

Calhoun: The NPS Institutional Archive DSpace Repository

Torsion in an incomplete tore: an approximate solution for the stress distribution in a circular ring sector under uniform torsion using energy methods

Callaway, William Franklin
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/24875

TORSION IN AN INCOMPLETE TORE

W. F. CASLLAWA.Y

L:brary
U. S. Naval Postgraduate School

Monterey, California

TOUSION IIN AN HIOQMPLETS TORE

An approximate solution for the atress distribution in a circular ring sector under uniform torsion using onergy methods

by
William Franklin Callaway Lieutonant Commender, Unit'ed States Navy

Submitted in partial fulfillment of the requirements for the degree of MAUTER OF SCIENCE
DI NECHANICAL EVGINEERING

 -areto in nb novbadhdist unzak

10


```
    */gamerlajer sid lu
```


This work is accopted as fulfilling the thesis requirements for the degree of Mátea of 3CIENCE
in
MECHANICAL ENGIMEBRILG

from the
United States Naval Pestgreduate Schcol.

Cheirman
Dopartument of Mechanical Ingineering

Approved:

=10
ai

nime ent

ancilual

dixanlas

ACKNOWLDDCNEMT

The author desires to express his grateful appreciation for the guidance and encouragement given by Professor Robert Newton, U. S. Naval Postgreduete School, during the preparation of this work.

7atamer 24

Introduction 1
Formulation of the Froblem. 3
First Approvimation. है
Second Approxdmation 11
Results. 16
Conclusiona 20
References. 21
Appendix A 22
Appendix B 24

$\sin 4$

 4
 -

 t

12
 -

INT:CDUCTICN

The atress distribution in an incomplete tore loaded as shown in Fig. 1 is of particular interest since it very clesely approximates that in heavy close-coiled helical springs under axial tencion or compression. Necessarily the spring helix angle suat be sanall, which is the case in a close-cciled spring. By a heevy spring is meant one whose ratio of mean diameter to cross-sectional diametor is such a value that the curvature of the section must be considered.

It should be noted that the stress distribution axising from the loading in Pig l. is not pure torsion in the usual sense, but is a combination of torsion and direct shear. The problem therefore resolves itself inte one of

Fig. 1. finding a single stress function which defines the true stress distribution in a crossmection of the circular ring sector.

Several solutions to the problem are in the literature, all of which by various means solve the differential equetion arising from the conditions of compatibility. The first, by Michell (1) in 1899, used polynomial stress functions and obteined solutions for approximately circular crosse sections. Cobhner (2) used successive approximations to approsch an exact solution. Shepherd (3) used a method similar to both Cohner and Michell by inding a sequenco of functions for appreximately circuler crossmsections and combining them linearly in such a manrer that the sum was a solution.

3450bodte

11.14 -Trimalues ad due actilme wif to sull didl incian al btiman is nint inferginlmitrints anern

Wahl (4) obtained a solution using curved bar theory and assuming a displacement of the center of rotation. Southwell (5) presented a formal solution for an arbitrary cross-section with a view towards a "relaxation" approech. Frioberger (6) has presented an oxact solution for a circular cross-section by Pinding a stress function analogous to the ordinary torsion function and solving the problem in toroidal harmonics.

In this paper an approximate solution is obtained using the principle of least work. A stress function is found satisfying the equations of equilibrium and the boundary conditions and whose corresponding stresses make the strain energy a minimum. The solution of the differential equation of compatibility has therefore been replaced by the problean of minimiaing the strain onergy. In the energy method, the condition of minimum strain energy is equivalent to satisfying compatibility not in a point by point sense, but "on the average" throughout the body.

The purpese of this investigation has been to answer two questions in the author's mind. Mamely, in view of the fact that nowhere wae the author able to find the energy method used in the literature:
(1) Can the problem be solved by this method, and how do the results compare with those of other solutiona?
(2) Does the problem particularly lend itself to solution by onergy methods?

It was found that the problem is not adaptable to an exact solution by energy methods, but by making some approximations, excellent results are obtained that agree very closely with Frioberger's exact solution.

 - Thod adi duetheratl "eprouad will eot

Fabobse zrais

 perne +10-4 $+$ 1

We will consider a sector of a circular ring with mean radius of curvature \mathbb{E} and crossmectional radius 』. A load \underline{P} is applied to one terminal crosamsection as show in Pig. 2, the other remaining fixed. Cylindrical coordinates are used, where the g axds coincides with the toroidal axis, and the axis of the ring sector liea in the plane.

Fig. 2.
Q increases positively as shown in the IIgure and increases outward from the toroidal axis. Later in the solution the coordinates will be transformed, but for the present purpose of establishing a stress function satise fying the equations of equilibrium, cylindrical coordinates are most convenient.

Assuming zero body forces, froir THBORY OF ELASTICITI, Timoshenko \& Ooodier, Equations (170) the difforential equations of equilibrium are

$$
\text { (1)- }\left\{\begin{array}{l}
\frac{\partial \sigma_{r}}{\partial r}+\frac{1}{r} \frac{\partial T_{r} \theta}{\partial \theta}+\frac{\partial T}{\partial z} r z+\frac{\sigma_{r}-\sigma_{\theta}}{r}=0 \\
\frac{\partial T_{r}}{\partial r}+\frac{1}{r} \frac{\partial T_{z \theta}}{\partial \theta}+\frac{\partial \sigma z}{\partial z}+\frac{T_{r} z}{r}=0 \\
\frac{\partial T_{r} \theta}{\partial r}+\frac{1}{r} \frac{\partial \sigma \theta}{\partial \theta}+\frac{\partial T}{\partial z} z+\frac{2 T}{r} r \theta=0
\end{array}\right.
$$

Using the same assumptions made by Goner in this case, namely that the only non-vanishirg stresses are $T_{r \theta}, T_{z \theta}$ and that the stress distribution in any cross-section is independent of \hat{e} these reduce to

$$
\frac{\partial T_{r} \theta}{\partial r}+\frac{\partial T z \theta}{\partial z}+\frac{2 T r \theta}{r}=0
$$

This may also bo written

$$
\left[\frac{\partial}{\partial r}\left(r^{2} T_{r \theta}\right)+\frac{\partial}{\partial z}\left(r^{2} T_{z \theta}\right)\right]=0
$$

A stress function ϕ satisfying the above is

$$
G R^{2} \frac{\partial \phi}{\partial z}=r^{2} T_{r \theta} \quad G R^{2} \frac{\partial \phi}{\partial r}=-r^{2} T_{z \theta}
$$

Where \underline{G} is a constant (actually the modulus of rigidity).
Therefore the stresses may be expressed as

$$
\text { (2) }-T_{r \theta}=\frac{G R^{2}}{r^{2}} \frac{\partial \phi}{\partial z} \text { and } T_{z \theta}=-\frac{G R^{2}}{r^{2}} \frac{\partial \phi}{\partial r}
$$

At this point it is convenient to transform the cylindrical coordinates

FIg. 3.

$$
0=\frac{e x i g}{2}+\frac{a s^{2} 5}{x}+\frac{3+\pi 6}{25}
$$

$$
0=\left[\left\{k^{T} 7\right) \frac{3}{2 x}+\left(x^{2}+T^{-x}\right] \frac{5}{72}\right]
$$

$$
\begin{aligned}
& =-83-20+5-\frac{26}{46}+\frac{276}{96} \frac{1}{7}+\frac{-26}{46}
\end{aligned}
$$

If ϕ is a function of E and g, where
$r=R-\rho \cos \psi$
$r=\rho \sin \psi$
from Pig. 3.

Then

$$
\left.\begin{array}{lll}
\frac{\partial \phi}{\partial \rho}=\frac{\partial \phi}{\partial r} \frac{\partial r}{\partial p}+\frac{\partial \phi}{\partial z} \frac{\partial z}{\partial \rho} & \frac{\partial r}{\partial \rho}=-\cos \psi & \frac{\partial r}{\partial \psi}=\rho \sin \psi \\
\frac{\partial \phi}{\partial \psi}=\frac{\partial \phi}{\partial r} \frac{\partial r}{\partial \psi}+\frac{\partial \phi}{\partial z} \frac{\partial z}{\partial \psi} & \text { where } & \frac{\partial z}{\partial \rho}=\sin \psi
\end{array} \frac{\partial z}{\partial \psi}=\rho \cos \psi\right)
$$

Substituting

$$
\begin{aligned}
& \frac{\partial \phi}{\partial \rho}=\frac{\partial \phi}{\partial r}(-\cos \psi)+\frac{\partial \phi}{\partial z}(\sin \psi) \\
& \frac{\partial \phi}{\partial \psi}=\frac{\partial \phi}{\partial r}(\rho \sin \psi)+\frac{\partial \phi}{\partial z}(\rho \cos \psi)
\end{aligned}
$$

Solving for $\frac{\partial \phi}{\partial r}$ and $\frac{\partial \phi}{\partial Z}$
(3) $-=\left\{\begin{array}{l}\frac{\partial \phi}{\partial r}=\left(\frac{\sin \psi}{p}\right) \frac{\partial \phi}{\partial \psi}-(\cos \psi) \frac{\partial \phi}{\partial p} \\ \frac{\partial \phi}{\partial z}=\left(\frac{\cos \psi}{p}\right) \frac{\partial \phi}{\partial \psi}+(\sin \psi) \frac{\partial \phi}{\partial p}\end{array}\right.$

In a plane cross-section detemained by θ a constant
(4) $-\sim\left\{\begin{array}{l}T_{p \theta}=-T_{r \theta} \cos \psi+T_{z \theta} \sin \psi \\ T_{\psi \theta}=T_{r \theta} \sin \psi+T_{z \theta} \cos \psi\end{array}\right.$

Using Equations (2), (3) and (4) the following result is obtained.

$$
\begin{aligned}
& T_{\rho \theta}=-\frac{G R^{2}}{(R-\rho \cos \psi)^{2}}\left[\frac{\cos \psi}{\rho} \frac{\partial \phi}{\partial \psi}+\sin \psi \frac{\partial \phi}{\partial \rho}\right]-\frac{G R^{2} \sin \psi}{(R-\rho \cos \psi)^{2}}\left[\frac{\sin \psi}{\rho} \frac{\partial \phi}{\partial \psi}-\cos \psi \frac{\partial \phi}{\partial \rho}\right] \\
& T_{\psi \theta}=\frac{G R^{2}}{(R-\rho \cos \psi)^{2}}\left[\frac{\cos \psi}{\rho} \frac{\partial \phi}{\partial \psi}+\sin \psi \frac{\partial \phi}{\partial \rho}\right]-\frac{G R^{2} \cos \psi}{(R-\rho \cos \psi)^{2}}\left[\frac{\sin \psi}{\rho} \frac{\partial \phi}{\partial \psi}-\cos \psi \frac{\partial \phi}{\partial \rho}\right]
\end{aligned}
$$

Reducing
(5)

$$
T_{\rho \theta}=-\frac{G R^{2}}{(R-\rho \cos \psi)^{2}} \frac{1}{\rho} \frac{\partial \phi}{\partial \psi} \quad \text { and } \quad T_{\psi \theta}=\frac{G R^{2}}{(R-\rho \cos \psi)^{2}} \frac{\partial \phi}{\partial \rho}
$$

$$
\begin{aligned}
& \psi \text { niz } q=\frac{76}{46} \quad \psi 300-=\frac{76}{66} \\
& \frac{56}{96} \frac{\$ 6}{56}+\frac{76}{96}+\frac{\phi 6}{96}=\frac{\phi 6}{96} \\
& \psi 2009=\frac{56}{46} \quad \psi \text { Пाъ }=\frac{56}{96}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sitrantione: } \\
& (4+712) \frac{\phi 6}{56}+(4600-) \frac{\phi 6}{46}=\frac{\phi 6}{96} \\
& (4 \cos q) \frac{\phi 6}{26}+(4 \cos 9) \frac{\phi 6}{46}=\frac{\phi 6}{46}
\end{aligned}
$$

$$
\begin{align*}
& \frac{\phi 6}{96}(4 z 0)-\frac{\phi 6}{46}\left(\frac{\psi_{n 12}}{9}\right) \cdot \frac{\phi 6}{16} \tag{0}\\
& \left.\frac{\$ 6}{96}(\psi \cap 1 z)+\frac{\phi 5}{\psi 6}\left(\frac{\psi z 02}{9}\right)=\frac{\phi 5}{56}\right)
\end{align*}
$$

$$
\begin{align*}
& \text { aribubed } \tag{2}
\end{align*}
$$

The latter expressions relate the stress function and the stresses in the now system of coordinates.

It follows that since the shear stress $T_{\rho \theta}$ is normal to the boundary, it must vanish everywhere on the boundary. This is true because the surface of the body is free from any extemal forces. Using this condition with Equation (5), it is apparent that $\frac{\partial \phi}{\partial \psi}=0$ and ϕ must be constant on the boundary.

The circular ring sector we are considering is a singly connected body, hence the constant may be chosen arbitrarily. Therefore the boundary condition is taken as $\phi=0 \quad$ everywhere on the boundary.

The only action on a cross-section is a force P directed along the toroidal axis. This may be resolved into a force and a couple as shown in Fig. 4.

Fig. 4.

It is now seen that the two conditions of static equilibrium to be satisfied are that the resultant stress on \& cross-section produce a force \underline{P} directed along the \underline{Z} axis and a moment about the center $P R$. These requirements

$$
\left\{\begin{array}{l}
p=\int_{0}^{a} \int_{0}^{2 \pi}\left(T_{\rho \Theta} \sin \psi+T_{\psi \theta} \cos \psi\right) \rho d \rho d \psi \\
P R=\int_{0}^{a} \int_{0}^{2 \pi} T_{\psi} \rho^{2} \rho^{2} d \rho d \psi
\end{array}\right.
$$

 - Fiannueg aik mes avinurvers $\quad 0=\varnothing \quad-\quad$ aeoled $=1$

The strain energy par unit angle θ is
(7)-U= $\frac{1}{2 G} \int_{0}^{a} \int_{0}^{2 \pi}\left(T_{\rho \theta}{ }^{2}+\tau_{\psi \theta}{ }^{2}\right)(R-\rho \cos \psi) \rho d \rho d \psi$

The method of solution will now be to take the stress function in the form $\phi=\sum_{i=0}^{N} \alpha_{i} \phi_{i}$, where ϕ_{i} are suitably selected functions of p and ψ, each of which satisfies the boundary condition $\phi_{i}=0$ when $p=a$. The coefficients α_{i} are constants which are evaluated from the minimum condition of strain energy.

FIRS APPHOXTVATION

For a first approximation we shall take a function ϕ, satisfying the boundary condition that it vanish everywhere on the boundary, in the Lorn $\phi=\left(\rho^{2}-a^{2}\right)\left(\alpha_{0}+\frac{\alpha_{1} \rho}{R} \cos \psi\right)$. The reasons for this particular choice are discussed in Appendix A. Taking the partial derivetives of ϕ with respect to the two variables ρ and ψ

$$
\frac{\partial \phi}{\partial \rho}=2 \rho \alpha_{0}+\frac{\alpha_{1}\left(3 \rho^{2}-a^{2}\right)}{R} \cos \psi \quad \text { and } \quad \frac{\partial \phi}{\partial \psi}=-\frac{\alpha_{1}\left(\rho^{2}-a^{2}\right)}{R} \sin \psi
$$

Substituting in Equations (5), the following expressions are obtained for $T_{p \theta}$ and $T_{4 \theta}$.
(8) $-T_{\rho \theta}=\frac{G R^{2}}{(R-\rho \cos \psi)^{2}} \frac{\alpha_{1}\left(\rho^{2}-a^{2}\right)}{R} \sin \psi$ and $T_{\psi \theta}=\frac{G R^{2}}{(R-\rho \cos \psi)^{2}}\left[2 \rho \alpha_{0}+\frac{\alpha_{1}\left(3 \rho^{2}-a^{2}\right)}{R} \cos \psi\right]$

The appearance of the term $\frac{1}{(R-\rho \cos \psi)^{2}}$ in the stress equations makes the integration required in (6) and (7) very complicated and the results largely unmanageable in the evaluation of the unknown coefficients in ϕ. (See Appendix B). This is particularly true when additional terms are used in ϕ for a higher order of approximation, and in the evaluation of the strain energy where the stresses appear as squared terms.

$$
\begin{aligned}
& \text { Since } \frac{P}{R} \text { is always less than unity, wo may write } \\
& (R-p \cos \psi)^{2}
\end{aligned}=\frac{1}{\left(1-\frac{\rho}{R} \cos \psi\right)^{2}}=1+2\left(\frac{\rho}{R}\right) \cos \psi+3\left(\frac{P}{R}\right)^{2} \cos ^{2} \psi+\ldots . .
$$

Utilising this expansion, the exact stress expressions (5) may be approximated as follow a

$$
\begin{aligned}
& T_{\rho \theta}=-\frac{G}{p}\left[\left(1+2 \frac{\rho}{R} \cos \psi\right) \frac{\partial \phi_{0}}{\partial \psi} \alpha_{0}+\frac{\partial \phi_{1}}{\partial \psi} \alpha_{1}\right] \\
& T_{\psi \theta}=G\left[\left(1+2 \frac{\rho}{R} \cos \psi\right) \frac{\partial \phi_{0}}{\partial \rho} \alpha_{0}+\frac{\partial \phi_{1}}{\partial \rho} \alpha_{1}\right]
\end{aligned}
$$

This particular form of approximation accomplishes the desired result
bymentedy buisi

$$
\psi_{\text {aic }} \frac{(50-5), x}{9}=\frac{\$ 6}{46} \quad \psi_{200}^{(50-9 E), x}+\operatorname{sog} 5=\frac{\phi 6}{96}
$$

a opt sus ap ${ }^{T}$ set bentiatulo
\qquad

$$
\cdots+\psi^{5} 2 \cos ^{2}\left(\frac{9}{9}\right) \varepsilon+\psi \cos \left(\frac{9}{9}\right) \varepsilon+1=\frac{1}{\left(4200 \frac{9}{9}-1\right)}=\frac{-9}{(42039-9)}
$$

$$
\begin{aligned}
& {\left[, \frac{d 6}{46}+0 \frac{\phi 6}{+6}\left(\psi<00 \frac{9}{9} x+1\right)\right] \frac{D}{9}-=\theta q^{T}} \\
& {\left[, \frac{d 6}{96}+{ }_{0}, \frac{\phi 6}{96}\left(\psi \cos \frac{9}{9} x+1\right)\right] D=\operatorname{sit}}
\end{aligned}
$$

of limiting the highest power to which the ratios $\frac{a}{R}$ and $\frac{P}{R}$ appear in the stress equations.

Since $\quad \phi_{0}=\left(\rho^{2}-a^{2}\right) \quad$ and $\quad \phi_{1}=\frac{p\left(p^{2}-a^{2}\right)}{R} \cos \psi$
The partial derivatives are

$$
\begin{array}{ll}
\frac{\partial \phi_{0}}{\partial \rho}=2 \rho & \frac{\partial \phi_{1}}{\partial \rho}=\frac{\left(3 \rho^{2}-a^{2}\right)}{R} \cos \psi \\
\frac{\partial \phi_{0}}{\partial \psi}=0 & \frac{\partial \phi_{1}}{\partial \psi}=-\frac{\rho\left(\rho^{2}-a^{2}\right)}{R} \sin \psi
\end{array}
$$

Substituting, we arrive at the following approximate expressions for

$$
\left\{\begin{array}{l}
T_{\rho \theta}=G\left[\frac{\alpha_{1}\left(\rho^{2}-a^{2}\right)}{R} \sin \psi\right] \\
T_{\psi \theta}=G\left[2 \rho \alpha_{0}+\frac{\left(4 \rho^{2} \alpha_{0}+3 p^{2} \alpha_{1}-a^{2} \alpha_{1}\right)}{R} \cos \psi\right]
\end{array}\right.
$$

Substituting these values of $T_{p e}$ and $T_{\psi \theta}$ in the first of Equations (6), and integrating we obtain

$$
P=\frac{G \pi a^{4}}{R} \alpha_{0} \quad \therefore \quad \alpha_{0}=\frac{P R}{G \pi a^{4}}
$$

The same result is obtained from the second condition of Equations (6).
It follows that α_{0} is fixed by the requirements of static equilibrium and α, may now be determined by the condition of minimum strain energy that $\frac{\partial U}{\partial \alpha_{1}}=0$.

From Equation (7)

$$
\frac{\partial U}{\partial \alpha_{1}}=\frac{1}{G} \int_{0}^{a} \int_{0}^{2 \pi}\left(T_{p \theta} \frac{\partial T_{\rho \theta}}{\partial \alpha_{1}}+T_{\psi \theta} \frac{\partial T_{\psi \theta}}{\partial \alpha_{1}}\right)(R-\rho \cos \psi) \rho d \rho d \psi
$$

Substituting the stresses from Equation (9) and integrating

$$
\frac{\partial U}{\partial \alpha_{1}}=\frac{R \pi}{G}\left[\left(\frac{1}{2} \frac{a^{6}}{R^{2}}\right) \alpha_{0}+\left(\frac{2}{3} \frac{a^{6}}{R^{2}}\right) \alpha_{1}\right]
$$

Setting $\frac{\partial U}{\partial \alpha_{1}}=0$ and solving for α_{1}

 $\left({ }^{5} 0-9\right)=\phi \quad$ gant

$$
\begin{array}{ll}
\left.\psi_{202} \frac{(50-5,}{9} \varepsilon\right) & \frac{\$ 6}{96} \\
\psi_{\operatorname{nic}} \frac{(0--9) q}{9}-=\frac{\phi 6}{46} & 0=\frac{\phi 6}{96}
\end{array}
$$

nevibis an anderoued ba:

$$
+\frac{\pi 9}{2 \pi \pi_{0}}=0 \infty \quad \therefore \quad \therefore \frac{\pi}{\pi}=9
$$

$$
\text { . } 0=\frac{\frac{v 6}{166}}{166} \text { गuls }
$$

(i) minwige spert

$$
\left[x\left(x-\frac{0}{2} \frac{5}{\varepsilon}\right)+0^{\infty}\left(-\frac{0}{x} \frac{1}{5}\right)\right] \frac{\pi r}{P}=\frac{U 6}{x 6}
$$

Using these results in Equations (9) we arrive at the expressions for the first approximation of the stress distribution in a crose-aection of the incomplete tore
(10)

$$
\left\{\begin{array}{l}
T_{p \theta}=-\frac{P R}{\pi a^{4}}\left[\frac{3}{4} \frac{\left(p^{2}-a^{2}\right)}{R} \sin \psi\right] \\
T_{\psi \theta}=\frac{P R}{\pi a^{4}}\left[2 \rho+\frac{\left(7 \rho^{2}+3 a^{2}\right)}{R} \cos \psi\right]
\end{array}\right.
$$

At the point of maximum stress where $p=a$ and $\psi=0$ the above reduce to
(11)

$$
\left\{\begin{array}{l}
T_{p \theta}=0 \\
{\left[T_{\psi \theta}\right]_{\max }=\frac{2 P R}{\pi a^{3}}\left[1+\frac{5}{4}\left(\frac{a}{R}\right)\right]}
\end{array}\right.
$$

It is interesting to note at this point that for this particular solution, one of the unknom coefficients in ϕ is determined directly from the requiremontes of static equilibrium, and the other directly from the minimum strain energy condition without constraint arising from static equilibrium.

 mast abliqu and

$$
\begin{align*}
& {\left[4 \text { तार } \frac{(50-5 q)}{9} \frac{8}{+}\right] \frac{99}{0 \pi}=0 q^{T}} \tag{ac}
\end{align*}
$$

$$
\left.\begin{array}{rl}
0 & \theta Q\} \\
= & [\theta \hat{T}]]
\end{array}\right\} \text { ai nemars }
$$

SECOND APPROXIMATION

A closer approximation to the true stress conditions will result
if higher order terms of a suitable nature are used in the stress function. We shall now take ϕ as

$$
\phi=\left(\rho^{2}-a^{2}\right)\left(\alpha_{0}+\frac{\alpha_{1} \rho}{R} \cos \psi+\frac{\alpha_{2} \rho^{2}}{R^{2}} \cos ^{2} \psi+\frac{\alpha_{3} \rho^{2}}{R^{2}} \sin ^{2} \psi+\frac{\alpha_{4} a^{2}}{R^{2}}\right)
$$

Reasons for this particular choice of functions are discussed in Appendix A. Again employing the binomial expansion of $\frac{1}{(R-\rho \cos 4)^{2}}$ we write approximate expressions for $T_{\rho \theta}$ and $T_{\psi \theta}$.

$$
\begin{aligned}
T_{p \theta} & =-\frac{G}{p}\left[\left(1+2 \frac{p}{R} \cos \psi+3 \frac{\rho^{2}}{R^{2}} \cos ^{2} \psi\right) \frac{\partial \phi_{0}}{\partial \psi} \alpha_{0}+\left(1+2 \frac{\rho}{R} \cos \psi\right) \frac{\partial \phi_{1}}{\partial \psi} \alpha_{1}+\frac{\partial \phi_{2}}{\partial \psi} \alpha_{2}+\frac{\partial \phi_{3}}{\partial \psi} \alpha_{3}+\frac{\partial \phi_{4}}{\partial \psi} \alpha_{4}\right] \\
T_{\psi \theta} & =G\left[\left(1+2 \frac{\rho}{R} \cos \psi+3 \frac{\rho^{2}}{R^{2}} \cos ^{2} \psi\right) \frac{\partial \phi_{0}}{\partial \rho} \alpha_{0}+\left(1+2 \frac{\rho}{R} \cos \psi\right) \frac{\partial \phi_{1}}{\partial \rho} \alpha_{1}+\frac{\partial \phi_{2}}{\partial \rho} \alpha_{2}+\frac{\partial \phi_{3}}{\partial \rho} \alpha_{3}+\frac{\partial \phi_{4}}{\partial \rho} \alpha_{4}\right] \\
\phi_{0} & =\left(\rho^{2}-a^{2}\right) \\
\phi_{1} & =\frac{\rho\left(\rho^{2}-a^{2}\right)}{R} \cos \psi \quad \phi_{2}=\frac{\rho^{2}\left(\rho^{2}-a^{2}\right)}{R^{2}} \cos ^{2} \psi \quad \phi_{4}=\frac{a^{2}\left(p^{2}-a^{2}\right)}{R^{2}}
\end{aligned}
$$

This is an extension of the device used before to limit the highest power to which the ratios $\frac{a}{R}$ and $\frac{\rho}{R}$ appear in each term of the stress equations. Since $\frac{a}{R}$ and $\frac{p}{R}$ occur in a like manner in ϕ_{2}, ϕ_{3} and ϕ_{4}, these latter terms are grouped together and treated in similar fashion when introduced into the approximate expressions for the stresses.

Taking the partial derivatives, substituting and rearranging the terms for convenient integration, the following approximate expressions for $\hat{T}_{p o}$ and $T_{\psi e}$ are obtained.
(12)

$$
\text { (12) - }\left\{\begin{array}{l}
T_{\rho \theta}=G\left[\frac{\alpha_{1}\left(\rho^{2}-a^{2}\right)}{R} \sin \psi+\frac{2 \rho\left(\alpha_{1}+\alpha_{2}-\alpha_{3}\right)\left(\rho^{2}-a^{2}\right)}{R^{2}} \sin \psi \cos \psi\right] \\
T_{\psi \theta}=G \cdot\left[\frac{6 p^{3} \alpha_{0}}{R^{2}}+\frac{2 \rho \alpha_{1}\left(3 p^{2}-a^{2}\right)}{R^{2}}+\frac{2 \rho \alpha_{2}\left(2 \rho^{2}-a^{2}\right)}{R^{2}}\right] \cos ^{2} \psi+\left[\frac{4 \rho^{2} \alpha_{0}}{R}+\frac{\alpha_{1}\left(3 p^{2}-a^{2}\right)}{R}\right] \cos \psi+2 \rho \alpha_{0}+ \\
\left.\frac{2 \rho \alpha_{3}\left(2 p^{2}-a^{2}\right)}{R^{2}} \sin ^{2} \psi+\frac{2 a^{2} \alpha_{4} \rho}{R^{2}}\right\}
\end{array}\right.
$$

 II

From the first of the static equilibrium conditions in (6) (that the resultant stress must produce a force P in the Z direction) it is again found that $\alpha_{0}=\frac{P R}{G \pi a^{4}}$.

The second static equilibrium condition (that the resultant stress must produce a moment about the center equal to PR gives the following result.

$$
\frac{P R}{G \pi a^{4}} \cdot\left[\left(1+\frac{a^{2}}{R^{2}}\right) \alpha_{0}+\left(\frac{1}{2} \frac{a^{2}}{R^{2}}\right) \alpha_{1}+\left(\frac{1}{6} \frac{a^{2}}{R^{2}}\right) \alpha_{2}+\left(\frac{1}{6} \frac{a^{2}}{R^{2}}\right) \alpha_{3}+\left(\frac{a^{2}}{R^{2}}\right) \alpha_{4}\right]
$$

However, since

$$
\alpha_{0}=\frac{P R}{G \pi a^{4}}
$$

$$
\left(\frac{1}{2} \frac{a^{2}}{R^{2}}\right) \alpha_{1}+\left(\frac{1}{6} \frac{a^{2}}{R^{2}}\right) \alpha_{2}+\left(\frac{1}{6} \frac{a^{2}}{R^{2}}\right) \alpha_{3}+\left(\frac{a^{2}}{R^{2}}\right) \alpha_{4}+\left(\frac{a^{2}}{R^{2}}\right)\left(\frac{P R}{G \pi a^{4}}\right)=0
$$

Since $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} will ultimately all contain the factor $\frac{P R}{G \pi a^{4}}$ some simplification of the algebra will be afforded if we make the following substitutions

$$
\beta_{n}=\alpha_{n}\left(\frac{G \pi a^{4}}{P R}\right) \quad \text { where } n=1,2,3,4
$$

Finally the constraining function derived from the condition e of static equilibrium to be used in minimizing the strain energy is
(13)-- $\left(\frac{1}{2} \frac{a^{2}}{R^{2}}\right) \beta_{1}+\left(\frac{1}{6} \frac{a^{2}}{R^{2}}\right) \beta_{2}+\left(\frac{1}{6} \frac{a^{2}}{R^{2}}\right) \beta_{3}+\left(\frac{a^{2}}{R^{2}}\right) \beta_{4}+\frac{a^{2}}{R^{2}}=0$

The work involved in obtaining the partial derivatives of the strain energy with respect to the unknown coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} will be simplified by differentiating under the integral sign.

Therefore

$$
\frac{\partial U}{\partial \alpha_{n}}=\frac{R}{G} \int_{0}^{a} \int_{0}^{2 \pi}\left(T_{p \theta} \frac{\partial T_{\rho} \theta}{\partial \alpha_{n}}+T_{\psi \theta} \frac{\partial T_{\psi \theta}}{\partial \alpha_{n}}\right)\left(1-\frac{\rho}{R} \cos \varphi\right) \rho d \rho d \psi
$$

$\frac{\partial U}{\partial \alpha_{0}}$ is not required since α_{0} has already been evaluated from the

$$
\frac{99}{S_{0} \pi 2}=b
$$

$$
\begin{aligned}
& +\frac{79}{0 \pi 5}={ }_{0} \text { b suaks e vestrist }
\end{aligned}
$$

$$
\left.+_{6} \varepsilon_{c} s_{e} 1=M \quad\left(\frac{0 \pi P}{\sqrt{9}}\right)_{n} b={ }_{n} \ell\right)
$$

conditions of static equilibrium. Since
$\frac{\partial U}{\partial \alpha_{n}}=$ (Constant) $\frac{\partial U}{\partial \beta_{n}}$, it is convenient here to take $\frac{\partial v}{\partial \beta_{n}}$. After substituting for $\tau_{p \theta}$ and $T_{\psi \theta}$ from Equations (12) and performing the required integration, the following expressions are obtained.

$$
(14)-\left\{\begin{array}{l}
\frac{\partial U}{\partial \beta_{1}}=\frac{\pi a^{6}}{G R}\left[\left(\frac{3}{2}-\frac{5}{16} \frac{a^{2}}{R^{2}}\right)+\frac{2}{3} \beta_{1}+\frac{13}{48} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{16} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{1}{2} \frac{a^{2}}{R^{2}} \beta_{4}\right] \\
\frac{\partial U}{\partial \beta_{2}}=\frac{\pi a^{6}}{G R}\left[\left(\frac{1}{3}-\frac{1}{4} \frac{a^{2}}{R^{2}}\right)+\frac{13}{16} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{\eta}{24} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{24} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{4}\right] \\
\frac{\partial U}{\partial \beta_{3}}=\frac{\pi a^{6}}{G R}\left[\left(\frac{1}{3}+\frac{1}{12} \frac{a^{2}}{R^{2}}\right)+\frac{1}{16} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{1}{24} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{7}{24} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{4}\right] \\
\frac{\partial U}{\partial \beta_{4}}=\frac{\pi a^{6}}{G R}\left[\left(2+\frac{2}{3} \frac{a^{2}}{R^{2}}\right)+\frac{1}{2} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{3}+2 \frac{a^{2}}{R^{2}} \beta_{4}\right]
\end{array}\right.
$$

To minimize the strain energy and evaluate the unknown coefficients $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}, the method of Lagrangian multipliers will be used with the constraining function (13) established by the requirements of static equilibrium. The constant $\frac{\pi a^{6}}{G R}$ appearing in the partial derivatives of the strain energy will be incorporated in the multiplier. Letting λ be a Lagrangian multiplier, and $f\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)=0$ the constraining function, we may write

$$
\begin{array}{ll}
\frac{\partial U}{\partial \beta_{n}}+\lambda \frac{\partial f}{\partial \beta_{n}}=0 \\
f\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)=0 & \text { where } n=1,2,3,4
\end{array}
$$

Using (13) and (14) in the above, and the fact that

$$
\frac{\partial f}{\partial \beta_{1}}=\frac{1}{2} \frac{a^{2}}{R^{2}} \quad \frac{\partial f}{\partial \beta_{2}}=\frac{1}{6} \frac{a^{2}}{R^{2}} \quad \frac{\partial f}{\partial \beta_{3}}=\frac{1}{6} \frac{a^{2}}{R^{2}} \quad \frac{\partial f}{\partial \beta_{4}}=\frac{a^{2}}{R^{2}}
$$

 oft Tea on

$$
0=\frac{76}{95} x+\frac{76}{96}
$$

$$
f_{e} \varepsilon_{\&} s_{1} 1=\sigma \quad \text { anon }
$$

$$
0=(29,8)(5,9,8) t
$$

wo arrive at the following set of equations, the solution of which will evaluate $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ and determine the stress function.

$$
(25)-\left\{\begin{array}{l}
\left(\frac{3}{2}-\frac{5}{16} \frac{a^{2}}{R^{2}}\right)+\frac{2}{3} \beta_{1}+\frac{13}{48} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{16} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{1}{2} \frac{a^{2}}{R^{2}} \beta_{4}=-\frac{\lambda^{\prime}}{2} \frac{a^{2}}{R^{2}} \\
\left(\frac{1}{3}-\frac{1}{4} \frac{a^{2}}{R^{2}}\right)+\frac{13}{16} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{7}{24} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{24} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{4}=-\frac{\lambda^{\prime}}{6} \frac{a^{2}}{R^{2}} \\
\left(\frac{1}{3}+\frac{1}{12} \frac{a^{2}}{R^{2}}\right)+\frac{1}{16} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{1}{24} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{7}{24} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{4}=-\frac{\lambda^{\prime}}{6} \frac{a^{2}}{R^{2}} \\
\left(2+\frac{2}{3} \frac{a^{2}}{R^{2}}\right)+\frac{1}{2} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{3} \frac{a^{2}}{R^{2}} \beta_{3}+2 \frac{a^{2}}{R^{2}} \beta_{4}=-\lambda^{\prime} \frac{a^{2}}{R^{2}} \\
\frac{a^{2}}{R^{2}}+\frac{1}{2} \frac{a^{2}}{R^{2}} \beta_{1}+\frac{1}{6} \frac{a^{2}}{R^{2}} \beta_{2}+\frac{1}{6} \frac{a^{2}}{R^{2}} \beta_{3}+\frac{a^{2}}{R^{2}} \beta_{4}=0
\end{array}\right.
$$

where $\lambda^{\prime}=\left(\frac{G R}{\pi a^{6}}\right) \lambda$
Solving for $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}

$$
\begin{array}{ll}
\beta_{1}=-\frac{3}{4}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right] & \beta_{2}=\frac{57}{96}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right]-\frac{56}{96} \\
\beta_{3}=\frac{8}{96}-\frac{3}{96}\left[\frac{1-\frac{37}{72} a^{2}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right] & \beta_{4}=-\frac{88}{96}+\frac{27}{96}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right]
\end{array}
$$

The corresponding values of α are

$$
\begin{array}{ll}
\alpha_{1}=-\frac{3}{4} \frac{P R}{G \pi a^{4}}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right] \quad \alpha_{2}=\frac{P R}{G \pi a^{4}}\left\{\frac{57}{96}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right]-\frac{56}{96}\right\} \\
\alpha_{3}=\frac{P R}{G \pi a^{4}}\left\{\frac{8}{96}-\frac{3}{96}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right]\right\} \quad \alpha_{4}=\frac{P R}{G \pi a^{4}}\left\{-\frac{88}{96}+\frac{27}{96}\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right]\right\}
\end{array}
$$

 . -

$$
\begin{aligned}
& \lambda\left(\frac{2 \partial}{20 \pi}\right)=\text { '人 suan }
\end{aligned}
$$

Using these results in Equations (12), we may now write expressions representing a second approximation of the stress distribution in a cross-

$$
\left\{\begin{array}{l}
T_{\rho \theta}=-\frac{P R}{\pi a^{4}}\left[\frac{3}{4} \delta\left(\rho^{2}-a^{2}\right) \frac{\sin \psi}{R}+\left(\frac{2}{3}+\frac{1}{8} \delta\right) \frac{\sin 2 \psi}{R^{2}}\right]=\left[\frac{1-\frac{37}{72} \frac{a^{2}}{R^{2}}}{1-\frac{43}{192} \frac{a^{2}}{R^{2}}}\right] \\
T_{\psi \theta}=\frac{P R}{\pi a^{4}}\left\{\left[\left(\frac{10}{3}-2 \delta\right) \rho^{3}+\left(\frac{4}{3}+\frac{1}{4} \delta\right) \rho a^{2}\right] \frac{\cos ^{2} \psi}{R^{2}}+\left[\left(4-\frac{9}{4} \delta\right) \rho^{2}+\left(\frac{3}{4} \delta\right) a^{2}\right] \frac{\cos \psi}{R}+\left[\left(\frac{1}{3}-\frac{1}{8} \delta\right) \rho^{3}-\left(2-\frac{5}{8} \delta\right) \rho a^{2}\right] \frac{1}{R^{2}}+2 \rho\right\}
\end{array}\right.
$$

At the point of maximum stress, where $\rho=a$ and $\psi=0$, the above reduce to
$(17)=\left\{\begin{array}{l}T_{\rho \theta}=0 \\ {\left[T_{\psi \theta}\right]_{\text {max. }}=\frac{2 P R}{\pi a^{3}}\left[1+\left(2-\frac{3}{4} \delta\right) \frac{a}{R}+\left(\frac{3}{2}-\frac{5}{8} \delta\right) \frac{a^{2}}{R^{2}}\right]}\end{array}\right.$
As is apparent from the foregoing development, further approximations utilizing additional terms in the stress function will result in extremely long and tedious calculations. This in itself is a limitation of this method. Therefore at this point, assuming the solution to be a rapidly converging one, we will stop and introduce actual values of the ratio of cross-sectional radius to the mean radius of curvature of the tore in order to compare results with other solutions.

 - insuldiaber gasujo disive

RENULTS

The distribution of shearing stress on a horizontal diamoter is showa in Fig. 5 and the circunferential strose distribution in Fig. 6. In both cases a ratio of R / a equal to 4 is used since this realizes the worst condition (1.e. greatest curvature for a given cross-section) of any practical significance.

The quantity S appeazing as the ordinate in both curves is a dimensionless quantity and is equal to $\frac{T_{\psi} \theta \pi a^{2}}{P}$, since $T_{\rho \theta}$ vanishes on both a horisontal dianeter and the periphery. A stress distribution representing pure torsion of a straight circular shaft is shown by a dotted line in both 1 igures. It is ssen that the maxdmum stress actually existing in the tore is considerably greater than that derived from ordinary torsion theory. Both curves are in good agreement with similar ones derived from the exact solution by Frieberger. Points from Prieberger's curves appear as the small circles in Pig. 5 and 6.

In comparing the results of this solution with others, nemely Gohner, Wahl, and Prieberger, the point of maxdraum stress will be used as a reference with different values of H / a. Table 1 gives values of \underline{K} in the expression $\left[\Gamma_{\Psi \theta}\right]_{\text {max }}=\frac{2 P R}{\pi a^{3}}[K]$ for the several solutions.

Table 1.

	Exact	This Sqlution			Cther Approx. Solutions
a	Frieberfer	1st Approx.	2nd Approx.	Gehner	Wahl
4	1.376	1.313	1.371	1.372	1.400
5	1.293	1.250	1.287	1.295	1.310
6	1.237	1.209	1.234	1.239	1.252
8	1.171	1.156	1.171	1.172	1.184
10	1.136	1.125	1.134	1.135	1.145

 smollabla ksarras ball tot $[\lambda] \frac{995}{\varepsilon_{0} 0 \pi}=\operatorname{xim}[\theta 4 T]$ Lablat

Table 1. indicates that the energy method applied to this problem produces results which compare favorabiy with other solutions. It also appears that the solution converges rapldiy, since only five terms were used in the stress function.

\qquad

Fig. 5 .
Distibution of shearing stress on a horizontal diameter for $a / R=1 / 4 . \quad(\psi=0, \pi)$. $S=\left(T_{\psi \theta}\right)\left(\pi a^{2}\right) / P$.
Frieberger's points are indicated by small circles.

Circumferential stress distribution for
a/R=1/4. $S=\left(T_{\Psi \theta}\right)\left(\pi a^{2}\right) / P$. Frieberger's points are indicated by small circles.

In diacussing any conclusions from this investigation, it would be appropsiste to recall the two questions that prompted it.
(1) Can the problem be solved by this method, and how do the results compare with these of other soluticris?
(2) Does the problea particularly lend itself to solution by energy methods?

Pirst, the method will work and acceptable results are obtained with a relatively few terms in the stress function. This is in itself worthy of note, since it allows a very complex problem to be attacked by the more elementary mothods of mathematics.

However, in reference to the second question, there are iinitations both inherent in the energy method and peculiar to this partioular application, that strongly indicate the problem ia not eapecially adapted to a solution by energy methods.

The energy method, except in unusual circumstances, does not provide an exact solution. Consequentiy, in the absence of an exact solution, there is no real basis for judging the results. The fact also that the energy method requires minimizing an integral, which is done only with extreme difficulty with any number of terms in the stress function, is a limitation to its adaptability.

In conclusion then, it may be said that this solution has the value of arriving at very good resulte using a relatively uncomplicated stress function of only five terme.

 Takoduas

 - eollaneildior le abodseas

 . Alodient

 ownul antin offos te

HCFRNWCSS

(1) MlCHili, J. H. "The uniform torsion and flexure of incomplete tores, with epplication to helicol springe." Proc. Royel Sec. 31 : 230 (1899)
(2) GOHNin, O. Review in "Theory of Klasticity", Timoshenke and Coodier. pp. 392-395.
(3) SHEPHELD, W. M. "On the stresses in close-cotled helical springs." Cuart. Journ. Mech. and Appl. Math. Vol. 3, Part 4, (1950).
(4) WAHL, A. N. "Jtresses in hesvy closely coiled belicel springs." Trans. ASME, Appl. Mech., Mey-August, (1929).
(5) SOUTHWELL, R. V. "Some practically imyortant stress systems in solids of revolution." Proc. Royal Soc. A 180: 367 (1942).
(6) FRIEBCHOZR, W. "The uniform torsion of an incomplete tore." Australian Journ Scion. Research, A. Vol 2, No. 3, 307 (2949).

 (4)
 $$
\text { (PPLC) QPI: } H: .33
$$

 (5)
 - aun-roc ,th oximety

 (c)
 $$
\cdot(\operatorname{dag}) \text { it } s+1!
$$

APE RADIX A

According to the principle of least work which is used in this solution, an exact stress function would require selecting from all functions that satisfy the boundary condition those which minimize the strain energy.

Since in general this procedure is too difficult, a limited number of of suitable functions was selected to determine an approximate stress function.

In choosing functions of ρ and ψ in $\phi=\sum_{i=0}^{N} \alpha_{i} \phi_{i} \quad$, the first consideration was the boundary condition $\phi_{i}=0$ when $p=a$. This condition was satisfied by taking each ϕ_{i} to contain the factor $\left(p^{2}-a^{2}\right)$.

Then $\phi=\left(\rho^{2}-a^{2}\right) \sum_{i=0}^{N} \alpha_{i} f_{i}(\rho, \psi)$
With rectangular coordinates (ξ, η) in mind, where $\xi=\rho \cos \psi$ and $\eta=\rho \sin \psi$, the next $20 g i c a l$ step was to express $\sum f_{i}(\xi, \eta)$ in a power series. The first $s 1 x$ terms of such a series wore considered, namely those involving

$$
1, \xi, \eta, \xi^{2}, \eta^{2}, \xi \eta
$$

Since a horizontal diameter $(\eta=0)$ on a plane cross-saction (θ is a constant) is an axis of symmetry for the ϕ surface, ϕ must be even in η and not contain terns involving odd powers of η. In general $\%$ will appear to all powers since ($\xi=0$) is not axis of symmetry. Therefore the remaining terms expressed as functions of ρ and ψ are

$$
1, \rho \cos \psi, \rho^{2} \cos ^{2} \psi, \rho^{2} \sin ^{2} \psi
$$

The term $\frac{a^{2}}{R^{2}}$ in ϕ_{4} while not consistent with this line of reasoning, appeared as a result of the binomial expansion used in approximating the stresses. It was extracted from Goners solution where a like approximation was used.

12n- 31

 s.t.

mit ψ bue 9 lo anokesorh paveondo nI

$$
(\psi, q) ; z_{i}>\sum_{0=j}^{n}(s, s q)=\phi \quad \text { ane }
$$

$$
\mu_{6}^{3} \sqrt[\beta]{3},{ }_{7}^{5}, \int, \overrightarrow{3} 61
$$

$$
\psi \operatorname{snit}^{5} 9, \psi^{5} \cos ^{5} q, \psi 2009,1
$$

Consequently the stress function was taken in the form

$$
\phi=\left(\rho^{2}-a^{2}\right)\left[\alpha_{0}+\alpha_{1}\left(\frac{\rho}{R}\right) \cos \psi+\alpha_{2}\left(\frac{\rho}{R}\right)^{2} \cos ^{2} \psi+\alpha_{3}\left(\frac{\rho}{R}\right)^{2} \sin ^{2} \psi+\alpha_{4} \frac{a^{2}}{R^{2}}\right]
$$

Here ρ was replaced by $\frac{\rho}{R}$ so that α_{i} would in all cases be the product of a dimensionless number and the factor $\frac{P R}{G \pi a^{4}}$
In the first approximation the first two terms were used and in the second all five were introduced in ϕ.

 + $\frac{99}{0 \pi \rho}$ rajosz enf bris rodmuix treecnobaneitb a 20 jouboul ait

- ϕ at beotiborfint orpw ovit LiE

The appearance of the term $\frac{1}{(R-\rho \cos \psi)^{2}}$ in the exact equations relating the stresses and the stress function gives rise to the occurrence of integrals of the type $\int_{0}^{a} \int_{0}^{2 \pi} \frac{\rho^{m} \sin ^{n} \psi \cos 8 \psi d \rho d \psi}{(R-\rho \cos \psi)^{2}}$ and $\int_{0}^{a} \int_{0}^{2 \pi} \frac{\rho^{m} \sin ^{n} \psi \cos 8 \psi d \rho d \psi}{(R-\rho \cos \psi)^{3}}$ in evaluating the strain energy and in consideration of the conditions of static -quilibrium.

Taking the simplest form of the first type, where $m=1, n=0$ and $q=0$ we have

$$
\int_{0}^{a} \int_{0}^{2 \pi} \frac{\rho d \rho d \psi}{(R-\rho \cos \psi)^{2}}
$$

Integrating first with respect to Ψ and setting $R=c$ and $-p=b$

$$
\int \frac{d \psi}{(c+b \cos \psi)^{2}}
$$

Letting

$$
P=\frac{\sin \psi}{(c+b \cos \psi)^{2}}
$$

Then

$$
\begin{aligned}
\frac{d P}{d \psi} & =\frac{\cos \psi(c+b \cos \psi)+b\left(1-\cos ^{2} \psi\right)}{(c+b \cos \psi)^{2}}=\frac{b+c \cos \psi}{(c+b \cos \psi)^{2}} \\
& =\frac{b-\frac{c^{2}}{b}+\frac{c}{b}(c+b \cos \psi)}{(c+b \cos \psi)^{2}}=\frac{c}{b}\left(\frac{1}{c+b \cos \psi}\right)-\frac{c^{2}-b^{2}}{b}\left[\frac{1}{(c+b \cos \psi)^{2}}\right]
\end{aligned}
$$

Multiplying by $d \psi$ and integrating

$$
\begin{aligned}
\int \frac{d P}{d \psi} d \psi & =P=\frac{\sin \psi}{c+b \cos \psi}=\frac{c}{b} \int \frac{d \psi}{c+b \cos \psi}-\frac{c^{2}-b^{2}}{b} \int \frac{d \psi}{(c+b \cos \psi)^{2}} \\
\int \frac{d \psi}{c+b \cos \psi} & =-\frac{b}{c^{2}-b^{2}}\left(\frac{\sin \psi}{c+b \cos \psi}\right)+\frac{c}{c^{2}-b^{2}} \int \frac{d \psi}{c+b \cos \psi} \\
& =\frac{1}{\sqrt{c^{2}-b^{2}}} \cos ^{-1}\left(\frac{b+c \cos \psi}{c+b \cos \psi}\right) \text { where } c^{2}>b^{2}
\end{aligned}
$$

-mixditilent

$$
\frac{4 b a k q^{\pi s}}{(4202 q-\lambda)} \int_{0}^{\infty} \text { ovail ow }
$$

$$
v(\psi<a) d+0)[
$$

gntifar

$$
\begin{array}{r}
\sim_{(\psi \cos d+2)}^{\psi \text { nic }}
\end{array}=9
$$

mad

$$
\begin{aligned}
& \left.\sim(\psi 200 d+2)\left[\frac{\psi b_{0}}{d}-\frac{5_{0}-s_{0}}{\psi 200 d+2}\right] \frac{2}{d}=\frac{\psi 122}{4200 d+2}=a=\psi b \frac{9 b}{\psi b}\right] \\
& \psi \frac{\psi b}{\psi<02 d+2}\left[\frac{2}{d-50}+\left(\frac{\psi+15}{\psi 202 d+2}\right) \frac{d}{d-50}-\psi \cos \frac{\psi b}{d+2}[\right.
\end{aligned}
$$

Therefore

$$
\int \frac{d \psi}{(c+b \cos \psi)^{2}}=-\frac{b}{c^{2}-b^{2}}\left(\frac{\sin \psi}{c+b \cos \psi}\right)+\frac{c}{\left(c^{2}-b^{2}\right)^{3 / 2}} \cos ^{-1}\left[\frac{b+c \cos \psi}{c+b \cos \psi}\right]
$$

Introducing the inits 0 and 2π, this reduces to

$$
\frac{2 \pi c}{\left(c^{2}-b^{2}\right)^{3 / 2}} \quad \text { where } \quad \begin{aligned}
& c=R \\
& b=-\rho
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{0}^{a} \int_{0}^{2 \pi} \frac{\rho d \rho d \psi}{(R-\rho \cos \psi)^{2}} & =2 \pi R \int_{0}^{a} \frac{\rho d \rho}{\left(R^{2}-\rho^{2}\right)^{3 / 2}}=2 \pi R\left[\frac{1}{\left(R^{2}-\rho^{2}\right)^{1 / 2}}\right]_{0}^{a} \\
& =2 \pi\left[\frac{R}{\left(R^{2}-a^{2}\right)^{1 / 2}-1}\right]
\end{aligned}
$$

The other more complicated foms where $n \neq 0$ and $o^{\neq 0}$ are integrable in Iinite terms by similar reduction mothods, but it is apparant that the work becomes axcessively involved. Also the results in the form just developed are not readily usable in ovaluating the unknown coofficients in the stress function.

In viaw of the foregoing, despite the fact that it was not actually necessary, it was expedient to approucimate the stresses in such a man:er that the integration was simplified and the results put in a usable form.

This device of approximating the atress equations compromised the requirement that the stresses satisfy the equations of equilibrium. However, it appears that, since the stresses do satisfy the conditions of minimum strain energy and static equilibrium, and give satisfactory resultB, the compromise nay be tolerated.

$$
\begin{aligned}
& 8=3 \\
& 4=-1 \frac{1}{2} \quad \frac{2 \pi S}{(5+-50)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[1.2 \frac{9}{505}-\pi 2=\right.}
\end{aligned}
$$

sbleporid eta of y

 (20)

