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PREFACE

In the field of aircraft design, the question

of weight versus structural strength has always

been Important. In recent years, with the trend

toward high speed and high performance In modern

aircraft. It Is of the utmost Importance that the

weight factor be made as small as practicable.

It Is therefore necessary that the structural

engineer use every means at his command for ob-

taining the necessary strength with the least

amount of weight, and this c are must be exercised

in every phase of design, down to the smallest

detail.

The subject of this thesis was chosen with

this thought in mind as the design of reinforcing

rings around circular cutouts is still largely a

"cut and try" matter.

The writer wishes to express appreciation to

his adviser. Professor J. A, Wise, whose advice

and assistance was most valuable.
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SUMMARY

This is a presentation of a theoretical ana-

lysis conducted for the purpose of designing re-

inforcing rings for circular cutouts in flat plates

in tension. In this report, the general case of

a flat plate under a uniaxial tension load was

assumed, together with a circular cutout symmetri-

cally placed and reinforced with a circular ring.

Expressions for the radial and tangential stress

in the ring and the flat plate were derived in

terms of the loading on the plate, the dimensions

of the ring and plate, and Poisson's ratio.

Experimental data was taken from a test spe-

cimen which was constructed and loaded so as to

agree with the ass unpt ions made in the theoretical

analysis, A comparison of the test data and that

obtained from the theoretical analysis showed ex-

cellent agreement and attests to the validity of

the theoretical solution.





INTRODUCTION

The trend in modern aviation is toward high

speed and maximum performance in flight, especi-

ally with regard to military aircraft. Along with

this trend go the stringent demands for structural

designs that reduce the weight factor while still

meeting the necessary strength and space require-

ments.

The design of reinforcing rings around cutouts

in flat surfaces for various loading conditions re-

presents one of the many fields where a simple and

accurate method of design would save much time and

effort and would represent a worthwhile savings in

weight.

The need for openings in the stress carrying

skin of aircraft for maintenance access, doors, win-

dows, lights, and retractable landing gear have pre-

sented many difficult problems to the structural

engineer. Usually, these holes are reinforced with

metal rings--doubler plates— riveted to the sheet,

but little is known as to how well such a reinforce-

ment approaches the ideal in reducing the stress

concentration around the hole while at the same

time adding least weight to the structure.
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with this thought in mind, a theoretical ana-

lysis of a flat plate under a tension load was un- .

dertaken. The flat plate was assumed to have a

circular cutout, symmetrically placed and reinforced

with a circular ring. Expressions for the radial

and tangential stress in the ring and the flat

plate were derived in terms of the loading on the

plate, the dimensions of the ring and plate, and

Poisson's ratio.
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THEORETICAL ANALYSIS

I. GENERAL DISCUSSION OP METHOD USED.

V/hen a small circular hole is made in a plate

submitted to a uniform tensile stress, a high

stress concentration occurs at the edges of the

hole located at ninety degrees from the direction

of the tension load. If the diameter of the hole

is less than about one -fifth the width of the plate,

the conditions for a plate of ijifinite width and with

the load applied at infinity are approached, and

exact theory shows that the tensile stress at the

above mentioned points is three times that of the

loading. Prom this theory, it can be seen that

the stress concentration is of a very localized

character and is confined to the immediate vicinity

of the hole.

Since failure will first occur at these points,

it is necessary in the design of a ring to reduce

the stress concentration in the plate in those areas.

It is therefore pertinent that expressions for the

radial and tangential stress in the ring and the

plate be developed in terms of the loading and the

dimensions of the plate and ring. This was the basis

of the theoretical analysis as made in this report.





In this analysis It was assumed that the re-

inforcement Is an integral part of the sheet and

that the stresses do not vary across the plate

thickness. Previous studies Indicate that these

assumptions are reasonably valid and give good re-

sults outside the reinforced area. It was found

that measured and computed reinforcement strains

agreed best In the case of a reinforcing ring fas-

tened with two concentric rows of rivets.

PIG, 1.

Let Fig. 1 represent a plate, with a small

hole In the middle, submitted to a uniform tension

of magnitude S as shown. Prom Saint-Venant's prin-

ciple, the stress concentration that occurs around

the hole at m and n will be negligible at distances

which are large compared to the diameter of the hole.

As developed in reference (a), and considering

the portion of the plate within a concentric circle

of radius b, large with respect to radius a, the

stresses at radius b are essentially the same as in





a plate without the hole and thus are given by

A, 'I e

These forces, acting on the outer circumference

of the ficticious ring at r = b give a stress dis-

tribution within the ring which can be regarded as

consisting of two parts. The first is due to the

constant component g- S of the normal forces. The

remaining part consists of the normal forces \ S cos

2 0, together with the shearing forces — J S sin

29 .

As is evident later, a stress function is need-

ed for the solution of the stresses due to the above

mentioned forces and it would be very difficult to

find a single stress function for representing both

parts. Therefore for simplification of the problem,

the radial and tangential stresses are worked out

separately for the forces as divided above and then

are added to give the final results for the flat plate

with a reinforcing ring. This is carried out in

Parts III and IV of this section.

Part II of this section consists mainly of a

check on the validity of the basic theory used in

this analysis. It takes the equations for the stresses
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in a flat plate with a hole in the middle, as ob-

tained from reference (a), and further develops

these equations to obtain expressions for radial

and tangential displacement which were then checked

experimentally to substantiate the general theory.

Briefly the equations for the stresses in the

flat plate are developed as follows.

For the stress distribution symmetrical about

the center due to constant component ^ S of the

normal forces, the shearing stress ^^ vanishes,

leaving the radial and tangential stress as follows:

<= f- ('-£)

For the remaining part, consisting of the normal

forces ^ S cos 2 B , together with the shearing forces

-^ S sin 29 f there is produced a stress which may

be derived from a stress function of the form <p = T^)

cos 2 d

,

As developed in detail in Part IV of this sec-

tion this finally results in

.^^ >L
^ 9

z.
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Adding the stresses produced by the uniform

tension ^ S gives the final expressions for the

stresses in a flat plate under a tension load, with

a hole in the middle.

These are the equations which are used in Part

II of this section.
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THEORETICAL ANALYSIS

II, EXPERIMENTAL CHECK OF BASIC THEORY.
Y

•

f^
r

s ^ QR 1

e —
\n/

—
-— X —

•

"*

—

Pig. 2.

For the above figure, the stresses were given

in Part I as, ^

Y
^6

Ke>

/ i

<^
1 f^^

1

""7-

^^e

X

^e
Fig. 3.

Let

u = radial displacement

V = tangential displacement
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For this distribution of stress, the correspon-

ding displacements are obtained by applying the basic

relationships given below:

& =
^ (/y)

Prom the above equations:

TZ^ F(<y-^'e

'J^ s_ ii, .1 _ iL //..,) ^/.^.,)r^ 3 «- i!i'' c^ xB

Integrating
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s

in which 7(d) is a function of Q only.

e« = =^ +
d

" = X V"7^ = £ I "-e >^
y^

Substituting values for <3^ and u, and simplifying

gives ^ y' -T

Integrating ^ —t

[(/ 1^) t z Oy>)^ ^Oy^^f-%^^ ___ __

^Bi^B-^^B 111 ^—' MM. i ^ ^ f# — AM i ^ ' \.r ' y^^ JL "^

where P (r) is a function of yi- only.

Substituting the above expressions for u and v in

the shear equation

r.B

o/^ s

Jy^ ^

ffe)
Je ^^ / ^

, ^
( '^^ ^ ^a^ x^jf ;l /t-14. -V ^**-^ ^^ ' ^^





12

A.6 J r- ^
-7-

f — .<u-^ ;2d / / .. 1 , > /. ) <* . ./ I
^*^
a.

'^^6 G- ^yte

K . ^

^
- -7^ ^* - -

f^ ^ ^6iiu^)'3f^-^)^^ ^y^^^j
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j f(Q) Aq 4 f^{a] -h yc FOc) ~

2 E.

- ^ -TH

A*^ 1 <

since the quantity In parenthesis = o,

\ fid) cle -h f (d) -^ y^ fU) - Fu)

This equation Is satisfied by putting

= O

In which A, B, and C are arbitrary constants to be

determined from the conditions of restraint.

Therefore:

xa.

- r/^)

2.

i-{jiyuL) c^^ 2 6 -f- Z± C^ ^ B

C#«L Z

^lA' --ji\S^t^^^^('y^)t- ^0^)//
The conditions of restraint are:





Ik

(1.) At (9 = 90° , V = o

(2.) At a - 00

(3.) At 6 = 00 & 90°, ^
Prom condition (1.)

o r -c 4- Ar

C = Ar

From condition (2.)

o « B 4- Ar

B = - Ar

Prom condition (3.)

V = o

^ z O
/\^

#= ° = -h [Ot-) ~-('y^)£-^(T)i]-'' '^

A o

B = o

C = o

The final equations for u and v are

<• r «- ^

At ^ = 0° and r = a

3 So^
u
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At 5 = 90° and r » a

u = - ^
To find B for u = o at r = a

cos Z& ~ ~\

cos 120° = -i

a = 60°

Using the above equation for radial displacement

(u), a plot of the displacement was made as shown in

Fig, Ij. for a loading of eight hundred pounds on the

test specimen as indicated in the same figure. An

experimental check using the Huggenberger Tensometer

was also made on the test specimen and gave the ex-

perimental values as shown. The results indicated

that the basic theory used is sufficiently valid for

purposes of this analysis.
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THEORETICAL ANALYSIS

III. DETERMINATION OP RADIAL AND TANGENTIAL STRESS

DUE TO THE CONSTANT COMPONENT J S OF THE NOR-

MAL FORCES.

Let

^^' = thickness in region of ring,

^jj = thickness of flat plate (outside ring).

To obtain the radial stress (fe ) and the tan-

gential stress ( c^ ) in both regions { u . V* t^^)

due to the constant component 5 S of the normal forces,

the procedure is as follows:

6\ g * 0, since the stress distribution is sym-
metrical, the stress components do not
depend on and are functions of r
only.

This is also evident from the polar equation of

equilibrium, ^ _ _L ^ ^ - -^ ^

The displacement (u) is a function of the radius

only, because of symmetry.

Since .

€ = -^
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Then

<^. ^ E y - £

Considering the equilibrium of a small element

cutout from the plate by the radial sections C?c ^^^ 1

perpendicular to the plate, and by two cylindrical

surfaces a d and b c with radii r and r 4- dr, normal

to the plate
,

O

A^

Fig. 5. ^oj

(^

^

remains constant because of symmetry,

C^Q~ O (from previous considerations)

Summing the forces in the radial direction

® 2

Neglecting second order quantities and cancel-

ling out dr dd gives

dU. = o

Vu

Substituting /r^ and ^ in the above equation.
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Multiplying through by r.

To solve this ordinary differential equation.

Let r = e

where D =

.^ ^ t-

^^u.

X

>u -

—

^ -h « •
—

cL±^

'L. dj'.u^ JLjuu _ c^- -**-

A^ , -f ^^O
dL^ ^ ^ ^ t:

z
y^

d^ ..-*4-. <X. -

«<. /u"- ^ -e
• ^ t:

- 1_-!^ ^ d1- D.





20

Therefore

may be written as

[_D ( D-0 i- D-J =r O

— O

Lei ^ = e-^

-6

Since r = C

To check on the correctness of this formula, consider

a flat plate as follows with a constant thickness:

with boundary conditions as follows:

When r " a, cr^ » o

When r a C , <5^ = %'

Using the original equation for ^^,
-A.
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3

equation:

i
2

Substituting boundary conditions In the above

A s

c

For c = «*0

'or a flat plate of constant thick-

ness with a hole at the center.

On page fifty-five of reference (a), the follow-

ing formula Is given for a hollow cylinder submitted
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to uniform pressure on the inner and outer surfaces:

oyb-if.-p:) J^ ^ fZ^ a,- -^„ h^

In the above case:

f.-: O

P'-
s

(pos

lU- ^^a) /

(positive for compression)

g1 = "
'

Multiplying numerator and denominator by — :

/- -. )^

^ - ^

At b = oO
, s [-^^7

This gives an exact check on the formula pre-

viously developed;

B

For the case of a flat plate with a different
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thickness around the hole as follows:

Fig. 7

At the boundary (b), the designation Is

1 - Inside

o - outside

as indicated in the above figure.

^ ± ''y

Boundary conditions are as follows:

(1.) At r = a, (si^= <^

. _ 5
(2.) At r = C, ff^ - -^

(3.) At r » b, ^^^ ^ ^ o

(l^..) At r = b, G^ ^ - ^ ^

Using the formulas previously developed in this

section

-L
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and
Q

u = Ar + -^

the above boundary conditions give the following

equations, assuming the modulus of elasticity (E)

to be a constant. —

,

(1.) = e£(/^>.*) t\^ - ( '-^) -X--

j

(2.) f'E[Oy-) A.-f,^) 1=, J
(3.) /I_,i, ^ :^ = /\,l r i^

These equations may be solved by the method of

determinates for the constants A • Q. /)_ s Uid l^

^

h\ (numerator) = — —^ •

(numerator) « — J^^J^-A^

f\ (numerator) =:_£i^ AV^^Z^^-
' ^J

^^^t^i^y^)-i>^t.M

f\ (numerator) =^ — <- n

^ A,





Denominator
a.
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__ 0;^

!/

The validity of considering the load applied at

infinity has previously been proven in section II,

and this is now done for the value of c as it appears

in the denominator of the four constants listed above.

Denominate. -^ L[£^. ,)t^1^^(,y.) . ^ (,y)\^

Denominator = ~i^7T j(^~^ J '^-^ (^^J
A, b

- t ^ [h- f/^) ^ c^{i-^]]

Denominator ^^-^— -^ T **' i^'y^

Combining the numerators and denominator give

the constants:

8
C-b^t^S
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/) - -7

Considering previous formulas developed;

By proper substitution, the above gives:

(1.) < =- £ /7/^j -^ -
(^y^):z'-J

(2.) (T^^ - e[(/^) ^+(!y^')^-]

(3.) ^ = ^-- ^ X
Therefore for the radial and tangential stresses

due to the constant component (i- S) of the normal

forces, the following equations apply in which the

above constants A. S> r\ ^ and O^ are to be used
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(o^

-a:

8.

Also,

B

AX - A -X -<-

So
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THEORETICAL ANALYSIS

IV, DETERMINATION OP RADIAL AND TANGENTIAL STRESS

DUE TO THE NORMAL FORCES (| S cos 2 6 ) AND THE

SHEARING FORCES (-^ S sin 2 ^ )

.

Neglecting body forces, the equations of

equilibrium for an element, expressed in polar

coordinates are: ,.^ ,^

t

These equations are satisfied by taking:

where M is a function o/" -/u sm</ ^ a m «/

is knovm as a stress function.

As developed in reference (a), the stresses

developed from the normal forces (|^ S cos 2d ) and

the shearing forces (-J S sin 2©) maybe derived

from a stress function of the form

Substituting this into the compatibility

equation in polar co-ordinates ,
/ i. / \

gives the ordinary differential equation,
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J^v +^ J^' ^-

-^-0'^--"

Solving this equation in the same manner as

used in Section III gives

The roots are fif, 4-2, and -2

Therefore _

and ^ = (/^.^- ^.0^'' ^i: ^^je^se

The corresponding s tress components are:

<- -(-^'^ ^^ 2d

^l'^ ^ ^ ^.
]
C^ SLB

To obtain general expressions for radial dis-

placement (u) and tangential displacement (v) for

the above conditions, the procedure is as follows.

For this distribution of stress, the corres-
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ponding displacements are obtained by applying the

relationship as follows:

G =
('y^'>

)r —T^ T ~i— zr G- ^^

£e£^ ^,^;^ z B^- /^ r<^y / '^y ie)

^ i

Integrating,

In which fCd^ is a function of Q only.

fe - £ ^7^ • i r^- -.- <)
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i^'f(^.-^<]-
Substituting in the above equation gives:

2 A. <X
-/-

£

Integrating,

2>^ -<u^ Z
^lA ^^

where P (r) is a function of r only, n

-J he) Ji^ -^ F^)

_ 3. ><u;^^ ;eg

Substituting the above expressions f or u and v in
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ir^^'H^^^'^'-y-^fTy^f]^^^

4-^ f(e) dd - ^

'^A.6 G- ^^9

'^e 6-n. -±u^ t^ ^^^ - ^-^ - ^ ^^45_ <iC _ ;? /> ")

y

_ -2 P
('^y^U
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J f(e) JLg i il 6 ) i-yi F(^) - F(^] -

Z A. -^-c^ 2 :zC
Q}^:>

VP

- ^(^/j^; -B^'^i^y^) _ -S_ (^z-^) ^_^^ |<,^j

Since the quantity in brackets is equal to zero,

-h yx. F(^) - F(^) = Ojfcd; i^ t flo)

This equation is satisfied by putting

f (^) = V
>o

<9 !^ c^ 5

in which X, Y, and Z ai^e arbitrary constants to be

determined from the conditions of restraint.

Substituting these values in the equations for

-XL =

ylh -

u and V ^ivos

:

a V gives

:

~1 \y^ -y

itWAO*^)-z d^y
^J; (,p^) ^^y Y^6 ^Z^e

X
For the purpose of determining the value of X,

Y, and Z, the conditions of restraint are:
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(1.) At ^ - 90° , V =

(2.) At ^ = 0° , V =

(3.) At e = 90^ or 0^, ~ = O

Prom condition (1.)

« -Z 4 X r

Z = X r

Prom condition (2,)

= Y 4 X r

Y = - X r

dA.

Prom condition (3.)

X »

Y =

Z =

3 0^-(jy.)-^(<-^) ^J Oy-ll^ X

Therefore

.>u_ — — i^[-A(,y^)-z B-> ^;5r/^;^ ^J
^ ^ ^^.uUiej-^ f^^j ^ ^^-(y^^ y^ ^''^^J A^^

These equations are the general expressions for

radial displacements (u) and tangential displacement

(v) for the normal forces \ S cos 2B together with

the shearing forces - J S sin 2^.
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As a check on the equations as derived above,

the equations for c^ <al and '^^ on page 29 can bo

used to determine the values of the constants of

integration from conditions for the outer boundary

and from the condition that the edge of the hole is

free from external forces.

The boundary conditions are:

(1.) At r = b, c^^ = X S <^^^ ^^

(2.) At r - a, G^ = o

(3.) At r = b, ^^= -
i: s -**^ ^^

(I4..) At r = a, ^^e^ ^

These conditions give

— ^^ - ^ ^x/\ -t

;iA -^
6C

f
aJ^

^^ ^ .a^-- f.
- ^ --^^

2A + ^ ^^-- >^ - ^^
4^ *-

— a

Solving these equations and putting a/b = 0, ie.,

assuming an infinitely large plate, gives:

A = -sA

B »

C — -TT- «->

¥

¥
D 5 _f^ 3
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Substituting the above values for the con-

stants A, B, C, and D in the equation for u gives

the following result:

5^ /(/^^l _^ 1,^^) -^ t±l]^^/)-^('t^)^ ^i]'^-'

This expression for u contains the last three

terms of the general eauation developed for u on

page llf of section II, The other two terms in the

general equation ere not dependent on B and are due

to the constant component g- S of the normal forces.

To obtain the other two terms, in the general

equation of section II, which are due to the constant

component ^ S of the normal forces, proceed as fol-

lows :

Prom section III

8
u = A r + —

_ S
"

Lt^ ^ ^
ZE(>y^)(^-f^^ ^ ly- ^ '^ ('y^('-^)
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For C —^ <^^

u =
^^

u ~z / , --a.[t.
^^ I ^^ ^ _eb .

^^/^

Since 'Z^

iH L z^'- -^'^ y^'

,-M.^^ I

u =
I-

/;^';-J ' ;g:' ('^-Jj

Therefore, using the principle of superposition,

and adding the radial displacement due to the con-

stant component |- S of the normal forces, ie

;

u = [i!-/) ^ ±: ('ty^

and that due to the normal forces ^ S cos Z9 toge-

ther with the shearing forces -
i" S sin 2^ , ie.;
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gives the final expression

and is identical to that on page 1I4. which is the for-

mula for u due to all of the loading. This gives a

complete check on the validity of the equation for u.

In the same manner, the expression for v can

be checked as follows:

v =
~ ["^ i,.^) f 3^^ i^y.)

^
J (/^) -J 0;^

Again using

A = - SA
B a

C = - CL. 3

D = 4^ ^

V = —
if |('^) ^f.V(^^ ^^y^y^n ^^ ^^
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Since there is no tangential displacement (v)

due to the symmetrical loading by the constant com-

ponent 1^ S of the normal forces, this is also the

expression for the total tangential displacement,

and as such, it agrees with the expression for v

on page ll}. of section II.

To determine e^ and <o^ in the ring and plate

due to the normal forces (^ S co3^0 ) and the

shearing forces ( - i- S sin S& ), the constants A,

B, C, and D must be determined in both regions, i

and 0, as indicated in Pig. 8,

Pig. 8.

At the boundary b, a stress flow is assumed as

in Pig. 9 (b) instead of the actual stress flow shown

as it would be in Fig. 9 (a).

f^.

(h.)

E.

Pig. 9.
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1^0

Since there will be eight unknowns. A- B. C- A a

C^o C, and L^ , there must be eisrht equations.

The boundary conditions for these eight equa-

tions are as follows:

At r = a

(1.

(2.

At r = C

(3.

At r = b

(5.

(6.

(7.

(8.

^^& = ^

'^o ~ -2-

The general equations to be used with these

boundary conditions are:

^.= (^"^ -h 6> aJ~ B ~
^'

:id

^^ o^ ;td

/l^ = 2 ^U .dA^ id





Using these formulas and the above boundary

conditions, the following equations are set up for

determination of the constants:

The subscripts are as indicated in Pig. 8 with

relation to the radius b,

i - inside

- outside

These equations also assume that

It should be noted that these constants are not

the same as those which are evaluated in section III.

(1.

(2.

(3.

(5.

(6.

J tt .• ^ ^At'- o.-t A.- il^C- il' n.

-L. A. +3-t.h'^ P^- l^ e,- :L p^





h2

(7.)f/+^) A_, t z by 3. - .^ C. - ^ D-

Solving these equations by the method of determinants

for the constants, and imposing the condition of

C —^ oO gives the results listed below.

Because of the length of the terms, the numera-

tors are listed separately, as is the denominator.

They are not combined to give the complete constants

as it is more convenient to work them out separately

for a specific case.

The numerators of the constants are:

Num A

^ /o 8
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Nun. C- -ff^^f.^. Ot^Xl^.^}}^ T^T^M-^.^.^^

Nun /^^^ "
:f- ] D^t46u4H^^f4rj

Num 5=0

Mum.0 =

2^

Num D ^

_/
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For the stresses and displacement due to the

normal forces (^ S cos ?5 ) and the shearing forces

(-^ S slni?^), the above constants are to be placed

In the equations as listed below, using either the

subscripts 1 or as appropriate.

<= -(^^ ^^"^ ^i^) <^^^

U s

3. A. -^4^
V -

'/:M^-^->5-^c t^.oj

^^[O^) ^ ^/^i^U'Bi- -^ ^-^^
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THEORETICAL ANALYSIS

V. SUMMARY OP THEORETICAL ANALYSIS

The radial and tangential stresses due to both

the constant component (i- S) of the normal forces

and the normal forces (^ S cos ^6) together with the

shearing forces ( -^ S sin 2 6 ) must be added toge-

ther to give the total radial and tangential

stresses in the ring and plate.

The radial and tangential stresses due to the

constant component (J S), together with the proper

constants are:

- ~ TTi^) L-V/;^-; (t^-t^) -L^i^ (/f^)-i,^t^ Oy.)l

Z E (lyT)
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The radial and tangential 8 tresses due to the

normal forces {} S cob^B) and the shearlne; forces

(- i S sin 2©), together with the numerators and

denominator of the constants are:

^^ = ( 2 A^ ^>z 0^^^ -t ±^ C,) ^^ a«
o

Nun. /i^ =
- 1 |C-^.f; i^T^ ^ t ^. ('A-J^' [^y^^^ - ^-.- '' ('Ml

''- 'r-f[-M'^^^ ('^^- ':('^}^M'^- '-
('y^y'y'4

Hum Ao= -
-f- f

/5e«.«..MaforJ

Nun g = O



I
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Num

h

Num U = -
'

of

-1^

-h

i-
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It Is not practicable to combine the above

nuunerators and denominator because of their length.

At this point, it le beet to substitute actual

values for a specific case when using the above

expressions to deteinine the radial and tangential

stresses.





APPLICATION OP

THEORETICAL ANALYSIS TO TEST SPECIMEN

The results of the theoretical analysis are

now applied to a flat plate under a tension load,

with a circular cutout symmetric ally placed and re-

inforced with a circular ring.

The dimensions of the test specimen are taken

from a structure which was tested experimentally

for verification of this analysis. The dimensions

and loadin;^ are:

a 2.5 inches

b a 3*5 inches

^0= 0.0l|.0 inches

t s 0.120 Inches

yt^ = 0.3

E = 10.3 X 10^ Ibs./sq.in.

See the section TEST DATA AND EXPERIMENTAL

RESULTS for details of the test specimen.

Applying the equations of Part V of the theo-

retical analysis:

For the constant component (i S),

(o^ .
= Sf O.JOS'- IlIJ.

1^9
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(^ ^ S ( O.S- 4- ^'^^^
)

For J- S cos 3d component of normal forces and

- ^ S sin 2© shearing forces,

Combining the above expressions to give the

equations for radial and tangential stresses due

to the total loading:

In the experimental testing, the data was taken

at

8 = 90°

oc a ^ - - y.
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For this location, the above equations reduce

to:

<. = S(-0.,3J 7- if _ ^2.6,

^^ ^ s i ^i=^ii + i.Z^)

<^e ^ s(/.o -I-
3 :i.(o^

Since the experimental data taken was for G

^

at = 90°, and for r = 2.6, 3.0, 3.^^, and 3.6,

the above equations were used to obtain the follow-

ing table.

TABLE I

^v- <^.. '^0^

2.5 s(i.900)

2.6 S(1.701)

3.0 S(i.i35)

34 S(o.78l)

3.5 S(0.710) 3(0.833)

3.6 S(0.85l4.)

Since the cross sectional area of the test

specimen at the point where the loading is applied

is 1.2 square inches.
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s r ^ — 733 -2—r Tor e'&cA

P = 1000 lbs, which is applied to the structiire.

See Fig. 12, page 6o for a plot of the theore-

tical data as determined above.





TEST DATA AND EXPERIMENTAL

RESULTS PROM TEST SPECIMEN

The details of the test specimen are shown in

Pig. 10, page 55. The reinforcing rings are fas-

tened to both sides of the flat plate by hammered

rivets, spaced as shown. Past experience has shown

that the reinforcement acts very much as an inte-

gral part of the sheet when it is reinforced with

two concentric rows of rivets.

Figure 11 contains photographs of the test

section and test equipment, made while the tests

were being made.

Table II is made up of the data as taken during

the experiment and it is used to make the plot of

experimental data as shown in Pig. 12, page 6o.

Strains were taken by use of the SR-i4. strain

indicator together with a multiple switch box for

ease of taking the readings. The gage factor set-

ting on the strain indicator was 1.77 and the gage

factor of the strain gages was 1.68. This necessi-

tated that all strain measurements be multiplied by

the factor of T^^ •

In the determination of C5l it was assumed that
G

53
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e^^O f an assumption which Is obviously quite

accurate. This allows a calculation of 6^ by the

simple relationship:

where 6-, Is the strain as measured by the strain

gages on the test specimen.
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DETAILS OP TEST SPECIMEN
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TABLE II

EXPERIMENTAL DATA

BX

:}ap:e

strain indicator reading for' P equ£il to:
12^000( 2.000 Il.OOO 6.000 8.000 10.000 14.000

1

4,^82
13,902 lk,175 li^,if30
li;,6k8 111, 742 14,535

14,675 14,905 15,120 15.290
2 14,915 14,996 15,052 15,070

^
9,030 9,140 9,193

13,165 13,305
15,288 15,420

9,233 9,265 9,287 9,309 9,245
12,975 13,438 13,570 13,703 13,836 14,020

16,210
?

15,220 15,560 15,712 15,868 16,010
6 10,012 9,950 9,975 10,023 10,083 10,130 10,130 10,015
7 11,830 11,860 11,952 12,050 12,168 12,285 12,402 12,548
8

1

9,158 9,250 9,434 9,620 9,830 10,038 10,255 10,535

Strain (inches per inch) for' P equ£il to:
12.0002.000 4.000 6,000 8,000 IC.OOO 14.000

351 637 905 1,162 1,405 1,630 1,810
2 174 273 371

4f5247
540 598 618

^
115 172 214 270 284 226
190 330 463 595 728

648
861 1,045

5 68 200 340 492 790 990
6 -65 -39 12 76 124 124 3
7 32 128 231 355 478 601 755

l,W8 97 290 485 705 924 1,155

Average! Strain for P equal t 0:

and 8

Radius 2.000 a. 000 6.000 "T.ooo 10.000 12.000 14.000

1 2.6" 224 464 695 934 1,165 1,393 1,629
2 and 7 3.0" 103 201

24 67
301 405 50Q 600 687

i
and 6 3 4"

3.6"
113 162 204

826
115

and 5 129 265 402 Sl^k 6^8 1,018

<s< for
Radius

' P equal to:

and 8

2,000 li.OOO 6.000 8,000 10.000 12,000 14.000

1 2.6" 2,310 4,780 7,160 9,620 12,000 Ik, 340
6,180

16,800
2 and 7 3.0" 1,060 2,070 3,100 4,160 5,240 7,080

^
and 5 34"

3.6"
260 690 1,160 1,670 2,030 2,100 1,150

and 5 1,330 2,730 4,130 5,600 7,090 8,510 io,4Bo





COMPAHISON AND DISCUSSION

OP TEST DATA AND THEORY

A plot of experimental and test data for tan-

gential stress versus radius for varying total

loads is shown in Pig. 12. In general, the agree-

ment is excellent, especially at the inner radius

where the stress concentration is critical. At

this point, the per cent variance of the theore-

tical tangential stress from the experimental tan-

gential stress at the varying total loads is:

At P 5 12,000 lbs., 10.5^

P - 10,000 lbs., 9.7/^

P = 8,000 lbs., 8.7/^

P = 6,000 lbs., 11.8^

P = ij.,000 lbs,, ll4..3^

P = 2,000 lbs., 10.7/^

Observation of the curves of Pig. 12, indicates

that the original sheet between the rings is under

a slightly higher stress than the rings, perhaps

on the order of ten per cent, since the experimental

stresses (taken on the rings) are somewhat lower

than the theory indicates. This is probably due to

the fact that the rings are not acting in complete

accord with the assumption that they are integral
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with the sheet. It is likely that an Increased

number of rivets would result In better agree-

ment.

Non-agreement between the theoretical data

and the experimental data Is quite pronounced

in the rin^^ area towards the outer ed^e. This

is probably due to the fact that the ring does

not act completely as an integral part of the

sheet, and if a greater nuniber of rivets were

used, or if the outer row of rivets were placed

nearer the outer boundary of the ring, this part

of the ring would tend to carry more of the load

and give better agreement with the theory. The

assumption of an abrupt change of stress flow

at the outer boundary of the ring as explained

on page 39 is also responsible for making the

theoretical values high at that point. However,

the stresses at the outer edge of the ring are

not critical, so that the variance in this area

is inconsequential.
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CONCLUSIONS

As discussed in the previous section, the

comparison of the theoretical computations and

the experimental data for the tanf^ential stress

showed excellent agreement, and indicates that

this method might be used to solve problems of

reinforcement design in the case of a flat

plate in tension with a circular cutout.' Sots

of curves could be drawn up for various thick-

nesses of plate and ring and also for varying

widths of the ring. It would also be useful to

apply this type of analysis to investigate the

possible optimum widths of rings and thicknesses

of rings for reducing the stress concentration

by a predetermined amount,

A study of the effect of rivet placement on

the stress distribution across the ring is sug-

gested as a worthwhile topic for experimental

research in this field.
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APPENDIX C

SYMBOLS

(1.) a - Internal radius of reinforcing ring -

radius of cutout,

external radius of reinforcing ring,

modulus of elasticity,

radial strain,

tangential strain,

modulus of shear,

shearing strain,

total load on plate - lbs.

radius in inches,

stress function,

loading on plate - lbs. per sq. in.

radial stress in ring - lbs, per sq. in.

radial stress outside ring - lbs. per

sq. in.

tangential stress inside ring - lbs.

per sq. in.

tangential stress outside ring - lbs.

per sq . in.

thickness of ring and sheet,

thickness of sheet,

shearing stress - lbs. per sq. in.
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(2.) b

(3.) E

(i|-.) 6

(5.) e.

(6.) G

(7.) ^.*

(8.) P

(9.) r

(10.) ^
(11.) S

(12.)

(13.) <-.

(1I4-.)

(15.)

(16.)

(17.) ^
(18.) ^.
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(19.) 6 - angle measured from direction of load

(see Pig. 1,)

(20.) u - radial displacement,

(21.) J^ - Poisson's Ratio.

(22.) V - tangential displacement.
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