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ABSTRACT

During the past several years at the United States Naval

Postgraduate School there has been much interest in obtaining

an efficient method for making a time schedule for classes. A

mathematical model for a simplified version of this scheduling

problem was devised by several faculty members, and this paper

is a study of this model.

This paper, while not offering a general solution to the

simplified scheduling problem, does provide some insight into

the problem and suggests areas for future study that may lead

to a general solution.

The paper is presented in four parts, the first being an

explanation of the problem in terms of Boolean algebra. The

second part restates the problem in terms of graph theory, show-

ing that this problem is the same as the problem of finding the

chromatic number of a given graph. The third part is an attempt

to gain insight into a solution of this problem by an exhaustive

study of all graphs of order six and less, which are tabulated

along with certain of their attributes. The fourth part is a

study of certain random graphs of higher order. Among other

things this study uses the digital computer to find the number

of complete subgraphs of every order within each graph examined.
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1. Introduction

During the past several years at the U. S. Naval Postgraduate

School in Monterey, California, there has been much attention given

to the problem of class scheduling. It is a tremendous undertaking

to create a time schedule such that each student can take the

courses specified for him without conflict, where the instructor

and certain facilities are also specified in advance. It i-as an

attempt to make a mathematical model of this scheduling problem

that led several faculty members to formulate a simplified version

of the scheduling problem which is the subject investigated in

this paper.

This problem was suggested to me by Dr. E. J. Stewart, Professor

of Mathematics at the Naval Postgraduate School, in his course in

Boolean algebra in the fall of 1962. It was Dr. Stewart who first

drew my attention to such concepts as Boolean vector, conflict

matrix, etc., which resulted in the definitions given in Section

2. The subsequent investigation of the topic was directed by

Professor W. R. Church, Chairman of the Department of Mathematics

at the Naval Postgraduate School. The fact that the partition

problem as originally stated is related to a problem in graph

theory, along with many other concepts in the paper, can be attri-

buted to Dr. Church. Although it cannot be said that this paper

solves the problem investigated, it has presented some insight into

the problem and suggests areas for future study that may lead to

a solution.





The author assumes that the reader has a knowledge of

elementary set theory, modern algebra, and Boolean algebra. Al-

though it will be noticed that most of the material in this paper

is given in terms of graph theory, the material in this area is

virtually self-contained and requires no previous knowledge on

the part of the reader.

The paper itself is divided into four parts, the first being

an explanation of the problem in terms of Boolean algebra. The

second part restates the problem in terms of graph theory, showing

that this problem is the same as the original problem. The third

part is an attempt to gain insight into a solution of this prob-

lem by an exhaustive study of all graphs of order less than or

equal to 6, and the fourth part is a study of certain graphs of

higher order.

Throughout the paper, the numbers in the brackets following

specific definitions and statements are keyed to the references

in the bibliography.

I would like to express my gratitude for the encouragement,

guidance, and inspiration which Professor W. R. Church provided

and without which this paper would not have been possible.





2. Statement of the Problem

,

In order to clarify the statement of the problem, it will

first be necessary to make the following definitions.

Definition I s An m-dimensional row vector, of which every element

is a or a 1 is called a Boolean vector .

Definition 2 s A Boolean matrix , A, is a rectangular array of

elements a^: , each of which can have only the value

or 1. Notice that Boolean vectors are 1 x m Boolean matrices.

Definition 3 s The product of two Boolean matrices is a Boolean

matrix which is obtained by ordinary matrix multiplication,

except that the addition and multiplication are logical

addition and multiplication respectively, i.e., If A and

B are Boolean matrices conformable for multiplication, then

AB « C, where C L l - /_ atK* b
^l

Definition h i The comple.Tient of a Boolean matrix A, denoted by

A', is defined ass A 1 C, where Cii a if , and a'{.;

is or 1 accordingly as aw is 1 or 0.

Definition £ s The sum of two Boolean matrices A and B is defined

ass A + B p C, where C 1 1 a;; + b [[ .

Def inition 6 s The transpose of a Boolean matrix A, denoted A ,

is formed by interchanging rows and columns of A. i.e.,

A C, where Cu aij .

Definition 7 s Given a Boolean matrix A, then AA is called

the conflict matrix of A.

If X| (a, ,a
2 , ..., a^), where a^ or 1

Xi (b, ,ba , ..., b^), where b^ or 1





then X, + Xg « (a, + b
(

, a^ + b„ , ..., a^+ b^) and

X, X
2

= (a,b, , a^bg , ..., a^).

The combination of Boolean vectors X X^will be denoted

by X^Xf- , and will be called the logical product of X, and X^ •

The combination X, + Xp will be called the logical sum of X
(

and X 2 •

Definition 8 ; Two Boolean vectors X, and X ^ are said to conf-

lict if X
(

* Xo/ (0,0,..., 0). Otherwise X
(

and X^ are

said to be compatible .

Definition 9 ? (Huntington's Postulates, 190h [23J ) . A class

of elements B together with two binary operations (+) and

(•) is a Boolean algebra if and only if the following

postulates hold;

P : The operations (+) and (•) are commutative.

P^ ; There exists in B distinct identity elements and

1 relative to the operations (+) and (•) respectively.

Pj ; Each operation is distributive over the other.

P^ ; For every a in B there exists an a 1 in B such that

a + a 1 « 1 and a«a' 0.

Definition 10 ; Two Boolean matrices A and B are equal (A B)

if and only if a-
L

; « b(.; .

Definition li s If C is an n x n Boolean matrix (c [ : ), then

an elementary transformation En" is the interchange of

rows i and j, along with their corresponding columns.

Definition 12 ; Two conflict matrices A and B are said to be

equivalent if E(A) • B, where E =JT"E ^ s; . If the

matrices are not equivalent, they are said to be unequivalent,





It has been well known for many years [6 J that the set of

Boolean vectors of dimension m is isomorphic with a Boolean

algebra having a finite number of elements. This Boolean algebra

m
will be said to be of dimension m and is at order 2 . The

Boolean vectors thus constitute a convenient representation for

a finite Boolean algebra, and in the remainder of this paper

the arbitrarily given set of elements of a Boolean algebra men-

tioned in the title will be assumed to be given as Boolean vectors.

In the scheduling problem the faculty members, the student

groups, and the special facilities required (such as laboratories)

are listed in a specific but arbitrary order. The dimension of

the Boolean vectors, which correspond to classes, is the total

number of these items. One of the Boolean vectors is construc-

ted by placing a 1 in the i position of the vector if the i

item (faculty member, student group, or facility) is required

for the class. Among the features of the scheduling problem

which are not included in the problem with which this paper deals

is the fact that a class must be scheduled for several meetings

on different days of the week, and that some classes (e.g.,

laboratories) require two or more consecutive standard time periods,

In the light of previous discussion, I can now make a state-

ment of the problem, which will be hereafter referred to as the

"partition problem."

Given a set of elements of a Boolean algebra X ») x
(

,

x
?

, ..., x 1 , where[x #

L
jis an n-dimensional Boolean vector





(i«l, 2, . .
.

, m) , then I wish to partition the set X into a

minimum number of subsets ]P ,P^ , . .., ?s \ such that every

element of each subset is compatible with every other element

in that subset. I use the word "partition" in the commonly

accepted manner, i.e., P is a partition of X if P divides X

into subsets which are disjoint and exhaustive.

A given set of Boolean vectors may contain some redundant

restrictions as far as the partition problem is concerned. These

redundant restrictions can be reduced in two different ways, and

eliminated in a third. Regard the columns c^ as elements of a

Boolean algebra of dimension n. The first reduction, resulting

in the reduced matrix , is accomplished by deleting column c^

if, for any two columns c and c; , c; + c^ s c^ . The second

modification, resulting in the contracted matrix, is accomplished

by replacing in the reduced matrix, blocks of columns (where

possible) with single columns yielding the same information as to

conflicts, and deleting columns having one element.

If a collection of n m-dimensional Boolean vectors were

arranged in a column, one would have an nxm Boolean matrix.

This matrix could be reduced to one usually having fewer columns,

yet yielding the same information as regards the compatible

partitioning problem. For example, if the below given set of

vectors, M, were to be partitioned, then Cj could be eliminated

since it has no elements and will contribut nothing.





M

10 10 10 110 11010 10 111110
I can reduce M by eliminating columns C3 and Cn , according to

the above criteria, leaving me with the matrix M* , where

M'

10 1011110 1110

1 1

1 1 1

1 1

1 1

If I rearrange the columns in the natural order I have the re-

duced matrix

M,

If one wanted the contracted matrix, then, after eliminating C~

and Ca, , one could replace C^C^Cyby the single column

1

1

1

which gives the same conflicts. One would then write

M,

where M c is the contracted matrix. Since Mc or M^ has all of

the information with respect to the partitioning problem as had

the original matrix M, one could replace M.by M c or M^in attempt-

ing to solve the problem.

Another operation that could be performed on M is a process

called normalizing the matrix. In normalizing, one replaces

7
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1 1

1 1
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every column of the matrix which has more than two elements by

a set of columns having exactly two elements, and yielding the

same conflicts as the original column. This is, in effect, just

the opposite process of contraction, vhich is mentioned above.

If one then eliminates all columns having less than two elements,

in addition to eliminating all duplicated columns, and arranges

them in the natural order, one is left with a matrix having

exactly two elements per column (one conflict), and these con-

flicts will be precisely those that are in the original matrix.

For example, consider the matrix

M

10 10 10 110 11010 10 111110
After eliminating C 3 and C4. , C, is the only remaining column

with more than two elements. Therefore I replace C
(

by the set

1 1

~1

1 1

1 1

yielding the matrix

c
;

4 1 - •

"1
l 1 r

1 1

1 1 1 1

_0 l l 0_

Since C* - r 1 1 can eliminat eC
£

"l l 1 o"
1

1 1

l 1 1
•

1 1

Rearranging columns we get the normalized matrix Mv , where





M

111010 1010 1110 1

Outside the obvious advantage of having a smaller matrix

to consider, in the case of reduction or contraction, or of

presenting the matrix with one conflict per column, in the case

of normalization, there appears to be no practical value in per-

forming a reduction, contraction, or a normalization of a matrix

representing a collection of Boolean vectors. The reason for

this lies in the fact that the original matrix, the reduced matrix,

the contracted matrix, and the normalized matrix are all equiva-

lent as far as the compatible partitioning problem is concerned,

and vi 11 all yield the same conflict matrix. This vail be ex-

plained more fully in the next paragraph.

Starting with a collection of n Boolean vectors of dimension

m, one can arrange these in any fixed arbitrary order to form a

Boolean matrix A, where A is n x m. If this matrix is multiplied

by its transpose, A"1
-

, then one has the conflict matrix C (Defini-

tion 7) ? where C is an n x n symmetric matrix with ones down the

main diagonal. If C Li 1, then clearly the vector comprising

row i of matrix A and that vector comprising row j of matrix A

will have a product which does not equal (0,0,...,0), (i.e.,

conflict), and therefore could not be placed together in any

compatible partition of the original set of vectors. If C^i" 0,

then vectors i and j can be placed together in a partition.

Because of this fact, it is apparent that the conflict

matrix made from the matrix of a set of Boolean vectors contains





all the information that the original set of vectors contain, as

applied to the problem of finding a minimum compatible partition

of this set. Therefore, the remainder of this paper will be con-

cerned with an investigation of conflict matrices.

It is worthwhile to notice that the conflict matrix obtained

from the original set of Boolean vectors will be the same as the

conflict matrix for the reduced, contracted, or normalized set of

vectors. Going the other way, it is easily seen that the con-

flict matrix will determine a unique normalized set of vectors if

the information in it is used in the natural order. Also, the

conflict matrix will determine (in the same sense) a unique

contracted set of vectors, as can be seen from the discussion

of genus vectors in Section J>.

If one knows the minimum number of subsets into which the

set can be partitioned, it will always be possible to make a

partition using this number. The most satisfactory technique

discovered so far will be illustrated in the following example.

Suppose one has 20 Boolean vectors labeled a through t, and

it is known that the minimum number of subsets in a compatible

partition is 6. From the original set of vectors or the conflict

matrix (Figure 1), one can pick out a maximum number of vectors

that are not compatible. In this example the maximum number will

be 6 (say d, f, g, m, p, s), which is the same as the known

minimum number of subsets in a compatible partition. If it is

not possible to find 6 vectors such that any two are not com-

patible, then find as many as possible, and then arbitrarily

add vectors until you reach a total of 6.

10





We then make out a table, using these 6 vectors at the top,

and placing the remaining vectors down the side (Figure 2). To

fill out the table we place a one in the °<|3 position if vector e*

(row) is compatible with vector /3 (column), and then sum the

number of ones in each row. This information is obtainable from

the conflict matrix. One can then put the 6 non-compatible elements

at the top of 6 columns (see Figure 3), and place the elements

which are the rows of Figure 2 into the column where they will be

compatible with every other element already in the column. This

is done in ascending order with respect to the row sums of Figure

2. For example, row h has a sum of one, hence h will only be

compatible with d, therefore first place h in the column under

d. Continuing in this manner, placing each element where it must

go to be compatible with the other elements, one will eventually

put every element into one of the six columns, where the elements

in each column are compatible. It may be necessary to do this

several different ways before a partition can be made, but in the

problems investigated so far it could usually be done the first

time.

11
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3. The Partition Problem in Terms of Graph Theory.

In performing the investigation reported in this paper, it

has been noticed that there exists a body of knowledge that is very

closely related to the study of conflict matrices. The body of

knowledge is graph theory, and the succeeding definitions, theorems,

and conclusions will show this relation and make use of the termino-

logy and several known results of graph theory.

A graph G (X,P) consists of a set X of elements and a

function P ; X~>X. The elements of X will be represented by points

in the plane, and if (x,y) are two points such that y is in I (x),

then there exists a bond between x and y. Hence, elements of X are

vertices, while the pairs (x,y) are bonds |_2j. For the purposes

of this paper, a bond connecting x and y will be denoted xy instead

of (x,y). This will eliminate a possible source of ambiguity that

could arise later in the paper.

The order of a graph G is the total number of vertices in G,

and the degree of any vertex V,' of G is the number of edges connec-

ting V/ with other vertices in G. A graph is said to be linear

if all of its edges are straight lines (no loops). [2fj

Definition 13 ; Two graphs G and G' are isomorphic when there

exists a one-one correspondence between their vertex sets V and

V such that corresponding vertices are joined by edges in one

of them only if they are also joined in the other. £l8]]

Definition lU : The graph U U(V) is called a complete graph if

the edges of U are all pairs of possible associations for two

different vertices x and y in V. [l8J

13





Definition l£ ; An incidence matrix, A "C a WJ , is a symmetric

matrix of n rows and n columns for a graph of n vertices where:

a L / f 1 if there exists a bond between vertex i and vertex j

(^0 otherwise [| $J

Definition l6 s A graph H is called a subgraph of the graph G

when the vertex set V(H) of H is contained in the vertex set

V(G) of G and all edges of H are edges in G. [l&J. It can be

seen that the subgraphs of a given graph can all be obtained

by omitting one or more vertices and the edges involving these

vertices.

Definition 17 ; Given a graph G on n points, there exists a unique

complimentary graph G on these n points, consisting of all

possible edges connecting the n points except those belonging

to G. fl8j

If we agree that a vertex is always bonded with itself, then

ones will always be in the main diagonal of the incidence matrix.

Clearly, the incidence matrix is equivalent to the graph in the

sense that each is completely determined by the other. [_Z%}

From the previous definitions one can see that the incidence

matrix in graph theory is exactly the same thing as the conflict

matrix made from a set of Boolean vectors. Therefore, the problem

of finding a minimum partition with compatible elements can be

thought of as a problem in graph theory.

Theorem I ; A minimum compatible partition of a set of Boolean

vectors will be greater than or equal to the order of a maxi-

mum complete subgraph contained in the graph represented by the

incidence (conflict) matrix.

Ill





To see this, notice that if one has a graph of order n, with a

maximum complete subgraph of order s, this implies that there

exists a set of s points (vertices), A, which are connected (bonded)

with every other point of the set A. This means that none of these

s points can go into a set of a compatible partition with any of

the other points in A, which implies that the minimum number of

subsets in the partition of the original set of Boolean vectors

vrill be equal to or greater than the cardinal number of A, which

is s.

To state the partition problem in graph terminology, we first

need to make further observations and definitions. We note that

the graphs in question are undirected with single edges, and no

loops (linear). For the purposes of this paper the word "graph"

will imply these conditions.

If G is a graph, then G is k-colorable when there exists a

decomposition of its vertices into k disjoint classes K. , K« ,

. .., Kjo , V } K • , K; • K- = # such that the vertices in

each class are compatible, which means that they are not bonded

with other vertices in the class. This decomposition is a k-

coloration of G. If each vertex of class K* is colored with the

i color, then each vertex of the graph is colored in such a

manner that the endpoints of an edge always have different colors.

One can also represent the colors of the classes K : by the integers

1, 2, ..., k, and introduce a color function f such that f(V* ) «

i, V^ in K'
L

. [JS].

15





The smallest number k«k(G) of classes in any k-coloration

is the chromatic number of G, and G is said to be k-chromatic .

Under these conditions the decomposition described above will be

a chromatic decomposition of V. ["lbjf

Using this terminology, the partition problem can now be

stated: Given a graph G, where G is k-colorable, find the

chromatic number of G and a chromatic decomposition of V. This

will be referred to as the "coloration" problem.

One immediately observes that a complete graph on n vertices

(i.e., of order n) has the chromatic number n, and that Theorem I

can be restated.

Theorem II ; When G contains a complete subgraph U on m vertices,

then k(G)^ m .

It can also be shown ["3J that if given a graph G, where we define

q » max n (Px), then q+1 colors are sufficient to color the graph,

This, along with Theorem II, gives us an upper and a lower

bound for the chromatic number of any graph.

16





U. An Exhaustive Study of Graphs of Order Six and Less.

The solution of the coloration problem, in general, appears

to be quite difficult. Therefore I propose to examine in detail

all of the graphs of order six and less to see if any patterns

develop or any inferences can be made to indicate possible areas

for future study.

Associated with each graphs an ordered pair of numbers (a,

b), called the genus of the graph, where a is the order and b is

the number of edges of the graph. For example, (6,5) is the genus

of a graph on six points having five edges. In general, different

graphs may have the same genus, therefore the genus does not

determine a unique graph. Also associated with every graph of

order n is an n-tuple (a, ,a^ , ..., a^ ) called the type of the

graph, in which a * is the degree of the i vertex of the graph.

Two graphs on n given points are said to be isomorphic if

their incidence matrices are equivalent. Therefore every graph

has an isomorphism number associated with it, where the isomor-

phism number of a graph is the total number of graphs in the set

consisting of the given graph and its isomorphs. There are

several different ways to obtain the isomorphism number of a

graph G.

It can be shown [63 that if h is the number of isomorphisms

in a set £ X j , then h « -r1
, where k is the order of G ^ (X), the

group of degree n which leaves X unchanged. Although this

method is easily applied to some graphs, for others it is quite

difficult to determine k.

17





Another more useful procedure to find the isomorphism number

of a graph is to determine, by combinatorial methods, the number

of different ways that a graph can be labeled.

For example, consider the graph on 6 points with seven edges,

i.e., a graph with genus (6,7), given by the figure / / ,

If I label the point with the greatest degree as 1, the next

largest degree is 2, and so on, the graph would be labeled as

shown JZK-
The type of the graph will be (k$ 3, 3, 2, 1, 1) and the

edges can be given by the pairs 12, 13, If?, 16, 23, 2li, 3ii .

Notice that these edges are also determined by the incidence

matrix

1 2 3 h £ 6

1 1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

k 1 1 1

5 1 1

6 1 1

I could bend this graph into a different shape, such as ^l^NJ
but it is still the same graph. I also might label the points

r, .2- .t

. The incidencedifferently, getting an isomorph

matrix for the graph labeled in this manner would be different,

but equivalent to the incidence matrix of the graph labeled the

previous way. The type of the graph labeled in this manner would

be a permutation of the type of the graph labeled previously.

This fact is obvious if one notices that the type of graph is

simply the row sums of the incidence matrix with the elements in

the main diagonal changed from 1 to 0.

18





Applying the first method, one can d|§,emiine the number

of isomorph,h, of this graph by determining the order, k, of the

permutation group on the n points which leaves the set of edges

unchanged, and dividing this number into nl . In this example
/J

n=band k=ii, therefore h "IT^ tp*1 180.

One can also determine this number by combinatorial methods.

i.e.,
&
cy 60/2 = 180.

In finding all of the non-isomorphic graphs of order 6 and

less, I was aided by a table in Riordan's Combinatorial Analysis ,

T21J which is reproduced as Table I in this paper. Notice that

this table lists the number of non- isomorphic graphs within each

genus. As an aid in finding the number of isomorphs of each

graph, the following theorems were used.

Theorem III ; The total number of graphs of genus (n,a) on n

given points, denoted by N(n,a), is the binomial coefficient

/n(n-l)M

To see this, notice that the incidence matrix for any graph

of genus (n,a) will have n(n-l)/2 spaces above the main diagonal

to be filled by a ones. The number of different ways of doing

this, of which each different way corresponds to a different

graph on the n given points, is given by the binomial coefficient

(

n(n

1
)/2

)
•

Theorem IV ; The total number of graphs of order n, denoted N(n),

is
2»(»-l>/2.

19





This is clear since N(n) 2 N(n,a), and it is well known
<X- o

that the sum of these binomial coefficients is 2
n ^ n~ ''

.

For example, if n 6, then the total number of possible edges

is 6.5/2 * 15 . Therefore the number of graphs of order 6 is given

by 2 = 32,768. The number of graphs of genus (6,0) is 1CC = 1;

of (6,1) is ^C. = V$i of (6,2) is t^C* = 105; and so on.

Theorem V ; If a graph GQ on n points, where each point is of

degree greater than O^has an isomorphism number N , then the same

graph on n + k points, G^ . (That graph obtained by adding k ver-

tices but no edges) has an isomorphism number NQ . ( ^ )•

This can be seen by noticing that NQ » ni /s [6j[ , where s is

the order of the permutation group which leaves the edges of GQ

unchanged. If we add k points but no edges, then for the same

reason the isomorphism number (Si.) of G^ is (n+k)i/r. However

r S'ki since the permutation group which leaves the edges unchanged

on the n+k points of G^ is an intransitive group which contains

two transitive sets. One of these two sets is the n points in G

and the other is the k added points of degree in G* . Thus the

permutations of G« consist of each of the s permutations that leave

the edges of G unchanged, combined with each of the permutations

of the symmetric group on the k additional points. If we take the

ratio N^ /W * [(n+k) i/s-k'J *[s/nf] - (n+k)i/n»«ki »
(

nkV Hence

N^ N *
(

n
£ ), and the theorem is established.

Graphs of order n can be obtained from graphs of order n - k

by adding k vertices in every way and eliminating duplicates. Like-

wise, the isomorphism number, p, of a graph G of order n can be
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obtained from a graph G' of order n - k, which has a known iso-

morphism number p' , if G'CG. This is done by multiplying p'

times the number of different ways that one can add the k edges

which form G, to G'.

Appendix I lists all of the non- isomorphic graphs of order

6 by edges, giving isomorphism number, type, order of the maximum

complete subgraph and the chromatic number, plus other information

that will be explained in Section 5. The graphs are listed by

descending types within each genus. It is not difficult to list

in advance of constructing the graphs of a given order all n-tuples

which can occur as types. It is interesting to note that for each

n-tuple so listed, at least one graph actually occurs up through

order 6. However, there is not a one to one correspondence between

different types and different graphs. As can be seen from Appendix

I, there are 15 cases when this occurs. In listing the graphs it

was necessary to find only the first half by the methods previously

mentioned, since one can find the complementary graphs to these

by adding edges to the unconnected vertices of a graph, and delet-

ing the edges which connect the vertices of that graph. Each graph

will thus have a unique complementary graph, with the same isomor-

phism number. If G is any graph of order n, then it is easily

seen that the sum of the type for G and the reversed type for G

will always add to the type for the complete graph on n points.

The graphs of order 2, 3? h, and 5 are not included in Appen-

dix I because these graphs are included in those of order 6.

Likewise, a pictorial representation for each graph is not included,

since this is easily produced from the edges.
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Out of a total of l£6 non- isomorphic graphs of order 6, note

that there exists h cases where the chromatic number differs from

the order of the maximum complete subgraph. Likewise, in the 3h

graphs of order 5>, there exists one such case. There are no such

cases for graphs of order less than £. In each of these 5> cases,

if k is the order of the maximum complete subgraph, then the

chromatic number is k+1. Berge C 3J proves that a graph is 2-chromatic

if and only if it contains no cycles of uneven length. The graphs

where this theorem applies are easily identified from Appendix I.

The probability that a random graph on 6 given points will have

a chromatic number greater than the order of the maximum complete

subgraph is (72 + 360 + 180 + 72) /2
l$ 0.0287 . The same proba-

bility computed for a random graph on 5> points is 12/2 0.0120.

The probability that a random graph of order ^ 6 and of a

given genus has a particular chromatic number can be found from

Appendix I, and is listed in Appendix II, along with the mean and

standard deviation of the probability distribution corresponding

to each genus. These means are plotted following Appendix II, with

the abscissa corresponding to the genus, and the ordinate corres-

ponding to the mean. Notice that this function is monotone in-

creasing, and also that the slope of a smooth curve connecting

these points increases with increasing abscissa.
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5. A Study of Some Random Graphs of Order 6.

It is apparent that in order to make any further progress in

the study of the coloration problem, one must be able to investi-

gate graphs of a larger order. Since this would be quite a tedious

operation if done by hand, even for graphs of order 7 or 8, one is

naturally led to the large-scale digital computer. For reasons stated

at the end of Section 3, we devised a method to find the maximum com-

plete subgraph of selected graphs of order •£ I4.8 » We do this by find-

ing the complete subgraphs of order 3, and then using these to find

the complete subgraphs of order I4, and so on until we have the maximum

complete subgraphs. The program is restricted to graphs of order -4 1|8

since the U8 bit positions in a word in the CDC I60U computer were

used to record the presence of a complete subgraph of a certain order.

Also, the main memory places a restriction on us by not allowing the

number of complete subgraphs of any order to exceed 15,000.

This program could have been written so that the complete sub-

graphs of order i (i«l, 2, ..., k) which are contained in any complete

subgraph of order greater than i, are discarded. If all of the re-

maining subgraphs are listed in a matrix form, then one has essential-

ly the contracted matrix mentioned in Section 2, the only exception

being that this matrix may contain complete subgraphs of order 1

(single elements in a column), while in the contracted form these were

eliminated.

Utilizing the CDC I60I1 in this manner, we have so far randomly

produced 2£ graphs of order 20 and 11 of order IjO.We had hoped to then find
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the chromatic number of these graphs, and gather some statisti-

cal data relating the order of the maximum complete subgraph of

a random graph to the chromatic number. However, ve were diver-

ted from this study by an unexpected property which all of these

graphs possesso To explain this property I will define another

N-tuple associated with each graph, which I will call the genus

vector of the graph.

Definition 18s The genus vector of a graph G is the N-tuple

£a
(

, a^, a , . .., a^ , where a
(

is the number of complete sub-

graphs on 1 point (the number of vertices), a„ is the number of

complete subgraphs on 2 points (the number of edges), and so on

until a^ , which is the number of complete subgraphs on N points,

where N is the order of a maximum complete subgraph of G.

Notice that (a , a J, obtained from the first two elements

of the genus vector, is the genus of G. The genus vector for

each of the graphs of order 6 is listed in Appendix I, and the

conditional probabilities for obtaining a particular genus vector,

given the genus, for all graphs of order h, 5, and 6 are computed

and are listed in Appendix III.

To produce the 36 graphs investigated so far, we punched

an IBM Data Card for each position in the incidence matrix (i.e.,

for each position in a 20 x 20 or U0 x hO matrix), and on each of

these cards we also punched a series of random numbers from a

random number table. The cards were then mixed in a card sorter

according to the random numbers, and a certain number of cards

were selected, where each card corresponded to one bit in an
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incidence matrix. Using this method we were able to make up

graphs, random in the described sense, with a fixed percentage

of edges. For example, a graph of order 20 would have a 20 x 20

incidence matrix, and the total possible number of edges would

be 20.19/2 - 190. If we wanted a graph "5/10 full" we would

arbitrarily select 95 cards from the card sorter.

For this investigation we made up 25 graphs of order 20,

where 5 were 3/10 full (57 edges), 5 were h/l0 full (76 edges),

and so on until we got 5 which were 7/10 full (133 edges). We

did the same thing for graphs of order kO, except we only made

up 2 within each percentage of edges, and the range was from 2/10

full to 6/10 full, with one graph 6.5/10 full due to machine

limitations.

When each of the above graphs was run through the computer

we obtained the genus vector for that graph, plus a listing of

the elements in each maximum complete subgraph. We accumulated

the components of the genus vector and computed the cumulative

probabilities corresponding to each component. This sample

cumulative distribution function was plotted on normal probability

paper, with the order of the subgraphs being the ordinates, and

the cumulative probabilities being the abscissas. The unexpected

property mentioned earlier is the fact that in every case the

plot was almost linear. I will illustrate this property by a

typical example.

The 20 x 20 incidence matrix in Figure h was produced by

the above methods, and after being run through the computer we
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obtained the genus vector |20, 95, 13^> £8, 9
J . If we let P.* de-

note the cumulative probability of having a complete subgraph of

order i or less, then we computes P 0.03 l6U| P^ 0.21361;

P3 0.57595; Py " 0.87975; P5
s 0.98576. This information is

plotted on normal probability paper in Figure 5> with abscissa

and ordinate as described above. As yet, we have been unable

to determine a reason why the points in Figure 5 and in all of

the other cases lie very nearly in a straight line. The genus

vectors of the sample of 25 graphs of order 20 and 11 graphs of

order I4.O are listed in Appendix IV, along with the mean and

standard deviation of each sample cumulative distribution function,

as read from the plot on the normal probability paper.

The estimated means (from the sample shown) of the probability

distributions for the order of the maximum complete subgraph with-

in each genus of graphs of order 20 and U0 can be easily found

from Appendix IV. A plot of these means is not included since

the sample size is so small, and therefore the estimated means

could be considerably different if based on larger samples.

However, based on the sample we have, a plot is quite similar to

the plot of the means for graphs of order 5 and 6, which would be

almost identical with that shown following Appendix II.
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TABLE I

THE MJMBER OF LINEAR GRAPHS WITH n POINTS AMD k LINES

Z*
2 3 a 5 6 7 8 9

1 1 i l 1 1 1 1

1 1 1 i l 1 1 1 1

2 1 2 2 2 2 2 2

3 1 3 k 5 5 5 5

1* 2 6 9 10 n 11

5 1 6 15 21 21a 25
6 1 6 21 111 56 63

7 a 2U 65 115 11*8

8 2 21* 97 221 3U5
9 1 21 131 U02 771
10 1 15 Ui8 663 1637
11 9 1U8 980 3252
12 5 131 1312 ^
13 2 97 1557 10120
111 1 65 16U6 15615
15 1 kl 1557 21933
16 21 1312 27987
17 10 980 32U03
18 5 663 31*01*0

19 2 I4O2 32li03

20 1 221 27987
21 1 115 21933
22 56 15615
23 21* 10120

2U 11 5995
25 5 3252
26 2 1637

27 1 771
28 1

Total 2 U 11 31* 156 101^ 1231*6 27^668
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APPENDIX II

The Probabilities of having a Particular Chromatic
Number, Given Genus, Plusyf and KT for the Distribution.

GENUS CHROMATIC NUMBER

2 3 h s*{

(2,0) 1 1

(2,1) 1 2

(3,0) 1 1

(3,1) 1 2

(3,2) 1 2

(3,3) 1 3

(a,o) 1 1

(U) 1 2

(h,z) 1 2

(lt,3) 0,8 0.2 2.2 o.a

ik,h) 0.2 0.8 2.8 o.a

ik,$) 1 3

CU,6) 1 h

(5,o) 1 1

(5,1) 1 2

(5,2) 1 2

(5,3) 0.9167 0.8333 2.0831 0.276a

(5,M 0.6667 0.3333 2.3333 0.a713
(5,5) 0.2381 0.7619 2.762li 0.a259
(5,6) 0.0U76 0.9286 0. 0238 2.9762 0.1190

(5,7) 0.8333 0. 1667 3.1667 0.3727
(5,8) 0.3333 06667 3.6667 0.a713
(5,9) 1 h

(5,10) 1 5

(6,0) 1 1

(6,1), 1 2

(6,2) 1 2

(6,3) 0.9560 o.oaao 2.01M 0.2050

(6,4) 0.82h2 0.1758 2.1762 0.3807

(6,5) O.566I4 0,1j336 2.1336 0.a956
(6,6) 0.2398 0.7572 0. 0030 ( 2.7628 0.a321
(6,7) 0.07U6 0.90Ut 0. 0210 2.9I46O 0.3082
(6,8) 0.0163 0.8998 0.0839 3.0676 0.3053
(6,9) 0.0020 0.7582 0. 2398 3.2381; 0.a305
(6,10) 0.1615 0. 5h35 0.0020 3.5V75 0.5017
(6,11) 0.1758 0. 8022 0.0220 3.81*62 0.ai73
(6,12) 0.0330 0. 7912 0.1758 a.lli28 o.a3ai
(6,13) 0. 1286 0.571ii a. 571a o.a9a9
(6,1U) 1 5

(6,15) 1 6
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APPENDIX III

A Table Showing the Conditional Probabilities of Having a Particular
Genus Vector for a Random Graph of Order Four,, Five* or Six, of

Given Genus

Genus

It 1 2 3 h 5 6___
i i m —

Genus 1 ,2 .8

Vector 2 1

li,l 1

5 1 2 3 li 5 6 7 8 9 10

1 1 1 „917 o667 ^SoToHH
"

1 0O83 o333 S9$ o286

2 ol29 o61i3 o2^0

3 »583

a o333

ii,l o023 0I67 0667

7,2 1

10,5,1 1

lii
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APPENDIX IV

The Genus Vectors for Certain Random Graphs of Orders 20 and

hO, and the Mean and Standard Deviations for the Sample Cumula-
tive Distribution Function,,

GRAPHS OF ORDER 20

Name Type

6 A T
B 20 57 26 2 2.10 0.80
A 20 57 29 2 2.10 0.86
C 20 57 33 k 2.20 0.85
D 20 57 3ii k 2.20 0.85
E 20 57 38 9 2.30 0.95

C 20 76 68 Ik 1 2.1;5 0.91

E 20 76 73 17 1 2.1*5 0.93
A 20 76 70 18 1 2,h$ 0.93
B 20 76 70 19 2 2.50 0.95
D 20 76 83 25 3 2.60 0,97

D 20 95 131 55 8 2.80 0.98
B 20 9$ 139 62 8 2.80 1.00

E 20 95 131; 58 9 2.85 1. 00

A 20 95 lltO 62 9 1 2.85 1,00

C 20 95 156 96 2k 1 3.05 i.o5

D 20 llli 2Ul 199 $9 3 3.30 1.05
A 20 llii 2U1 210 77 10 3.10 1,10

E 20 lib 2hh 219 88 15 3.1*0 1.15
C 20 na 239 201 77 17 2 3 = 50 1.15
B 20 lih 273 32h 201 61 7 3.75 1.21

A 20 133 388 5lt0 35U 97 7 3^90 1,20
C 20 133 389 553 381; 120 13 3,95 1,20
B 20 133 385 535 361; 115 15 1 3.95 1.20
D 20 133 389 $13 367 120 19 1 U.oo 1,20
E 20 133 379 508 3U6 122 21 1 li.OO 1.20

13





GRAPHS OF ORDER hO

r
A
B

IlO

ho
156

l$6

80

75
5
6

2d5 0.80

2.15 0,80

A
B

ho
ho

23h
23h

278

267
63
67

3

h

2o60 0.90
2 o 60 Oo90

A
B

ho
ho

312
312

602
613

293

333

29

53

2

2

2.95 Oo90
3.05 loOO

B
A

lio

ho
390
390

1293

12h2

1633

lh83

802

708
136

126
h

5

3*75 lolO

3.70 1.10

B

A
ho
ho

h68
h68

2099

21h5

hoih
h352

3h31
hl36

1339
1867

2h5
383

17

26
h.35 lol5

h.hO 1.20

A ho 507 2668 6513 7926 5057 1695 269 13 h.80 1.25

hh
















