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ABSTRACT

This thesis examines a number of marine biological signals and the problem of modeling by

autoregressive techniques using a prony-svd algorithm to accurately represent segments of biological

signals. Two methods are employed to classify the biological signals from the model parameters.

The first classification method is based on a Neural Network implementation using a commercial

software package. The second method is accomplished by using a distance measure, based on

spectral ratios, with respect to modeled reference signals.
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I . INTRODUCTION

The objective of this thesis is to develop and test

autoregressive (AR) modeling techniques to a number of

transient signals of biological origin. Once suitably-

modeled, the feasibility of classification of these biological

signals from the modeled parameters will be explored. Two

methods of classifications will be attempted. One method uses

neural networks while the other method is based on a spectral

ratio distance measurement.

Traditional signal processing techniques based on Fourier

Transforms are not well suited to capture features of short

signals, such as transients due to their nonstationary nature.

Parametric modeling techniques such as AR modeling, yield

better results since they exploit the fact that sound signals

are generated by a few dominant frequency components. The

ability to apply a least squares technique to estimate the AR

model parameters makes it attractive from an implementation

standpoint

.

The advantage of using parametric models are twofold: a)

the dominant frequencies together with the spectrum of the

signal can be estimated from relatively short duration data,

and b) the low order parametrization can be used in a pattern

recognition and classification framework.



In this thesis, we make use of the parametric modeling of

the biological data to develop an automatic unsupervised

classification scheme. Two basic approaches will be

considered and compared: a neural network and a classifier

based on spectral ratio.

The strength of a neural network to be used as a

biological classifier lies in the networks nonlinear

characteristic and its ability to be trained to recognize many-

types of data structures. The nonlinearity of the network

allows for an effective association between data having

similar structures. This similarity matching allows a network

trained to recognize a set of biological data to make

classifications on the biologies based on similarities taught

to the system simply by training. In this way, the output of

the neural network provides a real-time biological

classification.

The Symmetrized Itakura (SI) distance is a spectral

distance measure that will be utilized as the second

classification technique. The properties of the SI distance

make it a possible choice among spectral distances in

classification of biological signals. The SI distance is

symmetric, that is the distance d(Xi,X2) between two transient

signals x
t
and x2 is the same as the distance dfx^Xj) between

X2 and Xj. But most importantly, the SI distance is

independent of the magnitude of the transient sound. Both



classification methods are implemented based on the AR model

parameters

.

The thesis will conclude by comparing the methods of

classification. The primary source of data for this thesis

was provided by the Hopkins Marine Station of Stanford

University located in Pacific Grove, California.



II. PARAMETRIC MODELING OF BIOLOGICAL SIGNALS

The biological signals available for classification

consist of data records in excess of 300,000 bytes. The

length of the data precludes a direct use for classification.

The amount of data can be drastically reduced by developing

parameter methods to represent the signal characteristics.

The main features of acoustic signals (in air or water) can be

characterized in the frequency domain. This comes from the

very way they are generated, as resonating cavities and

vibrations of vocal chords. As a consequence most of the

energy is concentrated on a few frequency components.

It is this feature that is the basis of an effective

parametrization of sound signals. In this chapter we review

the concept of modeling using Prony's method, and we present

techniques to identify the main frequency components present

in the signals of interest. This leads to parametric methods,

where the information contained in relatively long data sets

(512 or 1024 points) can be summarized in a much smaller

number of parameters (in our case about 20) . These parameters

are then used for classification, as we will see in subsequent

chapters

.



A. PRONY'S METHOD

Prony's method is a technique for modeling sampled data as

a linear combination of exponentials. It can be used in the

context of spectral estimation and leads to linear prediction

and autoregressive (AR) modeling. Prony's method models the

data as a superposition of complex exponentials or damped

sinusoidal models. The parameters of the exponentials are

determined by a least squares fit to the data.

Given N complex data samples x[l] , . . . , x[i\T| , the Prony

method models x[n] with a p-term complex exponential model

p

x[n\ =Y, A
Jt
exp[(a

Jt
+ j'2iif

Jt
) (n-l)T+jQk ] ,

(2.1)

for 1 s n <; N, where T is the sample interval in seconds, Ak

is the amplitude of the complex exponential, ak is the damping

factor in seconds" 1

, fk is the sinusoidal frequency in Hz, and

6 k is the sinusoidal initial phase in radians. In the case of

real data samples, the complex exponentials must occur in

complex conjugate pairs of equal amplitude, thus reducing the

exponential representation to

2

x[n] =J2 2Akexv[a k (n-l) T] cos [27ir\(/2-l) T+Qk ] ,

< 2 - 2 )

Jc=l



for 1 <; n <; N. When the number of complex exponentials p is

even, there are p/2 damped cosines, and when the number is odd

there are (p-l)/2 damped cosines plus a single purely damped

exponential . [Ref . l:pp. 303-304]

Generally, x[n] is observed in noise,

y[n] =x[n] + e [n] ,
(2.3)

where y[n] is the observed data and e [n] is a white noise

process.

The biological data consists of a number of data points

N much greater than the minimum number needed to fit a model

of p exponentials, i.e., N >> 2p. This requires the

parameters to be estimated by a least squares fit.

In order to determine the parameters of the model, let us

write Equation (2.1) as the result of an overdetermined case

and the data sequence as

p

I
k=i

*lril -E hrf-
1

.
(2.4)

where hk
= Ak exp{jd k ) and zk

= [ {oik+j2irfk ) for 1 <; n <; N [Ref.

l:p. 306] . The error is denoted as e [n] = x[n] + St[n] , where

x[n] is the estimated signal. The total squared error is

minimized by simultaneously finding the order p and the

parameters {hk , zk ) for k = 1 to k = p. Although the

minimization of the squared error



p =£M n. (2.5)
n=l

is a nonlinear problem it can be solved by standard techniques

using the covariance linear prediction normal equations as

encountered for AR spectral analysis.

The estimation of the parameters zk can be carried out by

observing that x[n] is the solution of a difference equation

of the form

x[n] + a
x
x[n-l] + . . . +apx[n-p] =0, (2.6)

with 1, a Xl . . .a the coefficients of the polynomial A(z) =

(2-z.z 1

) (l-z7z
l

) 1 - z
p
z From this, the connection to a

linear prediction model where

x[n] =-a
1
x[n-l] -

. .
. -a^in-p] (2.7)

is straightforward. The parameters a,, can then be determined

by solving a set of linear equations

^[1,1] c„[l t 2] •• c^il.p]

^[2,1] cr„[2,2] - ^oJ 2 ,p]

c„[p,l] cxx [p,2] •• cxx [p,p]

tf[l]

rf[2]

rf[p]

°xx [1* 0]

[2, 0]

[P/ 0]

(2.8)

where



N-l

CxxUsk] =_A-j;x*[22-j]x[22-ic] . (2.9)
P n=p

The resulting minimum modeling error is computed as

p

1
k=l

e^fWc^tOfOi+J^ttfc^to,*]. < 2 - 10 >

The matrix in Equation (2.8) is hermitian and positive

semidef inite. It is singular if the data consist of p - 1 or

fewer complex sinusoids. Any noise in the observation will

cause the matrix to be nonsingular. It turns out that the

solution of Equation (2.8) yields a stable model with poles

inside the unit circle. From the above matrix, it is seen

that c^ijfk] is an estimate of r^ij - k] , but a different

estimate from the autocorrelation method. The matrix of

Equation (2.8) uses the sum of only N - p lag products to

estimate the autocorrelation function for each lag even though

more data is available. As an example, in the estimation of

r^tO] the biased autocorrelation estimator of the

autocorrelation method uses all N data points, while the

covariance method uses only N - p data points in the

summation. When dealing with very large data records, N >> p,

the "end effects" due to the missing p points are negligible

and as a result, the autocorrelation and covariance methods



produce similar results. A second contrasting feature is that

for data consisting of pure sinusoids, the covariance method

may be used to extract the frequencies. This is due to the

similarities between the Prony and covariance methods. Note

that this property is not shared by the autocorrelation

method. [Ref. 2:p. 223]

The covariance method is identical to the modern version

of Prony' s method for pole estimation. From the estimated

parameters a, , . . . , a , the frequencies zk can be easily

estimated as roots of the polynomial

A(z) =l + a
1
z' 1 + - + apz-

p
. (2.11)

Furthermore, an estimate of the spectrum of the signal x{n) is

determined from the recursive AR model

x(n) +a
x
x(n-l) + -+apx{n-p) =e(n) , (2.12)

with e(n) denoting the modeling error. Ideally e(n) is a

white gaussian sequence with variance a
2

, which leads to the

frequency spectrum of x{n) given by:

X(e^'e
)
= —

, (2.13)
\A(e^)\ 2

where <, 6 < 2tt . This frequency spectrum should match the

dominant components of the spectrum of the data x{n) .

When noise is present the original Prony method performs

poorly since the recursive difference equation no longer holds

[Ref. 2:p. 224] . The extended Prony method was developed to



handle the cases of exponential signals in noise. The

derivation of the extended Prony will not be discussed here.

In this thesis, the application of a singular value

decomposition (SVD) approach to the Prony method is used

instead to increase robustness in the presence of measurement

noise.

B. SINGULAR VALUE DECOMPOSITION (SVD)

Singular value decomposition (SVD) is utilized with the

Prony method to provide further improvement in the estimation

of the model components . The SVD approach can be viewed as a

nonlinear filtering technique.

The SVD technique takes an arbitrary m x n complex-valued

matrix A of rank k and decomposes the matrix in terms of a m

x in unitary matrix U = [ux
. . .um ] , a n x n unitary matrix V =

[vj. . .v„] , and a set of positive real numbers o
x

s. a2 s ... s ak

> (singular values of A) so that the matrix A can be

expressed as

A=uLvH=Y/
o i uivf,

(2.14)
1=1

where the m x n matrix E has the structure

10



£ =
D ° (2.15)

'

and D = diag (cr,, . . . o\.) , is a A: x k diagonal matrix. We call a,

the singular values of the matrix A. Since UHU = I, and VHV

= I, then

a ha=vC£«Z)vh a ha=u(Y2;h)u h
,

(2.16)

and

A HAv
i
^a 2

i vi
AA"u

i
^o 2

i u i
(2.17)

for 1 s i <l k. The matrix products £ HE and EEH are diagonal

matrices of size n x rz and m x m, respectively, with

diagonal elements o
2

x
. The matrices AHA and AAH are Hermitian

of size n x n and m x m respectively. It can be easily seen

that the columns of U are the orthonormal eigenvectors of AAH

and the columns of V are the orthonormal eigenvectors of AHA

[Ref . l:p. 77] . Both U and V share the same eigenvalues cr
2

;

for 1 <, i s k. Utilizing the unitary properties of U and V,

the following is obtained

av=uLv hv=uL u ha=u huTvh=Evh
,

(2.18)

or

Av
i
= o

i
u

i
A Hu

i
= a

i
v

i ,
(2.19)

11



for 1 <; i <, k. The last equations show a relationship between

the eigenvectors u
;
and V; corresponding to the same singular

values (Tj.

The pseudoinverse A* of the m x n matrix A of rank k is

defined in terms of the SVD matrix components as the unique

matrix

A*=vE^U H='£a} 1 v
i
u! t

(2.20)
1=1

where

E* =
D' 1

(2.21)

The pseudoinverse of A* provides the minimum- norm least

squares solution x = A*b to the system of equations Ax = b.

When m = n and the rank of A is n, the pseudoinverse of A is

the same as the square matrix inverse, A* = A 1

. When m > n

and the rank of A is n, then A* = (AHA)~ lAH
. The least squares

solution for x is x = (AHA)"'AHb, for a set of overdetermined

equations. When n > m and the rank of A is m, then A* =

AH (AAH )"' and x = A*b. This is the minimum norm solution for

a set of underdetermined equations due to the pseudoinverse

resulting in the vector x of minimum norm. The pseudoinverse

of A* uses the SVD to determine the rank of A by examining the

12



number of non-negligible singular values. This manner is

preferred over computing A* directly from either (AHA)"'AH or

AH (AAH )'. [Ref. l:pp. 76-77]

The use of the SVD technique to reduce noise components in

the modeling equations and to aid in discriminating the

estimated model signal from noise components will be further

discussed in Chapter III.

C. MODEL ORDER SELECTION

The best choice of the AR model order is not usually known

ahead of time so it necessary to conjecture several model

orders. An error criteria is established to determine the

"best" model order to choose. If the order chosen is too low,

some spectral components are not estimated, while too high an

order introduces extra components not present in the original

signal. Thus, model order selection is a tradeoff between

increased resolution and decreased variance in the estimated

spectrum. The most important aspect of model order selection

is the quality of the spectral estimation. Although many

model order estimators are available, few guidelines as to

their use in practical applications are available [Ref. 2:p.

237] . For good spectral resolution with few spurious peaks,

the AR model order should be chosen such that N/3 < p < N/2 .

Where N is the number of data samples to be modeled.

The choice of the biological signals model order was made

by inspection rather than by using a statistical method. It

13



was decided to break down the biological signals into data

segments of 512 samples. Using the above numerical

guidelines, this would have resulted in a model order between

170 to 256. This is not a practical solution for order

selection when considering the application of the model for

classification methods. Through trial and error, the

biological signals where run through the modelling algorithm

and the fast Fourier transform (FFT) of the model was compared

to that of the original signal. From the modelling algorithm,

it can be seen that the singular values from the covariance

matrix go quickly to zero. Figures 1 through 4 show examples

of these singular values from four biological signals composed

of 512 segments, with model order p set to 20. The FFT

comparisons of the modeled signals to those of the original

signals for these same four data samples are shown in Figures

5 through 8. The smoother of the two lines represents the FFT

of the modeled signal. Only the frequencies up to half of the

sampling rate are shown. The modeled FFT follows very closely

to that of the original for all samples with p = 20.

Attempting much higher orders, i.e., values of p = 40 and 50,

resulted in almost no change from smaller order values, but

added an increase DC bias above the original signal. For

practical application purposes we decided to use a reasonable

value and a model order of 20 was selected.

14
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Figure 1: Singular Values of Gray Whale Data Segment

Singular Values for Humpback Whale Segment
n a.

0.35

0.3

0.25
01

3
'£

2

0.2

0.15

0.1

0.05

-

2 4 6 8 10 12

Singular Volues

14 16 18 20

Figure 2: Singular Values of Humpback Whale Data Segment
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Singular Values for Killer Whale Segment
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Figure 3 : Singular Values of Killer Whale Data Segment
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Figure 4: Singular Values of NOSC Sperm Whale Data Segment
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III. MODEL DEVELOPMENT OF BIOLOGICAL SIGNALS

A. TIME DOMAIN SIGNAL SOURCE

The biological data for this thesis was made available

from three different sources. The Hopkins Marine Station

located in Pacific Grove, California, provided the most

reliable data with some additional data files from the Naval

Ocean Systems Center (NOSC) and the Naval Underwater Systems

Command (NUSC) , both located in San Diego, California.

Unfortunately, there is no information available about the

biological data collected from NOSC and NUSC other than the

actual biological sound identifications. This creates some

confusion with the Hopkins Data as a killer whale recorded in

the Monterey Bay may not sound the same as a killer whale from

other ocean waters. Since this is not a biological

classification paper, a discussion of the differences in whale

and other biologic dialects will not be discussed here.

The data available from the Hopkins Marine Station

included a sound recording of the following biologic sounds:

• Bearded Seals

• California Sealions

• Gray Whale

• Humpback Whale

• Killer Whale

19



This audio cassette was processed into a digitized format by-

students in a speech processing class [Ref 3] . Table I shows

the complete listing of all files, their respective sizes,

source and biologic identity used in this thesis. Through the

use of MATLAB™, the time domain representation of the Gray,

Humpback, and Killer whales are provided in figures 9 through

11. Figure 12 presents the time domain representation for the

Sealion data. The frequency spectrum of each of these

signals, Bearded Seals, another Killer whale and two sperm

whale data files are found in figures 13 through 20. The

frequency spectrum was calculated using 512 points and shows

only frequencies up to half sampling rate.

Figure 9: Time Domain Representation of Gray Whale Data

20



Table I TABLE OF BIOLOGICAL DATA.

FILE NAME SIZE SOURCE IDENTITY

BIO 80 300616 NUSC Ice

BIO 2133a 75000 NUSC Sperm Whale

BIO 2133b 75000 NUSC Sperm Whale

BIO 2133C 75000 NUSC Sperm Whale

BIO 2194a 75000 NUSC Sperm Whale

BIO 2194b 75000 NUSC Sperm Whale

BIO 2194c 78616 NUSC Sperm Whale

BIO 2385 303616 NUSC Porpoise

BERDED 90148 HOPKINS Bearded Seals

BERDED2 61859 HOPKINS Bearded Seals

GRAY 48857 HOPKINS Gray Whale

HUMPBACK 70063 HOPKINS Humpback Whale

KILLER 59875 HOPKINS Killer Whale

ORCA 50001 NOSC Killer Whale

SEALIONS 33243 HOPKINS CA Sealions

SPERM 50001 NOSC Sperm Whale

21



Figure 10
Data.

Time Domain Representation of Humpback Whale

Figure 11: Time Domain Representation of Killer Whale Data
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Figure 18: Frequency Spectrum of NOSC Killer Whale Data.
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The biologic data available from N0SC are a sperm whale

and killer whale data files. These data files were received

in a digitized format and their frequency spectrum are shown

in Figures 18 and 19. The spectra of the two killer whales

data files, shown in Figures 15 and 18, indicates that there

can be a marked difference between the two signatures of this

like species of killer whales. Note that the depths,

geographical location, sex and even age of the whale can be

determining factors as to the different sounds that may

originate from the whale.

The same problem occurs with the biological data from

NUSC. The majority of this data represents a sperm whale.

Since all six of the data files for the sperm whales are
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nearly identical, only one frequency spectrum will be shown

for comparison with the NOSC sperm data. Figures 19 and 20

are the NUSC sperm whale plots. These two figures are

noticeably different from one another. Again without the

necessary information about the data, it is difficult to

reason why these signatures are so different. Regardless of

this fact all this data was utilized for the modeling and

classification process.

B. PRONY-SVD METHOD DETAILED DESCRIPTION

The covariance linear prediction normal equations, as

described in Chapter II, are solved as part of the least

squares Prony method. When noise is present in the data

samples, the least squares Prony method estimates of frequency

and damping components are usually inaccurate and biased due

to the noise effect. Distinguishing weak roots due to noise

from the Prony characteristic polynomial is often not

realizable. By using both forward and backward linear

prediction polynomials, high prediction orders, and SVD the

actual exponential signals in the data samples can be

identified and accuracy of the estimated frequency and damping

components is improved. When the original signal x(n) is

noise- free, the following forward linear prediction equation,

where a[0] = 1, can be used to model p exponentials
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J2a[m]x[n-m] =0. (3.1)

The characteristic polynomial

A(z) =£ a[m]z-m (3.2)
771=0

with roots at zk = exp(s
k ) for Jc = 1 to k = p, where sk =

{(Xk+j2irfk ) T contains the damping factor and frequency of the

kth exponential. The same p exponentials may also be

generated in reverse time using the backward linear prediction

p

£ Jb//n;x/rn-p+/n7=0 (3.3)
777=0

in which b[0] = 1. The characteristic polynomial for this

backward linear prediction equation is

p

Biz) =Y, h * fm]z m -p
.

(3.4)
77?=0

The characteristic polynomial B (z) has roots at z
k

= exp(-s*k )

= exp ( [-0ik+j2irfk ] T) for k = 1 to k = p. When ak < 0, the roots

of the forward linear prediction characteristic polynomial

A (z) lie inside the unit circle in the z-plane ensuring

stability. Deterministic exponentials have these root

location characteristics associated with A (z) and B(z) and

apply themselves well to AR modeling. [Ref. 4: pp. 1309-1310]
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By selecting a linear prediction order much higher than

the number of exponentials present in the data, the noise bias

can be reduced. The drawback in AR modeling procedures is

that they introduce extraneous zeros making it difficult to

distinguish between zeros of the exponential signals and those

due to the noise. Therefore by examining the polynomial roots

of both A(z) and B(z), instead of just the roots from either

the forward or backward equations separately, the true signal

zeros can be distinguished better from the noise zeros.

Furthermore, an improvement in the noise reduction is achieved

by applying a SVD technique to the covariance matrix of the

linear prediction normal equations. Singular values resulting

from the noise are constant and very small. The noise

singular values are set to zero and only the portion of the

singular value matrix S containing signal singular values is

inverted in the computation of the pseudoinverse, as described

in Chapter II. Had this technique not been applied, the noise

singular values would result in extremely large values in the

inverse of the matrix S. This would result in erroneous

estimates of the model parameters. [Ref. 4:p. 1310]

C. SOFTWARE IMPLEMENTATION OF THE PRONY-SVD METHOD

The main objective of this thesis is to model the biologic

data using a Prony-SVD based AR modeling technique. The

MATLAB ™code used to implement the Prony-SVD method is found
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in Appendix B and a detailed explanation of the software

implementation is developed within this section.

The parameters of the AR model a, a vector of model

length p, need to be determined from the biologic data

vectors. This can be done through two methods; batch

processing or recursive processing. The batch processing

method takes data in its entirety or in segments. The

recursive process yields estimates at every data point, in

line with a Recursive Least Squares (RLS) technique. The

batch process is used for the Prony-SVD method in this thesis.

Through the use of the batch process a set of parameters

a are determined by a least squares technique. On this

premise, a predictor for the observed signal x(t) is generated

based on past data and the model parameters a. The vector

parameter a = [aj...a] which minimize the prediction error E

II x(t) - x(t)\ 2
\ , where x(t) is the estimated signal obtained

from the vector parameter a. The minimization corresponds to

solving a linear set of equations with more equations than

unknowns. For all t we have the following equations

x(t) =-a1x(t-l) -a
2
x(t-2) - . . .-apX(t-p) (3.5)

for all p + 1 < t < N, where N is the length of the data and

p is the order of the model. Furthermore, we assume that N >>

p. Therefore, the following linear equations are solved for

a
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x{p) x(p-l\

x(p+l) x(p)

x(N) x(N-l[

x(l) ai x(p+l)

x(2) <2
2

=
x{p+2)

x(N-p) a
p

x(N)

(3.6)

The above matrix equation can be rewritten in matrix form

as

Xa = x, (3.7)

where X has more rows than columns, and the equality is

satisfied in the least squares sense. The SVD solution can be

derived by writing Equation (3.7) as:

X TXa. = X Tx (3.8)

and decomposing XTX as

X TX=USV T
,

(3.9)

where U and V are orthonormal matrices and S

diagonal (o^
2

, ... cr
p

2
) . Usually the singular values a 2 are

ordered as a,
2 > a 2 s > a 2 > 0. The smallest singular

values are due to noise and are set to zero. Next, the

pseudoinverse of XTX is used to solve for the model

parameters. The SVD- Least squares solution of Equation (3.7)

is a = (XTX)
_1 XTx. The vector a represents the parameters used

to model a segment of the biological data. The vector a is

the input to the neural network and is used to develop the

Itakura distance for classification.

32



IV. CLASSIFICATION METHODS

A. NEURAL NETWORKS

Through modeling the biologic data signals are reduced

from large data segments into a much smaller number of

parameters. In this section we address the problem of using

these parameters in order to provide an effective

classification of the original signals. In particular, a

classifier based on neural networks will be developed and

tested with the available data. A formal definition of a

neural network is given below:

A neural network is a parallel , distributed information
processing structure consisting of processing elements
(which can possess a local memory and can carry out
localized information processing operations)
interconnected via unidirectional signal channels called
connections . Each processing element has a single output
connection that branches ("fans out") into as many
collateral connections as desired; each carries the same
signal — the processing element output. The processing
element output signal can be of any mathematical type
desired. The information processing that goes on within
each processing element can be defined arbitrarily with
the restriction that it must be completely local; that is,
it must depend only on the current values of the input
signals arriving at the processing element via impinging
connections and on values stored in the processing
element' s local memory. [Ref . 5:pp. 2-3]

1. Neural Network Description and Applicability

From the definition above the basic unit of a neural

network is the processing element. A widely accepted

configuration is shown in Figure 21. Each processing element

has several input connections linearly combined by weighting

factors. The results from the linear combination is the
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Figure 21: Generic Processing Element

transformed through a nonlinearity (called the transfer

function) to form the output of the computing element. Each

output of the computing elements is fanned out to several

output paths which become inputs to other processing elements.

Formally, if we call Y the output and xlt x2l . . . x„ the inputs of

a processing cell, we can write

Y=£{Ew
i:f
x1 ) , (4.1)

where wjy's are defined as the connection weights.

The neural network consists of many processing

elements joined together, grouped into layers. A typical

network consists of several layers with full or random

connections between successive layers. Typically, networks

have two layers with connections to the outside world; an

input buffer where data is entered and an output buffer where
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the response of the network to the given network is stored.

In between these input and output layers are the hidden

layers, distinct from the input and output buffers. A simple

neural network architecture is shown in Figure 22

.

Output buffer ( )

Hidden layer

Input buffer (
i

Figure 22: A Simple Neural Network Architecture.

The elements in the input layer have a different

structure. They receive only one input each with the

connection weight set to unity, and their transfer function is

the identity. Their purpose is only to fan the input data out

to each of the processing elements in the first hidden layer.

The feedforward network shown is Figure 22 is the

simplest form of network, with no feedback connections from

layer to the next, or itself. Since there are no feedback

loops, its stability is guaranteed.
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The network operates in two main phases — Learning and

Testing. Learning can be distinguished into a) supervised, b)

self -organized, or c) graded.

While the network is learning, the connection weights

adapt in response to the data presented to the input buffer

and optionally the output buffer. The data presented to the

output buffer directly relate to a desired response from the

given input data. This type of learning is referred to as

"supervised learning". When the desired output is different

from the input, the trained network is called "hetero-

associative" network. When the output vector is identical to

the input for all transactions the trained network is called

"auto-associative". In a self -organized training scheme, a

network modifies itself in response to x inputs. This is also

referred to as "unsupervised"

.

Graded learning (also known as reinforcement training)

is a third kind of learning which falls between supervised and

unsupervised learning. Learning is reinforced when an

external teacher indicates only a good or bad response to the

input data. [Ref. 5: pp. 48-49]

The type of learning used specifies its learning rule,

i.e., how weights adapt in response to a learning example.

During training it may be necessary to show the network

thousands of examples. The parameters governing a learning

rule may change over time as the network progresses in its

36



learning. The overall control of the learning parameters is

a result of the learning schedule.

Testing or classification, for the purpose of this

application, refers to the network's ability to process input

data and to create a response at the output.

The other consideration in network performance is

whether it operates in synchronous or asynchronous mode. In

synchronous mode either all or select groups of processing

elements in the system release their output values or fire

simultaneously at each time interval. The asynchronous mode

allows the processing elements to fire independently of any

other processing element.

There are many types of neural networks design for a

multitude of applications. Research and practical

applications have shown that the back-propagation network

works well in pattern classification [Ref . 6:p. NC-104] . For

the purpose of biological classification where we map model

parameters into classes of signals, a back-propagation network

seems to be the logical choice.

2. Back- Propagation Network

The back- propagation network is categorized as a

hetero- associative network. It always has an input layer, an

output layer and at least one hidden layer. There is no

theoretical limit to the number of hidden layers but typically

there are no more than 2 hidden layers. The number of
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processing elements in the hidden layer will generally be no

more than the total number of processing elements in the input

and output layers. Utilizing a fully- connected, feedforward

network with one hidden layer, as seen in Figure 23, the

guidelines for deciding the number of processing elements in

the hidden layer are determined by the complexity and the

amount of training data available. A couple of basic rules to

follow are:

1. The more complex the relationship between the input data
and the desired output, the more processing elements are
required.

2. A guideline for the upper bound of the number of
processing elements in the hidden layer can be determined
from the amount of training data available.

17 18 Il9 2G hi 22 23 b 4 25
Out

15 |16

Hiddenl

*r 1 1 1 TTTm..

Figure 23
Layer.

A Back- Propagation Network with One Hidden
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It can be shown that, using a rule of thumb, the number h of

hidden layers can be given by the following formula

h, (4.2)
10 * (m+n)

where cases is the number of training cases, and m and n are

the numbers of processing elements in the input and output

layers [Ref . 6:p. UNI 8] . The more random the input data are,

the larger the number of processing elements are required in

the hidden layer. Note that these guidelines must be tempered

by the amount of training data available and the practical

size of the network.

The back-propagation network utilized for

classification from the NeuralWare Professional II /PLUS

software employs a supervised, delta- rule learning scheme.

The input data and corresponding output are presented to the

system which in turn reduces the error between the actual

output of each processing element and the desired output.

Gradually the weights are modified via the learning rule to

achieve the desired input/output mapping. The delta- rule

learning rule and the processing element's transfer function

will be described in detail later in this chapter.

In this section, we make use of the following

notations

:

• xjs} = current output of j
lh neuron in layer s
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Wj/sJ = connection weights joining i'
h neuron in layer [s-1]

to j
th neuron in layer s

ljs] = weight summation of inputs to j
th neuron in layer s

The mathematical process for a single back-propagation element

is

:

xf1 =f(Z(wJ!] *x[s
-1]

) =f(ljs]
) , (4.3)

where f is a "squashing" function, namely a sigmoid or the

hyperbolic tangent function. Given that the network has a

global error function E, the error between the actual and

desired output is the critical parameter that is fed back

through the layers and is defined as:

ejs] =-dE/dl\s]
,

(4.4)

where e/sj is proportional to the correction of the processing

element j in layer s. Furthermore, using the chain rule twice

yields

:

ef'^faj'^Lfef^wg*11
) . (4.5)

The main mechanism in the back-propagation network is to

forward the input to the output, determine the error at the

output, then propagate the errors back using the above

equations. The goal of the learning process is to minimize

the global error by modifying the weights, given the knowledge

of the local errors at each processing element. This is
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accomplished by using the gradient rule which dictates the

weights to change in the direction on the minimum error.

bwff = -lcoef* (dE/dwff) ,
(4.6)

where lcoef is the learning coefficient and a^.,w is the

connection weight change between the i"' neuron in layer s and

the j
!h neuron in layer (s-1). The coefficient wJ

sJ is then

updated according to the learning rule. The net result is

that each weight is changed according to the size and

direction of negative gradient on the error surface. Again

applying the chain rule we obtain:

dE/dwff = (dE/dlj
s]

) (dll
s]
/dwj!])=-efslxl

s -13

(4.7)

Awff = lcoef (ej
sl
xi

s -1]
).

References 5 and 6 provide further details of the back-

propagation network.

a. Delta Rule Learning Law

The computation of the output error defines the

delta rule. The learning law controls the rate of learning in

a neural network. When the error is minimized the network has

learned. The error is computed as the difference between the

desired output and the actual output. The error is

transformed by the derivative of the transfer function and

propagated back through to the previous layer where it was

compiled. This error then becomes the error for that previous

layer. The back- propagation of the error continues through
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each prior layer until it reaches the input layer. This

process is the source for the network's name. The delta rule

was chosen as the learning law for the application considered

in this work. [Ref. 6:p. RF-195]

The weight update equations for the delta rule are

as follows:

(4.8)

where w' is the updated weight from the learning rule, in is

the present memory and m' is the resulting memory change. The

weights are changed in proportion to the error e and the input

to that particular connection x. The values for C, and C2

should start between zero and one. Experience has shown the

best value to start C
7
at is 0.5 [Ref. 6:p. RF-195]. Should

the network increase in size, i.e. number of processing

elements, these values should decrease but maintain the same

ratio. As the learning process continues, decreases in C
7
and

C2 lead to faster convergence of the network. [Ref. 6: pp. RF-

195&196]

b. Transfer Function

Each processing element possesses a transfer

function that uses the local memory and the input signal to

produce the output signal. Even though the sigmoidal transfer
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function is predominantly used in back-propagation networks,

the hyperbolic tangent transfer function was chosen for the

biological classification network. Figure 24 provides a

pictorial view of the hyperbolic tangent transfer function.

TRANSFER FUNCTION

-1.0

Hyperbolic tangent

f(z)- eU

Figure 24: Hyperbolic Tangent Transfer Function.

c. Back-Propagation Network Summary

Back-propagation networks built to classify

biological data consist of either three or four layers, to

include an input, either one or two hidden layers and an

output layer. Various configurations were utilized until

approximately seven of all the various combinations were found

to have the best convergence criteria. All networks have 20

input processing elements. These 20 processing elements

represent the 20 model parameters discussed in Chapter II.

The number of output processing elements was set at either two

or five. The two outputs correspond to a classification of
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"Whale" or "Not a Whale" while the five outputs reflect the

determination of one of four species of whale or some other

biologic. All the results from these networks are found in

the following chapter.

B. ITAKURA DISTANCE CLASSIFICATION

A different approach to classification is investigated

with the concepts of distance measurements. The Symmetrized

Itakura distance measured between a known reference and an

unknown signal is used as to classify the unknown signal. The

distance measurement is used to compute a scalar difference

between waveforms, and to measure appropriate similarities (or

differences) between the two spectra. This leads to the

definition of an appropriate "distance" measure which can be

used for classification.

In particular, given any two spectra Jf(co) , gr(co) we look at

a measure of their similarities by a scalar d(f,g) with the

following properties:

1) d(f,g) s for all f,g

2) d{f,g) = if and only if f(co) = g(u) almost everywhere

3) d(f,g) = d(g,f)

4) d{af,ftg) = d(f,g) for any nonzero scaling factor a,@eR.

Furthermore, d should be computationally feasible in real

time, and have some intuitive appeal also.
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An important class of distance measurements is based on

spectral ratios, previously used to classify speech signals

[Ref . 7] . In the next section we develop a particular

distance measure based on spectral ratios which is the basis

of our next classification scheme.

1. Symmetrized Itakura Distance Measure

Given any two spectra r*(to)
, gr(co) such that f (co) ,

gr(co)

^ where coeR, we define the Symmetrized Itakura (SI) distance

as:

iSI (f.g)-Xn—
\
/

V-rc

\

f(<0)

g(to)
d(x>

/
l \-*

5r((0) da
f(u>)

\

(4.9)

We can show that Equation (4.9) exhibits the

properties of a distance by the following:

1. d{f,g) = d(g,f), this is obvious from the above
expression.

2. d{f,g) & 0, and d(f,g) = if and only if f(u) = kgr(co)

for all co, and a scalar k j± .

Proof

:

Recall that the Schwartz Inequality is given by:

<, {j\x{t)\ 2
dtfj\y{t)\

2 dty (4.10)

for any function x(t) , y(t) or more appropriately x(co)
, y{u)

Replacing x(t) and y(t) with f(oj) and gr(oj) in Equation (4.10

leads to:
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A
f(G>)

g(o>) N f(oo')

grCco)
do> = 271. (4.11)

The equality of Equation (4.11) holds if and only if

f(CD)
= ^A

\| g(co) ' \| f(o)
gr(a))

i.e. |f(a))| = A|g(w)| (4.12)

Thus, using Equation (4.12) in Equation (4.11) leads to:

In-
2 it /

f(o>)

g(o>)
do>

/
V-71

g(co)

f(co)
do) > 0, (4.13)

where Equation (4.13) equals zero if and only if f{Q))=kg{u).

In summary we can say that the Symmetrized Itakura distance is

symmetric by its definition and that the distance is

insensitive to amplitude scaling. These two necessary

properties make this distance measurement desirable for

classification. [Ref. 7:pp. 38-39]

a. SI Distance Measures Applied to AR Processes

Autoregressive spectra can be characterized

directly in terms of the AR model parameters, referred to as

the predictor coefficients. The pth order AR spectrum of the

biologic data is defined as

S((0) =
A(ei")A(e-J«) " \A{e^)\ 2

' (4.14)

where A (z) 1+A<z l + +̂A.Z" 1 represents the polynomial

associated with the AR model. The spectrum S(cok ) of A(z) is
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obtained by computing an FFT of the the coefficient sequence

{l,a 1/ a2 , . . . ,a
p

, 0, . . . } using Equation (4.14), where

0) = _2«iE for £=0,1, . . . ,N-1. (4.15)k N

To accomplish the classification, we choose a

model with spectrum Sj(co) for i = 1, . . . ,N. Then for any other

segment S(co) we measure the distance

dSI (Si , S) = inU.f
5' (<

V dJ^(4i^-dJ51 2 \2tiJ S(o>) j[2nJ Siia)
)

do>
I

for 1 = 1, ... ,N,

(4.16)

and we classify the segment in the class that has the minimum

distance to the reference. Figure 25 provides a block diagram

of this classification process.
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Figure 25: Block Diagram of Symmetrized Itakura Distance
Classification Process.

To make the spectrum smoother (less noisy) we use

the AR model

:

5(G)) = (4.17)

with A{ef") estimated from the Prony-SVD method.

Since we want to do the modeling process

digitally, we have two alternatives: a) approximate the

Itakura distance using FFT's; b) use the residue theorem. To

compute the spectra of S(co) we need to consider the AR

parameters in terms of a pth order polynomial A (z) where

A (z)=l+a
l
z'

l+a2z'
2+. . . +apZ p

. We substitute z = e 1" into the

general pth order polynomial A(z) with the result

|A(e JW )|
2 = A(z)A(z- 1

)

Equation (4.18) can be expanded into

(4.18)
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A(z)A(z~ 1
)

= £p i (z
i + z-i

) ,
(4.19)

i =

where p/s are called the spectral parameters and are defined

by

Pi = takak_± .
(4.20)

k=i

Using the residue theorem we know that the

integral of a complex function over a closed contour is

proportional to the sum of the residues of the function inside

the contour. Let r(z) be the ratio of S, (w) and S(co) and apply

Equation (4.17)

r(z )
= ^i^l = <.^ (z)^ (Z

"
1)

,
(4.21)

S((0) | As (z)As (z-
1

)

Taking the inverse Z Transform of Equation (4.21) at lag

leads to:

.2

s
'
/s

n 2 2niJ
°s, i r AAz)AAz- 1

)

o-s ^"-J J As ,

{z)As ,

{z' 1
)

dz

ol
(4.22)

-E (residues of ^^L)
,

ol

where r(z) is the ratio of S
t
{o)) and S(oo) as in Equation 51.

The closed contour denotes the integral over the unit circle.

This implies that the poles to be taken into account in the

computations of the residues are inside the unit circle. [Ref

.

7:pp. 42-46]
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In considering both of these methods, the

complexity of the residue theorem encouraged us to use the FFT

method to compute the Symmetrized Itakura distance measurement

for classification.

2. Implementing the Symmetrized Itakura Distance

The Symmetrized Itakura distance was implemented using

MATLAB™ to classify the biological data signals. The MATLAB™

code for this procedure is found in Appendix B and the

description of its implementation will follow.

The Symmetrized Itakura distance measure is computed

between a reference A^ie/6
) and an observation As {d

e
) , where

Sj(0) and S(6) are the spectra:

^(6) =

|Ve*)| 2
5(0) =

\As (e^)\
2 (4.23)

Two vectors are used for the software implementation:

. 2ji

5i
= [|A

Si
(e^'

)|

2
/ |ASi

(e N
)

\As (e^)\
2
,\As (e

J
*)

(4.24)

2 =

where N is the number of points desired for the FFT. For this

application 512 points were chosen. The vectors S and S
l

were

created by taking the parameters derived from modeling the

biological signal and placed in the following format
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A(z) = l-a
1
z' 1 -a

2
z~ 2 -.

. .-apz~
p

f
(4.25)

where p is the model order.

To compute the Symmetrized Itakura distance, it is

necessary to solve for the quantities r
Si/s {0) and r

s/Si (0) that

have the following integral form

Lf Si (6)
de. (4.26)

\nJ 5(6)
-n

The above integral is approximately equal to

N-i 5
i (

)

J^Y H—-2*, (4.27)

N

where the ratio 2tt/N corresponds to the change in 6.

3 . Data Manipulation

The first step to utilize the Symmetrized Itakura

distance measure was to establish the reference signals. Due

to limited data, it was necessary to take the files for Gray,

Humpback, Killer, and NOSC Sperm Whales and the Sealions and

separate out the first segment of sound. This segment of

sound was then modeled using the Prony-SVD method. An order

of 30 was chosen to ensure a more sensitive model. The five

modeled reference sound segments were then structured for

Symmetrized Itakura distance measures using the MATLAB™ code

ITAREF.M, that is found in Appendix B. Each modeled reference

segment is manipulated in the exact manner as described above.
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All five reference mat files were saved as I?ref .mat in the

MATLAB™ environment, where ? represents one of the five

letters; G, H, K, L, and S, for Gray, Humpback, Killer,

Sealions, and Sperm Whales respectively.

Next the MATLAB™ code ITAKURA. M was used to classify

the sounds using the Symmetrized Itakura distance scheme. The

code can be found in Appendix B. This m-file loads all five

reference files and one of sixteen matrices of Prony-SVD

modeled biological data. The matrix must be manipulated so

that the FFT can be taken column by column. The net result is

a Symmetrized Itakura distance measurement for each segment of

the Prony-SVD modeled biological data against each of the

Itakura reference signals. The measurement results are found

in Chapter V.
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V. CLASSIFICATION RESULTS

A. TRAINING THE NEURAL NETWORK

Before the classification results can be discussed in

regards to the neural network performance, it is first

necessary to review the training operation of the neural

network.

The training file utilized to train the neural network was

built from the biological data described in Chapter III.

Using MATLAB™, a matrix file was constructed with each row

representing the 2 model parameters from a segment of

biological data. The shortage of available data made it

necessary to use the data for both training and testing. Two-

thirds of the data files were used to construct the training

file. This results in a training file consisting of 1272

cases available to teach the network. This matrix was saved

in ASCII format and then transferred to the Sun Workstation

where the line editor was used to input the supervised

training information. Two training files were created

differential in the output results. One training file would

classify an input as a "whale" or "not a whale" and the other

training file classifies an input as one of four whale species

or an other category.

In much the same manner, a testing file was constructed to

test the networks performance. The remaining one -third of

each biological file plus any additional data that was not
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used in the training portion was used to build this testing

file. Two testing files were created to correspond to their

respective training files. During the testing routine, the

network was tested with the entire file, making one complete

pass through the file. The accuracy of the test is discussed

in the next section.

B. PERFORMANCE OF THE NEURAL NETWORK

Seven different neural networks successfully converged to

learn the modeled biological parameters. Even though the

simplest networks often work the best, it was found through

trial and error that a back-propagation network with two

hidden layers converged faster, with fewer iterations than did

the networks with only one hidden layer.

As mentioned in the previous chapter, two output

configurations were used in the training network. One

configuration used five output processing elements to

classified four different whales and the fifth was used for

others not in the four classifications. The other

configuration with only two output processing elements

classified for either a "whale" or "not a whale". Note that

the network performance is judged during the testing phase.

The root mean squared (RMS) error is the criteria that was

used to determine both convergence criteria and how well the

network tested.
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Table II lists the seven network configurations that were

used to classify biological data either as a Gray Whale,

Humpback Whale, Killer Whale, Sperm Whale or other. The

number of processing elements in the input layer and the

output layer is not available in the table since those numbers

remained constant at twenty and five respectively. The table

provides the number of processing elements in each of the

hidden layers, the number of iterations that each network went

through until the convergence criteria was met and the RMS

training error at convergence in addition, the RMS testing

error obtained for the testing files is also included in Table

II. When using the Neuralware Software, the testing function

produces a file that lists the output desired and the actual

output for each input case to the network. The program RMSE.m

takes this file and computes the RMS error of the entire

testing file. The resulting RMS testing error indicates

whether the network has learned or not based on the data

presented during training.

The convergence criteria for each network configuration

was set at 0.1. This convergence criteria reflects when the

RMS training error is less than a specified threshold level as

desired by the network designer. As can be seen in Table II,

this convergence criteria was successfully met.

Even more encouraging is the RMS testing error. The RMS

testing error is calculated from a line by line comparison for

the entire test file of the desired output to the actual
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output. With the exception of one configuration, each RMS

testing error is considerably smaller than the convergence RMS

training error. Furthermore, results in Table II show that

the performance of the neural network improves as the number

of iterations in the training phase increases.

Table II: NETWORK RESULTS WITH 20 INPUT PE'S AND 5 OUTPUT
PE'S.

HIDDEN
LAYER #1

HIDDEN
LAYER #2

ITERATIONS TRAINING
ERROR

TESTING
ERROR

20 63248 .0929 .0429

20 10 13036 .0907 .0852

20 15 27008 .0942 .0501

15 65933 .0832 .0467

15 5 33750 .0916 .0492

15 10 31338 .0931 .0509

15 15 35297 .0747 .0501

The two networks with iterations of 63,248 and 65,933 had

the lowest overall RMS testing errors. These were also the

two networks with only one hidden layer. This indicates that

additional hidden layers reduce the amount of data necessary

to train the network to convergence criteria. Finally, as

expected, this table also shows that the networks with the

fewest number of iterations had the largest RMS testing

errors

.
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The second configuration used only two output processing

elements for classification and provided some interesting

results. These networks had the same number of input and

hidden layer processing elements as did those with five output

processing element networks. The results are listed in Table

III in the same format as described for Table II discussed

earlier. Overall, it took considerably fewer iterations to

meet the convergence criteria, an RMS error of 0.1, than for

networks with five output processing elements. Comparing the

training error obtained in Table III and in Table II, shows

that most of the training errors are much smaller than those

in Table II, except for two network configurations. An

observation was made earlier that the fewer number of

iterations required for convergence the smaller the resulting

RMS training error is. However, this is not the case for the

two exceptions mentioned before. In Case 1 we used 20 PE's in

the Hidden layer number 1 and in the Hidden layer number 2

.

Table II shows that 63,248 iterations were necessary to reach

convergence, resulting in a training error of .0929. Table

III shows that the same network structure took only 21,668

iterations to meet the convergence criteria but had a training

error of .0967. The second case is the network with 15 PE's

in both hidden layers. Table II indicates that 35,297

iterations were needed to reach convergence with a training

error of .0747. However, Table III shows that the same

network required 20,430 iterations with a training error of
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Table III: NETWORK RESULTS WITH 20 INPUT PE'S AND 2 OUTPUT
PE'S.

HIDDEN
LAYER #1

HIDDEN
LAYER #2

ITERATIONS TRAINING
ERROR

TESTING
ERROR

20 21668 .0967 .4906

20 10 19971 .0557 .4914

20 15 23194 .0791 .4932

15 23533 .0756 .5007

15 5 24388 .0723 .4969

15 10 27346 .0792 .4907

15 15 20430 .0898 .4950

.0898. The other five networks in this group followed the

observation that the fewer the number of iterations are needed

for convergence the lower the RMS training error is. The

testing files were evaluated using RMSE.M. The RMS testing

error obtained from these files indicates that, according to

the 0.1 RMS error criteria, none of these networks were

trained properly to distinguish between a "whale" or "not a

whale". The RMS testing error averaged around 0.5 which is

considerably higher than the criteria of 0.1. These results

show that, for our classification purposes, the neural

networks have better performance when they are trained to

distinguish among different types of whales rather than when

they are trained to differentiate between "whale" or "not a

whale"

.
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Appendix C provides a scoring percentage breakdown for

each network configuration. These scoring tables list the

percentage of correct classifications associated with each

file and overall results of the classification process.

C. PERFORMANCE OF THE SYMMETRIZED ITAKURA DISTANCE MEASURE

CLASSIFICATION

The Symmetrized Itakura distance classification method

bases classification on a computed distance between the

observed signal and a reference signal. The mathematical

derivation for this method is described in Chapter IV. The

MATLAB™ code ITAKURA. M is configured to take an observed

signal and to compute a symmetrized Itakura distance

measurement with each of the five reference signals. Next,

the software routine computes the distances between observed

and reference signals and indicates the reference signal

closest in distance to the observed signal. The number of

times each reference is the closest is counted and a

percentage is computed for the entire length of the observed

signal. After the scoring percentage is calculated, these

percentages are checked against a specified cutoff. A

decision is made to classify the input signal as one of the

five references or no classification is made. The distance

mean is also computed for each comparison. If a reference

distance is above the specified cutoff percentage but, its

distance mean is above a set threshold, no classification is
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made. Table IV records the Symmetrized Itakura Distance

classification results for a cutoff percentage score of 51.00%

and a threshold of 2.00.

All 16 biological data files were used in conjunction with

the ITAKURA.M code to test the classification application of

the Symmetrized Itakura Distance measure. A percentage score

is provided for each reference to the input signal. This

percentage represents the portion of the total length of the

input signal where the reference and the input signal had the

lowest distance measurement. The ID RESULT gives the

resulting classification from the above mentioned criteria.

This result specifies one of the five references; Gray,

Humpback, Killer, Sealions (SLIONS) or Sperm Whales, None (as

in no classification or Wrong) . A wrong result indicates that

the classification reached did not match the input signal even

though all the necessary classification criteria were met.

The AORCA512, ABERD512, and ABRD2512 input files resulted

in erroneous classifications. The A0RCA512 file had 84.54% of

its lowest distance computations with the Sperm Whale

reference (ISREF) and its distance computational mean was

below the threshold. However, note that this is a wrong

classification as A0RCA512 is the NOSC data file for a Killer

Whale and not a Sperm Whale. It is quite coincidental that

this file classified with the Sperm Whale reference (ISREF)

which is from the same source. Furthermore, the entire ASP512

file data was correctly classified against the Sperm Whale
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Table IV SYMMETRIZED ITAKURA DISTANCE CLASSIFICATION

INPUT
FILE

IGREF %

SCORE
IHREF %

SCORE
IKREF %
SCORE

ILREF %

SCORE
ISREF %
SCORE

ID
RESULT

AGRAY512 94.74 3.16 2 .11 GRAY

AHUMP512 9.56 16. 91 34.56 11.03 27. 94 NONE

AKILL512 6.03 43.10 35.34 15.52 NONE

ALION512 51.56 48. 44 SLION

AORCA512 1.03 14.43 84.54 WRONG

ABERD512 71.59 16. 48 3. 41 8.52 WRONG

ABRD2512 80 .83 3.33 10.83 5.00 WRONG

ASP512 1.03 98.97 SPERM

ABIOA512 10.27 73.97 15.75 NONE

ABIOB512 8.22 69.86 21.92 NONE

ABIOC512 6.85 92.47 0. 68 NONE

AB2A512 22.60 71.92 5. 48 NONE

AB2B512 15.07 78.08 6.85 NONE

AB2C512 10.46 77 .12 12.42 NONE

AICE512 98. 48 0. 67 0.84 NONE

|
AFLIP512 12.65 61.72 25.63 NONE

reference. Both of the Bearded Seal files, ABERD512 and

ABRD512, classified as Gray Whales. Again, the Gray Whale

reference (IGREF) percentage score was the largest of all the

references and had its distance computational mean below the

threshold. We would have expected the results to show scoring

percentages spread across all five references, similar to the

results of AHUMP512, or its mean well above the threshold.

The result of the AHUMP512 classification shows a mix of

percentage scores for the Killer Whale reference (IKREF) with
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the largest percentage of the five but below the cutoff. The

segment of sound that was chosen to represent the Humpback

Whale must not have been the best representation for the

entire signal. The results show that there was no real

dominant comparison available to make a decision.

The AKILL512 classification does show an accurate

classification even though the ID RESULT specifies otherwise.

The IKREF percentage of 43.10 is the largest percentage of the

five but does not meet the minimum cutoff percentage. The

Sealion reference (ILREF) had the next closest percentage with

35.34.

All of the ABIO's and AB2 ' s had results of no

classification even though every file had its largest

reference percentage score with IHREF. These six files from

NUSC with unknown origins had distance computational means far

above the established threshold. This is evident in the

graphical representation of the Symmetrized Itakura distance

classifications for BIOB512 and AB2C512 found at the end of

this chapter. The AICE512 and AFILP512 are also signals from

NUSC. The classification for AICE512 shows an overwhelming

comparison to IGREF even though this is a file of ice

cracking. The result is no classification due to the mean of

the reference distance computational exceeding the established

threshold. AFLIP512 is a data file modeled from a porpoise

whistle also from NUSC. The classification results specify no

classification which is correct but for the wrong reasons.
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IHREF had the largest reference percentage score but the mean

of this reference distance computation is again above the

threshold.

The three classifications that were correctly done based

on the reference percentage score were AGRAY512, ALION512, and

ASP512. Both AGRAY512 and ASP512 had unquestionably the

majority of their reference percentage scores in the

appropriate categories. ALI0N512 was a correct classification

based strictly on its reference percentage score exceeding the

threshold. This classification was extremely close to one of

a "no-classification" with an almost tie with ISREF.

Graphical representations of the Symmetrized Itakura

Distance classifications are available in Figures 26 through

35. Only one of the six results of the NUSC Sperm Whales is

presented due to their similarities. All graphs can be read

the same way. The solid line represents the Gray Whale

reference distance measurement, the dashed line represents the

Humpback Whale reference distance measurement, the dotted line

represents the Killer Whale reference distance measurement,

the dash-dotted line represents the Sealion reference distance

measurement, and the asterisks represent the Sperm Whale

reference distance measurement.
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itakura Distance Classification for Gray Whale Data
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Figure 26: Symmetrized Itakura Distance Measure
Classification for Gray Whale.
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Classification for Humpback Whale Data.
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Itakura Distance Classification for Killer Whale Data
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Figure 28: Symmetrized Itakura Distance Measure
Classification for Killer Whale Data.
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Itakura Distance Classification for NOSC Killer Whale Data
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Figure 30: Symmetrized Itakura Distance Measure
Classification for NOSC Killer Whale Data.
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Figure 31: Symmetrized Itakura Distance Measure
Classification for Bearded Seal Data.
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Classification for NOSC Sperm Whale Data.
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Figure 34: Symmetrized Itakura Distance Measure
Classification for NUSC Ice Data.
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VI. SUMMARY, CONCLUSION, AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSION

In this thesis we have studied AR techniques to model

time -domain signals. The AR algorithm is based on Prony's

method for modeling transient signals as the sum of complex,

damped exponentials. Next, SVD enhancement was introduced to

reduce the effect of noise in the modeling procedure. The

Prony-SVD method appears to work well in detecting and

modeling impulsive and periodic signals even in relatively low

SNR, considering the model was consistent for all data types.

The choice of model number and useable singular values in the

algorithm was accomplished visually. Methods for order

selection can be incorporated to make this processes more

systematic [Ref. 8:p. 389].

The back-propagation neural network used to classify four

species of whale from the model parameters proved itself a

viable classification method. The attempt to build a neural

network to identify between a "whale" or "not a whale" was not

a successful classification method using the same model

parameters. The data presented to train the network was

different enough so that the network required more information

to be trained successfully. The results from Chapter V

demonstrate that the amount of training data has a direct
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effect on network performance. Even though adding a hidden

layer resulted in a faster convergence and fewer iterations

during the training phase, the network was not necessarily-

better trained. Using the data that was available, all

species were successfully classified with the exception of the

A0RCA512, ABERD512 and ABRD2512. In every network

configuration, A0RCA512 was classified as "other". This

result appears to be more a factor of the quality of the data

than the network performance. The only other factor that

might have been a factor concerning this specific piece of

data is that it has a different sampling rate. The sperm

whale data from the same source, however, did not present the

same problem.

The Symmetrized Itakura Distance Measure classification

method provides some interesting classification possibilities

.

The quality of the signal references determines the

reliability of the Symmetrized Itakura Distance. Overall, the

SI distance classification method did not do as well as the

neural network. This could be both a result of the limited

data available and the choice of the reference signals. For

example, the humpback whale did not classify correctly. Note

that the humpback whale sound has a larger dynamic range than

the other signals. These dynamic characteristics appear to

have a significant effect on the spectral ratio.

In conclusion, the neural network provide a better

classification mechanism using AR model parameters than the
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Symmetrized Itakura distance measurement does for the data

available in this thesis. Results of both classification

methods are summarized in Table V.

Table V: SUMMARIZATION OF CLASSIFICATION METHODS.

FILE NAME NEURAL NETWORK SYMMETRIZED ITAKURA

AGRAY512 Classified Correctly Classified Correctly

AHUMP512 Classified Correctly No Classification

AKILL512 Classified Correctly No Classification

ALION512 Classified Correctly Classified Correctly

AORCA512 Wrong Classification Wrong Classification

ABERD512 Classified Correctly Wrong Classification

ABRD2 512 Classified Correctly Wrong Classification

ASP512 Classified Correctly Classified Correctly

ABIOA512 Classified Correctly No Classification

ABIOB512 Classified Correctly No Classification

ABIOC512 Classified Correctly No Classification

AB2A512 Classified Correctly No Classification

AB2B512 Classified Correctly No Classification

AB2C512 Classified Correctly No Classification

AICE512 Classified Correctly No Classification

AFLIP512 Classified Correctly No Classification

B . RECOMMENDATIONS

Additional work on this thesis is recommended. A method

to model the data signal recursively instead of segmenting it

as was accomplished in this thesis is recommended. In

addition, the SVD technique can be enhanced by incorporating
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a self-adjusting method to select either the model order or

the usable number of singular values.

This thesis can be further improved by expanding the data

base to provide a more comprehensive set of biological

signals. This should include transient acoustic signals to

enhance classification of biologies. Furthermore, a reference

library of biological signals that truly characterize the

biologies to be classified for use in the Symmetrized distance

needs to be established. Finally, methods to determine the

minimum size of the neural network architecture required to

perform the biological classification task are recommended.
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APPENDIX A - SOFTWARE AND HARDWARE DESCRIPTION

The thesis computer work was done using the two

commercially available software packages described below.

PRO-MATLAB
for Sun Workstations

Version 3.5i
The Mathworks , Inc

.

Cochituate Place
24 Prime Park Way
Natwick, MA 01760

Phone: (508)653-1415

A short description is provided from the MATLAB User's

guide:

MATLAB is a high-performance interactive software package
for scientific and engineering numeric computations.
MATLAB integrates numerical analysis, matrix computation,
signal processing, and graphics in an easy-to-use
environment where problems and solutions are expressed
just as they are written mathematically - without
traditional programming.

NeuralWorks Professional II/Plus
NeuralWare, Inc.

Penn Center West, Building IV, Suite 227
Pittsburgh, PA 15276
Phone: (412)787-8222

A short description is provided from the NeuralWare User's

guide:

NWorks is the core of a collection of products, that taken
together, provide the most complete and up-to-date neural
network development and deployment environment available.
It is a mult i -paradigm neural network proto- typing and
development tool. It can be used to design, build, train,
test and deploy neural networks to solve complex real-
world problems. Dozens of well-known built-in network
types can be quickly generated or design your own custom
networks. Numerous enhancements to backpropagation and
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other networks are included. Networks are displayed
graphically, PEs and connections can be easily added or
deleted. Dozens of math functions and learning rules can
be mixed and matched. Typical applications include:
financial analysis, signal processing, targeted marketing,
robotics and automation, pattern recognition, and
optimization.

The computers used in the thesis work were a Sun SPARC

station 1+ with 16 megabytes (MB) or random access memory

(RAM) and a more than 1 giga-bytes of hard disk storage

available through ECE server network and a Gateway 2 000 IBM/PC

compatible 386-25 MHz with math- coprocessor, 4 MB of RAM and

a total of 280 MB or hard disk storage.
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APPENDIX B - COMPUTER CODE

This appendix presents the MATLAB™ code used in the

thesis. The format of the appendix presents the MATLAB™

program code. This code was run from inside the MATLAB™

workspace as either a mfile or a function.

A. ITAKURA.

M

% itakura.m
%

% This routine will take the fft of a modeled biological
% signal and then classify the signal in regards to a
% computed Itakura distance measurement from five reference
% signals.
%

clear

cutoff = .51;
threshold = 2.00;

% Load the Itakura reference signals
load IGref
load IHref
load IKref
load ILref
load ISref

names = ['Gray Whale
'Humpback Whale
'Killer Whale
' Sealions
' Sperm Whale '

] ;

% Load the file wish to classify
load aflip512;
[a,b] =size (aflip512)

;

% Calculate the fft on biodata AR parameters
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for k=l:b
q=[l, -aflip512(:,k) ']

;

g=f ft ( [q, zeros (1, 512-length (q) ) ] )

;

gfft = 1 ./ abs(g)

;

biocomp=abs (gf ft) . * abs(gfft);

xl = IGref ./ biocomp;
x2 = biocomp ./ IGref;

x3 = IHref ./ biocomp;
x4 = biocomp ./ IHref;

x5 = IKref ./ biocomp;
x6 = biocomp . / IKref

;

x7 = ILref ./ biocomp;
x8 = biocomp ./ ILref;

x9 = ISref ./ biocomp;
xlO = biocomp ./ ISref;

alpha = 1/(512 A
2) ;

% Do Itakura Distance calculation

dcomp(:,k) = [0 . 5* (log (alpha*sum(xl) *sum(x2) )

)

0.5* (log(alpha*sum(x3) *sum(x4) )

)

.5* (log (alpha*sum(x5) *sum(x6) )

)

0.5* (log(alpha*sum(x7) *sum(x8) )

)

0.5* (log(alpha*sum(x9) *sum(xl0) ) ) ] ;

[m,i(k)] = min(dcomp ( : ,k) )

;

end;

% Classification of inputed biological data

num = [length (find(i==l)

)

length ( find (i==2)

)

length (find (i==3)

)

length ( find (i==4)

)

length (f ind(i==5) ) ] / b % Results in a fractional
breakdown

% Classification rule: if max value < cutoff -- no
classification

[maximum, imax] = max(num);
if maximum < cutoff

dispCNo Classification');
dispCAll values below established cutoff);
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else
meanimax = mean (dcomp ( : , imax) )

;

if meanimax > threshold
disp('No Classification');
disp ( 'This data is not one of the four whales or a

seal ion' )

;

else
disp ('The Data is classified as:');
disp (names (imax, : ) )

;

end;
end;

pause

% Plot the distance results
t = l:b;
plot ( t , dcomp ( 1 ,:),'-', t , dcomp (2 ,:),'--' ,t, dcomp ( 3 ,:),':', t ,..

.

dcomp ( 4 ,:),'-.', t , dcomp ( 5 ,:),'*'

)

title (' Itakura Distance Classification for a Porpoise'

B. ITAREF.M

% itaref.m
%
% This routine will take the segmented parts of modeled
% biologic sounds of and use these as the references for the
% Itakura Distance reference to classify biological data.
%

clear

% Load the appropriate files needed
load humparp
load lionarp
load spermarp
load killarp
load grayarp

% Create the Humpback Whale Sound segment Itakura Reference
h = [1, -humparp' ] ;

hp= f ft ( [h, zeros (1, 512 -length (h) ) ] )

;

fhump = 1 ./ abs(hp);
IHref = abs ( fhump) .* abs (fhump);

plot (fhump') ; title (
' FFT of Humpback Whale Itakura Reference')

keyboard

save IHref IHref
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% Create the Sealion reference for Itakura Distance
Classification

q = [1, -lionarp(
:
,1) ']

;

g = fft ( [q, zeros (1 , 512 -length (q) )])

;

flion = 1 ./ abs(g);
plot (flion' , 'wg'

)

title ('FFT of Sealion Sound AR Parameters to Form Itakura
Reference'

)

keyboard

ILref = abs (flion) .* abs (flion);
save ILref ILref

% Create the Sprem Whale Sound Itakura Reference
sp = [1, -spermarp ( :

, 1) ' ] ;

s=f ft ( [sp, zeros (1, 512-length(sp) ) ] )

;

fsperm = 1 ./ abs(s);
ISref = abs (f sperm) . * abs (f sperm)

;

;

plot (fsperm' ); title (' FFT of Sperm Whale Itakura Reference')
keyboard
save ISref ISref

% Create the Killer Whale sound Itakura Reference
1 = [1, -killarp'

]

;

p = fft ( [l,zeros(l,512-length(l) ) ] ) ;

fkill = 1 ./ abs(p)

;

IKref = abs(fkill) .* abs(fkill);

plot (fkill' ); title (' FFT of Killer Whale Itakura Reference')
keyboard
save IKref IKref

% Create the Gray Whale Sound Itakura Reference
12= [1, -grayarp' ] ;

p2=fft ( [12, zeros (1, 512-length (12) ) ] )

;

fgray = 1 ./ abs(p2);
IGref =abs (fgray) .* abs (fgray );

plot (fgray' ); title (' FFT of Gray Whale Itakura Reference')
keyboard

save IGref IGref
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C. PRONYSVD.M

function [a_hat , err] =pronysvd (y , n)
% function a_hat=pronysvd (y, n)
% compute the AR coefficients of data points y
% n=max. order desired
%

% This file combines prony and svd methods to model a segment
% of biological data. The segment of data (y) is provided
% along with the model order (n). The model parameters
% (a_hat) are computed and an error measurement (err) between
% the original segment and modeled signal is provided.
%

ny=size (y)

;

if ny(2)>ny(l), y=y' ; end;
y=y-mean(y)

;

N=length (y)

;

% Compute the correlation matrix of yd)
sum=0;
for t=n+l:N;

sum=sum+y (t-1: -1: t-n, 1) *y (t-1: -l:t-n, 1)
'

;

end;

Bias=l/ (N-n)

;

Ryy=Bias*sum;

% Compute the SVD of Ryy

[u,s,v] =svd(Ryy)

;

% Plot the singular values of s
clg
plot (diag (s) , 'wg'

)

pause
m=input (' enter number of s_values to be saved » ');

% first: subtract min. s_value:
Rxx=Ryy-s (n,n) *eye (n)

;

%

%second: compute pseudoinv. of Rxx keeping only m s_values:
ds=diag(s)

;

dsi(l:m)= 1 ./ ds(l:m); dsi (m+1 :n) =zeros (1, n-m)

;

si=diag (dsi)

;

% Compute H'x in terms of y
sum2=0

;

for t=n+l:N;
sum2 =sum2+y(t-l: - 1 : t-n, 1) *y ( t , 1) ;

end;
p=Bias*sum2

;

% To solve for a parameters first must solve for Rxx
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% since Rxx is not invertible (not full rank) use the
% pseudoinverse . Must look at the s matrix from
% above and set values close to zero to zero(<l) the
% rest of the values will be set inverted.
Rxx_inv = u*si*u'

;

% Compute the a estimated parameters from Rxx' *p
a_hat = Rxx_inv*p;

% Compute estimated spectrum
q= [ 1 , - a_hat ' ]

;

g=fft( [q, zeros (l,N-n-l) ]) ; fhat=l ./ abs(g);
Y=abs(fft(y))

;

fhat=fhat/sqrt (fhat*fhat' ) ; Y=Y/sqrt (Y' *Y)

;

% Plot the estimated against the original signal
plot ( [fhaf , Y] , 'wg' )

% Compute the error between the estimated and original
diff=Y-fhat'

;

D=(diff) '*diff

;

err= (sqrt (D) ) /N;

D. RESULT3.M

function [zz] = result3 (tst , start , finish)
%
% This function scores the 11 different files used
% to make up the B512TST.NNA for neural network testing
% and provides a percentage.
% tst == file to score
% start == starting position in the file
% finish == ending position in the file

x = tst (start : finish, 6 : 10)

;

[a,b] = size (x)

;

z = [];
for i = l:a

Xmax = max ( x ( i , : ) )

;

xx = x(i,:) == Xmax;
z = [z; xx] ;

end
zz = sum(z) /a;
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E. RESULTS.

M

% RESULTS.

M

a.
o

% This m-file process percentage results
% from neural network testing

clear
clg
load tst47.nnr
tst = tst47;
zzl=result3 (tst, 1, 32)

;

zz2=result3 (tst, 33, 77)

;

zz3=result3 (tst, 78, 116)

;

zz4=result3 (tst, 117, 137)
zz5=result3 (tst, 13 8, 169)
zz6=result3 (tst, 170,201)
zz7=result3 (tst , 202 , 3 54)
zz8=result3 (tst , 355 , 500)
zz9=result3 (tst, 501, 620)
zzl0=result3 (tst, 621, 820)

;

zzll=result3 (tst, 821, 1020)

;

z= [zzl; zz2 ; zz3 ; zz4 ; zz5 ; zz6 ; zz7; zz8 ; zz9 ; zzlO ; zzll]

;

zcent = 100*z

F. RMSE.M

% RMSE.M
a,
"5

% This m-file takes test file results from a neural
% network in a *.nnr format and computes the RMS error
% for the entire file. Row speciefies the length of the
% file and col is the number of output processing elements
% in the neural network.

clear
clg
row = 102 0;
col = 5

;

pts = row * col;

load tst46.nnr
data = tst46;
sum = ;

for i = 1: row
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for j = 1 : col
x(j) = (data(i,j) - data (i, j+5) )

A
2

;

sum = sum + x
( j )

;

end
end

rms_error = sum/pts

G. RUNDATA.M

% rundata.m
%

% This m-file is used to manipulate a large
% biological file. Uses function a_hat=pronysvd (y, n)

load humpback % Load the biological data file to
segment

err=zeros (1,68)

;

y=zeros (1024, 68)

;

Ahat=zeros (20, 68)

;

k=0;
for t=l:68;
yl=humpback(l+k:1024+k, 1) ;

k=1024 + k;

y ( : , t ) =yl

;

[a_hat, err] =pronysvd (yl, 20) ; % Computes the AR model
parameters Ahat ( : , t ) =a_hat

;

error (1, t) =err;

end;
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APPENDIX C - NEURAL NETWORK SCORING PERCENTAGES

This appendix provides a tabular listing of the scoring

percentages of each neural network configuration. Each table

lists by category the percentage of correct classifications

for every type presented to the neural network. The name of

the neural network is given by a set of four numbers separated

by dashes, i.e. 20/15/5/5. The name corresponds to 20 input

processing elements, 15 processing elements in hidden layer

1, 5 processing elements in hidden layer 2 and, 5 processing

elements in the output layer.

SCORING PERCENTAGES FOR NEURAL NETWORK 20/15/0/5

FILE GRAY HUMPBACK KILLER SPERM OTHER

AGRAY512 100

AHUMP512 00 13.33 6.67

AKILL512 20.21 69.23 2.56

ALION512 100

AORCA512 3.13 3.13 93.75

ASP512 3.13 01.25 15.62

AB2C512 73.06 26.14

ADIOA512 71.23 20.76

ADRD2512 4.17 .03 95.0

AICE512 100

AFI.IP512 7.0 93.0
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SCORING PERCENTAGES FOR NEURAL NETWORK 20/15/5/5

FILE GRAY HUMPBACK KILLER SPERM OTHER

AGRAY512 100

ACUMP512 80.0 6.67 13.33

AKILL512 20.51 61.54 17.95

ALION512 100

AORCA512 3.13 96.87

ASP512 3.13 04.37 12.5

AD2C512 94.12 5.08

ABIOA512 93.04 6.16

ABRD2512 16.67 .03 85.0

AICE512 100

AFLIP512 34.5 65.5

SCORING PERCENTAGES FOR NEURAL NETWORK 20/15/10/5

FILE GRAY HUMPDACK KILLER SPERM OTHER

AGRAY512 100

AHUMP512 66.67 15.56 17.77

AKILL512 25.64 69.23 5.13

ALION512 100

AORCA512 3.12 96.88

ASP512 3.12 3.12 04.38 9.38

AD2C512 .65 93.46 5.88

ADIOA512 92.47 7.53

ABRD2512 8.33 .83 90.83

AICE512 100

AFLIP512 30.0 62.0
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SCORING PERCENTAGES FOR NEURAL NETWORK 20/15/15/5

FILE GRAY HUMPBACK KILLER SPERM OTDER

AGRAY512 100

ADUMP512 73.33 17.70 8.89

AKILL512 20.51 76.92 2.57

ALION512 100

AORCA512 6.25 9.37 84.38

ASP512 3.12 93.75 3.13

AB2C512 .65 84.97 14.37

ADIOA512 01.51 18.49

ABRD2512 9.17 90.83

AICE512 100

AFLIP512 24.5 75.5

SCORING PERCENTAGES FOR NEURAL NETWORK 20/20/0/5

FILE GRAY HUMPBACK KILLER SPERM OTHER

AGRAY512 100

AHUMP512 00 15.56

AKILL512 30.77 66.67 2.56

ALION512 100

AORCA512 18.75 9.38 71.85

ASP512 3.12 3.12 90.63 3.12

AB2C512 .65 92.01 6.54

ADIOA512 95.21 4.79

ADRD2512 6.67 93.33

AICE512 100

AFLIP512 30 70.0
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SCORING PERCENTAGES FOR NEURAL NETWORK 20/20/10/5

FILE GRAY HUMPBACK KILLER SPERM OTHER

AGRAY512 100

AHUMP512 84.44 6.67 0.89

AKILL512 46.15 46.15 7.69

ALION512 100

AORCA512 15.63 6.25 78.12

ASP512 12.5 71.80 15.62

AB2C512 .65 32.03 67.32

ABIOA512 19.06 80.14

ABRD2512 7.5 92.5

AICE512
r m " -

-

100

AFLIP512 1.0 99.0

SCORING PERCENTAGES FOR NEURAL NETWORK 20/20/15/5

FILE GRAY HUMPBACK KILLER SPERM OTHER

AGRAY512 100

AUUMP512 77.78 11.11 11.11

AKILL512 38.46 46.15 15.30

ALION512 100

AORCA512 9.37 90.63

ASP512 3.12 3.12 84.38 9.38

AB2C512 .65 84.31 15.03

ADIOA512 79.45 20.55

ABRD2512 8.33 .833 90.83

AICE512
«-

100

AFLIP512 21.0 79.0
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