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ABSTRACT 

The Cellular Automata (CA) method is based on the idea that the 

macroscopic behavior of a system can be captured by using simple local rules 

running at a microscopic level. In other words, a system can be modeled by 

means of simple local rules that govern the behavior of the whole system. In this 

thesis a local CA rule set is introduced and a methodology is developed to model 

physical systems that are governed by one and two dimensional wave equations. 

One dimensional systems are also successfully modeled by using CA and FEM 

techniques working as coupled, whereas two dimensional systems could only be 

modeled in an error margin due to the variation of the introduced time scaling 

factor when external forces are involved. Also, the applicability of the CA method 

to fracture mechanics problems is investigated. 
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I. INTRODUCTION 

A. DEFINITION 

Instead of providing a formal definition of Cellular Automaton (plural: 

Cellular Automata) (CA), we can build up its definition through an example. 

Consider a chess board where each square on the board is considered a cell.  

However, instead of being comprised of only two colors, each cell can be any 

one of a finite number of distinct colors, but not a combination of these colors. 

For example, one cell can be red and another white, but no cell can be half red 

and half white. Further, on this board, time is also discrete. At every time step, 

the colors of the cells change according to a rule (transition rule) which is a 

function of the colors of neighboring cells and cells’ own color, and every cell 

changes its color at the same time. The whole board with this rule is called a 

cellular automaton.  

In general, CA cells do not have to be colored, but they must be in one of 

a finite number of states at any given time step. These states may be 

represented by colors, integer numbers (0, 1, 2, …), or any finite alphabet. 

Usually the number of states is small, but in principle any finite number of states 

is acceptable. The way that the neighboring cells are defined changes from 

automaton to automaton. One can only use the four cells on the east, west, north 

and south (von Neumann neighborhood), or one can use eight cells (in addition 

to east, west, north and south, northeast, southeast, southwest and northwest – 

Moore neighborhood). One can use even a hexagonal lattice instead of a square 

lattice. In fact CA does not have to be on a plane, any number of dimensions is 

allowed [1]. 

Initially, it is assumed that every cell is in the same state, with the 

exception of some finite number of cells which are in a different state. This is 

called the configuration.  

Let’s give an example. The rule we will discuss here was initially proposed 

by Edward Fredkin in the 1970’s [2]. The rule is defined on a two dimensional 
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plane, where each cell is labeled by its position vector ( , )r i j� 
�G

, where i and j are 

the row and column indices, respectively. A function ( )t r�\
�G

 is associated to the 

lattice and describes the state of each cell at iteration t. The state can be 1 or 0. 

The CA rule defines how to compute the state of each cell at iteration t+1 by 

using the states at iteration t. We start from an initial condition at time t = 0 with a 

given configuration of the values 0( )r�\
�G

 on the lattice. The state at time t = 1 will 

be obtained as follows 

1. For each cell, compute the sum of states (1 or 0) on the four 

nearest neighbors (north, south, east and west). The system is 

supposed to be periodic in both i and j directions so that every cell 

has four neighbors. Using periodic boundaries assures this 

calculation to be well defined for all sites.  

2. If the sum is even, the new state 1( )r�\
�G

 is 0 (white), otherwise, it is 1 

(black). 

From a mathematical point of view, this CA rule can be expressed by the 

following relation 

 1( , ) ( 1, ) ( 1, ) ( , 1) ( , 1)t t t t ti j i j i j i j i j�\ � \ � \ � \ � \�� �  � � � † � � � † � � � † � � (1) 

where the symbol �†  stands for the exclusive-or logical operation. This same rule 

is repeated to find the states at time t = 2, 3, 4, … [3]. 

In Figure 1 we can see that after some number of iterations the rule leads 

to very complex shapes. This example shows that despite the simplicity of the 

local rule, the behavior of a CA model can be quite complex [3]. 

In this example, the rule is identical for each cell and is applied 

simultaneously to each of them, leading to a synchronous dynamics. This rule is 

homogeneous, that is it cannot depend explicitly on the cell position r
�G

. However, 

spatial or even temporal inhomogeneities can be introduced. Boundary cells are 

typical examples of spatial inhomogeneities where the boundaries are not 
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supposed to be periodic. In the case of a rectangular CA domain, it is obvious 

that the cells at the edges do not have as many neighbors as the cells inside the 

domain do, thus resulting in spatial inhomogeneity. Several approaches can be 

used to mitigate this concern; including, assigning a constant state to edge cells, 

or assuming periodic boundaries as we did in our example. Similarly, it is 

possible to switch between two rules, which one of them is valid at even time 

steps and the other at odd time steps. 

     

  (a)            (b)          (c) 

Figure 1.   The �†  rule on a 256 x 256 periodic lattice. (a) Initial configuration.           

(b) t = 53 (c) t = 119 

According to the rule definition CA is deterministic. The rule is some well 

defined function and will always evolve identically given the same initial 

configuration. However, it may be very convenient for some applications to have 

a certain degree of randomness in the rule. CAs whose updating rule is driven by 

some external probabilities are called probabilistic cellular automata. On the 

other hand, those which strictly comply with the definition given above are 

referred to as deterministic cellular automata [3]. 

B. HISTORY AND APPLICABLE AREAS 

The history of CA extends back to the 1940’s. It was invented by von 

Neumann, a Hungarian mathematician, to extract the abstract mechanisms 

leading to self-reproduction of biological organisms [4].  In 1970, British 

mathematician John Horton Conway invented the “Game of Life”, the best known 

example of a CA [5]. The Game of Life CA is represented on an infinite two 

dimensional grid of cells, where every cell can have one of two possible states 

(dead or alive). The rules of this game are 
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1. Any live cell with less than two neighbors dies 

2. Any live cell with more than three neighbors dies 

3. Any live cell with two or three neighbors stays unchanged 

4. Any dead cell with exactly three neighbor comes to life 

The game of life has attracted much interest, because it has shown that 

very complex patterns can emerge from the application of very simple rules. 

Another interesting result was that it is always possible to find an initial 

configuration of cellular space that can reproduce the behavior of any electronic 

gate, so to imitate any computation process [3]. 

In the 1980s, studies by S. Wolfram showed that a CA may exhibit many 

of the behaviors of a continuous system, yet in a much simpler mathematical 

framework [6, 7]. He further noted that CAs not only behaved in a manner similar 

to certain dynamical systems, but that they could be used to represent a model of 

a given physical system. Wolfram also invented the standard naming convention 

for CA rules, which is based on using the decimal representation of the rule table 

in binary format [3, 10].  

Some of the other related research areas under consideration include fluid 

dynamics problems like porous media, granular flows, spreading of a liquid 

droplet and wetting phenomena, microemulsion and physical situations like 

pattern formation, reaction-diffusion processes, nucleation-aggregation growth 

phenomena and traffic processes [3].  

C. ADVANTAGES AND DISADVANTAGES 

The power of the CA approach comes from its simplicity. In modeling a 

physical system, the traditional methodology (and maybe the only feasible way 

for a long time) has been to try to solve a set of equations (e.g. a differential 

equation) that describes all the complex behavior of the system and whose 

solution gives the desired results. With the increased processing power of 

computers, a new way has become feasible, rather than trying to model the 

system as a whole, modeling it as the sum of its parts. By using the CA 
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approach, one can attempt to model the system by means of simple local rules 

governing the behavior of the whole system. The CA model must use some 

simple (and intuitive or experimental at some level) local rules at the microscopic 

level, but at the same time, it must reflect the macroscopic behavior of the 

physical system under consideration. 

Numerically, an advantage of the CA approach is its simplicity and its 

ease of implementation on computers and parallel machines. In addition, working 

with Boolean quantities prevents instabilities.  

Drawbacks of the CA approach derive mostly from its discrete nature. An 

important one is the statistical noise requiring a systematic averaging process. 

Another one is the little flexibility of a rule in order to describe a wider range of 

physical situations [3]. Wolfram investigated this subject and showed that one 

can define a universal rule that can emulate the behaviors of most of the other 

simple rules [10]. 

According to its definition and its nature, the CA approach seems 

unsuitable for modeling large-scale moving objects.   This is because in the CA 

approach the only things changing are the states of the cells, not the positions of 

the cells.  To mitigate this shortcoming, a number of suggested models [8, 9] 

have been developed and will be discussed further in Chapter II. 

In 1980s, McNamara and Zanetti [12], Higuares, Jimenes and Succi [13] 

showed that real number representation of CA cellular states had some 

advantages over working with Boolean cellular states. This approach is called the 

Lattice Boltzmann (LB) method and is numerically more efficient than the 

Boolean dynamics. 

Finally, it should be remarked that the CA approach is a methodology of 

searching for ways to model complex systems in terms of simple local rules that 

govern the whole. Its richness comes from the microscopic simplicity and rules at 

the cell level [3, 10]. 
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D. METHODOLOGY 

In Chapter II, a rule to model waves and large scale moving objects, 

suggested by Chopard [6] will be introduced. In Chapters III and IV, the 

implementation of the rule introduced in Chapter II is investigated on one and two 

dimensional wave propagation problems, respectively. In Chapter V, the 

applicability of the CA rule to a fracture mechanics problem is investigated. From 

this perspective, a methodology to make Finite Element (FE) and CA methods 

work coupled will also be developed.  
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II. RULES AND BEHAVIOR  OF A CA MODEL 

A. THE RULE 

Our main interest is in modeling wave propagation problems using the CA 

approach. Recall, the main elements that constitute a CA domain are cells which 

can be in a finite number of states, namely, 0, 1, 2, …;  white / black; dead / alive; 

etc. An example of a CA model consisting of cells that can be either white or 

black (1 or 0) was demonstrated in Chapter I. On an automaton, the particles are 

not moving from one site to another, only the states of the cells are changing 

during iterations, without any transport of matter. 

Chopard proposed a simple, time-reversible model [8] with features 

1. to deal with large-scale objects, which can move and interact 

with their surroundings 

2. to allow these objects to have adjustable mass, energy and 

momentum 

3. to maintain the size and the integrity of these objects during the 

evolution. Deformations are allowed, but the particles composing 

them should not spread out in the entire space 

In the proposed model, the CA space is composed of particles on a lattice 

and the springs that connect and hold the particles together on the lattice. Only 

one particle can be linked to each end of a spring. The particles can be of two 

kinds, namely white or black particles. The end points of a spring can be either 

color, and the consecutive particles should be of different colors which means 

that both neighbors of a particle is of the same color (e.g. both of the neighbors 

of a white particle must be black). A spring should not fold onto itself, therefore 

we shall give it an orientation and length. According to this definition, a particle 

initially on the arbitrary positive side of a spring should not pass to the other side 

during the evolution process. The particles are allowed to alternate in a three 

dimensional cubic lattice, but no two particles are allowed to occupy the same 

lattice position in the same time step (this means that no spring can be zero 
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length or fold onto itself).  An example of a one dimensional lattice (a string) is 

illustrated in Figure 2. In this example, the positive x-direction is arbitrarily 

selected to the right. 

1 2 3 4 5 6 7 8 9 10 11
-0.5

0

0.5

1

1.5

t = 0

 

Figure 2.   One dimensional CA lattice. 

The rule for time evolution of the internal particles (particles with two 

neighbors) is given as [8]: 

 ( 1) ( )r t r r r t� � � ��� �  � � � � (2) 

where r(t) represents the position of a particle at time t, and r+ and r- represent 

the positions of two neighboring particles. This equation implies that the position 

of a particle at the next time step is a reflection of the particle with respect to the 

center of mass of its two neighbors. This can be demonstrated in Figure 2. Let 

r(t) represents the position of the second black particle, r(t)=5. Therefore, r- and 

r+ represent the positions of first and second white particles, respectively.  

It is apparent that Eq.2 is valid for particles with only two neighbors. For 

the particles at the endpoints, with only one neighbor, the reflection is performed 

with respect to r± ± a, where a is a constant vector which represents the 

unstretched length and orientation of the spring that links the particles. For 

convenience a sign convention is used, where the x component of the a vector is 

assigned a positive value. Also, to prevent the particles from moving off the 

lattice points, a should be an integer or half integer (assuming that the lattice 

coordinates are given in integers). We will discuss the a vector in detail in the 

next section. 
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The evolution rule for a particle at left end of a string (current position of 

the particle is r(t) ) is given by equation 

 ( 1) 2( ) ( )r t r a r t���� �  � � � � (3) 

Similarly, the new position of a particle at the right end is 

 ( 1) 2( ) ( )r t r a r t���� �  � � � � (4) 

The time evolution has two phases. At each time step only one kind of 

particle can move. For instance, in the first time step, all the white particles are 

held fixed and the equations described above are applied to black particles only. 

In the first time step, only black particles change their positions and they move 

simultaneously. In the next time step, black particles are held fixed and only 

white particles move on the lattice simultaneously, and so on [8]. 

Figure 3 demonstrates the time evolution of an internal particle and an end 

particle on a one dimensional lattice (a=3/2). Panel (a) shows the new position of 

the internal particle which is calculated by reflecting the particle with respect to 

the center of mass of its two neighboring black particles (Eq.2). Panel (c) shows 

the new position of the particle at right end of the string which is calculated by 

reflecting the particle with respect to (r- + a) (Eq.4). 

     

  (a) t = 0    (b) t = 1 

   

  (c) t = 1    (d) t = 2 

Figure 3.   Time evolution of one dimensional string particles. (a) and (b) for internal 

particle, (c) and (d) for right end particle. 
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In the next section we will investigate the limiting factors of the spring 

vector a in detail.  

B. SPRING VECTOR 

As mentioned in the previous section, there are some constraints in 

defining the spring vector a. Two of these constraints are that 

1. the x component of the a vector should be positive, and 

2. a should be an integer or half integer to prevent the particles from 

moving off the lattice points (assuming the lattice coordinates are given 

as integers).  

In addition to these constraints, there are two other requirements on the 

spring vector. First, a spring should not fold over itself. For instance, a particle at 

the left end of the string should not pass to the right of its right neighbor in any of 

the time evolution steps. Similarly, a particle at the right end of the string should 

not pass to the left of its left neighbor in any of the time evolution steps (right and 

left are defined assuming that the positive x-coordinate is increasing to the right). 

Second, the end particles should not go out of the lattice (not the same as 

moving off the lattice points). This second requirement can be relaxed according 

to the physical system that is being modeled. If this is the case, one can ignore 

the constraints on a that come from this last requirement. We will study these two 

requirements separately for the left end and right end particles. 

1. Left End Particles 

The first requirement is that a spring should not fold over itself.  This 

implies that r(t+1) < r+ . When we substitute Eq.3 into this, we have 

 

( 1)

2( ) ( )

2 2 ( )

( )
2

r t r

r a r t r

r a r t r

r r t
a

��

�� ��

�� ��

��

�� ��

�� � � � �

�� � � � �

��
�!

 (5) 



11 

r(t) r+xo

 

Figure 4.   Left end particle. 

The last requirement implies that r(t+1) �• xo, where xo represents the left 

end coordinate of the lattice (Figure 4). Again by substituting Eq.3 into the left 

hand side of this equation, the following expressions result 

 

( 1)

2( ) ( )

( ) 2
2

o

o

o

r t x

r a r t x

x r t r
a

��

��

�� �t

�� � � � t

� � � �
�d

 (6) 

By combining Eq. 5 and 6, we show that the allowed interval of a for a left 

end particle on the lattice is 

 
( ) ( ) 2

2 2
or r t x r t r

a� � � �� � � � � �
� � � d  (7) 

2. Right End Particles 

Following the same formulation, the first requirement implies that       

r(t+1) > r- . Substituting Eq.4 into this expression yields 

 

( 1)

2( ) ( )

2 2 ( )

( )
2

r t r

r a r t r

r a r t r

r t r
a

��

�� ��

�� ��

��

�� �!

�� � � � !

�� � � � !

��
�!

 (8) 

r(t)r- xL

 

Figure 5.   Right end particle. 
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The last requirement implies that r(t+1) �” xL, where xL represents the 

right end coordinate of the lattice. Substituting Eq.4 into the left hand side of this 

equation yields 

 

( 1)

2( ) ( )

( ) 2
2

L

L

L

r t x

r a r t x

x r t r
a

��

��

�� �d

�� � � � d

� � � �
�d

 (9) 

By combining these two, the allowed interval of a for a right end particle on 

the lattice is 

 
( ) ( ) 2

2 2
Lr t r x r t r

a�� ���� � � � �
� � � d  (10) 

The significance of these results is that if the distance between an end 

particle and its neighbor is more than 2a, this rule overshoots the end particle 

and causes it to move to the other side of its neighbor and fold onto itself. This 

also implies that the spring changes orientation, which is a violation because we 

defined the a as a constant. If this distance is exactly 2a, then the particle 

collides with its neighbor and tries to occupy the same lattice point with its 

neighbor. If we are to use this rule, one should bear in mind that a spring linking 

an end particle and its neighbor cannot stretch more than twice its original length, 

whereas there is no limit for springs linking internal particles with exactly two 

neighbors. 

C. VELOCITY, MASS, MOMENTUM AND ENERGY 

Since the purpose of the proposed time evolution model is to model 

moving objects, we need to define the velocity of such a model. For this 

discussion, two kinds of velocities are defined. The first one is the velocity of the 

string V, which is 1 over the required number of time steps to cycle back to its 

original configuration. The second one is the speed of each particle vi, which is 

the distance a particle will travel in the next time step (note that every time step is 

1 unit time, 1t� ' �  ). 
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In Figure 6, it takes 6 time steps for the string to cycle back to its original 

configuration, and all the particles thus the string moved one lattice point to the 

right. Therefore, the speed of the string is 1/6.  

 

Figure 6.   Speed of a string (After [8]). 

We define the total number of particles as N, and the index i represents 

the N particles in a string. The indices of the particles increase in the positive     

x-direction. This convention will assist us in modeling the system in a computer 

simulation, which is discussed at the end of this chapter. 

The total mass of the string is N-1 (1/2 from the end particles and 1 from 

each of the internal particles). Knowing the velocity and the mass, the 

momentum of a string is 

 
1

1
2

1 1
2 2

N

i N
i

P v v v
��

� 

�  � � � ��¦  (11) 

In [6] it is shown that the total energy of the string is given by 

 
1

2 2 2
1 1 1

1

1
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N
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i

E x x a y y a z z a
��

� � � � � �
� 

� ª � º�  � � � � � � � � � � � � � � � �� ¬ � ¼�¦  (12) 

where x, y and z represent the spatial coordinates of the particles. 

It can be proven that the mass, momentum and energy of a string are 

conserved during the time evolutions by using the discrete Hamiltonian formalism 

[8]. According to Eq.11 and Eq.12, one can adjust the mass, momentum and 
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energy of a string by adjusting the number of particles and the initial configuration 

of the particles on the lattice. 

Up to this point we have restricted our examples to one dimensional 

lattices. Of course this is not always the case. In a multi dimensional lattice, it is 

important to label / index the particles with increasing numbers towards the 

positive x-direction (to ensure that we are able to define the left and right 

neighbors consistently). After that, the time evolution formulation (Eq. 2, 3 and 4) 

can be applied for all directions separately or one can define all particle locations 

as vectors and apply the equations as vector algebra. The motions of a string 

along the x direction is called longitudinal, and along the y and z directions 

transverse. Figure 7 demonstrates the time evolution of a string on a two 

dimensional lattice where a=(3/2,0). Note that the internal particles are reflected 

with respect to the center of mass of their neighbors, and the end particles are 

reflected with respect to the point which is the vector sum of their neighbor and a 

vector.   

We have already deviated from the classical CA definition by using 

coordinates of particles rather than the states of cells which allowed us to model 

a moving object, but in philosophy and methodology we are still using CA 

approach in the sense that the coordinates of particles in the next time step are 

still calculated according to a rule that depends on the coordinates of neighboring 

particles. This rule is spatially and temporally inhomogeneous, because the rules 

for internal and end particles are different, and they are applied to only one kind 

of a particle (black / white) at each time step. 

We will go one step further and relax the rule, by saying that the particles 

are no more bounded to lattice points and can go off the lattice points. This will 

allow us to work with real numbers and bring us a step closer to modeling real 

physical situations. The practical consequence of this relaxation is that we can 

ignore the 2nd constraint defined for spring vector a earlier in this section.  

Therefore, this constant vector is no longer required to be an integer or half 
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integer but can be any real number (of course it must still agree with the other 

limitations of the spring vector previously discussed). 

      

  (a) t = 0          (b) t = 1 

Figure 7.   Time evolution of particles on a two dimensional lattice. 

D. MODELING CA IN MATLAB 

In general, the implementation of CA in a computer program has 7 main 

steps 

1. define the coordinates of black and white particles on the lattice (define 

the initial configuration of automaton), 

2. define spring vector a, 

3. implement Eq.2, 3 and 4 to black particles, 

4. go to next time step, 

5. implement Eq.2, 3 and 4 to white particles, 

6. go to next time step, 

7. go back to step 3 

In order to demonstrate this, a MATLAB1 implementation for a two 

dimensional CA lattice is developed. First step is to define the coordinates of 

each particle. In this development, a Cartesian coordinate system is used. The 

coordinates are stored in an N by 2 matrix, namely r, where N is the total 

number of particles. Every row of this matrix is a 1 by 2 vector that contains the 

                                            
1 MATLAB is a registered trademark of MathWorks Inc. 
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coordinates of each particle. For programming convenience and to make the 

code simpler, we arbitrarily assume the first particle (left end particle) is always a 

black particle. This allows us to define the odd indexed rows of the matrix r as 

black particles and the even indexed rows to be white particles. Thus, the matrix 

r is written 

 

1 1

2 2

. . . .

. . . .

. .N N

x y Black

x y White

r

x y

�o� ª � º
� « � »�o� « � »
� « � »� 
� « � »
� « � »
� « � »� ¬ � ¼

 

The spring vector is a 1 by 2 vector that defines the orientation and 

unstretched length of the springs linking the particles.  

Steps 3 through 7 are the time evolution steps. In these steps, the rule 

requires that only white or black particles move in a single time step then the 

alternate. The choice of which kind of particle to start from is arbitrary, and is 

determined according to the specific model. Assume we start from the black 

particles. We know that the coordinates of the black particles are stored in the 

odd indexed (i = 1, 3, 5 …) rows of matrix r. We construct a loop to apply the rule 

to black particles. The index i goes from 1 to N by increments of 2 (i = 1, 3, 5 …), 

so that we cover all of the black particles. If the index i is 1 or N, this means that 

we are dealing with an end particle, and Eq.3 or Eq.4 is used to calculate the 

next position of ith particle, otherwise Eq.2 is applied. When the end of the loop is 

reached, the next time step begins. The same methodology applies to the white 

particles in the next time step, but this time the index i goes from 2 to N by 

increments of 2 (i = 2, 4, 6 …). The MATLAB code for such an example is given 

below. 
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%% *********************** START **************************** %%  
r=[2,2; 
   3,3; 
   4,5; 
   6,3; 
   7,3; 
   8,4]; 
temp=r; 
a=[3/2,0]; 
t=0; 
N=size(r,1); 
bt=1; %% Start the time evolution phase with black particles  
wt=0;  
for  t=1:10 
    if  bt %% Black particles  
        for  i=1:2:N 
            %% Left end particle  
            if  i==1; 

temp(i,:)=2*(r(i+1,:)-a)-r(i,:); 
continue ; 

end ; 
            %% Right end particle  
            if  i==N; 

temp(i,:)=2*(r(i-1,:)+a)-r(i,:); 
continue ; 

end ; 
%% Internal particle  

            temp(i,:)=r(i-1,:)+r(i+1,:)-r(i,:); 
        end  
    end  
    if  wt %% White particles  
        for  i=2:2:N 
            %% Left end particle  
            if  i==1; 

temp(i,:)=2*(r(i+1,:)-a)-r(i,:); 
continue ; 

end ; 
            %% Right end particle  
            if  i==N; 

temp(i,:)=2*(r(i-1,:)+a)-r(i,:); 
continue ; 

end ; 
%% Internal particle  

            temp(i,:)=r(i-1,:)+r(i+1,:)-r(i,:); 
        end  
    end  
    r=temp; 
    wt=~wt; 
    bt=~bt; 
end 
 
%% ********************** END ****************************** %%  
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III. MODELING ONE DEGREE OF FREEDOM PROBLEMS 

A. UNDAMPED SPRING – MASS SYSTEM 

The first physical system we try to model using the CA rule set defined in 

the previous chapter is the undamped free vibration of a spring-mass system. 

Our primary concern is to determine whether the defined CA rule is able to 

demonstrate the macroscopic behavior of the real physical system. Therefore, in 

this first example we will not try to match the analytic solution numerically, but we 

will investigate the behavior of the CA solution.  

A schematic diagram of a notional spring-mass system is shown in Figure 

8. The following variables are defined for the system and are enumerated as: 

spring constant k = 100 N/m, mass m = 1 kg, initial displacement xo = 0.1 m, 

initial velocity dx(0)/dt = 0 and unstretched length of the spring L = 1 m. The 

force acting on the spring from mass m and the static displacement ( s�G) are 

calculated as 

 1 9.81 9.81/100

9.81 0.0981

s

s

s

F kF mg

F x

F N m

�G

�G

�G

� � 

�  �  

� � 

 (13) 

 

Figure 8.   Spring – mass system. 

L 

�/s 

xo 

m x 
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The analytical solution to this problem is given [12] as  

 
(0)

( ) sin( ) (0)cos( ) ,n n n
n

x k
x t t x t where

m
� Z � Z � Z

�Z
�  � � �  

��
 (14) 

The CA model consists of 51 particles (26 black and 25 white) which are 

uniformly spaced on the lattice initially. Since the spring vector a represents the 

length of each spring in equilibrium, it is calculated as 

 
1 0.0981

0.0549
1 21 1
sL

a m
N

�G� � � �
�  �  �  

� � � �
 (15) 

It is important to note that in this case we have a boundary condition, 

namely the string is fixed at x = 0. This boundary condition is implemented in the 

CA model by ignoring the first particle of the CA. This ensures that no rule is 

going to be applied to this particle and it will not move, but it will still be used to 

calculate the time evolution of the second particle as a neighbor. Figure 9 shows 

a comparison of the CA-derived solution with the analytical solution. 
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Figure 9.   Comparison of CA and analytical solutions of the undamped spring-mass 

system. 
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Although not identical, a comparison of these results shows that there is 

some correlation between the two methodologies. Further, the peaks of the CA 

solution match the analytical solution and show a simple harmonic behavior like 

the analytical solution.  

This analysis shows that in it is current form the CA rule that is used does 

not model the undamped spring-mass system perfectly. Further, it is important to 

note that there is some difference in the time scales; the period of the analytical 

solution is 0.63 seconds whereas the period of the CA solution is 200 time steps. 

Therefore, we note that if we use the CA approach to model a real physical 

system we should also relate the CA time steps to real time. We will discuss and 

propose a method and introduce the Time Scale Factor concept later in this 

chapter. 

B. LONGITUDINAL VIBRATION OF A LONG UNIFORM ROD 

The next physical system that we are going to model using the CA 

approach is the longitudinal vibration of a long uniform rod fixed at one end. In 

such a system, a force F is initially applied to the rod at its free end and released 

at t = 0. The physical system is represented in Figure 10.  

 

Figure 10.   Longitudinal rod. 

The analytical solution is given in [13] as 

 2 2
0

8 ( 1) (2 1) (2 1)
( , ) sin cos

(2 1) 2 2

n

n

FL n x n ct
u x t

AE n L L
�S �S

�S

�f

� 

� � � � � �
� 

���¦  (16) 

We will try to model a steel rod with L = 1 m, A = 10-4 m2, E = 200 GPa, 

�! = 7860 kg/m3, F = 200 N, by using the CA rule defined in Chapter II. The 

modeling process is not different from the previous problem. We will use 31 

particles (16 black and 15 white particles). The spring vector a is calculated as 

L 

A, E, �! 

u x 

F 
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1

0.05
1 21 1

L
a m

N
�  �  �  

� � � �
 (17) 

At this point if we are to match the temporal part of the analytical solution 

we must propose a method that relates the discrete time model of CA to real time 

unit, namely seconds. In a CA model the time steps are originally defined as 

iterations, so �ût = 1 and it is unitless. We will approach the problem by using the 

speed of sound definition for solids and introduce a Time Scaling Factor. Speed 

of sound in the beam and speed of sound in the CA model is given as 

 

CA

; speed of sound in beam

c ; speed of sound in CA model
1 1

real

E
c

a a L
t N

�U
� 

�  �  �  
� ' � �

 (18) 

Since the distance a sound wave travels in t seconds should be same in 

the rod and CA model 
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 (19) 

When we study the units of this so called Time Scaling Factor (TSF), it 

should be in time units because �ûtCA is unitless and equals to 1. This can be 

seen by conducting the following unit analysis. 
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This analysis shows that TSF is in time units and consistent with our definition, 

so each iteration in a CA model is equal to TSF units in real time.  

Concerning our current example, we calculate the initial displacement at 

the tip of the rod caused by the force F, so that we can calculate the initial 

configuration of the particles on the lattice. The initial displacement is calculated 

as 

 5
4 9

200 1
( ,0) ( ,0) 10

10 200 10
Fx FL x

u x u L m
AE AE x x

��
���  � o �  �  �   (21) 

so at t = 0 the total length of the rod is 1.00001 m. When we compare the 

analytical and CA solutions at the rod tip and in the middle of the rod, we can see 

that the CA solution is in perfect agreement with the analytical solution as 

depicted in Figure 11 and Figure 12.  
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Figure 11.   CA and analytical solution of rod problem at x=L. 
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Figure 12.   CA and analytical solution of rod problem at x=L/2. 

The longitudinal vibration of the rod is governed by the one dimensional 

wave equation given in Eq.22. The CA approach and local time evolution rules 

we defined in Chapter II successfully modeled the behavior of the macroscopic 

behavior of a physical system governed by Eq.22. In the next section, we will try 

to model another system governed by the one dimensional wave equation. 
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 (22) 

C. VIBRATING STRINGS 

1. String Plucked at the Midpoint 

To further examine the ability of the CA model to accurately model a more 

complex physical system, our next challenge is to model a vibrating string where 

both ends are fixed. We may think of stringed musical instruments as examples. 

The string is initially plucked at the middle and released at t = 0. The physical 

system and the corresponding CA model are shown in Figure 13.  

There are some points that we must mention. First is the boundary 

conditions. In the previous example only left end of the rod was fixed, but in the 
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string problem both ends are fixed, so the first and last particles in the CA model 

must be defined as constrained particles. Second is the Time Scaling Factor 

(TSF), as defined in Eq.19 TSF includes the speed of sound (cr) term in the 

denominator. In the string problem the speed of the sound and the TSF is 

defined as 
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 (23) 

where To represents the tension of the string, which is assumed to be constant 

along the string and �! represents the mass of the string per unit length.  

 

(a) String plucked at midpoint 
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(b) CA model of the string problem 

Figure 13.   String problem and corresponding CA model. 

The string is initially plucked at the midpoint and released with zero initial 

velocity. The initial displacement at the midpoint is H = 0.1 m, the length of the 

string is L = 1 m and speed of sound in the string is cr = 1 m/s (arbitrary choice). 

The total number of particles is N = 101 (51 black and 50 white). The analytical 

solution [13] is given as 
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The comparison of the analytical and CA solutions is shown in Figure 14 

at x = L / 2 and x = L / 4. The CA solution again matches to analytical solution 

for the string problem. This shows that the proposed CA rule and the CA 

modeling approach can be used to model physical systems governed by the one 

dimensional wave equation. 
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(a) x = L/2 
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(b) x = L/4 

Figure 14.   CA and analytical solution of the string problem. 
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Up to this point we have considered only displacement boundary 

conditions.  However, we need to find a method to implement force boundary 

conditions as well as displacement boundary conditions. Our next example is the 

vibration of a string with a force acting on it. 

2.  String with a For ce Acting on the Middle 

As previously discussed, we must be able to implement force boundary 

conditions on a CA model. Basically we will use Newton’s 2nd law to apply the 

forces. The first step is to discretize the total mass of the string by modeling it as 

lumped masses connected with springs. The white and black particles in the CA 

model represent these lumped masses. According to the CA definition, the 

particles at the two ends of the string have half the mass of internal particles. So 
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where mi represents mass of each particle, M represents the total mass of the 

string and N is the number of particles. In order to apply external forces to the 

CA model, the following algorithm is developed 
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where Fi is the force applied to the ith particle, mi is the lumped mass, ai is the 

acceleration, vi is the velocity and pi is the position of the particle. Once the 

displacements of the CA particles which the forces are applied are computed by 

using Eq.26, the local rules given in Eq.2-3-4 are applied to all particles. Once 

these steps are complete, the above process is repeated. 
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In our example, physical properties of the string are given as M = 10-2 kg, 

L = 0.5 m,     cr = 0.5 m/s (arbitrary) and a sinusoidal force is applied at the 

midpoint of the string (Figure 15). The forcing function is given as 

F(t)=0.05*sin(10t).  

 

Figure 15.   String with a forcing function. 

The solution and the comparison at x = L/2 and x = L/4 is shown in    

Figure 16. 
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(a) x = L/2 
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(b) x = L/4 
Figure 16.   Solution of string with forcing function problem. 
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The CA solution again matches with the analytical solution, however, there 

is an interesting point when the mass of the string is involved in the problem. The 

TSF is no longer valid (in the form we defined earlier) in the problems where 

external forces are involved. The new form of the TSF turns out to be 
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This formula or the additional multiplier (which is the square root of the 

linear mass density of the string) results from experimentation / trial and error 

and does not have a rigorous mathematical basis, however, it successfully 

models physical behavior in string problems where external forces are applied. 

Due to the lack of related research in the literature, it is noted that this is an area 

that should be investigated further.  

To further demonstrate that TSF works for string problems with forcing 

functions, we present another example. In this case, there are two forces acting 

on the string, described by the following forcing function: F1(t)=0.05*sin(10t) 

and F2(t)=0.03*sin(12t), acting at x=L/4 and x=3L/4, respectively. The 

physical quantities of the related system are given as, L = 2.5m, M = 0.01 kg 

and cr = 1.5 m/s (arbitrary). Figure 17 shows the comparison of the solutions of 

CA and Finite Element Method (FEM) at the midpoint of the string.  
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Figure 17.   Solution of string with two forcing functions. 

The CA solution matches the FEM solution, and we showed that the TSF 

works as it is given in Eq.27. In the next section, we will attempt to develop a 

method for making the CA and FEM models work together. 

D. COUPLING CA AND FEM  

Our next challenge is to model a physical system by using both CA and 

FEM approaches and make them work coupled. For instance, the left half of the 

spring may be modeled with the CA approach and the right half of the string with 

FEM. In doing so, there are several issues that must be resolved. The most 

important one is to determine how to pass data between the FEM and CA 

models. Since we are modeling the string with both approaches, there should be 

a shared node (Figure 18). Secondly we must determine what data (force, 

velocity, position etc.) should be passed between CA and FEM. 

In the model, the last particle of the CA side is the first node of the FEM 

side. To calculate the next position of this node we define its neighbors. It is 

obvious that the left neighbor is the white particle to the left of this node, but it 

does not have a right neighbor. Since in the physical system this node is not at 

the boundary we cannot use Eq.4 to calculate the next position of this particle. 

Therefore, we must use the second node (since the first node is shared) of the 



31 

FEM part as its right neighbor. This places an extra requirement that the 

horizontal node spacing in the FEM should be same as the CA part (in the initial 

configuration) so that the spring vector is still valid for this shared node and its 

right neighbor (2nd FEM node). 

 

Figure 18.   CA and FEM coupled string. 

The procedure for computing the coupled CA and FEM calculations is as 

follows 

1. Define the physical problem; divide the domain into the CA and 

FEM parts. Define the CA and FEM nodes, and make the node 

at the interface a shared node. 

2. Apply any required force by using Eq.26 and Eq.27. 

3. Apply the CA rule to the CA modeled part of the string. For 

calculating the next position of the last particle (shared node) we 

need the displacement of two neighboring particles. Since this is 

the last node there is no particle on the positive side. This data is 

obtained from the second node of the FE model.  
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4. For t = 0 we need the FEM data at t = -�ût. We will assume that 

the data at t = -�ût is equal to the data at t = 0.  

CA Modeled FE Modeled 

Shared 
Node F(t) 
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5. Pass the displacement data of the last particle of the CA part to 

the first node of the FEM part, and set the acceleration of this 

node to zero so that it cannot move during the FEM calculations 

(This works like a boundary condition). 
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6. Apply FEM calculations as usual. 

7. Go back to step 2. 

While using this procedure ensure that the time step size for FEM 

calculations is same as the CA calculations by setting dt = TSF, so that FEM 

and CA calculations are synchronized. 

An example of modeling a string system by using both CA and FEM is 

shown in Figure 19. The physical quantities are given as   L = 1.5 m, M = 0.01 

kg, cr = 1.5 m/s (arbitrary). Total number of nodes N is 101 where 25 of them 

are modeled as CA nodes (NCA) and 78 of them are modeled as FEM nodes 

(NFEM) (39 at the right side and 39 at the left side, 2 of them is shared). The 

force is applied at x = L/2 and given as F(t) = 0.05 sin(10t). 

 

Figure 19.   CA and FEM coupled string problem. 

After running the CA model, the results are shown in Figure 20. The 

relative error is about 4%, assuming the FEM solution is correct. 

F(t)=0.05 sin(10t) 

LCA=0.36 m LFEM=0.57 m LFEM=0.57 m 
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(a) Solution at x = L/2 
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(b) Absolute errors 

Figure 20.   Displacement of mid node with CA-FEM coupling and absolute errors 

Another possibility is to overlap the CA and FEM portions of the problem 

at the interface and determine if this decreases the relative errors. Figure 21 
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shows the calculated absolute errors with and without overlapping which are 

almost the same. It is seen that overlapping does not provide extra precision to 

the calculations.  
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Figure 21.   Absolute errors with and without overlapping 

In this chapter, we have attempted to develop a methodology for modeling 

one degree of freedom systems using the CA model described in Chapter II. We 

have shown that the proposed CA rule can successfully model the systems 

governed by the one dimensional wave equation. Our first goal was to determine 

whether a CA model can represent a real physical system at a macroscopic 

level. After matching the solution at the spatial level, we introduced the Time 

Scaling Factor to enable us to match the temporal part of the real solution with 

the analytical solution (Eq.19). However, the TSF did not work as we defined it 

when forces are involved. The second definition of TSF was derived by a trial 

and error method (Eq.27). This second formulation does not have a rigorous 

mathematical basis and therefore requires further investigation. The final section 

of the chapter was about a CA and FEM coupled model of a string, and we 

showed that the proposed CA rule and coupling technique can give the same 

results as a FEM model alone. Noting the successful modeling of one 

dimensional, one degree of freedom real physical systems with the CA approach, 
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in the next chapter we will attempt to implement this same CA methodology on 

two dimensional systems. The two dimensional problems may be again one 

degree of freedom systems but the CA rule is going to be different for two 

dimensions, namely CA models that each particle has 4 neighbors (except the 

boundary particles). 
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IV. MODELING TWO DIMENSIONAL PROBLEMS 

A. THE CA RULE IN TWO DIMENSIONS 

In a two dimensional (2D) coordinate system, each particle has four 

neighboring particles, except the boundary particles. These particles are named 

east, west, north and south neighbors and constitute a von Neumann 

neighborhood. The subscripts ‘c’, ‘n’, ‘s’, ‘e’ and ‘w’ represent center, north, 

south, east and west, respectively. By this convention there are two kinds of 

springs with different orientations that link particles. One is oriented in the 

positive x-direction (awe), the other is oriented in the positive y-direction (asn), 

where east and north directions are arbitrarily assumed to be positive (Figure 

22). 

 

Figure 22.   Lattice and particles in a two dimensional CA model 

For a particle surrounded by exactly four neighboring particles, the 

evolution in time, or CA rule, is expressed as 
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Equation 30 is an expansion of the local CA rule that we defined for one 

dimensional grids (Eq. 2). For particles at the east side boundary with three 

neighboring particles, the evolution in time, or CA rule, is expressed as 
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Similarly, the rules for west, north and south boundary particles are 

respectively 
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Finally, there is a different rule for a corner particle. For example, the rule 

for the northeast boundary of the lattice, the rule is 
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Similar rules can be developed for other corners of the grid. In the above 

equations, ai (i=we or sn) is the spring vector constant that gives the orientation 

and equilibrium length of the springs at each direction. ri vector is the position 

vector of each particle with respect to a given origin point. The time evolution of a 

5 by 5 CA grid, with an arbitrary initial displacement at the center node, and with 

all edges constrained, is demonstrated in Figure 23. 

The equations given above define the spatial time evolution of the 

particles, but for the temporal part to match the real-time scale, we must define a 

Time Scaling Factor (TSF) for 2D domain problems. The TSF for 2D problems is 
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where Lx and Ly are length of the domain in the x and y directions, Nx and Ny 

are the number of particles along the x and y directions, c is the speed of sound 

and M is the total mass. 

  

   (a) t = 0      (b) t = 1 

 

  (c) t = 2     (d) t = 3 

Figure 23.   Time evolution of a 2D CA grid 

Having defined the 2D CA equations and discussed the associated 2D 

methodology, in the next section, we give an example of a 2D membrane 

problem with an initial displacement at the center. 
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B. MEMBRANE PROBLEM WI TH INITIAL DISPLACEMENT 

Figure 24 depicts the physical problem. The membrane is 1.7 m long in 

both the x and y directions, the center node is initially displaced 0.1 m, the mass 

of the membrane is 0.2 kg and the number of nodes is 41 in both the x and y 

directions (total of 41x41 = 1681 nodes).  

0
0.5

1
1.5

2

0
0.5

1
1.5

2
0

0.02

0.04

0.06

0.08

0.1

x (m)
y (m)

z 
(m

)

 

Figure 24.   Initial configuration of membrane. 

The membrane is clamped on each of its 4 edges, and released from this 

initial configuration with zero velocity and acceleration. By using Eqs.30-35 and 

CA time evolution methodology (black and white particles), we can easily model 

this membrane. Figure 25 shows a comparison of the displacement solutions at 

the center and at node 345 (arbitrary) for both the CA and FEM methodologies. 

Again the CA solution agrees with the FEM solution.  

At some point, one may question the use of CA when there is a well-

developed method like FEM (besides scientific curiosity). First of all, CA is very 

intuitive and easy to implement. CA calculations consist of only four basic 

algebraic operations. It is very memory efficient because there are no large 

system matrices. Most importantly, CA solutions are computed very quickly 

compared to FEM, especially when the number of nodes increases. For the 
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previous membrane problem, Table 1 shows the MATLAB calculation times of 

the CA and FE methods for different numbers of nodes. 

Number of Nodes CA Calculations (sec) FEM Calculations (sec) 

11x11 = 121 0.24 0.38 

21x21 = 441 1.7 4.9 

31x31 = 961 5.85 56.82 

41x41 = 1681 14.3 250.1 

51x51 = 2601 26.7 775.5 

Table 1.   Calculation times for CA and FEM 
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(a) Solution at the center of the membrane 
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(b) Solution at node 345 

Figure 25.   Comparison of CA and FEM solutions for the membrane problem. 
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An approximate number of required addition, subtraction, multiplication 

and divisions to calculate each time step in CA and FEM (central difference 

scheme) is given in Table 2, where s is the system degrees of freedoms which is 

the degrees of freedoms time the number of nodes. 

 CA FEM 

Addition 3s 2s2+3s 

Subtraction s 3s 

Multiplication s 2s2+8s 

Division s - 

Table 2.   Number of required algebraic calculations 

According to Table 2, it can be seen that with an increasing number of 

nodes that the calculation time for FEM increases quadratically, whereas it 

increases linearly for CA. Another important factor is that the required number of 

clock cycles to complete a multiplication or division is approximately 3 to 4 times 

more than that for addition or subtraction, which is another drawback of FEM 

when compared to CA since the required number of multiplications is related to 

the square of the system degrees of freedoms in FEM calculations. When 

modeling very complex and large systems, it is not uncommon to have 

thousands of nodes and this makes the CA approach a good competitor of FEM. 

Since every computer system and software has its own way of dealing with 

calculations (parallel processing, predictive branching, pipelining, 

scalar/superscalar processing, separate fetching / executing units, etc.), it is not 

possible to give a formulation for the time required to compute a given problem 

solution. Figure 26 shows the calculation time vs. system degrees of freedoms 

for the previous membrane problem. It is possible to fit a first order polynomial for 

CA and a second order polynomial for FEM calculation times, and they are 

plotted on top of respective graphs in Figure 26. These graphs support the point 

that CA calculation times increase linearly with an increasing number of system 

DOFs and FEM calculation times increases quadratically with an increasing 

number of system DOFs. 
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Figure 26.   Calculation times versus system degree of freedoms. 

C. COUPLING CA AND FEM 

CA calculations are faster than FEM calculations, especially when 

modeling systems with a large number of nodes, as explained in IV.B.  However, 

there are still some issues with CA modeling that are not well defined. Examples 

include, implementing force boundary conditions and solving static problems. 

The next step is to investigate whether we can use both methods together in 2D 

models as we did in 1D problem so that we can exploit the advantages of both 

CA and FEM. It may be possible to model a large domain in the system with 

FEM, especially the boundaries and where the forces are applied, and a small 

domain in the system with CA, where a finer mesh is required and where the CA 

domain is the actual point of interest. One example may be fracture propagation 

problems where the point of interest is around the initial crack. This example will 

be discussed in greater detail in Chapter V. 

Consider a simple rectangular membrane problem. The left half of the 

membrane is modeled with CA and the right half is modeled with FEM. The 

nodes at the interface are shared nodes and there is no overlapping (Figure 27). 

A sinusoidal force is acting on the membrane in the middle. As described in the 

Chapter III, the second column (from the left) of FEM nodes are used as the east 
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neighbors of the last column of CA nodes and the position data are passed from 

CA to FEM at the interface nodes. 

 

Figure 27.   Coupled CA and FEM domains. 

The solution at the middle node of the membrane is shown in Figure 28 

(top). At this node the maximum relative error is 5.1%. The largest errors appear 

to be where high frequency fluctuations occur. When a node far from middle is 

examined (Figure 28, bottom) the solutions seems to match except at the peaks, 

however, the errors are greater. When the solutions of all the nodes are 

examined, we can see that at the nodes further from the center the errors are 

increasing (up to 30%). Two other configurations are also modeled (Figure 29) 

and gave similar results. In these models, we also observe that the further the 

nodes are from the CA-FEM interface the greater the errors.  

An interesting point is that by changing the TSF, we can reduce or 

increase these errors. For example, in the previous problem, if instead of using 

0.0067 as the TSF we use 0.0065, we can reduce the errors down to 4% at some 

nodes. This method only assures a good solution at some of the nodes not at all 

of them. The important result from this is that the TSF, not only depends on the 

physical properties of the system and the number of nodes, but also depends on 

the position. Thus, we can say that there is a unique TSF that makes the solution 

correct for each CA node at a given time. With using the current CA rule (Eqs. 30 

through 35) and the coupling methodology introduced above we could not 
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succeed to perfectly couple CA and FE modeling techniques in a membrane 

problem. At this point, to be able to couple CA and FE techniques, the given CA 

rule set should be modified or a whole different coupling methodology should be 

developed. 
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Figure 28.   Solution of CA and FEM membrane problem at two different nodes. 

 

Figure 29.   Two other membrane models that was tried to be modeled. 

One such alternate methodology is described as follows: 

1. Model the system with a crude mesh and solve with FEM. Save 

the nodal solutions at each time step. 



46 

2. Model the part of the problem domain that is the main point of 

interest by using a fine CA mesh. 

3. At each CA calculation step, pass the solution of the FEM nodes 

that correspond to the boundaries of the portion modeled by CA 

to boundary CA nodes. 

4. Apply the CA rules. 

As an example, we modeled an octagonal membrane with a square hole 

in it. A sinusoidal forcing function acts at the center of the membrane. All eight 

edges of the membrane are clamped. The membrane is modeled with a crude 

FEM mesh. The area of interest is the area around the hole, and is modeled with 

a very fine CA mesh (Figure 30). 

     

 

Figure 30.   The FEM and CA modeled parts of the octagonal membrane. 

First, we solved the whole problem by using only FEM and saved the 

nodal solutions at each time step. After that, we started CA calculations. At each 

CA time step, we passed the FEM solutions at the four corners of the interface to 
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the corresponding CA nodes. These solutions were applied as the displacement 

boundary conditions in the CA model and we applied the CA rules to all other CA 

nodes. Figure 31 shows the comparison of FEM and CA solutions at the bottom 

left corner of the hole. The CA-FEM coupled solution is in agreement with the 

FEM only solution.   
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Figure 31.   The FEM and CA-FEM coupled solutions at the bottom left corner of the 

hole. 

With this modeling approach, the FEM and CA techniques were 

successfully coupled in order to solve a two dimensional problem. As a 

comparison of speed, we also modeled the whole membrane with a very fine 

mesh and solved with FEM. The fine-meshed FEM model consisted of 2601 

nodes and 2500 elements, and the CA-FEM coupled model also consisted of 

2601 nodes. The fine-meshed FEM model took 1104 seconds to solve the 

problem, whereas the CA-FEM coupled solution took 80 seconds. This illustrates 

that the CA-FEM coupled model approach worked approximately 14 times faster 

than the FEM approach for this problem, which supports the discussion in 

Section IV.B. 
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V. APPLICATION TO FRACTU RE MECHANICS PROBLEMS 

A. FRACTURE MECHANICS AT MICRO LEVEL 

Simple fracture is defined in [15] as; 

The separation of a body into two or more pieces in response to an 
imposed stress that is static (i.e. constant or slowly changing with 
time) and at temperatures that are low relative to the melting 
temperature of the material. The applied stress may be tensile, 
compressive, shear or torsional. 

For engineering materials there are two types of fractures: ductile and 

brittle, which are based on the material’s ability to undergo plastic deformation. 

Ductile materials tend to show plastic deformation before fracture, whereas brittle 

materials generally show little or no plastic deformation before fracture. Ductile 

materials absorb high energy due to the plastic deformation, while brittle 

materials absorb very low energy because of the little or no plastic deformation. 

Some common equations used in engineering calculations for materials 

under uniaxial stress are given in Equations 37 through 39. 
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The micromechanics of fracture are considered on the scale of atomic 

spacing up to grain size.  At this level, two types of fractures, cleavage and 

intercrystalline are relevant. Cleavage fractures proceed along the characteristic 

planes of the lattice structure so that its orientation changes at the grain 

boundaries in a polycrystalline material [16]. Cleavage fracture is described as 
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transcrystalline, meaning that it is formed by a separation within the individual 

grains (Figure 32). 

 

Figure 32.   Transcrystalline fracture propagation. 

Intercrystalline fractures are mostly due to the anomalies at grain 

boundaries, such as weakened bonds between grains caused by precipitation of 

oxides, carbides or sulfides, etc [16], and then the crack may follow the grain 

boundaries as the path of least resistance. In addition to these, impurities in 

solids, such as vacancies, substitutional and interstitial impurity atoms, 

dislocations, external surfaces, grain boundaries, twin boundaries, phase 

boundaries and stacking faults highly affect the physical properties of the 

material and hence play an important factor on fracture [15]. 

At the micro level, the critical stress required to break links between two 

neighboring planes of atoms and cause fracture is given in [16] as 
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under special circumstances, namely when the material is considered to be 

made of extremely thin fibers or whiskers, such that the cross sections are nearly 

homogeneously strained. However, again in [16], it is noted that fracture stress 

may be smaller by one to three decades. Given this, by using Eq. 39 and 

assuming elasticity, the critical strain at fracture should be on the order of 

magnitude of 0.1 (10%). 
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B. FRACTURE MODELING WITH CA 

In this section we attempt to model crack propagation on a solid body. In 

CA modeling consider the CA particles as the atoms that form the solid. The CA 

rule set introduced in Chapter IV (Eqs. 30 through 35) has some shortcomings 

when modeling solid bodies as opposed to wave equations. The first one is the 

effect of the Poisson ratio and the other is damping. Without damping, particles 

vibrates infinitely and never come to rest or to a steady state condition. The 

damping can be included if the position of a particle in the next time step can be 

written as a correction to the current position of the particle. At this point, a more 

general CA rule, defined in [3], can be used. The rule given in Eq. 41 and 42 is 

just a more general formulation of Eq. 30 that can be applied to both center and 

boundary nodes. 
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where rc is the position vector of center node, re,w,n,s are the position vectors of 

neighboring nodes, h and u are spring vectors in the x and y directions, 

respectively, ne,w,n,s are Boolean values indicating the presence of a neighbor 

along the east, west, north and south directions (Figure 33). These Boolean 

variables are used to model boundary particles with less than four neighbors and 

broken links, and take the value of 1 for the presence of neighbors or 0 for the 

absence of neighbors or presence of broken links. h and u represents the 

equilibrium length of virtual springs that link the particles in the CA model. To 

include the damping, leaving Eq. 41 unchanged, we modify the second part of 

Eq. 42 by applying a damping coefficient ��, which gives us: 

 ( 1) ( ) 2 [ ( )]c c cm cr t r t r r t�J� � �  � � � �
� G � G � G � G

 (43) 
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The damping coefficient �� can take values between 0.5 and 1, 0.5 being 

the most damped condition which brings the system to steady state fastest, and 

1 being the undamped condition which results in the particles vibrating infinitely.  

 

Figure 33.   Illustration of CA lattice and particles. 

Since we consider the CA particles as the atoms that form the solid body, 

a fracture can be modeled by breaking the bonds / links of the particles that 

exceed a given strain or local deformation. After these bonds are broken, these 

particles act like free surfaces [3]. Recall that our purpose in this section is to 

determine whether this CA rule can model crack propagation behaviorwise. Note, 

we are not trying to match some experimental or analytical data. 

In this analysis, we model crack propagation on a solid body under 

uniaxial loading with an initial crack in the bottom middle (some initially broken 

links). Figure 34 shows the initial configuration of the system. The system is 

deformed until the first crack starts propagating and is held thereafter. The local 

deformation criterion we use is the critical strain. When a strain between two 

neighboring particles exceeds critical strain, which is estimated as 0.1, the link is 

artificially broken and calculations continue from there. 
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Figure 34.   Initial configuration of crack. 

According to our definition of the damping factor, a bigger value of �� 

should represent a more brittle material with more crack branching, and a smaller 

value of �� should represent a more ductile material with less crack branching. In 

our strain calculations, we used the engineering strain formula given in Eq. 37. 

For this analysis, different values for �� were run for the CA model. Figures 35 (a), 

(b), (c) and (d) show crack propagation patterns when �� is 0.7, 0.85, 0.9 and 

0.95, respectively. These figures demonstrate that the bigger the damping 

coefficient the more brittle the material behavior. 

As discussed earlier, in order to model real crack propagation at the micro 

level, impurities, dislocations and crystal structures should be taken into account.  

These factors are not modeled with the current 2 dimensional square CA lattice 

and current rule set. This square lattice configuration is closest to model a Face 

Centered Cubic (FCC) lattice structure. This model can be improved by using a 

hexagonal lattice [3] to be able to better model a Hexagonal Closed Pack lattice 


























