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MTciCj^iUmm

The stress distribution in an iiioeoiplete tore loaded as shown in

Fig. 1 is cf pwiTticular interest aince it very closely approximates that

in heavy dose-coiled helical springs under ajcial tension or compression,

necessarily the spring helix angle oiust be small, >diich is the case in a

close-coiled spring. Bgr a heavy spririg is aeant one whose ratio of aean

diameter to cross-sectional diameter is such a value that the ciurvature

of the section laust be considered*

It should be noted that the

stress distribution arising from

the loading in Fig 1. is not pure

torsion in the usual sense, but

le a combination of torsion and

direct shear. The problem there-

fore resolves itself into one of Fig. 1.

finding a single stress function whidri defines the true stress distribution

in a cross-section of the circular ring sector.

Several solutions to the problem are iri the literature, all cf which

by various laeans solve the differential ec^uation arising frora the conditions

of compatibility. The first, by Hichell (1) in 1899, used polv-nomial

stress fxinctions and obtained solutions for approxiraately circular cross-

sections. u6hn«r (2) used successive approximations to approach an exact

solution. Shepherd (3) used a method similar to both Gdhner and Michell

by finding a sequence of functions for approximately circular cross-sectioais

and combining them linearly in such a manr^er that the sum was a solution.
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Wahl iU) obtainod a aoXuti<m uslrtg curved bar theory aiKi aAsumirtg a dis~

placoaent cf the center of rotation. Southwell (5) presented a fonoal sol-

ution for an arbitrar^^' crese-section with a view towards a "relaxation**

approach. Frleberger (6) has presented an exact solution for a circular

crose-eeotion by finding a stress fuiiction analogous to the ordinary torsion

function and solving the probl«a in toroidal haraonics.

In this paper an approximate solutimi is obtained using the principle

of least work. A stress function is found satisfyini; the equations of equil*>

ibrium and the boundary o<Kxiitions and whose correspondiii^ stresses make the

strain energy a minimua. The solution of the differential equaticm of cc^sipst-

ibility has therefore be«i replaced by the problem of miniiaialfig the strain

«aergy. In the energy method^ the condition of mirilBiiHi strain energ]^ is

equivalent to satisfying compatibility not in a point by point sense^ but

"on the average'* throughout the body.

The purpose of this investigation has been to answer two questions in

the author's mind. Namely, in view of the fact that nowhere wae the author

able to find the energy method used in the literature:

(1) Can the problem be solved by this method, and how do the results

compare with those of other soluticuia?

(2) Do9B the problem particularly lend itself to solution by

energy methods?

It was found that the problem is not adaptable to an exsct solution by

energy methods, but by making sooe approximations, excellwit results are

obtained that agree very closely with Frieberger'a exact solution.
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FCHMULATIOK OF 'Vm PHOaLBM

W« will conaid«r a soctor of a circular ring vrith mean radius of curva<~

ture E and cross-sectional radius a. A load P is applisd to one terminal

cross-section as shovm in Fig. 2, the other reoMdnlng fixed. Cylindrical

coordinates are used, >rhere the 8 ajds coincides with the toroidal axis,

and the axis of the ring sector lies in the r6 plane.

E ^

1>^

2

y

Fig. 2.

6 increases positively as shown in the figure and r increases outward

froB the toroidal axis. Later in the 8oluti<»i the coordinates will be trans-

formed, but for tho present purpose of establi^ing a stress functi<m satis-

fying the eqiiations of equilibrium, cylindrical coordinates are most convexiient.

Assuming zero body forces, from THii^HY OF ^LASTICITI, Tiaoshenko & Ooodier,

Equations (170) the differential equations of equilibrium are
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(D-

S*- V dd dz

Using thtt same asmimptiona mad« by G«hn©r in this ca8«» namsly that the

•nljr' non-vanishir^ stresses are T^q ^
T^^ and that the stress distribution in

any cross-section is independent of these reduce t«

This may also be written

A stress function 4* satisfying the above is

GR^|f--T. ^^

Where £ is a constant (aetually the modulus of rigidity).

Therefore the stresses may be expressed as

(2)-

At this point it is conrenient to transform the cylindrical coordinates

£ 1 fi into toroidal coordinates
^ , + ^ © (refer to Fig. 3).



.4^

'r^^^^y-



If S^ is s function of r and «, wh«re '
,

from Fig. 3,

Then

Substituting

S^vin?. for^ and ii
a^ 3z

(3)-

94
3r

So :^vL. r2^

(4)-

.32 \ ^ /^f ^
'^

3p

In a plane ci-osa-section determined by 6 a constant

r^ft- rf.ftSin*> + T^Q^^oi^

Using Equations (2), (3) &nd (A) the follcwing result is obtained »

&!C
f«" ((?-pcc»fy

T =
GR

fi«duoing

fco^+a^ .3*1. Cft'cest^ r=!n+^-ce>st^

and
GR" ^*

H» (T^-dcosS^ Sp
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The latter expressions rel&te the stress function and the stresses In

the new system g£ coordlimteso

It fellows that since the shear stress ^^q Is ncraal to the boundary,

it must vanish everywhere on the boundaxT^. This is true because the surface

of the body is free froan any external forces. Using this condition with

iskjuatlon (5), it is apparent that Ku,'^ *™^ ^ *^^ ^® constant on the

boundary.

The circular ring sector we are c«i3ldering is a sirigly connected body,

hence the constant may be chosen arbitrarily. Therefore the bour.darj' condition

is taken as y - O everywhere on the boxuidary.

The only action on a cross-section is a force P directed along the

toroidal axis. This naay be resolved into a force and a couple as shown in

Fig. 4.

is equivalent to

Fig. 4.

It is now seen that the two conditions of static equilibrium to be

satisfied are that the resxatant stress on a cross-section produce a force P

directed along the z axis and a awment about the center PH. These requirements

may be written ^^ xv

(6)-
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The str&in anargy P<u* unit angle 9 is

a aw

(7)— y. j-g fy(Tp; , v)(R- pccM.)
p df.H

The nethod of solution will now be to take the stress function in the fora

Y'^^uTi. , where ^i are suitably selected functions of p and

^ , each of which satisfies the boundary condition Tc »o when P'<^ •

The coefficients ^
'^, are constants which are evaluated free the ainiaua

ccNndition of strain energy.
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For a first approximation wo sh&Il take a f\mction Y » satisflying

iho boundary cofKiition that it vanish «veryvher« oti th« boundary^ in tho

fom +» * C^*-o^)0*'<» * ^ ^<*« ''")
• The reasons for thi»

particular dhoice are discussed in Appwidix k. Taking the partial deriva-

tives of ^ with respect to the two ysriables p and ^

f^lo^^.^A^^...^ and ^.^^A^.,r.^

Substituting in Equations (5)» the following axpreseicms are

obtained for ^pe &^ T^^

.

\

The appearance of the tero (p-pcos»^V ^ ^^® stress equaticms

akes the integr&ticm required in (6) arsd (7) very cociplic&ted and the

results largely unuuinageable in the evaluation of the \inki»>wn coefficients

in T . (See Appendix 3). This is particularly true when additional terms

are used in ^ for a higher order of approximation, ai5d in the evaluation

of the strain energy where the stresses appear as squared terms.,

Since "r^ is ajSince "^ is always less than unity, we may write

Utilising this expansion, the exact stress expressions (5) siay be

approxilaated as follows

This paz'ticular form of approximation accociplishes the desired result
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of llaiting th« highest power tc which the ratios -j^ aisd -^ appear in the

stress equations.

Since 4^* Cp^-

The partial derivatives are

(9)-

Substituting, we arrive at the following appro3cLmate expressions for

Substituting these values of Tp^ ^^<i T\p^in the first of Equations (6),

and integrating we obtain

The same result is obtained from the second condition of Equations (6)«

It follows that <*<6 is fixed by the requireaients of static equilibrium

and fi(
I
may now be determined by the condition of minimum strain energy

Prom iiquation (7)

that 1^^
-- O .

a o

Lituting the stresses from Equatio:Substituting the stresses from Equation (9) and integrating

;jo(

Setting jy - Q and solving for «(

,

3^1
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1 ,6

'\' r.J^zA'^^ - . H . = .*f

y- -(9)

' ^y »a»riJ ^iu J:.vJ...M.s<...<...•
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Using th«»« results tn SqustiORs (*?) we arrlT© at the expressions

I'or the first approximation of ths stress distribution in a cross^secticm

of the incoraplete tore

(10)-

(11)-

At the point of aaximisft stress where ^ a. and

reduce to

if « o the above

KL.-w[-«4l
It is interesting to note at this point that for this particular solution,

one of the unknown coefficients in 4> is determined directly from the require-

Bi«its of static equilibriuB, and the other directly fron the miniaua strain

energy condition without constraint arising from static equilibriun.

10



0-- 4^

F

e<^»

f^)?-']if -...k] f

OX



3B00S0 APPHOXIMATIOM

A closer approximation to the tru« stress conditions will resnlt

If higher order terms of a suitable nature are used in the stress functioa.

Ve shall now take y as

\ R R"^ R"* R^ J

Reasons for this particul&r choice of functions are discussed in Appendix A.

Again alloying the binomial expansion of U^^^ write approximate

expressions for ^pe ar^d T^^»Q ,

This is an extension of the device used before to limit the highest

power to which the ratios -«^ and -±7 appear in each term of the stress

equations. Since — and ^ occur in a like manner in *r!^ , ^P^ and 9^ ,

these latter terms are grouped together and treated in similar fashion wtien

introduced into the apprt)ximate expressions for the stresses.

Taking the partial deriv- tives, substituting and rearranging the terms

for convenient integration, the following approximate expressions for fpQ

(12)~

1- ip«(.+
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i;.>!iv fioiri»«t i&XtmiB nt t»^ii*i<j bn^ ladifk^d*^ h»fTf*<r^5 a-s* i^.4n<»4 tei^fisX ••f^tii
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em«^ sfiJ ;§;^i3as'n£e'; :: .^ ^n^^ii... .rjf.i.i!!j ^-..v/i yiia;:: /,BiJ-i3^ ^iH;f j)«i:3i»T

a^T -sol eooieco-xqx© •iattijtaiqq.i a.ixwollol ©fiJ ,nol^«T3»4^^ni insinavnoo lol

• b^nifl^cic e'SA ^^fT lirui
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From the first ot th« static •quilibriua oonditions in (6) (that tha

re«\iXt&nt stress auet produce a force P in th« Z direeticoi) it is agftin

PR
- -

found that 0^,* "— a

the second static eQuilibriia condition (th^tt the resultant stress

must produce a aonent about the center equal to FH) gives the folloiang

result.

However, since ^ „ P^

Since ^, , ^'i ^ «'3 and ^^ will ultimately all contain the factor

PR
jTZi'^ SOBM eiiaplification of the algebr;^ will be afforded if wo make the

following substitutions

Finally the constraining function derived frosa the cc«ditions of static

equilibrium to be used in isiriimizing the strain energy is

The work involved in obtaining the partial derivetives of the strain

energy with respect to the unknowr; coefficients oi^ ^V^ j 'W^ and W^ will

be aia{.)lified by differentiating under the integral sign.

Therefore ^ -^

— is not required since ^q has already been evaluated from the

12
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conditions of static equilibrlxim. Since

it is conT«nient here to take z-I

^-F r (Constant) ^
After substituting for 7"

and TjK^ from Equations (12) and performing the required integration,

the following expressions are obtained.

3P.
(i^U^hfP.^4t^Px^ill>?s^i|A]

(U)-

To minimize the strain energy and evaluate the unknown coefficients

&i &x ft
^^^ (^4 ' ^^® method of Lagrangian multipliers will be

used with the constraining function (13) established by the requiranents of

u
static equilibrium. The constant 119' appearing in the partial derivatives

of the strain energy will be incorporated in the multiplier. Letting X be

& Lagrangian multiplier, and -[(Si > B^ j Q, ^ &4 )
* O ^^^ constraining function,

we may write

Using (13) and (I4) in the above, and the fact that

13



»^^

d<^'
9j1t»ii iiii»Jb

MpS. iSO^Xl
^t'

af«>Jt8*»i'4x» snJtwoIlo'i "A-:^

> (AX)

L^/-oi_ '^; l&l 4 zip i -»-\] Ion

'ii( 4

rj^tasxoJtjlso? riwointoa »ri;^ »^«*fXi,v» bn« "^'Xd/ic :>sJm^iffl oT

fc^c^t' *t'J

u



we arrive at the following set of equatiertej, the solution c£ which will

evaluate Pi > Pi j ^3 j
p^and detemine the stress fwiction.

U ((.R'-y^ bPt^-n R-P^* (<.R*P3* 2 R-1^4- f |v

where A " vira,';^

Solving ror (i, , (ii ,
^jand ^^

^/
_ 3 I- 11 R*

(^•f^'

31 a,*-

70. R^ 5k

' 3 ^t ^(,

I 72 R^

The corresponding values of ^ are

^1 E^^
I-

11 Q>

72 R^

I
_ 43 a''

37 ft.*--]

11 R^

71 R"*- 54 1

I -i
n 37 0-;* 1

7a R

. £3 a>
* /91 R^

^ .. _PL I t^ . 27

' !<?! R*^

14
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Using th«a« rsuults in £k.:uaiion8 (12), vre may nov write dxprassions

representing & sec^id approadaation of the s^tr^ss distribution in a cross-

section of the iiiCoapiste tore, x

At the point of sujjcijaivai stress, trtiere p'O^ atui 4* -o , the above

reduce to

.W^..' '^.[<^-^i)%<^-'^^)%]

As is apparent from the foregoing dcrelopBient, further approximatiwis

utilising additional terns in the stress function will result in soctreioely

long and tedious calculations. This in itself is a limitation of this method.

Therefore at this point, assuming the solution to be a rapidly converging one,

we will stop and introduce actual values cf the ratio of cross-sectional

radius to the mean radius cf curv'iture of tne tore in order tc ccanpare resiU-ts

with other t^olutions*

15
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a^ULTS

The distribution of 8h«aring streas on a hopiaontal diiuneter is showi in

Fig. 5 find tho circunferential stross distriinition in fig. 6. In both cases &

r&tio of R/a eqiial to 4 is used sirxe this realises the worst condition (i.e.

greatest curvature for a given oress^secticn) of any praotical significance.

The quantity S appearing as the ordinate in both curves is a dimensionless

quantity and is equal to , since To© vanishes on both a horisontal

dianeter and the periphery. A stress distribution representing pure torsion

of a straight circular shaft is shovm by a dotted line in both figures » It is

seen that the mwxiaian stress actually existing in the tore is considerably

greater than that derived froa ordinaiy torsion theory. Both curves are in

good agreaaent with similar ones derived from the exact solution by Frieberger.

Points from Frieberger 's curves appear as the small circles in Fig. 5 and 6.

In comparing the results cf this solution with others, namely G#hner, Viahl,

and Frieberger, the point of laaxljuiuai stress vd.ll be used as a reference with

different values of E/a. Table 1 gives values of K in the expression

LT^.©J^^^' ij-Q^i I
K. for the several solutions»

Table 1.

E Exact This Solution 1 Other Approx. 5lolution8 1

a Frieber/^er Ist Aprrox. 2nd Approx. G«hner Wahl

4 1.376 1.313 1.371 1.372 1.400

5 1.293 1.250 1.287 1.295 1.310

6 1.237 1.209 1.234 1.239 1.252

8 1.171 1.156 1.171 1.172 1.184

10 1.136 1.125 1.134 1.135 1.145

16
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Table 1. Indicates that the energy i&ethod applied to this problem

produces results which oempare faYorably with other solutions. It also

appears that the solution converges rapidly, sinoe only five teraa were

used in the stress function.
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Fig. 5.

Diatibution of shearing stress on a horizontal
diameter for a/R=l/4 . Cf'Oiir ). S=(%)(TTa )/P.
Frieberger's points are indicated by amall circles.
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Fig. 6.

Circumferential atreaa distribution for
a/R=l/4. S=(T.|;e)(TTa^)/p. Frieberger'a points
are indicated by small circles.
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In discussing any conclusions frcsE this inveatigati^n, it wciild be

appropriate to recall the i^o questicms th£it piroii^tdd it.

(1) Can the problem be solved by this method, and how do the results

compare with those of ether solutions?

(2) Does the probl^a particularly l&nd itself to solution bj energy-

methods?

Piratj the method will work and acceptable results are obtained tdth a

relatively few terns in the stress fuiicticNrie This is in itself worthy of note,

since it allows a very coo^ex problcaa to be attacked by the xocre elementary

aethods of aathematics*

However, in reference to the sec(»id question, there are limitations both

inherent in the energy method and peculiar to this particular application, that

strongly indicate the problem is not especi&Uy adapted to a solution by energy

methods.

The energy method, except in unusxial. circumstances, does not provide an

exact soluticm. Consequently, in the absence of an exact solution, there is no

real basis for judging the results. The fact also th&t the energy method requires

minimising an int'iigral, which is done only with extreme difficulty with ai^

iiUBd»er of tenu in the stress function. Is a limitati<»i to its adaptability.

In cwiclusicm th«n, it may be said that this solution has the value of

arriving at very good results using a relatively unooaqplicated stress function

of «ily five terms.

20
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According to the prinelplo of le&st work which is used in this solution,

an exact stress function would require selecting from all functions that aatisfjr

the bouridary condition those which sdmiioize the strain energy.

Since in general this procedure is too difficult , a liaited number M of

suitable functions was selected to detersdne an approxiaiate stress function.

In choosing functions of p and ^Jin y^ Z. "^'^TL , the

first consideration was the boundary condition t-'O others. p » Ow •

This condition was satisfied by taking each t^ to contain the factor (^'^-cl)

With rectangular coordinates (^^H ) in miial, where ^ ^ P ^^^t'^ and

H' ^Sirk*V*
^ the next logical step was to express ^ Jdl \T ' T ' in b. power

series. The first six terms of such a series were considered » naaely those

ifivolving

I
' f • T >

^^ ' l"' ^1

Since a horizontal diameter ( r^ « e ) on a plane croes-^section (9 is a

constant) is an axis of syismetry for the <f surface, <^ must be eren in n and

not contain terms involving odd powers of n • In general & will appear to all

powers since ( ^ « o ) is not axis of ajimetrj. Therefore the ramaining terms

«q>res9ed as functions of p and ^ are

X

The term — in T^ while not consistmt with this line of reasoning,

appeared as a result of the binomial expansion used in approximating the stresses.

It was extracted from Qdhners solution where a like approximation was used.
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Consequently the stress function was taken in the form

Here p was replaced by -^ so that o<^ would in all cases bo

the product of a dimensionless niamber and the factor 7^^ 4 •

In the first approximation the first two terms were used and in the second

all five were introduced in *t •
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APPENDIX B

I

The appearance of the term /o..- -q^\^ ii^ the exact equations relating

the stresses and the stress function gives rise to the occurrence of integrals

of the type fA 'p's^.^ <(^cos^<H J^^^
and /? dl^i^llffill-^f^ in

•valuating the strain energy and in consideration of the conditions of static

•quilibrium.

Taking the siaqplest form of the first type, where w-»rJ , n* O and 7 ' ^

// _l4(yd<^

Integrating first vdth respect t© V and setting R « c and - p = b

/<Cc + bco^q'^"^

Letting

P-

TlMn

JlP Cos V (c +Uos v") + L (i -Cos^t) b + c cos V
cLM> (c + bco^vfy Cc+ bcos h:>)'^

b- 1 4- |(c + l,Co5H>)
^ /

'

1 \. c^-t-r.

Multiplying by cat and integrating

J d^^ C+bcos9 " bjc + bcos^ t> J(cfbcosV>i''

fit , ^X /^inJL V _c_ rjii^
Jcfbcosv^ C^-b'^i^Ci-bcos4'j^ C^-b-^Jc-ebcos^

r —!— Cos'' (
b'^Q.eosHj'\

/e-k*^ Vc + bCosS'j
Trriiere C >• W^
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Therefore

Introducing the limits o arid Z-ir , this reduooe to

Cc-^i-b*^^* where b-p

The other more complioeted forme where o f o and ?^
'^ ® ^^* integrable

in finite terms by eixoilar reductiwi methods , but it is apparent that the work

beccfues exLcessiveXy involved. Also the results in the foris. just developed are

not readily usable in evaluating the unknown coefficients in the stress function.

In view of the foregoing^ detqpite the fact that it was not actually necessary,

it was expedient to approximate the streeses in such a man: er that the integration

was simpliried arid the results put in a usable form.

This device of approximating the stress equations coo^roffiised the requirement

that the stresses satisfy the equati^ie of equilibrium. However, it appears that,

since the stresses do satisfy the conditions of minimum strain energy and static

equilibrivBA, and give satisfactory results, the compi'cmise nay be tolerated.
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