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ABSTRACT

The Cellular Automata (CA) method is based on the idea that the
macroscopic behavior of a system can be captured by using simple local rules
running at a microscopic level. In other words, a system can be modeled by
means of simple local rules that govern the behavior of the whole system. In this
thesis a local CA rule set is introduced and a methodology is developed to model
physical systems that are governed by one and two dimensional wave equations.
One dimensional systems are also successfully modeled by using CA and FEM
techniques working as coupled, whereas two dimensional systems could only be
modeled in an error margin due to the variation of the introduced time scaling
factor when external forces are involved. Also, the applicability of the CA method

to fracture mechanics problems is investigated.
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INTRODUCTION

A. DEFINITION

Instead of providing a formal definition of Cellular Automaton (plural:
Cellular Automata) (CA), we can build up its definition through an example.
Consider a chess board where each square on the board is considered a cell.
However, instead of being comprised of only two colors, each cell can be any
one of a finite number of distinct colors, but not a combination of these colors.
For example, one cell can be red and another white, but no cell can be half red
and half white. Further, on this board, time is also discrete. At every time step,
the colors of the cells change according to a rule (transition rule) which is a
function of the colors of neighboring cells and cells’ own color, and every cell
changes its color at the same time. The whole board with this rule is called a

cellular automaton.

In general, CA cells do not have to be colored, but they must be in one of
a finite number of states at any given time step. These states may be
represented by colors, integer numbers (0, 1, 2, ...), or any finite alphabet.
Usually the number of states is small, but in principle any finite number of states
is acceptable. The way that the neighboring cells are defined changes from
automaton to automaton. One can only use the four cells on the east, west, north
and south (von Neumann neighborhood), or one can use eight cells (in addition
to east, west, north and south, northeast, southeast, southwest and northwest —
Moore neighborhood). One can use even a hexagonal lattice instead of a square
lattice. In fact CA does not have to be on a plane, any number of dimensions is

allowed [1].

Initially, it is assumed that every cell is in the same state, with the
exception of some finite number of cells which are in a different state. This is

called the configuration.

Let’s give an example. The rule we will discuss here was initially proposed
by Edward Fredkin in the 1970’s [2]. The rule is defined on a two dimensional
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plane, where each cell is labeled by its position vector r~ (i,j), where i and | are
the row and column indices, respectively. A function lt(rf is associated to the
lattice and describes the state of each cell at iteration t. The state can be 1 or 0.
The CA rule defines how to compute the state of each cell at iteration t+1 by
using the states at iteration t. We start from an initial condition at time t = Owith a
given configuration of the values lo(r3J on the lattice. The state at time t = 1 will
be obtained as follows

1. For each cell, compute the sum of states (1 or 0) on the four
nearest neighbors (north, south, east and west). The system is

supposed to be periodic in both i and | directions so that every cell

has four neighbors. Using periodic boundaries assures this
calculation to be well defined for all sites.

2. If the sum is even, the new state ll(rjj Is O (white), otherwise, itis 1

(black).

From a mathematical point of view, this CA rule can be expressed by the

following relation
.G @ 1)1 C 4) (JGT1H (@G 1Y @

where the symbol T stands for the exclusive-or logical operation. This same rule

is repeated to find the states attime t =2, 3, 4, ... [3].

In Figure 1 we can see that after some number of iterations the rule leads
to very complex shapes. This example shows that despite the simplicity of the

local rule, the behavior of a CA model can be quite complex [3].

In this example, the rule is identical for each cell and is applied
simultaneously to each of them, leading to a synchronous dynamics. This rule is
homogeneous, that is it cannot depend explicitly on the cell position rC.; However,
spatial or even temporal inhomogeneities can be introduced. Boundary cells are

typical examples of spatial inhomogeneities where the boundaries are not
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supposed to be periodic. In the case of a rectangular CA domain, it is obvious
that the cells at the edges do not have as many neighbors as the cells inside the
domain do, thus resulting in spatial inhomogeneity. Several approaches can be
used to mitigate this concern; including, assigning a constant state to edge cells,
or assuming periodic boundaries as we did in our example. Similarly, it is
possible to switch between two rules, which one of them is valid at even time

steps and the other at odd time steps.

(a) (b) (c)
Figure 1. The T rule on a 256 x 256 periodic lattice. (a) Initial configuration.
(b)t=53(c)t=119

According to the rule definition CA is deterministic. The rule is some well
defined function and will always evolve identically given the same initial
configuration. However, it may be very convenient for some applications to have
a certain degree of randomness in the rule. CAs whose updating rule is driven by
some external probabilities are called probabilistic cellular automata. On the
other hand, those which strictly comply with the definition given above are
referred to as deterministic cellular automata [3].

B. HISTORY AND APPLICABLE AREAS

The history of CA extends back to the 1940’s. It was invented by von
Neumann, a Hungarian mathematician, to extract the abstract mechanisms
leading to self-reproduction of biological organisms [4]. In 1970, British
mathematician John Horton Conway invented the “Game of Life”, the best known
example of a CA [5]. The Game of Life CA is represented on an infinite two
dimensional grid of cells, where every cell can have one of two possible states

(dead or alive). The rules of this game are

3



1. Any live cell with less than two neighbors dies

2. Any live cell with more than three neighbors dies

3. Any live cell with two or three neighbors stays unchanged
4. Any dead cell with exactly three neighbor comes to life

The game of life has attracted much interest, because it has shown that
very complex patterns can emerge from the application of very simple rules.
Another interesting result was that it is always possible to find an initial
configuration of cellular space that can reproduce the behavior of any electronic

gate, so to imitate any computation process [3].

In the 1980s, studies by S. Wolfram showed that a CA may exhibit many
of the behaviors of a continuous system, yet in a much simpler mathematical
framework [6, 7]. He further noted that CAs not only behaved in a manner similar
to certain dynamical systems, but that they could be used to represent a model of
a given physical system. Wolfram also invented the standard naming convention
for CA rules, which is based on using the decimal representation of the rule table

in binary format [3, 10].

Some of the other related research areas under consideration include fluid
dynamics problems like porous media, granular flows, spreading of a liquid
droplet and wetting phenomena, microemulsion and physical situations like
pattern formation, reaction-diffusion processes, nucleation-aggregation growth
phenomena and traffic processes [3].

C. ADVANTAGES AND DISADVANTAGES

The power of the CA approach comes from its simplicity. In modeling a
physical system, the traditional methodology (and maybe the only feasible way
for a long time) has been to try to solve a set of equations (e.g. a differential
equation) that describes all the complex behavior of the system and whose
solution gives the desired results. With the increased processing power of
computers, a new way has become feasible, rather than trying to model the
system as a whole, modeling it as the sum of its parts. By using the CA
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approach, one can attempt to model the system by means of simple local rules
governing the behavior of the whole system. The CA model must use some
simple (and intuitive or experimental at some level) local rules at the microscopic
level, but at the same time, it must reflect the macroscopic behavior of the
physical system under consideration.

Numerically, an advantage of the CA approach is its simplicity and its
ease of implementation on computers and parallel machines. In addition, working

with Boolean quantities prevents instabilities.

Drawbacks of the CA approach derive mostly from its discrete nature. An
important one is the statistical noise requiring a systematic averaging process.
Another one is the little flexibility of a rule in order to describe a wider range of
physical situations [3]. Wolfram investigated this subject and showed that one
can define a universal rule that can emulate the behaviors of most of the other

simple rules [10].

According to its definition and its nature, the CA approach seems
unsuitable for modeling large-scale moving objects. This is because in the CA
approach the only things changing are the states of the cells, not the positions of
the cells. To mitigate this shortcoming, a number of suggested models [8, 9]

have been developed and will be discussed further in Chapter II.

In 1980s, McNamara and Zanetti [12], Higuares, Jimenes and Succi [13]
showed that real number representation of CA cellular states had some
advantages over working with Boolean cellular states. This approach is called the
Lattice Boltzmann (LB) method and is numerically more efficient than the

Boolean dynamics.

Finally, it should be remarked that the CA approach is a methodology of
searching for ways to model complex systems in terms of simple local rules that
govern the whole. Its richness comes from the microscopic simplicity and rules at
the cell level [3, 10].



D. METHODOLOGY
In Chapter I, a rule to model waves and large scale moving objects,

suggested by Chopard [6] will be introduced. In Chapters Ill and IV, the
implementation of the rule introduced in Chapter Il is investigated on one and two
dimensional wave propagation problems, respectively. In Chapter V, the
applicability of the CA rule to a fracture mechanics problem is investigated. From
this perspective, a methodology to make Finite Element (FE) and CA methods

work coupled will also be developed.



Il. RULES AND BEHAVIOR OF A CA MODEL

A. THE RULE

Our main interest is in modeling wave propagation problems using the CA
approach. Recall, the main elements that constitute a CA domain are cells which
can be in a finite number of states, namely, 0, 1, 2, ...; white / black; dead / alive;
etc. An example of a CA model consisting of cells that can be either white or
black (1 or 0) was demonstrated in Chapter I. On an automaton, the particles are
not moving from one site to another, only the states of the cells are changing
during iterations, without any transport of matter.

Chopard proposed a simple, time-reversible model [8] with features

1. to deal with large-scale objects, which can move and interact

with their surroundings

2. to allow these objects to have adjustable mass, energy and
momentum
3. to maintain the size and the integrity of these objects during the

evolution. Deformations are allowed, but the particles composing
them should not spread out in the entire space

In the proposed model, the CA space is composed of particles on a lattice
and the springs that connect and hold the particles together on the lattice. Only
one particle can be linked to each end of a spring. The particles can be of two
kinds, namely white or black particles. The end points of a spring can be either
color, and the consecutive particles should be of different colors which means
that both neighbors of a patrticle is of the same color (e.g. both of the neighbors
of a white particle must be black). A spring should not fold onto itself, therefore
we shall give it an orientation and length. According to this definition, a particle
initially on the arbitrary positive side of a spring should not pass to the other side
during the evolution process. The particles are allowed to alternate in a three
dimensional cubic lattice, but no two particles are allowed to occupy the same

lattice position in the same time step (this means that no spring can be zero
7



length or fold onto itself). An example of a one dimensional lattice (@ string) is

illustrated in Figure 2. In this example, the positive x-direction is arbitrarily

selected to the right.

Figure 2. One dimensional CA lattice.

The rule for time evolution of the internal particles (particles with two

neighbors) is given as [8]:
reck ) r r r¢) (2)

wherer(t) represents the position of a particle at time t, and r. and r. represent

the positions of two neighboring particles. This equation implies that the position
of a particle at the next time step is a reflection of the particle with respect to the

center of mass of its two neighbors. This can be demonstrated in Figure 2. Let

r(t) represents the position of the second black particle, r(t)=5. Therefore, r. and

I+ represent the positions of first and second white particles, respectively.

It is apparent that Eq.2 is valid for particles with only two neighbors. For

the particles at the endpoints, with only one neighbor, the reflection is performed
with respect to r. * a where a is a constant vector which represents the
unstretched length and orientation of the spring that links the particles. For
convenience a sign convention is used, where the x component of the a vector is
assigned a positive value. Also, to prevent the particles from moving off the
lattice points, a should be an integer or half integer (assuming that the lattice
coordinates are given in integers). We will discuss the a vector in detail in the

next section.



The evolution rule for a particle at left end of a string (current position of

the particle is r(t) ) is given by equation

r¢ 1) 2¢ a) r¢) (3)
Similarly, the new position of a particle at the right end is

r¢ 1) 2¢ a) r¢) (4)

The time evolution has two phases. At each time step only one kind of
particle can move. For instance, in the first time step, all the white particles are
held fixed and the equations described above are applied to black particles only.
In the first time step, only black particles change their positions and they move
simultaneously. In the next time step, black particles are held fixed and only

white particles move on the lattice simultaneously, and so on [8].

Figure 3 demonstrates the time evolution of an internal particle and an end
particle on a one dimensional lattice (a=3/2. Panel (a) shows the new position of
the internal particle which is calculated by reflecting the particle with respect to
the center of mass of its two neighboring black particles (Eq.2). Panel (c) shows

the new position of the particle at right end of the string which is calculated by

reflecting the particle with respect to (r. + a) (Eq.4).

® X O ® ® O ®
@t=0 b)t=1

o O X @ ® O ®
(©t=1 (d)t=2

Figure 3. Time evolution of one dimensional string particles. (a) and (b) for internal

particle, (c) and (d) for right end particle.



In the next section we will investigate the limiting factors of the spring
vector a in detail.
B. SPRING VECTOR

As mentioned in the previous section, there are some constraints in

defining the spring vector a. Two of these constraints are that
1. the x component of the a vector should be positive, and

2. a should be an integer or half integer to prevent the particles from

moving off the lattice points (assuming the lattice coordinates are given

as integers).

In addition to these constraints, there are two other requirements on the
spring vector. First, a spring should not fold over itself. For instance, a particle at
the left end of the string should not pass to the right of its right neighbor in any of
the time evolution steps. Similarly, a particle at the right end of the string should
not pass to the left of its left neighbor in any of the time evolution steps (right and
left are defined assuming that the positive x-coordinate is increasing to the right).
Second, the end particles should not go out of the lattice (not the same as
moving off the lattice points). This second requirement can be relaxed according
to the physical system that is being modeled. If this is the case, one can ignore
the constraints on a that come from this last requirement. We will study these two
requirements separately for the left end and right end patrticles.

1. Left End Particles
The first requirement is that a spring should not fold over itself. This

implies that r(t+1) < r. . When we substitute Eq.3 into this, we have

re 1) r
2 a) rg) r
2r 22 rg¢) r (5)
a 7 r)
2
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r(t) Ny

S ®

Figure 4. Left end particle.

The last requirement implies that r(t+1) ¢ X,, where X, represents the left

end coordinate of the lattice (Figure 4). Again by substituting Eq.3 into the left
hand side of this equation, the following expressions result

re 1) tx,
2(r a) r) x, t (6)

adx" re) 2r
2

By combining Eq. 5 and 6, we show that the allowed interval of a for a left

end particle on the lattice is

ror@) a X, dr(t) s
2 2
2. Right End Particles

Following the same formulation, the first requirement implies that

(7)

r(t+1) > r.. Substituting Eqg.4 into this expression yields

r¢ 1) !'r
2 a) r@) r !
2r 2a rg) r ! (8)
a lr(t)—r
2
- 2 -
1 1 U 1 1 ‘ 1

Figure 5. Right end particle.
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The last requirement implies that r(t+1) ” X_, where X_ represents the
right end coordinate of the lattice. Substituting Eq.4 into the left hand side of this

equation yields

rit 1) dx,
2(r a) r) x. d (9)
X rt) 2r

2

ad

By combining these two, the allowed interval of a for a right end particle on

the lattice is

2 2

re) r a X, dr(t) 2 (10)

The significance of these results is that if the distance between an end
particle and its neighbor is more than 2a, this rule overshoots the end particle
and causes it to move to the other side of its neighbor and fold onto itself. This
also implies that the spring changes orientation, which is a violation because we
defined the a as a constant. If this distance is exactly 2a, then the particle
collides with its neighbor and tries to occupy the same lattice point with its
neighbor. If we are to use this rule, one should bear in mind that a spring linking
an end particle and its neighbor cannot stretch more than twice its original length,
whereas there is no limit for springs linking internal particles with exactly two
neighbors.

C. VELOCITY, MASS, MOMENTUM AND ENERGY

Since the purpose of the proposed time evolution model is to model
moving objects, we need to define the velocity of such a model. For this
discussion, two kinds of velocities are defined. The first one is the velocity of the

string V, which is 1 over the required number of time steps to cycle back to its

original configuration. The second one is the speed of each patrticle Vv;, which is
the distance a particle will travel in the next time step (note that every time step is
1 unittime, t 1).

12



In Figure 6, it takes 6 time steps for the string to cycle back to its original
configuration, and all the particles thus the string moved one lattice point to the

right. Therefore, the speed of the string is 1/6.

Figure 6. Speed of a string (After [8]).

We define the total number of particles as N, and the index i represents

the N particles in a string. The indices of the particles increase in the positive

x-direction. This convention will assist us in modeling the system in a computer

simulation, which is discussed at the end of this chapter.

The total mass of the string is N-1 (1/2 from the end particles and 1 from

each of the internal particles). Knowing the velocity and the mass, the

momentum of a string is

1
vV — 11
. 2% (11)
In [6] it is shown that the total energy of the string is given by

E S (xo x @) (v, v 9 (& z 3% (1

where X, Y and Z represent the spatial coordinates of the particles.

It can be proven that the mass, momentum and energy of a string are
conserved during the time evolutions by using the discrete Hamiltonian formalism

[8]. According to Eq.11 and Eq.12, one can adjust the mass, momentum and
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energy of a string by adjusting the number of particles and the initial configuration

of the particles on the lattice.

Up to this point we have restricted our examples to one dimensional
lattices. Of course this is not always the case. In a multi dimensional lattice, it is
important to label / index the particles with increasing numbers towards the
positive x-direction (to ensure that we are able to define the left and right
neighbors consistently). After that, the time evolution formulation (Eq. 2, 3 and 4)
can be applied for all directions separately or one can define all particle locations
as vectors and apply the equations as vector algebra. The motions of a string
along the X direction is called longitudinal, and along the y and Zz directions
transverse. Figure 7 demonstrates the time evolution of a string on a two
dimensional lattice where a=(3/2,0) Note that the internal particles are reflected
with respect to the center of mass of their neighbors, and the end particles are
reflected with respect to the point which is the vector sum of their neighbor and a

vector.

We have already deviated from the classical CA definition by using
coordinates of particles rather than the states of cells which allowed us to model
a moving object, but in philosophy and methodology we are still using CA
approach in the sense that the coordinates of particles in the next time step are
still calculated according to a rule that depends on the coordinates of neighboring
particles. This rule is spatially and temporally inhomogeneous, because the rules
for internal and end particles are different, and they are applied to only one kind

of a particle (black / white) at each time step.

We will go one step further and relax the rule, by saying that the particle