/from X2 - this is specifically for the X2 
#   experimental design, which is AUX<0> to AUX<41>, and 
#   these pins must match the experiment.ucf file, not by 
#   pin number, but by X1_X2_AUX<#> 
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NET "DATA_FROM_X2_MULTCHK_i<0>" LOC = "p153";  # X1_X2_AUX<0> 
NET "DATA_FROM_X2_MULTCHK_i<1>" LOC = "p151";  # X1_X2_AUX<1> 
NET "DATA_FROM_X2_MULTCHK_i<2>" LOC = "p150";  # X1_X2_AUX<2> 
NET "DATA_FROM_X2_CNTCHK_i<0>" LOC = "p149";  # X1_X2_AUX<3> 
NET "DATA_FROM_X2_CNTCHK_i<1>" LOC = "p147";  # X1_X2_AUX<4> 
NET "DATA_FROM_X2_CNTCHK_i<2>" LOC = "p146";  # X1_X2_AUX<5> 
NET "DATA_TO_X2_RESET_o" LOC = "p145";  # X1_X2_AUX<6> 
#NET "DATA_FROM_X2_READY_i" LOC = "p144";  # X1_X2_AUX<7> 
#NET "XXX" LOC = "p135";  # X1_X2_AUX<8> 
#NET "XXX" LOC = "p134";  # X1_X2_AUX<9> 
NET "DATA_FROM_X2_OUTPUT_i<0>" LOC = "p132";  # X1_X2_AUX<10> 
NET "DATA_FROM_X2_OUTPUT_i<1>" LOC = "p127";  # X1_X2_AUX<11> 
NET "DATA_FROM_X2_OUTPUT_i<2>" LOC = "p126";  # X1_X2_AUX<12> 
NET "DATA_FROM_X2_OUTPUT_i<3>" LOC = "p120";  # X1_X2_AUX<13> 
NET "DATA_FROM_X2_OUTPUT_i<4>" LOC = "p119";  # X1_X2_AUX<14> 
NET "DATA_FROM_X2_OUTPUT_i<5>" LOC = "p112";  # X1_X2_AUX<15> 
NET "DATA_FROM_X2_OUTPUT_i<6>" LOC = "p111";  # X1_X2_AUX<16> 
NET "DATA_FROM_X2_OUTPUT_i<7>" LOC = "p110";  # X1_X2_AUX<17> 
NET "DATA_FROM_X2_OUTPUT_i<8>" LOC = "p109";  # X1_X2_AUX<18> 
NET "DATA_FROM_X2_OUTPUT_i<9>" LOC = "p108";  # X1_X2_AUX<19> 
NET "DATA_FROM_X2_OUTPUT_i<10>" LOC = "p107";  # X1_X2_AUX<20> 
NET "DATA_FROM_X2_OUTPUT_i<11>" LOC = "p105";  # X1_X2_AUX<21> 
NET "DATA_FROM_X2_OUTPUT_i<12>" LOC = "p104";  # X1_X2_AUX<22> 
NET "DATA_FROM_X2_OUTPUT_i<13>" LOC = "p103";  # X1_X2_AUX<23> 
NET "DATA_FROM_X2_OUTPUT_i<14>" LOC = "p102";  # X1_X2_AUX<24> 
NET "DATA_FROM_X2_OUTPUT_i<15>" LOC = "p101";  # X1_X2_AUX<25> 
NET "DATA_FROM_X2_OUTPUT_i<16>" LOC = "p98";  # X1_X2_AUX<26> 
NET "DATA_FROM_X2_OUTPUT_i<17>" LOC = "p97";  # X1_X2_AUX<27> 
NET "DATA_FROM_X2_OUTPUT_i<18>" LOC = "p96";  # X1_X2_AUX<28> 
NET "DATA_FROM_X2_OUTPUT_i<19>" LOC = "p94";  # X1_X2_AUX<29> 
NET "DATA_FROM_X2_OUTPUT_i<20>" LOC = "p93";  # X1_X2_AUX<30> 
NET "DATA_FROM_X2_OUTPUT_i<21>" LOC = "p92";  # X1_X2_AUX<31> 
NET "DATA_FROM_X2_OUTPUT_i<22>" LOC = "p91";  # X1_X2_AUX<32> 
NET "DATA_FROM_X2_OUTPUT_i<23>" LOC = "p90";  # X1_X2_AUX<33> 
NET "DATA_FROM_X2_OUTPUT_i<24>" LOC = "p89";  # X1_X2_AUX<34> 
NET "DATA_FROM_X2_OUTPUT_i<25>" LOC = "p88";  # X1_X2_AUX<35> 
NET "DATA_FROM_X2_OUTPUT_i<26>" LOC = "p82";  # X1_X2_AUX<36> 
NET "DATA_FROM_X2_OUTPUT_i<27>" LOC = "p81";  # X1_X2_AUX<37> 
NET "DATA_FROM_X2_OUTPUT_i<28>" LOC = "p80";  # X1_X2_AUX<38> 
NET "DATA_FROM_X2_OUTPUT_i<29>" LOC = "p79";  # X1_X2_AUX<39> 
NET "DATA_FROM_X2_OUTPUT_i<30>" LOC = "p78";  # X1_X2_AUX<40> 
NET "DATA_FROM_X2_OUTPUT_i<31>" LOC = "p77";  # X1_X2_AUX<41> 
#NET "XXX" LOC = "p75"; # X1_X2_AUX<42> -- available on Flight Board 
#NET "XXX" LOC = "p74"; # X1_X2_AUX<43> -- not avail on Flight Board 
#NET "XXX" LOC = "p71"; # X1_X2_AUX<44> -- not avail on Flight Board 
 
# X1/X2 Aux 43, and 44 are NOT available on the Flight Board 
#   Aux 42 is still available on the Flight Board if needed. 
#************************************************************** 
# END signals to/from X2 
#************************************************************** 
 
#Flash Interface Signals 
NET "T_FLASH_DATA_i<0>" LOC = "P207";               
NET "T_FLASH_DATA_i<1>" LOC = "P209";    
NET "T_FLASH_DATA_i<2>" LOC = "P212";   
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NET "T_FLASH_DATA_i<3>" LOC = "P216";    
NET "T_FLASH_DATA_i<4>" LOC = "P218";    
NET "T_FLASH_DATA_i<5>" LOC = "P220";      
NET "T_FLASH_DATA_i<6>" LOC = "P223";     
NET "T_FLASH_DATA_i<7>" LOC = "P226";    
NET "T_FLASH_DATA_i<8>" LOC = "P208";    
NET "T_FLASH_DATA_i<9>" LOC = "P211";   
NET "T_FLASH_DATA_i<10>" LOC = "P213";     
NET "T_FLASH_DATA_i<11>" LOC = "P217";    
NET "T_FLASH_DATA_i<12>" LOC = "P219";   
NET "T_FLASH_DATA_i<13>" LOC = "P222";   
NET "T_FLASH_DATA_i<14>" LOC = "P224";    
NET "T_FLASH_DATA_i<15>" LOC = "P225";   
NET "T_FLASH_ADDRESS_o<0>" LOC = "P206";  
NET "T_FLASH_ADDRESS_o<1>" LOC = "P205"; 
NET "T_FLASH_ADDRESS_o<2>" LOC = "P204";  
NET "T_FLASH_ADDRESS_o<3>" LOC = "P198";  
NET "T_FLASH_ADDRESS_o<4>" LOC = "P197";  
NET "T_FLASH_ADDRESS_o<5>" LOC = "P196"; 
NET "T_FLASH_ADDRESS_o<6>" LOC = "P195";   
NET "T_FLASH_ADDRESS_o<7>" LOC = "P194";  
NET "T_FLASH_ADDRESS_o<8>" LOC = "P182";   
NET "T_FLASH_ADDRESS_o<9>" LOC = "P183";   
NET "T_FLASH_ADDRESS_o<10>" LOC = "P184";   
NET "T_FLASH_ADDRESS_o<11>" LOC = "P185";   
NET "T_FLASH_ADDRESS_o<12>" LOC = "P188";   
NET "T_FLASH_ADDRESS_o<13>" LOC = "P189";   
NET "T_FLASH_ADDRESS_o<14>" LOC = "P190";   
NET "T_FLASH_ADDRESS_o<15>" LOC = "P192";   
NET "T_FLASH_ADDRESS_o<16>" LOC = "P193";   
NET "T_FLASH_ADDRESS_o<17>" LOC = "P177";   
NET "T_FLASH_ADDRESS_o<18>" LOC = "P178";   
NET "T_FLASH_ADDRESS_o<19>" LOC = "P179";   
NET "T_FLASH_ADDRESS_o<20>" LOC = "P181";   
NET "T_FLASH_WE_o" LOC = "P165";    
NET "T_FLASH_RP_o" LOC = "P166";    
NET "T_FLASH_WP_o" LOC = "P167";     
NET "T_FLASH_CE_A_o" LOC = "P164";     
#NET "T_Flash_CE_B_o" LOC = "P125"; # doesn't do anything! 
NET "T_FLASH_OE_o" LOC = "P162";     
 
#PC/104 Interface Signals 
NET "T_Data_io<0>" LOC = "P11";              #ISA Data Bit 0 p. 11   
NET "T_Data_io<1>" LOC = "P10";   #ISA Data Bit 1  p. 10 
NET "T_Data_io<2>" LOC = "P9";   #ISA Data Bit 2     p. 09 
NET "T_Data_io<3>" LOC = "P7";   #ISA Data Bit 3  p. 07 
NET "T_Data_io<4>" LOC = "P6";   #ISA Data Bit 4  p. 06 
NET "T_Data_io<5>" LOC = "P5";    #ISA Data Bit 5  p. 05 
NET "T_Data_io<6>" LOC = "P4";    #ISA Data Bit 6  p. 04 
NET "T_Data_io<7>" LOC = "P3";    #ISA Data Bit 7  p. 03 
NET "T_Address_i<0>" LOC = "P47";  #ISA Address 0  p. 47 
NET "T_Address_i<1>" LOC = "P46";  #ISA Address 1  p. 46 
NET "T_Address_i<2>" LOC = "P45";  #ISA Address 2  p. 45 
NET "T_Address_i<3>" LOC = "P39";  #ISA Address 3  p. 39  
NET "T_Address_i<4>" LOC = "P36";  #ISA Address 4  p. 36 
NET "T_Address_i<5>" LOC = "P34";  #ISA Address 5  p. 34 
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NET "T_Address_i<6>" LOC = "P32";  #ISA Address 6  p. 32 
NET "T_Address_i<7>" LOC = "P29";  #ISA Address 7  p. 29 
NET "T_Address_i<8>" LOC = "P25";  #ISA Address 8  p. 25 
NET "T_Address_i<9>" LOC = "P23";  #ISA Address 9  p. 23 
#NET "T_Address_i<10> LOC = "p21";      #ISA Address 10     p. 21 
NET "T_IORead_i" LOC = "P19";   #CARD_OE      p. 19  
NET "T_IOWRITE_i" LOC = "P17";      #CARD_WE         p. 17  
NET "T_IOCS_i" LOC = "P16";          #CARD_CS3, used to be p. 13 
NET "T_INTRPT_o" LOC = "P54";  # T_INTRPT_o is "p43" on the flight board 
                               # This is ISA Interrupt 0, IRQ 7 
                   # NOTE: on the development board, IO Pin 5(P54) 
                   #  is jumpered to card interrupt 0 
                   #  actually is interrupt 6 on ARM side! 
 
# SelectMap interface signals 
NET "T_CCLK_o" LOC = "P69"; #Drive X2's CCLK pin, flight_board = p65 
NET "T_SELECTMAP_INIT_o" LOC = "P117"; #Drive X2's INIT pin, flight_board = p124  
                                # schematic says 124 = "IO_VREF_3"  ??? 
NET "T_SELECTMAP_WRITE_o" LOC = "P176"; #Drive X2's WRITE pin, flight_board = p63 
                                # schematic says 63 = "IO_VREF_5"   ??? 
NET "T_SELECTMAP_CS_o" LOC = "P175"; #Drive X2's CS pin, flight_board = p64 
 
# MLS swap pins so D(0) is LSB 
NET "T_SELECTMAP_DATA_io<7>" LOC = "P169"; # X2_D0, flight_board = p68 
NET "T_SELECTMAP_DATA_io<6>" LOC = "P128"; # X2_D1, flight_board = p69 
NET "T_SELECTMAP_DATA_io<5>" LOC = "P131"; # X2_D2, flight_board = p70 
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137"; # X2_D3, flight_board = p71 
NET "T_SELECTMAP_DATA_io<3>" LOC = "P148"; # X2_D4, flight_board = p74 
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155"; # X2_D5, flight_board = p75 
NET "T_SELECTMAP_DATA_io<1>" LOC = "P158"; # X2_D6, flight_board = p121 
NET "T_SELECTMAP_DATA_io<0>" LOC = "P168"; # X2_D7, flight_board = p122 
# NET "T_SELECTMAP_BUSY_i" LOC = "P118";  #not sure what this does 
 
NET "T_clock_i" LOC = "P87"; # Flight_board = P87  
                              # P87 is a 51 MHz CARD_BCLK from ARM board 
                              #     IF used on the development board 
                              # For the flight board, P199 is unconnected.  
                              # P87 has to be used on the flight board. 
                              # If using P87 on the development board, then 
                              #     ensure P199 is used on X2 for dev_board. 
                              # For the flight board, X2's clock MUST be 
                              #     tied to P199, and X1's clock to P87. 
 
NET "T_X2_MODE<0>" LOC = "P160"; 
NET "T_X2_MODE<1>" LOC = "P159"; 
NET "T_X2_MODE<2>" LOC = "P161"; 
NET "T_X2_PROG_o" LOC = "P49"; 
#NET "T_clock_i" PERIOD = 20; 
#NET "s_clock" PERIOD = 20; 
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X2 CONSTRAINT FILE  

 This is the code listing for X2’s constraint file in support of the TMR Multiplier.  

Pay particular attention to the blue comments next to the pin assignments, and compare 

these to X1’s constraint file and corresponding pin assignments. 
 
 
# Pin assignments for X2 (TMR Multiplier) 
# by Jerry Caldwell 
# 
#   Double-check all pin assignments! 
# 
# All pin assignments in the comments following the actual pin 
# locations must match same commented locations on control.ucf 
# Example:  "p132" on tmr_multiply.ucf matches "p153" on control.ucf 
 
# system clock 
NET "clock" LOC = "P199"; # use this one for the 51 MHz oscillator 
#NET "clock" LOC = "P87"; # use this one for a 50 MHz clock 
# NET "clock" PERIOD = 40;   
# NET "s_clock" PERIOD = 80; 
 
# signals to/from X1 
NET "mult_check<0>" LOC = "p132";  # X1_X2_AUX<0> 
NET "mult_check<1>" LOC = "p134";  # X1_X2_AUX<1> 
NET "mult_check<2>" LOC = "p135";  # X1_X2_AUX<2> 
NET "cnt_check<0>" LOC = "p136";  # X1_X2_AUX<3> 
NET "cnt_check<1>" LOC = "p138";  # X1_X2_AUX<4> 
NET "cnt_check<2>" LOC = "p139";  # X1_X2_AUX<5> 
NET "x1_reset" LOC = "p141";  # X1_X2_AUX<6> 
#NET "data_rdy" LOC = "p144";  # X1_X2_AUX<7> 
#NET "XXX" LOC = "p146";  # X1_X2_AUX<8> 
#NET "XXX" LOC = "p147";  # X1_X2_AUX<9> 
NET "result<0>" LOC = "p153";  # X1_X2_AUX<10> 
NET "result<1>" LOC = "p154";  # X1_X2_AUX<11> 
NET "result<2>" LOC = "p159";  # X1_X2_AUX<12> 
NET "result<3>" LOC = "p160";  # X1_X2_AUX<13> 
NET "result<4>" LOC = "p161";  # X1_X2_AUX<14> 
NET "result<5>" LOC = "p177";  # X1_X2_AUX<15> 
NET "result<6>" LOC = "p178";  # X1_X2_AUX<16> 
NET "result<7>" LOC = "p179";  # X1_X2_AUX<17> 
NET "result<8>" LOC = "p181";  # X1_X2_AUX<18> 
NET "result<9>" LOC = "p182";  # X1_X2_AUX<19> 
NET "result<10>" LOC = "p183";  # X1_X2_AUX<20> 
NET "result<11>" LOC = "p184";  # X1_X2_AUX<21> 
NET "result<12>" LOC = "p185";  # X1_X2_AUX<22> 
NET "result<13>" LOC = "p188";  # X1_X2_AUX<23> 
NET "result<14>" LOC = "p189";  # X1_X2_AUX<24> 
NET "result<15>" LOC = "p190";  # X1_X2_AUX<25> 
NET "result<16>" LOC = "p192";  # X1_X2_AUX<26> 
NET "result<17>" LOC = "p193";  # X1_X2_AUX<27> 
NET "result<18>" LOC = "p194";  # X1_X2_AUX<28> 
NET "result<19>" LOC = "p195";  # X1_X2_AUX<29> 
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NET "result<20>" LOC = "p196";  # X1_X2_AUX<30> 
NET "result<21>" LOC = "p197";  # X1_X2_AUX<31> 
NET "result<22>" LOC = "p198";  # X1_X2_AUX<32> 
NET "result<23>" LOC = "p204";  # X1_X2_AUX<33> 
NET "count<0>" LOC = "p205";  # X1_X2_AUX<34> 
NET "count<1>" LOC = "p206";  # X1_X2_AUX<35> 
NET "count<2>" LOC = "p207";  # X1_X2_AUX<36> 
NET "count<3>" LOC = "p208";  # X1_X2_AUX<37> 
NET "count<4>" LOC = "p209";  # X1_X2_AUX<38> 
NET "count<5>" LOC = "p211";  # X1_X2_AUX<39> 
NET "count<6>" LOC = "p212";  # X1_X2_AUX<40> 
NET "count<7>" LOC = "p213";  # X1_X2_AUX<41> 
 
# NET "XXX" LOC = "p216";  # X1_X2_AUX<42> # available on dev board 
# NET "XXX" LOC = "p217";  # X1_X2_AUX<43> # available on dev board 
# NET "XXX" LOC = "p218";  # X1_X2_AUX<44> # available on dev board 
 
# X1_X2_AUX<42,43,44> NOT availabe on flight board 
# 42 was replaced by CE_B for flash 
 
 

CONTROL.UCF – FLIGHT BOARD 

 Included below is the section of the constraint file for X1 for the Flight Board that 

differs from the Development Board.  The below section of code can be compared to the 

constraint file for Development Board listed previously.  It is easy to recognize that the 

only differences are in the actual numbers assigned to the pins below.  The specific signal 

names remain exactly the same. 
 
 
NET "T_INTRPT_o" LOC = "P54";  # T_INTRPT_o is "p43" on the flight board 
                               # This is ISA Interrupt 0, IRQ 7 
                   # NOTE: on the development board, IO Pin 5(P54) 
                   #  is jumpered to card interrupt 0 
                   #  actually is interrupt 6 on ARM side! 
 
# Selectmap interface signals 
NET "T_CCLK_o" LOC = "P69"; #Drive X2's CCLK pin, flight_board = p65 
NET "T_SELECTMAP_INIT_o" LOC = "P117"; #Drive X2's INIT pin, flight_board = p124  
                                # schematic says 124 = "IO_VREF_3"  ??? 
NET "T_SELECTMAP_WRITE_o" LOC = "P176"; #Drive X2's WRITE pin, flight_board = p63 
                                # schematic says 63 = "IO_VREF_5"   ??? 
NET "T_SELECTMAP_CS_o" LOC = "P175"; #Drive X2's CS pin, flight_board = p64 
 
# MLS swap pins so D(0) is LSB 
NET "T_SELECTMAP_DATA_io<7>" LOC = "P169"; # X2_D0, flight_board = p68 
NET "T_SELECTMAP_DATA_io<6>" LOC = "P128"; # X2_D1, flight_board = p69 
NET "T_SELECTMAP_DATA_io<5>" LOC = "P131"; # X2_D2, flight_board = p70 
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137"; # X2_D3, flight_board = p71 
NET "T_SELECTMAP_DATA_io<3>" LOC = "P148"; # X2_D4, flight_board = p74 
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155"; # X2_D5, flight_board = p75 
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NET "T_SELECTMAP_DATA_io<1>" LOC = "P158"; # X2_D6, flight_board = p121 
NET "T_SELECTMAP_DATA_io<0>" LOC = "P168"; # X2_D7, flight_board = p122 
# NET "T_SELECTMAP_BUSY_i" LOC = "P118";  #not sure what this does 
 
NET "T_clock_i" LOC = "P199"; # Flight_board = P87 
 

MAKEFILE FOR THE CONTROLLER CODE 

 Below is only the first portion of the Makefile that is used to compile the 

Controller Code.  The code highlighted in red is the only part that needs to be changed by 

prospective Designers.  These changes are done to identify specifics experiments in the 

output data stream and are therefore important. 

 
###Makefile for compiling VHDL code  
 
################################################################ 
###                         Paths                            ### 
################################################################ 
# Top level project name (used also in naming source/output files below 
# You don't have to use projname as root of filenames (you can change 
# them below if you'd like), but it  
# makes it easy to reuse this Makefile for a different design 
PROJNAME  = control 
ENTITYNAME = cftp_ARM 
# ID is used by the rd.sh program to determine how the output from 
# your code should be formatted.  It is any 2 digit string, tell  
# Mindy what you chose and she will add it to the rd.sh program. 
# Already taken: 
# JS: Josh's Cordic 
# JM: Jerry's Multiplier 
# SR: James' Shift Register 
# FD: Flash Dump 
# VT: V2 Test code 
# FE: Flash Erase 
ID          = JM 
DESCR       = "Jerry's Multiplier" 
#Location of all local source files 
# MUST BE FULL PATH, XST doesn't like relative paths 
SRCPATHLOC  = $(PROJNAME)_src 
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APPENDIX C:  DATA FORMATTING CODE 

Programs specifically designed for viewing data output from the CFTP 

architecture have been written in “C” code, and are included for the benefit of future 

designers who desire formatted output, such as that located in Figures 6 – 8 and 10 and 

11.  To view output data in this format, three files must be slightly modified.  One is a 

Makefile, and the other two are “C” code programs that perform the function of reading 

data and outputting it in a clear, organized format. 

 The majority of the modifications of these three files merely require copying a 

section of code and pasting it, then slightly modifying it specific to an experiments output 

stream.  The portion that will be edited in the top level program, rd_top_arm.c, ties into 

the modification designers make to the file Makefile_control for the Controller code, 

described in Chapter V and Appendix B.  Specifically, the program rd_top_arm.c looks 

for the two initials added to Makefile_control, and then will call another c-code program 

that directly formats the data. 

 The sections of the three files that require modification are highlighted in red, 

followed by a description of what the code does. 

TOP LEVEL C-CODE PROGRAM - rd_top_arm.c 
#include<sys/io.h> 
#include<sys/types.h> 
#include<sys/stat.h> 
#include<stdio.h> 
#include<unistd.h> 
 
int printusageandexit() { 
      printf("Usage: rd_top_arm\n" 
        "with options: \n" 
        "-f FILENAME    full path to filename to read\n"  
        "-s SPEED       SPEED times real time\n" ); 
      return 0; 
} 
 
main(int argc, char **argv) 
{ 
    unsigned char byte1,byte2,dummy,string[]="PART SUCCESSFULLY 
PROGRAMMED",synch_word[]="PART SUCCESSFULLY PROGRAMMED"; 
    int synch_len,i; 
    char *fn, *cp, *speed, *cfn; 
    FILE *child, *datafile; 
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    fn = "/home/msurratt/work/arm_code/test"; 
    speed = "1"; 
 
    for (i=1; i<argc; i++) { 
        if (strcmp(argv[i], "-f") == 0) { 
            if (++i <= argc-1) { fn=argv[i]; } 
            else { return printusageandexit(); } 
        } 
        else if (strcmp(argv[i], "-s") == 0) { 
            if (++i <= argc-1) { speed = argv[i]; } 
            else { return printusageandexit(); } 
        } 
        else { return printusageandexit(); } 
    } 
     
    datafile = fopen(fn,"r"); 
 
    fflush(NULL); 
    if ( (child = popen("cat","w")) < 0) { 
        printf("Failed to open child process\n"); 
        exit(0); 
    } 
 
    synch_len = strlen(synch_word); 
 
    while(1) { 
 
        for (i=0;i<synch_len-1;i++) { 
            string[i] = string[i+1]; 
        } 
 
        fread(&string[synch_len-1],1,1,datafile); 
        fflush(NULL); 
        fprintf(child,"%c",string[synch_len-1]); 
        fflush(NULL); 
 
        if (strcmp (string,synch_word) == 0) { 
            fread(&byte1,1,1,datafile); // 0x0a 
            fread(&byte2,1,1,datafile); // 0x0d 
            fprintf(child,"%c%c\n",byte1,byte2); 
            fflush(NULL); 
            fread(&byte1,1,1,datafile); // ID 1 
            fread(&byte2,1,1,datafile); // ID 2 
            fread(&dummy,1,1,datafile); // 0x0d 
            pclose(child); 
// for EXPERIMENTAL DESIGN 
// add an entry for your unique id, and executable 
            // Josh's cordic, ID JS  
            if (byte1 == 'J' && byte2 == 'S') { 
                fflush(NULL); 
                if ( (child = popen("cordic_out","w")) < 0) { 
                    fprintf(stderr,"Failed to open child process\n"); 
                    exit(0); 
                } 
            } 
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            // Jerry's Dual Counter ID JD  
            if (byte1 == 'J' && byte2 == 'D') { 
                fflush(NULL); 
                cp = "dualcount_out_arm "; 
                if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc 
failed"); return 0; } 
                strcpy(cfn,cp); 
                strcat(cfn,speed); 
                if ( (child = popen(cfn,"w")) < 0) { 
                    fprintf(stderr,"Failed to open child process\n"); 
                    exit(0); 
                } 
            } 
            // Jerry's Multiplier ID JM  
            if (byte1 == 'J' && byte2 == 'M') { 
                fflush(NULL); 
                cp = "mult_out_arm "; 
                if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc 
failed"); return 0; } 
                strcpy(cfn,cp); 
                strcat(cfn,speed); 
                if ( (child = popen(cfn,"w")) < 0) { 
                    fprintf(stderr,"Failed to open child process\n"); 
                    exit(0); 
                } 
            } 
 

 The above section beginning with the comment “//Jerry’s Multiplier ID JM,” was 

copied and only two lines were modified.  In the first “if” statement, “J” and “M” were 

inserted next to the double-equal symbols.  This tells the rd_top_arm program to look for 

these two initials in a given file of data, which are included in that data because these two 

initials were added to the file Makefile_control.  Two lines below that, mult_out_arm was 

inserted in between the quotation marks.  This tells the rd_top_arm program to call the 

specific c-code program that reads the multiplier output, named appropriately. 
 
            // Mindy's Counter ID MS  
            if (byte1 == 'M' && byte2 == 'S') { 
                fflush(NULL); 
                cp = "mindy_out "; 
                if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc 
failed"); return 0; } 
                strcpy(cfn,cp); 
                strcat(cfn,speed); 
                if ( (child = popen(cfn,"w")) < 0) { 
                    fprintf(stderr,"Failed to open child process\n"); 
                    exit(0); 
                } 
            } 
            // Josh's cordic with timestamp (for flight), ID JA  
            if (byte1 == 'J' && byte2 == 'A') { 
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                fflush(NULL); 
                cp = "cordic_out_arm "; 
                if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL ) { fprintf(stderr,"malloc 
failed"); return 0; } 
                strcpy(cfn,cp); 
                strcat(cfn,speed); 
                if ( (child = popen(cfn,"w")) < 0) { 
                    fprintf(stderr,"Failed to open child process\n"); 
                    exit(0); 
                } 
            } 
        } 
    }     
} 

 

SPECIFIC C-CODE PROGRAM – “name”_out_arm.c 

 The file included below is named mult_out_arm.c, and is the file that 

rd_top_arm.c will call when rd_top_arm.c encounters a “J” and an “M” in an output file.  

The portion in red is the area that requires modification if data is to be organized into an 

easily readable format.  
 
//mult_out_arm.c modified by Jerry Caldwell 
//21 Sept 06 
#include <stdio.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <string.h> 
#include "rd_sub.h" 
#include "smrb_locs.h" 
 
int getER(); 
void getPC(); 
 
int main(int argc, char **argv){ 
 
    unsigned char synch_word[]="AA"; 
    unsigned char string[]="PART SUCCESSFULLY PROGRAMMED"; 
    long timestamp,oldTime = 0; 
    int speed; 
  int total_SM=0; 
    smrb_locs locs; 
 
    locs.wrptr = 0; 
    locs.end_of_array = 0; 
    locs.data = NULL; 
 
    speed = atoi(argv[1]); 
 
    while (1) { 
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        synch_word[0] = synch_word[1]; 
        fread(&synch_word[1],1,1,stdin);  
 
        if ( new_output(&string[0],synch_word[1]) ) { 
            return 0; 
        } 
        if (strcmp(synch_word,"ER") == 0 ) { 
            if((timestamp = getER(oldTime,speed)) == 0 ) { 
                fprintf(stderr,"getER failed"); 
            } 
            oldTime = timestamp; 
        } 
        else if (strcmp(synch_word,"SM") == 0 ) { 
            oldTime = getTS(); 
            printf("\ntimestamp: %08x ",oldTime); 
            fflush(NULL); 
            // return last read value: beginning of SC or ER 
            if( ( synch_word[1] = getSM(&locs,total_SM) ) == 0) { 
                fprintf(stderr,"getSM failed"); 
            } 
            SMRC(&locs); 
   total_SM++; 
        } 
        else if (strcmp(synch_word,"SC") == 0 ) { 
            oldTime = getTS(); 
            printf("timestamp: %08x \n",oldTime); 
            SMRC(&locs); 
        } 
        else if (strcmp(synch_word,"PC") == 0 ) { 
   getPC(); 
            SMRC(&locs); 
        } 
    } 
} 
void getPC() { 
 
    unsigned char c; 
    fread(&c,1,1,stdin); //BLOCK NUM 
    printf("BLK#: %02x   ",c); 
    fread(&c,1,1,stdin); //MJA 
    printf("MJA#: %02x   ",c); 
    fread(&c,1,1,stdin); //MNA 
    printf("MNA#: %02x   ",c); 
    fread(&c,1,1,stdin); //BIT Upper 
    printf("BIT#: %02x",c); 
    fread(&c,1,1,stdin); //BIT Lower 
    printf("%02x   ",c); 
    fread(&c,1,1,stdin); //FLASH Offset Upper 
    printf("FLASH OFFSET: %02x",c); 
    fread(&c,1,1,stdin); //FLASH Offset Middle 
    printf("%02x",c); 
    fread(&c,1,1,stdin); //FLASH Offset Lower 
    printf("%02x\n",c);  
} 
int getER(long oldTime, int speed) { 
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    unsigned char c; 
    long timestamp; 
 
// Use the below portion to read the TMR multipliers 
    fread(&c,1,1,stdin);  // this reads the padded zeros before 
                          // err_cnt, if those are output from the X1 code 
    fread(&c,1,1,stdin); 
    printf(" Error Count: "); 
    printf("%02x  ",c); 
    printf(" "); 
 
    printf("Count_voter: "); 
    fread(&c,1,1,stdin); 
    printf("%02x  ",c); 
    printf(" "); 
 
    printf("Mult_voter: "); 
    fread(&c,1,1,stdin); 
    printf("%02x  ",c); 
    printf(" "); 
 
    printf("Count: "); 
    fread(&c,1,1,stdin); 
    printf("%02x  ",c); 
    printf(" "); 
 
    printf("Count Squared: "); 
    fread(&c,1,1,stdin); 
    printf("%02x",c); 
    fread(&c,1,1,stdin); 
    printf("%02x",c); 
    fread(&c,1,1,stdin); 
    printf("%02x  ",c); 
    printf(" "); 
     
   

The above portion of code uses “fread” and “printf” to read bytes of data and print 

it next to the strings in quotation marks.  It should be self evident how the strings in 

quotation marks are altered to identify specific data.  For each byte of data that is read, a 

corresponding “printf” statement is needed to print that data.  The location of the “printf” 

statement determines the order in which the data will be printed.  Notice the uses of 

quotation marks to format the bytes of data as well as spaces to provide additional 

formatting. 
 
  printf("Timestamp: "); 
    timestamp = getTS(); 
    printf("%08x\n",timestamp); 
    fflush(NULL); 
 
    if (timestamp == 0) { timestamp = 1; }  
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    return(timestamp); 
} 

 

MAKEFILE 

 This file must be modified to so that rd_top_arm.c and the specific c-file created, 

mult_out_arm.c for this particular example, can be compiled.  The portions in red are the 

lines of code requiring modification. 
 
INC=./include 
FLASH_SRC=./mkflash_src 
RD_SRC=./process_output_src 
INJERR_SRC=./inject_error_src 
BIN=. 
 
all: rd_top_arm mult_out_arm count_out_arm dualcount_out_arm 
 

 The only change made to the above line was to add the filename mult_out_arm. 
 
inject_error: $(INJERR_SRC)/inject_error.c 
 gcc -I$(INC) -o $(BIN)/inject_error $(INJERR_SRC)/inject_error.c 
 
interleave_files: $(FLASH_SRC)/interleave_files.c 
 gcc -I$(INC) -o $(BIN)/interleave_files $(FLASH_SRC)/interleave_files.c 
 
strip_mask: $(FLASH_SRC)/strip_mask.c 
 gcc -I$(INC) -o $(BIN)/strip_mask $(FLASH_SRC)/strip_mask.c 
 
mult_out_arm: $(RD_SRC)/mult_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c 
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c 
 gcc -I$(INC) -o $(BIN)/mult_out_arm $(RD_SRC)/mult_out_arm.c $(RD_SRC)/smrb.c 
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm 
 

The above portion of code was merely copied and pasted, and “mult_out_arm” 

and “mult_out_arm.c” was substituted in the appropriate places.  Studying the code 

below makes is evident where these substitutions take place. 
 
count_out_arm: $(RD_SRC)/count_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c 
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c 
 gcc -I$(INC) -o $(BIN)/count_out_arm $(RD_SRC)/count_out_arm.c $(RD_SRC)/smrb.c 
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm 
 
dualcount_out_arm: $(RD_SRC)/dualcount_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c 
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c 
 gcc -I$(INC) -o $(BIN)/dualcount_out_arm $(RD_SRC)/dualcount_out_arm.c $(RD_SRC)/smrb.c 
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm 
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cordic_out_arm: $(RD_SRC)/cordic_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c 
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c 
 gcc -I$(INC) -o $(BIN)/cordic_out_arm $(RD_SRC)/cordic_out_arm.c $(RD_SRC)/smrb.c 
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm 
 
sr_out: sr_out.c smrb.c smrc.c new_output.c smrb_locs.c rd_sub.h  
 gcc -o $(BIN)/sr_out $(RD_SRC)/sr_out.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c 
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c -lm 
 
sr_out_c2: $(RD_SRC)/sr_out.c $(RD_SRC)/smrb_c2.c $(RD_SRC)/smrc.c $(RD_SRC)/new_output.c 
$(RD_SRC)/smrb_locs.c $(RD_SRC)/rd_sub.h  
 gcc -o $(BIN)/sr_out_c2 $(RD_SRC)/sr_out.c $(RD_SRC)/smrb_c2.c $(RD_SRC)/smrc.c 
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c -lm 
 
rd_top: $(RD_SRC)/rd_top.c 
 gcc -o $(BIN)/rd_top -g $(RD_SRC)/rd_top.c 
 
rd_top_arm: $(RD_SRC)/rd_top_arm.c 
 gcc -o $(BIN)/rd_top_arm -g $(RD_SRC)/rd_top_arm.c 
 

 

COMMAND –LINE ENTRIES 

 Examples of the specific command-line entries to compile the c-code, and to read 

and print out data from a file, are included. 

To compile the code, you must be in the same directory where the make file 

exists.  Then the command-line entry is as simple as typing “make,” as below. 

cftp:~/directory$  make 

To read the contents of a file and print them to a screen using these programs, use 

the command “rd_top_arm” followed by a “-f” denoting a file name to follow, then the 

exact name of the file to read. 

cftp:~/directory$  rd_top_arm –f filename 
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