
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2006-12

Implementation of Configurable Fault Tolerant
Processor (CFTP) experiments

Caldwell, Gerald W.
Monterey California. Naval Postgraduate School

https://hdl.handle.net/10945/2380

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

IMPLEMENTATION OF CONFIGURABLE FAULT
TOLERANT PROCESSOR (CFTP) EXPERIMENTS

by

Gerald W. Caldwell

December 2006

 Thesis Advisor: Herschel H Loomis, Jr.
 Second Reader: Alan A. Ross

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Implementation of Configurable Fault Tolerant
Processor (CFTP) Experiments

6. AUTHOR(S) Gerald W. Caldwell

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Configurable Fault Tolerant Processor (CFTP) team at Naval Postgraduate School (NPS), Monterey,

was created to develop, test, and implement reliable computing solutions for the space environment. The CFTP
team seeks to design reliable circuits using Field Programmable Gate Arrays (FPGA) to include designs that
mitigate the radiation hazards posed to FPGAs. A significant challenge faced by the CFTP team has been the
integration and subsequent software development of the CFTP architecture, which includes a “Controller” and an
“Experiment” FPGA.

This thesis investigates some of the specific design issues that must be considered for future experiments,
to include timing between the two FPGAs, and data throughput of the CFTP architecture. Procedures for the
development and implementation of experiments are detailed for the benefit of future experimenters who may be
new to designing for FGPAs. Lastly, the Controller program is streamlined such that only minor modifications are
required by prospective users in order to conform to specific experiments.

Over the years the CFTP team has produced several experiments that will provide reliable computing
solutions for the space environment. Now, in addition to the “what” is to be used in space, this thesis presents
“how” to run them in space.

15. NUMBER OF
PAGES

129

14. SUBJECT TERMS
Field Programmable Gate Array (FPGA), Single Event Upset (SEU)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF CONFIGURABLE FAULT TOLERANT
PROCESSOR (CFTP) EXPERIMENTS

Gerald W. Caldwell

Major, United States Marine Corps
B.A., Emory & Henry College, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Gerald W. Caldwell

Approved by: Herschel H. Loomis, Jr.

Thesis Co-advisor

Alan A. Ross
Thesis Co-Advisor

Jeffery B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Configurable Fault Tolerant Processor (CFTP) team at Naval Postgraduate

School (NPS), Monterey, was created to develop, test, and implement reliable computing

solutions for the space environment. The CFTP team seeks to design reliable circuits

using Field Programmable Gate Arrays (FPGA) to include designs that mitigate the

radiation hazards posed to FPGAs. A significant challenge faced by the CFTP team has

been the integration and subsequent software development of the CFTP architecture,

which includes a “Controller” and an “Experiment” FPGA.

This thesis investigates some of the specific design issues that must be considered

for future experiments, to include timing between the two FPGAs, and data throughput of

the CFTP architecture. Procedures for the development and implementation of

experiments are detailed for the benefit of future experimenters who may be new to

designing for FGPAs. Lastly, the Controller program is streamlined such that only minor

modifications are required by prospective users in order to conform to specific

experiments.

Over the years the CFTP team has produced several experiments that will provide

reliable computing solutions for the space environment. Now, in addition to the “what”

is to be used in space, this thesis presents “how” to run them in space.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. CFTP OBJECTIVE...2
B. RESEARCH OBJECTIVES...2
C. BACKGROUND ..2
D. CFTP ENVIRONMENT ...3
E. IMPLEMENTING EXPERIMENTS...4
F. OVERVIEW...4

II. CFTP ARCHITECTURE ...5
A. CONTROL FPGA ...6
B. EXPERIMENT FPGA...6
C. PC/104 BUS ..7
D. EEPROM..7
E. FLASH MEMORY ..7
F. ARM PROCESSOR...7
G. SDRAM...8
H. CHAPTER SUMMARY..8

III. MODIFYING CODE...9
A. CONTROLLER ...9

1. Top Level ..10
2. X2 Interface ..11
3. Constraint File..14
4. PC/104 Interface...15
5. SelectMap Configure ...16
6. SelectMap Read Back..16
7. Clock Generator...16

B. EXPERIMENT ..17
1. Implementation ..17
2. Flash File...17
3. Constraints..18

C. CHAPTER SUMMARY..19

IV. TIMING..21
A. CONTROLLER FUNCTIONS...22

1. Sampling Data ..22
2. Clock Dividing X2..22
3. New Module for X1..22
4. Buffer on X1 ...23

B. DATA RATE ..23
1. Phase One ...23
2. Phase Two...29
3. Clock Skew ...34

C. CLOCK DIVISION ...37

 viii

1. Circuit Design...38
2. Clock Division...39
3. The Results ...40
4. Sampling Data ..42
5. Final Analysis ...43

D. CHAPTER SUMMARY..43

V. AN EXAMPLE EXPERIMENT...45
A. TRIPLE MODULAR REDUNDANCY...45
B. TMR MULTIPLIER ...45
C. WORKING IN PROJECT NAVIGATOR..46

1. Creating a Design...48
2. Processes in Project Navigator ...48
3. The Critical UCF Source...50

D. DETAILS OF THE EXPERIMENT..51
1. Input & Synchronization...51
2. Voter Logic ...52
3. Multiplier & Pipelining ...54
4. Signal Names ..54
5. Sequential Data ..55
6. Finishing the Experiment ..55
7. Flash File...55

E. MODIFYING THE CONTROLLER ..56
1. X2 Interface ..56
2. The UCF File ..59
3. Makefile_Control ...60
4. Compiling Code..61

F. PROGRAMMING THE BOARD ..62
G. CHAPTER SUMMARY..62

VI. CONCLUSIONS AND RECOMMENDATIONS...63
A. SUMMARY ..63
B. CONCLUSIONS ..64
C. RECOMMENDATIONS...64

1. Use SDRAM Available to X2 ..64
2. Multiple Configurations on Flash Memory.....................................65
3. Passing Data from the ARM ...65

APPENDIX A: CFTP EXPERIMENT MANUAL ..67
A. NAMING CONVENTIONS..68
B. DEVELOPMENT BOARD & FLIGHT BOARD69
C. THE EXPERIMENT...69

1. Simulation and Compilation ...69
a. Naming Conventions...69
b. Constraint File ..70

2. Compiling within Linux (“make” files)..70
a. Modify the Makefile_experiment and experiment_prj files ..70

 ix

b. Compile..71
3. The NCD file (experiment.ncd)...71
4. Creating the Flash File ..71

a. Run bitgenpersist.sh..71
b. Run mkflash.sh ...72
c. Copy “fwr” file for ground run ..72

D. THE CONTROLLER..72
1. Compilation ..72

a. Modify the Makefile_control file..73
b. Compile..73
c. Copy the “.bin” file ...73

E. GROUND RUN ..74
1. Naming conventions...74
2. ARM Commands via Telnet ...74

a. Running “write_flash.bin” ...75
b. Running wr_arm_poll...76
c. Optional – running dump_flash.bin.......................................76
d. Running control_name.bin and collecting output.................80

F. SATELLITE RUN ...81
1. Implementing Experiments on the Satellite82

G. CHECKLIST FOR RUNNING EXPERIMENTS......................................83

APPENDIX B: CONTROLLER CODE...85

APPENDIX C: DATA FORMATTING CODE...99

LIST OF REFERENCES..107

INITIAL DISTRIBUTION LIST ...109

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. CFTP Development Board (From Ref. [1]). ..5
Figure 2. Graphical Depiction of X1 Modules with X2 (From Ref. [1].)10
Figure 3. Output from X1’s Counter at 7500 Bytes/sec..26
Figure 4. Output from X1’s Counter at 1500 Bytes/sec..27
Figure 5. Output from X1’s Counter at 500 Bytes/sec..28
Figure 6. Dual Counter Output at 170 Bytes/sec (sampling rate of 10 Hz)31
Figure 7. Dual Counter Output at 173,400 Bytes/sec (sampling rate of 10.2 KHz)32
Figure 8. Dual Counter Output at 867 MBytes/sec. ..33
Figure 9. Clock Skew Signal Paths ...35
Figure 10. TMR Multiplier..38
Figure 11. 25.5 MHz Timing Diagram..39
Figure 12. Output from TMR Multiplier at 450 Bytes/sec..41
Figure 13. Output from TMR Multiplier at 900 Bytes/sec..42
Figure 14. TMR Multiplier at 51 MHz with Sampled Output at 0.667 Hz.......................43
Figure 15. TMR Multiplier Final Design ..47
Figure 16. Project Options in Xilinx’s Project Navigator [10] ...48
Figure 17. Working with VHDL in Project Navigator [10] ..49
Figure 18. Schematic for Register in TMR Multiplier Design [10]..................................50
Figure 19. A portion of the Constraint File [10] ...51
Figure 20. Reset Signal and TMR Counter ...52
Figure 21. VHDL Code for Counter. ..52
Figure 22. Voter Logic ..53

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Xilinx RADHARD FPGA Gate Counts (From Ref. [6].)..................................5
Table 2. Data Rate Results from X1 Output. ...25
Table 3. Data Rate Results from TMR Multiplier. ..40

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Laurie and my girls, Danielle

and Sara, for their understanding during all the days I was home, but not really home,

hiding in my office writing this thesis.

Special thanks are owed to the following people, without whom this thesis would

not have been possible.

To Major Joshua Snodgrass, USAF, for his patience and valuable help with

VHDL code, and hours of dedication to the CFTP team.

To Mindy Surratt for her help in my understanding of how the architecture works,

and her dedication to the CFTP team and creating reference [1].

To Professors Loomis and Ross for their guidance, patience, and support.

To Ron Aikins for his dedication over several weekends to get the CFTP project

into space.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The Configurable Fault Tolerant Processor (CFTP) project was created for the

purpose of developing and testing fault tolerant circuits in space. Redundancy is one

solution to the hazards that radiation in the space environment presents to electronic

circuits. Field Programmable Gate Arrays (FPGA) provides a viable test bed for fault

tolerant experiments due to their flexibility and ability to be programmed multiple times.

The CFTP team created a robust architecture specifically designed to test and evaluate

fault tolerant circuits through the use of FPGAs [4].

The primary components of this architecture are; two FPGAs, a PC/104 bus, an

ARM processor, and Flash Memory. One FPGA is designated as the Controller FPGA,

such that it controls the loading and running of experiments, as well as data transport over

the PC/104 bus. The other FPGA is designed to be the Experiment FPGA, dedicated

solely for the implementation of fault tolerant circuits.

Designers for the CFTP team over the years have created many interesting

experiments that provide viable solutions for fault tolerant circuits. However, in addition

to the design phase of an experiment, much effort has been spent understanding how a

circuit on the Experiment FPGA interfaces with the Controller FPGA. Often times

getting an experiment to properly integrate within the CFTP architecture proved much

tougher than the design of the experiment itself. The original goal of this thesis was to

provide future designers with the necessary insight into the inner workings of the

Controller such that more effort can be directed towards designing experiments and less

effort towards how they are implemented.

This thesis begins with an overview of the architecture and discussion of the code

that is the design of the Controller. The purpose and functions of the Controller FPGA

are discussed in detail to include clocking issues and how it interfaces with other

components on the CFTP architecture. Emphasis is provided on portions of the

Controller code that prospective designers will have to consider modifying to meet the

needs of their experiments.

 xviii

Beyond how the Controller FPGA, X1, interfaces with the Experiment FPGA,

X2, this thesis explores timing and synchronization between the two chips. Several

designs are implemented on both X1 and X2 showing that the two chips can be

synchronized to run at the same clock rate, successfully transferring data without the use

of handshaking signals. Also investigated is the maximum safe data rate that can be

achieved across the PC/104 bus.

Finally, this thesis provides an example design that is implemented onto the CFTP

architecture. This example design highlights the functionality of TMR while

demonstrating how to account for many of the integration issues within the CFTP

architecture. More importantly, the design demonstrated in Chapter V provides

prospective designers a clear example of how the code within X1 is modified to suite the

needs of an experiment implemented on X2.

The experimental design presented in Chapter V has been implemented on both

the Flight and Development Boards, and its output is included toward the end of Chapter

IV. This design has been installed on the Flight Board and will be the first experiment to

provide output from the CFTP project shortly after its launch on 18 January 2007.

1

I. INTRODUCTION

Computing in the space environment is a challenge due to the inherent radiation

environment and the subsequent adverse effects on electronic circuits. Additionally, long

development schedules for space circuits have created a growing demand for increased

flexibility. Field Programmable Gate Arrays (FPGAs) are one answer due to their

inherent flexibility and their capability to be reconfigured. However, the radiation

susceptibility of FPGAs can lead to data and configuration errors. This is most

commonly caused by Single Event Upsets (SEU), where radiation causes logical bit

values to change.

The Configurable Fault Tolerant Processor (CFTP) program at Naval

Postgraduate School (NPS), Monterey, was initiated several years ago, and has evolved

into a robust experimental platform [4]. Two separate architectures, both containing two

Xilinx Virtex FPGA chips for implementing experiments, have been designed by the

CFTP team and are fully functional. These architectures are structured to effectively

enable the implementation of space-born experiments, and more importantly, to easily

store and download the results for evaluation. The main components of the two

architectures are as follows: Experiment FPGA, Control FPGA, PC/104 Bus interface,

Flash Memory, EEPROM (Electronically Erasable & Programmable Memory), and an

ARM (Advanced RISC Machine) Processor running an embedded Linux operating

system [1].

The control FPGA is designed to be a controller for the loading of experiments,

and passing data to the ARM processor through a PC/104 interface. The experimental

FPGA is just that – an FPGA that is used to test various radiation-hardened designs that

mitigate the effects of SEUs [4].

The CFTP team strives to design radiation hardened circuits that mitigate the

effects SEUs have on FPGAs. This approach within the CFTP architecture presents other

challenges beyond finding viable techniques for reliable computing, to include the

integration among two FPGAs, a PC/104 bus, and an ARM processor. This thesis

2

explores those issues as well as the processes by which experiments are actually

implemented. Specifically, this thesis will serve as a manual for future prospective

experimenters on the CFTP team.

A. CFTP OBJECTIVE
The objective of the CFTP program at Naval Postgraduate School is to design

reconfigurable and reliable space-based computer systems through the use of

commercial-of-the-shelf (COTS) FPGAs. Because of the need for reliable electronic

circuits in space, it is essential to have the ability to reconfigure and/or redesign space-

born processors. FPGAs provide an ability to perform reconfigurations, and therefore

offer great flexibility. The CFTP team seeks to design radiation hardened circuits

through software solutions in order to counter one of the primary limitations of FPGAs –

susceptibility to SEUs.

B. RESEARCH OBJECTIVES

This objective of this thesis is to detail the tools and techniques for implementing

experiments, and to investigate timing constraints and integration issues on the CFTP

architecture. The past years of development by students working on the CFTP team have

created many lessons learned and produced many interesting designs. As a result, this

thesis provides a formal document detailing the complicated and sometimes intricate

procedures for developing and implementing experiments.

C. BACKGROUND
For the past several years numerous students on the CFTP team have concentrated

on the mitigation of SEUs. The work up to this point has primarily focused on creating

reliable computing solutions for the space environment using triple modular redundancy

(TMR). Pete Majewicz created a processor for implementation on an FPGA that uses

internal TMR, which he named the PIX processor [2]. James Coudeyras concentrated on

a design that uses the entire FPGA chip to increase the probability of an SEU occurring,

thereby enabling the testing of the process by which an SEU is detected and corrected [3].

Dean Ebert’s thesis is the initial work that determined the design of the current

CFTP architecture [4]. This work defined many of the issues considered in the initial

design, and provided the solutions and final integration decisions that made up what the

CFTP architecture is today.

3

D. CFTP ENVIRONMENT
Within the CFTP development environment there are two separate architectures

that provide two separate functions. One of the architectures is named the “Development

Board,” and its function is self-descriptive; to provide a platform for developing and

testing experiments before implementation in space. The other architecture is named the

“Flight Board,” and is function is self-descriptive as well; a platform for running

experiments in space. The basic architecture of the Development Board and the Flight

Board is identical. Both contain two FPGAs and the interface and support components.

The primary difference between the Development Board and the Flight Board are

the FPGAs themselves. The two FPGAs on the Flight Board are total-dose RADHARD

(radiation hardened), and are therefore intended for flight in space. The Development

Board uses two MILSPEC (military specification) FPGAs that are not designed to

survive the space environment. The two types of FPGAs are mounted in two different

types of packages, which means that their pinouts differ. Therefore, the FPGA design

files and constraint files must be slightly different (see Appendix B for specific constraint

file (UCF) considerations).

Though the development of an experiment can theoretically involve the creation

of a circuit on one FPGA alone, this is not sufficient for evaluating experiments in space.

A means to control the implementation of various experiments, as well as data collection,

is essential for evaluation and analysis. This requires not only the integration between

two FPGAs, but the other support items as well, such as Flash Memory, the PC/104 bus,

and the ARM processor. The procedures for creating and implementing experiments that

take these integration issues into account dictates that prospective experimenters become

familiar with how the architecture is integrated, and the specific limitations that result

from that integration.

The primary limitation of the CFTP architecture is the maximum data rate that

can be achieved across the PC/104 bus. This limitation is bounded by the interaction

between the PC/104 bus and the ARM processor, and more specifically, the ability of the

Linux operating system on the ARM to perform reads on the PC/104 bus while keeping

4

other processes running in the background. This thesis specifically addresses these

limitations, providing detailed guidance for future CFTP team experimenters.

E. IMPLEMENTING EXPERIMENTS
 Successfully designing an experiment that produces output on an FPGA is merely

the first milestone that must be completed. This is usually accomplished via logic design

and simulation with Computer Aided Design (CAD) software, tailored to the specific

type of FPGA for which the experiment is to be implemented. The CFTP architecture

design has some limitations, which will be addressed in this thesis, and those limitations

must be taken into account when designing an experiment.

 Once an experiment is successfully tested via simulation, which must include the

creation of an accompanying constraint file, the controller code, code that runs the

Control FPGA, must be modified to work with the experiment. Though the

modifications may be few and relatively trivial, the controller code must be changed and

compiled so that it will pass the proper number of bits of data, and will pass that data at

an appropriate data rate. Also, the constraint file within the controller code must be

modified to match the constraint file of the experiment.

F. OVERVIEW
Chapter II of this thesis gives the reader a brief overview of the CFTP

architecture; how it is organized and some of the specifics of the various components.

Chapter III discusses in detail the design of X1, the Controller. It provides future CFTP

designers the necessary details to understand how the Controller interfaces with the rest

of the CFTP architecture, and more importantly, the portions of the Controller code that

must be modified when creating an experiment. Chapter IV provides even more insight

into the inner workings of the CFTP architecture as it addresses timing and some key

limitations of the Flight and Development Board. Chapter V reviews the processes for

implementing an experiment onto the CFTP architecture, from the first stages of a

Hardware Description Language (HDL) description and/or schematic development, to

implementation on an FPGA chip. Finally, Chapter VI provides conclusions and some

suggestions for future work.

II. CFTP ARCHITECTURE

Though two architectures have been developed by the CFTP team, they are nearly

identical in layout, and they are functionally identical. The two architectures, the

Development Board and Flight Board, were designed to accomplish the missions their

names imply; the Development Board is for the development and testing of experiments

on the ground, and the Flight Board is designed to implement experiments in space.

Figure 1 is representative of both the Development and Flight boards.

Figure 1. CFTP Development Board (From Ref. [1]).

 The two FPGA chips on the Flight Board are Xilinx Virtex I QPro Radiation

Hardened FPGAs, with the specific Xilinx device number XQVR600 [6]. Table 1 shows

the specifications for three Xilinx devices, showing where the XQVR600 falls with

respect to other available devices. This highlights the number of programmable assets

available within these FPGAs. Though the XQVR1000 would allow for larger and more

complex designs, the XQVR600 was chosen due to architectural and costing constraints.

Table 1. Xilinx RADHARD FPGA Gate Counts (From Ref. [6].)

5

6

The only difference between the Development Board and Flight Board, as

previously mentioned in the introduction, are the FPGA chips; Development Board

FPGAs are MILSPEC and the Flight Board FPGAs are RADHARD. This difference

resulted in different physical pin layouts between the two FPGA chips located on each

printed circuit board. On the Development Board, there exist 45 physical pin connections

for the passing of data bits (one pin equals one bit) between the two FPGAs. However,

on the Flight Board there are only 43 pins available for the passing of data bits, and the

pin layout is slightly different.

 The physical difference in the pin assignments were specifically for the

SelectMap processes performed by the Controller FPGA. SelectMap is a hardware

configuration mode that provides the fastest option for presenting data to an FPGA from

a microprocessor [8]. Discussed in detail in Chapter III and Appendix B, the different

pin numbers are assigned within the UCF files.

A. CONTROL FPGA
 Also known as X1, this is the heart of the CFTP architecture. It provides the

necessary interface for operations and data flow between the Experiment FPGA, the

PC/104 Bus and the ARM processor. It controls the loading of an experiment’s

configuration from the Flash Memory to the Experiment FPGA. It is named the

Controller FPGA because that is its overall function; to control the loading and running

of experiments on the Experiment FPGA.

The Controller FPGA also has the responsibility to perform periodic scrubbing,

(comparing the configuration stored in the Flash Memory with the configuration loaded

on the Experiment FPGA) and can reconfigure the Experiment FPGA if warranted. The

existence of a Controller FPGA provides a crucial capability for prospective

experimenters; the ability to evaluate the reliability of space-born designs.

B. EXPERIMENT FPGA
 Also known as X2, this is the FPGA for the implementation of specific fault-

tolerant circuits. Designers can create a fault-tolerant circuit, implement it on the

Experiment FPGA, and determine the ability of their design to function reliably as a

standalone circuit. The existence of two FPGAs is central to the philosophy of the CFTP

7

architecture. In order to evaluate the reliability of a design, data produced from that

design has to be evaluated. More specifically, the integrity of the design’s configuration

has to be monitored.

SEUs are a problem for FPGAs, not just because data might be altered, but

because the configuration can become corrupt and change the operation of a circuit. It is

this reason that the design of a circuit must implement some form of fault tolerance to

mitigate, if not completely eliminate, the effects of SEUs in data and by detecting

repeated faults caused by configuration errors so as to initiate configuration repair.

Note: RADHARD FPGAs are tolerant to large total dose radiation exposure, but

are just as susceptible to SEUs as are non-RADHARD versions.

C. PC/104 BUS

The PC/104 bus is an 8-bit data bus, version 2.4, and is a trademark of the

Embedded Consortium [5]. This is the interface between the Controller FPGA and the

ARM processor. This is where data is transferred, and more importantly, it is the avenue

through which the FPGAs are configured. A total of 104 signal contacts exist, though

only 8 (8-bits) are for data transfers to and from an experiment. The other 96 pins are

dedicated for functions such as handshaking between the PC/104 and X1, and other

programming and loading processes.

D. EEPROM
 This is a Xilinx component, XC18V04, and holds the initial configuration for X1,

the Controller FPGA [4]. The purpose of this device is to configure X1 upon initial boot

up for the CFTP architecture. The load within the EEPROM can not be changed once the

Flight Board is attached to the satellite.

E. FLASH MEMORY
 This device is an Intel Flash Configuration Memory (TE28F320C3), and is where

the configurations for experiments to be implemented onto X2 are stored [4]. There is

enough space in this memory module to store four separate configurations specifically for

X2.

F. ARM PROCESSOR
The ARM processor is installed on a printed circuit board separate from the

FPGAs, with a direct connection to the PC/104 bus. This is the interface between the

8

satellite and the two FPGAs, via the PC/104 bus. The ARM processor stores the

programs that write and read to/from X1, and provides temporary storage of output data

files, as well as the configurations for both X1 and X2.

The operating system on the ARM processor is an embedded Linux operating

system that handles the various aforementioned processes. Various shell scripts and C-

code programs have been developed to read data from the PC/104 bus, and to load

configurations across the PC/104 bus for X1 and X2. One of the important processes the

ARM must manage is a read program that performs constant polling to detect when data

becomes available for reading on the PC/104 bus. Another important process the ARM

manages is a write program that is invoked by the ARM to program X1 with its

configuration file. The ARM uses this process to write data across the PC/104 bus and

onto X1.

Without the ARM, it would not be possible to program X1 or X2, nor would it be

possible to collect data from experiments on X2 and to pass that data to the satellite

computer for eventual downlink to Earth. The two ARM processors on the Flight and

Development Boards are identical and differ only in the number of processes they are

required to run. These differences do not affect how experiments are designed, or how

the code for X1 is implemented.

G. SDRAM
 This is a memory module available for the use of experiments on X2. Total

random access memory (RAM) available is 16 megabytes (16 MB).

H. CHAPTER SUMMARY
This chapter provided an overview of the organization of the CFTP architecture

and its functionality. Very brief explanations of only the primary components were

provided. The next chapter details the VHDL code that programs X1 into a controller.

Also covered are considerations for future CFTP designers when developing code for

programming an experiment onto X2.

9

III. MODIFYING CODE

VHDL (Very high speed integrated circuit Hardware Description Language) code

describing the functions of the Controller, X1, has been developed and tested over the

past years and is largely reliable. This VHDL code provides specific functions, all of

which will be covered in this chapter. An understanding of the functionality of all the

VHDL modules is essential as prospective experimenters are required to make minor

modifications to three of the six modules that make up the VHDL code for X1 so that it

will properly interface with their experiments.

The primary purpose of the Controller is to control the implementation and

evaluation of experiments on X2, and it is arguably the most important component of the

CFTP architecture. Without proper operation of X1, data from the experiments can not

be collected. Although a designer should fully develop and test an experiment before

making any modifications to X1, the functionality and required modifications to its

VHDL code are covered first because of its importance. Section B provides some

important considerations for the development of experiments for X2.

Beyond its purpose mentioned above, the Controller can also be modified to

provide data to a circuit implemented on X2. This requires the designer to create and

implement a new module, or a new process within an existing module, within the

Controller code for X1. Chapter 4 provides methods for accomplishing this, as well as

other scenarios describing how the Controller code can be modified to aid in the

evaluation of circuits implemented on X2. This chapter limits its scope to the code that

defines the Controller.

A. CONTROLLER
The required capabilities of the Controller go beyond the simple functionality of a

“pipe” for data transfer. Not only does the Controller transfer data, it controls the rate at

which that data is transferred. More importantly, the Controller is designed to configure

X2, the Experiment FPGA, as well as to perform periodic scrubbing and reconfiguration

of X2 [4].

The VHDL code for the Controller is separated into six modules, as shown in

Figure 2. These modules are; the Top Level module, which instantiates the other five

modules and provides specific signal assignments, the X2 Interface, which contains the

processes by which the two chips interface, the PC/104 Interface module, which provides

the processes for data transfer across the PC/104 bus, two SelectMap modules, which

provide processes for the loading and comparing of configurations, and a Clock

Generator module, which performs clock division.

Figure 2. Graphical Depiction of X1 Modules with X2 (From Ref. [1].)

1. Top Level
As mentioned, aside from instantiation of the other five modules, the primary

purpose of the top level code, named top_level.vhd, is simply signal assignment for the

various modules. Prospective designers will only need to modify signals to suite the

needs of an experiment within three sections in the top level code. Appendix B shows

the specific sections of code containing the signals to be modified, with approximate line

numbers denoting where the sections are located, within top_level.vhd. As is noted again
10

11

in subsection 2 for emphasis, these signal names exactly match the signal names in the

port section of the X2 interface. Chapter V provides an example experiment which

shows how these signals are named.

An important signal within the top level code that designers will not alter is the

specific clock signal assignment. It is vital to have a full understanding of this clocking

signal and how it can potentially affect design decisions for experiments.

The primary oscillator for the Flight and Development Boards comes from the

ARM processor, and runs at 51 megahertz (MHz). This speed presented an early

engineering dilemma for the CFTP team. Xilinx’s application note 138 titled “Virtex

FPGA Series Configuration and Readback” states that the SelectMap process can not

perform simultaneous configurations of two devices at speeds equal to or greater than 50

MHz [7]. As a result of this constraint, the design decision was ultimately made to run

all modules on the Controller at half the speed of the primary oscillator, using clock

division performed via the clock generator module, discussed in subsection 7. The

decision to clock-divide the primary oscillator by two, rather than fractional division to

provide greater speed, was made in favor of simplicity. All of the Controller’s VHDL

modules run off this clock-divided signal, with the exception of initial clock signal

coming into the top level module, because operating some modules at 51 MHz with the

SelectMap modules at 25.5 MHz can lead significant timing problems.

For most situations, the use of this clock signal on X1 does not affect the speed at

which experiments operate on X2. Designers can still use the primary oscillator and

operate their circuits at 51 MHz. Chapter 4 shows how the timing between the two

FPGAs shape some of the design decisions for experiments, proving that circuits on X2

can run at 51 MHz, and also providing a situation when X2 should be clock-divided to

the same rate as X1.

2. X2 Interface
This VHDL module is the workhorse for X1, and it requires the greatest amount

of modification by the designer. Within this module, x2Int.vhd, the designer will

determine the byte size of the data stream, as well as the data rate across the PC/104 bus.

12

This module also determines how often a SelectMap read-back occurs, and when a

SelectMap reconfiguration should take place.

The first consideration of any designer when modifying X1 should be the naming

of signals to properly describe what type of data the experiment produces. It is worth

emphasizing that any signal names modified within the primary port section of X1 must

also be modified within three sections of the file “top_level.vhd.” A complete listing of

the X2 interface code is located in Appendix B for reference.

Once the proper signal-naming is complete, the designer next should consider

what level of handshaking is required between the two FPGAs, if any at all. Because the

two chips are synchronous, (their clocking signals are derived from the same 51 MHz

oscillator), specific handshaking is not required, as is shown in Chapter 4, to transfer data

from X2 across X1 and onto the PC/104 bus. The most common handshaking signal

employed is an error-occurrence signal. This allows X1 to read data from X2 and write it

to the PC/104 bus only upon the occurrence of a specific event. It is left up to the

designer when the circuit on X2 should assert this specific signal high – perhaps upon the

occurrence of a data error, or perhaps when the circuit finishes a calculation.

The module x2Int.vhd receives a reset signal from the top level code, named

“RESET_i” in the x2Int.vhd port signal names, which resets all signals and vectors to

predetermined values, defined within the behavioral of x2Int.vhd, when this signal goes

high. The same purpose for X2 is served with the signal name

“DATA_TO_X2_RESET_o.” This signal is the same reset signal mentioned above, and

both are derived from X1’s clock. Therefore this is a synchronous signal, and sending it

to X2 to start X2’s processes in the same manner it is used to start the processes within

X1, ensures that circuits running on both FPGAs are synchronized. Chapter IV details

the importance of implementing this simple programming procedure.

Next the data size, the number of bytes to be transferred per write cycle, must be

modified within x2Int.vhd to match the requirements of the experiment in X2. There are

two variables with the X2 interface module which determine the data rate across the

PC/104 bus. One variable determines the data size, and the other variable determines the

sampling rate. The sampling rate is defined as such; the periodicity at which X1 reads

data from X2 and writes that data to the PC/104 bus.

The data rate, (refer to Chapter IV, “Timing,” for the maximum safe data rate), is

determined by multiplying the sampling rate times the data size. The sampling rate is set

by changing the integer value assigned to a constant signal within x2Int.vhd, as below.

CONSTANT ERR_RPT_TIME : integer := 38250000;

A process within x2Int.vhd uses this number as the final value of an internal

counter. The counter increments on the 25.5 MHz clock, and when the count equals the

constant ERR_RPT_TIME, the X2 interface module reads the appropriate signals for any

data produced by X2, and the count resets to zero. The sampling rate is therefore

determined as follows:

25.5MHz =Sample Rate
ERR_RPT_TIME

Also, when the count equals “ERR_RPT_TIME,” a vector of bytes, the length of

which is determined by the designer, is written to X1’s output signals. The number of

bytes written at each sample is determined by setting an integer value assigned to a

constant signal.

CONSTANT REPORT_OUT_LENGTH : integer := 15;

The last two considerations for the experimenter are how often to perform a

SelectMap read-back of the configuration of X2, and when a reconfiguration should take

place. The standard within the CFTP development environment has been to perform a

read-back of X2’s configuration and compare it to the contents of the flash every 30

seconds. This timing is also determined through the use of a counter operating on the

25.5 MHz clock signal. The final value of this counter is another constant signal that can

be modified by the designer if needed.

CONSTANT DLY_TIME : integer := 765000000;

Dividing this integer into 25.5 MHz yields the resulting timing for a read-back. In

this case, 25,500,000 divided by 765,000,000 yields a rate of 0.0333 Hz. This translates

to a read-back every 30 seconds.

13

14

Performing read-backs and comparing configurations every 30 seconds has not

proven detrimental to the operations of X1 or X2. It is a relatively quick process, it does

not interrupt operations of the circuit implemented on X2, and provides assurance that a

configuration error will be caught and corrected in a timely fashion. To further guarantee

the integrity of X2’s configuration, the X2 interface can also initiate a reconfiguration if a

certain number of data errors accumulate.

The number of data errors from the output of X2 is another threshold that can be

set by the experimenter. The basic principle behind redundant computing allows for the

occurrence and correction of data errors. Configuration errors on the other hand will

cause repeated occurrence of the same data error, thus, repeated data errors are an

indication of a potential configuration error. Therefore it must be decided when enough

data errors have occurred such that the circuit should be reconfigured. The constant

signal for that threshold within X2 is named “err_cnt,” appropriately, and is a 24-bit

standard logic vector. The specific value assigned to the threshold for this signal is

located towards the end of the x2Int.vhd code, within an “IF” statement. The experiment

implemented on X2 must define and calculate what this threshold should be; there is no

definitive answer as experiments can vary greatly. However, the current practice within

the CFTP project has been to set this value to hex 80.

3. Constraint File
The constraint file for X1, named control.ucf, is where signals are assigned to the

specific pin locations on the X1 FPGA. All signal assignments within this file must

exactly match the names of all signals within the port assignments in the top level code.

The two different architectures within the CFTP program, the Development and

Flight boards, only differ within this file. As briefly mentioned on Chapter II, it is the

physical pin assignments for the SelectMap processes that differ. Care must be taken by

CFTP designers to ensure that the proper constraint file is being used for the Flight Board

or Development Board. Though using the incorrect ucf-file is a mistake easily made, it is

also just as simple to confirm that the correct ucf-file is being used. The top of each file

is clearly commented on the top line as being designed for the Flight or Development

Board, and deep into the files there exist comments denoting pin differences.

15

For the Development Board, two pins are available for assignment as the primary

input clock for the top level code as there are two clocks available for use, a 50 and a 51

MHz clock. The example constraint file located in Appendix B points this out. For the

Flight Board, the input clock assignment is straight forward as there is only one choice,

the 51 MHz clock. For simplicity and compatability with the Flight Board, it is highly

recommended that only the 51 MHz clock be used for the Development Board.

Lastly, the pin assignments between X1 and X2 for data flow must match in

physical location, though the names themselves do not have to match exactly. A level of

confusion can present itself here in that some of the corresponding signals are not the

same pin numbers within the X2 and X1 constraint files. However, referring to the

specific control.ucf code located in Appendix B, comments next to the respective line

numbers within this file clearly denote how the signals correspond to one another. Signal

names within X1’s VHDL top level code must match the signal names in the X1

constraint file, and signal names within X2’s VHDL top level code must match the signal

names in the X2 constraint file.

4. PC/104 Interface
The sole purpose of this module, pc104IntArm.vhd, is to provide a means for

interfacing between X1 and the PC/104 bus. To accomplish this, the PC/104 interface

module employs a FIFO (first in, first out) buffer. This FIFO is 32-bits wide and 64-

words deep. It was generated by CoreGen, an intellectual property of the Xilinx’s Project

Navigator Software. Experimenters are not required to make any modifications to this

module.

A “maximum safe data rate” exists across the PC/104 bus and is defined as: the

maximum rate at which output can be written to the PC/104 bus without any loss of data.

This maximum safe data rate is a CFTP architecture limitation vice a specific limitation

of the PC/104 bus itself. The interaction between the PC/104 Bus and the ARM

processor, and specifically the processes running on the ARM, is what limits the data

rate.

The FIFO employed with the PC/104 interface module is designed to stop

accepting data if it becomes full. If the maximum rate at which the ARM can read is

16

exceeded, then data accumulates within the FIFO buffer. If data accumulates to the

maximum size of the FIFO buffer, then it stops accumulating data until more space is

available. This results in a loss of data. The procedures for determining the maximum

safe data rate are described in Chapter IV.

The PC/104 bus is asynchronous therefore handshaking is employed to ensure

proper data transfer. These handshaking signals, employed within the X2 interface

module, identify when the PC/104 is being written to and therefore in a busy state, when

it is ready to be written to, ready to be read from, as well as a signal that acknowledges a

read. These four signals can be located in the port assignment section of “x2Int.vhd,” and

their respective functions are clearly commented.

5. SelectMap Configure

This module, SelectMap_config.vhd, performs the actual configuration of X2.

When X1 is programmed with the Controller code described in this chapter, the first

process executed is this module. The SelectMap configuration module reads the flash

memory, starting at address zero, and takes the first 900 kilo-bytes (KB) of the flash

memory and loads it into X2. It performs this process when commanded by the X2

interface module. Experimenters are not required to make any modifications to this

module.

6. SelectMap Read Back
This module, SelectMap_readback.vhd, also performs as its name implies; it reads

the configuration data loaded in the flash memory and compares it to the actual

configuration loaded into X2. This process, known as scrubbing, is run periodically by

the X2 interface module to ensure that the configuration in X2 has not been corrupted.

This provides an extra layer of reliability to a fault-tolerant circuit programmed on X2.

Experimenters are not required to make any modifications to this module, though they

may wish to modify the interval at which scrubbing occurs.

7. Clock Generator
The only function of this module, “clockGen.vhd,” is clock division of the

primary oscillator, for reasons previously discussed. Two clock signals are generated

from this module, one at 25.5 MHz and one at 3.1875 MHz. The specific assignment of

the 25.5 MHz signal occurs with the top level module, “top_level.vhd,” and is named

17

“s_clock.” The 3.1875 MHz signal is provided as a convenience for designers who might

require a slower clock. It is also assigned within “top_level.vhd” and is named

“s_clock_x2.” Designers are not required to make any modifications to this module.

B. EXPERIMENT
Prospective designers, when creating a circuit for the Experiment FPGA, have to

first decide if the design will be created via CAD software, or if the design can be created

via command-line editing in VHDL exclusively. If the design requires the use of

schematics, then CAD software will be used. However, even if the design is exclusively

created using VHDL, CAD software should be used unless the designer is an

accomplished VHDL programmer. CAD software gives, in addition to a user friendly

compiler, ready access to simulations which can be invaluable in verifying the proper

operation of a circuit. The CFTP team has a license with the following software

programs; 1) Xilinx’s Project Navigator for project creations, compiling, place and route

and mapping onto an FPGA. 2) ModelSim by Mentor Graphics for circuit simulation.

1. Implementation
Once a design has been successfully compiled and simulated, it must be

implemented; the circuit has to be mapped, placed and routed onto the FPGA. All of the

CLBs (configurable logic blocks) have to be configured to perform the desired operations

of a prospective circuit. This is accomplished within Project Navigator with the

command “Implement Design.” If performed within Project Navigator, this will produce

a file with an “.ncd” extension. This “experiment.ncd” file will need further

modification, which is accomplished within the Linux operating environment on the

CFTP server (see Appendix A for details). It is vitally important that any circuit created

for implementation onto X2 has a constraint file (experiment.ucf) added as a source to

the respective project within Project Navigator BEFORE running “Implement Design.”

2. Flash File
The final file from any experiment to be implemented onto X2 is known as a flash

file within the CFTP development environment, and has an “.fwr” file extension. This

file is either created from the Project Navigator .ncd file or directly within Linux if

command line editing of VHDL was used as the development process (See Appendix A).

Whatever method is employed, this “experiment.fwr” file is what will be written to the

18

flash. It is the file that contains X2’s final configuration. This is the file that X1 will use

to program X2 and to verify the integrity of X2’s configuration by using the SelectMap

modules within X1.

3. Constraints
When creating a circuit for X2, there are a few constraints that the designer must

consider for proper operation on either CFTP stack (Development or Flight). The

number of pins available for data transfer between X1 and X2 vary slightly depending

upon which specific architecture is used. If using the Flight Board, then 43 pins (43 bits)

are available for data transfer between the two chips. However, if using the Development

Board, then 45 pins (45 bits) are available. It is recommended that developers only use

43 pins when designing circuits for either stack as that is all that is available for space-

born experiments. However, the extra two pins are available for the Development Board

should a developer need those for specific trouble shooting.

Appendices A and B cover in detail how these pins are assigned. Developers

must modify two constraint files (.ucf files); one for the Experiment design and one for

the Controller design. Though the signal names within each file for each pin do not have

to match by name, they must exactly match functionally. For example, output from X2

could be named “mult_out” for X2’s constraint file, while that same signal could be

named “input_from_X2” within X1’s constraint file. These signals much match by pin

number, and comments within the constraint files show how the pins on the two chips are

connected by means of the circuit-board wiring.

A design policy within the CFTP project that experimenters should adhere to is:

all signals traveling between X1 and X2, in the initial input or final output, must pass

through clocked registers. In addition to being a policy within the CFTP project, using

registers to collect data is an example of good programming as it ensures timing

constraints are met which preserves the integrity of data. This requirement is discussed in

Chapter IV.

19

C. CHAPTER SUMMARY
This chapter covered the inner-workings of the modules that comprise the circuit

for X1, as well as some important considerations when developing code for experiments

on X2. The next chapter provides a detailed analysis of timing within the CFTP

architecture, and shows how the maximum safe data rate was determined.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. TIMING

Timing within the CFTP architecture, for both the Development and Flight Board,

has required designers to carefully set values for counters that control the sampling rate

within the Controller to ensure accurate data flow through the PC/104 bus. Even though

no specific timing issues have been formally documented, it has been common practice

within the CFTP team to keep the data rate low to prevent large accumulations of output

data.

This chapter explores and subsequently demonstrates the maximum safe data rates

that can be achieved across the PC/104 bus. As will be shown, this is not a limitation of

the FPGA chips themselves. Data can be transferred between the two chips at the full

rate of the oscillator. This maximum safe data rate limitation exists due to the interaction

between the PC/104 bus and the ARM processor. This thesis defines the maximum safe

data rate as: the maximum rate at which output from X2 can be transferred across the

PC/104 bus without the loss of any data.

Though this chapter establishes a maximum safe data rate, it is also important to

note that this data rate can change. The other processes running on the ARM limit the

ability of the ARM to perform reads on the PC/104 bus. If processes within the ARM are

added, removed, or altered, then the maximum safe data rate will change.

In general, experimenters have not been concerned with recording large volumes

of sequential data produced by X2 at a high clock rate because most often the only

important results are data that show the detection and/or correction of an SEU within a

redundant circuit. Designers have generally verified results by one of three methods:

comparing intermediate values derived from simulations, comparing a final result derived

from several iterations (ignoring the intermediate values that lead to a final result), or

comparing results by exception (output occurs only if triggered by a specific event).

This chapter demonstrates the procedures required to record sequential data

produced from X2 and, in the process, determines the maximum safe data rate. This

chapter also explores synchronization of the two FPGA chips, specifically addressing the

22

presence of clock skew between the two chips, showing through mathematical and

empirical analysis that the clock skew is manageable at the full clock rate of 51 MHZ.

A. CONTROLLER FUNCTIONS
Beyond the primary responsibilities of the Controller, there are four plausible

scenarios for which the Controller can be programmed to facilitate the evaluation of

experiments implemented on X2. All four of these scenarios are driven by timing – how

the primary oscillator is used to drive the timing requirements of the circuits on X1 and

X2. Of these four scenarios discussed in this section, three were implemented in support

of experiments discussed in this chapter, and those results are included. The fourth

scenario is left to future designers for potential implementation.

1. Sampling Data
Circuits implemented on X2 can operate and produce data at the full rate, 51

MHz, of the primary oscillator. Because all of the modules on X1, except for the top

level module, are clocked at 25.5 MHz, the data output from X2 must be sampled. This

is demonstrated towards the end of Section C, and the methods for assigning the

sampling rate have already been discussed in Chapter III.

2. Clock Dividing X2
A circuit on X2 can be clock-divided for a myriad of reasons. One scenario that

requires clock-division within X2 is when a designer wishes to view all data produced

from an experiment in sequential order, rather than just a sampling of that data. To

accomplish this, the designer slows the circuit on X2 down to the sampling rate on X1,

such that X1 is reading at the same rate that the circuit on X2 is writing data. To do this,

two levels of clock-division are required for the experiment; once down to the 25.5 MHz

clock so that the two FPGAs run at the same rate, and the second division equal to the

signal ERR_RPT_TIME discussed in Chapter III, so that the data can be passed through

the ARM processor. This method is demonstrated in Section C.

3. New Module for X1
Another method available to evaluate circuits is by creating a copy of the circuit

on X2 and implementing it on X1 in a new module clocked at 51 MHz while the other

preexisting modules on X1 remain at 25.5 MHz, and then using a voter clocked at 51

MHz to compare the outputs of the duplicate circuits. Then, if no errors are reported

23

from the voters on X2 and X1, the designer has increased assurance of correct data. This

method still requires the final output of data across the PC/104 bus to be sampled as in

method 1, but that sampling will contain two streams of data from two voters.

This method is employed in this chapter on a small scale using simple counters.

A more interesting and complex example of this method can be reviewed in the

Dissertation by Josh Snodgrass, where the Cordic algorithm is implemented on both X1

and X2 [10]

4. Buffer on X1
Another design consideration that would allow all sequential data to be collected

from a circuit on X2 running at 51 MHz is the implementation of a buffer on X1 that

would temporarily store data. To implement this scenario, the circuit on X2 would need

to be programmed to run for a certain time period then go into a wait state. The

maximum safe data rate still can not be exceeded. The circuit on X2 would need to wait

for the data within the buffer on X1 to be read before more data could be written. This

method has not been explored by the author, although the FIFO discussed earlier provides

this capability.

B. DATA RATE
To determine the maximum safe data rate within the CFTP architecture,

experiments were conducted in two phases. The first phase involved a simple design that

was implemented on X1, temporarily removing X2 from the equation. This isolation of

X1 simplified the design process and allowed for direct data collection through clock

division. The second phase involves the implementation of the same experiment on X2,

comparing the outputs of both X1 and X2 on both chips concurrently, and subsequently

directing all outputs across the PC/104 bus. The second phase is important as it

demonstrates that sequential data can be produced concurrently by both chips. In other

words, phase two demonstrates that it is possible to synchronize both FPGAs such that

they produce the same sequential data at the full rate of the CFTP oscillator, 51 MHz,

without any handshaking. Phase two addresses the issues of clock skew.

1. Phase One
A simple counter was implemented on the Controller, located within the counter

that controls the sampling rate, and its sequential output recorded. Locating this counter

24

internal to the primary sampling rate counter within x2Int.vhd allowed for precise control

over the rate at which the count is executed. A counter was used for this experiment

because the output of a counter simplifies the verification of any disruptions in data flow;

a number out of sequence is relatively easy to locate.

Referring to Table 2, the number of bytes outputted across the PC/104 bus

remained constant throughout this phase, and the sampling rate, (defined in Chapter 3),

was adjusted to achieve various data rates. For the purposes of this phase of the

experiment, as noted in Table 2, the sampling rate served as the effective clock rate of X1

as no data was being produced from X2 for sampling. The signal ERR_RPT_TIME,

(also defined in Chapter 3), was adjusted to achieve the data rates noted in Table 2. This

signal was adjusted from a high sampling rate to a low sampling rate, incrementally, until

no errors were detected in the output.

To summarize; this experiment was designed such that adjusting the signal

ERR_RPT_TIME directly changes the speed of the count, as well as the rate at which

data is written to the PC/104 bus.

As noted in the Observation section of Table 2, the higher data rates produce

multiple, easy to recognize errors. For all the test runs, the errors themselves are the

same in that there are large gaps of missing numbers, followed by a continuation of the

count. The severity of these errors is directly related to the data rate; the higher data rates

produce a greater number of errors and an earlier occurrence in the count sequence. The

higher data rates also produce a greater gap between numbers before the count sequence

continues in the output.

25

ERR_RPT
_TIME

Effective Clock
Rate

Bytes Effective
Data Rate
(bytes/sec)

Observation

None 51 MHz 15 765 M Multiple errors

5,000 10.2 KHz 15 153 K Errors noted early in count

12,000 4.25 KHz 15 63.75 K Errors noted later in the count

25,000 2.04 KHz 15 30.6 K Less errors, occurring later

51,000 1.0 KHz 15 15 K Less errors, occurring later

102,000 500 Hz (figure 3) 15 7.5 K Error at number 0227

510,000 100 Hz (figure 4) 15 1.5 K Error at number 0227

1,020,000 50 Hz 15 750 Error at number 0227

1,530,000 33.33 Hz (figure 5) 15 500 Perfect Data – no errors noted

2,550,000 20 Hz 15 300 Perfect Data – no errors noted

Table 2. Data Rate Results from X1 Output.

These results are indicative of the FIFO buffer performing its job correctly. The

FIFO buffer implemented within the PC/104 interface module, discussed in Chapter 3, is

designed to stop accepting data when the capacity of the FIFO buffer is reached. At data

rates that are well above the limits of the CFTP architecture, it is not unexpected that that

the FIFO buffer will reach its capacity much faster than at rates that are closer to, but still

above, the data rate limits.

Further inspection of the results in Table 2 reveals a pattern as the data rate was

reduced closer to the limit; at 7500 bytes/sec (Bps) and lower, the first noted error began

occurring at the same number. Referring to Figures 3, 4, and 5, the output of the count

should be sequential. In other words, an error is defined as an interruption in the count

sequence. Figure 5 provides two separate streams of output data with no errors, while

Figures 3 and 4 show two streams of data with red circles denoting the locations of an

error.

The red circle on the left data stream in Figure 3 denotes the first location of an

error (interruption of sequential count) at number hex 0227. Referring to the left data

stream in Figure 4 on the following page, a red circle again shows the first error

occurring at hex 0227. Comparing the data within the red circles on the left in Figures 3

and 4, the amount of missing data after number 0227, the gap before the count sequence

resumes, is greater in Figure 3 than in Figure 4. This clearly shows how the FIFO is able

to recover quicker at slower data rates; the data in Figure 3 was output at a greater rate

(7500 Bps) than the data in Figure 4 (1500 Bps). For the data in Figure 4, the FIFO

recovered quicker and hence, the gap before the count sequence resumes is significantly

shorter.

26
Figure 3. Output from X1’s Counter at 7500 Bytes/sec

Worth noting in Figures 3 and 4 are the data circled in red on the right side of the

figures. At the higher data rate, (7500 Bps), the output of Figure 3 shows a second error

sooner than the output in Figure 4. The lower data rate, (1500 Bps), for the data output of

Figure 4 did not produce a second error until much later.

Figure 4. Output from X1’s Counter at 1500 Bytes/sec

Figure 5 shows output produced with no errors noted. Though this figure only

shows the first sequence and the sequence with the common trend, (error at number 0227,

the output was run for several minutes producing thousands of lines of data, and no errors

were noted. Though this does not present irrefutable evidence that 500 Bps is the

maximum safe data rate for the CFTP architecture, it is basis enough to conclude that the
27

noted data rate is slow enough for accurate data flow. More importantly, designers

should not exceed this data rate if assurance is desired that no data has been lost, (FIFO

stops accepting data until its size is reduced), before being written to the PC/104 bus.

Figure 5. Output from X1’s Counter at 500 Bytes/sec

Though a maximum safe data rate of 500 Bps might initially appear to be a

significant limitation, it is actually an acceptable parameter for the CFTP architecture.

Because of memory limitations of the satellite platform, and available bandwidth with the

uplink and downlink to the satellite, the amount of output data that can be collected at

any one time is limited. The data rate of 500 Bps is a limitation that must be considered

by designers if assurance of data integrity is desired when developing experiments for the
28

29

CFTP architecture. However, the actual output collection rate might need to be slower

due to other limitations in space, or differences among the demands of the ARM

processor on the Flight Board or Development Board.

2. Phase Two
For phase two, a counter was created for implementation on X2 with a voter to

compare the results of the counter from X1 with the counter on X2. This was also done

on X1; a voter added to compare X2’s counter output with the counter on X1. To

accomplish this, X1’s counter output was directed to X2, and X2’s counter output was

directed to X1. The voters on each circuit are identical; they compare the two counter

outputs and report the number three if the counters differ, else the voters produce the

number zero if the counter outputs agree.

To synchronize the two voters on X1 and X2 only one signal needs to be passed

from X1 to X2 – the reset signal discussed in Chapter III. For this dual-counter

experiment, the reset signal generated by X1’s top level VHDL module is passed to X2.

This signal is also incorporated into the voter circuit on X2, initiating the count. The

same thing was already written into the code for the counter on X1. This allows for

synchronization of the two circuits upon initial startup.

In order to achieve a data rate at the rate of the oscillator between the two FPGAs,

the SelectMap processes were disabled within x2int.vhd. This allowed the clock that

runs the X2 interface module, located on X1, to be the 51 MHz oscillator instead of the

25.5 MHz signal coming from the Clock Generator module, which is required for the

SelectMap processes as mentioned on Chapter III.

X1 can and normally does run off of two clocks, the primary oscillator signal, and

the 25.5 MHz signal generated by the Clock Generator module. Therefore, in normal

operations, X2 can produce data at 51 MHz and X1 can read that data at 51 MHz, and

then sample it and send it across the PC/104 bus as previously discussed. For the

purposes of this experiment only, all processes on X1 were clocked at 51 MHz to

demonstrate that X1 and X2 can be synchronized without handshaking.

Figure 6 shows the first output sequence achieved with a data transfer at 51 MHz

between the two FPGA chips. Even though the two counters are producing a count at 51

30

MHz, and the two voters are comparing those counts at the same rate, the output is only

sampled because of the maximum safe data rate. Specifically, the output shows the

following, in order:

1) An error-counter located in X1 that will increment only if the voter in

X1 or the voter in X2 reports a value other than “00.” This value will remain at “00”

unless one of the voters reports an error. This error-counter is standard within X1 and is

specifically addressed in Appendix B.

 2) The results from the Voter located in X1 – this will report “00” if both

counter outputs from X1 and X2 agree, otherwise it will report “03” if the counts differ.

 3) The results from the Voter located in X2 – this will report “00” if both

counter outputs from X1 and X2 agree, otherwise it will report “03” if the counts differ.

 4) The count from the Counter located in X1.

 5) The count from the Counter located in X2.

 6) A timestamp generated in the Top Level code within X1.

Figure 6. Dual Counter Output at 170 Bytes/sec (sampling rate of 10 Hz)

The output in Figure 6 clearly shows that data can be transferred at high rates

across the two FPGA chips. It also demonstrates that data produced from X2 can be

verified at a much lower rate – sampled below the rate at which it is produced. The data

rate for the data produced in Figure 6 was set to 170 Bytes/sec by setting the signal

ERR_RPT_TIME to 5,100,000. This establishes the sampling rate to be 10 Hz. The

total number of bytes transferred per sample was 17; therefore the data rate produced is

170 Bytes/sec. However, the fact that no errors were detected verifies that the counters

were running and transferring data between the two chips at the full rate of 51 MHz.

The data in Figure 6 demonstrates that two circuits, located separately in each

FPGA chip, can be synchronized to run at the same rate. This synchronization phase of

31

the experiment was important for two reasons; one, it shows that data can be transferred

between the two chips at the full rate of the oscillator, and two, it shows that clock skew

is manageable, as discussed in section 3, below.

Figure 7. Dual Counter Output at 173,400 Bytes/sec (sampling rate of 10.2 KHz)

The data in Figure 7 provides more evidence why designers should keep the

sampling rate within X1 low enough such that the data rate is below 500 Bps. The data

in Figure 7 was output across the PC/104 at 173,400 Bps – well above the maximum safe

data rate. Referring to the area circled in red, it is clear that some data is missing.

Closely inspecting the count from the top portion of this figure down to this area in red, it

is clear that the sampling rate set in X1 produced a number on every third count.

However, the area in red shows a gap much larger than three counts. This is evidence

32

that the FIFO buffer in the PC/104 interface module reached its capacity and stopped

accepting data for a period of time. This gap of data is lost, and in this scenario, a

designer would not know what this data might have shown.

Figure 8. Dual Counter Output at 867 MBytes/sec.

Figure 8 shows data output at the full rate of the oscillator, 51 MHz, which is a

data rate in this case of 867 Megabytes/sec. This output illustrates the danger of

programming X1 to write to the PC/104 bus in excess of the maximum safe data rate.

The output in Figure 8 appears to be good output – the counts match and the voters do not

report any errors. However, as has been shown from the previous test results, data is

missing from the output in Figure 8, even though it is not evident. It has been

demonstrated that at rates well above 500 Bps, the maximum data rate of the PC/104 Bus

is exceeded and the FIFO Buffer stops accepting data when at capacity. Though the data

in Figure 8 is accurate, there are in fact thousands of bytes of missing data, which could

be crucial to the evaluation of the reliability of a circuit. If there were errors in this

missing data, then the error counter, (left column in Figure 8), would produce a number,

but the data would not be available for analysis.

33

3. Clock Skew
Because the two FPGA chips on the CFTP architecture are run by the same

oscillator, the potential exists for clock-skew caused errors. Determining the precise

clock skew over the short distance between the two chips is a non-trivial matter, though

certainly not impossible. However, if it can be shown that the clock skew is manageable,

in other words, that the clock period inequality, Equation 1, is not violated, then the

precise clock skew can be ignored for the purposes of experimental development. This

section shows, via mathematical and empirical analysis, that this is indeed the case, that

any clock skew present is not large enough to be of concern when developing an

experiment for implementation onto the CFTP architecture. For mathematical analysis,

the meta-stability equation was used, which is as follows:

2 pdR pdLogic pdIB pdOB pdWiring sT S t t t t t t≥ + + + + + +

In the meta-stability equation, also know as the clock period inequality, T stands

for the clock period, which at 51 MHz is approximately 19.6 nanoseconds (ns), and

stands for the clock skew, which is not known. The purpose for multiplying clock skew

times 2 is explained later. For the remaining terms, is the flip-flop gate delay,

is the logic delay, is the delay of input buffers and is the delay of output

buffers, represents path delay for wiring, and finally,

S

pdRt pdLogict

pdIBt pdOBt

pdWiringt st is the flip-flop setup time.

As mentioned at the end of Chapter III, it is policy within the CFTP project that

signals passed between X1 and X2 must pass through clocked registers. With this policy

in mind, Figure 9 depicts how the terms within the clock period inequality apply to a

signal passing from X2 to X1 regardless of how complex a circuit design might be on

either chip. Figure 9 is not to scale as the two D flip-flops are significantly enlarged for

clarity. The red arrows depict the path of the primary clock signal, and the data in the

scenario depicted in Figure 9 is flowing from the D flip-flop on X2 to the D flip-flop on

X1. This scenario would be precisely the same for data flowing in the opposite direction;

the labels for X1 and X2 could merely be swapped.

34

Figure 9. Clock Skew Signal Paths

Values for the terms in the clock period inequality were determined via a

synthesis report generated by the Xilinx compiler on the CFTP server, as well as within

Xilinx’s Project Navigator [10]. Two synthesis reports for two separate designs on X2

were reviewed, as well as a synthesis report for the typical circuit on X1, and the values

for the terms were nearly identical for all the designs. One of those reports was for the

dual counter experiment in the phase 2 discussion in Section B of this chapter.

Referring to Figure 9, the relation of each term from Equation 1 to a signal

passing between X2 and X1 is depicted. Note the omission of the logic delay, ,

because all signals passing between X1 and X2 are the outputs of registers and only wires

exist between the two chips. The gate delay, , is 1.372 nanoseconds (ns). The input

buffer delay, , is 2.53ns and the output buffer delay, , is 5.672ns. The wiring

delay between the buffers and the flip-flips, , is 0.057ns, but the wiring delay

between the two chips is an unknown quantity.

pdLogict

pdRt

pdIBt pdOBt

pdWiringt

35

 The setup time is defined as the time during which data input to a latch or flip

must remain stable in order to guarantee the latched data is correct. The synthesis report

does not provide a specific value called setup time. However, it does provide the delay of

the signal at the D-input of the D flip-flop on X1, which is 0.84ns. If you include the

delay of this D-input to the flip-flop, it appears in the inequality just like the setup time.

Thus, it was concluded that the setup time for the FPGA flip-flops is 0.84ns.

As noted earlier, the skew is multiplied by 2 in the inequality. This is done to

account for a worst case scenario. Referring to Figure 9, the path of the signal from the

intersection circled in red to the input of a flip-flip represents the skew. Multiplying this

value by 2 ensures that the longer of those two paths is taken into account.

Substituting the known values in Equation 1 and solving for S will yield a value

for the allowable clock skew. However, there is still one unknown that must be

accounted for before doing so; the wiring delay between the two chips. This unknown

value can be conservatively estimated.

The distance between the two FPGAs is within a few millimeters, and the

propagation of signals along wires is often calculated at the speed of light. To remain

conservative, a distance of one centimeter is used, and one-half of the speed of light.

This yields the following propagation delay between the two chips:

8Travel Time = 0.01m 1.5*10 m/s = 0.0667ns

Adding the values for each term, and omitting the logic delay and using three

values for the wiring delay, the inequality is evaluated as follows:

 19.6ns 2S+1.372ns + 2.53ns +5.672ns + (0.057ns + 0.057ns + 0.0667ns) + 0.84ns≥

Adding the known terms on the right side, subtracting them from the clock period

on the left side, and then dividing by two, yields an allowable clock skew of 4.503ns.

S 4.503ns≤

Referring again to Figure 9, the travel time of the clocking signal from the

intersection circled in red to the input of either flip-flop is likely to be quicker than 4ns.

36

To demonstrate this with another conservative calculation, a distance of ten centimeters is

used this time with the same speed.

8Travel Time = 0.1m 1.5*10 m/s = 0.667ns

The signal from the intersection in Figure 9 must also pass through an input

buffer, the delay of which was already determined to be 2.53ns, and the internal wiring

delay was already determined to be 0.057ns. Adding the three terms together yields a

value of 3.254ns.

As can be seen, even when using overly conservative values, it is likely that any

skew between the two chips is not large enough to violate the clock period inequality.

Further, phase 2 in Section B of this chapter provides empirical evidence that the

inequality is not being violated.

Using these two forms of analysis (mathematical and empirical) it is clear that

clock skew between the two FPGAs is manageable and does not need to be accounted for

when designing experiments for the CFTP architecture, provided that signals that pass

between the two FPGAs are the outputs of registers and go directly to register inputs.

Specifically, it was shown that X2 can write data at 51 MHz, and X1 can read that same

data at 51 MHz without any specific handshaking signals denoting the availability of that

data. The only requirement for this to happen is the synchronization of the two chips

with a reset signal generated by X1’s top level module upon the initial startup of both

circuits.

C. CLOCK DIVISION
This section shows that precise, sequential data can be produced from X2 and

output across the PC/104 bus as long as the circuit on X2 outputs data within the

constraints of the maximum safe data rate. Producing sequential data from X2 is

performed by implementing a circuit on X2 that runs at the same clock rate as the

sampling rate on X1. In other words, ERR_RPT_TIME which sets the sampling rate

should be equal to the clock division on X2, provided that X2 has already been clock

divided to 25.5 MHz, for reasons discussed in section 2 below. As will be shown, using

the reset signal discussed in Chapter III and equal clock-division on the two chips,

37

precise sequential data can be produced on the output across the PC/104 bus without any

handshaking between the two chips.

1. Circuit Design
The circuit designed to demonstrate this synchronous capability of the two FPGA

chips is the same circuit that is discussed in detail in Chapter V, An Example Experiment,

and shown in the block diagram of Figure 10 below. This circuit, implemented on X2,

employs the TMR design that has become commonplace within CFTP experiments.

However, this circuit was also designed to provide an output that is easy to verify as

correct or erroneous.

Figure 10. TMR Multiplier

Though the circuit is discussed in Chapter V, a review of the output produced is

necessary for this section. This circuit, named “TMR Multiplier,” produces six distinct

data outputs, four of which are illustrated in the block diagram of Figure 10, in the

following order from left to right: error report that increments if either voter reports an

error, a voter error report from the counter voter (Cnt_check), a voter error report from

the multiplier voter (Mult_check), the counter output from the counter voter (Count), the

multiplier output from the multiplier voter (Count Squared), and the standard timestamp

produced by the top level module within X1.

38

The output of this circuit makes it easy to verify proper operation. The count can

be squared, and that should equal the multiplier result.

2. Clock Division
Because many of the modules on X1 run at 25.5 MHz, any circuit implemented

on X2 must be initially clock-divided down to 25.5 MHz if the two chips are to be

synchronized. For most experiments implemented on the CFTP architecture, X2 is not

normally clock divided. The following discussion on clock division within X2 is

provided should future designers desire to run both chips at a reduced clock rate. This is

required only if there is a desire to produce precise, sequential data from a circuit on X2,

across X1, then across the PC/104 bus.

 Synchronizing the two chips by speeding X1 back up to 51 MHz, as was done

for the dual counters, would not allow the SelectMap processes to properly run (see

Chapter III). Therefore, the initial clock signal coming into the circuit on X2 is clock-

divided down to 25.5 MHz. The timing diagram in Figure 11 provides a simple

illustration of this clock division.

51 MHz
Clock

25.5 MHz
Clock

Figure 11. 25.5 MHz Timing Diagram.

The next level of clock division was set to match the value of the signal

ERR_RPT_TIME located in x2Int.vhd. Clarification of how this signal works is required

at this point. As mentioned in Chapter 3, clock-division on X2 is not required to get

accurate data output across X1 and the PC/104 bus. What is required is that the constant

signal ERR_RPT_TIME within x2Int.vhd is set to a value low enough to ensure the

maximum safe data rate is not exceeded. The constant signal ERR_RPT_TIME

determines the sampling rate – the rate at which data is read within X1 and subsequently

written to the PC/104 bus.

39

40

For this particular experiment, X2 is clock-divided twice; once to match the 25.5

MHz clock signal on X1, and again to match the sampling rate, set by adjusting

ERR_RPT_TIME. As a result of these adjustments, functionally X1 is no longer

sampling data; rather, X1 is reading and writing data at the rate of the clock on X2. The

dual-counter experiment demonstrated that X1 and X2 could operate synchronously at 51

MHz. This experiment shows that the two chips can operate synchronously under equal

clock-division.

3. The Results
Several iterations of clock-division were implemented on the TMR Multiplier on

X2, with each change accompanied by a change to the constant signal ERR_RPT_TIME

in x2Int.vhd on X1. The results provide more solid evidence that the two chips can be

synchronized, and shows that handshaking is not required to get precise, sequential data

from a circuit on X2. Referring to Table 3, the results also provide more evidence that

the maximum safe data rate for the CFTP architecture is approximately 500 Bps. The

clock divisions shown in Table 3 are divisions on both chips beyond the initial division

down to 25.5 MHz.

Clock
Division

Effective Clock
Rate

Bytes Effective
Data Rate
(bytes/sec)

Observation

1,020,000 25 Hz 18 450 No errors, sequential count

10,200,000 2.5 Hz 18 45 No errors, sequential count

38,250,000 0.667 Hz 18 12 No errors, sequential count

76,500,000 0.337 Hz 18 6 No errors, sequential count

510,000 50 Hz 18 900 Missing data beyond hex 95

Table 3. Data Rate Results from TMR Multiplier.

The output in Figure 12 was generated with both X1 and X2 operating at 25 Hz,

which in this case equates to a data rate across the PC/104 bus of 450 Bps. Because the

counters for the TMR Multiplier are designed to restart after reaching hex FF, it is

relatively simple to inspect the output data for errors. The data in Figure 12 was

reviewed extensively, and no errors were noted.

Figure 12. Output from TMR Multiplier at 450 Bytes/sec.

Figure 13 shows data produced by X2 at 900 Bps, significantly higher than the

established maximum safe data rate. X1 was adjusted to read at the same rate, and the

results show once again that the two chips can operate synchronously. The data in Figure

13 also shows that 900 Bps is in excess of the maximum safe data rate. Looking at the

red circle, data is missing. This is the same symptoms noted from running the counter on

X1 at a rate that is too high.

41

Figure 13. Output from TMR Multiplier at 900 Bytes/sec.

4. Sampling Data
In order to demonstrate that a circuit can be run on X2 at 51 MHz and its data

collected by X1 running at 25.5 MHz, producing X2’s data at an even slower sampling

rate, the clock-division was removed from the TMR multiplier. Figure 14 below is the

result of running the TMR multiplier at 51 MHz while its data was collected by X1 at

only 0.667 Hz. To verify the correctness of this data, one of the results next to “Count”

can be squared, and it will equal the result next to “Count Squared.” Note that the results

in Figure 14 are in hexadecimal format.

42

Figure 14. TMR Multiplier at 51 MHz with Sampled Output at 0.667 Hz

5. Final Analysis
The results from the experiments conducted in this chapter are significant. These

results clearly show that the two FPGAs can be programmed to read and write

synchronously without any handshaking. Specifically, X1 can be programmed to simply

read data from specific pins at the same rate that X2 is writing data to those same pins,

and X1 will record that data without error. These results therefore show that any clock

skew present between the two chips is less than x ns, and that the clock skew inequality is

not violated. Further, actual clock skew between the two chips is not large enough for

future designers on the CFTP team to have to account for when creating experiments.

D. CHAPTER SUMMARY

43

This chapter provided the required detail for designers to understand that timing

with the CFTP architecture is a vital consideration when designing experiments.

Specifically, the maximum safe data rate must be taken into account, and if precise,

sequential data is desired from X2, the circuit on X2 must be clock-divided to match the

44

sampling rate on X1. The next chapter provides an example experiment, reviewing the

process from beginning to end of how an experiment is implemented onto the CFTP

architecture.

45

V. AN EXAMPLE EXPERIMENT

To aid future designers to fully understand the process by which an experiment is

designed and implemented on the CFTP architecture, an example experiment is provided.

This chapter will cover the basics, from beginning to end, of the processes by which an

experiment is created, the Controller code modified, and output collected.

A. TRIPLE MODULAR REDUNDANCY
The overriding philosophy behind any experiment created within the CFTP team

is reliability. Specifically, experiments are designed such that they not only can detect

the occurrence of an SEU, but also they must be able to correct any erroneous data

produced as a result of an SEU. Though specific implementations have varied, the

primary method that designers have used to provide this reliability is TMR (triple

modular redundancy). Circuits, or components within circuits, are produced in triplicate,

and their outputs sent to a voter for comparison. As long as two of the three outputs

agree, the data is considered reliable. This is how errors are detected and corrected. The

voter identifies data that does not agree with two other streams of data, then decides what

is reliable and identifies the component that provided unreliable data.

The circuit designed for this example experiment performs the functions

described above; it employs TMR and provides data that shows if an error is detected and

the specific component where that error occurred. However, this experiment was not

designed specifically to test the applicability of TMR. This TMR Multiplier was

designed with two goals in mind; one, to affectively demonstrate how a TMR experiment

is implemented on the CFTP architecture, and two, to provide an output so that the CFTP

team can verify proper operation of the Flight Board once in space.

B. TMR MULTIPLIER
One of the needs of the CFTP team is a circuit that is simple both in its operation

and its output. It is important to be able to simply confirm that the two FPGAs on the

Flight Board in space are operational. This circuit was designed with that requirement in

mind. However, in the event that this becomes the only operational circuit in flight, TMR

was included so reliability could still be evaluated. With these goals in mind, the TMR

46

Multiplier was designed to generate a count, square that count, and provide an output that

verifies proper operation and the presence of any data errors.

Referring to Figure 15, this circuit, the TMR Multiplier, generates its own input

via the use of a counter. The counter is produced in triplicate and the outputs voted. The

voter produces two outputs; the count and a 3-bit data steam that identifies if any of the

counters disagreed. It then takes this count and uses it for both inputs into a multiplier,

thereby squaring the count. The multiplier was also produced in triplicate, those outputs

fed to a voter, and two data streams are produced from that voter. As described in

Chapter IV and shown in Figures 12, 13 and 14, five sets of data are produced by this

circuit. This provides a data stream that simplifies the identification of errors, and

provides easy confirmation of proper operation.

To further simplify the process of data verification, the counter not only counts in

increments of one, base 16, from zero to “FF,” but it then resets to zero and restarts the

count. Section D provides details on the design of this circuit, to include how TMR

works as well as the design decision behind the inclusion of registers, and Figure 15

should be referred to extensively when reading that section.

C. WORKING IN PROJECT NAVIGATOR
Though some of the important steps are included, the following is not intended as

a manual for the use of Xilinx’s Project Navigator [10]. A summary of the creation of the

design within Project Navigator is included, but emphasis is on the specifics of the TMR

Multiplier design followed by the required modifications of the Controller code to

conform to the requirements of the experiment.

Figure 15. TMR Multiplier Final Design

 47

1. Creating a Design
To begin the design process for this TMR Multiplier, a project was created in

Xilinx’s Project Navigator. When creating a design, the user begins by going to “File,”

then selecting “New Project.” After naming the project, it is important that the proper

device and other options are chosen correctly. Looking at Figure 16, these are the

options that should always be chosen for all projects created for the CFTP architecture,

assuming the use of a Virtex I chip. Should future CFTP projects include the use of a

later Virtex part (Virtex II or III or IV), then these options will change slightly.

For the current CFTP architecture, the options chosen are specific to the Virtex I

chips; xqv600, cb228, and speed -4. These options are the same both the Flight and

Development Boards. After this step is complete, the user will then be sent to a window

and asked if a new source is to be created for the project. This step can be skipped and

the user can add new sources in the Process View window.

Figure 16. Project Options in Xilinx’s Project Navigator [10]

2. Processes in Project Navigator
In Figure 17, the process for editing/creating VHDL is shown, as well as the

Process View window where sources can be added or created. In this Process View

window are two processes of note for designers; Synthesize – XST, and Create Schematic

Symbol. These two processes are also available for schematics. Once the designer has

48

finished editing a VHDL file, or wiring a schematic, the component then needs to be

synthesized (compiled), and a schematic symbol created for addition to a higher level

schematic. To perform either of these tasks, the specific component in the window,

Sources in Project, must be highlighted.

Figure 17. Working with VHDL in Project Navigator [10]

The schematic for one of the registers from Figure 15 is included in Figure 18.

Once all editing has been completed, and the schematic saved, the designer has to return

to the window in Figure 16, highlight the component, and then synthesize and create a

schematic symbol. The result is the symbol located in Figure 15, “reg_8.” This symbol

was added to the top level schematic by clicking on the tab labeled “Symbols,” which can

be seen in Figure 17.

49

Figure 18. Schematic for Register in TMR Multiplier Design [10]

3. The Critical UCF Source
To ensure an experiment can properly interface with X1 in the CFTP architecture,

the designer must include the constraint file discussed in Chapter III as a source to the

project. This file is critical to the proper operation of an experiment within the CFTP

architecture, because it identifies the FPGA pins with the signal names used in the design.

The simplest way to get a constraint file is to copy one off of the CFTP server, then

rename it specifically for the experiment (see Appendix A for detailed specifications of

the path to the most current X1 ucf files for the Development and Flight Boards). For the

TMR Multiplier design, the constraint file was re-named “tmr_mutliplier.ucf.” Once this

file was copied to the same directory where all the other files are located for the project, it

was simply added as a source to the project.

Referring to Figure 19, once the constraint file has been added as a source to the

project, it can then be edited by highlighting the file, then selecting “Edit Constraints

(Text) in the process window. While editing this file, it is suggested that the designer

50

have a copy of the constraint file for X1 available to ensure that the pins within the

respective files are properly matched with respect to functionality. See Appendix B for

specifics.

Figure 19. A portion of the Constraint File [10]

D. DETAILS OF THE EXPERIMENT

The design decisions behind the TMR Multiplier were driven by three important

requirements, in addition to the goals stated in Section A: self-generated input, ability to

synchronize the circuit with X1, and an output that is easy to verify as correct.

1. Input & Synchronization
The counter provides self-generated input, and the TMR design is used on the

counter to ensure a reliable input. Using a counter as the input also allowed for a simple

way to synchronize the circuit with X1. As discussed in Chapter III, the top level code of

X1 produces a reset signal upon the initial start up. Referring to Figure 20, this signal,

51

aptly named “x1_reset,” is fed to each counter. The counter is designed to begin the

count at zero when this reset signal goes high. Figure 21 shows the process for this,

written in VHDL code.

Figure 20. Reset Signal and TMR Counter

Figure 21. VHDL Code for Counter.

2. Voter Logic
The voters, both for the counter output and multiplier output, were also produced

via VHDL code. Referring to the VHDL code in Figure 22, this is a simple process of

52

using “if statements” to determine which inputs agree, and assigning those to the output.

This is data error correction, determining the output based upon an input where a

majority (2 out of 3) agrees.

’

Figure 22. Voter Logic

The portion of the voter that provides the location of the component which

produced the error is located in the output vector “count_check.” If the voter logic

detects that one of the inputs do not agree, or worse, that all three inputs disagree, then an

appropriate signal is assigned to “count_check.” For example, looking at the first “elsif”

statement in Figure 22, if inputs one and two agree, but disagree with input three, then the

output “result” is assigned with the majority input, and “count_check” is assigned the

number three, signifying that counter number three is in error. This voter logic was also

used to determine the multiplier output, with the only difference being the signal names.

53

54

3. Multiplier & Pipelining
The multiplier was created with one line of VHDL code; input “x” multiplied

times input “y” is assigned to output “p.”

p(23 downto 0) <= x(11 downto 0) * y(11 downto 0);

This one simple line of code performs two functions. First, Xilinx’s VHDL

compiler will create a hardware multiplier, optimized by the compiler. Second, it

automatically creates a register to hold the product until the next clock signal. This is

important because, as per Chapter III, all outputs produced in X2 needs to be held in a

register. Though the input from the counters are only 8 bits, they were converted to12

bits to provide a 24-bit output merely to aid in data stream formatting on the final output.

The VHDL compiler does not create a pipelined multiplier, and because the

multiplier performs correctly at 51 MHz, pipelining internal to the multiplier was not

required. However, pipelining was needed in the top level schematic. Referring back to

Figure 14, two levels of registers were incorporated into the design. Because the output

of the multipliers and the output of the second voter are held in registers, the output of the

first voter had to be slowed down by two clock cycles to ensure all data produced from

X2 arrived at X1 on the same clock.

To ensure complete reliability of the output of this circuit, the registers located in

Figure 14 should also be produced in triplicate and the outputs voted. However, this was

not done for two reasons; as mentioned, this experiment was not designed as validation of

TMR, and two, even within the philosophy of TMR, at some point a decision must be

made when TMR will not be incorporated to prevent overly complex circuits or circuits

that are too large. Though not applicable to this circuit, at some point if too many

components are duplicated, the design becomes too large and cumbersome. Additionally,

registers take up only a small portion of the chip, so the probability of a data error due to

an SEU within a register is minimal.

4. Signal Names
Referring to Figure 18, the tmr_multiply.ucf file, it is critical that the signal names

in this constraint file exactly match final naming of signals in the top level schematic,

Figure 14. This ensures that each signal is passed to the appropriate output pin on X2,

55

which enables the passing of proper data to X1 and ultimately across the PC/104 bus onto

the ARM processor.

5. Sequential Data
In keeping with one of the initial stated goals, to verify proper operation of this

circuit it is important that data is collected in the precise order is it produced. This

provides verification that all components are functioning properly; the counters are

verified if the count is produced sequentially, and the proper operation of the remaining

components is verified via the normal TMR design principles.

To accomplish sequential output, as mentioned in Chapter 4, the circuit on X2

required the appropriate clock division. Two modules located in Figure 14 accomplish

this. The module “clock_half” clock-divides the main clock down to the 25.5 MHz clock

that drives the components on X1, and the module “clock_divider” can be adjusted to

produce a signal at the same rate of the signal “ERR_RPT_TIME” located on X1, which

is the sampling rate mentioned throughout this thesis.

6. Finishing the Experiment
The final step in Project Navigator, after the circuit has been simulated and

checked for proper operation, is to “Implement” the design as discussed at the end of

Chapter 3. This function performs four processes in the following order; translate, map,

and then place and route (PAR). The translate process merges all of the input net-lists

and design constraint information into one file. The map process maps the design to the

FPGA, creating the ncd file, discussed in section 7, below. The PAR process takes this

ncd file and performs the placing and routing of the design, connecting and routing all the

wiring. The PAR process does not produce a different file extension; it modifies the

existing ncd file. After this final step, the ncd file, in this case named multiply.ncd, will

then be transferred to the CFTP server for two more processes, discussed in section 7,

below.

7. Flash File
The last step for the experiment is to create a flash file, which is the configuration

for X2 that will be stored on the flash memory module. This is performed on the CFTP

server with two programs: bitgenpersist.sh, and mkflash.sh. The file that was transferred

from the designer to the CFTP server has an “ncd” file extension. At the completion of

56

the last two processes, the experiment file will have a “fwr” file extension. The exact

command line entries for these two processes are covered in detail in Appendix A.

The reason for executing bitgenpersist.sh and mkflash.sh is to create a bit file; a

file that contains the configuration of the FPGA chip. The two processes accomplish this

as bitgenperist.sh creates the bit file, and mkflash.sh strips off the headers, making the

file ready for the loading of the configuration [1].

E. MODIFYING THE CONTROLLER
As discussed in Chapter III, there are three VHDL modules within the Controller

code (X1) that must be specifically modified by the designer; x2Int.vhd, top_level.vhd,

and control.ucf. This section will list the specific code modified for the TMR multiplier

with an accompanying explanation.

1. X2 Interface
Within the file x2Int.vhd, the first changes to be made are the signal names going

to or coming from X2, the experimental circuit. For the TMR Multiplier, only one signal

goes to X2, the rest are signals coming into X1, the Controller. These signal names are

located near the beginning of the code, and are easily identified as a result of the

comments and the standard naming conventions discussed in Appendix A.
-- FOR EXPERIMENTAL DESIGN, signals coming from and going to X2

DATA_TO_X2_RESET_o : out std_logic;
DATA_FROM_X2_OUTPUT_i : in std_logic_vector(31 downto 0);
DATA_FROM_X2_MULTCHK_i : in std_logic_vector(2 downto 0);
DATA_FROM_X2_CNTCHK_i : in std_logic_vector(2 downto 0);

--
The first signal name, “DATA_TO_X2_RESET_o,” is the reset signal discussed

in Chapter III that is generated via X1’s top level code. This signal allows the circuits on

X1 and X2 to begin at the same time.

The signal name, “DATA_FROM_X2_OUTPUT_i,” is precisely what it implies;

output generated from X2. Notice, however, that the end of the signal name has an

underscore with the letter “i.” In accordance with the naming conventions for CFTP, this

signifies an incoming signal to X1. An underscore followed by the letter “o” was added

to the outgoing reset signal as it is a signal that is outgoing from X1.

There are two specific streams of data within the 32 bits of the output signal

name. This signal could have been broken up into those two streams of data, but for

57

programming simplicity, all the data was lumped into one 31-bit stream. Recall that the

TMR Multiplier design on X2 outputs the count as well as the result of that count

squared. The count is 8 bits and the square of the count is allotted 24 bits. As long as the

designer knows what portion of the 32-bit data stream belongs to the count and to the

multiplier, then it can be sorted out in the output data stored on the ARM processor.

This simplification of signal naming also allowed for simpler editing of the ucf

file, which will be covered shortly.

Flowing down through the code in sequence, the next decisions to be made by the

designer is the frequency for SelectMap read-backs and the data rate across the PC/104

bus.
CONSTANT DLY_TIME : integer := 765000000 -- 30 seconds
--CONSTANT ERR_RPT_TIME : integer := 76500000 -- (0.337 Hz)
CONSTANT ERR_RPT_TIME : integer := 38250000 -- (0.667 Hz)
--CONSTANT ERR_RPT_TIME : integer := 10200000 -- (2.5 Hz)
--CONSTANT ERR_RPT_TIME : integer := 1020000 -- (25 Hz)

The signal DLY_TIME is the rate at which a SelectMap read-back occurs. The

standard within the CFTP development environment has been to leave this at 30-second

intervals. It can be changed to suit the needs of specific experiments. The signal

ERR_RPT_TIME is how the sampling rate is set (recall discussion from Chapter III).

Above are four examples of data rates utilized for the output of the TMR Multiplier.

Three of the sampling rates remain commented out of the code (in blue). The final one

used for flight is uncommented and it generates an output every 1.5 seconds.

Recall also from Chapter III that the data rate across the PC/104 bus is determined

by multiplying the sampling rate times the number of bytes to be transferred across the

PC/104 bus per write cycle. The signal RPT_OUT_LENGTH is where this integer is set,

and is located in the code just below where ERR_RPT_TIME resides.
CONSTANT RPT_OUT_LENGTH : integer := 18

Next the designer will modify the portion of the code in x2Int.vhd that actually

writes data to the PC/104 bus. As illustrated with the code below, these signal names

must exactly match the signal names near the beginning of the code in the port section.

Notice there are 18, 8-bit words, assigned to an output vector. The first three words are

usually not modified by designers. The “E,” “R” and “00” are output merely for

58

formatting and identification purposes (E R identifies that relevant data follows). The

fourth word is an error count, described shortly, and the next six words were added

specifically for the TMR Multiplier. This portion of the data stream, highlighted in red,

the number of words and specific signal names will vary to match specific experiments.

The last eight words are a timestamp produced in the output stream, and is not modified

by designers.
 if (report_out_vect = '0' and SM_CONFIG_STATUS_i = '0'
 and dly_timer = ERR_RPT_TIME) then
 out_vect(0) <= x"45"; --E
 out_vect(1) <= x"52"; --R
 out_vect(2) <= x"00";
 out_vect(3) <= err_cnt(7 downto 0); -- parameters set by designer
 out_vect(4) <= "00000" & DATA_FROM_X2_CNTCHK_i(2 downto 0);
 out_vect(5) <= "00000" & DATA_FROM_X2_MULTCHK_i(2 downto 0);
 out_vect(6) <= DATA_FROM_X2_OUTPUT_i(31 downto 24); -- counter output
 out_vect(7) <= DATA_FROM_X2_OUTPUT_i(23 downto 16); -- mult output
 out_vect(8) <= DATA_FROM_X2_OUTPUT_i(15 downto 8); -- mult output
 out_vect(9) <= DATA_FROM_X2_OUTPUT_i(7 downto 0); -- mult output
 out_vect(10) <= TIMESTAMP_i (63 downto 56); --timestamp
 out_vect(11) <= TIMESTAMP_i (55 downto 48); --timestamp
 out_vect(12) <= TIMESTAMP_i (47 downto 40); --timestamp
 out_vect(13) <= TIMESTAMP_i (39 downto 32); --timestamp
 out_vect(14) <= TIMESTAMP_i (31 downto 24); --timestamp
 out_vect(15) <= TIMESTAMP_i (23 downto 16); --timestamp
 out_vect(16) <= TIMESTAMP_i (15 downto 8); --timestamp
 out_vect(17) <= TIMESTAMP_i (7 downto 0); --timestamp
 report_out_vect <= '1';
---------Parameter for increasing the error count---------------------------
if ((DATA_FROM_X2_MULTCHK_i /= "000") or (DATA_FROM_X2_CNTCHK_i /= "000")) then
 err_cnt <= err_cnt + 1;
 end if;
 end if;

Signal names that correctly describe the output, like CNTCHK, do not require

comments. However, to clarify what portion of the output is from the counter and the

multiplier, comments were included next to the signals DATA_FROM_X2_OUTPUT_i.

Specifically, the output of the counter occupies the top 8 bits of the 32-bit output stream,

and the multiplier output occupies the remaining 24 bits.

The last portion of the code, located beneath the comment “parameters for

increasing the error count,” is important for two reasons; one, it provides data across the

PC/104 bus that verifies a voter reported an error, giving the designer additional

verification of a data error. Two, it counts the number of errors that occur so that a

SelectMap reconfiguration can eventually take place when a set number of these data

59

errors have occurred. As can be seen above, the parameter for a data error from the TMR

Multiplier is if one of the voters reports a number other than zero. Designers will have to

modify the parameters within the IF statement specific to their experiments.

The threshold for the number of data errors before a reconfiguration is the last

modification a designer needs to consider within x2Int.vhd. This threshold is located

within an “if” statement, and is usually set to hex FF.
-- Set the threshold (# of data errors) for a reconfiguration
-- If we have 256 errors, reconfigure
 if (err_cnt = x"FF") then

For most experiments, including the TMR Multiplier, this threshold can probably

remain as is. However, designers are free to change this number if a specific experiment

requires a higher or lower threshold before a SelectMap reconfiguration.

2. The UCF File
A portion of the specific control.ucf file for the TMR multiplier design is included

below, specifying the signal naming of data coming from and going to X2 that pertain to

the TMR multiplier. The control.ucf file is significantly larger than the experiment.ucf

file (tmr_multiplier.ucf) because of the various SelectMap and other pins. The complete

control.ucf is located in Appendix B.

This specific control.ucf file is for the Development Board. The differences

between the Development Board and Flight Board are not apparent here, but are covered

in Appendix B.
NET "DATA_FROM_X2_MULTCHK_i<0>" LOC = "p153"; # X1_X2_AUX<0>
NET "DATA_FROM_X2_MULTCHK_i<1>" LOC = "p151"; # X1_X2_AUX<1>
NET "DATA_FROM_X2_MULTCHK_i<2>" LOC = "p150"; # X1_X2_AUX<2>
NET "DATA_FROM_X2_CNTCHK_i<0>" LOC = "p149"; # X1_X2_AUX<3>
NET "DATA_FROM_X2_CNTCHK_i<1>" LOC = "p147"; # X1_X2_AUX<4>
NET "DATA_FROM_X2_CNTCHK_i<2>" LOC = "p146"; # X1_X2_AUX<5>
NET "DATA_TO_X2_RESET_o" LOC = "p145"; # X1_X2_AUX<6>
#NET "DATA_FROM_X2_READY_i" LOC = "p144"; # X1_X2_AUX<7>
#NET "XXX" LOC = "p135"; # X1_X2_AUX<8>
#NET "XXX" LOC = "p134"; # X1_X2_AUX<9>
NET "DATA_FROM_X2_OUTPUT_i<0>" LOC = "p132"; # X1_X2_AUX<10>
NET "DATA_FROM_X2_OUTPUT_i<1>" LOC = "p127"; # X1_X2_AUX<11>
NET "DATA_FROM_X2_OUTPUT_i<2>" LOC = "p126"; # X1_X2_AUX<12>
NET "DATA_FROM_X2_OUTPUT_i<3>" LOC = "p120"; # X1_X2_AUX<13>
NET "DATA_FROM_X2_OUTPUT_i<4>" LOC = "p119"; # X1_X2_AUX<14>
NET "DATA_FROM_X2_OUTPUT_i<5>" LOC = "p112"; # X1_X2_AUX<15>
NET "DATA_FROM_X2_OUTPUT_i<6>" LOC = "p111"; # X1_X2_AUX<16>
NET "DATA_FROM_X2_OUTPUT_i<7>" LOC = "p110"; # X1_X2_AUX<17>
NET "DATA_FROM_X2_OUTPUT_i<8>" LOC = "p109"; # X1_X2_AUX<18>

60

NET "DATA_FROM_X2_OUTPUT_i<9>" LOC = "p108"; # X1_X2_AUX<19>
NET "DATA_FROM_X2_OUTPUT_i<10>" LOC = "p107"; # X1_X2_AUX<20>
NET "DATA_FROM_X2_OUTPUT_i<11>" LOC = "p105"; # X1_X2_AUX<21>
NET "DATA_FROM_X2_OUTPUT_i<12>" LOC = "p104"; # X1_X2_AUX<22>
NET "DATA_FROM_X2_OUTPUT_i<13>" LOC = "p103"; # X1_X2_AUX<23>
NET "DATA_FROM_X2_OUTPUT_i<14>" LOC = "p102"; # X1_X2_AUX<24>
NET "DATA_FROM_X2_OUTPUT_i<15>" LOC = "p101"; # X1_X2_AUX<25>
NET "DATA_FROM_X2_OUTPUT_i<16>" LOC = "p98"; # X1_X2_AUX<26>
NET "DATA_FROM_X2_OUTPUT_i<17>" LOC = "p97"; # X1_X2_AUX<27>
NET "DATA_FROM_X2_OUTPUT_i<18>" LOC = "p96"; # X1_X2_AUX<28>
NET "DATA_FROM_X2_OUTPUT_i<19>" LOC = "p94"; # X1_X2_AUX<29>
NET "DATA_FROM_X2_OUTPUT_i<20>" LOC = "p93"; # X1_X2_AUX<30>
NET "DATA_FROM_X2_OUTPUT_i<21>" LOC = "p92"; # X1_X2_AUX<31>
NET "DATA_FROM_X2_OUTPUT_i<22>" LOC = "p91"; # X1_X2_AUX<32>
NET "DATA_FROM_X2_OUTPUT_i<23>" LOC = "p90"; # X1_X2_AUX<33>
NET "DATA_FROM_X2_OUTPUT_i<24>" LOC = "p89"; # X1_X2_AUX<34>
NET "DATA_FROM_X2_OUTPUT_i<25>" LOC = "p88"; # X1_X2_AUX<35>
NET "DATA_FROM_X2_OUTPUT_i<26>" LOC = "p82"; # X1_X2_AUX<36>
NET "DATA_FROM_X2_OUTPUT_i<27>" LOC = "p81"; # X1_X2_AUX<37>
NET "DATA_FROM_X2_OUTPUT_i<28>" LOC = "p80"; # X1_X2_AUX<38>
NET "DATA_FROM_X2_OUTPUT_i<29>" LOC = "p79"; # X1_X2_AUX<39>
NET "DATA_FROM_X2_OUTPUT_i<30>" LOC = "p78"; # X1_X2_AUX<40>
NET "DATA_FROM_X2_OUTPUT_i<31>" LOC = "p77"; # X1_X2_AUX<41>
#NET "XXX" LOC = "p75"; # X1_X2_AUX<42> -- available on Flight Board
#NET "XXX" LOC = "p74"; # X1_X2_AUX<43> -- not avail on Flight Board
#NET "XXX" LOC = "p71"; # X1_X2_AUX<44> -- not avail on Flight Board

Notice that the signal names in the control.ucf file exactly match the signal names

in the section “FOR EXPERIMENTAL DESIGN” in x2Int.vhd. Note also that in the

constraint file, the pound symbol is used to comment out code, while in normal VHDL

code, two dashes are used. This is an important note to show how unused pins are

handled in the constraint file; simply comment them out of the code. Also, notice all the

comments next to each pin declaration. As mentioned in Chapter III, these comments are

located within both constraint files for X1 and X2. This is the method by which data is

correctly declared and passed to the appropriate pins on both chips.

Once the ucf file has been properly edited, it is time to compile the X1 code.

3. Makefile_Control
In the Linux environment, compiling of code, whether it be “C” code, or VHDL

code, is performed via the command “make.” Further, this process can be enhanced to

suite the needs of specific projects by creating/editing a specific “makefile.” This is the

function of the Makefile_control and Makefile_experiment files for the CFTP team. The

Makefile_control file is the last file the designer will need to modify.

61

ID is used by the rd.sh program to determine how the output from
your code should be formatted. It is any 2 digit string
Already taken:
JS: Josh's Cordic
JM: Jerry's Multiplier
SR: James' Shift Register
FD: Flash Dump
VT: V2 Test code
FE: Flash Erase
ID = JM
DESCR = "Jerry's Multiplier"

Above is the specific section of code from the file “Makefile_control” which must

be modified by the designer. The two lines of code that have not been commented out

need to be changed specific to the experiment, as per instructions in the commented

section, with 2 digits (letters or numbers), followed by what they stand for. This is done

for the purpose of “C” code that reads and formats output data. This “C” code is located

in Appendix C.

4. Compiling Code
At this stage, it is time to compile the X1 code and correct any noted errors by the

compiler. Before beginning this process, all files and directories located within directory

“control_out” must be deleted. This is performed with the following Linux command:

rm -r *

Care must be exercised when using this command. It will delete ALL files and

directories located within the directory where the command is issued. The contents of the

control_out directory need to be removed as that is where the compiler sends history files

from its previous compile. DO NOT use this delete command, “rm,” in a directory above

(higher level) control_out. Once this command is used the files CAN NOT be recovered.

Ensure that this command is entered ONLY within the directory control_out.

After removing the contents of the directory control_out, the compile command is

entered one level up from the control_out directory, where the Makefile_control file is

located. The specific command is as follows: make -f Makefile_control

When the good fortune of a compile with no errors is achieved, then a file named

“control.bin” exists in the control_out directory.

62

F. PROGRAMMING THE BOARD
Now it is time to physically program both chips and collect data. The designer

has two important files, the fwr file for the flash, (X2’s configuration), and the bin file

which is X1’s configuration. As noted previously, the fwr file was named to specifically

identify the experiment, tmr_multiply_dev.fwr. This should be done as well for the

control.bin file. For the multiplier, it was named, “tmr_mult_dev.bin.”

Appendix A contains the specific procedures to program the chips and collect data

for both the Development Board on the ground, and the Flight Board while on the

Satellite.

G. CHAPTER SUMMARY
This chapter provided the overall procedures behind the development of an

experiment for implementation onto the CFTP architecture. Most importantly, it covered

the specific modifications that are required for the Controller code in order for

experiments to properly interface with X1 and the PC/104 bus. The next chapter

summarizes the work of this thesis and provides recommendations for future CFTP

designers.

63

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis detailed the processes by which experiments are developed and

implemented on the CFTP architecture. The structure of that architecture was discussed,

as well as the inner-workings of the code that drives the Controller portion of the CFTP

architecture. Finally, some of the limitations of the CFTP architecture were investigated,

and an example experiment was detailed for the benefit of future CFTP designers.

A. SUMMARY
The CFTP architecture was designed around the framework of a key concept; two

FPGA chips, one that implements fault tolerant experiments, and one that acts as a

controller for the implementation of experiments and control of data produced from

experiments. Significant components included to support this design are; a flash

memory module, an EEPROM, a PC/104 bus, and an ARM Processor.

Within the CFTP environment, the Controller FPGA is named X1, and the FPGA

for the implementation of experiments is named X2. Experiments implemented onto X2

can transfer data to and from X1 at the full rate of the CFTP oscillator, which is 51 MHz.

However, the rate at which data can be transferred across the PC/104 bus is significantly

less than 51 MHz due to the limitations of the ARM Processor and its ability to manage

resources.

One of the most significant developments for the CFTP architecture was the

VHDL code that creates the circuit on the Controller FPGA. This code is generic to the

largest extent possible, which allows designers to make only minor changes such that X1

will interface properly with X2. The significance of the Controller code, beyond its

ability to be modified specific to experiments, is its inherent ability to control the flow of

experiments, compare configurations from what is stored in flash memory to what is

running on X2, and perform a reconfiguration of X2 should a configuration error occur.

It was the development of this code that made X1 a true controller and not just a pipe for

data transfer, thanks to the tireless efforts of Mindy Surrat [1].

Despite the minor changes required to interface with an experiment, designers

should become familiar with the Controller code. Specifically, a working knowledge of

64

all the VHDL modules, as well as the processes within the X2 Interface module, will give

future CFTP designers a better understanding of the modifications required, and more

importantly, will reduce the probability of making a change that creates an output of

erroneous data.

Future designers for the CFTP team should also understand the limitations of the

CFTP architecture, and how those limitations can potentially affect the design of an

experiment. By knowing how the Controller interfaces with X2, designers have a greater

chance of creating an experiment that produces results and provides insight to the

viability of creating fault tolerant circuits for the space environment.

B. CONCLUSIONS
The results discussed throughout this thesis were accomplished via detailed

engineering analysis. The maximum safe data rate for the CFTP architecture was

determined to be a result of the interactions between the ARM processor, the PC/104 bus,

and X1 the Controller FPGA. Procedures to synchronize and clock-divide both FPGAs

were investigated by implementing identical circuits on X1 and X2 and comparing their

outputs. Finally, detailed mathematical and empirical analysis was employed to show

that clock skew between the two FPGAs is manageable.

In addition to determining maximum safe data rate, the procedures for running

experiments at 51 MHz and sampling output data were explored and documented. This

provides future designers the necessary details to implement a myriad of designs such

that they will properly interface with the components of the CFTP architecture.

C. RECOMMENDATIONS
There is still work to be done within the CFTP architecture. Fortunately, some of

the areas that still need to be explored can be done with software implementations, so

having the Flight Board on a satellite in space is not a limiting factor.

1. Use SDRAM Available to X2
As mentioned in Chapter II, 16 megabytes of RAM exist on the CFTP

architecture. This RAM is available to X2, though it is has not yet been utilized in a

formal experiment. Future designers should consider a use for this memory as this

provides an expanded capability for potential fault tolerant designs.

65

2. Multiple Configurations on Flash Memory
The Flash Memory employed on the CFTP architecture has enough memory

space to hold the configurations of four experiments. To date, the Controller only uses

the first 900 KB of space on this memory module, loading one experiment on X2 and

collecting data. The potential exists to modify the X1 code such that it can write four

configurations to the Flash Memory, and then load an experiment onto X2, collect data

for a set period of time, then load the next experiment. This would require modifications

to the Flash Write Code, and as well as modifications to the primary Controller Code.

This is an important capability of the CFTP architecture that should be explored as soon

as possible.

3. Passing Data from the ARM
Currently, no process exists on the CFTP architecture that is capable of sending a

data stream from the ARM processor to a circuit on X2 for processing. As a result, the

only two methods the CFTP project has to provide input data to a circuit on X2 is to; one,

create a circuit on X2 to generate the required data, as was done for this thesis (the TMR

Multiplier), or two, implement a process on X1 to send the data to X2. This capability

should be explored and implemented on the CFTP architecture. Circuits are generally

designed to accept and process data, not to self generate data. Also, if possible, X1

should be left to perform its functions as a Controller and additional responsibilities

added to X1 should be limited as much as possible.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX A: CFTP EXPERIMENT MANUAL

Appendix A is a manual designed as a “hands-on tool” for conducting CFTP

experiments on the ground or in space. This manual assumes a level of knowledge by the

user which, if not the case, references sections in Appendix B so the user can gain the

necessary level of detail to understand the procedures contained herein.

This manual should also be viewed as “Standard Operating Procedures” for the

CFTP team. This document contains standard naming conventions within the CFTP

development environment for directories, file names, and signal names, which should be

followed to the maximum extent possible. Many of the procedures listed were developed

from years of lessons learned and therefore should be followed in detail.

Though Appendix B contains code for specific examples to aid in the sections

throughout this manual, each Experimenter will also be given copies of previously

operational code, as well as access to the CFTP server.

At the end of this manual is a checklist containing helpful reminders that can be

used as an aid for running experiments on the ground, as well as a flow diagram.

However, thorough familiarity of this manual is required in order to successfully run an

experiment on either the development board or flight board.

A. NAMING CONVENTIONS
 Each experiment, and each modified version of the Controller Code, should reside

in a set of directories with specific names. The top level directory for an experiment

within the user’s directory path should be the name of the respective project, for example,

tmr_multiplier. This directory should contain two sub-directories, dev_board and

flight_board. Both dev_board and flight_board should contain the files

Makefile_control, Makefile_experiment, and sub-directories named control_src,

control_out, experiment_src, and experiment_out. These names should not ever

change. Only the specific file names within the experiment directories will change

depending upon the name of the experiment.

A hierarchical representation of the directory structure is shown below:

…/proj_name/
dev_board/

Makefile_control
Makefile_experiment

 control_src/
 control_out/
 experiment_src/
 experiment_out/
flight_board/

Makefile_control
Makefile_experiment

 control_src/
 control_out/
 experiment_src/
 experiment_out/

Top-level directory ----------------- Project name

2nd -level directories ---------- dev_board flight_board

files within 2nd –level directories Makefile_control Makefile_experiment

3rd -level directories --------------------------- control_src control_out

3rd -level directories --------------------------- experiment_src experiment_out

68

69

Linux directory tree examples – command-line prompt

 $username/proj_name/dev_board/control_src

 $username/proj_name/flight_board/experiment_src

B. DEVELOPMENT BOARD & FLIGHT BOARD
 Two different boards exist for the implementation and testing of experiments.

One is named the “Development Board” and the other is the “Flight Board.” The Flight

Board is named as such because the FPGAs are identical to the ones in space, and

therefore the pin layouts are identical. The Development Board has two FPGAs that are

not designed for the space environment, and their differences, though minor, result in

slightly different pin layouts between the two chips.

 Appendix B addresses these differences in the constraint files. Throughout this

manual, the Development Board is referred to as “dev_board” and the Flight Board as

“flight_board” in accordance with the CFTP naming conventions.

C. THE EXPERIMENT

1. Simulation and Compilation
 This phase of any experiment must be complete before beginning work within the

CFTP development environment and modifying any X1 code. The standard program, for

which the CFTP has a software license, is Xilinx’s Project Navigator and ModelSim XE.

 A working knowledge of Project Navigator and ModelSim, or another similar

program, is up to the individual. If using Project Navigator, it is important that the

following project properties within Project Navigator are set to the Xilinx part xcqv600-

4cb228, whether designing for the Development or Flight Board.

a. Naming Conventions
Specific experiments are where the greatest flexibility in file and signal

naming exists. It is, however, important that file names for experiments represent what

the experiment does, for example, tmr_multiplier. For the purpose of this manual, the

word “experiment” will be used throughout.

70

b. Constraint File
The constraint file, denoted with an “ucf” file extension, (experiment.ucf),

is a critical portion of the experiment. If this file does not properly match the “ucf” file

for the X1 controller code (control.ucf) then the experiment WILL NOT WORK.

Once the constraint file is properly written and added as a source in the

respective project in Project Navigator and simulated with proper operation noted, the

next step is to “implement” the design. This function in Project Navigator performs the

necessary compiling, and then performs the required translate, map, place, and route

portion for the code (schematics and/or VHDL) to run on an FPGA.

 2. Compiling within Linux (“make” files)

Note: Skip this part and go to part 3, “The NCD file,” if using Xilinx’s Project

Navigator or other equivalent software. Refer to flow diagram at the end of the checklist.

The “make” files within the CFTP programming environment (e.g.,

Makefile_experiment) are designed to perform all the same functions that Project

Navigator performs. This process of compiling, translating, mapping and routing should

only be utilized on fully tested experiments which only require small modifications. It is

highly recommended that Project Navigator, or an equivalent program, be used for the

initial development of an experiment.

The advantage of compiling an experiment within the CFTP Linux environment is

the consolidation of various procedures. The file “Makefile_experiment” performs

“bitgenpersist.sh” and “mkflash.sh” immediately following the compiling and place and

route operations. This allows the Experimenter to go directly to part 4, “Copy the fwr

file,” of this section. This method should only be used if enough experience has been

gained such that a level of comfort exists within the CFTP development environment, as

well as standard Linux operations.

a. Modify the Makefile_experiment and experiment_prj files
The “experiment_prj” file lists the VHDL files and modules to be

compiled. Simply modify a previously used “experiment_prj” file, ensuring that all

required VHDL files for the respective experiment are listed in this file.

71

There is normally only one modification required within

“Makefile_experiment.” At the top, next to “ENTITYNAME =,” needs to be the entity

name of the top level code for the experiment. All VHDL code begins with “entity ……

is,” followed by the top level signals with the port declarations. The name following

“entity” is what must be entered next to “ENTITYNAME” within the file

“Makefile_experiment.”

b. Compile
Compiling is performed one directory up from “experiment_src.” All

outputs generated from the compiling will go to the “experiment_out” directory. While

in the dev_board or flight_board directory, the following command will be entered

exactly as follows, with an example directory hierarchy followed by the “$” denoting a

command prompt:

../project_name/dev_board$ make -f Makefile_experiment

If using this process (compiling within Linux), then once compiling is

complete with no errors, skip to part 4, paragraph c, of this section, titled “Copy ‘fwr’ file

for ground run.”

3. The NCD file (experiment.ncd)
At the completion of the development and compilation phase (Part 1, Section A),

an “ncd” file is created (experiment.ncd). The file now needs to be copied into the

experiment_out directory of the CFTP programming environment.

4. Creating the Flash File
This is the last step in the experiment development phase. Perform the following

steps in sequence.

a. Run bitgenpersist.sh
This command is entered exactly as follows with an example directory

hierarchy followed by the “$” denoting a command prompt:

../project_name/dev_board$ bitgenpersist.sh experiment

As in all Linux commands, there must be at least one space between

commands and parameters. Though you are performing this on a file with an “.ncd”

extension, the extension is omitted when performing this operation. For example, if the

72

experiment name is “tmr_multiplier,” and the file tmr_multiplier.ncd is the name of the

file copied to the experiment_out directory, then the command would be as follows:

../tmr_multiplier/flight_board/experiment_out$ bitgenpersist.sh tmr_multiply

This command creates a number of files in the experiment_out directory,

the same directory where the command was executed, but only two are needed. The two

important files for the next part are the “.bin” and “.msk” files.

Note: “dev_board” and “flight_board” have been used, and will continue

to be used, in examples to illustrate that the commands are the same for both directories.

b. Run mkflash.sh
This command creates the file that will be written to the flash, and is

performed exactly as follows, with the “$” denoting a command prompt:

../experiment_out$ mkflash.sh experiment.bin experiment.msk > experiment.fwr

In this case the name of the output file must be entered with the “.fwr”

extension. For example, if the experiment name is “tmr_multiplier,” then the command

would be as follows:

../flight_board$ mkflash.sh tmr_multiplier.bin tmr_multiplier.msk > tmr_multiplier.fwr

c. Copy “fwr” file for ground run
If running your experiment on the ground, then the “.fwr” file needs to be

copied to the /arm_mnt/flash_files/ directory on the CFTP server. It is important that

the project name is unique as many “.fwr” files reside in this directory. If an experiment

is to be compiled with different configuration files for the Development Board and the

Flight Board, then consideration might be given to further appending the name during

this copy process as such; “experiment_dev.fwr,” or “experiment_flight.fwr.”

D. THE CONTROLLER

1. Compilation
The code for the controller (X1) does not need to be simulated, though doing so is

not prohibited. This code has been developed and tested over time and is largely proven.

Though the X1 code, specifically x2Int.vhd and control.ucf, are largely generic files,

they must be modified to conform to the Experimental Design. At a minimum, the two

73

above files along with top_level.vhd will need to be modified to suit the needs of the

Experiment. See Appendix B for specific details on the modifications of these programs.

Files within the control_src directory are listed below. The names of these files

will never change:

• bitfile_V1.cmd
• clockGen.vhd
• control.ucf
• control.xcf
• control_prj
• impact.cmd
• pc104IntArm.vhd
• SelectMap_config.vhd
• SelectMap_readback.vhd
• top_level.vhd
• x2Int.vhd
• xstcmd.xst

a. Modify the Makefile_control file
For the example shown in Appendix B, change “ID” to two initials that

best reflect your experiment, and change “DESCR” to the exact name of your

experiment. No other changes should be required.

b. Compile
Compilation is performed one directory up from control_src. All outputs

generated from the compile process will go to the control_out directory. While in the

dev_board or flight_board directory, the following command should be entered exactly

as follows, with an example directory hierarchy followed by the “$” denoting a command

prompt:

../project_name/dev_board$ make -f Makefile_control

 This process will create a “.bin” file in the control_out directory, named

control.bin. This is the file that is used to program X1.

c. Copy the “.bin” file
The file control.bin needs to be renamed to have the username appended

on the end. An example of this Linux command is as follows:

../flight_board$ cp control.bin control_jerry_flight.bin

74

. The renaming of this file is important as many different “.bin” files reside

in the /arm_mnt/arm_bin directory. As noted when copying the experiment.fwr file,

consideration should be given to modifying this filename according to its use for either

the Flight or Development Board. The file should be copied to the /arm_mnt/arm_bin

directory. An example “copy” command is as follows:

../flight_board$ cp control_jerry_dev.bin /arm_mnt/arm_bin

E. GROUND RUN

1. Naming conventions
Once proj_name.fwr and control_name_flight.bin, or

(control_name_dev.bin), have been copied to the appropriate directory, there are a few

more important naming conventions to discuss. The program rd_arm_poll will be used

to read data output via the PC104 bus from the ARM processor. This output should be

redirected to a file, and is done as follows:

./arm_bin/rd_arm_poll > filename

Because many files reside in the /arm_mnt directory, it is essential that this file

be named as follows: experiment_name_dev or experiment_name_flight

Example: multiplier_jerry_flight

2. ARM Commands via Telnet
At this point it is time to actually write the experiment to the flash and program

X1 and X2. Before doing so, it is important to ensure that no one is using the ARM and

programming X1 and/or X2.

Note: While connected to the CFTP server, before beginning a “telnet” session to

the ARM, the “who” command MUST be entered. Only one experiment can be

programmed at a time. At a command-line prompt, a “w” can be entered and all users

and their specific processes running will be listed. If any users are listed as connected to

the ARM via “telnet,” then exit and try again later.

Open three secure shell (ssh) windows. (The most commonly used ssh client

within CFTP is “PuTTY.”) Two of these windows will be dedicated to “telnet,” and the

other window is user preference, but normally the /arm_mnt directory is open in the

third window. The following commands must be entered exactly as below, from any

directory within the CFTP server:

$ telnet arm
(none) login: default
su
cd /mnt/
The next figure is a screen shot depicting the typing of these commands to open a

“telnet” window.

a. Running “write_flash.bin”
 X1 must first be programmed to write an experiment to the flash. This is

done with the following command, via the “telnet” window:

 # ./arm_bin/jtag arm_bin/write_flash.bin

 At the same time this command is run, in the other “telnet” window the

rd_arm_poll should be run as follows:

 # ./arm_bin/rd_arm_poll

 When the jtag program is done programming X1 with write_flash.bin, a

message will appear below the “rd_arm_poll” in “telnet” window 2.

75

telnet window 1 telnet window 2

 Looking closely at the top of the two pictures, particular attention should be paid

to exactly how the commands are entered. Notice the “./” before “arm_bin/jtag” and

“arm_bin/rd_arm_poll.” In Linux this invokes the execution of the named program

residing in the current directory.

b. Running wr_arm_poll
 Now that X1 is ready to write to the flash, it is time to do so. This

command will program the flash with a file which was copied to the

/arm_mnt/flash_files directory. In “telnet” window one, it is performed as follows:

./arm_bin/wr_arm_poll flash_files/experiment.fwr -i 10000

 While this is running, rd_arm_poll should be run in “telnet” window 2 as

done above during the write_flash.bin operation.

c. Optional – running dump_flash.bin
This operation is performed to ensure that the flash was properly

programmed. It is not required and should ONLY be used if problems exist with an

experiment and verification of proper flash programming is desired.

In “telnet” window one, run the following command:

./arm_bin/jtag arm_bin/dump_flash.bin

 In “telnet” window two, run the rd_arm_poll command with the

output redirected to a uniquely named file. For example:

./arm_bin/rd_arm_poll > experiment_dump_flash
76

77

The rd_arm_poll process needs to continue to run once the dump flash

portion is complete. However, in “telnet” window one, where dump_flash.bin just

finished running, the file size of experiment_dump_flash needs to be monitored with

the Linux command “ls –l filename.” This should be done until the file size exceeds 900

KB, which occurs fairly quickly. See paragraph (d) of this section for an example of the

“ls –l” command in Linux. Preventing the file size from growing much beyond 900 KB

is not critically important. This is simply a good habit to maintain for reasons that will

become apparent as experience is gained in this process.

Now compare the file experiment_dump_flash to experiment.fwr that

was written to the flash. Before that can be done, the experiment_dump_flash file has

to be slightly modified. This requires the use of a binary file editor. A good example of

such an editor is the program hexer. It is a hex-editor program, which was used to

produce the figure below. It is entered by typing the command

hexer filename

Open the experiment_dump_flash file and delete the first few lines all the

way up to, but not including, the first “ff,” as shown in the below figure with the red

arrow. Use the “x” key to perform the delete operation. Saving the file is similar to

saving a file in the Linux editor “vi.” Enter a colon, which will give you a line at the

bottom to enter another command. Enter a “w” followed by a space and a new filename.

The file created by dump_flash.bin is read-only, therefore a new filename has to be

created when saving the dump-flash file.

Delete all the way to here.

 If performing this editing in “vi,” delete all the way up to and including,

the “FD^M” symbols. Again, the file will have to be saved under a different name.

78

Now compare the two files. This is done with the executable

checkflash.sh and is run as in the following example:

/arm_mnt$ checkflash.sh multiply_dump flash_files/tmr_multiply_dev.fwr

In the previous example, /arm_mnt is the current directory and the two

filenames follow “checkflash.sh” with spaces in between. Running this will produce a

long output. Continue pressing the space bar until the bottom of the output is reached.

At address line 000dc360, there should be a string of 00’s and ff’s, as in the next figure

with the red circle.

The checkflash.sh results, produced in the previous figure, serve as

confirmation that the flash was properly programmed. If this precise line is not produced

at the aforementioned line number, then that is evidence that the configuration was not

properly written to the flash. Perform the wr_arm_poll operations in Section F,

paragraph b, again, and then repeat this section on checking the flash configuration.

79

d. Running control_name.bin and collecting output
Now it is time to program X1 once again, and finally collect your much

anticipated output from your experiment. Listed below are both commands that need to

be executed, one in each “telnet” window:

./arm_bin/jtag arm_bin/control_name_flight.bin

./arm_bin/rd_arm_poll > project_name_flight

After the jtag command completes its process, the experiment is running!

If your programs operate properly, then data is collecting in the file

project_name_flight. The rate at which the file increases in size needs to be monitored.

This is done with the Linux command, “ls –l filename,” which will give you the size of

the file, along with other information.

Warning: Monitoring the file size is important during the first 30

seconds. If you have SelectMap readback enabled in your X1 code, then it is possible for

this file to increase in size rapidly due to a SelectMap readback error.

 Size of file in bytes

The above screen shot is an example of what you will see after running the

command “ls –l” on a specific file from the /arm_mnt directory. If the file size begins to

rapidly increase 30 seconds after the jtag command completed its process, then the

rd_arm_poll program needs to be immediately terminated by pressing Ctrl-C while in

that window.

If after 30 seconds the file appears to be collecting data at an acceptable

rate, then the output file can be viewed as it progresses with the command hexdump.

This command should be executed from the window with the /arm_mnt directory open.

It is entered as follows:

/arm_mnt$ hexdump -C project_name_flight | more

80

The “-C” option provides standard formatting to display 16 bytes per line,

and the “more” command following the pipe character (“|”) causes the output to be

displayed a page at a time that fits the size of the screen. Press the space bar to scroll

down to the next page of data.

Note: This hexdump command can be executed while rd_arm_poll is

still running and outputting data to the same file that is being viewed via hexdump.

 Data from a counter Timestamp

F. SATELLITE RUN
Once an experiment has been implemented on X2 with correctly operating code

on X1, (on the Development Board), and data has been collected and verified, it is time to

send the code for evaluation in space. Designers will work with the CFTP Research

Associate to send the experiment.fwr and control.bin files to the satellite and implement

their design on the Flight Board.

81

82

The procedures used to implement experiments on the Flight Board, while in orbit

on the satellite, can also be used to implement an experiment on the Development Board.

However, designers should first learn and use the “telnet” procedures contained within

this Appendix to gain an appreciation of how the integration process occurs, and to aid in

troubleshooting should errors in the implementation process surface.

Once an experiment has been successfully implemented via the “telnet”

procedures and the designer has gained comfort with that process, then the procedures for

implementing an experiment on the Flight Board should be practiced on the Development

Board.

1. Implementing Experiments on the Satellite
To first practice implementing a design on the Development Board using the same

procedures for the Flight Board in flight, the Development Board needs to be placed in

the “flight mode.” Contact the CFTP Research Associate to have the Development Board

placed in flight mode.

Once the Development Board is in flight mode, programming the two chips is

done via one command. This command is a program that takes all the telnet commands

and streamlines them into one process. Before performing this command, the two files

that program the two chips, the fwr file for X2 and bin file for X1, need to be moved to

the same directory. The command, “load_flight_exper” is entered from the same

directory where the two files are now located. The command is followed by the two files,

experiment.fwr and control.bin, with a space in between, as seen in the example below:

$ load_flight_exper experiment.fwr control.bin

 After a few minutes both FPGAs will be programmed and outputting data. The

difference from the telnet procedures is that there will not be a uniquely named file

collecting the output data. Data is now output into a generic file with a number appended

on the end. The specific name of this output file will be provided by the CFTP Research

Associate.

This program is how the Flight Board is programmed on the satellite. Once these

procedures have been practiced on the Development Board, developers will work with

the CFTP Research Associate to coordinate upload to the satellite.

83

G. CHECKLIST FOR RUNNING EXPERIMENTS
1. Run “bitgenpersist.sh” on the “ncd” file generated from Xilinx

../dev_board/experiment_out$ bitgenpersist.sh experiment

2. Run “mkflash.sh” on the “bin” and “msk” files created from “bitgenpersist.sh.”

../experiment_out$ mkflash.sh experiment.bin experiment.msk > experiment.fwr

3. Copy the “experiment.fwr” file to the “/arm_mnt/flash_files” directory

4. Run “make –f Makefile_control” from one directory above “control_src.”

5. Rename “control.bin” to “control_name_dev.bin” or “_flight,” located in the

“control_out” directory, and then copy said file to the “/arm_mnt/arm_bin” directory.

6. Perform the “who” command, or “w” to ensure the “arm” is not in use.

7. Open two additional “ssh” windows for a total of three.

8. Telnet to the “arm” in two of the windows.

9. Execute the “write_flash.bin” program in window 1, and the “rd_arm_poll”

program in window 2.

Telnet Window 1: # ./arm_bin/jtag arm_bin/write_flash.bin

Telnet Window 2: # ./arm_bin/rd_arm_poll

10. Execute the “wr_arm_poll” program in window 1, and the “rd_arm_poll”

program in window 2.

Telnet Window 1: # ./arm_bin/wr_arm_poll flash_files/experiment.fwr -i 10000

Telnet Window 2: # ./arm_bin/rd_arm_poll

11. OPTIONAL – run “dump_flash.bin” to check that the flash was properly

programmed. This is more of a troubleshooting step than procedural.

12. Execute the “control_name_flight.bin” program in window 1, and the

“rd_arm_poll > name_project” in window 2.

Telnet Window 1: # ./arm_bin/jtag arm_bin/control_name_flight.bin

Telnet Window 2: # ./arm_bin/rd_arm_poll > project_name_flight

13. Monitor file size and output of file in the “/arm_mnt” window as “rd_arm_poll”

runs in telnet window 2.

14. Return to the “/arm_mnt” and run “hexdump” to view the output results.

Flow Diagram

84

85

APPENDIX B: CONTROLLER CODE

This appendix contains important segments of code from the Controller.

Specifically, the portions of the code that designers are required to modify or verify are

included, and are highlighted in red. The entire code listing of x2Int.vhd is included, but

only three specific portions of top_level.vhd because of its extensive length. All of the

code from the control.ucf file for the development board is included, followed by the

specific section for the flight board that differs.

TOP LEVEL

Only three areas within top_level.vhd need to be modified, and those coincide

with signal naming. These signal names are located at the beginning of top_level.vhd in

the port declaration section, and again in the component port declaration section for the

x2Int module. The third area is specific signal assignment of the x2Int module located

very near the bottom of top_level.vhd. All three areas are listed below – note the

repeated naming of each signal for simplicity.

Also included is the approximate line number within the code where these areas

are located. The comments are highlighted in blue to emphasize the location of these

sections as the same blue comments appear in the code.

Located near the top of the code, near line #52
 entity cftp_ARM is
 port (

-- To/From X2 for Experimental Design, signals going to pins on X2
-- change/add/remove as needed, also change control.ucf file to match

 DATA_TO_X2_RESET_o : out std_logic;
 DATA_FROM_X2_COUNT_i : in std_logic_vector (31 downto 0);
 DATA_FROM_X2_CNTCHK_i : in std_logic_vector (2 downto 0);

 Located just below the above section, near line #122

component x2Int port (
 CLOCK_i : in std_logic; --50 MHz system clock
 RESET_i : in std_logic;

 TIMESTAMP_i : in std_logic_vector(63 downto 0);

86

-- for EXPERIMENTAL DESIGN signals going to pins on X2
-- change/add/remove as needed also change control.ucf file to match
 DATA_TO_X2_RESET_o : out std_logic;
 DATA_FROM_X2_COUNT_i : in std_logic_vector (31 downto 0);
 DATA_FROM_X2_CNTCHK_i : in std_logic_vector (2 downto 0);

 Located very near the bottom of the code, near line #598

x2Int0 : x2Int port map (

 CLOCK_i => T_clock_i, --: in std_logic;
 RESET_i => ver_done_reset, --: in std_logic;
 TIMESTAMP_i => timestamp,

-- for EXPERIMENTAL DESIGN - signals going to pins on X2
-- change/add/remove as needed - change control.ucf file to match
 DATA_TO_X2_RESET_o => DATA_TO_X2_RESET_o,
 DATA_FROM_X2_COUNT_i => DATA_FROM_X2_COUNT_i,
 DATA_FROM_X2_CNTCHK_i => DATA_FROM_X2_CNTCHK_i,

X2 INTERFACE

The entire listing of x2Int.vhd is included below for the specific X1/X2 interface

module used for the TMR multiplier. The portions highlighted in red are areas that

require modification by designers for the CFTP team, and have been discussed

throughout this thesis. The comments only for the areas that designers are required to

modify are highlighted in blue to emphasize the location of these sections, and because

the same blue comments appear in the code.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity x2Int is
 port (
 CLOCK_i : in std_logic; -- 25.5 MHz signal
-- CLOCK_X2_i : in std_logic; -- Additional clock if necessary
 -- add appropriate clock to clockGen
 RESET_i : in std_logic; -- Reset signal
 TIMESTAMP_i : in std_logic_vector(63 downto 0);

-- FOR EXPERIMENTAL DESIGN, signals coming directly from X2
 DATA_TO_X2_RESET_o : out std_logic;
 DATA_FROM_X2_OUTPUT_i : in std_logic_vector(31 downto 0);
 DATA_FROM_X2_MULTCHK_i : in std_logic_vector(2 downto 0);

87

 DATA_FROM_X2_CNTCHK_i : in std_logic_vector(2 downto 0);
--

-- STANDARD TOP LEVEL SIGNALS - DO NOT CHANGE!
 STALL : in std_logic;

 DATA_o : out std_logic_vector(7 downto 0);-- Data bus out of X2 interface,
 --in this case used to write to PC104
 DATA_i : in std_logic_vector(7 downto 0); -- Data bus into X2 interface,
 --in this case used to read from PC104

 PC104_WR_EN_o : out std_logic; -- Active high, if WR_RDY = '1', then set WR_EN = '1'
 -- for one clock and whatever is on DATA_o when WR_EN
 -- is high will get written to PC104

 PC104_WR_RDY_i : in std_logic; -- Active High, ok to write to PC104
 -- if WR_RDY is high, whatever you write to PC104
 -- will definitely get printed (your component has priority)

 PC104_RD_RDY_i : in std_logic; -- Active high, if RD_RDY = '1',
 -- then there is data on the PC104 bus ready to be read.
 -- Once you read the data (from DATA_i), set RD_ACK high
 -- for one clock to release the PC104

 PC104_RD_ACK_o : out std_logic; -- Active high

 SM_CONFIG_RQST_o : out std_logic; -- Active high, set config_rqst high for one clock if
 -- you want to start a SelectMap config/reconfig

 SM_CONFIG_STATUS_i : in std_logic; -- Active high, stays '1' as long as a SelectMap config
 -- is going on (don't request a readback or reconfig
 -- while either is still active, it won't hurt anything,
 -- but it won't go through)

 SM_RB_RQST_o : out std_logic;-- Active high, set rb_rqst high for one clock if you
 -- want to start a SelectMap readback

 SM_RB_STATUS_i : in std_logic -- Active high, stays '1' as long as a SelectMap rb
 -- is going on (don't request a readback or reconfig
 -- while either is still active, it won't hurt anything,
 -- but it won't go through)
);
end x2Int;

architecture rtl of x2Int is

-- DLY_TIME counter and reset signals, might need adjustment to
-- meet the needs of an experiment
 CONSTANT DLY_TIME : integer := 765000000; -- 30 seconds

 signal stall_d : std_logic;
 signal s_reset_exp : std_logic;
 signal first_reset : std_logic;
 signal sm_rb_status_d : std_logic;
 signal dly_cnt : integer range 0 to DLY_TIME;
 signal dly_start_rb : std_logic;

88

 signal sm_config_status_d : std_logic;

-- error report timer signals
-- time between automatic error reports, adjust as needed
-- to meet specific needs of an experiment on X2
-- CONSTANT ERR_RPT_TIME : integer := 76500000; -- (0.33337 Hz = 3.0 sec)
 CONSTANT ERR_RPT_TIME : integer := 38250000; -- (0.66667 Hz = 1.5 sec)
-- CONSTANT ERR_RPT_TIME : integer := 10200000; -- (2.5 Hz, 45 Bps)
-- CONSTANT ERR_RPT_TIME : integer := 1020000; -- (25 Hz, 450 Bps)
-- set to the number of bytes included in your output vector that needs
-- to be printed to PC104
 CONSTANT REPORT_OUT_LENGTH : integer := 18;
 signal dly_timer : integer range 0 to ERR_RPT_TIME;
 signal count_out_vect : integer range 0 to REPORT_OUT_LENGTH;
 signal report_out_vect : std_logic;

 type output_vector
 is array(REPORT_OUT_LENGTH-1 downto 0)
 of std_logic_vector(7 downto 0);

 signal out_vect : output_vector;

--readback/reconfig process
 -- For external JTAG error injection, we must pause for a time before
 -- trying to readback/reconfig. The part can become active before
 -- programming is complete, and errors can start accumulating. Readback
 -- DOES NOT work while JTAG is active. This can be 0 when we're not using
 -- JTAG error injection.
 CONSTANT DLY_RECONFIG : integer := 153000000; -- 6 seconds
-- readback/reconfig process, CLOCK_X2_i signals
 signal err_cnt : std_logic_vector(23 downto 0);
 signal exp_start_rb : std_logic;
 signal reconfig_from_error : std_logic;
 signal reconfig_from_error_save : std_logic;
 signal rb_started : std_logic;
 signal reconfig_timer : integer range 0 to DLY_RECONFIG;

begin
-- Asynchronous assignments of top level signals
 DATA_TO_X2_RESET_o <= s_reset_exp;
 SM_RB_RQST_o <= exp_start_rb or dly_start_rb;
 SM_CONFIG_RQST_o <= reconfig_from_error;

-- Timer to determine how frequently to print out heart beat error reports
 process(CLOCK_i, s_reset_exp) begin
 if (s_reset_exp = '1') then
 dly_timer <= 0;
 elsif(CLOCK_i'event and CLOCK_i = '1') then
 if (dly_timer = ERR_RPT_TIME) then
 dly_timer <= 0;
 else
 dly_timer <= dly_timer + 1;
 end if;
 end if;
 end process;

89

-- Do reset for experiment
 process (CLOCK_i,RESET_i) begin
 if (RESET_i = '1') then
 s_reset_exp <= '1';
 stall_d <= '0';
 elsif (CLOCK_i'event and CLOCK_i = '1') then
 sm_config_status_d <= SM_CONFIG_STATUS_i;
 stall_d <= STALL;
 s_reset_exp <= '0';
-- if (first_reset='0' or (stall = '0' and stall_d = '1') or (SM_CONFIG_STATUS_i = '0' and
sm_config_status_d = '1')) then
-- MLS 2005.11.27 taking out reset after stall! hopefully will have partial active
-- reconfig working so it won't be necessary
 if (first_reset='0' or (SM_CONFIG_STATUS_i = '0' and sm_config_status_d = '1')) then
 s_reset_exp <= '1';
 end if;
 end if;
 end process;

--MLS 2005.09.15 wait until after X2 is done configuring to do first reset (instead of 30s)
 process(CLOCK_i,RESET_i) begin
 if (RESET_i = '1') then
 first_reset <= '0';
 elsif (CLOCK_i'event and CLOCK_i = '1') then
 if (first_reset = '0' and SM_CONFIG_STATUS_i = '0' and sm_config_status_d = '1') then
 first_reset <= '1';
 end if;
 end if;
 end process;

-- Every DLY_TIME clocks after that, do a SelectMap readback
--don't start dly_cnt until s_reset_exp goes low (after version is done and x2 config is done)
 process(CLOCK_i,s_reset_exp) begin
 if (s_reset_exp = '1') then
 sm_rb_status_d <= '0';
 dly_cnt <= 0;
 dly_start_rb <= '0'; --Signal to notify that the delay counter wants to perform a SMRB
 elsif(CLOCK_i'event and CLOCK_i = '1') then
 dly_start_rb <= '0';
 sm_rb_status_d <= SM_RB_STATUS_i;

-- If we just finished a SMRB, start the counter over
 if (SM_RB_STATUS_i = '0' and sm_rb_status_d = '1') then
 dly_cnt <= 0;
 elsif (dly_cnt < DLY_TIME) then
 dly_cnt <= dly_cnt + 1;
 elsif (dly_cnt = DLY_TIME) then
 dly_cnt <= 0;
 dly_start_rb <= '1';--After DLY_TIME clocks, start a readback
 end if;
 end if;
 end process;

--Process to write error reports out to the PC104
 process (CLOCK_i, s_reset_exp) begin

90

--hold off printing error reports until experiment is reset
 if (s_reset_exp = '1') then
 count_out_vect <= 0;
 report_out_vect <= '0';
 PC104_WR_EN_o <= '0';
 DATA_o <= x"31";
 err_cnt <= x"000000";
 elsif (CLOCK_i'event and CLOCK_i = '1') then
 PC104_WR_EN_o <= '0'; --default assignment for WR_EN
-- divided_clock <= DATA_FROM_X2_CLKDIV_i;

-- Whenever we've gone through ERR_RPT_TIME clocks or we get an error from X2
-- (a signal coming directly from X2), and we've already finished printing out
-- the last error report (report_out_vect = '0'), set the output error report
-- vector to the correct values MLS debug change back to t_err_from_x2_i = '1'
 if (report_out_vect = '0' and SM_CONFIG_STATUS_i = '0'
 and dly_timer = ERR_RPT_TIME) then
 out_vect(0) <= x"45"; --E
 out_vect(1) <= x"52"; --R,
 out_vect(2) <= x"00";
 out_vect(3) <= err_cnt(7 downto 0);
 out_vect(4) <= "00000" & DATA_FROM_X2_CNTCHK_i(2 downto 0);
 out_vect(5) <= "00000" & DATA_FROM_X2_MULTCHK_i(2 downto 0);
 out_vect(6) <= DATA_FROM_X2_OUTPUT_i(31 downto 24); -- counter output
 out_vect(7) <= DATA_FROM_X2_OUTPUT_i(23 downto 16); -- mult output
 out_vect(8) <= DATA_FROM_X2_OUTPUT_i(15 downto 8); -- mult output
 out_vect(9) <= DATA_FROM_X2_OUTPUT_i(7 downto 0); -- mult output
 out_vect(10) <= TIMESTAMP_i (63 downto 56); --timestamp
 out_vect(11) <= TIMESTAMP_i (55 downto 48); --timestamp
 out_vect(12) <= TIMESTAMP_i (47 downto 40); --timestamp
 out_vect(13) <= TIMESTAMP_i (39 downto 32); --timestamp
 out_vect(14) <= TIMESTAMP_i (31 downto 24); --timestamp
 out_vect(15) <= TIMESTAMP_i (23 downto 16); --timestamp
 out_vect(16) <= TIMESTAMP_i (15 downto 8); --timestamp
 out_vect(17) <= TIMESTAMP_i (7 downto 0); --timestamp

 report_out_vect <= '1';
 if ((DATA_FROM_X2_MULTCHK_i /= "000") or (DATA_FROM_X2_CNTCHK_i /= "000")
) then
 err_cnt <= err_cnt + 1;
 end if;
 end if;
-- If we've set the output vector (report_out_vect = '1'), then print the output vector to the PC104
-- one byte at a time (REPORT_OUT_LENGTH bytes will be printed)
-- Be sure to set REPORT_OUT_LENGTH to proper value in signal definitions above
 if (report_out_vect='1') then
 if (count_out_vect < REPORT_OUT_LENGTH and PC104_WR_RDY_i = '1') then
 DATA_o <= out_vect(count_out_vect);
 PC104_WR_EN_o <= '1'; --write byte
 count_out_vect <= count_out_vect + 1;
 elsif (count_out_vect = REPORT_OUT_LENGTH) then
 count_out_vect <= 0;
 report_out_vect <= '0';
 end if;
 end if;
 end if;

91

 end process;

-- Process to signal SM RB/RC from an experiment error.
-- Note that if you have your experiment running at a different speed than
-- 25 MHz (the speed of CLOCK_i), you must be VERY careful about moving
-- between clock domains. Basically have another process on your experiments'
-- clock that sets a flag to trigger a readback, then put that signal on the
-- 25 MHz clock in this process (see Josh's x2Int.vhd for an example)
 process(CLOCK_i, s_reset_exp) begin
 if (s_reset_exp = '1') then
 reconfig_from_error <= '0';
 exp_start_rb <= '0';
 rb_started <= '0'; --make sure exp_start_rb only 1 clock
 elsif (CLOCK_i'event and CLOCK_i = '1') then
 exp_start_rb <= '0';
 reconfig_timer <= reconfig_timer + 1;
 reconfig_from_error <= '0';

-- Set the threshold (# of data errors) for a reconfiguration
-- If we have 256 errors, reconfigure
 if (err_cnt = x"FF") then
 reconfig_from_error_save <= '1';
 reconfig_timer <= 0;

-- Wait until SMRB is done, and then request a reconfig from the top level
 elsif (reconfig_from_error_save = '1'
 and SM_RB_STATUS_i = '0'
 and sm_rb_status_d = '1') then
 reconfig_from_error <= '1';
 reconfig_from_error_save <= '0';
 rb_started <= '0';

-- Wait until last error report is printed out before starting readback
-- Once readback has started, don't start another one!
-- Wait to start readback for ~3s (ERR_RPT_TIME) after reaching critical
-- number of errors, this is for JTAG external error injection, errors
-- begin accumulating before it is done programming, so 128 errors could
-- be reached before partial reconfig complete, so tries to readback
-- while JTAG still going on.
 elsif (reconfig_from_error_save = '1'
 and reconfig_timer = DLY_RECONFIG
 and report_out_vect = '0'
 and SM_RB_STATUS_i = '0'
 and rb_started = '0') then
 exp_start_rb <= '1';
 rb_started <= '1';
 end if;
 end if;
 end process;
end rtl;

92

CONTROL.UCF – DEVELOPMENT BOARD

 The entire code listing for X1’s constraint file used for the TMR multiplier is

included below. Immediately following is X2’s constraint file for the TMR multiplier.

Notice the blue comments on X2’s constraint file for comparison with X1’s constraint

file and how those comments denote how the pins correspond between the two chips.

Pin assignments for X1 - development board
Jerry Caldwell's TMR Multiplier
Created 21 August 06.

Modified on 22 July 06 for use on the Development Board.

Aux pins 42 to 44 were added, which are not available on the
flight board, many other pin changes are different from the
flight board, and are notated in comments to the right of the
affected pin assignments

All pin assignments in the comments following the actual pin
locations must match same commented locations on cftp_x1.ucf
Example: "p153" on control.ucf matches "p132" on experiment.ucf

The following are new Pin Assignments for the Flight Configuration
where the PC104 bus is used with a JTAG interface - these are not
use very often.

#NET "T_CARD_BLEO_i" LOC = "p44"; # only needed for writing low byte
#NET "CARD_BLE1" LOC = "p12";
#NET "CARD_RESET" LOC = "p54";
#NET "CARD_DATA_HIGH<10>" LOC = "p24";
#NET "CARD_DATA_HIGH<11>" LOC = "p26";
#NET "CARD_DATA_HIGH<12>" LOC = "p31";
#NET "CARD_DATA_HIGH<13>" LOC = "p33";
#NET "CARD_DATA_HIGH<14>" LOC = "p35";
#NET "CARD_DATA_HIGH<15>" LOC = "p38";
#NET "CARD_DATA_HIGH<8>" LOC = "p20";
#NET "CARD_DATA_HIGH<9>" LOC = "p22";
#NET "CLOCK_OUT" LOC = "p70";

NET "T_VPPEN_o" LOC = "P60"; # only needed for writing FLASH
NET "T_PROM_ENABLE_o" LOC = "P62"; # drive high to save power on EEPROM

The below signal is to be used if you need a clock other than
the 50 MHz clock. Comment this out if you are not using an
additional clock.
#NET "s_clock_X2" PERIOD = 160;

Signals to/from X2 - this is specifically for the X2
experimental design, which is AUX<0> to AUX<41>, and
these pins must match the experiment.ucf file, not by
pin number, but by X1_X2_AUX<#>

93

NET "DATA_FROM_X2_MULTCHK_i<0>" LOC = "p153"; # X1_X2_AUX<0>
NET "DATA_FROM_X2_MULTCHK_i<1>" LOC = "p151"; # X1_X2_AUX<1>
NET "DATA_FROM_X2_MULTCHK_i<2>" LOC = "p150"; # X1_X2_AUX<2>
NET "DATA_FROM_X2_CNTCHK_i<0>" LOC = "p149"; # X1_X2_AUX<3>
NET "DATA_FROM_X2_CNTCHK_i<1>" LOC = "p147"; # X1_X2_AUX<4>
NET "DATA_FROM_X2_CNTCHK_i<2>" LOC = "p146"; # X1_X2_AUX<5>
NET "DATA_TO_X2_RESET_o" LOC = "p145"; # X1_X2_AUX<6>
#NET "DATA_FROM_X2_READY_i" LOC = "p144"; # X1_X2_AUX<7>
#NET "XXX" LOC = "p135"; # X1_X2_AUX<8>
#NET "XXX" LOC = "p134"; # X1_X2_AUX<9>
NET "DATA_FROM_X2_OUTPUT_i<0>" LOC = "p132"; # X1_X2_AUX<10>
NET "DATA_FROM_X2_OUTPUT_i<1>" LOC = "p127"; # X1_X2_AUX<11>
NET "DATA_FROM_X2_OUTPUT_i<2>" LOC = "p126"; # X1_X2_AUX<12>
NET "DATA_FROM_X2_OUTPUT_i<3>" LOC = "p120"; # X1_X2_AUX<13>
NET "DATA_FROM_X2_OUTPUT_i<4>" LOC = "p119"; # X1_X2_AUX<14>
NET "DATA_FROM_X2_OUTPUT_i<5>" LOC = "p112"; # X1_X2_AUX<15>
NET "DATA_FROM_X2_OUTPUT_i<6>" LOC = "p111"; # X1_X2_AUX<16>
NET "DATA_FROM_X2_OUTPUT_i<7>" LOC = "p110"; # X1_X2_AUX<17>
NET "DATA_FROM_X2_OUTPUT_i<8>" LOC = "p109"; # X1_X2_AUX<18>
NET "DATA_FROM_X2_OUTPUT_i<9>" LOC = "p108"; # X1_X2_AUX<19>
NET "DATA_FROM_X2_OUTPUT_i<10>" LOC = "p107"; # X1_X2_AUX<20>
NET "DATA_FROM_X2_OUTPUT_i<11>" LOC = "p105"; # X1_X2_AUX<21>
NET "DATA_FROM_X2_OUTPUT_i<12>" LOC = "p104"; # X1_X2_AUX<22>
NET "DATA_FROM_X2_OUTPUT_i<13>" LOC = "p103"; # X1_X2_AUX<23>
NET "DATA_FROM_X2_OUTPUT_i<14>" LOC = "p102"; # X1_X2_AUX<24>
NET "DATA_FROM_X2_OUTPUT_i<15>" LOC = "p101"; # X1_X2_AUX<25>
NET "DATA_FROM_X2_OUTPUT_i<16>" LOC = "p98"; # X1_X2_AUX<26>
NET "DATA_FROM_X2_OUTPUT_i<17>" LOC = "p97"; # X1_X2_AUX<27>
NET "DATA_FROM_X2_OUTPUT_i<18>" LOC = "p96"; # X1_X2_AUX<28>
NET "DATA_FROM_X2_OUTPUT_i<19>" LOC = "p94"; # X1_X2_AUX<29>
NET "DATA_FROM_X2_OUTPUT_i<20>" LOC = "p93"; # X1_X2_AUX<30>
NET "DATA_FROM_X2_OUTPUT_i<21>" LOC = "p92"; # X1_X2_AUX<31>
NET "DATA_FROM_X2_OUTPUT_i<22>" LOC = "p91"; # X1_X2_AUX<32>
NET "DATA_FROM_X2_OUTPUT_i<23>" LOC = "p90"; # X1_X2_AUX<33>
NET "DATA_FROM_X2_OUTPUT_i<24>" LOC = "p89"; # X1_X2_AUX<34>
NET "DATA_FROM_X2_OUTPUT_i<25>" LOC = "p88"; # X1_X2_AUX<35>
NET "DATA_FROM_X2_OUTPUT_i<26>" LOC = "p82"; # X1_X2_AUX<36>
NET "DATA_FROM_X2_OUTPUT_i<27>" LOC = "p81"; # X1_X2_AUX<37>
NET "DATA_FROM_X2_OUTPUT_i<28>" LOC = "p80"; # X1_X2_AUX<38>
NET "DATA_FROM_X2_OUTPUT_i<29>" LOC = "p79"; # X1_X2_AUX<39>
NET "DATA_FROM_X2_OUTPUT_i<30>" LOC = "p78"; # X1_X2_AUX<40>
NET "DATA_FROM_X2_OUTPUT_i<31>" LOC = "p77"; # X1_X2_AUX<41>
#NET "XXX" LOC = "p75"; # X1_X2_AUX<42> -- available on Flight Board
#NET "XXX" LOC = "p74"; # X1_X2_AUX<43> -- not avail on Flight Board
#NET "XXX" LOC = "p71"; # X1_X2_AUX<44> -- not avail on Flight Board

X1/X2 Aux 43, and 44 are NOT available on the Flight Board
Aux 42 is still available on the Flight Board if needed.
#**
END signals to/from X2
#**

#Flash Interface Signals
NET "T_FLASH_DATA_i<0>" LOC = "P207";
NET "T_FLASH_DATA_i<1>" LOC = "P209";
NET "T_FLASH_DATA_i<2>" LOC = "P212";

94

NET "T_FLASH_DATA_i<3>" LOC = "P216";
NET "T_FLASH_DATA_i<4>" LOC = "P218";
NET "T_FLASH_DATA_i<5>" LOC = "P220";
NET "T_FLASH_DATA_i<6>" LOC = "P223";
NET "T_FLASH_DATA_i<7>" LOC = "P226";
NET "T_FLASH_DATA_i<8>" LOC = "P208";
NET "T_FLASH_DATA_i<9>" LOC = "P211";
NET "T_FLASH_DATA_i<10>" LOC = "P213";
NET "T_FLASH_DATA_i<11>" LOC = "P217";
NET "T_FLASH_DATA_i<12>" LOC = "P219";
NET "T_FLASH_DATA_i<13>" LOC = "P222";
NET "T_FLASH_DATA_i<14>" LOC = "P224";
NET "T_FLASH_DATA_i<15>" LOC = "P225";
NET "T_FLASH_ADDRESS_o<0>" LOC = "P206";
NET "T_FLASH_ADDRESS_o<1>" LOC = "P205";
NET "T_FLASH_ADDRESS_o<2>" LOC = "P204";
NET "T_FLASH_ADDRESS_o<3>" LOC = "P198";
NET "T_FLASH_ADDRESS_o<4>" LOC = "P197";
NET "T_FLASH_ADDRESS_o<5>" LOC = "P196";
NET "T_FLASH_ADDRESS_o<6>" LOC = "P195";
NET "T_FLASH_ADDRESS_o<7>" LOC = "P194";
NET "T_FLASH_ADDRESS_o<8>" LOC = "P182";
NET "T_FLASH_ADDRESS_o<9>" LOC = "P183";
NET "T_FLASH_ADDRESS_o<10>" LOC = "P184";
NET "T_FLASH_ADDRESS_o<11>" LOC = "P185";
NET "T_FLASH_ADDRESS_o<12>" LOC = "P188";
NET "T_FLASH_ADDRESS_o<13>" LOC = "P189";
NET "T_FLASH_ADDRESS_o<14>" LOC = "P190";
NET "T_FLASH_ADDRESS_o<15>" LOC = "P192";
NET "T_FLASH_ADDRESS_o<16>" LOC = "P193";
NET "T_FLASH_ADDRESS_o<17>" LOC = "P177";
NET "T_FLASH_ADDRESS_o<18>" LOC = "P178";
NET "T_FLASH_ADDRESS_o<19>" LOC = "P179";
NET "T_FLASH_ADDRESS_o<20>" LOC = "P181";
NET "T_FLASH_WE_o" LOC = "P165";
NET "T_FLASH_RP_o" LOC = "P166";
NET "T_FLASH_WP_o" LOC = "P167";
NET "T_FLASH_CE_A_o" LOC = "P164";
#NET "T_Flash_CE_B_o" LOC = "P125"; # doesn't do anything!
NET "T_FLASH_OE_o" LOC = "P162";

#PC/104 Interface Signals
NET "T_Data_io<0>" LOC = "P11"; #ISA Data Bit 0 p. 11
NET "T_Data_io<1>" LOC = "P10"; #ISA Data Bit 1 p. 10
NET "T_Data_io<2>" LOC = "P9"; #ISA Data Bit 2 p. 09
NET "T_Data_io<3>" LOC = "P7"; #ISA Data Bit 3 p. 07
NET "T_Data_io<4>" LOC = "P6"; #ISA Data Bit 4 p. 06
NET "T_Data_io<5>" LOC = "P5"; #ISA Data Bit 5 p. 05
NET "T_Data_io<6>" LOC = "P4"; #ISA Data Bit 6 p. 04
NET "T_Data_io<7>" LOC = "P3"; #ISA Data Bit 7 p. 03
NET "T_Address_i<0>" LOC = "P47"; #ISA Address 0 p. 47
NET "T_Address_i<1>" LOC = "P46"; #ISA Address 1 p. 46
NET "T_Address_i<2>" LOC = "P45"; #ISA Address 2 p. 45
NET "T_Address_i<3>" LOC = "P39"; #ISA Address 3 p. 39
NET "T_Address_i<4>" LOC = "P36"; #ISA Address 4 p. 36
NET "T_Address_i<5>" LOC = "P34"; #ISA Address 5 p. 34

95

NET "T_Address_i<6>" LOC = "P32"; #ISA Address 6 p. 32
NET "T_Address_i<7>" LOC = "P29"; #ISA Address 7 p. 29
NET "T_Address_i<8>" LOC = "P25"; #ISA Address 8 p. 25
NET "T_Address_i<9>" LOC = "P23"; #ISA Address 9 p. 23
#NET "T_Address_i<10> LOC = "p21"; #ISA Address 10 p. 21
NET "T_IORead_i" LOC = "P19"; #CARD_OE p. 19
NET "T_IOWRITE_i" LOC = "P17"; #CARD_WE p. 17
NET "T_IOCS_i" LOC = "P16"; #CARD_CS3, used to be p. 13
NET "T_INTRPT_o" LOC = "P54"; # T_INTRPT_o is "p43" on the flight board
 # This is ISA Interrupt 0, IRQ 7
 # NOTE: on the development board, IO Pin 5(P54)
 # is jumpered to card interrupt 0
 # actually is interrupt 6 on ARM side!

SelectMap interface signals
NET "T_CCLK_o" LOC = "P69"; #Drive X2's CCLK pin, flight_board = p65
NET "T_SELECTMAP_INIT_o" LOC = "P117"; #Drive X2's INIT pin, flight_board = p124
 # schematic says 124 = "IO_VREF_3" ???
NET "T_SELECTMAP_WRITE_o" LOC = "P176"; #Drive X2's WRITE pin, flight_board = p63
 # schematic says 63 = "IO_VREF_5" ???
NET "T_SELECTMAP_CS_o" LOC = "P175"; #Drive X2's CS pin, flight_board = p64

MLS swap pins so D(0) is LSB
NET "T_SELECTMAP_DATA_io<7>" LOC = "P169"; # X2_D0, flight_board = p68
NET "T_SELECTMAP_DATA_io<6>" LOC = "P128"; # X2_D1, flight_board = p69
NET "T_SELECTMAP_DATA_io<5>" LOC = "P131"; # X2_D2, flight_board = p70
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137"; # X2_D3, flight_board = p71
NET "T_SELECTMAP_DATA_io<3>" LOC = "P148"; # X2_D4, flight_board = p74
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155"; # X2_D5, flight_board = p75
NET "T_SELECTMAP_DATA_io<1>" LOC = "P158"; # X2_D6, flight_board = p121
NET "T_SELECTMAP_DATA_io<0>" LOC = "P168"; # X2_D7, flight_board = p122
NET "T_SELECTMAP_BUSY_i" LOC = "P118"; #not sure what this does

NET "T_clock_i" LOC = "P87"; # Flight_board = P87
 # P87 is a 51 MHz CARD_BCLK from ARM board
 # IF used on the development board
 # For the flight board, P199 is unconnected.
 # P87 has to be used on the flight board.
 # If using P87 on the development board, then
 # ensure P199 is used on X2 for dev_board.
 # For the flight board, X2's clock MUST be
 # tied to P199, and X1's clock to P87.

NET "T_X2_MODE<0>" LOC = "P160";
NET "T_X2_MODE<1>" LOC = "P159";
NET "T_X2_MODE<2>" LOC = "P161";
NET "T_X2_PROG_o" LOC = "P49";
#NET "T_clock_i" PERIOD = 20;
#NET "s_clock" PERIOD = 20;

96

X2 CONSTRAINT FILE

 This is the code listing for X2’s constraint file in support of the TMR Multiplier.

Pay particular attention to the blue comments next to the pin assignments, and compare

these to X1’s constraint file and corresponding pin assignments.

Pin assignments for X2 (TMR Multiplier)
by Jerry Caldwell

Double-check all pin assignments!

All pin assignments in the comments following the actual pin
locations must match same commented locations on control.ucf
Example: "p132" on tmr_multiply.ucf matches "p153" on control.ucf

system clock
NET "clock" LOC = "P199"; # use this one for the 51 MHz oscillator
#NET "clock" LOC = "P87"; # use this one for a 50 MHz clock
NET "clock" PERIOD = 40;
NET "s_clock" PERIOD = 80;

signals to/from X1
NET "mult_check<0>" LOC = "p132"; # X1_X2_AUX<0>
NET "mult_check<1>" LOC = "p134"; # X1_X2_AUX<1>
NET "mult_check<2>" LOC = "p135"; # X1_X2_AUX<2>
NET "cnt_check<0>" LOC = "p136"; # X1_X2_AUX<3>
NET "cnt_check<1>" LOC = "p138"; # X1_X2_AUX<4>
NET "cnt_check<2>" LOC = "p139"; # X1_X2_AUX<5>
NET "x1_reset" LOC = "p141"; # X1_X2_AUX<6>
#NET "data_rdy" LOC = "p144"; # X1_X2_AUX<7>
#NET "XXX" LOC = "p146"; # X1_X2_AUX<8>
#NET "XXX" LOC = "p147"; # X1_X2_AUX<9>
NET "result<0>" LOC = "p153"; # X1_X2_AUX<10>
NET "result<1>" LOC = "p154"; # X1_X2_AUX<11>
NET "result<2>" LOC = "p159"; # X1_X2_AUX<12>
NET "result<3>" LOC = "p160"; # X1_X2_AUX<13>
NET "result<4>" LOC = "p161"; # X1_X2_AUX<14>
NET "result<5>" LOC = "p177"; # X1_X2_AUX<15>
NET "result<6>" LOC = "p178"; # X1_X2_AUX<16>
NET "result<7>" LOC = "p179"; # X1_X2_AUX<17>
NET "result<8>" LOC = "p181"; # X1_X2_AUX<18>
NET "result<9>" LOC = "p182"; # X1_X2_AUX<19>
NET "result<10>" LOC = "p183"; # X1_X2_AUX<20>
NET "result<11>" LOC = "p184"; # X1_X2_AUX<21>
NET "result<12>" LOC = "p185"; # X1_X2_AUX<22>
NET "result<13>" LOC = "p188"; # X1_X2_AUX<23>
NET "result<14>" LOC = "p189"; # X1_X2_AUX<24>
NET "result<15>" LOC = "p190"; # X1_X2_AUX<25>
NET "result<16>" LOC = "p192"; # X1_X2_AUX<26>
NET "result<17>" LOC = "p193"; # X1_X2_AUX<27>
NET "result<18>" LOC = "p194"; # X1_X2_AUX<28>
NET "result<19>" LOC = "p195"; # X1_X2_AUX<29>

97

NET "result<20>" LOC = "p196"; # X1_X2_AUX<30>
NET "result<21>" LOC = "p197"; # X1_X2_AUX<31>
NET "result<22>" LOC = "p198"; # X1_X2_AUX<32>
NET "result<23>" LOC = "p204"; # X1_X2_AUX<33>
NET "count<0>" LOC = "p205"; # X1_X2_AUX<34>
NET "count<1>" LOC = "p206"; # X1_X2_AUX<35>
NET "count<2>" LOC = "p207"; # X1_X2_AUX<36>
NET "count<3>" LOC = "p208"; # X1_X2_AUX<37>
NET "count<4>" LOC = "p209"; # X1_X2_AUX<38>
NET "count<5>" LOC = "p211"; # X1_X2_AUX<39>
NET "count<6>" LOC = "p212"; # X1_X2_AUX<40>
NET "count<7>" LOC = "p213"; # X1_X2_AUX<41>

NET "XXX" LOC = "p216"; # X1_X2_AUX<42> # available on dev board
NET "XXX" LOC = "p217"; # X1_X2_AUX<43> # available on dev board
NET "XXX" LOC = "p218"; # X1_X2_AUX<44> # available on dev board

X1_X2_AUX<42,43,44> NOT availabe on flight board
42 was replaced by CE_B for flash

CONTROL.UCF – FLIGHT BOARD

 Included below is the section of the constraint file for X1 for the Flight Board that

differs from the Development Board. The below section of code can be compared to the

constraint file for Development Board listed previously. It is easy to recognize that the

only differences are in the actual numbers assigned to the pins below. The specific signal

names remain exactly the same.

NET "T_INTRPT_o" LOC = "P54"; # T_INTRPT_o is "p43" on the flight board
 # This is ISA Interrupt 0, IRQ 7
 # NOTE: on the development board, IO Pin 5(P54)
 # is jumpered to card interrupt 0
 # actually is interrupt 6 on ARM side!

Selectmap interface signals
NET "T_CCLK_o" LOC = "P69"; #Drive X2's CCLK pin, flight_board = p65
NET "T_SELECTMAP_INIT_o" LOC = "P117"; #Drive X2's INIT pin, flight_board = p124
 # schematic says 124 = "IO_VREF_3" ???
NET "T_SELECTMAP_WRITE_o" LOC = "P176"; #Drive X2's WRITE pin, flight_board = p63
 # schematic says 63 = "IO_VREF_5" ???
NET "T_SELECTMAP_CS_o" LOC = "P175"; #Drive X2's CS pin, flight_board = p64

MLS swap pins so D(0) is LSB
NET "T_SELECTMAP_DATA_io<7>" LOC = "P169"; # X2_D0, flight_board = p68
NET "T_SELECTMAP_DATA_io<6>" LOC = "P128"; # X2_D1, flight_board = p69
NET "T_SELECTMAP_DATA_io<5>" LOC = "P131"; # X2_D2, flight_board = p70
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137"; # X2_D3, flight_board = p71
NET "T_SELECTMAP_DATA_io<3>" LOC = "P148"; # X2_D4, flight_board = p74
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155"; # X2_D5, flight_board = p75

98

NET "T_SELECTMAP_DATA_io<1>" LOC = "P158"; # X2_D6, flight_board = p121
NET "T_SELECTMAP_DATA_io<0>" LOC = "P168"; # X2_D7, flight_board = p122
NET "T_SELECTMAP_BUSY_i" LOC = "P118"; #not sure what this does

NET "T_clock_i" LOC = "P199"; # Flight_board = P87

MAKEFILE FOR THE CONTROLLER CODE

 Below is only the first portion of the Makefile that is used to compile the

Controller Code. The code highlighted in red is the only part that needs to be changed by

prospective Designers. These changes are done to identify specifics experiments in the

output data stream and are therefore important.

###Makefile for compiling VHDL code

Paths ###

Top level project name (used also in naming source/output files below
You don't have to use projname as root of filenames (you can change
them below if you'd like), but it
makes it easy to reuse this Makefile for a different design
PROJNAME = control
ENTITYNAME = cftp_ARM
ID is used by the rd.sh program to determine how the output from
your code should be formatted. It is any 2 digit string, tell
Mindy what you chose and she will add it to the rd.sh program.
Already taken:
JS: Josh's Cordic
JM: Jerry's Multiplier
SR: James' Shift Register
FD: Flash Dump
VT: V2 Test code
FE: Flash Erase
ID = JM
DESCR = "Jerry's Multiplier"
#Location of all local source files
MUST BE FULL PATH, XST doesn't like relative paths
SRCPATHLOC = $(PROJNAME)_src

99

APPENDIX C: DATA FORMATTING CODE

Programs specifically designed for viewing data output from the CFTP

architecture have been written in “C” code, and are included for the benefit of future

designers who desire formatted output, such as that located in Figures 6 – 8 and 10 and

11. To view output data in this format, three files must be slightly modified. One is a

Makefile, and the other two are “C” code programs that perform the function of reading

data and outputting it in a clear, organized format.

 The majority of the modifications of these three files merely require copying a

section of code and pasting it, then slightly modifying it specific to an experiments output

stream. The portion that will be edited in the top level program, rd_top_arm.c, ties into

the modification designers make to the file Makefile_control for the Controller code,

described in Chapter V and Appendix B. Specifically, the program rd_top_arm.c looks

for the two initials added to Makefile_control, and then will call another c-code program

that directly formats the data.

 The sections of the three files that require modification are highlighted in red,

followed by a description of what the code does.

TOP LEVEL C-CODE PROGRAM - rd_top_arm.c
#include<sys/io.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<stdio.h>
#include<unistd.h>

int printusageandexit() {
 printf("Usage: rd_top_arm\n"
 "with options: \n"
 "-f FILENAME full path to filename to read\n"
 "-s SPEED SPEED times real time\n");
 return 0;
}

main(int argc, char **argv)
{
 unsigned char byte1,byte2,dummy,string[]="PART SUCCESSFULLY
PROGRAMMED",synch_word[]="PART SUCCESSFULLY PROGRAMMED";
 int synch_len,i;
 char *fn, *cp, *speed, *cfn;
 FILE *child, *datafile;

100

 fn = "/home/msurratt/work/arm_code/test";
 speed = "1";

 for (i=1; i<argc; i++) {
 if (strcmp(argv[i], "-f") == 0) {
 if (++i <= argc-1) { fn=argv[i]; }
 else { return printusageandexit(); }
 }
 else if (strcmp(argv[i], "-s") == 0) {
 if (++i <= argc-1) { speed = argv[i]; }
 else { return printusageandexit(); }
 }
 else { return printusageandexit(); }
 }

 datafile = fopen(fn,"r");

 fflush(NULL);
 if ((child = popen("cat","w")) < 0) {
 printf("Failed to open child process\n");
 exit(0);
 }

 synch_len = strlen(synch_word);

 while(1) {

 for (i=0;i<synch_len-1;i++) {
 string[i] = string[i+1];
 }

 fread(&string[synch_len-1],1,1,datafile);
 fflush(NULL);
 fprintf(child,"%c",string[synch_len-1]);
 fflush(NULL);

 if (strcmp (string,synch_word) == 0) {
 fread(&byte1,1,1,datafile); // 0x0a
 fread(&byte2,1,1,datafile); // 0x0d
 fprintf(child,"%c%c\n",byte1,byte2);
 fflush(NULL);
 fread(&byte1,1,1,datafile); // ID 1
 fread(&byte2,1,1,datafile); // ID 2
 fread(&dummy,1,1,datafile); // 0x0d
 pclose(child);
// for EXPERIMENTAL DESIGN
// add an entry for your unique id, and executable
 // Josh's cordic, ID JS
 if (byte1 == 'J' && byte2 == 'S') {
 fflush(NULL);
 if ((child = popen("cordic_out","w")) < 0) {
 fprintf(stderr,"Failed to open child process\n");
 exit(0);
 }
 }

101

 // Jerry's Dual Counter ID JD
 if (byte1 == 'J' && byte2 == 'D') {
 fflush(NULL);
 cp = "dualcount_out_arm ";
 if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL) { fprintf(stderr,"malloc
failed"); return 0; }
 strcpy(cfn,cp);
 strcat(cfn,speed);
 if ((child = popen(cfn,"w")) < 0) {
 fprintf(stderr,"Failed to open child process\n");
 exit(0);
 }
 }
 // Jerry's Multiplier ID JM
 if (byte1 == 'J' && byte2 == 'M') {
 fflush(NULL);
 cp = "mult_out_arm ";
 if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL) { fprintf(stderr,"malloc
failed"); return 0; }
 strcpy(cfn,cp);
 strcat(cfn,speed);
 if ((child = popen(cfn,"w")) < 0) {
 fprintf(stderr,"Failed to open child process\n");
 exit(0);
 }
 }

 The above section beginning with the comment “//Jerry’s Multiplier ID JM,” was

copied and only two lines were modified. In the first “if” statement, “J” and “M” were

inserted next to the double-equal symbols. This tells the rd_top_arm program to look for

these two initials in a given file of data, which are included in that data because these two

initials were added to the file Makefile_control. Two lines below that, mult_out_arm was

inserted in between the quotation marks. This tells the rd_top_arm program to call the

specific c-code program that reads the multiplier output, named appropriately.

 // Mindy's Counter ID MS
 if (byte1 == 'M' && byte2 == 'S') {
 fflush(NULL);
 cp = "mindy_out ";
 if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL) { fprintf(stderr,"malloc
failed"); return 0; }
 strcpy(cfn,cp);
 strcat(cfn,speed);
 if ((child = popen(cfn,"w")) < 0) {
 fprintf(stderr,"Failed to open child process\n");
 exit(0);
 }
 }
 // Josh's cordic with timestamp (for flight), ID JA
 if (byte1 == 'J' && byte2 == 'A') {

102

 fflush(NULL);
 cp = "cordic_out_arm ";
 if ((cfn = (char *) malloc(strlen(cp)+strlen(speed)+2)) == NULL) { fprintf(stderr,"malloc
failed"); return 0; }
 strcpy(cfn,cp);
 strcat(cfn,speed);
 if ((child = popen(cfn,"w")) < 0) {
 fprintf(stderr,"Failed to open child process\n");
 exit(0);
 }
 }
 }
 }
}

SPECIFIC C-CODE PROGRAM – “name”_out_arm.c

 The file included below is named mult_out_arm.c, and is the file that

rd_top_arm.c will call when rd_top_arm.c encounters a “J” and an “M” in an output file.

The portion in red is the area that requires modification if data is to be organized into an

easily readable format.

//mult_out_arm.c modified by Jerry Caldwell
//21 Sept 06
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "rd_sub.h"
#include "smrb_locs.h"

int getER();
void getPC();

int main(int argc, char **argv){

 unsigned char synch_word[]="AA";
 unsigned char string[]="PART SUCCESSFULLY PROGRAMMED";
 long timestamp,oldTime = 0;
 int speed;
 int total_SM=0;
 smrb_locs locs;

 locs.wrptr = 0;
 locs.end_of_array = 0;
 locs.data = NULL;

 speed = atoi(argv[1]);

 while (1) {

103

 synch_word[0] = synch_word[1];
 fread(&synch_word[1],1,1,stdin);

 if (new_output(&string[0],synch_word[1])) {
 return 0;
 }
 if (strcmp(synch_word,"ER") == 0) {
 if((timestamp = getER(oldTime,speed)) == 0) {
 fprintf(stderr,"getER failed");
 }
 oldTime = timestamp;
 }
 else if (strcmp(synch_word,"SM") == 0) {
 oldTime = getTS();
 printf("\ntimestamp: %08x ",oldTime);
 fflush(NULL);
 // return last read value: beginning of SC or ER
 if((synch_word[1] = getSM(&locs,total_SM)) == 0) {
 fprintf(stderr,"getSM failed");
 }
 SMRC(&locs);
 total_SM++;
 }
 else if (strcmp(synch_word,"SC") == 0) {
 oldTime = getTS();
 printf("timestamp: %08x \n",oldTime);
 SMRC(&locs);
 }
 else if (strcmp(synch_word,"PC") == 0) {
 getPC();
 SMRC(&locs);
 }
 }
}
void getPC() {

 unsigned char c;
 fread(&c,1,1,stdin); //BLOCK NUM
 printf("BLK#: %02x ",c);
 fread(&c,1,1,stdin); //MJA
 printf("MJA#: %02x ",c);
 fread(&c,1,1,stdin); //MNA
 printf("MNA#: %02x ",c);
 fread(&c,1,1,stdin); //BIT Upper
 printf("BIT#: %02x",c);
 fread(&c,1,1,stdin); //BIT Lower
 printf("%02x ",c);
 fread(&c,1,1,stdin); //FLASH Offset Upper
 printf("FLASH OFFSET: %02x",c);
 fread(&c,1,1,stdin); //FLASH Offset Middle
 printf("%02x",c);
 fread(&c,1,1,stdin); //FLASH Offset Lower
 printf("%02x\n",c);
}
int getER(long oldTime, int speed) {

104

 unsigned char c;
 long timestamp;

// Use the below portion to read the TMR multipliers
 fread(&c,1,1,stdin); // this reads the padded zeros before
 // err_cnt, if those are output from the X1 code
 fread(&c,1,1,stdin);
 printf(" Error Count: ");
 printf("%02x ",c);
 printf(" ");

 printf("Count_voter: ");
 fread(&c,1,1,stdin);
 printf("%02x ",c);
 printf(" ");

 printf("Mult_voter: ");
 fread(&c,1,1,stdin);
 printf("%02x ",c);
 printf(" ");

 printf("Count: ");
 fread(&c,1,1,stdin);
 printf("%02x ",c);
 printf(" ");

 printf("Count Squared: ");
 fread(&c,1,1,stdin);
 printf("%02x",c);
 fread(&c,1,1,stdin);
 printf("%02x",c);
 fread(&c,1,1,stdin);
 printf("%02x ",c);
 printf(" ");

The above portion of code uses “fread” and “printf” to read bytes of data and print

it next to the strings in quotation marks. It should be self evident how the strings in

quotation marks are altered to identify specific data. For each byte of data that is read, a

corresponding “printf” statement is needed to print that data. The location of the “printf”

statement determines the order in which the data will be printed. Notice the uses of

quotation marks to format the bytes of data as well as spaces to provide additional

formatting.

 printf("Timestamp: ");
 timestamp = getTS();
 printf("%08x\n",timestamp);
 fflush(NULL);

 if (timestamp == 0) { timestamp = 1; }

105

 return(timestamp);
}

MAKEFILE

 This file must be modified to so that rd_top_arm.c and the specific c-file created,

mult_out_arm.c for this particular example, can be compiled. The portions in red are the

lines of code requiring modification.

INC=./include
FLASH_SRC=./mkflash_src
RD_SRC=./process_output_src
INJERR_SRC=./inject_error_src
BIN=.

all: rd_top_arm mult_out_arm count_out_arm dualcount_out_arm

 The only change made to the above line was to add the filename mult_out_arm.

inject_error: $(INJERR_SRC)/inject_error.c
 gcc -I$(INC) -o $(BIN)/inject_error $(INJERR_SRC)/inject_error.c

interleave_files: $(FLASH_SRC)/interleave_files.c
 gcc -I$(INC) -o $(BIN)/interleave_files $(FLASH_SRC)/interleave_files.c

strip_mask: $(FLASH_SRC)/strip_mask.c
 gcc -I$(INC) -o $(BIN)/strip_mask $(FLASH_SRC)/strip_mask.c

mult_out_arm: $(RD_SRC)/mult_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c
 gcc -I$(INC) -o $(BIN)/mult_out_arm $(RD_SRC)/mult_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm

The above portion of code was merely copied and pasted, and “mult_out_arm”

and “mult_out_arm.c” was substituted in the appropriate places. Studying the code

below makes is evident where these substitutions take place.

count_out_arm: $(RD_SRC)/count_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c
 gcc -I$(INC) -o $(BIN)/count_out_arm $(RD_SRC)/count_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm

dualcount_out_arm: $(RD_SRC)/dualcount_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c
 gcc -I$(INC) -o $(BIN)/dualcount_out_arm $(RD_SRC)/dualcount_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm

106

cordic_out_arm: $(RD_SRC)/cordic_out_arm.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(INC)/rd_sub.h $(RD_SRC)/getTS.c
 gcc -I$(INC) -o $(BIN)/cordic_out_arm $(RD_SRC)/cordic_out_arm.c $(RD_SRC)/smrb.c
$(RD_SRC)/smrc.c $(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c $(RD_SRC)/getTS.c -lm

sr_out: sr_out.c smrb.c smrc.c new_output.c smrb_locs.c rd_sub.h
 gcc -o $(BIN)/sr_out $(RD_SRC)/sr_out.c $(RD_SRC)/smrb.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c -lm

sr_out_c2: $(RD_SRC)/sr_out.c $(RD_SRC)/smrb_c2.c $(RD_SRC)/smrc.c $(RD_SRC)/new_output.c
$(RD_SRC)/smrb_locs.c $(RD_SRC)/rd_sub.h
 gcc -o $(BIN)/sr_out_c2 $(RD_SRC)/sr_out.c $(RD_SRC)/smrb_c2.c $(RD_SRC)/smrc.c
$(RD_SRC)/new_output.c $(RD_SRC)/smrb_locs.c -lm

rd_top: $(RD_SRC)/rd_top.c
 gcc -o $(BIN)/rd_top -g $(RD_SRC)/rd_top.c

rd_top_arm: $(RD_SRC)/rd_top_arm.c
 gcc -o $(BIN)/rd_top_arm -g $(RD_SRC)/rd_top_arm.c

COMMAND –LINE ENTRIES

 Examples of the specific command-line entries to compile the c-code, and to read

and print out data from a file, are included.

To compile the code, you must be in the same directory where the make file

exists. Then the command-line entry is as simple as typing “make,” as below.

cftp:~/directory$ make

To read the contents of a file and print them to a screen using these programs, use

the command “rd_top_arm” followed by a “-f” denoting a file name to follow, then the

exact name of the file to read.

cftp:~/directory$ rd_top_arm –f filename

107

LIST OF REFERENCES

1. Surratt, Mindy, “CFTP Development Environment Technical Manual”, Naval
Postgraduate School, Monterey California, April 2006.

2. Majewicz, Peter J., “Implementation of a Configurable Fault Tolerant Processor

(CFTP) Using Internal Triple Modular Redundancy (TMR),” Master’s Thesis,
Naval Postgraduate School, December 2005.

3. Coudeyras, James C., “Radiation Testing of the Configurable Fault Tolerant

Processor (CFTP) For Space-Based Applications,” Master’s Thesis, Naval
Postgraduate School, Monterey, California, December 2005.

4. Ebert, Dean A., “Design and Development of a Configurable Fault Tolerant

Processor (CFTP),” Master’s Thesis, Naval Postgraduate School, Monterey,
California, March 2003.

5. “PC/104 Specification Version 2.4,” The PC/104 Embedded Consortium, San

Jose, California, August 2001.

6. “QPro Virtex 2.5V Radiation Hardened FPGAs”, Xilinx Preliminary Product

Specification, DS028(v1.2), November 5, 2001.

7. “Virtex FPGA Series Configuration and Readback”, Xilinx XAPP138 (v2.8),

March 11, 2005.

8. “Using a Microprocessor to Configure Xilinx FGPAs via Slave Serial or

SelectMap Mode”, Xilinx XAPP502 (v1.4), March 11, 2005.

9. Snodgrass, Joshua D., “Low-Power Fault Tolerance for Spacecraft FPGA-Based
 Numerical Computing,” PhD Dissertation, Naval Postgraduate School, September

2006.

10. “Project Navigator, Release Version: 6.3.03i,” Copyright © 1995-2004 Xilinx,
Inc.

108

THIS PAGE INTENTIONALLY LEFT BLANK

109

 Naval Postgraduate School

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Chairman, ECE Department, Knorr

 Monterey, California

4. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

5. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

6. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

7. Professor Herschel H. Loomis
 Naval Postgraduate School
 Monterey, California

8. Professor Alan A. Ross
 Naval Postgraduate School
 Monterey, California

	INTRODUCTION
	CFTP OBJECTIVE
	B. RESEARCH OBJECTIVES
	C. BACKGROUND
	D. CFTP ENVIRONMENT
	E. IMPLEMENTING EXPERIMENTS
	F. OVERVIEW

	CFTP ARCHITECTURE
	A. CONTROL FPGA
	B. EXPERIMENT FPGA
	C. PC/104 BUS
	D. EEPROM
	E. FLASH MEMORY
	F. ARM PROCESSOR
	G. SDRAM
	H. CHAPTER SUMMARY

	MODIFYING CODE
	A. CONTROLLER
	1. Top Level
	2. X2 Interface
	3. Constraint File
	4. PC/104 Interface
	5. SelectMap Configure
	6. SelectMap Read Back
	7. Clock Generator

	EXPERIMENT
	1. Implementation
	2. Flash File
	3. Constraints

	CHAPTER SUMMARY

	IV. TIMING
	A. CONTROLLER FUNCTIONS
	1. Sampling Data
	2. Clock Dividing X2
	3. New Module for X1
	4. Buffer on X1

	B. DATA RATE
	1. Phase One
	2. Phase Two
	3. Clock Skew

	C. CLOCK DIVISION
	1. Circuit Design
	2. Clock Division
	3. The Results
	4. Sampling Data
	5. Final Analysis

	D. CHAPTER SUMMARY

	V. AN EXAMPLE EXPERIMENT
	A. TRIPLE MODULAR REDUNDANCY
	B. TMR MULTIPLIER
	C. WORKING IN PROJECT NAVIGATOR
	1. Creating a Design
	2. Processes in Project Navigator
	The Critical UCF Source

	DETAILS OF THE EXPERIMENT
	1. Input & Synchronization
	Voter Logic
	Multiplier & Pipelining
	Signal Names
	Sequential Data
	Finishing the Experiment
	7. Flash File

	E. MODIFYING THE CONTROLLER
	X2 Interface
	The UCF File
	Makefile_Control
	Compiling Code

	F. PROGRAMMING THE BOARD
	G. CHAPTER SUMMARY

	VI. CONCLUSIONS AND RECOMMENDATIONS
	A. SUMMARY
	B. CONCLUSIONS
	C. RECOMMENDATIONS
	1. Use SDRAM Available to X2
	2. Multiple Configurations on Flash Memory
	3. Passing Data from the ARM

	APPENDIX A: CFTP EXPERIMENT MANUAL
	A. NAMING CONVENTIONS
	B. DEVELOPMENT BOARD & FLIGHT BOARD
	C. THE EXPERIMENT
	1. Simulation and Compilation
	a. Naming Conventions
	b. Constraint File

	2. Compiling within Linux (“make” files)
	a. Modify the Makefile_experiment and experiment_prj files
	b. Compile

	3. The NCD file (experiment.ncd)
	4. Creating the Flash File
	a. Run bitgenpersist.sh
	b. Run mkflash.sh
	c. Copy “fwr” file for ground run

	D. THE CONTROLLER
	1. Compilation
	a. Modify the Makefile_control file
	b. Compile
	c. Copy the “.bin” file

	E. GROUND RUN
	1. Naming conventions
	2. ARM Commands via Telnet
	a. Running “write_flash.bin”
	b. Running wr_arm_poll
	c. Optional – running dump_flash.bin
	d. Running control_name.bin and collecting output

	F. SATELLITE RUN
	1. Implementing Experiments on the Satellite

	G. CHECKLIST FOR RUNNING EXPERIMENTS

	APPENDIX B: CONTROLLER CODE
	APPENDIX C: DATA FORMATTING CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

