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PEEFACE

The problem herein treated arose in conjunction with the design

of a nuclear reactor proposed for use by various universities through-

out the nation for research and training purposes^

The numerous phases of such a design are too large in magnitude

for treatment by a single personp Accordingly, it was decided to

assign various phases to individual members of the group engaged

in the desigUo

This paper is concerned with the heat transfer in this reactor..

The author chose this phase since it was most susceptible to de-

classification and in this case posed the most unique problem.

The author wishes to express his appreciation to Drs. R, J<,

Stephenson, W. Mo Breazeale, and Ao So Thompson for their helpful

assistance. It is also desired that appreciation be expressed to

the other members of the Low Cost Reactor design group, Messrs.

F, H» Abernathy, Po J, Sykes, L. H. Barrett, Jo A. Dever, Jo Maurer,

and R, B, Mesler^

Wc Ao Berger

23 August 1952
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SUMMARI

The Low Cost Reactor is a nuclear reactor about two feet high,

one and one-fourth feet long, and one foot wide suspended in a

pentagonal pool of water twenty seven feet long, twelve feet wide,

and twenty six feet deepo The reactor is suspended from a movable

bridge spanning the pool in a manner similar to that shown in Figo lo

The reactor itself is built of fuel elements one of idiich is

shown in Fig. 2. These fael elements are mounted in a 2S aluminum

grid which in turn is suspended from the aforementioned bridge

„

Fig, 3 presents a schematic representation of the way in vihich the

fuel elements are mounted in the grid.

Each fuel element is made up of five plates which are sand-

wiched plates of a 20 percent uraniujii--235 and aluminum alloy center

portion and 2S aluminum claddings

In accordance with the wishes of those interested in such a

reactor, it was designed for two levels of heat output 5 1000 W
and 100 KW,

The heat transfer problems associated with this design are as

follows §

1, 1000 KW operation with forced circulation of the

pool water through the reactor,

a. Cooling water required, pump size, heat ex-

changer requirements,

b. Temperature distribution in the cooling water

and fuel plates.
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c. Power level at which boiling of the cooling

water occircs for the above determined conditions..

2« 100 KW operation v/ith free convection cooling.

a. Temperature distribution in the cooling water.

b. Power level at vdiich boiling of the cooling

water occurs.

c. Equilibrium temperature of the pool and external

cooling of pool water required,

3. Abnormal conditions brought about by sudden loss of

water from the pool while running at power and re-

sulting temperature distribution in the fuel elements

as a function of time and position.

The first problem is a rather conventional one, the second and

third, however, are not. The third problem seems at first glance to

be of mere academic interest. In the event of some disaster such as

an earthquake the conditions posed may be closely approximated, however.

In the first case, it was found that the maximum temperature at

the fuel plate wall was 181,9 °F and the temperature of the center

of the plate was only 183.1 °F. It was found that the cooling water

would boil at a heat output of 1590 KW. A 1000 gallon per minute,

50 foot head pump is required and a heat exchanger 20 feet long and

19 inches in diameter, costing approximately 34-00 dollars is required.

For the 100 KW operating level, it was found that the maximum

temperature at the fuel plate wall was 14-6.3 °F if the pool is main-

tained at 80 °F by purging 64.9 gallons of pool water per minute and

replacing with 70° F water.





It was found that if the conditions posed by the third problem

occurred while operating at 1000 KW, the fuel elements nearest the

center of the reactor would melt between l6 and 18»8 minutes after

loss of water. If this condition occurred while operating at 100 KW

the worst that could possibly happen would be for the fuel elements

to reach the melting point some 11 hours after shutdown » The latter

is a lower limit and it was found feasible to assume that they would

not melt at all^





CHAPTER I

lOTRODUCTION

The purpose of this chapter will be to present a concise, but

necessarily, incomplete summary of the principles of a nuclear re-

actor, with special emphasis on hov; these principles effect the heat

removal requirements,

A nuclear reactor may be envisioned as a "black box" in vdiich

there exists an "atmosphere" of neutrons. This is not a bad con-

cept as may be seen from the fact that diffusion theory, often used

with gases, is applied in the solution of problems appearing in ele^

mentary nuclear reactor theory.

Each neutron of this atmosphere has a certain probability of

being elastically scattered, inelastically scattered, or absorbed by

any elements which might be contained in this boxo This probability

is expressed as a hypothetical "cross-section" of an element for the

particular process of interest. The absorption cross-section of an

element is generally increased as the neutron kinetic energy is de-

creased. This increase is, in general, inversely proportional to the

neutrons velocity. Therefore, if one desires that the neutron be

absorbed in some substance, one provides some other substance which

has the property of slowing dovm this neutron without absorbing it.

This other substance is called the "moderator," In accordance with

the laws of elastically scattered bodies, the nearer the scattering

substance is to the scattered body in mass the more energy the

scattered body is capable of giving up to that substance. Thus 9 the

best moderator of neutrons would be one vriiich most nearly approaches





the atomic mass of the neutron, namely, 1.00897 atomic mass units

«

This, of course, would be hydrogen.

One then asks, "What is the purpose of attempting to slow down

a neutron with a moderator so that it may more readily be absorbed

by some other substance?" The answer lies in the fact that some of

the heavier elements undergo fission upon absorbing a neutron. This

fissioning is a splitting of the atom which yields a large energy re-

lease, two lighter elements known as fission fragments, and may yield

one or more neutrons. If this fission process yields one or more

neutrons, these neutrons are capable of being moderated and in turn

producing another fission thereby maintaining or increasing the

fission rate depending on whether there is only one or more neutrons

produced per fission. In the latter case a chain reaction is pro-

duced, that is an ever increasing fission rate is obtained. It is

upon the latter that the nuclear chain reactor depends. Uranium 235,

which produces about 2,5 neutrons per fission, is capable of main-

taining such a chain reaction. One therefore desires that the

"black box" contain a fissionable element such as uranium and a mod^

erator.

Uranium 235 has a cross-section for fission which is some

portion of its total absorption cross-section. This cross-section is

largest for the smallest value obtainable for neutron velocityo Since

the atoms of moderator are in thermal vibration, the neutrons cannot

impart any more of their energy to the moderator atoms once they

reach thermal velocities. The minimum neutron velocity is then

the thermal velocity for the existing ambient temperature. The number

of fissions per unit volume per unit time occurring as a result of

8





thermal neutron absorptions in uranium 235 is then the thermal

cross-section, or probability, for such an absorption times the

number of uranium 235 atoms per unit volume times the net number of

neutrons of thermal energy crossing into the unit volume per unit

area per unit time. This latter quantity is called the thermal flux^

It has been foimd that about 200 million electron volts of

energy are released per fission. From this figure it can be shown

that 3.1 X 10"^ fissions per second produce a heat generation rate

of one watt. Thus, it can be seen that the heat generation rate

depends on the neutron flux. The neutron flux in turn is a function

of position in the reactor. It is greatest in the center of the

reactor, sloping off towards the edges due to neutron leakage through

the reactor surface. This means, in turn, that the heat generation

rate follows the same pattern. To nroduce a more uniform flux as

v;ell as to conserve neutrons, one may place a good moderator around

the outside of the reactor thereby increasing the number of neutrons

scattered back into the reactor and thereby decreasing the neutron

leakage . The flux is thus flattened. The above arrangement around

the reactor is called a reflector.

Non-fissioning absorbers are placed in the reactor so that they

may be inserted or withdrawn and by absorbing, when in, or not ab-

sorbing, when out, they may maintain an equilibrium between thermal

neutrons being produced and absorbed or by allowing an excess of neu-

trons to increase the fissioning rate. These absorbers are, physi-

cally, rods of absorber and are called control rods. These are

generally placed in the center of the reactor and therefore tend to

flatten the flux also.

9





The Low Cost Reactor is designed in the fashion stated of thin

fuel plates between which water is maintained so that the hydrogen

contained in the water may act as the moderator and so that the heat

may be released to the water with the minimum temperature drop through

the plates o The plates are clad to prevent the highly radioactive

fission products from being released to the water thereby endangering

the operating personnel and equipment. The surrounding pool water

acts as a reflector^ Some of the fuel plates are replaced with

removable non-fissioning absorber which act as a control rodo

In order to maintain stability one does not wish to allow the

water to boil, since this produces large fluctuations in density and

consequently large fluctuations in moderating ability of the v^atero

These are the principles which govern the heat generation in

the reactor and will thus be referred to many times in the following

chapter.

10





CHAPTER II

HEAT TRANSFER ANALYSIS ANL SAFETY CALCULATIONS

It is the purpose of this chapter to treat the problems in-

volved in removing the heat generated in the reactor so that tem-

peratures may be kept within the limits specified.

These problems will be treated individually in the three sections

which follow,

2.1 1000 KW Operating Level, Forced Circulation Cooling.

The reactor will be cooled while operating at the 1000 KW level

by drawing pool water through the reactor with a funnel which tapers

into a four-inch lineo The water is drawn through this arrangement

and through a heat exchanger by a pump located on the inlet side of

the heat exchangero The vra.ter after leaving the heat exchanger is

directed back into the poolo

The problems requiring solution for this configuration are:

ao The temperature rise of the cooling water between entrance

and outlet of the reactoro

bo The temperature of the fuel plate walls and the center of

the fuel plates.

c. Power level at which boiling of the cooling water first

takes placBo

d. Pumping rate and pressure drop throughout the entire systemo

e. Heat exchanger requirements

c

All of the above, of course, depend in some measure or entirely

on the fluid velocity through the space between fuel plates., One must

therefore solve for a velocity subject to the limits posed by the above

11





problems and by a further condition that turbulent flow must exist

in the spaces between fuel plateSo This latter requirement comes as

a result of the known large temperature drops across the laminar

boundary layer for forced circulation.

The arrangement of the fuel elements in the grid is shown in

Figo 3 with the system of coordinates established for this problemo

Figo 2 presents a detailed drawing of the fuel elements themselveSo

There are 18 active elements in the reactoro

In attacking the problem of finding the temperature rise of the

water as it passes through the reactor it will be assumed that the

rate of heat release per unit volume of the water in the cooling

channels is constant over the reactoro This is not generally true

in reactors but in this instance the normal curvature of the space-

wise heat distribution is flattened by the presence of control rods

in the center of the reactoro These control rods decrease the thermal

flux in the center thereby decreasing the heat generated by the

fission processo

The rate of heat release per unit volume or, as it is sometimes

called, the power density is calculated by dividing the total power^

1000 KW, by the volume of water in the cooling channelSo This was

found to be 2o025 x 10^ BTU/hr/ft^o From this the power density per

unit length of an individual channel is 1578 BTU/hr/ino

Since the velocity of flow through the reactor is essentially

the independent variable in this problem ^ two values of flow velocity

will be used in determining the temperature riseo These two values

will be 1 and 2 feet per secondo

12





The temperature of the cooling water at any point along a channel

may be expressed:

T_ = T. + P X a (2olol)
C X ^x V X 3600 X A

where,

T = the mixed mean teu^eratiire of the water in the channel

at a point z, °F

Ti = the temperature of the water as it enters the

reactor, °F

p = power released per unit length of an individual

channel, 1578 BTU/hr/in.

z = distance measured along the channel from the top

of the reactor, in^

C = heat capacity of the water, 1 BTU/lbo-°F.

2r - weight density of the water, 62o4. lbs/ft

V ~ flow velocity of the water in feet per second

A = cross-sectional area of the channel j o 00938 ft^o

Substituting these values in equation (2olol) it is found that

for a 1 ft/sec flow velocity Tj^ is given by§

TjQ « Tj^ = o75z = 18o5° F rise across the reactor (2olo2)

and for 2 ft/sec by§

T^ - Tj^ = o375 z = 9o25® F rise across the reactor (2„1.3)

The mean fluid temperatiire has been establishedo One must now

find the temperature rise throiigh the thermal boundary layer or "film"

as it is sometimes called and the temperature distribution in the fuel

plateso These will be tied in with a boundary condition in the solu»

tion of the conduction equations in the fuel plateo

13





The following assumptions will be made in the solution to

follows

a. The temperatiire gradient in the z direction is sufficiently-

constant for one to assume that the second derivative of the tem-

perature with respect to z is zerOo

bo The y dependence will be neglectedo Though erroneous,

this leads to a conservative estimate since it is^ in effect

j

assumed that there is no conduction in the y directiouo

Co The steady state condition is the only one of interest

in the problemo

do Consistent with the assumption made in determining the

temperature rise in the water, it will be assumed that the rate of

heat generation per unit volume of the active portion of the

plate is constant.

eo Thermal properties of the fluid and metal are constant

over the range of temperatures encounteredo

The problem will be set up as shown in Figo 4.c

The differential equation of conduction in the region

1 is?

d^l + _S_ - (2olo4)

dx2 ki

The differential equation of conduction in the region

2 iss
d^Tp = (2olo5)

where

,

T = temperature at any point in region indicated by subscript
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k = Thermal conductivity of the metal, BTU-ft/hr-°F-ft^

S = Heat generation rate per unit volume of fuel-bearing

layer

o

The above are set equal to zero since it was postulated that

the condition of interest was the steady state conditiono

The boundary conditions for this problem are as follows

c

(a) d Ti(0) =

dx

(b) ki d Ti (a) = k^ d T2 (a)

dx dx

(c) T^ (a) « T2 (a)

(d) -kg ^ ^2 (b) = h (t (b) » tJ
dx ^

where,
h = film drop or heat transfer coefficient

Solving equations (2olo4.) and (2olo$) subject to the boundary

conditions given it is found that the ten^erature distributions in

the regions shown are as follows §

f _b_ = 1
I

+ ^ 11 = X (2olo6)

La J 2ki [ a J

T2 = T + ^Sa^ + Sax f „k. - l] (2ol«7)
h k^ L X J

Equations (2olo6) and (2olo7) express the temperature in their

respective regions in terms of the independent variables x and z

since the mean fluid temperature 9 T^ is a function of Zo

Values for the various constants in the above equations must

now be found. The thermal conductivities ares k, - 101 BTU-ft/hr-

oF-ft^ and k2 = 132 BTU-.ft/hr=®F-ft^ (Refo l)o The source strengthj S^

16





is found by dividing the total power (1000 KW) by the total fuel-

bearing volume of the reactor„ S is found to be 974.0 BTU/lir-in o

The value of the heat transfer coefficient through the film is found

from the Colburn eqimtion which is applicable to waters

hP - O0O23 (Re)°'^ {?r)^^^ (2olo8)
k

where

,

D = the hydraulic diameter of the cooling passages

= 0O7O3 fto

D = 4. X cross-sectional area/wetted perimeter of the

passage*

k = thermal conductivity of the water, BTU-ft/hr-

Re = Reynold's Number

Pr = Prandtl Number (Refo 2) ^ 5o-4.

From equation (2olo8) and the determined constants the heat

transfer coefficient for a flow velocity of 1 ft/sec is 256 BTU/hr°

°F-ft^o For a flow velocity of 2 ft/sec the heat transfer coeffi-

cient is A5A. BTU/hr-®F-ft^o

Assume an entrance temperature of 80 °Fo

The dimension a is 0O3O in,, and b is o0$ ino

Substituting the above determined values in equations (2olo6)

and (2ol»7) together with the appropriate expressions for T^^^ from

equations (2olo2) and(2ol«.3)j it is found that the wall temperature

(x = b) at the reactor outlet for 1 ft/sec flow velocity is 263o0 ©F^

The boiling point of water at this depth is 239 °Fo It is apparent^

therefore, that the 1 ft/sec flow velocity is not sufficiento

17





For a flow velocity of 2 ft/sec, the maximum wall temperature is

found to be l81o9 °F at the reactor outleto This is well below the

boiling point and provides an adequate margin of safetyo The flow

velocity between plates will be established at 2 feet per second,

this in turn will establish flow velocities and pressure drops

throughout the systemo The Reynold's Number corresponding to this

flow velocity is 15,300.

Having established the wall temperature, equation (2olo6) may

be used to determine the maximum temperature in the fuel plate

»

This is found to be 183ol °Fe Thus there is only a lo2 °F temp-

erature rise in the plate. This may be attributed to the thinness

of the plates and the high thermal conductivity of the aluminumo

Thermal stress will certainly not be a problem in these plates.

To establish the power level at which boiling occurs the cal-

culations are, in effect, reversed^ That is the temperature at the

wall is established at the boiling point for this depth of water,

239 ®F, and the power density necessary to establish this temperature

is determined. It is found by this method that the reactor will boil

at a power level of 1$90 KWo

The flow velocity has been determined. The pressiire drop and

the weight rate of flow of the water must now be calc\ilated.

In celculating pressure cirop the formulae for energy loss in

passing through a restriction or an expansion from Refo 3, were sub-

stituted in the general energy equationo The pressure drops were

as follows?

18
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Entrance loss O0OO67I psi

Frictional loss through the
reactor

O0O2I8 n

Exit loss O0O673 tt

Loss in contraction beneath
the reactor

Oo59iV n

Frictionj bend 9 and valve loss
in the piping

8c 75 n

Allowed heat exchanger loss 10,0 "

Total pressure drop 19^44 psi

The volumetric flow rate through the reactor elements is 757

gallons per minute o Leakage through the space between the fuel

elements and then through the small holes amount to 17 gallons per

minute. The total flow rate is thus 774- gallons per minuteo The

pump specified for the system is a 1000 gallon per minute ^ 50 foot

head pump to allow for larger load requirements o No allowance was

made for difference in head due to difference in elevationo Flow

through unused holes is stopped by plugSo

The heat exchanger is to be a shell and tube^ U-tube, water to

water heat exchangero The entrance temperature for the heated water

was assumed to be S8 ^Fj, allowing a drop of lo25 °F between reactor

exit and heat exchanger entrance o The exit temperature from the heat

exchanger of the pool water was chosen as 80 °Fo The cooling water

entrance temperature was assumed to be 65° F and exit at 80° Fo Based

on heat exchanger data from Ref „ 4 i't' was found that the system would

require an exchanger 20 feet long and a 19 inch diameter shello The

conditions assumed above are conservative and the heat exchanger re-

quirements for a location where ^ for example j there was better cooling

19





Water would be lesso Also, one might prefer to operate the pool

at somewhat higher temperature in order to obtain better heat ex-

changer efficiency-o The cost of the above heat exchanger is 34-00

dollars.

Subject to the assumptions made, the requirements for a system

operating at 1000 KW have been established.

2.2 100 KW Operating Level, Free Convection Cooling

Free convection cooling is in itself a very difficult problem

if an exact solution is attempted. It requires the simultaneous

solution of the equations of motion of a viscous fluid, the differen-

tial equation for continuity, and the differential equation of heat

conduction in a moving substance

c

In view of the above, it was decided to use a variation of the

method described by Schwartz, Ref. 5. This consists, in essence,

in determining the pressure drop through the reactor in terms of an

unknown velocity and setting that pressure drop equal to the pressure

head created by the bttqyant force due to the difference in density

which results, in turn, from temperature differences^ The resulting

equation is solved for the unknown velocity and the temperature rise

across the reactor is derived therefromo

The above method will be used to determine the overall flow

through the reactor caused by the differences in temperatiire between

the water in the reactor and the pool outside the reactoro The flow

velocity thus obtained will be treated as a quasi-forced circulation

through the reactorc A film drop vdll be postulated as in forced

circulation but with the film drop coefficient being determined by

20





the free convection boundary layer rather than a boundary layer of

the type found in forced circiolationo This coefficient will be

different since the free convection velocity profile appears as

shown in Fig, 5o The shape of the boundary layer velocity profile

results from the difference in temperature between the central stream

of the channel and the particles of fluid in the boundary layer.

One is able to obtain the predicted wall temperature from the

above procedure. This is, of course, the item of primary interest

in such a problem since one does not wish the water to boilo

It should be pointed out that in this instance the flow of water

will, of course, be from the bottom of the reactor upwards The origin

of the z axis will therefore be taken from the bottom of the fuel

elements

o

In determining the bulk temperature of the water in the reactor

the following assumptions will be mades

(1) All heat is removed by the water flowing in the spaces

between fuel plates, ioeo, no heat loss by conduction

to the spaces between rows of fuel elements^

(2) The weight density is constant except in calculating

baoyancy force.

(3) Steady state conditionso

(4.) The water temperature entering the reactor is the same

as the pool temperature

o

(5) The pressure loss at the exit from the fuel elements is

negligible

o

(6) Power density in the water is constanto

21





Figo 5

Free Convection Boundary layer
Temperatiare and Velocity Profile





Fig, 6 below will establish the nonenclatvtre to be used in

the following calciilations. The numerical values of the areas

indicated in Fig. 6 are:

Aq = 9.6 sq. in.

An = 4.43 sq. in.

A = 7.19 sq. in.

Let,

q = average power density in the water.

^ = weight density of the water, lbs/ft-^.

1 = length of fuel plates, 25 in.

^Q = density of the pool water, 62.4 lbs/ft .

Using the relations for pressure drop through contractions and

expansions from Ref. 3 and the expression for frictional pressure

drop along the passage between fuel elements,

^p = JSH Ko ^2 (2.2.1)
D 2g

where,

f = friction factor = 16/Re, for laminar flow.

Re = Reynold's Number = V2D/7

D = hydraulic diameter,

the following relation is obtained:

Ap K V 2

2g 2g -]-4ii^('-:i)'-4^]
2

- UU^ ^o ^2 (2.2o2)
D 2g

K^ = 0.4 (1.25 - A-l/Aq) (See Ref. 3).
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The first term in the above is the pressiore drop between A^

and A^, the second term is that between A^^ and A2, and the third is

the frictional pressure drop in the channel between fuel plates.

Employing the equation of continuity for an incompressible

fluid,

Ao ^o = Ai Vi = A2 V2 (2.2„3)

and substituting values for the various constants, (2.2,2) reduces

to:

i:\p = - (1.605 ^^ + .224 V2) (2,2.4)

Now the difference in density resulting from a change of tem-

peratxire is expressed by:

vAiere,

1^ = density at any point z in the reactor

p = thermal expansion coefficient for water = 10"V°F

Tg = temperature of the water at point z, °F

Tq = pool water temperature, °F

Under the assumption that the power density in the water is

constant, the temperature may be expressed as in equation (2.1,1)

as follows:

z. (2.2.6)

I
Though the weight density of the water varies with the temperature

of the water and therefore with z this variation will be of such small

magnitude that it will not effect, materially, the heat capacity,
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^C V2, of the water. Therefore, assuming that the weight density is

constant ana equal to the density of the water in the pool, (r,2,6)

becoraes:

T, - T = _a2 (2.2.7)

ITo V2

The pressure produced by the fei^ant force in a sinall element

of volume in the v,n..ter prissage is:

Smployinij the equilibrium condition th£;.t the pr^jssure drop

through the rerctor rr.ust equal the pressui^e head created by the

change in density of the \^ter, the follo\';ing relation is obtained:

jTo ^ I

''-^ ^^ = Ap = 1.605 V^^ + .224 V^ (2.2.9)

J.V2^oCp

Fweducing (2.2.9) and intrcnucing numerical values for the various

constants, it is founc th t:

1.605 V2^ - .224 V^^' - .01171 = (2.2.10)

From (2.2.10), V2 is found to be ,156 ft/sec. The two remaining

roots are iioaginary and therefore are not of any physical interest.

The te: ^eruture rise across the reactor is then aerived from the

follov.dng equation:

WCp /\T = 100 KW (2.2„11)

where

,

W = weight rate of flow of water through the reactoro

The terperature rise is found to be 11 °F.
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The velocity through the channels between fuel plates and the

temperature distribution along the channel have now been established.

The next item to be determined is the heat transfer coefficient

mentioned previously. In accordance with the statements made earlier

and as recommended by Langmuir in Ref, 6 for such a case, the following

equation will define the heat transfer coefficient:

q/A = h (T^ - T^) (2.2.12)

where

,

q/A = heat flux through the wall in BTU/^r-ft^.

h = heat transfer coefficient, BTU/kr-ft^-°F.

T^ = wall temperature, °F.

T = temperature of the central stream at point z, °F.

For such a case one is faced with a dearth of information on

either analytically or empirically derived heat transfer coeffi-

cients for flow inside vertical channels under free convection con-

ditions.

One might approach the problem analytically and attempt to solve

the differential equations by some numerical means. Dr. H. F. Poppendiek

of the Heat Transfer and Hydrodynamics Section of the Oak Ridge National

Laboratory advised, however, that such a solution was not possible in

the time available.

It was then decided to employ empirically derived formulae

which applied to systems generally similar to the problem at hand

and back this up, at least as to order of magnitude, i/ith extra-

polated experimental results.
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It was foimd by Schmidt and Beckmarm, Refo 7, that the velocity

and temperature profile for air flowing past a heated vertical plate

in free convection appeared as in Figo 5o The boundary layer thick-

ness in this case was found to be about 12 nmio Touliakian et alj

Refo 8, state that, generally speaking^ the boundary layer thickness

for water is about l/3 that for airo Thus, if this be true then

the boundary layer for water under the conditions of the Schmidt=>

Beckmann experiment would be about 4 2>m<,

Since the boundary layer thickness is of the order of magni-

tude of 4- mm and the spacing between plates is l/2 inch or 17o7 mm,

one can expect that there would be no appreciable interference

between the boundary layers of the two plates. If one postulates

that the unheated sides of the channel are sufficiently far from the

center of the channel so that they present little effect in the flow

pattern at the center, then one may assume that the relations de-

veloped by Nusselt and Juerges and others ^ Refo 9? for free con-

vection past vertical heated plates will holdc

The relation for laminar flow arrived at by Nusselt and Juerges

iss

1/4 (2o2ol3)

where

,

Nu^ = Oo5$5 (Gr^ o Pr)

Nu = hzA = Nusselt number evaluated at point z.
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Pr = Prandtl :nj .^e'^' - '.inc,atic viscosity, '^rermsl
diffitsivi ':.,'.

GPg = gfiz^ (T - l^)/'^ ' = jrashof number at point z.

It is foxond from the above that at the top of the fuel element

channel the temperature ..rop through the boundary layer is 41. V °F,

The heat transfer coeffcient is 97 BTU/hr-ft'--OF.

Lawrence and Sherwood, Ref. 10, arrived c t the following re-

lation for upward flow in vertical pipes at .1 ft/sec,or less, flow

velocity viiere free convection is controlling but where there is

some forced convection:

h = 0.128
I

k^^C p /^T/'^J"'"^^ (2.2.U)

Evaluating this equation for the average temperc.ture drop found

fror: the above, the heat transfer coefficient is 115 BTU/hr-ft -^F.

This equation was solved usin(^ the c'lverage tenpertiture drop from

the previous case which is 3/4- the temperature drop at the top of

the plate, Ref. 2. Therefore, in order to compare heat transfer

coefficients the value obtained by equation (2.2.14) must be multi-

plied by 3/4 to obtain the heat transfer coefficient at the top of

the channel since this Vc'.ue in effect represents an rverage heat

transfer coefficient. The heat transfer coefficient at the top is

then 81.2 BTU/hr-ft^-^F. This is in fair agreement with the first

value.

These results are based on geometries different from that

actually existing in the reactor. It remains, therefore, to estab-

lish the validity of the above values by referring to any experimental

data on similar systems.

29





In a recent experiment information was obtained for a similar

system which coiild be extrapolated to this case to obtain a heat

transfer coefficient. This experiment provided information as to

heat flux and wall temperature at a particiolar point and by the

method of Schwartz previously used the fluid bulk temperature was

calculated. The heat transfer coefficient was then calculated from

the definition. This result was extrapolated to the Low Cost Reactor

configuration by taking the ratios of the Nusselt numbers as defined

by equation (2.2ol3)o It was found by this method that the heat

transfer coefficient at the top of a channel was 73 BTU/hr-ft^-OF,

This agrees reasonably well with the other values obtained.

No claim for any great accuracy is made for the above result

since the expression used to extrapolate the data to the Low Cost

Reactor is not necessarily valid for these flow conditions and the

heat flux in the two cases is considerably different, being much less

for the Low Cost Reactor,

In any event, one should determine the film drop for the minimum

and the maximum case obtained so that one can be reasonably certain

that the actual results will be within the limit specified.

The temperature drop by the vertical plate solution was found

to be 4-1,7 °F at the top of the plate. This together with the rise

in temperature of the cooling water as it passes through the reactor,

11° F, yields a wall temperature of T^ plus 52,7 °F,

From the heat transfer coefficient at the outlet, from the ex-

trapolated experimental results, one calculates that the temperature

drop for this case is 55 o 3 °^ and the temperature of the fuel plate

wall is To plus 66,3 °Fo
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To obtain the equilibrium temperature of the pool while operating

at 100 KW, Tq, it will be assumed that heat may be lost by evaporation

of the water from the surface of the pool and by removal of W pounds

of water per hour and replacement of this water by an eqtaal amount of

cooler watero It was found that if no water were purged from the

pool then the pool would heat up to an equilibrium temperature of

about 165 °Fo

The heat lost by these two means must eqioal the heat generated

in order for equilibrium to exist. Mark's Handbook gives the rate

of heat loss by evaporation to still air from a horizontal water

surface as follows:

q = 97 (e-e') BTUAr-ft^ (2.2.15)

where e is the vapor pressure of the water in inches of mercury

and e' is the vapor pressure of the air above in the same units* The

air above will be assumed to remain at 70° F and 60 percent relative

humidity.

The heat absorbed by the replacement water is:

q' = W Cp(Tp - Ti) (2.2.16)

where

,

T = pool temperature 3 °F.

T^ = replacement water temperc.ture j, 70 °F.

The surface of the pool is 288 square feet in area.

From the above data, for a pool equilibrium temperature of 80 °F,

one must purge 64.9 gallons per minute.

If the above conditions exist then Tq is 80° F and the wall tem-

perature will be 132,7° F for a heat transfer coefficient of 97 and
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14.6.3° for a heat transfer coefficient of 73 <> These temperatures are

well below the boiling point and are therefore considered to be satis-

factory.

In determining the point at which boiling occurs one must con-

sider the change in equilibrium temperature of the pool, change in

heat transfer coefficient, and change in the temperature rise across

the reactor as the power is increased. The rate of rise of the pool

temperature is only about 3 degrees F per hour which means that it

will have little effect on the boiling level except for very long

operating periods at excessive power levels. The change in pool

equilibrium temperatiire will therefore be neglected in these calcu-

lations.

From the equilibrium of pressure drop and bouyancy head,

equation (2.2,9)5 ^^^ flow velocity for various power levels may be

expressed by:

1.605 Y^^ + o22Ar V^^ ^ 3,4^ x lO"^ P (2.2ol7)

where P is the power level in BTU/hro Knowing the velocity Vp

from the above, one can calculate the temperature rise across the

reactor for the power level used.

Other things remaining constant such as p, z, etCo, the heat

transfer coefficient for various power levels goes as the one-foiirth

power of the temperature drop across the boundary layer. The tem-

perature drop and heat transfer coefficient at the 100 KW level are

known and will be set at 41,7° F and 97 BTU/hr-ft^-°F„ The heat

transfer coefficient at some other power level is then expressable

as follows:
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hp = 97 (AT)p^^^ = 38.5 (^lT)p^/^ (2.2.18)
^ (a.7)iA

Using the above formulae one finds, by trial and error, that

the rnaximum temperature at the wall for /^OO KW operation is 230OF.

This is nine degrees short of the boiling point at this depth of

water. This vrill be taken as the power level limit, however, since

this allows a margin of safety to provide for any rise in pool

temperature among other things.

The essential requirements of the heat transfer analysis for

the 100 KV, free convection operation have been established.

2.3 Loss of Water Problem

The problem to be dealt with in this section is the investiga-

tion of what would happen to the reactor should all the water in the

pool be suddenly lost.

To answer this problem one must decide by what means the heat

can be lost from the reactor. Heat can be lost by conduction through

the supporting structure, by convection to the air, and/or by radia-

tion from the reactor faces to the pool vra.lls. Although some heat

will be conducted through the supporting structure, the thermal

resistances encountered in air gaps, etc« limit the effectiveness of

this method. To depend on the natural convection of the air for

cooling is to depend on a factor that is at least doubtfiil in its

heat removal properties due to the small heat capacity of the air.

One must then depend to a large extent upon the effectiveness of

radiation to remove the heat generated in the reactor.





If the reactor loses its water instantaneously then the reactor

is shut down instantaneously since the moderator is lost. There is

power still being generated in the reactor, however, due to the gamma

rays and beta particles x^rhich are emitted by the decaying fission

products. This heat generation rate drops off immediately to about

six percent of the original power and then decays as prescribed by

a formula which will be given presently.

One must determine whether this heat is dissipated rapidly

enough to prevent melting of the fuel plates. This is a question

which must be answered since the melting of the fuel plates would

release the highly radioactive fission products to the air.

To adequately describe the situation mathematically, it will be

assumed that those elements most near the center point of the reactor

will be the hottest. This seems logical since they have no radiating

face as do the elements around the outside. It will be further assumed

that these elements, due to their symmetry about the center, are

thermally similar. Also, it vdll be postulated that all the heat which

leaves one of these central elements must leave via the lower endo

This is based on the fact that the adjoining fuel elements are near

the same temperature as the center fuel elements and that the large

air gaps between elements effectively insulate it on all sides from

its neighbor. The top end of the fuel element is capable of radiating

heat, of course, but the radiating surface is so small that there is

small likelihood of any appreciable heat loss in this direction.

The problem may then be treated as a bar in which heat is gene-

rated uniformly but varying with time and which is insulated everywhere

except at its lower end through which it is losing heat at a constant
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2
rate of M BTU/hr-ft . The rate M is to be specified later. Since

the only effective means of dissipating heat from the central element

is by conduction of this heat out the bottom of the element, through

the grid to an outside face, then one must obtain the value of M

from the radiation of heat from the surface.

The mathematical situation may be represented by the follovdng

boundary value problem.

The differential eqiiation describing the problem is the Foiirier

conduction equation:

d T + sit) = 1 ^ T (2o3.l)

3^2 k a m"

where,

X = distance from the upper end of the rod measured

toward the lov/er end.

t = time after shutdown

k = thermal ^criductivity

a = thermal diffusivity

T = temperature at any point x at time t

S(t) = heat source term to be defined later

The boundary conditions are:

(1) T(x,0) = Tq = 200° F (1000 KW level) = 130° F (100 KW)

(2) ^T(O.t) =

dx
(3) ^ T(.g .t) = - M

Sx k

The source term, which is the heat generation rate per unit volume

of metal in the fuel pla es, is essentially constant spacewise, but
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decays with time according to the following formula

-1/5 [ . / . \ V5S(t) = .052ii P^ t

''\
J

(2.3.2)

where

,

Pq = power density in the reactor before shutdown

t-j_ = time of operation at power P prior to shutdown,

seconds

t = time after shutdown, seconds

This formula is derived from the relations,

-1 2
rate oi emission of beta particles per fission = 3»5 x t

"

-1.2
rate of emission of gamma ray photons per fission = lo9 x t

where t is the time after fission in days (Ref. ll)« This formula was

derived also assuming an average gamma ray energy of 0.7 Mev and an

average beta particle energy of 0.4. MeVc

It has been also fovmd that slightly more than 50 percent of the

gamma ray photons are absorbed in the reactor. This, too, was taken

into account in the above formula.

The solution of the above problem will be attempted by the

method of LaPlace transforms since the separation of the variables is

not possible. The transformation will be made with respect to the

variable t,

T (x,p) = / e"P* T (x,t) dt (2.3.3)
Jo

Employing (2.3,3) , (2.3.1) reduces to:

d^ - j^
aJ2. a

1 T (x.O) ^- S (d) (2.3o4.)
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By boundar:,^ condition (l), T(x,0) = T^, thus the right hand side

of equation (2.3«4.) equals a constant vdth respect to x. Integrating

(2,3.4-) the following results are obtained:

.5)

Taking the inverse transform, (2»3«5) becomes

By boundary condition (2),^T/^x = at x equal to zero„ It can

be shown that for d 1/^ x = constant that b"T/Bx = 1/p 5 T/d x

which by (2o3o6) means that B is zero. (2,3o6) then becomes:

T(xX)^f''[/^Ccshff^ f. 75 V- -^ff^Ctl-JC/t
(2<>3o7)

By boundary condition (3)9 d T/(^ x = -M/k at x = lo Employing the

identity just used 5"t/^ x = l/p o S) T/S x - -M/k „ 1/p at x

equal to Ic (2o3»7) will then become:

r(^,t)^::'[ ip'^s^^i J^^-m^m (2.3.8)

By placing the sinh and cosh in their exponential form, the folloT/dng

equation results on dividing the exponentials out into series forms
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^e^rF'.
.J)

(2.3.9)

From the Table of Transforms, Ref. 32, the inverse transform of

p"^/2 e"'<^'*P is 2IV e"''
''''* - k erfc k . Taking the inverse

transform of (2.3.9)» term by term, the final equation for the tem-

perature distribution in the fuel element iss

Td^,*)^ -d^hl^le. ^""/ e :"•/ e

e ^»^^
)

(2.3.10)

M must now be evaluated,

M is actually a function of time which depends on the rate at

which the surface is radiating lieat, M is treated as a constant in
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in the above analysis since it is the piirpose of this analysis to

establish limits as to the time required to melt the fuel element

and this end can be accomplished by making such an assumption. To

establish the limits of time required to melt one may assume first

that there is no heat lost from the rod, M = 0. This will certainly

establish the shortest melting time. Then one may assume that the

surface of the reactor is instantaneously at a tempera ttire very near

the melting point of aluminum, say 12CK) °F, and that all faces are

radiating heat which is derived solely from the element considered.

Both of these conditions do not exist 9 obviously, but they will serve

to establish limitso

The net heat transfer from the walls of the reactor to the walls

of the pool by radiation is given by (Ref» 13 )s

where

,

q = net heat exchange in BTU/hr

C = emissivity, subscript R means reactor and p, pool walls

A = surface area

F = geometrical factor which determines the fraction of

heat radiated by the surface designated by the left

subscript to that designated by the right subscripto

C^ = Stefan-Boltzmann constant = .1728 x 10~ BTU/hr-

T* = absolute temperature in degress Rankine of the

radiating surface.
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The pool walls will be assumed to remain at 68° Fo The value of

C p as found from Ref . 14 for a temperature near the melting point

is .063o B is 0.9.
P

According to Ref. 13, ArF^^ - ^p^PR* ^^^s statement means , in

effect, that if the pool walls receive a large portion of the radiation

from the reactor then the reactor receives a small portion of the

radiation from the pool vails in the ratio of the areas of the twoo

If one assumes that all the radiation from the reactor is absorbed

by the pool walls, i.e., the geometrical factor Fj^ is unity, then

the geometrical factor Fpj^ is simply the ratio of the radiating sur-

face area of the reactor to the radiating surface area of the pool

walls. This is not a bad assumption since the pool walls practically

enclose the radiating faces of the reactore Since the radiating

surface of the pool walls is many times that of the reactor this

factor will be very small

o

The pool walls will be assiimed to remain at their original tem-

perature while the reactor walls will be assiomed to be near the

melting point of aluminiim. The ratio of the fourth powers of the two

absolute temperatures shows that the temperature term in the second

term of the equation (2o3oll) is small compared to the firsto

The above reasons combine to make it logical to assume that the

second term of the radiation heat transfer eqiiation can be neglected

compared to the firsto This will be done.

The sTorface of the reactor available for radiation is 10 square

feet. This is based on the conclusion that only the vertical faces

of the reactor radiate heat.

The maximum heat loss from the reactor by radiation is then?
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q = .1728 X .063 X 10 X 1606^^ = 7880 BTUAr.

The heat flow area through the bottom of the central fuel ele-

ment is only the cross-sectional area of the fuel plates in the

element. The heat flow per unit area per unit time for this con-

dition is then 84,100 BTU/hr-ft^. This value will be denoted M^^o

The average value of the physical constants over the temperature

range considered is:

k = 14.2 BTU/hr-ft-OF

C = 0.26 BTU/lb-OF

^ = 163 lbs/ft3

a = kA Cp = 3o35 ft^/hr = .931 x 10"^ ft^sec.

If one integrates the source term as required by equation (2o3olO)j

the following is obtained for a power level of 1000 KW before shutdowns

r* s(t)dt = 141^ / [t^/5 - (t.t-^)^/^-. t//^/ (2.3.12)

If the reactor operating time, t-,, is large compared to the time

after shutdown then the terms involving t^ drop outo This will be

shown to be the case for an initial operating power of 1000 KWo With

this assumption, (2.3ol2) becomes?

t

a/k r S(t) dt = 4ol7 t^^^ (2„3ol3)

•^0

Substituting M . - and the above determined value for the integrated

source term, (2o3.10) reduces tos

T(0,t) = 200 + 4ol7 t^^^ (2o3oU)
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from which it is found that 16 minutes after shutdovm the melting

point of aluminum, 1220°F, is reached.

For maximum heat flux, 1^^, the following expression is derived

from equation (2.3.10) for x/l = 0:

_ o 16x10^ - 9(1.16x10^)

T(0,t) = -18.1l̂J2„26Y7/e *

*J - 136o2 /erfc ^^ + 3erffc (3)(3A), \\

25(1.16x10^)

-^/^ (2.3ol5)+ Tq + 4.17 V

The determination was made at the point x/l equal to zero because it

was found by plotting the equation (2,3ol0) for all x for various

values of time and M that the maximum temperature occurred at this

point.

By trial and error solution, it was found that under these con-

ditions, which are the most favorable ones, that the reactor would

melt at a time 18o8 minutes after shutdovm.

When the reactor has been operating at a 100 KW level before the

postulated emergency occurs ^ the danger of melting is considerably

reduced. It will be seen that this brings about longer times to reach

high temperature, in any case, thus requiring one to consider the t^

terms previously neglected,, This condition decreases the value of To

to 130 °F as specified by boimdary condition (l) and also decreases

the constant before the source term integral by a factor of lOo

Equatior (2o3olO) then becomes §
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- 1 . 16x10^ - 9(1.16x3.0^)

T(0,t) = -mE. I 2o26f?f e
^

+e *

- 136.2

-ME. 2.26 f?(

(erf
jj .J4_ + 3erf^ (3)(3A) + o \

+ 130 + .a?
I
t^/5 + t^^^^ - (t + ti)^^^J (2.3.16)

For Mjjjj^j^ = it was found that a time of approximately 11 hours

was required for the fuel elements to reach the melting point. For

temperature which means that before reaching such a heat loss rate

the fuel element would have reached thermal equilibriumo

The results for the 100 KW case are not as conclusive as for the

1000 KW case. Even for the fuel element fully insulated, however,

11 hours are required to reach the melting point. This leads one to

believe that even if the condition should exist, which it probably

vdll not, then one is provided with sufficient time to take corrective

actiono

If one wishes to determine the exact temperature to which the

fuel elements will rise for the 100 KW operating level it is necessary

to approach the problem from a different viewpoint. One may set up

some idealized system such as stating that a central element loses its

heat by conduction to a single outside element from whence heat is

radiated. This would provide a conservative estimate of the final

answer since heat from a central element is probably conducted to

more than one of the outside elements. One coiild then set up the
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differential equations for the two fuel elenents in which the outside

fuel element would have a sink as well as source temio This sink

term would involve the fourth power of the absolute temperature and

would thus make this equation non-linear requiring a numerical solu-

tion. There would be a third differential equation which accounted

for the thermal resistance of air gaps and aluminium between the in-

side and outside fuel elements and the thermal capacitance of that

portion of the grid lying along the thermal path between fuel

elements. These three differential equations would have to be solved

simultaneously

o

Due to the lack of sufficient time a calculation of the above

type could not be done.

It should be pointed out at this time that the assumptions of

no heat loss by conduction or convection and the instantaneous loss

of pool water are conservative. Actually, there will be some heat

loss by conduction and convection and^physically, the water cannot

be lost instantaneously. These factors will tend to make the above

answers safe ones.
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