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I. Introduction

The Graphics and Video Laboratory of the Department of Computer Science at the

Naval Postgraduate School permits the researcher to create three-dimensional visual

simulations from digital terrain data [Ref. 1]. Specialized graphics hardware allows the

display of such simulations in near-real time. The goal of a good part of the work in the

lab is the creation of a movie-like view of movement over and on terrain, with

increasingly complex movement animation models. Such projects have strained the

equipment's capabilities. One method of increasing available computing power is to

harness multiple heterogeneous machines together in some distributed computing

organization. It requires communication between the various machines, as well as

carefully matching each machine's capabilities to its assigned tasks.

A. PROBLEM

Rapid turnover of inexperienced students at the Naval Postgraduate School makes

the creation of complex simulations difficult to manage. The learning curve becomes

steeper as the lab's capabilities increase. One of the areas of difficulty has been inter-

computer communications. So much time has been spent on designing, coding, and

debugging communication software, little has been left for the original research. Weset

out to provide an easy-to-use, yet powerful, set of tools to aid in the development of

multi-computer projects.

1. Approach

A communication protocol can be optimized for large data transfers, or small

data transfers, or both. Efforts to optimize for both are both complex and difficult

[Ref s. 2,3]. File transfer protocols such as FTP in the Defense Advanced Research

Project Agency (DARPA) Internet domain and uucp in the UNIX domain can be used for



large data transfers. Their overhead 1
is high. This overhead cannot be tolerated in a

real-time problem 2
. Our visual simulation efforts rely on small data transfers to

communicate among machines. These small messages are typically commands and

changing status indicators. Transferring the entire "world view" is only a reasonable task

during initialization or reset. Hence, we designed our protocols for small messages.

2. Design Criteria

The design criteria for developed protocols were simplicity, ease of use,

portability, and efficiency. Rapid turnover of inexperienced students at the Naval

Postgraduate School makes simplicity of paramount importance. Inevitably, changes

will be required and only a simple protocol is easily modified to take advantage of new

capabilities. Much the same argument, and generally good software design practice,

make ease of use only slightly less important. Almost all operating system-level aspects

are hidden from the application. The number of other machines to be connected to, a use

of dynamic memory allocation, and the names of the other machines are the only

concerns for the application setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision.

Portability dictated our use of TCP/IP, an integral part of the Defense Data

Network (DDN). Efficient use of processor power was considered more important than

efficient use of the network resources. The network is shared by the entire Computer

Science Department, but is not heavily loaded.

1 The cost of creating a file and then spawning a process to send it is high. On the receiving end, there is the cost

of creating the file and then reading it. Even a zero-cost file transfer protocol will require all this overhead.

2 Large data transfers, in real-time systems, will not be possible until 100 MByte/Sec networks are commonly
available.



B. BACKGROUND

1. Visual Simulation

a. Vision and Information Presentation

The eye has the largest bandwidth of any human sensory organ. Proper

use of this capability is a challenge to all scientists. Static graphs are used in most

disciplines to show the relationships between a limited number of variables. These two-

dimensional representations convey information more readily to human beings than

would a table of the underlying numbers. [Ref. 4: pp. 8-12]

Time, a common independent variable, is often one dimension on a graph.

The other dimension is a single dependent variable. To portray additional variables in

one presentation is a frequently occurring requirement. Various techniques such as

multiple colored lines, multiple icons, and perspective drawing are used. With each

technique, only a few additional variables are added before the graph becomes

incomprehensible.

Pictures, particularly those in color, have a dense information content.

Unless blind, we live in a world of pictures. Human beings can recognize many

differences between two similar pictures. One presentation portrays many different

variables. When a series of pictures are presented, the time variable is easily correlated

to the actual time of presentation. When a series of pictures is presented rapidly, the

experience approaches reality, partly explaining the success of moving pictures and

television.

Animation creates visual images with an explicit time dimension, in

addition to two or three spatial dimensions. Using actual time to portray the

experimental time variable allows at least one more dependent variable on the display.

Images can be as simple as a changing graph, or as complex as a feature-length cartoon.



However, animation creates its effect with the playback of prerecorded scenes [Ref. 5].

It is not suitable for providing immediate feedback to a researcher.

b. Definition

Visual simulation is the creation, by computer, of a realistic, easily-

modified, moving image from the mathematical model of a phenomenon. Realism

implies high-resolution, color graphics. Movement implies adequate floating point

calculation capacity to recalculate the model and its graphical representation between

display refresh cycles. Easy modification implies a well-designed computer application.

Visual simulation allows a researcher to experiment easily with his

subject. Ideally, we display a realistic approximation of part of the world. The

experimenter then manipulates some part of this visual simulation and receives

immediate visual feedback. The rapidly refreshed display is one key to visual realism.

Such a display allows the direct manipulation of the visual simulation, making it easy

and intuitive to use [Ref. 6]. Ease of use allows the researcher to concentrate on the

research question, not the display methodology or the computer interface.

c. Examples

Recent visual simulation projects of the Graphics and Video Laboratory

include speed control of autonomous vehicles [Ref. 7], control of autonomous walking

machines [Ref. 8], rule-based control of autonomous underwater vehicles [Ref. 9],

interactive moving platforms [Ref. 10] and combat vehicle control [Ref. 11]. Each of

these projects exceeded the capacity of a single workstation. The speed control and

interactive moving platform projects, written entirely in C, used two Silicon Graphics,

Inc. IRIS workstations, allowing multiple simultaneous views. The other projects all

required a mle-based artificial intelligence component, best programmed in Lisp for ease

of modification. Running the Lisp subsystem on the IRIS workstation gave an

unacceptably low refresh rate and correspondingly poor realism [Ref. 12]. Placing the



Lisp subsystem on another machine improved the refresh rate of the IRIS workstation

used for the graphics display.

2. Computer System Architecture

Computer systems can have a distributed or a non-distributed architecture.

Distributed architectures have only one characteristic in common, more than one

processor used to accomplish the task. Beyond this, many different approaches have

been tried [Ref. 13]. Identical processors give a homogeneous architecture. Different

processors give a heterogeneous architecture. Either distributed architecture may

incorporate shared memory or it may not. The separate processors can be closely or

loosely coupled. Communication between processors can be via shared memory,

common bus, or some form of communications network. Communication via some

combination of the above, such as a file server on a local area network, is also

common [Ref. 3]. In the Computer Science Department at the Naval Postgraduate

School, a heterogeneous mix of stand-alone workstations, file server supported

workstation clusters, and minicomputers communicates via Ethernet.

Programming distributed architectures has inspired creativity. The

fundamental problems with distributed programming are the communications between

processes and the temporal interaction of the processes. Communicating sequential

processes [Ref. 14], distributed processes [Ref. 15], and remote procedure calls

[Refs. 2, 16] have all been proposed as primitives to hide message passing from the

programmer. Remote procedure calls [Refs. 2, 3] and communicating sequential

processes [Ref. 17] have been implemented. However, even today, none of these is

generally available as a standard mechanism across varied architectures. We have

created simpler (but less general) communication routines for use among heterogeneous,

distributed, standalone computers.



Complex projects can require the resources of more than one computer.

Graphics portions are best handled by the specialized hardware of a graphics workstation,

such as a Silicon Graphics, Inc. IRIS. Artificial intelligence portions are best handled by

a Lisp machine, such as a Symbolics or a Texas Instruments Explorer**. Database

requests can be made to a machine with appropriate database software. A general

purpose computer, such as the Digital Equipment Corporation VAX , can be used for

additional processing power, file storage, or other administrative support. Providing easy

access across such a mix of heterogeneous computers is a large task [Ref. 3]. The simple

mechanism described in this work gives communication access between cooperating

processes running on diverse hardware. It leaves temporal design to the application

developer, while providing the tools for synchronous and asynchronous interaction.

3. Communication

Communications between computers cooperating on a task can be one-to-one,

many-to-one, or one-to-many. It can be synchronous or asynchronous. Any, or all, of

these can be required for one visual simulation.

One-to-one, or direct connect, communications puts the lowest load on the

network when there are few messages to be sent. A single virtual channel between the

two processes is required. Each communication between any two processes comprises

one message. All messages are known to be intended for the receiving process. These

messages can be sent synchronously or asynchronously. Direct connect communication

requires one action by the sender and one by the receiver. With more processors,

Symbolics is a trademark of Symbolics, Incorporated.

* Explorer is a trademark of Texas Instruments Incorporated.

** VAXis a registered trademark of Digital Equipment Corporation



potential virtual channels grow in number geometrically. For a fully connected network,

the virtual channels required can exceed capacity. The potential messages required also

grow geometrically in number.

One-to-many, or broadcast, communications puts the lowest load on the

sending process. A message is sent to all other processes that are connected to it. It

requires one action by the sender, and two actions by each receiver (the reception and a

decision on whether the message is intended for that receiver). It also places one to n

messages on the network (depending on how the network and the broadcast protocols are

designed). It is primarily used in an asynchronous mode, although synchronous protocols

could be designed.

Many-to-one communications puts the highest load on the receiving process. It

requires two actions by the receiver on every message that is sent by any connected

process. It is also a primarily asynchronous method. The receiver portion of a process

sees many-to-one whenever broadcast protocols are the only ones used in a visual

simulation.

C. Organization

The previous sections of this chapter provide background on visual simulation,

distributed architectures, and communication paradigms. Chapter II describes the

hardware and software environment in the Computer Science Department at the Naval

Postgraduate School. The protocols developed are discussed in Chapter EH. Chapter IV

describes the implementation of the protocols. Chapter V covers the use of these

protocols. The performance of the protocols is detailed in Chapter VI. Chapter VII

concludes with a discussion of limitations, future extensions and research topics, and

summarizes the research conducted. Listings of the program source code for each of the

hardware systems are included as Appendices.



n. existing System

A. INTRODUCTION

The distributed architecture available in the Naval Postgraduate School Computer

Science Department Graphics and Video Laboratory is Ethernet-connected workstations

and minicomputers. The workstations include IRIS 2400, 3120, and 4D graphics,

Symbolics 36xx and TI Explorer Lisp, ISI AI, and Sun-3s . The minicomputers include

VAX 11/785 and an ISIV minicomputer complex providing database services. All

computers, except the Symbolics and TI, use some version of UNIX as the primary

operating system.

B. HARDWARE

1. Network

Ethernet connects all the computers in our lab. There is a backbone network

and subnetworks for certain groups of computers. Currently there are two subnetworks,

one for the ISIV minicomputers and one for the ISI AI workstations. Subnetworks are

planned for the IRIS workstations, the Sun Workstations *
, and the Symbolics and TI

workstations. Figure 2.1 illustrates the network configuration.

* Symbolics 3600, Symbolics 3640, Symbolics 3650, and Symbolics 3675 are trademarks of Symbolics, Inc.

** Sun-3 is a trademark of Sun Microsystems, Inc.

*** UNIX is a trademark of AT&TBell Laboratories

**** Sun Workstation is a registered trademark of Sun Microsystems, Inc.

8



Sun File Server/Diskless Workstations

suns2

C

suns20 suns21

ail ai7 ai8

isivl isiv7 isiv8

CS Backbone Ethernet

CS Subnetwork

Figure 2. 1 Network Configuration



All computers support TCP/IP protocols. The Symbolics Lisp machines also

use the CHAOSprotocol to provide file server services from syml to the other Symbolics

machines. This logical local area network (LAN) uses the Ethernet backbone for its

messages. The Sun file servers also support their diskless nodes over the backbone

Ethernet.

2. Workstations

a. Silicon Graphics, Inc. IRIS

Table 2.1 shows the IRIS workstation configurations. All are connected

directly to the backbone Ethernet. The proprietary Geometry Engines in each of these

workstations allows three dimensional color graphics displays to be generated and

updated in real-time. The primary use of these machines is for color graphics.

b. ISI AI

Table 2.2 shows the ISI AI workstation configurations. Only ai8 is

connected directly to the backbone Ethernet. The other workstations are connected to it

in a subnetwork. These workstations are used primarily for artificial intelligence

projects. The ai8 machine provides, as well as a gateway to the backbone Ethernet, file

server support for the other workstations. Their high resolution black on white monitors,

although bitmapped, have rudimentary graphics capabilities.

Table 2.1 IRIS WORKSTATIONCONFIGURATIONS

Nickname
Model

No.

Memory

(MBytes)

Disk

Capacity

Bit

Planes

Floating

Point

Accelerator

Screen

Resolution

irisl

iris2

iris3

iris4

4D/70G
2400 Turbo

3120
4D/70G

8

6
4
8

380MB
144MB
144MB
380MB

56
32
32
56

N/A
Y
N

N/A

1280x1024
1024x768
1024x768
1280x1024

10



Table 2.2 ISI AI WORKSTATIONCONFIGURATIONS

Nickname
Model Memory Disk Bit Screen

No. (MBytes) Capacity Planes Resolution

ail V8WS 4 101MB 2 1280x1024
ai2 V8WS 4 101MB 2 1280x1024
ai3 V8WS 4 101MB 2 1280x1024
ai4 V8WS 4 101MB 2 1280x1024
ai5 V8WS 4 101MB 2 1280x1024
ai6 V8WS 4 101MB 2 1280x1024
ai7 V8WS 4 101MB 2 1280x1024
ai8 V16WS 4 403MB 2 1280x1024

c. Sun-3/50

Table 2.3 shows the Sun Workstation configurations. All are connected

directly to the backbone Ethernet. The black-on-white monitors of the Sun diskless

workstations are primarily used for administrative tasks at this time.

d. Symbolics 36xx

Table 2.4 shows the Symbolics workstation configurations. All are

connected directly to the backbone Ethernet. The Symbolics workstations are used for a

Table 2.3 SUNWORKSTATIONCONFIGURATIONS

Nickname
Model Memory Disk Bit Screen

No. (MBytes) Capacity Planes Resolution

suns J 3/1 80S 12 490MB 2 1280x1024
sunlO 3/50 4 N/A 2 1280x1024
sun 11 3/50 4 N/A 2 1280x1024
sun 12 3/110 4 N/A 2 1280x1024
sunl3 3/110 4 N/A 2 1280x1024
sunl4 3/60 4 N/A 2 1280x1024
sun 15 3/60 4 N/A 2 1280x1024
sun 16 3/60LC 4 N/A 10 1280x1024
sun 17 3/50 4 N/A 2 1280x1024
sun 18 3/50 4 N/A 2 1280x1024
sunl9 3/50 4 N/A 2 1280x1024
suns2 3/180S 12 490MB 2 1280x1024
sun20 3/60LC 4 N/A 10 1280x1024
sun21 3/60LC 4 N/A 10 1280x1024
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Table 2.4 SYMBOLICSWORKSTATIONCONFIGURATIONS

Nickname
Model

No.

Memory
(MBytes)

Disk
Capacity

Bit

Planes
Color

Screen

Resolution

syml
sym2
sym3
sym4

3675
3640
3640
3650

5

1

1

5

1GB
180MB
180MB
512MB

24
1

8

1

Y
N
Y
N

1280x1024
1280x1024
1024x1024
1280x1024

variety of research projects involving artificial intelligence. The syml machine provides

file server support for the other Symbolics machines using the Chaos protocol and its one

GigaByte (unformatted) storage capacity. The color-capable systems are used to display

static information with color providing an easier human interface,

e. Texas Instruments Explorer

Table 2.5 shows the Explorer workstation configurations. All are

connected directly to the backbone Ethernet. The TI Explorers are also used for artificial

intelligence projects. They have the least graphical capabilities of any of the

workstations.

3. Digital Equipment Corporation VAX 1 1/785

Table 2.6 shows the two DEC VAX 11/785 computer configurations. Both are

connected directly to the backbone Ethernet. Only the unixl machine was included in

this project. The vmsl machine may not be available in the future, so the effort to

Table 2.5 EXPLORERWORKSTATIONCONFIGURATIONS

Nickname
Model

No.
Memory
(MBytes)

Disk
Capacity

Bit

Planes

Screen
Resolution

expl

exp2
exp3
exp4

I

I

I

I

4
8

8

2

280MB
420MB
420MB
140MB

1

1

1

1

1024x808
1024x808
1024x808
1024x808

* DECis a registered trademark of Digital Equipment Corporation
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Table 2.6 VAXCONFIGURATIONS

Nickname
Model

No.

Memory
(MBytes)

Disk

Capacity

Operating

System

unixl

vmsl
11/785

11/785

24
8

1395MB
1442MB

UNIX
VMS

develop appropriate code was deemed unnecessary. The unixl machine is nps-cs.arpa

on MILNET and is the sole external access point to other machines connected locally via

Ethernet. It supports the various dial-up lines, as well as other administrative functions.

4. ISIV minicomputers

The computers in Table 2.7 make up the ISIV minicomputer complex. Only

isiv8 is connected to the backbone Ethernet. The other machines are connected to isiv8

in an Ethernet subnetwork. The ISIV minicomputers provide a high performance, multi-

backend distributed database. Any of the high-resolution black on white monitors can be

used with any of the hosts on the subnetwork. The character displays can also be used on

any of the subnetwork hosts. The graphics capabilities of these machines are limited.

Table 2.7 ISIV DATABASEMACHINECONFIGURATION

Nickname
Model

No.

Memory
(MBytes)

Disk

Capacity

Bit

Planes

Screen

Resolution

:

:

i

:

i

i

i

;

isivl

isiv2

isiv3

isiv4

isiv5

isiv6

isiv7

isiv8

isiv9

V24S
V24WS
V24WS
V24WS
V24S
V24S

V24WS
V24WS
V24S

4
4
4
4
4
4
4
4
4

602MB
500MB
602MB
500MB
602MB
602MB
602MB
459MB
602MB

N/A
2

2

2

N/A
N/A

2

2
N/A

80x24char
1280x1024
1280x1024
1280x1024
80x24char
80x24char

1280x1024
1280x1024
80x24char
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C. Software

1. UNIX Machines

Two versions of UNIX are commonly used. The machines purporting to use

System V*, also incorporate characteristics of 4.2BSD and 4.3BSD. The relevant

incorporation is the Berkeley socket mechanism.

a. 4.3BSD

A "pure" 4.3BSD system (4.3 BSDUNIX #11) exists only on unixl. The

ISIV minicomputers use 4.2 BSD UNKRelease 3.07, with a multi-backend database

system installed [Refs. 18-20]. The ISI AI workstations use IS68K 4.3 BSDUNK: 4.0D

#2.

b. System V

The IRIS 4D systems use UNKSystem V-based version 4D1-2.2. The

IRIS 2400 and 3120 systems use UNKSystem V-based version GL2-W3.6. Both have

extensive 4.3BSD extensions. The Sun-3 uses an almost System V version of 4.2BSD

UNK. The currently installed release is 3.4.

2. Lisp Machines

a. Genera

The Symbolics Lisp Machines first used Genera 6.0 software. All

machines are now on Genera 7.1.

b. Explorer

The TI Explorer lisp machine first used Explorer version 1.0.2 software.

All machines are now on version 3.4 except expl, which is still on version 3.2.

UNIX System V is a trademark of AT&TBell Laboratories
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D. SUMMARY

The configuration described above is constantly changing. Additional machines are

acquired. Older machines receive hardware upgrades. The network is reconfigured.

Software releases are updated (especially 4.2BSD UNIX to 4.3BSD UNIX). The

fundamental needs for distributed computation in this heterogeneous environment

remain.
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in. PROTOCOLS

A. INTRODUCTION

Our visual simulation efforts rely on small data transfers to communicate among

machines. These small messages are typically commands and changing status indicators.

Hence, we optimized our protocols for small messages. Overhead to optimally encode

and decode packets was deemed inappropriate. The design criteria for developed

protocols were simplicity, ease of use, portability, and efficiency.

B. DIRECT CONNECTION

The client/server paradigm is used for direct connection. The client requests

services from the server, so establishing communications is asymmetrical. Once

communications are established, however, the protocol used is completely symmetrical.

[Ref. 21: p. 17]

1. High-Level Protocol

The variety of data types supported is limited (see Table 3.1). Each message

contains exactly one instance of one type of data. All integer or float data is converted to

an ASCII character string before it is sent. It is converted back to the proper type after

Table 3 . 1 DATATYPESSUPPORTED

Type
Length
(Bytes)

Elements Code Available

character 1
single B Y
array C Y

integer 4
single I Y
array J N

float 4
single R Y
array S N
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reception. While the conversion is unnecessary when communicating between similar

architectures, it greatly simplifies the task of communicating between fundamentally

different architectures. Knowledge of the other machine's architecture is not required.

The inherent portability of this solution outweighs the processing cost.

A message is created with three fields. The type field is a one-character field.

It contains the appropriate code from Table 3.1. The length field is a four-character field.

It contains an ASCII string from 0001 to 9999. This string gives the length of the data

field. The data field is a variable length field containing the ASCII representation of the

data element. Figure 3.1 illustrates these fields.

While C programmers are continuously concerned with data types, Lisp

programmers are not. The Lisp routines support arrays of characters, single integers, and

single floating point numbers. Each of these is an object. Objects, not types (as implied

in Table 3.1), are received and sent by lisp applications. The underlying protocol is the

same, the application interface is different
3

.

Position

1 2
|

3 | 4 5 6 7
|

...
1

n

T
y
p

Length Data

e

Figure 3.1 Message Format

3 Chapter 5 discusses applications' use.

17



2. Supporting Protocols

Full-duplex stream sockets are used to provide sequenced, reliable connection

between machines. The sockets are created in the DARPA Internet
4 domain. The

Internet pseudo-protocol is used [Ref. 22]. No out-of-band capability was included. We

could not envision a use for it, since our protocol is inherently asynchronous. If a strictly

synchronous protocol was used, out-of-band transmission might be necessary to interrupt

for an urgent message. In an asynchronous protocol, however, encoding the next

message gives the same effect. Processing overhead for encoding is no greater than for

continuous monitoring for an out-of-band message. With only a small volume of data

transfers expected, no urgent message waits very long.

Two ports, each with its own stream socket, are used for each channel between

machines. Although full-duplex, the stream sockets are used in a simplex mode. The

separate sockets are used because two processes cannot be bound to the same socket at

the same time. Two separate UNIX processes then monitor the independent send and

receive sockets. Blocking sockets are used, avoiding processing overhead for busy-

waiting. While non-blocking sockets are available in 4.3BSD [Ref. 21: p. 25], they were

not explicitly available in 4.2BSD [Ref. 22]. Operating systems might include 4.2BSD

sockets rather than 4.3BSD versions and so the blocking socket mechanism was deemed

more portable. Both TCP/IP and the C routines provide buffering.

On the TI Explorer, sockets were also blocking 5
. Direct access was made to

the TCP methods provided. Lisp streams are used for the Symbolics lisp routines. The

4 This is the underlying mechanism of the Defense Data Network (DDN) and was chosen for its wide availability

and applicability to Department of Defense problems.

5 Version 1 .0 of the Explorer TCP/DP software uses blocking sockets. Version 2.0 uses non-blocking sockets.

There has been no update of this system's TI Explorer lisp routines to version 2.0.
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lisp stream mechanism isolates the code from the issues revolving around blocking

versus non-blocking sockets.

C. BROADCAST

A broadcast message is sent to all machines on a local Ethernet. Those machines

that are waiting for some broadcast message will probably 6
receive it. If a machine on a

subnetwork is to get a broadcast message, an application must run on the gateway

machine that will rebroadcast on the subnetwork any messages received on the backbone

Ethernet. Machines not expecting a broadcast message must nevertheless process it and

reject it as inappropriate. The extra load on all machines connected to the Ethernet

restricts broadcasting to infrequent occurences until most of the machines used in

simulations
7

are on a private subnetwork.

1. High-Level Protocol

Weexpect users of the broadcast protocol to mix its use with the use of direct

connections. The same data types and messages are supported (see Table 3.1).

2. Supporting Protocols

Full-duplex datagram sockets are used to provide connectionless broadcast

capability. The sockets are created in the DARPAInternet domain. As with our use of

stream sockets for the direct connection protocol, we use these full-duplex datagram

sockets in a simplex mode. Weuse a sending socket for one-way sending of a broadcast

message to all other machines on a single network or subnetwork. Weuse a receiving

socket for one-way receiving from a specific broadcasting machine on the network or

6 Unlike the direct connect protocol, the broadcast protocol does NOTguarantee reception. Trying to provide

such a guarantee requires a feedback machanism so that the sender knows that the machines expected to receive the

broadcast did so. This is difficult without resorting to a direct connection or flooding the network with messages.

7 The IRIS machines and the Lisp machines are the ones principally used for visual simulation.
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subnetwork. Direct connection, with its use of guaranteed reliable stream sockets, is

used for any other communication, including return messages. [Ref. 21: pp. 32-34]

As in the direct connection protocol, independent UNIX processes are bound to

the sockets. Since broadcasting is a one-way activity, a sender or receiver only spawns

one 8 UNIX process.

D. Summary

By building our high-level protocols on top of DARPATCP/IP standards, we provide

the highest degree of portability possible today. By using full-duplex stream sockets and

datagram sockets in a simplex mode, we do not make full utilization of a socket's

capabilities. However, this concern is outweighed by the increased simplicity and

resultant maintainability of the code. The use of ASCII character strings for the messages

is simple and makes interconnection with diverse architectures straightforward.

8
If broadcasting were used exclusively for complete connectivity, each of n machines would spawn n processes.

If direct connection was used exclusively for complete connectivity, each of n machines would spawn 2n-2 processes.
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IV. Implementations

A. Introduction

The first connection was between the IRIS 2400-Turbo and TI Explorer. Then the

Symbolics Lisp machines were included. These routines have had extensive use

[Refs. 8,9, 11]. The IRIS functions were updated for the IRIS 4D, coincidentally

providing Mex support on the older IRIS machines. Broadcast capability was added for

UNIX-based machines. A port to 4.3BSD UNIX (application calls unchanged) was begun.

B. System V unix

All our System V UNIX-based systems include the socket mechanism first

introduced by 4.2BSD. Sockets are a key aspect of all implementations. Weexpect they

will become part of System V or its successors [Ref. 23]. The System V-unique

semaphore and shared memory interprocess communication (IPC) capabilities are also

used.

1. Silicon Graphics. Inc. IRIS 2400

a. Sockets

The socket was introduced in 4.2BSD as the preferred metaphor for IPC. It

was easy and efficient to implement and the select mechanism could be used to

implement remote procedure calls, if desired [Ref. 23]. System V had no comparable

mechanism until version 3 was released with streams. The BSD sockets were included

by many vendors, Silicon Graphics, Inc. included 9
. While the use of sockets could be

9 The System V version available on the IRIS machines, at the start of the project, was version 2 and so streams

were not considered.
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replaced with streams, device drivers would have to be written. The advantage of

streams is the ability to filter them between streamhead and the actual device driver.

These filters, however, reside in the kernel's address space and have the kernel's

permissions [Ref. 24]. In our environment, the potential performance increase is not as

important as the requirement for simplicity.

The system call for socket creation is socket. The system calls supporting

socket configuration are setsockopt, bind, connect, and accept 10
[Ref. 22]. To simplify

their use, these are all repackaged into four high level routines: connect server and

connect client for direct connection, start broadcast and broadcast receive for

broadcast. These routines are encapsulated in netV.c. netV.c can be separately linked

with any application that needs to make a server/client connection using stream sockets

or a broadcasting connection using datagram sockets. Table 4.1 describes the four

routines.

Using the socket number 11
, a process can transmit data through the socket.

In our system, sockets for inter-computer communication are created and used by the

send and receive processes exclusively. The file netV.c is not linked with the application

at all.

10 The accept system call is only relevant to stream sockets. The setsockopt, bind, and connect system calls are

used with both stream sockets and datagram sockets.

11
In the direct connect protocol, the server process reads from and writes to a remote socket number. The client

process reads from and writes to its local socket number. The reason for this is that a server could be connected to dif-

ferent clients (although not in our implementation) at different times. The client, meanwhile, is only going to connect

to the one server. In the Internet domain, all necessary routing information, for either server or client, is contained in a

sockaddrin structure and is accessed (transparently) via the socket number.
In the broadcast protocol, both the broadcaster and receiver! s) use their local socket number because they are

using connectionless datagram sockets. The routing information is also contained in a sockaddrjn structure.
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Table 4. 1 SOCKETSUPPORTFUNCTIONS

Function Description Use

connect_server

Creates socket. Binds that

socket to remote client ad-

dress and port. Waits to ac-

cept the remote client con-

nection. Returns the socket

number for the remote client.

int connect_server( remote_client_name, port_number )

char remote_client_name[];

int port_number,

remote_socket = connect_server( remote_client_name,

port_number

)

connect_client

Creates socket. Binds that

socket to remote server ad-

dress and port. Connects

with remote server. Returns

the local socket number.

int connect_client( remote_server_name, port_number

)

char remote_server_name(J;

int port_number,

local_socket = connect_client( remote_server_name,

port_number

)

start_broadcast

Creates socket. Sets it to

broadcast mode. Binds it to

local address and specified

local port. Returns the local

socket number.

int start_broadcast( port_number

)

int port_number,

local_socket = start_broadcast( port_number

)

broadcast_receive

Creates socket. Binds it to

local address and specified

port. Adds broadcaster ad-

dress and port. Returns the

local socket number.

int broadcast_receive( broadcaster_name, broadcaster_port

)

char broadcaster_name[];

int broadcaster_port;

local_socket = broadcast_receive( broadcaster_name,

broadcaster_port

)

b. Semaphores

The semaphore mechanism was chosen as the least expensive, in both

space and time, for communication between processes. Signals could have been used,

but implementation would have been more complex and less reliable. Signal-based

communication functions would also have been more difficult for the application

programmer to use [Ref. 25: p. 10]. There are two semaphore ids maintained for each

connection 12
. One is used to communicate with the send process; one is used to

communicate with the receive process. The two semaphores are both used to signal their

process when it is safe to proceed. A send process is permitted to proceed only after the

12 Two semaphore ids are required for direct connect protocol connections since both a send and a receive pro-

cess are spawned. Two semaphore ids are still created for broadcast protocol connections, even though only one pro-

cess is spawned.
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application has requested a write action
13 on the channel. A receive process is permitted

to proceed only after the application has read all data from the shared memory buffer.

Neither the send nor the receive process is executing more than absolutely necessary,

assuring maximum availability of the local processor to the application.

The system calls supporting semaphores are semget, semop, and semctl.

To simplify their use, they are repackaged into three high level routines: semtran, P, and

V [Ref. 25: pp. 188-190]. These routines (and a support routine semcall) are

encapsulated in semaphores. It can be separately linked with any application that needs

semaphores. Table 4.2 describes the three routines,

c. Shared Memory

A cost barrier to IPC in UNIX is the cost of copying data from one process

to the kernel and then from the kernel to another process. Using a shared memory

segment, as a buffer, minimizes this overhead. To further reduce overhead from system

calls, only a single segment is created. An application accesses the entire segment, while

a send or receive process accesses only its preassigned section. Figure 4.1 displays the

layout. The message area of each section is used for several purposes. It is formatted as

Table 4.2 SEMAPHORESUPPORTFUNCTIONS

Function Description Use

semtran
Creates a semaphore associ-

ated with a key. Returns a

semaphore id.

int semtran( key )

int key;

sid = semtran( key );

P Acquire semaphore
void P( sid

)

int sid;

V Release semaphore
void V( sid

)

int sid;

13 The data must also be valid in the shared memory buffer. All this is transparent to the application, which only

issues a write command.
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where n = LARGESTREADfrom shared.h

Figure 4.1 Shared Memory Segment Data Assignment

a long (4-byte) integer. Table 4.3 describes the meaning of three-state values placed in

this area.

Table 4.3 SHAREDMEMORYMESSAGES

Value
Meaning

to

send

Meaning
to

receive

Meaning
to

Application

positive
Data of length given is

in shared memory,
ready to be sent.

Application has not

finished reading data

from shared memory.

send: Data in shared memory
has not yet been sent to other

machine.

receive: Valid data of length

given is in shared memory,
ready to be read.

zero
Nothing ready to be

sent.

Application has read

data from shared

memory. Message

from other machine can

be read, up to LAR-
GESTREADbytes.

send: Previous message has

been sent. Ready to send

next message.

receive: No valid data in

shared memory.

negative Signal to terminate. Signal to terminate. N/A
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The system calls supporting shared memory are shmget, shmat, shmdt, and

shmctl [Ref. 25: pp. 192-198]. To simplify their use, they are repackaged into four high

level routines: sharedsegment, dynamicsharedsegment, detachsharedsegment, and

deletesliaredsegment. These routines (and a support routine attach _yvithin_datasegment)

are encapsulated in shareseg.c. It can be separately linked with any application that

needs shared memory. Table 4.4 describes the four routines.

The implementation of shared memory on the IRIS 2400 and IRIS 3120

was a surprise. A basic UNIX memory allocation scheme is shown in Figure 4.2. Each

process has its own text, data, and stack sections. Neither the relative locations of these

sections nor the direction of growth for stack and data sections is specified for UNIX.

The shared memory segments are logically part of the data section [Ref. 26: p. 151].

Table 4.4 SHAREDMEMORYSUPPORTFUNCTIONS

Function Description Use

sharedsegment

Creates (if not already in ex-

istence) a shared memory
segment associated with a

key. Attaches application to

that shared memory segment.

Returns a shared memory
segment address and id.

Does not permit subsequent

dynamic memory allocation.

char *sharedsegment( key, nbytes, shmid )

long key;

long nbytes;

int *shmid;

segment = sharedsegment( key, nbytes, shmid

)

dynamicsharedsegment

Creates (if not already in ex-

istence) a shared memory
segment associated with a

key. Attaches application to

that shared memory segment.

Returns a shared memory
segment address and id. Per-

mits subsequent dynamic

memory allocation.

char *dynamicsharedsegment( nummachines,

key, nbytes, shmid, freespace )

int nummachines;

long key;

long nbytes;

int *shmid;

int freespace;

segment = dynamicsharedsegment( num-

machines, key, nbytes, shmid, freespace )

detachsharedsegment
Detach shared memory seg-

ment from application

void detachsharedsegment segment

)

char *segment;

deletesharedsegment
Delete shared memory seg-

ment

void deletesharedsegment( segment, shmid )

char *segment;

int shmid;
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Figure 4.2 UNIX Memory Allocation

Actual implementation is left to the team porting UNIX to the machine. The Silicon

Graphics, Inc. implementation attaches a shared memory segment to the first available

valid
14 address within the data section. However, the beginning of shared memory

delimits the size of all other sections [Ref. 26: pp. 367-370]. Figure 4.3 illustrates this

14 Shared memory segments must begin on a page boundary. This allows easy table-driven access by multiple

processes. On the IRIS 2400 and 3120 machines, the Motorola 68000 architecture is used. The pages are 8 KBytes.
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relationship. While no dynamic memory calls
15

are made, the default arrangement works

fine. But when dynamic memory allocation —linked lists and makeobj() calls are

examples —is needed, the technique fails.

To allow dynamic memory allocation, the shared memory segment must

be attached at an address beyond the greatest ever required for regular data. Dynamic

allocation can then occur without reaching the shared memory segment. Attaching at an

unknown address both within the data section and sufficiently beyond existing data to

permit dynamic data section growth, can be done at least two ways. First, the data

section can be expanded until it is as large as possible, then the shared memory segment

13 Dynamic memory allocation is made with system call brk or alternate sbrk. Library functions malloc, realloc,

and calloc use brk and so also do dynamic memory allocation.
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can be attached at a valid location just inside this maximum value. While minimizing

application programmer effort, this technique requires many system calls to grow the

data section. It also has the fatal flaw of limiting the stack section, if the stack section

and data section grow into the same unallocated memory. Second, the application can be

required to prespecify the maximum amount of dynamic memory allocation it might use.

The solution adopted is adding a freespace parameter to the

sharedsegment function; and renaming it the dynamicsharedsegment function. The

sharedsegment function was retained for backward compatibility. The freespace

parameter gives the caller the ability to specify the maximum additional memory

required for the application. A request for this additional space is made before the shared

memory segment is attached. After acquiring (and freeing) the additional space, the next

available address is determined and the shared memory segment is attached to the next

valid address. We have now established the shared memory segment beyond the

specified growth of the application's data.

When multiple machines are connected together, there must be a separate

shared memory buffer for each channel. There is no way to connect a second shared

memory segment. The solution adopted is adding a nummachines parameter to the

dynamicsharedsegment function. The nummachines parameter requires the application

developer to specify, in advance, the maximum number of channels that can be created in

the application. The first dynamicsharedsegment call establishes a shared memory

segment big enough for nummachines maximum requested channels. Subsequent

dynamicsharedsegment calls return the same shared memory id as the first; but return a

different address within the segment. Since the application does not directly access these

functions, there were no problems caused by this parameter list change.

29



The shared memory functions are isolated from the application by the

machinepath, dynamicmachinepath, dynamicmachinepaths, and deletemachinepath

functions
16

. For the direct connect protocol, each machinepath, dynamicmachinepath, or

dynamicmachinepaths call spawns both a send and a receive process. For the broadcast

protocol, these calls spawn only a send process (for the broadcaster) or a receive process

(for the receiver). In all cases, the spawned processes issue a sharedsegment call to

attach to the shared segment earlier created by the spawning function. A command line

parameter is passed providing the offset into the shared memory segment that the

spawned process is to use. Figure 4.4 illustrates a system with three machines and two

channels.

d. Buffering

(1) Direct Connect . When a receive process is quiescent, waiting for

the application to read from the shared memory buffer, anything sent to it is buffered by

TCP/IP. The buffering provides the reliable delivery promised by a stream socket. The

next read command will deliver up to LARGESTREADbytes into the receive data area of

the shared memory buffer. Since the messages are variable length, there cannot be a

guarantee that only one message was read 17
. Multiple messages might be in the shared

memory buffer. A partial message might be in the last bytes.

The shared memory buffer management is handled by the various

read functions
18 provided. Each read, requested by the application, is satisfied from the

16 See Chapter 5, Sections A.l.b(l) and A.l.b(3) for more information on these functions.

17 The idea to pad all messages to some arbitrary size was considered and rejected. Whatever size was chosen

would always be too small for some character array. If the maximum Ethernet packet size was chosen, an unnecessary

network dependence would be introduced. The cost of application buffer management is considered acceptable, espe-

cially since it is incurred only on reads.

18 See Chapter 5, Section A. l.b(2) for more information on these functions
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shared memory buffer. Remaining valid data is shifted into the low order positions of the

data area. The count of valid bytes, held in the message area, is decremented. The

shared memory buffer now appears as it would have, if it had only received the

remaining data and not the first message at all. As long as only entire messages are

received (one or more at a time), this works well. When the TCP/IP buffer has more data

than the data area can take at one time, however, the receive process deposits

LARGESTREADbytes in the shared memory data area. It is highly unlikely that this will

be on a message boundary.

A socket read overwrites all data in the data area. A partial data

reception must be stored and concatenated with bytes from the next socket read to get a

complete message. The protocol area was introduced to retain the protocol

information 19 required to decipher the variable length messages. The count of already

received bytes of a message is held here between socket reads. A message's protocol

information is stored here, too. Protocol information is built up until complete (covering

the possibility that the break is in the protocol information itself). It is then maintained

until the entire message is received and read by the application. The buffering works

with data areas as small as four bytes .

(2) Broadcast . The datagram socket used by the broadcast protocol

preserves message boundaries. Each recvfrom call to a socket returns only one message.

This message must be no longer than LARGESTREADbytes. The shared memory buffer

management routines are not needed.

19 See Chapter 3, Section B. 1 for a description of the protocol

20 LARGESTREADmust be specified in multiples of four bytes. The smallest possible data area is therefore

four bytes.
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TCP/IP keeps unread messages on a queue. This queue may not be in

sending sequence. If the queue buffer becomes full, subsequent messages are lost

[Ref. 21: p. 8-8]. The sending buffer can easily be rilled if many messages are broadcast

in a short period of time. Each broadcast message must be processed by every host on

the Ethernet. Only then can the next be sent. No access for manipulation of the TCP/IP

sending buffer is provided because its size is normally specified during system generation

and is not easily manipulated by an application program.

2. Silicon Graphics. Inc. IRIS 3120

There are no required changes to the IRIS 2400-Turbo code. The Makefile

must be changed to remove the -Zf compile flag, since there is no floating point

accelerator board in this machine.

3. Silicon Graphics, Inc. IRIS 4D

The IRIS 4D required programming changes only to the shared memory

module, shareseg.c. The path name for user directories is also different. Changes were

necessary to the Makefile because the lusrlinclude directory structure changed.

The IRIS 4D is based on the MIPS RISC architecture. The UNIX

implementation was done differently than that for the Motorola 68020. Shared memory

segments are not attached to addresses within the data section, as illustrated in Figure

4.5. They are attached at a much higher address, yet accessing them does not result in a

segmentation violation. This is a more robust technique that obviates any manipulation

of attachment addresses. Multiple shared memory segments are easily attached, using

default system calls. The sharedsegment call suffices, even when dynamic memory

allocation is needed. To maintain backward compatibility for application code,

dynamicsharedsegment calls sharedsegment, ignoring the freespace parameter, when

compiled on an IRIS 4D, and calls attach _within_datasegment when compiled on an

older IRIS machine.
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C. 4.3BSD UNIX

The netV.c file functions properly on a 4.3BSD machine that is connected to only

one network. The start Jbroadcast function does not properly handle multiple networks.

The other functions work correctly, even when the machine is connected to multiple

networks.

All other functions depend upon semaphores and shared memory for

communication between the spawned processes and the main application. Stream

sockets 21 could be used to provide the IPC between these processes under 4.3BSD. The

21 Unidirectional stream sockets are equivalent to pipes.
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three channels 22 used will have to be multiplexed into one, but the implementation is

otherwise straightforward.

D. LISP MACHINES

The communication code is a flavor to be mixed with the application [Ref. 11]. The

Explorer software is syntactically equivalent to Genera 6 on the Symbolics. With a

simple change in the sequence of method and flavor names, the Genera 7 code runs on

the TI Explorer. The older flavor, originally developed for the Explorer, is also presented

to illustrate working directly with TCP/IP instead of using a stream.

1. Texas Instruments Explorer I

This older flavor works with Release 1.0 of the Explorer TCP/IP software. It

will not work with Release 2.0 as the implementation was changed from blocking to

non-blocking [Ref. 27].

Messages to the flavors in the ip package are made together with messages to

the tcp flavors. Network-independent addressing is not used. Table 4.5 describes the

addressing schemes possible [Ref. 28: pp. 4-2 —4-3]. Class C addressing is used by the

Computer Science Department. Figure 4.6 shows the simple encapsulation of the

addresses for irisl, iris2, and iris3. Extension to include other machines is easy.

Table 4.5 INTERNETADDRESSINGCLASSES

Class
No.

Networks
No.

Hosts

A 128 16,777,216

B 16,384 65,536

C 2,097,152 256

22 These are the semaphore, the message areas of the shared memory buffer, and the data areas of the shared

memory buffer. The first is unidirectional from application to spawned process. The second is bidirectional and three

state (see Table 4.3).
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(defvar * i ri s 1- address* 3221866502)
(defvar * i r

i

s2-address* 3221866504)
(defvar * i r

i

s3-addres s* 3221866505)

(defvar *des t - address* nil) ; the tcp-ip or internet address
; look in network configuration

(def un iris ( x

)

(cond ((equal x 1) (setq *des

t

-address* *i ri si -address* )

)

((equal x 3) (setq *des t -addres s* *i r

i

s3-address* )

)

(t (setq *dest -address* *i r

i

s2-addres s*) ) ) )

Figure 4.6 Encapsulation of IRIS Addresses

A port is acquired by using the :get-port method of the tcp-handler flavor.

Here, shown in Figure 4.7, we use the global instance, *tcp-handler* 23
to create specific

instances of the Transmission Control Block (TCB) for each of the two ports. Only the

client side of the server/client paradigm has been implemented. The client is created by

using the :active mode argument to the :open method of the tcp-port flavor. Both the

sending and receiving ports are full duplex, but are only used in a simplex mode. Figure

4.8 shows the creation of the sending port [Ref. 28: pp. 4-12 —4-18].

The three fields in a message are sent and received separately. Each field is

then treated as a separate object. Figure 4.9 illustrates sending a message. For all fields,

the urgent argument is specified as nil. The push argument is specified as nil until the

(defvar * tcp-handler 1* (send ip ::* tcp-handler* :get-port))
(defvar * tcp-handler2* (send ip :

:

*tcp-handler* :get-port))

Figure 4.7 Lisp Port Acquisition

The double : allows the tcp-handler to be found, since it was not created "exportable" in the Ip package.
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(send talking-port :open
: ac t ivc

talking-port -number
destination

tcp will begin the procedure to establish
connection (default vs passive)
port number of destination host
machine name or address if blank and
in tpassive mode local machine waits for
connec t ion
set max seconds before read request times out30 )

Figure 4.8 Opening a Lisp Client Connection

(progn
(send talking-port :send

typebuf f er
1

nil
nil )

(if (= (length lengthbuf f er ) 4)
(send talking-port : send

lengthbuf fer
4
nil
nil )

(progn
(loopfor * 1 oopvar i nb 1 e* (length 1 eng t hbuf f er ) 4

(send talking-port :send "0" 1 nil nil) )

(send talking-port :send lengthbuffer (length lengthbuf fer ) nil nil) ) )

(send talking-port : send
buffer
buffer -

1

ength
t

nil ) )

Figure 4.9 Sending a Message

data buffer is sent, when it is specified as t. The entire message is thus sent as a unit to

the other machine.

2. Symbolics 36xx

Genera 7 syntactic conventions are followed. The principle difference with

Genera 6 conventions is in the definethod function. In Genera 6 (and the TI Explorer),

the method name follows the flavor name. In Genera 7, the method name precedes the
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flavor name. Figure 4.10 shows the difference. It also shows the other main difference

with the earlier code, that streams are used. The use of streams improves portability and

eliminates the need for the :reuse-iris method 24
. It may be slightly slower, but any

difference has been unnoticeable.

Another change was to remove the dependence on hard-coded addresses. The

method :init-destination-host was added to the conversation-wifh-iris flavor (see

Figure 4.11). By using the net: parse-host function, the application need only know the

name of another machine. As network tables are updated, no change to the application

code is necessary unless a different machine is desired.

(defmethod (conversal ion-wilh- iris :stop-iris)
()
(progn (send talking-port :close)

(send listening-port :close) ) )

Genera 6

(defmethod (:stop-iris conver sat ion-wi th- i r i s )

()
(progn (send t a Ik ing- s t ream :close)

(send 1 i s

t

ening- s t ream :close) ) )

Genera 7

Figure 4.10 Genera 6 and 7 defmethod

(defmethod ( : ini t -des t ina

t

ion-hos t conver sat ion-wi th- i ri s

)

(name-of -hos t

)

(setf des t ina

t

ion-hos t -obj ec t (ne

t

:par se-hos t name-of -hos t ) ) )

Figure 4.11 Generic Host Addressing

24 The : reuse-iris method is retained for backward compatibility.
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E. Summary

For UNIX-based machines, generic routines are developed for semaphore use,

shared memory use, and socket use. The socket routines use both stream sockets and

datagram sockets in a simplex mode to provide directly connected client/servers and

unconnected broadcasting communications. IRIS 2400, 3120, and 4D systems are fully

supported. 4.3BSD systems are supported with mid-level socket calls only.

For Lisp machines, stream-based functions are available for direct connection as

clients only. These functions are available directly if using Genera 7 syntax and with

minor modification if using Genera 6 syntax.
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V. USEBY APPLICATIONS

A. INTRODUCTION

The application using either direct connect or broadcast protocol is not concerned

with system-level implementation details. Almost all aspects of shared memory,

semaphore, and socket use are hidden. The number of other machines to be connected

to, the use of dynamic memory allocation, and the names of the other machines are all

that concern the application in setting up a connection. The synchronization, or lack

thereof, in communication between machines is a design decision, not a protocol

decision.

B. DIRECT CONNECT

A UNIX-based machine can be either a server, waiting for a client to call and

establish a connection, or the client. A Lisp machine is always a client.

1. UNIX-Based Machines

The functions provided for UNIX-based machines are all written in C. They

must be linked into the application program using them. Figure 5.1 is an example make

file for creation of an application program on an IRIS system.

There are two independent processes, send and receive, that are spawned to

create the sockets and monitor them. They are made separately with the makefile

contained in their subdirectory.

See Appendix A
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CFLAGS = -Zg -lm -g -p

SHARE = /work/barrow/share3/

MAIN = cars imu.c

OBJS = First group of o files

OBJ S 1 = Second group of .o files

OBJS2 = Third group of o files

OBJS3 = $(SHARE)io_single.o \

$ ( SHARE)mp a t h . o \

$( SHARE) semaphore. o \
$(SHARE)shareseg.o \

$( SHARE) support .o

OBJS4 = Fifth group of o files

carsimu: $(MAIN) $(OBJS) $(OBJSl) $(OBJS2) $(OBJS3) $(OBJS4)
cc -o carsimu $(MAIN) $(OBJS) $(OBJSl) $(0BJS2) $(OBJS3) $(OBJS4) $(CFLAGS) -Ibsd

$(MAIN): const. h vars.h

$(OBJS): const. h vars.h

$(OBJSl): const. h objects. h

$(OBJS2): const. h

$(SHARE)mpath.o: $(SHARE) shared, h

cc -c -o $<SHARE)mpath.o $( SHARE)mpath . c $(CFLAGS)

$( SHARE) support .o: $( SHARE)shared. h
cc -c -o $(SHARE) support .o $( SHARE) suppor t . c $(CFLAOS)

$(SHARE) semaphore . o :

cc -c -o $( SHARE) semaphore. o $ (SHARE) semaphore .c $(CFLAGS)

$(SHARE)io_single.o: $( SHARE) shared. h
cc -c -o $( SHARE) io_s ingle. o $(SHARE) io_s ingle . c $(CFLAOS)

$( SHARE) share seg.o;
cc -c -o $(SHARE)shareseg.o $( SHARE) shareieg. c $(CFLAOS)

Figure 5.1 Sample Application make File

a. Application Setup

The server process must be started first. The application can set up the

communications paths as part of initialization, or it can do so only in response to a
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specific operator command. In either case, there will be two messages returned to the

terminal for each direct connection setup. Figure 5.2 illustrates a normal, single

connection, response. Since the receive and send processes that provide the messages

are independent, the two lines shown may be jumbled. A variety of errors can occur at

this point. Table 5.1 gives the most commonerror messages, their cause, and solution.

Server waiting to connect to name
Server waiting to connect to name

Figure 5.2 Normal Server Response

Table 5 . 1 SERVERERRORRESPONSES

Message Cause Solution

Server couldn't open a local socket: Socket in use due to previ-

ous run not terminating

with deletemachinepath

Run ps. Use kill to ter-

minate any receive or send

processes still running

Server couldn't bind address to local socket: Socket in use due to previ-

ous run not terminating

with deletemachinepath

Run ps. Use kill to ter-

minate any receive or send

processes still running

slim get: Permission denied The shared memory seg-

ment already exists, but is

owned by another uid

Change key in

machinepath call, recom-

pile, and rerun

shmget: Invalid argument The shared memory seg-

ment already exists, but is

too small because the value

of LARGESTREADhas

been increased

Run rmshare and rerun ap-

plication

shmat: Permission denied Someone else's send or re-

ceive process is being

spawned

Outdated software is being

used.

Check that proper path is

used in shared. h, for

application's include of

shared. h, and in

application's Makefile.

Correct and recompile.

Ensure that all modules are

the most current. If some

are not, get updated

modules and recompile

—

especially send and re-

ceive.
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The client process must not attempt connection until after the server is

properly running (the messages in Figure 5.2 have been received). The application can

set up the communications paths as part of initialization, or it can do so only in response

to a specific operator command. When client communications setup is part of the

initialization, care must be taken to wait for a ready server before starting the client. In

either case, there will be two messages returned to the terminal for each direct

connection setup. Figure 5.3 illustrates a normal, single connection, response. Since the

receive and send processes that provide the messages are independent, the two lines

shown may be jumbled. A variety of errors can occur at this point. Table 5.2 gives the

most commonerror messages, their cause, and solution,

b. Coding Practices

(1) Connection . Making a connection requires two acts. The first is to

set aside space for the data required. Figure 5.4 shows this code when local declaration

is used. The Machine structure can also be declared globally. The second is to request

the connection with a machinepath, dynamicmachinepath, or dynamicmachinepaths

call. Table 5.3 compares the three types of call, while Figure 5.5 gives a server example

for dynamicmachinepath, A description of the parameters used is in Appendix A,

Section 2. a.

For flexibility, there is often a requirement for command line

specification of the machine to be connected to. For ease of use, there is often a

Connection established with name
Connection established with name

Figure 5.3 Normal Client Response
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Table 5.2 CLIENT ERRORRESPONSES

Message Cause Solution

Client couldn't open a local socket: Socket in use due to previ-

ous run not terminating

with deletemachinepath

Run ps. Use kill to ter-

minate any receive or send

processes still running

Client couldn't connect to the remote server socket: The server has not success-

fully started

The port numbers used by
client do not correspond to

those of server

Terminate client, restart

server, restart client when
server started

Correct, recompile, and

rerun

shmget: Permission denied The shared memory seg-

ment already exists, but is

owned by another uid

Change key in

machinepath call, recom-

pile, and rerun

shmget: Invalid argument The shared memory seg-

ment already exists, but is

too small because the value

of LARGESTREADhas

been increased

Run rmshare and rerun ap-

plication

shmat: Permission denied Someone else's send or re-

ceive process is being

spawned

Outdated software is being

used.

Check that proper path is

used in shared.h, for

application's include of

shared.h, and in

application's Makefile.

Correct and recompile.

Ensure that all modules are

the most current. If some

are not, get updated

modules and recompile

—

especially send and re-

ceive.

#inc lude "/work/bar row/ share3/ shared.h"

ma in( argc

,

argv)

y*» + + % + ** + *** + + + ******* + * + **** + »***** + *:>% + * + + * + *** + + + + *** + ****

LOCAL DECLARATIONS
** + ******• + ** + + ******* + ********** + ***** + ********* + ****** +

/

Machine cardriver; /* structure for coirmunica t ions system */

Figure 5.4 Creation of Machine Structure
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Table 5.3 PATHCONNECTION

Function Purpose

machinepath
Creates a link between two machines

No subsequent dynamic memory allocation al-

lowed

dynamicmachinepath
Creates a link between two machines

Subsequent dynamic memory allocation allowed

dynamicmachinepaths

Creates a link between two machines

Subsequent dynamic memory allocation allowed

Multiple calls provide multiple links to one or

more other machines

ma in( argc

,

argv)

/it***********************************************************

SYSTEM INITIALIZATIONS
ft***********************************************************/

/* Open up the net path to other machine (iris3 default) */
dynamicmachinepath( 2 , ot her_machine ,4, 5, "server" ,&cardr

i

ver ,2000000)

;

Figure 5.5 Server Creation

requirement for a default specification. Figure 5.6 illustrates one way to accomplish this

for a client. This example does not require that the network alias be defined to the

system as it uses the complete address. The user, however, only enters the alias.

(2) Program Use . The simplest high-level communication paradigm is

reading from and writing to the other machine. It closely parallels handling files and

terminals in C. It was chosen for these reasons.

Twelve high-level functions are available. Four provide status

information, four write to other machine, and four read from other machine. Table 5.4

describes these functions. The parameters used by these calls are described in Appendix

A, Sections l.a and 9.a.
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main( a rgc
,
argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

I

i^t****************************** ************ *****************

DATA DECLARATION
t************************************************************ /

char other_machine[50]

;

/* name of other machine */

^^^•f^m*******************************************************

SYSTEM INITIALIZATIONS

I* pull out the string from the argument list */

i f ( argc > 2)

I

printf("NAV: incorrect argument count! use nav <alias>\n");
exit(l);

)

/* pull out the name of the other string, if it exists */
if( argc == 2 )

I

strcpy( other_machine , "npscs-" );

strcat( other_machine , argv[l] );

}

else
strcpy( other_machine , "npscs - i r i s2" );

/* Open up the net path to other machine (iris2 default) */
dynamicmach i nepa th( 2 , ot he r_mach ine ,5,4,"client" ,&car ,2000000)

;

Figure 5.6 CommandLine Direction for Connection

There is a variety of ways to use these functions. Figure 5.7

illustrates a typical scenario. This code is from the display station of a two-workstation

driver simulation. The display station provides its status (that of the "world") on each

pass through its graphical display loop. The control station must read that status on each

pass, to update the vehicle position on its track diagram. On each pass, the display

station checks to see if any commands have been received. This is an asynchronous

communication, as the display station continues with or without a control station
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command. The asynchronous reads are guarded by a receiver _has_data call that detects

arrival of a message. Other receiver has data calls are used to "busy wait" for the next

message. In practice, it has not been necessary to include any but the first "busy wait"

receiver has data call. TCP/IP buffers messages when they are not immediately read.

It then blocks them into the largest grouping possible and delivers them when the next

read occurs. The LARGESTREADdefined constant in shared.h determines this

maximum grouping. The first message is read by receive. The socket is then ignored

until the application reads the data. During this time, the other messages have all been

sent and buffered by TCP/IP. There is a slight delay between the time the first message is

read and the block containing all the rest is read. Thus the necessity for the first "busy

wait" receiver has data call. The other "busy wait" receiver _has_data calls are simply

for robustness.

The "busy wait" sender jsjree call determines if something has

happened to the other machine or Ethernet. The first write will always succeed, as it goes

to a buffer. If there is a communications problem, TCP/IP will not accept it and the

Table 5.4 COMMUNICATIONFUNCTIONS

Function Action

sender_is_free

receiver_has_data

received_type

number received

Returns TRUEif a message can be sent.

Returns TRUEif a new message has been received.

Returns a character indicating the type of the message. CHARACTER.TYPB,
INTEOERjrYPE, and FLOATTYPE are predefined. CHARACTER_ARRAY_TYPE,
INTEOER_ARRAY_TYPE,and FLOAT_ARRAY_TYPEare predefined

Returns an integer indicating how many elements in message.

write_character

write_integer

write_float

write_characters

Send a single value of the type to other machine.

read_character

read_integer

read_float

read_characters

Move single value of named type from buffer to application program storage.
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main( argc , argv)

*************************************************************

MAIN SIMULATION LOOP
I************************************************************/

wh i I e ( veh i c 1 e . command

.

condi t ion != DONE)
I

I**************************************************************
Get commands (if any) from navigator. Commands are all sent
or none are sent so no information is needed as to which value
i s wh i c h

.

*********************** ***************************************^

if( recei ver_has_dat a( &cardriver ) )

I

read_i n teger (Ac a rdr i ver , &vehic le . command .condition);
while( ! receiver_has_data( &cardriver ) ) /*pr int f

(
" 1" )*/

read_in teger (&c a

r

driver , Avehic le . conmand . brakepedal )

;

while( ! receiver_has_data( &cardriver ) ) /*pr int f
( "2" )*/

read_in lege r(&car driver , &remot e_mousex)

;

while( I recei ver_has_data( Acardriver ) ) /*print f
( "3" )*/

read_float (Ac a rdr i ver , Acmdspeed )

;

I**************************************************************
Report all status information to navigator every cycle.

**************************************************************
^

wri te_floa t (&cardr i ver , Aveh icle.state_vector[l])
while( ! sender_i s_f ree(&cardr i ver ) ) printf("b")
wr i te_floa t (&ca rdr i ver , Avehic 1 e . s t a t e_vec tor [2]

)

wr i t e_floa t (&cardr i ver , &vehicle . s t a t e_vec tor [3]

)

wr i te_floa t (&ca rdr i ver , &veh icle. situation. distance_ traveled);
wri te_int eger (&c ar driver , Avehic le . command. condi t ion)

;

wr i te_int eger (&cardr i ver , Avehic le . command .brakepedal )

;

wr i te_in teger (Ac a rdr i ver , Avehic le.situation.lightcolor);

}
/* whi le loop */

} /
Figure 5.7 Synchronous Write / Asynchronous Read
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sender jsjree call will return FALSE. This often occurs when there is a delay by the

client in connecting to the server (the display station here). If there is a good connection,

TCP/IP will accept and buffer all input. No other "busy wait" calls are needed. The other

side of the communication is shown in Figure 5.8.

(3) Disconnection . Termination, with a deletemachinepath call for

each path opened, is mandatory. If not performed, the sockets (and shared memory

segment on System V UNIX machines) will not be returned to the system. Problems 26

may then occur on the next run. Figure 5.9 is an example termination when multiple

paths have been opened [Ref. 11].

2. Lisp Machines

All necessary functions are contained in a single file. This file must be loaded

before use. Figure 5.10 is an example. A Lisp machine is always a client and is started

second. Figure 5.11 illustrates the message returned with a successful connection.

Unsuccessful connections "hang" and return nothing.

a. Connection

The address of the server and the ports it is using must be specified.

Figure 5.12 shows the ports specified as part of the loaded file. Whenusing the older TI

Explorer functions, the addresses are specified in the same way (see Figure 4.5) and then

the machine desired is requested by number 27 (shown in Figure 5.13). When using the

stream-based functions, the addresses are not specified by the user at all. The network

tables are accessed, by host name, through the select-host function provided (shown in

Figure 5.14). Once the instance of conversation-with-iris flavor has been completed

24 Sec Tables 5.1 and 5.2

27 A throwback to connection only with different IRIS machines.
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main( argc
,
argv)

wh i 1 e

(

cond i t i on != DONE)
I

^*m****************** ******************************************
Receive all status information from car every cycle.

**********************************+***************************/

while( ! recei ver_has_da t a( &car
] 1 )

read_floa t (Acar , Acy);
while( ! receiver_has_dat a( &car

] )

read_float (&car , &cx);
while( ! receiver_has_dat a( &car

1 )

read_float (&car , &velocity);
wliile( ! receiver_has_dat a( &car '

• )

read_floa t (&car , &rdistance);
while( 1 recei ver_has_dat a( Acar

1 )

read_int eger (Acar , Acondition);
while( 1 receiver_has_da t a( &car 1 )

read_in t eger (&car , &brakepos i t ioi >);
while( ! receiver_has_da t a( &car

» )

read_in

t

eger (&car , &1 ightcolor )

;

J
*********************************************************+*+**

Send coitmands (if any) to car. Commands are all sent
or none are sent so no information is needed as to which value
is wh i c h

.

*^******** r ******t.**t*****************************************^

i f (any thing_h a s_c hanged)
I

any thing_has_changed = FALSE;
wri te_integer(Acar , &condition);
while( I sender_i s_f ree( &car ) ) printf("a")
wri te_integer (fear , &brakepos i t ion)

;

while( ! sender_i s_f ree( &car ) ) printf("b")
wri te_int eger (&car , Amousex);
while( ! sender_i s_f ree( Acar ) ) printf("c")
wr i t e_floa t (Acar , Acmdveloci

t y )

;

J /* i f ( any th ing_has_changed) */

}
/* while */

} /* main */

Figure 5.8 Reciprocal Synchronous Read / Asynchronous Write
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del e t emachinepa th(&TI )

;

de le t emachinepa t h(&S\M3)

;

de 1 e t emachinepa t h(&S"¥Ml ) ;

dele t emachinepa th(&S~VM4)

;

cxit();
}

Figure 5.9 Connection Termination

;;; this is the conmunicat ion package
( load " i r i sflavor"

)

Figure 5.10 Loading Lisp Flavor

"A conversation with the iris machine has been established"

Figure 5.11 Lisp Connection Message

(defvar * i r i s 1 -por t 1* 1027) ; this is the send port
(defvar * i r i s 1 -por t 2* 1026) ; this is the receive port

Figure 5.12 Setting Port Numbers with defvar

;;; get the network going
(iris 1)
(setq '"battle*' (make- ins t ance ' conver sa t ion-wi t h- i r i s )

)

(if (y-or-n-p "start networking ?") (send *battle* : s t ar t - i r i s )

)

Figure 5.13 Specifying Server in Lisp
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(select -host i t i s2)

Figure 5. 14 Specifying Server by Name in Lisp

with port numbers and host addresses, the connection is established with the method

:start-iris, see Figure 5.13.

b. Program Use

The method :get-iris returns with the object sent by one message. The

method (:put-iris object) sends the object as one message. Figure 5.15 illustrates both.

Note how methods are added to flavor conversation-with-iris to simplify the

application interface even further. [Ref. 11]

c. Disconnection

Disconnection is accomplished with the method :stop-iris, shown in

Figure 5.16.

C. BROADCAST

Only UNIX-based machines support our broadcast protocol at this time. It is a

unidirectional protocol, but nothing prevents the establishment of two unidirectional

channels in opposite directions. Using two broadcast channels to emulate a direct

connect channel, however, loads all other machines on the network by requiring every

other machine to process each message. It is also less reliable. Broadcasting is good for

sending status information to many other machines, as long as those machines can

tolerate missing reports.

1. Similarities With Direct Connect Protocol Use

Using the broadcast protocol is similar to using the direct connect protocol.

The same functions are used in the same way. Each connection must set aside space as
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defini t ions :

obj ec t : "n"
x

y
z

spd
dir

name: character "1" .. "5"

x coordinate: real
y coordinate: real
z coordinate: real
speed: real
di rec t ion : real

in lisp ("n" (x y z ipd dir))

speed of vehicle -10.00 to 25.00
compass dir in degrees from ON

;;; get an object in graphics environment (defined as above)

(defmethod (conver sat ion-wi th- i r i s :object)
()

(makeob

j

( send self :ge t - i

( send self : ge t -

( send self : ge t -

( send self : ge t -

( send self :
ge I

-

( send self :
ge t

-

ris)
r i s

)

ris)
ris)
ris)
ris) ) )

;;; vision returns a list of objects in the tank's field of vision (100m radius)
;;; this is effectively an association list

(defmethod (conversat ion-wi th- i r i s :vision)
( tank)

(let ((field nil)
(n-obj ec t s 0) )

(progn (send self :put-iris "V")
(send self :put-iris tank)
(if (equal "V" (send self :get-iris))

(progn (setq n-objects (send self :get-iris))
(dot imes

(x n-objects field)
(setq field (cons (send self :object) field)) ) )

(progn
(print "iris did not respond to the vision coirmand sent from ")

(princ "tank ")

(princ tank) ) ) ) ) )

Figure 5.15 Application Communication in Lisp

in Figure 5.4. The same criteria for using a specific machinepath call apply (see Table

5.3). The same communications functions are available as in Table 5.4. Each

connection must be terminated as in Figure 5.9.
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(if (y-or-n-p "stop iris connection ?") (send *battle* :stop-iris))

Figure 5.16 Termination of Communications in Lisp

2. Differences With Direct Connect Protocol Use

a. Application Setup

The broadcast protocol is not directly modeled as a server/client

relationship. The broadcaster broadcasts to whomever is prepared to receive. The

receiver must be ready and so must be started first. Since the broadcaster is more similar

to the server in a server/client model, this connection order seems exactly backward. No

error will result if the broadcaster starts first, messages will simply not be received. The

receiver message is shown in Figure 5.17. The broadcaster message is shown in Figure

5.18. When a direct connect channel is also required between the same two machines,

achieving proper startup order is easy. Establish the direct connect channel first, then the

soon-to-be broadcasting process sends a message telling the receiver to start up. Once

started, the receiver process sends a message permitting the broadcaster to start.

ready to receive from broadcaster name

Figure 5.17 Normal Receiver Response

Waiting to broadcast

Figure 5.18 Normal Broadcaster Response
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b. Coding Practices

The parameters to the machinepath family of functions are used

differently for the broadcast protocol. All are required to be present, but some are

ignored (see Table 5.5). Since a broadcast channel is unidirectional, the receive type

application calls are meaningless to the broadcaster (the receiver has data call always

returns false). The sendjype application calls are meaningless to the receiver (the

sender is Jree call always returns false).

D. Summary

Using the same functions, an application can either broadcast or directly connect to

another machine. The same steps of setup, connection, use, and termination are common

to both protocols. Care must be taken in the timing of the two (or more) machines setup.

After that, an application merely reads or writes data.
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Table 5.5 MACHINEPATHPARAMETERS

Parameter
Function

machinepath dynamicmachinepath dynamicmachinepaths

nummachines N/A

Number of channels that could

be created by application. This

includes both DIRECT CON-
NECTand BROADCASTchan-

nels.

segmentnum
Arbitrary integer. Should be different than another

user's application.

Only first call's value used.

mname

DIRECT CONNECTand BROADCAST{receiver

only): Nameof machine to connect to.

BROADCAST{broadcaster only): Required but ig-

nored

sendportnum

DIRECT CONNECT:Number (0-3076) of port to be

used to send to other machine.

BROADCAST{broadcaster only): Number (0-3076)

of port to be used for broadcast.

BROADCAST{receiver only): Required but ignored

receiveportnum

DIRECT CONNECT:Number (0-3076) of port to be

used to receive from other machine.

BROADCAST{broadcaster only): Required but ig-

nored

BROADCAST{receiver only): Number (0-3076) of

port to be used for broadcast.

server

"server": Create DIRECT CONNECTchannel

as a server.

"client": Create DIRECT CONNECTchannel

as a client.

"broadcast": Create BROADCASTchannel as a

broadcaster.

"receive": Create BROADCASTchannel as a

receiver.

instructure Address of Machine structure created to hold channel

information.

freespace N/A
Amount of space to be used for

dynamic memory allocation.

Only first call's value used.
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VI. Performance

A. Introduction

Welook at the size of packets from our protocols. Wealso look at the effect of real

applications on the network. We try to do this for both direct connect and broadcast

protocols. However, no application making good use of broadcast protocols exists.

Hence, we used a direct connect test application and replaced the channel with two

broadcast channels.

B. DATACOLLECTION

The LANalyzer EX 5500 network analyzer was used to gather Ethernet statistics.

Version 2.0 of the software was used. The LANalyzer 5500 is a COMPAQPORTABLE

II with a coprocessor board installed. The coprocessor board has an Intel 80286 CPU,

an Intel 82586 LAN coprocessor, and two MBytes of memory. It performs packet

collection, packet filtering, and network statistics calculation. The COMPAQPORTABLE

II processor handles user software control, screen updating and disk I/O. [Ref. 29]

Samples were taken while direct connect applications were running on iris2 and

iris3. To compare direct connect protocol with the broadcast protocol, test programs

were used 28
. Table 6.1 summarizes the information collected. These programs send a

character string, an integer, and a floating point number in a rotating sequence. The

messages are either sent to the machine specified on the command line or are broadcast

to all machines on the local network but only received from the machine specified.

* LANalyzer is a registered trademark of Excelan, Inc.

" COMPAQPORTABLEII is a tradmark of the COMPAQComputer Corporation.

MSee programs prog.c, prog2.c, gprog.c, and gprogl.c in Appendix D.
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Table 6.1 DIRECT CONNECTVERSUSBROADCASTSTATISTICS

Run

Number

Direct Connect
Number Ave Max

of Packet Test

„ , Size Load
Packets ,. .

{bytes) (%)

Broadcast

Number Ave
of Packet

Packets
(bytes)

Max
Test

Load

(%)

1 1031 91 .10 9498 69 1.0

2 1047 111 .05 9860 69 1.0

3 465 96 <.05 4000 68 1.0

4 698 95 .05 2556 68 1.0

5 334 103 .10 1262 68 1.0

The visual simulation application measured was a modified version of the driving

simulator [Ref. 7]. Table 6.2 summarizes the information collected. This data was

taken during the day 29
. The application's communication code is shown in Figure 5.7

and Figure 5.8. One trip around the track took approximately five minutes. Seven

messages are sent every cycle to report status. Four messages are sent in the opposite

direction, as required, to control the car. One circuit was driven, on autopilot, for each

test run. There were about 500 cycles per test. Approximately 3600 messages were

generated per test. The number of packets sent was less than half of this. The apparent

discrepancy exists for two reasons. First, each packet sent also generates an

Table 6.2 APPLICATION NETWORKUSESTATISTICS

Run

Number

Number
of

Packets

Average
Packet

Size

{bytes)

Peak
Network

Load
(%)

Peak
Test

Load
(%)

Average
Network

Load
(%)

1 3747 89 13 .10 .5

2 3297 89 11 .15 1.0

3 4152 89 15 <.05 .5

4 2848 89 17 .15 .9

5 22830 89 17 .10 .3

29 At night, with less competition for network resources, the results were similar.
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acknowledgement packet in return. By acknowledging each packet, the stream socket

guarantee of delivery and proper sequence is met. Second, after the first packet

(containing the first message) is received, the remaining three or six messages are

immediately sent. The receiving process has often not yet handled the first one. The

remaining messages are combined into one and all are read as one block. This reduces

the interchange to a typical total of four packets per cycle, two with data and two for

acknowledgement. Similarly, four packets are usually generated whenever the navigator

process issues a command sequence to the car.

An evaluation of a five- workstation application [Ref. 11] was also made. This

application used three Symbolics (syml, sym3, and sym4), expl, and iris2 to perform its

tasks. Statistics were similar to the other application, but the Symbolics irisflavor.lisp
30

exhibited some problem behavior. It sent three packets for every message. The first

packet contained the type field only. The second packet contained both the type field

and the length field. The third contained the entire message. If a second message

immediately followed the first, three more packets were sent, each adding one field to the

previous packet. Only one acknowledgement was received, as all packets in a group had

the same identification number.

C. DISCUSSION

Attempting to use broadcast protocol with the simple test programs failed. One

problem encountered was overflow of the sending buffer within the TCP/IP layers. The

rapidity of attempted transmission was the cause. Higher network loading exacerbated

the problem. When the test application was slowed down with printf calls (and the

output redirected into a file) the buffer could keep up with sending requests. Using

30 See Appendix C
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broadcast protocol within a graphics display loop should pose no problems unless

numerous data elements are transmitted at one time.

Without acknowledgement packets, broadcasting put fewer packets on the network

than did the direct connect protocol. Whenoverall load was haevy, some were lost. This

poses a serious problem for visual simulation applications. Without an elaborate

application-level protocol, the receiving process will never know what was intended to

be sent. Since only one data object is transmitted at a time, labeling the data objects is

difficult. All that is available is to alternately send different types and, after checking

the type received, make a determination of the likely intent of the sending process. If a

block of data, containing different types, could be sent as a single message, the decoding

problem would become one of simply sequence checking. Missing status packets can be

safely ignored in many situations. At most, a simple averaging algorithm can smooth

any discontinuities caused by a missing packet. Timestamping, with a virtual timestamp,

of each packet would eliminate the averaging requirement.

The Symbolics stream version is much less efficient, in terms of network

utilization, than is the Explorer's. It still functions correctly, with no noticeable delay.

As the amount of data to transmit increases, the Symbolics flavor will eventually have

noticeable performance degradation.

The interconection of five machines loads the network only slightly more than does

that of two. The limitation will be from the process swap overhead, not the network.

D. SUMMARY

The direct connect protocol sends fewer packets than messages. Half of the packets

sent are acknowledgements. These acknowledgements provide the reliability of the

direct connect protocol. The broadcast protocol sends one packet for each message.

These packets tend to be smaller than those for the direct connect protocol. Until a
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mechanism exists to bundle several messages into one broadcast packet, the broadcast

protocol is of small value.
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vn. Conclusions and recommendations

A. LIMITATIONS

There are two primary limitations. First, the Lisp and C functions differ at the user

level. This was done to allow each to be used readily by programmers "thinking" in their

respective language. We have found this to be confusing to students who are

inexperienced in both languages. Second, there is no simple means to transmit a block of

data or an entire file. Each data element, unless it is part of an array of characters, must

be sent separately. This was done to "hit a middle ground" between a complex

facility

—

printf function —and low-level system calls. As long as only the direct connect

protocol existed, this was only an annoyance. As discussed in Chapter 6, this is a

critically limiting factor for the broadcast protocol.

The port to BSD UNIX systems without shared memory and semaphores was not

completed. The socket handling aspects are portable, but the shared memory aspects are

interwoven throughout the system. The difficult part of the porting will be designing the

message-passing protocol for the pipe between the application and the send and receive

processes, as discussed in Chapter 4. Other specific limitations include:

• no broadcast capability for Lisp machines

• no server capability for Lisp machines

• limited communication error handling —no signals are sent from the send or

receive processes to the application process if they encounter problems

• limited read/write error handling —a read or write of the wrong type will be

attempted and usually produce garbage

• no out-of-band capability

• Symbolics iris-flavor.Hsp creates three packets per message
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B. FUTURERESEARCHAREAS

Implementation of the missing structure data type is one key area in which more

work could be done. The most straight-forward solution to this would be to add

messages to the send section of the shared memory array without signalling the send

process to send it until the entire block was ready. Such a solution eliminates any need to

change the receiving functions at the cost of either an additional sending function or an

additional parameter to the existing send functions. The additional send function would

be a push function and the existing send functions would be modified to never signal the

send process to send. That would be left to the new push function. Adding a parameter

to each send function would allow any send function to push. While in some respects

simpler, changes to any application sending a block of data would have to carefully

monitor which send function actually is pushing.

Creation of a Lisp flavor that mimics the UNIX functions would prove useful to C

programmers who find a need for Lisp modules in their visual simulation. Adding server

and broadcast capabilities would increase the applicability of the protocols to future

visual simulation projects. Functions to break complex Lisp objects into simple ones and

then combine these into a single message are necessary for the broadcast protocol. The

Symbolics version should be corrected to send a packet only at message boundaries.

C. Summary and Conclusion

The routines described herein have already proved useful to researchers at the Naval

Postgraduate School. With Ethernet loading never exceeding one percent, these routines

are efficient enough to use without concern. With the additions mentioned above, the

goal of an easy-to-use yet powerful system will be reached.
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APPENDIXA - IRIS MODULEDESCRIPTIONS

1. iojsingle.c

a. Calling Protocols

This module contains functions that are intended for the application's use and

functions that are used exclusively by them. The parameters for externally accessible

functions are described below.

i. number received

number_received( instructure )

Machine *ins t rue ture ; /* includes
char *ins tructure . segment a pointer to the shared segment
*/

ii. read character

read_character ( instructure , char act er_out

)

Machine *ins tructure; /* includes
char *ins true ture . segment a pointer to the shared segment */

char *character_out ; /* pointer to output character */

iii. readcharacters

read_characters( ins tructure, outarr ay, array size)

Machine '"instructure; /* includes
char *ins tructure . segment a pointer to the shared segment */

char outarrayl]; /* output character buffer */
int arraysize; /* the number of characters to be returned */

iv. readjloat

read_f loat ( ins tructure, f loat_out )

Machine * i ns t rue ture ; /* includes
char *ins tructure . segment a pointer to the shared segment */

float *float_out; /* pointer to output float */

v. read integer

read_integer( instructure , integer_out )

Machine *ins tructure ; /* includes
char *ins tructure . segment a pointer to the shared segment */

int *integer_out ; /* pointer to output integer */
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iojsingle.c

vi. received jype

char received_type( instructure )

Machine *ins

t

ructure ; /* includes
char *ins tructure . segment a pointer to the shared segment
*/

vii. write jcharacter

wri te_character( ins tructure, character. in)

Machine *ins tructure ; /* includes
char *ins tructure . segment a pointer to the shared segment
int ins tructure . sendsem the semaphore to the sender */

char *character_in; /* pointer to input character */

viii. write characters

wri te_characters( ins tructure, inarr ay .array size)

Machine "'instructure; /* includes
char *ins tructure . segment a pointer to the shared segment
int ins tructure . receivesem the semaphore to the receiver

char *inarray; /* input character buffer */
long arraysize; /* the number of characters input */

ix. write _float

wri t e_ float ( instructure, float_in)

Machine ""instructure; /* includes
char *ins tructure . segment a pointer to the shared segment
int ins tructure . sendsem the semaphore to the sender */

float *float_in; /* pointer to input float */

x. write integer

wri te_integer( instructure, integer_in)

Machine *ins tructure ; /* includes
char *ins tructure . segment a pointer to the shared segment
int ins tructure . sendsem the semaphore to the sender */

int *integer_in; /* pointer to input integer */
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io_single.c

b. Code and Description

/*****************************************************************************

TITLE

MODULE

VERSION

DATE

AUTHOR

In t er -Computer Communication Package

io_s ingle .

c

3.0

15 December 1987

Theodore H. Barrow

******************************************************************************
* *
* HISTORY: *

*

*

*

VERSION

DATE

AUIHOR

DESC.

VERSION

DATE

AUIHOR

DESC.

VERSION

DATE

AUIHOR

DESC.

1.0

27 May 1987

Theodore H. Barrow

Originally part of support. c. Contains the documented read *

and write calls for use by the application programmer. *
*

2.0 *

*

21 October 1987 *
*

Theodore H. Barrow *

Modified read routines to use a global array to manage the
possibility of a partial message receipt.

3.0

15 December 1987

Theodore H. Barrow

Modified read routines to use part of a buffer set instead of *

the global array to manage the reception of a partial message.*
*******************%*******************%**************************************
* *

* RECORDOF CHANGES *

* *

Version* Date * Author * * Affected *Reqd*
* * Change Description * Modules *Vers*
***************** *i ***********************************************************
* * * * * * *

* * * * *

*****************************************************************************/
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io_single.c

^include "shared. h"
#inc lude "gl .

h"

/* The following routine cop ies a character into the shared segment.
It puts the type CHARACTERJTYPEin the first byte and the

length 0001 into the next four bytes.
It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

wr i t e_charac ter(instructure,character_in)

Machine * ins t rue ture ; /* includes

char * ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . sendsem the semaphore to the sender */

char *charac t er_in; /* pointer to input character */

{

int msgsize = 5 + CHARACTERSI ZE ; /* size of message */

char *senderstart = ins t rue t ure->segment + SENDEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart senderstart -I- 9;

long *sentlength = (long *

)

ins t rue ture->segmen t + WSENDEROFFSET

;

/* insert the type code */
(senderstart + 4) = CHARACTERJTYPE

;

/* insert the length IN BYTES of the input data */
sprintf ((senderstart + 5), "%04d" , CHARACTER_SI ZE )

;

/* move the data bytes */
memepy(da t as t ar t , charac t er_in , CHARACTER_SI ZE )

;

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

•/
V( ins t rue ture ->s ends em)

;

} /* wr i t e_charac ter */

67



iojsingle.c

/* The following routine converts an integer to a string and copies it

into the shared segment.
It puts the type INTEGERTYPE in the first byte and the string length

(in bytes) as an integer (in string format) into the next four bytes
It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

write_integer(instructure,integer_in)

Machine * ins t rue ture ; /* includes

char *inst rue ture . segment a pointer to the shared segment

int ins t rue ture . sendsem the semaphore to the sender */

int *integer_in; /* pointer to input integer */

{

char int eger_s t r ing[20] ;
/* string for integer conversion */

int length; /* length of integer string */

int msgsize; /* size of message */

char *senderstart = ins t rue t ure->segment + SENDEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the S bytes of header information */

char *datastart = senderstart + 9;

long *sentlength = (long *) ins t rue t ure->segment + WSENDEROFFSET;

/* convert integer to string */
sprintf( integer_s t ring, "%d , *integer_in );

/* find length of integer string and thus message */
length = strlen( int eger_s t

r

ing );
msgsize = 5 + length;

/* insert the type code */
(senderstart + 4) = INTEGER_TYPE

;

/* insert the length IN BYTES of the input data */
sprintf ((senderstart + 5), "%04d" , length);

/* move the data bytes */
memepy(da t as t ar t , in t eger_s t

r

ing , length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

*/
V( ins t rue t ure->sendsem)

;

} /* wr i t e_in t eger */
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iojringle.c

/* The following routine converts a float to a string and copies it
into the shared segment.

It puts the type FLQAT_TYPE in the first byte and the length
(in bytes) as an integer (in string format) into the next four bytes

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

*/

write_float(instructure,float_in)

Machine * ins t rue ture ; /* includes

char * ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . sendsem the semaphore to the sender *

/

float *float_in; / pointer to input float */

I

char f loat_s t ring[30] ; /* string for float conversion */

int length; /* length of float string */

int msgsize; /* size of message */

char *senderstart = ins t rue ture->segment + SEM>EROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = senderstart + 9;

long '•'sent length = (long * ) i ns t rue t ure ->segmen t + WSENDEROFFSET

;

/* convert float to string */
sprintf( f loat_s t ring , "%t" , *float_in );

/* find length of float string and thus message */
length = strlen( float_string );
msgsize = 5 + length;

/* insert the type code */
(senderstart + 4) = FLQVTTYPE;

/* insert the length IN BYTES of the input data */
sprintf ((senderstart + 5), "%04d" , length);

/* move the data bytes */
memepy(da t as t ar t , f loat_s t

r

ing , length);

/* copy out the size of the data from the shared segment top */
*sentlength = msgsize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

*/
V( ins t rue ture ->s ends em)

;

} /* wri te_f loat */
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iojsingle.c

/* This routine returns the type of data received. */

char rece ived_type( instructure )

Machine * ins t rue ture ; /* includes

char * ins t rue ture . segment a pointer to the shared segment
*/

(

return( *( ins t rue ture->segment + RECEIVEROFFSET+ 4) );

}
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iojsingle.c

/* This routine returns the number of data items received. */

nun>ber_rece i ved( instructure )

Machine * ins t rue ture ; /* includes

char *inst rue ture . segment a pointer to the shared segment */

i n I t emp_ i n t

;

char *protocolhold = ins t rue ture->segmen t + PROTOO0LH0LDOFFSET

;

long *part received = (long * )pro

t

ocolhold ;

long receivedlength = (long *) ins t rue t ure->segment + A&RECEIVEROFFSET;

char *receiverstart = ins t rue ture->segmen t + RECErVEROFFSET;

/* check if only part of protocol information received */

if( *rece i vedl eng th < 5)
I

/* move data received (as well as length field) to holding area */
memcpy( prot ocolhold , rece i vers t ar t , 'receivedlength + 4 );

/* get next message(s) */
free_receiver( instructure->se gmen t )

;

V( ins t rue t ure->recei vesem)

;

while( rece iver_i s_free( ins t rue ture->segment ) ) /* wait */ ;

/* copy rest of protocol data into holding area */
memcpy( (protocolhold + *par

t

received + 4), ( receivers t ar t + 4),
(5 - *par

t

received) );

)

else
I

/* copy protocol data into holding area */
memcpy( protocolhold, rece i ver s t ar t , 9);

/* initialize *part received so it can be used later */
par t rece ived = 0;

I

/* determine the length of the received integer string and thus message */
sscanf( protocolhold + 5, "%d" , &temp_int );

switch( *(prot ocolhold + 4) )

I

case CHARACTER_TYPE:
rcturn( 1 )

;

break;
case INTEGERJTYPE

:

return( 1 )
',

break;
case FLOATTYPE:

return( 1 )

!

break

;

case CHARACTER_ARRAY_TYPE

:

return( t emp_in t /CHARACTER_SIZE );
break;

case INTEGER_ARRAY_TYPE:
return! t emp_int / INTEGER_SIZE );
break;

case FLOAT_ARRAY_TYPE

:

return! t emp_int /FLOAT_SIZE );

I

) /* number_rece i ved */
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/* The following routine returns a character from the shared segment.
It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*l

read_character ( instruc ture, char ac ter_out )

Machine * ins t rue ture ; /* includes

char *ins t rue ture . segment a pointer to the shared segment */

char *charac ter_out ; /* pointer to output character */

(

/* temporary storage for move of received data or for protocol information
when partial receipt */

char temp(LARGESTREAD]
;

char *protocolhold = ins t rue ture->segmen t + PROT0CX)LH0LDOFFSET

;

/* first four bytes of holding area as integer */
long *par

t

received = (long * )pro t ocol hold
;

int msgsize = 5 + CHARACTER_SIZE; /* size of message */

char *receiverstart = ins t rue ture->segmen t + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char +datastart = recei ver s t ar t + 9;

long Teceivedlength = (long *) ins t rue ture->segmen t + WECEIVEROFFSET;

/* check if first part of protocol information is missing */
if( *par t rece i ved == )

I

/* check if only part of protocol information received */
if( *rece

i

vedlengt h <= 5)
(

/* move data received (as well as length field) to holding area */
memcpy( pro

t

ocolhol d , recei ver s t ar t , *rece i vedlengt h + 4 );

/* get next message(s) */
free_receiver( ins true t ure->segment )

;

V( ins t rue ture ->recei vesem)

;

while( receiver_is f ree( ins t rue ture->segment ) ) /* wait */ ;

)

)

/* reset msgsize and datastart to correspond to partial receipt */
msgsize -= *par

t

recei ved;
datastart -= *par t rece

i

ved;

/* move the bytes */
memcpy(character_out , datastart, CHARACTER_SIZE)

;

/* make buffer ready for next read */
reset buffer( rece i vedl eng t h , msgsize, instructure, datastart,

CHARACTER_SIZE, par t received, recei ver s tar t );

) /* read_charac ter */
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/* The following routine converts a string in the shared segment
into the returned integer.

It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_ integer (inslruciure, integer_out )

Machine * ins t rue t ure ; /* includes

char inslruciure. segment a pointer to the shared segment */

int *in teger_out ; /* pointer to output integer */

(

char in t eger_s t r ingfLARGESTREAD] ; /* string storage for received data */

char *protocolhold = ins t rue ture->segmen t + PROTOOQLHOLDOFFSET

;

/* first four bytes of holding area as integer */
long *pa r t rece i ved = (long * )pro t ocolhold;

int length; /* length of integer string read */

long segment length; /* length of data of partial massage */

int msgsize; /* size of message */

char *receiverstart = ins t rue ture ->segmen t + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = recei ver s t ar t + 9;

long *receivedlength = (long *) ins t rue t ure->segment + WtECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
ge t_prot ocol ( protocolhold, par

t

recei ved, recei vedl ength , recei ver s

t

art ,

instructure, &length, Amsgsize, ftdatastart );

/* check if only part of data has been received */

if( * rece i vedl eng ch < msgsize )

I

get_data( &segment

1

ength , rece i vedlength , pa r

t

rece i ved
,

int eger_s t

r

ing, &datastart, Amsgsize,
receiver s t ar t , instructure, &length);

/* convert to string */
integer_s t ring [segment length + msgsize] = '\0';

)

else
(

/* move the integer string bytes */
memepy

(

int eger_s t

r

ing , datastart, length);

/+ convert to string */
integer_st ring[ length] = '\0';

I

/* convert the received string to an integer */
sscanf( integer_s t

r

ing , "%d" , integer_out );

/* make buffer ready for next read */
rese t_buf f er ( recei vedlength , msgsize, instructure, datastart, length,

par

t

received, rece i ver s t ar t );

) /* read_integer */
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/* The following routine converts a string in the shared segment
into the user supplied float.

It frees the receiver side of the shared segment if empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_float(instructure, f loat_out

)

Machine * ins t rue ture ; /* includes

char *ins true ture . segment a pointer to the shared segment */

float *f loa t_ou t ; /* pointer to output float */

(

char f loat_s t

r

ing [LARGESTREAD] ; /* string storage for received data */

char *protocolhold = ins t rue ture->segmen t + PROTOO)LHOLDOFFSET

;

/* first four bytes of holding area as integer */
long *part received = (long *)protocolhold;

int length; /* length of float string read */

long segment length ;
/* length of data of partial massage */

int msgsize; /* size of message +/

char *receiverstart = ins t rue ture ->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = receiver s t ar t + 9;

long *receivedlength = (long * ) i ns

t

rue t ure ->segmen t + AKRECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
ge t_prot ocol ( pro tocolhold, par t received, rece i vedl engt h , recei ver s t ar t ,

instructure, &length, Ansgsize, &datastart );

/* check if only part of data has been received */
if( *reccivedlength < msgsize )

I

get_data( &segment 1 engt h , rece i vedl engt h , par t received
,

f 1 oa t_s t ring , &datastart, Amsgsize,
rece i ver s t ar t , instructure, &length);

/* convert to string */
float_8 t

r

ing[ segment length + msgsize] = '\0';

}

e 1 se
{

/* move the float string bytes */
memepy( f 1 oa l_s t r i ng , datastart, length);

/* convert to string */
float_s t ring[ length] = '\0';

/* convert the received string to an float */
sscanf( f loat_s t

r

ing , "%f" , float_out );

/* make buffer ready for next read */
rese t_buf f er ( recei vedlength , msgsize, instructure, datastart, length

par

t

recei ved , recei ver s t ar t );

) /* read_float */
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/* The following routine copies characters from an array
into the shared seg men t

.

It puts the type CHARACTER_ARRAY_TYPEin the first byte and the
array length (in bytes) as an integer into the next four bytes.

It then puts the total size at the top of the shared segment.
It then sends a wakeup to the sender program.
It uses an input structure since called by main program

•/

wr i te_c harac ters ( ins t rue ture , inarr ay, array size)

Machine * ins t rue ture ; /* includes

char *ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . receivesem the semaphore to the receiver. */

char *inarray; /* input character buffer */

long arraysize; /* the number of characters input */

(

int datasize = arraysize * CHARACTER_SIZE; /* size of data field */

int msgsize = 5 + datasize; /* size of message */

char *senderstart ins t rue t ure->segmen t + SENDEROFFSET

;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char +datastart = senderstart + 9;

long *sentiength = (long *

)

ins t rue ture->segmen t + W5ENDEROFFSET;

/* insert the type code */
(senderstart + 4) = CHARACTER_ARRAY_TYPE

;

/* insert the length IN BYTES of the input data */
spr in t f(

(

sender s tar t + 5), "%04d", ( int )da t as i ze)

;

/* move the data bytes */
memepy( (dat as t ar t ) , inarray, datasize);

/* copy out the size of the data from the shared segment top */
sentlength = 5 + datasize;

/* at this point, we send a wakeup to the sender program,
indicating that he can reuse the shared segment.

*/
V( ins t rue t ure->sendsem)

;

} /* wr i te_charac ter s */
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/* The following routine copies bytes from the shared segment
into the user supplied array.

It frees the receiver side of the shared segment if it is empty.
It then sends a wakeup to the receiver program.
It uses an input structure since called by main program.

*/

read_charac ters(instructure,outarray,arraysize)

Machine * ins t rue t ure ; /* includes

char *ins t rue ture . segment a pointer to the shared segment */

char outarray[]; /* output character buffer */

int arraysize; /* the number of characters to be returned */

I

char +protocolhold = ins t rue ture->segmen t + PROTCXXHLHOLDOFFSET

;

/* first four bytes of holding area as integer */
long *par t rece i ved = (long * )prot ocolhold;

int length; /* length of character string read */

long segment length; /* length of data of partial massage */

int datasize = arraysize * CHARACTER_SIZE; /* size of requested data field */

int requestsize; /* size of message */

int msgsize = 5 + datasize; /* size of requested message */

char *receiverstart = ins t rue ture->segment + RECEIVEROFFSET;

/* the + 9 is to skip over the first 4 bytes for the size
of the shared memory data and the 5 bytes of header information */

char *datastart = receivers tar t + 9;

long *receivedlength = (long *) ins t rue t ure->segment + WECEIVEROFFSET;

/* determine proper protocol info and reset variables if necessary */
get_prot ocol ( pro tocolhold

,
par

t

received, recei vedleng I h , recei ver s t ar t

,

instructure, &length, <5snsgsize, &datastart );

/* check if all of data (or more) was requested */

if( length <= arraysize )

{

/* check if only part of data has been received */
if( * rece

i

vedlengt h < msgsize )

{

get_data( Asegmen t 1 eng th , rece i vedlength
,

par t recei ved

,

outarray, &datastart, &msgsize,
recei ver s t ar t , instructure, &datasize );

)

else
{

/* move the character bytes */
memepy(out array , datastart, length);

I

)

/* make buffer ready for next read */
rese t_buf f er ( recei vedl ength , msgsize, instructure, datastart, datasize,

par

t

recei ved, recei ver s t ar t );
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e 1 se

I

)

/* move the bytes */
memcpy ( ou

t

array , datastart, datasize);

/* make buffer ready for next read */
reset_buf fer ( rece i vedlength , msgsize, instructure, datastart, datasize,

par

t

received, receivers tar t );

/* read_charac t er s */
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/* These are various support routines used by several of the preceding
f unc t ions

.

*/

rese t_buf f er( rece i vedleng th , msgsize, instructure, datastart, datasize,
par

t

recei ved , receiver s t ar t

)

long recei vedlength ; /* first four bytes of receive part of shared seg */

int msgsize; /* size of message read /
Machine * ins t rue t ure ; /* includes

char *ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . receivesem the semaphore to the receiver. */

char dat as t ar t ; /* address data starts in receive part of shared seg */

int datasize; /* length of data part of message /
long *par t rece i ved; /* length of message received in previous block */

char recei vers t ar t ; / address receive part of shared seg starts */

I

char temp[LARGESTREAD] ; / temporary storage for move of received data /
/* free the receiver segment if this is only message received */
i f( recei vedleng th == msgsize)
{

free_receiver(instruc t ure->segmen t )

;

/* at this point, we should send a wakeup to the receiver program,
indicating that he can reuse the shared segment.

•/
V(instructure ->recei vesem)

;

)

else / shift data forward in shared memory segment */

(

recei vedlength -= msgsize;

memcpy(temp, (datastart + datasize), (LARGESTREAD - msgsize));

memepy(( rece i vers t ar t + 4), temp, (LARGESTREAD - msgsize));
)

/* reset par t rece i ved for next read */
par t rece i ved = 0;

} / reset_buffer /
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get_protocol ( protocolhold, par t received , recei vedlength , receiver star t

,

instructure, length, msgsize, datastart )

char protocolhold; / protocol holding area /
long *par

t

received; / length of message received in previous block /
long receivedlength ; / first four bytes of receive part of shared seg /
char receivers tar t ; /* address receive part of shared seg starts */

Machine * ins t rue ture ; / includes

char * ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . receivesem the semaphore to the receiver. /
int length; /* length of data field in message /
int msgsize; / length of message */

char datastart; /* address data starts in receive part of shared seg */

/ check if first part of protocol information is missing /
if( par

t

recei ved == )

/ check if only part of protocol information received /
if( receivedlength <= 5)

I / move data received (as well as length field) to holding area /
memcpy( protocolhold, recei vers t ar t , *recei vedlength + 4 );

/* get next message(s) */
free_receiver(inst rue ture- >segment )

;

V( ins t rue ture- >receivesem)

;

while( receiver_i s_f ree( ins t rue ture->segmen t ) ) / wait */ ;

/ copy rest of protocol data into holding area /
memcpy( (protocolhold + par

t

recei ved + 4), ( recei vers t ar t + 4),
(5 - par

t

received) );

I

else
I / copy protocol data into holding area /

memepyl protocolhold, rece i ver s t ar t , 9);

/* initialize *part received so it can be used later */
par t received = 0;

/+ determine the length of the received data string and thus message /
sscanf( protocolhold + 5, "%d" , length );
msgsize = 5 + length - *par

t

rece i ved;

/ reset datastart to compensate for possible partial receipt /
datastart -= part received;

) /* get_protocol /
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get_data( segmen t

1

ength , recei vedlength ,
par t received, s t r ing_ar ray

,

datastart, msgsize, recei vers t ar t , instructure, datasize )

long segmen t 1 engt h

;

long *rece i vedlength ;

long par

t

recei ved;

char s t

r

ing_ar ray [ ]

;

char da t as t ar t ;

int msgsize;

char *rece i ver s t ar t ;

Machine instructure;

/ length of partial data */

/* first four bytes of receive part of shared seg */

/* length of message received in previous block /
/* storage for incoming characters */

/* address data starts in receive part of shared seg */

/ length of message /
/ address receive part of shared seg starts /
/* includes

char *ins t rue ture . segment a pointer to the shared segment

int ins t rue ture . recei vesem the semaphore to the receiver. /
int *dat as i ze

;

I

/* length of data field in message /
/ determine length of data that has been received */
segment length = recei vedl eng th - 5 + par

t

recei ved;

/* copy the first segment of data to holding array /
memcpy( s t

r

ing_array , datastart, segmen

t

length );

/ reset msgsize and datastart to correspond to partial receipt /
msgsize -= segmen t

1

ength + 5 - par

t

recei ved;
datastart = recei ver s t ar t + 4;

/ get next message(s) /
free_receiver(instruc t ure->segment )

;

V(instruc ture->recei vesem)
;

while( recei ver_i s_free( ins t rue ture->segment ) ) / wait / ;

/ cycle through as many messages as it takes /
while( rece

i

vedlength < msgsize )

/ copy the next segment of data to holding array /
memcpy( &s t r ing_ar ray [segment length] , datastart, recei vedlength );

/ reset msgsize and segmen t

I

ength to correspond to partial receipt /
msgsize -= recei vedlength

;

segment length -= recei vedlength;

/ get next message(s) /
free_receiver(instruct ure->segment )

;

V(instruc ture->recei vesem)

;

while( receiver_i s_f ree( ins t rue t ure ->segmen t ) ) / wait / ;

)

/ copy the last segment of data to holding array /
memcpy( &s t r ing_array [segment length] , datastart, ""msgsize );

/ reset datasize to properly reflect last segment size /
datasize = msgsize;

) /* get_data /
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a. Calling Protocols

All functions in this module are meant to be accessible by the application.

These functions set up and tear down the communications path between two machines.

i. deletemachinepath

dele t emachinepath( instructure)

Machine *inst rue ture; /* structure to hold segment and semaphore info:
char * ins t rue ture . segment -- returned ptr to the shared segment,
int ins t rue ture . shmid -- returned system generated shared mem id
int ins t rue ture . sendsem -- the returned send semaphore.

We base it on the send port number,
int ins t rue ture . receivesem -- the returned receive semaphore.

We base it on the receive portnumber.
*l

ii. machinepath

machinepath( segment num. mname, sendpor tnum, recei vepor tnum, server, instructure)

long segmentnum; /* the key to use for the created shared segment */
char mname[]; /* machinename character string */
long sendpor tnum, recei vepor tnum; /* send and receive port numbers */
char server[]; /* this character string is either "client" or "server".

It indicates whether the sender /recei ver should open
up as either a client or server. The first guy open
must be the server.
•/

Machine * ins t rue ture ; /* structure to hold segment and semaphore info:
char *ins t rue ture . segment -- returned ptr to the snared segment,
int ins t rue ture . shmid -- returned system generated shared mem id
int ins t rue ture . sendsem -- the returned send semaphore.

We base it on the send portnumber.
int ins t rue ture . receivesem -- the returned receive semaphore.

*/

iii. dynamicmachinepath

dynami cmach i nepa th( seamen tnum, mname, sendpor tnum, recei vepor tnum, server ,

instructure, freespace)

long segmentnum; /* the key to use for the created shared segment */
char mname[]; /* machinename character string */
long sendpor tnum, rece i vepor tnum; /* send and receive port numbers */
char server[]; /* this character string is either "client" or "server".

It indicates whether the sender /recei ver should open
up as either a client or server. The first guy open
must be the server.

•/
Machine '"instructure; /* structure to hold segment and semaphore info:

char * ins t rue ture . segment -- returned ptr to the snared segment,
int ins t rue ture . shmid -- returned system generated shared mem id
int ins t rue ture . sendsem -- the returned send semaphore.

We base i t on the send portnumber.
int ins t rue ture . rece ivesem -- the returned receive semaphore.

We base it on the receive portnumber.
•/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */
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iv. dynamicmachinepaths

dynami cmach i nepa t lis (nuranach i nes , segmen t num,mname , sendpor t num. rece i vepor tnum,
server, instructure, freespace)

int nurrmachines ;
/* the ma

long segmentnum; /* the ke
char mname| ] ;

/* machin
long sendpor tnum, recei vepor
char server[]; /* this c

It indi ca
up as ei t

must be t

7

ximum number of other machines to be attached
y to use for the created shared segment */
ename character string */
tnum; /* send and receive port numbers */
haracter string is either "client" or "server'
tes whether the sender /recei ver should open
her a client or server. The first guy open
he server.

Machine *ins t rue ture ; /*
char * ins t rue t ur
int ins t rue t ure .

int instructure.

structure to hold segment and semaphore info:
e. segment -- returned ptr to the shared segment,
shmid -- returned system generated shared mem id
sendsem -- the returned send semaphore.

We base i t on the send portnumber.
int ins t ructure. receivesem -- the returned receive semaphore.

We base it on the receive portnumber.

int freespace; /* amount
after this rout ine

b. Code and Description

of freespace desired for dynamic memory allocation
has been called. */

J****************************************************************************

* TITLE

* MXULE

* VERSION

* DATE

* AUTHOR

*****************************************************************************
*

Int er -Computer Communication Package

mpa t h .

c

5.0

31 May 1988

Theodore H. Barrow

* HISTORY:
*

* VERSION
*

* DATE
+

* AUIHOR
+

* DESC.
*

*

* VERSION
*

* DATE
*

+ AUIHOR
*

* DESC.
+

* VERSION
*

+ DATE
*

* AUIHOR
*

* DESC.

1.0

6 February 1987

Michael J. Zyda

Contains routines machinepath and dele t emachinepat h for
link creation/removal at a high level of abstraction.

2.0

27 May 1987

Theodore H. Barrow

Converted to use a structure for ease of use.

3.0

21 October 1987

Theodore H. Barrow

Added function dynami cmachinepath to allow dynamic memory
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allocation after conmunicat ions link established.

VERSION: 4.0

DATE : 15 December 1987

AUTHOR : Theodore H. Barrow

DESC. : Added function dynami cmachi nepa t hs to allow use with multiple
links. Modified all creation routines to place sequence
numbers at end of command line for send and receive processes.

VERSION: 5.0

DATE : 31 May 1988

AUTHOR : Theodore H. Barrow

DESC. : Added broadcast and receive capability - one process spawned
tit*************************************************************************

RECORDOF CHANGES

Version* Date * Author * * Affected *Reqd
* Change Description * Modules *Vers

* * * * *
* * *
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#include "shared. h" /* my special defines */
#include <gl . h>

dele t emachi nepa t h( instructure)

Machine * ins t rue t ure ; /* structure to hold segment and semaphore info:

char * ins t rue

t

ure . segment -- returned ptr to the shared segment.

int ins t rue ture . shmid -- returned system generated shared mem id

int ins

t

ructure . sendsem -- the returned send semaphore.
We base it on the send portnumber.

int ins t rue ture . receivesem -- the returned receive semaphore.
We base it on the receive portnumber

*/

(

/* kill the receiver process... */
kill_receiver( ins true ture -> segment

,

ins true ture-> receives em)

;

/* kill the sender process... */
kill_sender(instruc ture->segment

,

ins t rue ture ->s ends em)

;

/* detach and delete the shared segment... */
del e tesharedsegment (instruc ture->segment

,

ins t rue ture->shmid) ;
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/•
For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The machinepath routine performs the following:

(1) creates a shared segment.
(2) creates a send and/or receive semaphore based on the send and receive

port numbers.
(3) free_sender( segment ) and/or f ree_receiver( segment

)

(4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server/c 1 ient /broadcas t 0&"

)

;

sys tem(

"

receive sharedseg# machinename port# server/c 1 ient /receive 0&"
)

;

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

•/
machinepa th( segmentnum.mname , sendpor tnum, rece ivepor tnum, server, ins t rue ture)

long segment num; /* the key to use for the created shared segment */

char mname[J; /* machinename character string */

long sendpor tnum, receivepor tnum; /* send and receive port numbers */

char server[ j ; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender /receiver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

/
Machine * ins t rue t ure

; /* structure to hold segment and semaphore info:

char * ins t rue ture . segment -- returned ptr to the shared segment.

int ins t rue ture . shmid -- returned system generated shared mem id

int ins t rue ture . sendsem -- the returned send semaphore.
We base it on the send portnumber.

int ins t rue ture . receivesem -- the returned receive semaphore.
*/

(

char * sharedsegmen t ( ) ; /* shared segment creation function */

int semtran(); /* semaphore creating routine. */

char temp [200], temp2[200]; /* temp character arrays */

/* create the shared segment */
ins t rue t ure->segment = shared segment ( segment num.MAXSHAREDSIZE.&ins t rue ture->shmid) ;

/* create the send semaphore, (unused if receiving broadcast messages) */
ins t rue ture->sendsem = semt ran( sendpor tnum)

;

/* create the receive semaphore (unused if broadcasting messages) */
ins t rue ture->receivesem = semt ran( receivepor tnum) ;

/* free the sender and receiver parts of the shared segment */
ini t_shared_buf f er ( ins t rue ture->segment )

;

/* spawn off the sender process */

if( strcmp( server, "receive" ) 1= )

85



mpath.c

/* add the start of the line, i.e. the program to run */
strcpy( temp.SEMMjOCATION);
s t r c a t ( t emp ,

" "
)

;

/* add the number of the sharedsegmen t in text */
spr int f ( temp2, "%d"

,

ins t rue t u re ->shmi d)

;

strcat(t emp, t emp2)

;

s treat (temp," ");

/* add on the machine name */

s t rca t ( t emp.mname ) ;

strcat(t emp ,

" " )

;

/* add the port number */
spr int f ( t emp2, "%d" , sendpor tnum) ;

s t rca t ( t emp, t emp2)

;

st rcat ( temp, " ");

/* indicate whether a server, a client, or a broadcaster */
s t rca t ( t emp, server )

;

s t r c a t ( t emp ,

" " )

;

/* spawn off into the background */
s t r c a t ( t emp , "A" )

;

/ +

if

}

else
I

/*

ki

spawn off the sender */
( system(temp) == - 1 )

perror ( "SEW system call failed");

kill sender (which really doesn't exist anyway) so that the
sender_i s_f ree( ) call will always return FALSE.
A similar thing does not have to be done for rece i ver_has_dat a(

)

in a broadcasting path since it will always return FALSE anyway */
ll_sender( ins t rue ture->segment , ins t rue ture->sendsem );

/* spawn off the receiver process */

if( strcmp( server, "broadcast" ) != )

(

/* add the start of the line, i.e. the program to run */
s t rcpy
s t rcat

/* add
spr int f( t emp2

,

"%d" , ins t rue ture->shmid) ;

3 t rca t

8 t rcat

/* add
s t rca t

s t rca t

/* add

s t rca t

s t rca t

/* ind
s t rca t

s t rca t

t emp , RECEIVELOCATION)

;

temp," ");

the number of the sharedsegment in text */

t emp , t emp2 )

;

temp," ");

on the machine name +/
t emp ,mname ) ;

emp , )

;

the port number */
spr int f( t emp2

,

"%d" .receivepor tnum) ;

t emp , t emp2 )

;

temp," ");

cnte whether a server, a client, or a broadcast receiver */
temp, server )

;

temp," 0");

/* spawn off into the background */
s treat ( temp, "&")

;
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/* spawn off the receiver */
i f ( s y s t em( t emp ) == - 1 )

perror( "RECEIVE «y«tem call failed")
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/*
For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynamicmachinepath routine performs the following:

(1) creates a shared segment and attaches it to the main program virtual
space after an allocation of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) free_sender( segment ) and/or free_rece iver( segment

)

(4) spawns off the send and/or receive processes.
sy s t em( " send sharedseg# machinename port# server /c 1 ient /broadcas t 0&"

)

;

sys t em( " rece ive sharedseg# machinename port# server /cl ient /receive 0&"
)

;

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

•/

dynami cmach i nepa t h( segment num.mname , sendpor tnum, rece iveport num. server ,

ins t rue t tire, free space)

long segmentnum; /* the key to use for the created shared segment */

char mname[ ] ; /* machinename character string */

long sendpor t num, receivepor tnum; /* send and receive port numbers */

char server!]; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender /receiver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

*/

Machine * ins t rue t ure
; /* structure to hold segment and semaphore info:

char * ins t rue ture . segment -- returned ptr to the shared segment.

int ins t rue ture . shmid -- returned system generated shared mem id

int ins t rue ture. sendsem -- the returned send semaphore.
We base it on the send port number.

int ins t rue ture . receivesem -- the returned receive semaphore.
We base it on the receive portnumber.

*/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

i

char *dynanii c sharedsegmen t ( ) ; /* shared segment creation function */

int semtranO; /* semaphore creating routine. */

char temp[200], temp2[200]; /* temp character arrays */

/* create the shared segment */
ins t rue ture->segmen t = dynamic sha redsegmen t ( 1 , segmentnum.MAXSHAREDSIZE,

Ains t rue

t

ure ->shmi d

,

freespace) ;

/* create the send semaphore, (unused if receiving broadcast messages) */
ins t rue

t

ure->sendsem = semt ran( sendpor tnum) ;

/* create the receive semaphore (unused if broadcasting messages) */
ins t rue ture->recei vesem = semt ran( receivepor tnum) ;
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/* free the sender and receiver parts of the shared segment */
ini t_shared_buf f er( ins t rue t ure->segment )

;

/* spawn off the sender process */

if( strcmp( server, "receive" ) != )

I

/* add the start of the line, i.e. the program to run +/
s t rcpy ( t emp , SEMXXXATION)

;

s t rcat ( temp, " "
)

;

/* add the number of the sharedsegment in text */
sprintf( t emp2 , "%d"

,

ins t rue ture->shmid)

;

s t re a t ( t emp , t emp2 )

;

8 t rcat ( temp, " "
)

;

/* add on the machine name */
s t rca t ( t emp.mname)

;

s t r c a t ( t emp ,

" "
)

;

/* add the port number */
spr in t f ( t emp2 , "%d" , sendpor tnum) ;

s t re a t ( t emp , t emp2 )

;

s t rcat ( temp, " " )

;

/* indicate whether a server, a client, or a broadcaster */
s t rca t ( t emp, server )

;

s t r c a t ( t emp ,

" 0&"
)

;

/* spawn off the sender into the background */
i f ( s y s t em( t emp ) == - 1 )

per ror ( "SFJC) system call failed");

else
I

/* kill sender (which really doesn't exist anyway) so that the
sender_i s_f ree( ) call will always return FALSE.
A similar thing does not have to be done for recei ver_has_da t a(

)

in a broadcasting path since it will always return FALSE anyway */
k i

1

lsende r ( i ns t r uc t u r e ->segmen t , ins t rue ture->sendsem );

/* spawn off the receiver process */

if( strcmp( server, "broadcast" ) 1= )

I

/* add the start of the line, i.e. the program to run */
st rcpy( temp.RECEIVELOCATION)

;

strcat(t emp ,

" "
)

;

I* add the number of the sharedsegment in text */
spr int f ( t emp2

,

"%d" , ins t rue ture ->snmi d)

;

s t rcat ( temp, t emp2)

;

s t rca t ( t emp, " "
)

;

/* add on the machine name */
s t rcat ( t emp.mname)

;

s t rcat ( temp, " "
)

;

/* add the port number */
sprintf( t emp2

, "%d" .receivepor tnum) ;

s t rca t ( temp, t emp2)

;

s t rca t ( temp, " "
)

;

/* indicate whether a server, a client, or a broadcast receiver */
s t rca t ( temp, server) ;

st rcat (temp," 0&" )

;
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/* spawn off the receiver into the background */
if( s y s t em( t emp ) == - 1 )

perror( "RECEIVE system call failed");

I
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/•
For direct connection, both send and receive processes are spawned.
For broadcast, either send or receive process is spawned.
The dynami cmachinepa ths routine performs the following:

(1) creates a shared segment large enough for multiple attachments
and attaches it to the main program virtual space after an allocation
of free memory space.

(2) creates a send and/or receive semaphore based on the send and receive
port numbers.

(3) free_8ender( segment ) and/or f ree_receiver ( segment

)

(4) spawns off the send and/or receive processes.
system("send sharedseg# machinename port# server /c

I

ient /broadcas t ()&");
sys t em( " rece i ve sharedseg# machinename port# server /c

1

ient / receive 0&" )

;

(5) the send and receive semaphores, the pointer to the shared segment,
and the id of the shared segment are placed in a structure of type
Machine that is declared in the calling program.

*/

dynami cmachinepa ths (nuirmac nines , segment num.mname , sendpor tnum, recei vepor tnum,
server, instructure, free space)

int nunmac nines ;
/* the maximum number of other machines to be attached */

long segmentnum; /* the key to use for the created shared segment */

char mnamc[); /* machinename character string */

long sendpor tnum, recei vepor tnum; /* send and receive port numbers */

char server!]; /* this character string is either "client", "server",
"broadcast", or "receive". If direct connection wanted,
it indicates whether the sender /recei ver should open
up as either a client or server. The first guy open
must be the server. If broadcast wanted, it indicates
whether to open up as broadcaster or receiver.

•/

Machine * i ns t rue t urc
;

/* structure to hold segment and semaphore info:

char * ins t rue ture . segment -- returned ptr to the shared segment.

int ins t rue i ure . shmid -- returned system generated shared mem id

int ins t rue t ure . sends em -- the returned send semaphore.
We base i t on the send portnumber.

int ins t rue ture . recei vesem -- the returned receive semaphore.
We base it on the receive portnumber.

•/

int freespace; /* amount of freespace desired for dynamic memory allocation
after this routine has been called. */

I

char *dynami c sharedsegmen t ( ) ; /* shared segment creation function */

int semtran(); /* semaphore creating routine. */

char temp[200], temp2[200]; /* temp character arrays */

static Boolean firsttime = TRUE; /* flag to detect multiple requests */

static int sequencenum = 0; /* sequence number for receive/send */

static int totmachines; /* max attachments permitted */

/* check for first time called and establish max possible attachments */
if( firstt ime )
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totmachines = nunmachines

;

first time = FALSE;
)

else
++sequencenum;

/* check for violation of maximum attachments */
if( sequencenum >= totmachines )

(

perror ( "mpath : Too many attachments attempted");
exit( -1 );

}

/* create the shared segment */
ins t rue ture->segment = dynamic sharedsegmen t ( nunmach i ne s , segment num,

MAXSHAREDSIZE,
&i ns t rue ture->shmid, freespace)

/* create the send semaphore, (unused if receiving broadcast messages) */
ins t rue t ure->sendsem = semt ran( sendpor tnum) ;

/* create the receive semaphore (unused if broadcasting messages) */
ins t rue ture->receivesem = semt ran( receivepor tnum) ;

/* free the sender and receiver parts of the shared segment */
ini t_shared_buf f er( ins t rue ture->segment )

;

/* spawn off the sender process */

if( strcmp( server, "receive" ) != )

I

/* add the start of the line, i.e. the program to run */
strcpy( temp.SEMMXCATION)

;

s t rcat ( temp, " "
)

;

/* add the number of the sharedsegment in text */
spr int f ( I emp2

,

"%d" , ins t rue ture->shmid)

;

strcat(t emp , t emp2 )

;

s t r c a t ( t emp ,
" " )

;

/* add on the machine name */
s t rca t ( t emp.mname)

;

s t rcat ( temp, " "
)

;

/* add the port number */
spr int f ( t emp2

, "%d" , sendpor tnum) ;

strcat(t emp , t emp2 )

;

st rca t ( temp, " ");

/* indicate whether a server, a client, or a broadcaster */
s t r c a t ( t emp .server);
st rcat (temp," ");

/* add the machine sequence number */
sprintf( t emp2

, "%d" , sequencenum) ;

strcat(t emp , t emp2 )

;

/* spawn off into the background */
s t rca t ( temp, "&"

)

;

/* spawn off the sender */
i f ( s y s t em( t emp ) == - 1 )

perror("SET€> system call failed");
)

e 1 se

I

/* kill sender (which really doesn't exist anyway) so that the
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sender_i s_f ree( ) call will always return FALSE.
A similar thins does not have to be done for recei ver_has_dat a(

)

in a broadcasting path since it will always return FALSE anyway */
kill_sender( ins t rue t ure->segment , ins t rue ture->sendsem );

I

/* spawn off the receiver process */

if( strcmp( server, "broadcast" ) != )

{

/* add the start of the line, i.e. the program to run */
strcpy( temp.RECEIVELOCATIGN);
s t r c a t ( t emp ,

" "
)

;

/* add the number of the sharedsegmen t in text */
sprint f( t emp2

,

"%d" , ins t rue ture->shmid)
;

s t r c a t ( t emp , t emp2 ) ;

s t r c a t ( t emp ,

" "
)

;

/* add on the machine name */
s t rca t ( t emp, mname ) ;

s t rcat ( temp, " "
) ;

/* add the port number */
sprint f ( temp2

,

"%d" .receivepor tnum)

;

s t r c a t ( t emp , t emp2 ) ;

s t r c a t ( t emp ,
" "

) ;

/* indicate whether a server, a client, or a broadcast receiver */
s t rca t ( t emp, server )

;

8 t r c a t ( t emp ,

" "
)

;

/* add the machine sequence number */
spr in t f ( t emp2 , "%d" , sequencenum)

;

s t r c a t ( t emp , t emp2 )

;

/* spawn off into the background */
st rcat ( temp,"&")

;

/* spawn off the receiver */
i f ( s y s t em( t emp ) == - 1 )

perror( "RECEIVE system call failed");
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3. netV.c

a. Calling Protocols

This module contains the low-level socket-managing calls. No functions in

this module are intended for application programs. This module is only linked into the

send and receive processes.

b. Code and Description

TITLE

MODULE

VERSION

DATE

Inter -Computer Communication Package

netV.c

5.0

31 May 1988

AUTHOR : Theodore H. Barrow

HISTORY:

VERSION: 1.0

DATE : 19 November 1986

AUTHOR : Michael J. Zyda

DESC. : Contains routines connec t_server and connec t_c

1

ien t to allow
two machines with Unix System V to conmunicate via sockets.

VERSION: 2.0

DATE : 29 April 1987

AUTHOR : Michael J. Zyda

DESC. : Converted to work with 4 . 2BSD sockets.

VERSION: 3.0

DATE : 27 May 1987

AUTHOR : Theodore H. Barrow

DESC. : Eliminated excess variables, some unused and some unnecessary.

VERSION: 4.0

DATE : 21 August 1987

AUTHOR : Theodore H. Barrow

DESC. Improved reliability of socket connection and disconnection.

VERSION: 5.0

DATE : 31 May 1988
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AUIHOR : Theodore H. Barrow *

*

DESC. : Added s t ar t_broadcas t ( ) and broadcas t_recei ve( ) to provide *

datagram sockets for broadcast use. These sockets use the *

default Internet broadcast addressing. *

^^4,*^************** ************************************************ **********
*

RECORDOF CHANGES *

*

Version* Date * Author * * Affected *Reqd*
* Change Description * Modules *Vers*

4.1 * 4Jan88 * T. H. Barrow * * send.c *4.0 *

* Changed include library pathnames for IRIS 4D.* receive. c *4.0 *

m,^n,^^^^t********** ************************************************ **********
* * * * * *

* * * *

*^t*************************************************************************

/
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/*
This segment, when linked into a program on a computer with a UNIX 4.2 BSD
operating system, will allow the program to corrmunicate with programs
executing on other computer systems over an Internet network.
*/

#define TRUE 1

/* include files for UNIX 4.2 BSD. These are all called from the bsd
subdirectory in /usr / inc lude . The file sys/types.h also exists and is
included when bsd/sys/ types . h is used. This was done for ease of change
if and when Silicon Graphics changes the include library structure. */

#include <sys/ types . h>
#include <sys/socke t . h>
#include <bsd/ne t ine t / in . h>
#include <bsd/ne t db. h>

/
it**********************************************************

The connec t_server ( remot e_c

I

ien t_name , por t_number ) function performs
the actions required to connect a server system to a remote client system

*+++***+**+*++*******+**+*++****++*+**+++++*+**+*+++**+*#*++
/

int connec t_server( remote_cl ient_name , port_number)

char remote_cl ient_name[ ] ; /* name of the remote client system */

int port_number; /* port number to the remote client system */

I

char *pt r_c 1 ien t_name ; /* pointer to the remote client system's name */

int local_server_socke t ; /* local socket number */

int socket) ); /* function that opens a socket */

int acceptQ; /* function that accepts a connection from
a remote client socket */

int remot e_c 1

i

ent_socket = -1; /* socket number of remote client system */

/* protocol and address data structure for socket */
static struct sockaddr_in address = { AF_INET J;

long remot e_c 1 ien t_address ; /* address of the remote client system */

short remot e_c 1 ient_por t ; /* port number of the remote client system */

int addres s_s ize ;
/* size of address of remote client system */

/* create socket structure from input parameters */

/* get a pointer to the remote client system's name */
pt r_c 1 ient_name = remot e_c

1

ien t_name
;

/* convert the remote client system name to its address.
Note that ge thos t byname ( ) requires a pointer to a pointer */

remote_c 1 ien t_address = ( long)ge thos tbyname(&pt r_c 1 ien t_name)

;

/ set the remote client port number above the system reserved ports
by adding the remote client port number to the number of reserved ports */

remote_client_port = I PPORT_RESERVED+ port_number;

/* remote client system address family (Internet in this case) */
address . s i n_f ami ly = AF_INET ;

96



netV.c

/* place the remote client port number into the address data structure
in network byte order */

address . sin_port = ht ons( remote_c 1 ient_por t )

;

/* place the remote client system's address in the address data structure */
address . s in_addr . s_addr = remote_c

1

ient_address
;

/* find number of bytes in the remote client address */
address_size = s izeof ( remot e_c

1

ien t_address )

;

/* attempt to open a local socket */
local_server_socket = socket (AF_INET,SOCK_STREAM, 0)

;

i f

(

local_server_socke t < 0)
per ror ( "Server couldn't open a local socket:");

else
I

i

f

(bind( 1 ocal_server_socke t , (caddr_t )&addres s , s izeof ( addres s ) ) < 0)
per ror( "Server couldn't bind address to local socket:");

/* set the maximum number of remote client systems to be connected to */
listen(local_server_socket , SCM^XOONN)

;

pr in t f( "Server waiting to connect to %s\n" , remote_cl ien t_name )

;

/* attempt to accept a connection */
remot e_c 1 i en t_socket = accept

(

local_server_socke t , &address,
&address_8 i ze )

;

i f( remot e_c 1 ien t_socke t < 0)
I

/* an error occurred in the server attempting to
accept a connection from remote client system */

per ror ( 'Server couldn't accept connection from remote client system:")

shut down ( local_server_socket, 2);
close(local_server_socket);

)

/* else the server accepted a connection from the remote client system */

/* return the socket number of the remote client system */
re t urn( remot e_c lient_socket);

) /* connec t_server */
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/ft*********************************************************

The connec t_cl ien t ( remot e_server_name , port_number) function performs
all the actions required to connect a client system to a remote server
s y s t em

it*********************************************************
/

i 11 1 connec t_c 1 ient ( remot e_server_name , port_number)

char remote_server_name [ ] ; /* name of the remote server system */

int port_number; /* port number to the remote server system */

(

int local_c

1

ient_socke t ; /* local socket number */

int socket(); /* function that opens a socket */

/* function that connects local socket to remote server socket */
int connec t ( )

;

int remot e_server_socket ; /* socket number on remote server system */

/* the protocol and address data structure sp ecified for the socket */
static struct sockaddr_in address = ( AF_INET };

struct hostent *remot e_server_address
;

/* address of remote server system */

short remote_server_port

;

/* port number of remote system */

/* create socket structure from input parameters */

/* convert the remote server system name to its address.
Note that ge thos tbyname( ) requires a pointer only in this case */

remote_server_address = ge thos t byname ( remote_server_name )

;

/* clear out the address structure */
bzero((char *)&address, s izeof( address ))

;

/* copy the remote server address structure into the address structure */
bcopy ( remot e_server_address ->h_addr

,

(char * )&addres s . s in_addr

,

remot e_server_addres s ->h_ length)
;

/* set remote server port number above the system reserved ports by adding
the user's remote server port number to the number of reserved ports */

remote_server_port = I PPORT_RESERVED+ port_number;

/* remote server system address f ami ly( In ternet in this case) */
addre ss . s in_f ami ly = AF_INET;

/* place the remote server port number into the address structure
in network byte order */

address . s in_port = h t ons ( remote_server_por t )

;

/* attempt to obtain a local socket */
local_client_socket = socke t (AF_INET, SOCK_STREAM, 0);

i f

(

local_c 1 ient_socke t < 0)
perror ( "CI ien t couldn't open a local socket:");

else
I

/* place Internet address family type in address structure */
addres s . s in_f ami ly = AF_INET;
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/* attempt to connect local client socket to remote server socket */
remote_server_socke t = connec t

(

local_cl ien t_socke t , (caddr_t )&addre s s

,

s izeof (addres s ) )

;

i f ( remote_server_socke t < 0)
I

/* error occurred in attempting to connect to remote server socket */
per ror ( "CI ient couldn't connect to the remote server socket:");

shut down ( local_cl ient _ socket , 2)

;

close(local_client_socket);

/* set local_cl ient socket so that negative value is
always returned when an error occurs

*/
local_c 1 ien t_socke t = remot e_server_socke t

;

)

else
/* successfully connected to the remote server system */
pr in t f( "Connec t ion established with %s . \n" , remote_server_name)

;

/* return the socket number of the local client system */
return(local_client_socket);

)
/* connec t_c 1 ient */
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The s t art_broadcas t (por t_number ) function performs
the actions required to initiate a datagram broadcast socket.

int s t ar t_broadcas t (por t_number)

int port_number; /* port number for the remote receiver system */

(

int broadcas t_socke t ; /* local socket number */

int socket(); /* function that opens a socket */

int se t sockopt ( ) ; /* function that sets a socket to allow broadcast */

int on = TRUE; /* to set broadcast toggle on for socket */

/* protocol and address data structure for socket */
static struct sockaddr_in address = ( AF_INET );

short broadcas t_por t ; /* port number broadcast heard from */

/* create local socket structure from input parameters */

/* set the broadcast port number above the system reserved ports
by adding the broadcast port number to the number of reserved ports */

broadcas t_port = IPPORT_RESERVED+ port_number;

/* system address family (Internet in this case) */
address . s in_f ami ly = AF_INET ;

/* place the port number into the address data structure
in network byte order */

address . s in_por t = htons (broadcas t_por t )

;

/* place the local address in the address data structure
in network byte order */

address . s in_addr . s_addr = h t on 1 ( INADDR_ANY)

;

/* attempt to open a local socket */
broadcast_socket = socke t (AF_INET,SOCK_DGRAM, 0)

;

i f (broadcas t_socke t < 0)
perror( "Broadcaster couldn't open a local socket:");

else
I

/* set the broadcas t_socket for broadcasting */
if (set sockopt ( broadcas t_socket , SOL_SOCKET, SOJBRQADCAST

,

&on , sizeof(on) ) < 0)
per ror ( "Broadcas ter couldn't set socket to broadcast:");

else if(bind( broadcas t_socke t

,

(struct sockaddr *)&address,
s izeof( address ) ) < 0)

per ror ( "Broadcas ter couldn't bind to local socket:");
e 1 se

I

pr int f ( "Wai t ing to broadcas t\n" )

;

I

)

/* return the socket number */
return(broadcast_socket ) ;

} /* s t ar t_broadcas t */
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/ft**********************************************************

The broadcas t_rece ive(broadcas ter.name .por t_number ) function performs
all the actions required to set up a broadcast receiving socket

it*********************************************************

in t broadcas t_receive(broadcas ter_name

,

por t_number

)

char broadcas ter_name [] ; /* name of the broadcaster system */

int port_number; /* port number for the broadcaster */

(

int local_socket ; /* local socket number */

int socket(); /* function that opens a socket /
int broadcas t er_socket ;

/* socket number on broadcaster system */

/* the protocol and address data structure sp ecified for the socket * /

static struct sockaddr_in address = { AF_ INkV );

struct hostent *broadcas t er_address ; /* address of broadcaster system */

short broadcas ter_port ;
/* port number of remote system */

/* create socket structure from input parameters *

/

/* convert the broadcaster system name to its address.
Note that ge thos t byname ( ) requires a pointer only in this case */

broadcas

t

er_address = ge

t

hos (byname (broadcas t e r_name )

;

/* clear out the address structure */
bzero((char * )&addres s , s izeof ( addres s ) )

;

/* copy the broadcaster address structure into the address structure */
bcopy(broadcaster_address ->h_addr

,

(char *)&address

.

sin_addr
,

broadcas ter_address ->h_ length) ;

/* set broadcaster port number above the system reserved ports by adding
the user's broadcaster port number to the number of reserved ports */

broadcaster_port = I PPORT_RESERVED+ port_number;

/* broadcaster system address f ami ly( Internet in this case) */
address . s in_f ami ly = AF_1NET;

/* place the broadcaster port number into the address structure
in network byte order */

address . s in_port = htons (broadcas ter_por t )

;

/* attempt to obtain a local socket */
local_socket = socke t (AF_INET, SOCKJXJRAM, 0);

i f ( local_socke t < 0)
(

perrorl "Receiver couldn't open a local socket:");

else
(

/* attempt to connect local socket to broadcaster socket */
broadcas t er_socket = connec t

(

local_socke t , (struct sockaddr *)&address,
sizeof(address))

;
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i

f

(broadcas ter_socket < 0)
I

/* error occurred in attempting to insert broadcaster information */
per ror ( "Rece i ver couldn't find broadcaster:");

shutdown( Iocal_socket , 2);
c

1

ose ( local_socke t )

;

/* set Iocal_socket so that negative value is
always returned when an error occurs

*/
local_socket = broadcas ter_socket

;

I

else
/* successfully listening to the broadcaster system */
pr int f( " ready to receive from %s . \n" , broadcas ter_name)

;

I

/* return the socket number of the local system */
re t urn( local_socke t )

;

/* broadcas t_receive */
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4. receive.c

a. Calling Protocols

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description

i^^^^t******* ************************************************* ***************

* TITLE

* MJDULE

* VERSION

Inter-Computer Corrmun icat ion Package

receive .

c

3.0

31 May 1988

Theodore H. Barrow

* DATE

* AUTHOR
*

**00000t****** ***************************************************************
*

* HISTORY:
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

****
*

*

Version* Date * Author * * Affected *Reqd
* * Change Description * Modules *Vers

* * * * * *

* * * *

t****************************************************************************

I

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

6 February 1987

Mi chael J . Zyda

Background process to receive messages over link.

2.0

15 December 1987

Theodore H. Barrow

Added capability to get sequence number from command line
and use it to get offset into shared memory segment.

VERSION

DATE

AUTHOR

3.0

31 May 1988

Theodore H. Barrow

DESC. : Added broadcast receive capability
000^^******************************* *************************************

RECORDOF CHANGES
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# include "shared. h"
# i nc I ude "gl .

h"

main( argc
,
argv)

int argc; /* argument count */

char *argv[]; / pointers to the passed in arguments */

I

/* we need to declare character variables for everything passed in */

char shmids t r [ 10] ; /* shared segment string holding the integer key 4*/

int shmid; /* integer pulled out of the string */

char *segment; /* character pointer to the shared segment */

int receivesem; /* receive semaphore */

char *sharedsegmen t ( ) ;
/* create shared segment function */

char mname[100]; /* machine name */

char portstr[10]; /* port number string */

long portnum; /* port number pulled from the string */

char server[10]; /* server string */

char seqnos t r [ 10] ; /* sequence # string holding integer sequence # */

long sequencenum = 0; /* integer pulled out of the string (default 0) */

int socket; /* the opened socket descriptor */

int connec t_server( )

;

int connec t_c 1 ient ()

;

int broadcas t_recei ve( )

;

int recei ver_i s_f ree( )

;

int recei ver_shou ld_die( )

;

int semtran(); /* semaphore creation routine. */

/* pull out the strings from the argument list */
i f ( argc < 5)
I

print f( "RECEIVE: incorrect argument count !\n");
exit(l);

I

/* pull out the shared memory string */
s t rcpy( shmids tr,argv[l]);
s scanf ( shmids t r , "%d" ,&shmid) ;

/* pull out the machinename string */
s t rcpy (mname , a rgv [2 ] ) ;

/* pull out the port number string */
strcpy(portstr,argv[3]);
3scanf(portstr, "%d" ,&por t num) ;
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/* create the receive semaphore */
receivesem = semt ran(por tnum) ;

/* pull out the c 1 ient /server string */
strcpy (server, argv [4]);

/* pull out the sequence number string */
if( argc > 4 )

I

strcpy(seqnostr,argv[5]);
s scanf ( seqnos t r , "%d" ,&s equencenum) ;

}

/* attach to the shared memory segment */
i f( ( in t )( segment = (char * ) shmat ( shmid, 0, 0666)) < 0)
I

perror( "RECEIVE: shmat");
exi t(0);

}

/* create the shared segment address to use */
segment += sequencenum * MAXSHAREDSIZE;

/* open the socket connection to the named machine */
i f( s t rcmp( server ," server" ) == 0)
I

/* we should open as the server */
socket = connec t_server (mname ,por tnum)

;

)

else i f( st rcmp( server , "receive" ) == 0)
I

/* we should open as the broadcast receiver*/
socket = broadcas t_rece i ve (mname ,por tnum)

;

I

else
(

/* we should open as a client */
socket = connec t_c

1

ient (mname ,por tnum)

;

I

/* check to make sure socket was opened, exit if not */
if(socket < 0)
I

print f( "RECEIVE: socket connection NOT madel\n");
exit(l);

}

/* the infinite loop... */

i f( s t rcmp( server , "receive" ) == 0)
while (TRUE)

I

/* should the receiver die??7 */
i f

(

receiver _should_die( segment

,

receivesem) )

I

/* exit after detaching shared segment and cleaning up socket +/
de t ach shared segment ( segment )

;

shu t down( socke t , 0);
c lose( socke t )

;

exit(0);
)

/* if the receiver part of the segment is free, read onto it */
if(receiver_is_free( segment )

)

I

/* check socket and read into segment if proper message */
i

f

(broadcas t_into_segmen t ( socke t , segment , mname,por tnum) > 0)
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)

/* at this point, sleep until we receive a signal from the
graphics program that the receiver segment is free, i.e
the data has been read out */

P( receivesem) ;

} /* end while true for broadcasting*/
else

while(TRUE)
I

/* should the receiver die??? */
i f

(

rece i ver_should_die( segment , receivesem)

)

I

/* exit after detaching shared segment and cleaning up socket */
de t ach shared segment ( segment )

;

shut down( socket , 0);
close( socket )

;

exit(0);
}

/* if the receiver part of the segment is free, read onto it */
if(receiver_is_free( segment )

)

i

I* read socket into segment */
read_socke t_into_ segment ( so eke t , segment )

;

}

/* at this point, sleep until we receive a signal from the
graphics program that the receiver segment is free, i.e.
the data has been read out */

P( rece i vesem)
;

} /* end while true for direct connections*/
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5. semaphores

a. Calling Protocols

This module repackages the low-level semaphore calls into a P and a V

semaphore operation. No functions in this module are intended for application programs.

b. Code and Description

f*m**************************************************************************

TITLE In ter -Computer Conmunicat ion Package

MDULE : send.c

VERSION: 1.0

DATE : 11 February 1987

AUTHOR : Michael J. Zyda

I***************************************************************************

HISTORY:

VERSION

DATE

AUTHOR

DESC.

1.0

11 February 1987

Michael J. Zyda

Implements P and V semaphore operations for Unix system V.
Based on an example from Advanced Unix ProcranminiBased on an example trom Advanced Unix f rograirmi ng

.

****************************************************************************

RECORDOF CHANGES

Version* Date * Author * * Affected *Reqd
* Change Description * Modules *Vers

***+*+*+**++*+** nit*********************************************************
* * * * *

* * *

****************************************************************************!
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#include <sys/ types .h>
^include <sys/ipc.h>
#include <sys/sem.h>

int semtran(key) /* translate semaphore key to ID */
in t key

;

I

int s id;

if ((sid = semget((key_t)key. 1,06661 IPC.CREAT) ) == - 1

)

I

perror("s emge t " )

;

)

re t urn( s id)

;

static void semcal 1 ( s id, op) /* call semop */
int sid;
int op

;

struct sembuf sb;

sb . sem_num =
sb . sem_op = op
sb . sem_f lg =

i f ( semop ( s id ,&sb, 1 ) == -1)
{

per ror (
" semop" )

;

}

void P(sid) /* acquire semaphore */
int sid;
I

s emc a 1 1 ( s i d , -1);
)

void V(sid) /* release semaphore */
int sid;
I

s emc all(sid, 1);
I
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6. send.c

a. Calling Protocols

This program monitors a socket, like a daemon. It is spawned transparently to

the user and receives its initialization data through the command line.

b. Code and Description

* TITLE
*

* MDULE

Inter-Computer Communication Package

send .

c

3.0

31 May 1988

Theodore H. Barrow

* VERSION

* DATE
*

* AUTHOR

*****************************************************************************

* HISTORY:

VERSION: 1.0

DATE : 6 February 1987

AUTHOR : Michael J. Zyda

DESC. : Background process to send messages over link.

VERSION: 2.0

DATE : 15 December 1987

AUTHOR : Theodore H. Barrow

DESC. : Added capability to get sequence number from command line
and use it to get offset into shared memory segment.

VERSION: 3.0

DATE : 31 May 1988

AUTHOR : Theodore H. Barrow

DESC. : Added broadcast capability
***<mi*m**********************************************************************
*

* RECORDOF CHANGES
*

Version* Date * Author * * Affected *Reqd
* * Change Description * Modules *Vers
*^tntnn t ^tn,t****** ************************************************************
* * * * * *
* * * *

******4l^HL*^^4>****************************************************************f
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#include "shared. h'

#inc lude "gl .h"

ma in( argc ,
argv)

int argc; /* argument count */

char *argv[J; /* pointers to the passed in arguments */

I

/* we need to declare character variables for everything passed in */

char shmids t r [ 10] ; /* shared segment string holding the integer shmid */

int shmid; /* integer pulled out of the string */

char ^segment; /* character pointer to the shared segment */

int sendsem; /* send semaphore */

char *sha redsegmen t ( ) ;
/* create shared segment function */

char mname[100]; /* machine name */

char portstr[10]; /* port number string */

long portnum; /* port number pulled from the string */

char server[10]; /* server string */

char seqnos t r [ 10] ; /* sequence # string holding integer sequence # */

long sequencenum = 0; /* integer pulled out of the string (default 0) */

int socket; /* the opened socket descriptor */

int connec t_server ( )

;

int connec t_c 1 ien t ()

;

int s t ar t broadcas t ( )

;

int sender_has_da t a( )

;

int sender_should_die( )

;

int semtran(); /* semaphore creation routine. */

/* pull out the strings from the argument list */
i f ( argc < 5)
(

pr in t f ( "SErO: incorrect argument count !\n");
exi t(l) ;

}

/* pull out the shared memory string */
s t rcpy ( shmids tr,argv[l]);
sscanf ( shmids t r , "%d" ,&s timid)

;

/* pull out the machinename string */
st rcpy (mname , argv [2] )

;

/* pull out the port number string */
strcpy(porlstr,argv[3]);
sscanf(portstr, "%d" ,&por t num)

;

/* create the send semaphore +/
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sendsem = semt ran (por t num) ;

/* pull out the c

1

ient /server string */
strcpy (server, argv [4]);

* pull out the sequence number string */
f( argc > 4 )

strcpy(seqnostr,argv[S])
;

sscanf ( seqnos t r , "%d" ,&sequencenum)

;

* attach to the shared memory segment */
f ((int )(segment = (char * ) shmat ( shmid, 0, 0666)) < 0)

per ror ( "SErO: shmat "
)

;

exit(0);

* create the shared segment */
egment += sequencenum * MAXSHAREDSIZE;

* open the socket connection to the named machine */
f( s t rcmp( server ," server" ) == 0)

/* we should open as the server */
socket = connec t_server (mname ,por tnum)

;

Ise if( strcmp( server, "broadcast" ) == )

/* we should open as a broadcaster */
socket = s t ar t_broadcas t ( portnum );

else

/* we should open as a client */
socket = connec t_c 1 i en t (mname

,
por tnum)

;

* check to make sure socket was opened, exit if not */
f ( socket < 0)

pr in t f
( "SEhD: socket connection NOT made ! \n" )

;

exit(l);

/* the infinite loop... */

if( s t r cmp ( server, "broadcast" ) == )

while(TRUE)
(

/* should the sender die??? */
i f

(

sender_should_die( segment , sendsem)

)

{

/* exit after detaching segment and cleaning up socket */
de t achsh a red segment ( segment ) ;

shut down( socket , 1);
c

1

ose ( socket ) ;

exi t(0)

;

I

/* if there is data in the shared memory segment, ... */
if(sender_has_data( segment )

)

I

/* write the data in the shared segment onto the socket */
send_socke t_f rom_s egment (socket

,
por tnum, segment )

;
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I

/* at this point, sleep until we receive a signal from the graphics
program. The signal will indicate that the graphics program
has put more data into the shared segment.

•/
P( sendsem) ;

) /* end while true for broadcasting 4*/

else
while(TRUE)

I

/* should the sender die??? */
i f ( sender_should_die( segment , sendsem)

)

I

/* exit after detaching segment and cleaning up socket */
de t ach sha redsegmen t ( segment )

;

shut down ( socket , 1);
c 1 ose ( socket )

;

exi t(0);
)

/* if there is data in the shared memory segment, ... */
if( sender _has_data( segment )

)

I

/* write the data in the shared segment onto the socket */
wr i te_socket_from_ segment (socket , segment )

;

)

/* at this point, sleep until we receive a signal from the graphics
Erogram. The signal will indicate that the graphics program

as put more data into the shared segment.
*/
P( sendsem)

;

} /* end while true for direct connection*/
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7. shared.h

a. Calling Protocols

This module has all the predefined constants and type definitions. It must be

included in the application.
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b. Code and Description

* TITLE
*

* MXJULE

Inter -Computer Communication Package

shared. h

4.0

15 December 1987

Theodore H. Barrow

* VERSION
*

* DATE
*

* AUTHOR

* HISTORY:

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

6 February 1987

Michael J. Zyda

Contains all defines and special constants for shared
memory socket system.

2.0

27 May 1987

Theodore H. Barrow

Added a typedef of structure for use by various routines.
Added message types for high level read/write protocol.

3.0

21 October 1987

Theodore H. Barrow

Changed dependencies of buffer calculation constants so that
only one need change. Added additional message types.

4.0

15 December 1987

Theodore H. Barrow

Added field to buffer set so that each link would have its
own area to handle partial receipt of messages

*
+ RECORDOF CHANGES
*

Version* Date * Author * * Affected *Reqd
* * Change Description * Modules *Vers

* 4.1 * 4Jan88 * T. H. Barrow * * *
* * Changed pathname to include /usr for IRIS1 * * *
** + + + *** + ****** + ***»** + ** + + *.* + + *** (.**** + ****** + ***,** + ******»*******»***

/

'
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r*
the following 3 defines are the changeable parameters

LARGESTREADMJST be divisible by 4
*/

#d efine SFJOLOCATION " /usr/work/bar row/share3/send" /* the name of the program
to run for the sender */

#define RECEIVELOCATION "/usr/work/bar row/share3/recei ve" /* the name of program
to run for the receiver */

#define LARGESTREAD252 /* the largest read (i.e. buffer size) */

/* The following defines are constants or arc derived from LARGESTREAD*/

#define SENDEROFFSET(LARGESTREAD+ 4) /* the sender data starts here */

#define WSErOEROFFSET( SEM>EROFFSET/ 4) /* long word offset for sender data */

#define RECEIVEROFFSET /* the receiver data starts at byte */

#define WIECEIVEROFFSET /* the receiver data starts at long word */

#define PROTOO)LHOLDOFFSET( SEM5EROFFSET* 2) /* holding area starts after
sender &rc& /

#define MAXSHAREDSIZE( PROTOOTLHOLDOFFSET+ 12) /* the number of bytes in the
shared segment */

#define CHARACTER_TYPE 'B' /* code for characters */
#define INTEGERJTYPE *I' /* code for integers */
#define FLOAT_TYPE 'R' /* code for floats */
#define CHARACTER_ARRAYTYPE *C* /* code for character arrays */
#define INTEGER_ARRAY_TYPE 'J' /* code for integer arrays */
#define FLOAT_ARRAY_TYPE 'S' /* code for float arrays */

#define CHARACTERSIZE 1 /* character size in bytes */
#define INTEGER_STZE sizeof(l) /* integer size in bytes */
#define FLOAT_SIZE sizeof(l.O) /* float size in bytes */

/* the following is the structure type definition needed for each machine
you want to communicate to...

*/

typedef struct {

char * segment; /+ ptr to shared memory segment */

int shmid; /* system generated shared mem. id */

int sendsem; /* semaphore used to wakeup the sender
proces s

.

*/

int receivesem; /* semaphore used to wakeup the
rece i ver process .. .

•/
} Machine ;
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TITLE

MXXJLE

VERSION

DATE

AUTHOR

In ter -Computer Communication Package

shareseg .

c

3.1

24 February 1988

Theodore H. Barrow

8. shareseg.c

a. Calling Protocols

This module contains the low-level shared-memory calls. No functions in this

module are intended for application programs.

b. Code and Description

J****************************************************************************
*

*

*

*

*

*

*

*

*

+

*
*****************************************************************************

* HISTORY:

+

*

*

*

*

*

+

*

*

*

+

*

*

*

*

*

*

*

*

*

*

*

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

6 February 1987

Michael J. Zyda

Contains routines to manage shared memory segment. Creation
attachment, detachment and deletion are all covered.

2.0

21 October 1987

Theodore H. Barrow

Added function dynamicsharedsegmen t to allow dynamic memory
allocation after corrmun i ca t i oris link established.

3.0

15 December 1987

Theodore H. Barrow

Modified function dynamicsharedsegmen t for use with multiple
links. First call does shared segment creation. Subsequent
calls return address for the next buffer set.

******************************************************************** *********
*

* RECORDOF CHANGES
*

Version* Date * Author * * Affected *Reqd
Change Description * Modules *Vers* * Change Description *

****************************<.***********************+******»*****************
none* 3.1 * 24Feb88* T. H. Barrow *

* * Added compatibility for IRIS 4D. * * *
*****************************************************************************/
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#include <sy s / sy smac ros . h>
^include <stdio.h>
#include <sys/ types . h>
#include <sys/ipc.h>
#include <sys/shm.h>
#inc lude <g 1 . h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2
#ifdef FLAT
#define MACHINE IRIS4D
#el se
#define MACHINE IRIS3000
#endi f

char * shared segment (key , nby tes , shmid)

long key; /* the key to use for the segment */

long nbytes; /* the number of bytes in the segment */

int *shmid; /* returned shared memory id name */

I

char *buf; /* temp char pointer */

struct shmid_ds junkbuf; /* I don't care what's in this buffer */

/* allocate a shared memory segment */
if( (* shmid = shmget( key, nbytes, 0666 I IPC_CREAT )) < )

I

per ror (
" shrug e t

"
) ;

exi t(0);
}

/* attach to the shared memory segment */
if((int)(buf = (char * ) shmat (*shmid , 0, 0666)) < 0)
I

perror("s hma t " )

;

/* Since there was an attachment error, delete the segment */
if( shmctl( shmid, IPC_RM1D, Ajunkbuf ) == - 1 )

per ror (
" shine t 1 " ) ;

exi t(0)

;

I

/* return the pointer to the shared segment */
re t urn(buf )

;
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char *a t t ach_wi thin_dat asegmen t ( key, size, shmid, freespace )

long key; /* the key to use for the segment */

long size; /* the number of bytes in the segment */

int *shmid; /* returned shared memory id name */

int freespace; /* amount freespace desired for dynamic allocation */

(

char *enddata, *buf; /* temporary address pointers */

struct shmid_ds junkbuf; /* I don't care what's in this buffer */

char *sbrk(), *malloc();

/* allocate a shared memory segment */
if( (*shmid = shmget(key, size, 0666 I IPC.CREAT) ) < )

I

perror ( " shmge t
" )

;

exit(0);
}

/* Ensure at least as much unallocated space as freespace indicates.
Normally the top of the data region is incremented more than the
minimum required to meet the malloc() request. Using malloc()
and free() ensures that this mechanism is available for subsequent
dynamic memory allocations. Direct use of sbrk( ) system call
causes the malloc() mechanism to fail on subsequent allocation
requests. freespace is cast to unsigned to meet malloc() spec. */

free( malloc( (uns igned) freespace ));

/* find the top of data region */
enddata = sbrk(0);

/* round up to the next page boundary for attachment of shared
memory segment */

buf = (char *
) ( ( i n t )endda t a - ( ( in t )endda t a % SHN-LBA) + SFM.BA)

;

/* reset top of data region to be above shared segment */
if( brk( buf + size ) < )

I

perror ( "brk" )

;

/* Since there was an error, delete the segment */
if( shmctl( shmid, IPC_FMID, Ajunkbuf ) == - 1 )

per ror ( " shmc 1
1

" )

;

exi t(-l);
}

/* attach to the shared memory segment at the calculated address */
if( ( int )shmat (*shmid, buf, 0666) < )

I

perror( "shmat " )

;

/* Since there was an attachment error, delete the segment */
if( shmctl( shmid, IPC_RMID, Ajunkbuf ) == - 1 )

per ror ( " shmc 1
1

" )

;

exi t(0)

;

}

re t urn( buf )

;

)
/* a t t ach_wi

t

hin_dat a segment ( ) */
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char "dynami c sha redsegmen t ( nunmacli i ne s , key, nbytes, shmid, freespace)

int nuraiiachines; /* maximum number of machines to be initiated */

long key; /* the key to use for the segment */

long nbytes; /* the number of bytes in the segment */

int ""shmid; /* returned shared memory id name */

int freespace; /* amount freespace desired for dynamic allocation */

I

static Boolean firsttime = TRUE; /* allows for multiple calls */

static char * s ! a r

t

shared ;
/* start of shared memory space */

static int *holdshmid; /* holds shmid for subsequent calls */

i f ( f ir s 1 1 ime )

I

switch( MACHINE )

(

case IRIS4D:
startshared = sha redsegmen t ( key, nurrmach 1 nes *nby t e s , shmid );
break;

case IRIS3000:
startshared = (char *)at t ach_wi th in_dat a segment ( key,

nurrmach ine s*nby t e s , shmid, freespace )

break;
def aul t

:

perror( "shareseg: Unknown machine" );

} /* switch( MACHINE ) */

ho Id shmid = shmid;
firsttime = FALSE;

)

e 1 se

I

/* start next buffer immediately above last. Return the same shmid
for all buffers. Assumes all buffers are same size (true if all
from same shared. h definition. */

startshared += nbytes;

*shmid = *ho I dshnii d
;

)

/* return pointer to the proper buffer in the shared segment */
return( startshared );
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de t ach sha reds egmen t ( segment

)

char *segment; / segment to detach from */

I

int returnvalue;

if( (int)segment % SHvLBA 1= )

return( 1 );
else
I

if( returnvalue = shmdt ( segment ) < )

per ror (
" shmdt " )

;

return( returnvalue );

dele t e sha red segment ( segment , shmid)

char *segment; /* character pointer to the shared segment */

int shmid; /* shared memory id... */

I

int returnvalue;

struct shmid_ds junkbuf; /* I don't care what's in this buffer */

/* detach from the shared segment and set returnvalue */
if( returnvalue = de t achsharedsegment ( segment ) == )

/* remove the shared segment from the system and reset returnvalue */
if( returnvalue = shmc 1 1 ( shmid , IPC_RMID, &junkbuf) < )

perror("shmct 1"
)

;

re turn( returnvalue)
;
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a. Calling Protocols

This module contains functions that are intended for the application's use and

functions that are used exclusively by other routines. The parameters for externally

accessible functions are described below.

i. receiver _has_data

int receiver_has_data( instructure)

Machine *ins t rue ture ; /* includes
char *ins

t

ructure . segment a pointer to the shared segment */

ii. sender js-free

int sender_is_f ree( ins

t

ructure)

Machine *ins t rue ture ; /* includes
char * ins

t

rue ture . segment a pointer to the shared segment */
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b. Code and Description

i**** *************************************************************************
*

* TITLE

* MDULE

4.0

In t er -Computer Conrnun ica i ion Package

suppor t .

c

* VERSION:
*

* DATE

* AUTHOR

******************************************************************************
*

* HISTORY:
*

31 May 1988

Theodore H. Barrow

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

VERSION

DATE

AUTHOR

DESC.

1.0

6 February 1987

Michael J. Zyda

Contains support routines for shared memory conrnun ica t ions
s y s t em

.

2.0

27 May 1987

Theodore H. Barrow

Converted functions called by the application program to use
a structure for ease of use.

3.0

21 October 1987

Theodore H. Barrow

Removed functions for reading from and writing to the shared
memory segment by the application program.

4.0

31 May 1988

Theodore H. Barrow

Added functions broadcas t_in t o_segmen t and
send_socke t_f rom_segmen t for broadcasting over datagram socket

********************************************************

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

Version* Date * Author *

* * Change Description
**********************************************************
* * * *

* *

******************************* **********************************************^

RECORDOF CHANGES

* Affected *Reqd
* Modules *Vers

********************
* *

* *
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#include "shared. h"
# i nc lude <gl . h>
#include <bsd/sys/ types . h>
^include <sy s / socke t . h>
#include <bsd/ne t inet / in . h>
#include <bsd/ne tdb.h>

/* the following routine sets up buffer area */

ini t_shared_buf f er ( segment

)

char "segment; / pointer to the shared segment */

(

free_sender( segment );

f ree_recei ver ( segment );
(segment + PROTO&LHOLDOFFSET+ 9) - '\0';

/ the following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
valid.

•/

f ree_ sender ( segment

)

char "segment; /* pointer to the shared segment */

I / the following line zeroes the first four bytes of the sender part
of the shared memory segment, 'segment' is a character pointer.
I coerce it into a long integer pointer and then write a zero.

*/
((long )segment + ^SEMMIOFFSET) = 0;

/ this following routine writes zeroes at the top of the
shared segment indicating that the segment data is no longer
valid.

•/

free_receiver( segmen t

)

char segment; / pointer to the shared segment /
{ / the following line zeroes the first four bytes of the receiver part

of the shared memory segment, 'segment' is a character pointer.
I coerce it into a long integer pointer and then write a zero.

((long )segment + WIECEIVEROFFSET) = 0;
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/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.
it uses an input structure since called by main program

*/

in t rece i ve r_has_da t a( instructure)

Machine * ins t rue t ure ; /* includes

char * i ns t rue ture . segment a pointer to the shared segment */

I

f(*((long *)inst ructure->segment + ^RECEIVEROFFSET) > 0)

return(TRUE);

else

return(FALSE)

;

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.

•/

int sender_has_da t a( segment

)

char *segment; /* pointer to the shared segment */

I

f(*((long *)segment + WSErOEROFFSET) > 0)

return(TRUE)

;

e 1 se

return(FALSE)

;

)
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/* the following routine tests the first 4 bytes of the receiver
segment to see if they are less than zero.

*/

int recei ver_should_die( segment

)

char "segment; /* pointer to the shared segment */

(

if(*((long *)segment + ^RECEIVEROFFSET) < 0)

return(TRUE);
}

else
(

return(FALSE);
I

/* the following routine tests the first 4 bytes of the sender
segment to see if they are less than zero./

int sender_should_die( segment

)

char "segment; /* pointer to the shared segment */

{

if(*((long *)segment + ^SEhDEROFFSET) < 0)
I

return(TRUE)

;

)

else
I

return(FALSE)

;

I

}
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/* the following routine tests the first 4 bytes of the receiver
segment to see if they are non-zero.

*/

int rece iver_i s_free( segment

)

char ^segment; /* pointer to the shared segment */

I

if(*((long *) segment + WIECEIVEROFFSET) == 0)
(

return(TRUE)

;

I

else
I

return(FALSE)

;

}

}

/* the following routine tests the first 4 bytes of the sender
segment to see if they are non-zero.
it uses an input structure since called by main program

•/

int sender_i s_f ree( ins t rue

t

ure )

Machine * ins t rue

t

ure ; /* includes

char *ins t rue ture . segment a pointer to the shared segment */

I

if(*((long *)instructure->segment + WSErOEROFFSET) == 0)
I

return(TRUE)

;

I

else
(

return(FALSE)
;

}
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/* the following routine reads on the input socket into the receiver segment.*/

read_socke 1 _ i n t o_s egmen t ( socket , segment )

int socket; /* a socket descriptor */

char "segment; /* a ptr to the shared segment */

I

long nbytes; /* the number of bytes read in */

char templLARGESTREAD]

;

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment

.

•/
nbytes = r e ad ( socket , temp, LARGESTREAD)

;

if(nbytes <= 0)
I

/* the following routine calls are commented out for the following
reason :

nbytes <= means that the socket has been broken.

This routine is called by the receiver process so the only
intelligent thing to do is to terminate the receiver process,
i.e. call ex i t . .

.

per ror( " read" )

;

printf ("READ_SOCKET_Irm>_SEGMENT: number of bytes read = %d\n" .nbytes )

;

shutdown( socket, 2 );
close( socket );
exit(l);

I

/* copy the data into the shared segment */
memcpy(( segment + RECEIVEROFFSET+ 4) , t emp.nby tes )

;

/* set the number of bytes in the shared segment */
((long +)segment + RECEIVEROFFSET) = nbytes;
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/* the following routine writes the data from the sender side
of the shared segment to the socket */

wr i t e_socke t_f rom_ segment (socket , segment

)

int socket; /* socket descriptor */

char *segment; /* pointer to the shared segment */

(

long nbytes; /* the number of bytes to write */

char temp[LARGESTREAD]
;

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment .

*/
memcpy( temp, ((char *)segment + SENDEROFFSET+ 4),

* ( ( 1 ong * ) segmen t + WSENDEROFFSET)) ;

/* write the data to the socket */
nbytes = wr i t e( socke t , t emp, *((long *) segment + WSENDEROFFSET))

;

if (nbytes <= I I nbytes != *((long *) segment + WSENDEROFFSET)

)

I

/*
This error indicates the socket is broken. Just exit the
sender process .

pe r ror ( "wr i t e"
)

;

printf ("\MUTE_SOCKET_FRCM_SECaCNT: number of bytes written = %d\n" .nbytes )

;

print f( "Number of bytes in shared segment = %d\n" , *(

(

long *)segment + WSErOEROFF
*/
shutdown! socket, 2 );
c lose ( socke t )

;

exi t(l)

;

}

/* free the sender segment */
free_sender( segment )

;
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/* The following routine receives on the input datagram socket.
If the message matches the mname and portnum it is copied into the
receiver area of the shared memory segment.

is returned if the message does not match mname and portnum,
the number of bytes read is returned if it does match. */

int broadcas t_into_ segment (socket , segment , mname
,
portnum)

int socket; /* a socket descriptor */

char "segment; /* a ptr to the shared segment */

char mname[ ] ; /* machine name of broadcaster */

long portnum; /* port number of broadcaster */

{

long nbytes; /* the number of bytes read in */

char t emp [ LARGESTREAD)

,

int flags = 0; /* flags = indicates none set */

struct sockaddr_in who; /* Internet structure for message sender address */

int wholen; /* length of received address struct who */

struct hostent *b roadcas t e r ; /* pointer to structure with info on
broadcaster */

static long broadcas t_address ;
/* address of broadcaster */

static short broadcas t_por t ; /* port of broadcaster */

static Boolean first time = TRUE;

/* read the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segment. This also allows checking for match with desired broadcaster.

•/
nbytes = recvfrom( socket, temp, LARGESTREAD. flags,

(struct sockaddr *)&who, Awholen );

if(nbytes <= 0)
i

perror("recvfrom:");
I

else
I

i f ( f i r s 1 1 ime )

(

/* determine desired broadcaster address and port */

broadcas t_port = ht ons (

(

shor t )por tnum)

;

broadcaster = (struct hostent * )gc

t

hos t byname ( mname )

;

bcopy( broadcas ter->h_addr , (char * )&broadcas t_address
,

broadcas ter ->h_length );

if( (broadcas t_address == who . s in_addr . s_addr

)

(broadcas t_port == who. sin_por t ) )
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/* copy the data into the shared segment */
memcpyUsegment + RECEIVEROFFSET+ 4) , temp.nby tes )

;

/* set the number of bytes in the shared segment */
((long *)segment + WIECEIVEROFFSET) = nbytes;

)

else
I

nbytes = 0;
/* Set nbytes to so return of function indicates no match */

)

I

re t urn( n by t es )

;
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/* the following routine sends the data from the sender side
of the shared segment to the socket for broadcast */

send_socke t_f rom_ segment (socket , port num, segment

)

int socket; /* socket descriptor */

long portnum; /* port number of broadcaster */

char ^segment; /* pointer to the shared segment */

I

long nbytes; /* the number of bytes to write */

char temp[LARGESTREAD]
;

short broadcas t er_por t

;

static Boolean first time = TRUE;

static struct sockaddr_in network = { AF_INET ); /* structure for broadcast
address */

i f ( f i r s t t ime )

(

broadcaster_port - IPPORT_RESERVED+ portnum;
/* Set up broadcasting address structure */
ne twork . s in_f ami ly = AF_INET;
network. sin_addr. s_addr = h tonl ( INAIX>R_BROADCAST)

;

ne twork . s in_port = h tons(broadcas t er_por t )

;

first time = FALSE;
I

/* copy the data into a temporary array to avoid segment protection
violation since the socket does not share with the shared memory
segmen t .

•/
memcpy( temp, ((char *)segment + SENDEROFFSET+ 4),

((long *) segment + WSENDEROFFSET))

;

/* broadcast the data through the socket *

/

nbytes = sendto( socket, temp, *((long *)segment + W5ENDEROFFSET), 0,
(struct sockaddr *)&network, s

i

zeof(ne twork) );

if(nbytes <= I I nbytes != *((long *)segment + ^SENDEROFFSET)

)

/*
This error indicates the socket is broken. Just exit the
sender process.
*/

per ror ( "wr i t e"
)

;

print f("WUTE_SCCKET_FROM_SEavENr: number of bytes written = %d\n" .nbytes ) ;

print f( "Number of byles in shared segment = %d\n" , *(

(

long *)segment + W5ENDEROFFSET)

)

shutdown( socket, 2 );
c lose ( socke t )

;

exi 1(1);
I

/* free the sender segment */
free_sender( segment )

;
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/* the following routine deletes the sender by writing
a negative byte count into the shared segment
and then waking up the sender.

*/

kill_sender( segment , sends em)

char segment; / ptr to the segment */

int sendsem; /* semaphore to the sender */

(

/* write a negative number into the byte count field. /
((long ) segment + WSETOEROFFSET)= -1;

/* at this point, we should send a wakeup to the sender program,
the sender will read the bad byte count and exit.

*/
V( sendsem) ;

/* the following routine deletes the receiver by writing
a negative byte count into the shared segment
and then waking up the receiver.

*/

kill_receiver( segment

,

receives em)

char segment; /* ptr to the segment */

int receivesem; /* semaphore to the receiver /
I

/ we do not wait until the receiver segment is free here
as the process that calls this routine should already
have read the last piece of data.

•/

/ write a negative number into the byte count field. /
((long ) segment + WRECEIVEROFFSET)= -1;

/ at this point, we should send a wakeup to the receiver program,
the receiver will read the bad byte count and exit.

*/
V( rece ivesem)

;
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APPENDIXB - HEXPLORERMODULEDESCRIPTIONS

All functions, methods, and flavor are contained in file irisflavor.lisp.

1. Calling Protocols

The module contains functions, methods, and a flavor that are intended for the

application's use. It also contains a macro and functions that are used internally. The

parameters for externally accessible functions and methods are described below.

a. iris

(defun iris (x) ;where x is number of iris machine desired

b. start-iris

(defmethod (conversat ion-wi th- i r is start-iris)
()

c. get- iris

(defmethod (conversat ion-wi th- iris :get-iris)
()

d. put-iris

(defmethod (conversat ion-wi th- i r i s :put-iris)
(obj ec t )

(let* ((buffer (cond
((equal (type-of object) 'bignum) (conver t -number- to- s t ring object))

((equal (type-of object) fixnum) (convert-number-to-string object))
((equal (type-of object) 'float) (conver t -number - to- s t

r

ing object))
((equal (type-of object) 'string) object)
(t

,f error") ))

e. stop-iris

(defmethod (conversat ion-wi th- ir is :stop-iris)
()

reuse-iris

(defmethod (conversat ion-wi th- i r is : reuse- i r 1 s )

()
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2. Code and Description

(defmacro loopfor (var init test expl Aoptional exp2 exp3 exp4 expS)
'(prog ()

(setq
,
var , ini t

)

tag
, expl
, exp2
,exp3
,exp4
,exp5
(setq , var ( 1+ , var )

)

(if (= ,var ,test) (return t) (go tag)) ) )

(defun convert-number-to-string (n)
(pr inc - to- s t r ing n) )

(defun conver t - s t

r

ing- to- integer (str &optional (radix 10))
(do ((j (+ j 1))

(n (+ (* n radix) (digi t -char-p (char str j) radix))) )

((= j (length str)) n) ) )

(defun find-per iod- index (str)
(catch ' exi

t

(do times (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw 'exit x) ) ) ) )

(defun ge t

-

lef t

s

ide-of - real (str &optional (radix 10))
(do ((j (1+ j))

(n (+ (* n radix) (digi t -char-p (char str j) radix))) )

((or (null (digi t -char-p (char str j) radix)) (= j (length str))) n) ) )

(defun ge t - right side-of- real (str &optional (radix 10))
(do ((index (1+ ( find-per iod- index str)) (1+ index))

(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digi t -char-p (char str index) radix)))) )

((= index (length str)) n) ) )

(defun conver t - s t

r

ing- to- real (str Aoptional (radix 10))
(-1- (float (ge t - lef t s ide-of - real str radix)) (ge t - r ight s ide-of - real str radix)) )

(defvar * tcp-handler 1* (send ip :
: *

t

cp-handl er* :get-port))
(defvar * tcp-handl er2* (send ip ::* tcp-handler* :get-port))

(defvar * i ri s 1 -por t 1* 1027)
(defvar *i r i si -por t2* 1026)

(defvar * i r i s 1 - address* 3221866502)
(defvar * i r i s2- address* 3221866504)
(defvar * ir i s3- address* 3221866505)

(defvar *des

t

-address* nil)

; this is the send port
; this is the receive port

; the tcp-ip or internet address
; look in network configuration

(defun iris (x)
(cond ((equal x 1) (setq *des t

-

addre s s* *i r i s 1 - address*) )

((equal x 3) (setq *des t - address* *i r

i

s3- addres s*)

)

(t (setq *des

t

-address* *i r i s2- address* ) ) ) )

(defflavor conver sat ion-wi th- i r i s (( t

a

lking-por t -number * i r i s 1 -por t 1*

)

(listening-port -number *irisl-port2*)
(talking-port * tcp-handler 1*)
(listening-port * tcp-handler2*)

(destination *des t -address*) )
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()

: se 1

1

able-
: ini t able-

:get table- instance-variables
instance-variables
instance-variables )

(defmethod ( conve r s a t i on-wi t h - i r i s :start-iris)
()

(progn
(send talking-port :open

: ac t i ve

talking-port -number
destination

tcp will begin the procedure to establish
connection (default vs :passive)
port number of destination host
machine name or address if blank and
in :passive mode local machine waits for
connec t ion
set max seconds before read request times out

; ipass i ve

30 )

(send listening-port :open
: ac t i ve
listening-port -number
des t ina t ion
30 )

'"A conversation with the iris machine has been established" ) )

iris reuse -iris)(defmethod (conver sat ion-wi th-

()
(setq *

t

cp-handl er 1* (send ip :: *t cp-handler* :get-port)
*

t

cp-hand ler2* (send ip :: *t cp-handler * :get-port)
talking- port *tcp-handlerl*
listening-port *

t

cp-handler2* ) )

(defmethod (conver sat ion-wi th- i r i s :get-iris)
()

(let* ((typebuffer " ")

(lengthbuffer " ")
(buffer " ")

(buffer-length 1) )

(progn
(send listening-port :receive

t ypebuf f er
buffer -

1

engt h
30
: wa i t )

(send listening-port :receive
lengthbuffer
4
30

: wa i t )

(setq buf fer - length ( conver t - s t

r

ing- to- in lege r lengthbuffer))
(setq buffer (make-string buf fer- length : ini t i al -element (character

listening-port : receive( se :i
32)))

buffer
buffer- length
30
: wa i t )

(cond ( (equal
( (equal
(

(

equal
(t nil)

typebuffer
typebuffer
typebuffer
) ) ) )

"I") (conver t - s t

r

ing- t o- in teger buffer))
"R" ) (conver t - st ring- to- real buffer))
"C") buffer)

: pu l
- i r i s )

(let

(defme thod (conversation-with-iris
(obj ec t

)

((buffer (cond
((equal (type-of object) 'bignum) (conver t -number - to- st ring object))

((equal (type-of object) ' f ixnum) (conver t -numbe r - t o- s t r i ng object))
((equal (type-of object) 'float) (conver t -number - to- s t r ing object))
((equal (type-of object) 'string) object)
(t 'error")

(buffer- length
))
(length buffer))
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(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) "fixnum) "I")
((equal (type-of object) 'float) "R"

)

((equal (type-of object) 'string) "C"

)

(t *C m
) ))

( lengthbuf f er (convert -number-to-string buffer- length) )

( *loopvar i able* 0) )

(progn
(send talking-port : send

typebuffer
1

nil
nil )

(if (= (length lengt hbuf f er ) 4)
(send talking-port : send

lengthbuf fer
4
nil
nil )

(progn
(loopfor *loopvar

i

abl e* (length lengthbuf fer ) 4
(send talking-port : send "5" 1 nil nil) )

(send talking-port :send lengthbuffer (length lengthbuf fer ) nil nil) )

(send talking-port : send
buffer
buffer - length
t

nil ) ) ) )

(defmethod (converse t ion-wi t h- i r i s :stop-iris)
()

(progn (send talking-port .close) (send listening-port :close)) )
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All functions, methods, and flavor are contained in file irisflavor.lisp.

1 . Calling Protocols

The module contains functions, methods, and a flavor that are intended for the

application's use. It also contains a macro and functions that are used internally. The

parameters for externally accessible functions and methods are described below.

a. select-host

(defun select-host (host-name)

b. start-iris

(defmethod (:start-iris conversat ion-wi th- i ri s

)

()

c. get-iris

(defmethod (:get-iris conversat ion-wi th- iri s)
()

d. put- iris

(defmethod (.put-iris conversa t ion-wi th- i r i s )

(obj ec t )

(let* ((buffer (cond
((equal (type-of object) 'bignum) (conver t -number - to- s

t

ring object))
((equal (type-of object) ' fixnum) (conver t -number- to- s

t

ring object))
((equal (type-of object) *

s

ingle- float ) (conver t -number- to- s

t

ring object))
((equal (type-of object) 'string) object)
(t ''error") ))

e. stop-iris

(defmethod (:stop-iris conversat ion-wi th- iris)
()

f. reuse-iris

(defmethod (:reuse-iris conversat ion-wi th- i r is)
()
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2. Code and Description

;;; -*- Mode: LISP; Syntax: Common- 1 i sp; Package: USER -*-

; handy macro to have in the send message farthur down

(defmacro loopfor (var init test expl &optional exp2 exp3 exp4 expS)
'(prog ()

(setq ,var ,init)
tag

• expl
. exp2
, exp3
, exp4
, exp5
(setq ,

var (1+ , var )

)

(if (= ,var .test) (return t) (go tag)) ) )

(defun conver t -number- to- s t

r

ing (n)
(pr inc- to- s t r ing n) )

(defun conver t - s t r ing- to- in teger (str &optional (radix 10))
(do ((j (+ j 1))

(n (+ (* n radix) (digi t -char -p (char str j) radix))) )

(( = j (length str)) n) ) )

(defun find-per iod- index (str)
(catch 'exit

(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))
(throw 'exit x) ) ) ) )

(defun ge t - left s ide-of- real (str &optional (radix 10))
(do ((j (1+ j))

(n (+ (* n radix) (digi t -char-p (char str j) radix))) )

((or (null (digi t -char -p (char str j) radix)) (= j (length str))) n) ) )

(defun ge t -

r

ight s ide-of - real (str &optional (radix 10))
(do ((index (1+ ( find-per iod- index str)) (1+ index))

(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digi t -char-p (char str index) radix)))) )

((= index (length str)) n) ) )

(defun conver t - s

t

ring- to- real (str &optional (radix 10))
(+ (float (ge t - left s ide-of - real str radix)) (ge t -

r

ight s ide-of - real str radix)) )

(defvar *iris-portl* 1027)
(defvar *iris-port2* 1026)
(defvar * local -

1

alk-port * 1500)
(defvar * local - 1 i

s

ten-por t * 1501)

this is the send port
this is the receive port
this is the local send port
this is the local receive port

(defflavor conver sa t ion-wi th- i r i s ((

t

alki ng-por t -number * i r i s-por 1 1*

)

(listening-port -number *iris-port2*)
(local- talk-port -number *local-talk-port*)
(local-listen-port -number *local-listen-port*)

( t alking- s t ream)
(listemng-st ream)

(des

t

inat i on-hos t -obj ec t ) )

()
: ini t able- ins t ance- var iabl es )

(defmethod ( : in i t -des t inat ion-hos t conver sat ion-wi th- i r i s

)

(name-of -hos t

)

(setf des t inat ion-hos t -obj ec t (ne

t

:par se-hos t name-of -hos t ) ) )
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(defmethod (:start-iris conversat ion-wi th- i r i

s

)

()
( set f talking- st ream

( t cp : open- tcp-stream destination-host-object
talking-port -number
local -

t

alk-port -number ) )

(setf 1 i s

t

ening- s t ream
( t cp : open - tcp- st ream dest inat ion-host -object

listening-port -number
local - 1 i

s

ten-por t -number ) )

"A conversation with the iris machine has been established" )

(defmethod (

:

reuse-iris conversat ion-wi th- i r i s )

()
)

(defun read-string (stream num- chars)
(let ((out -st ring ""))

(dotimes (i num-chars)
(setf out-string (string-append out-string (read-char stream))) )

out - s t r ing ) )

(defmethod (:get-iris conversat ion-wi th- i r i s )

()
(let* ((typebuffer " ")

( lengthbuf f er " ")
(buffer " ")

(buffer-length 1) )

(progn
(setf typebuffer

(read-string 1 i

s

tening- s t ream 1) )

(setf lengthbuffer
(read-string 1 i

s

tening- s t ream 4) )

(setf buf fer - length
(conver t - 8 t

r

ing- to- in

t

eger lengthbuffer) )

(setf buffer
(read-string 1 i

s

teni ng- s t ream buf fer - length) )

(cond ((equal typebuffer "I") (conver t - s

t

ring- to- in t eger buffer))
((equal typebuffer "R" ) (conver t - 8 t

r

ing- to- real buffer))
((equal typebuffer "C" ) buffer)
(t nil) ) ) ) )

(defvar *step-var* 0)

(defun my-wr i te- 8 t r ing( s t

r

ing stream)
(let* ((num-chars (length string)))

(dotimes (i num-chars)
(write-char (aref string i) stream) ) ) )

(defmethod (:put iris conver sat ion-wi th- i ri s )

(object)
(let* ((buffer (cond

((equal (type-of object) 'bignum) ( conver t -number - to- s

t

ring object))
((equal (type-of object) 'fixnum) (conver t -number - to- s t

r

ing object))
((equal (type-of object) '

s

ingle- f loat ) (conver t -number - to- s t

r

ing object))
((equal (type-of object) 'string) object)
(t ''error") ))

(buf fer - length (length buffer))

(typebuffer (cond ((equal (type-of object) 'bignum) "I")
((equal (type-of object) 'fixnum) "I")
((equal (type-of object) '

s

ingle - float ) "R"

)

((equal (type-of object) 'string) "C"

)

(t *C") ))

(lengthbuffer (conver t -number- to- s t

r

ing buf fer- length) ) )
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(progn
(my-wr i

t

e-s t ring typcbuffer t alking- s t ream)
(send t alk ing- s t ream : force-output

)

(if (= (length lengthbuf f er ) 4)
(wr i t e- s

t

ring lengthbuffer talking- 8 t ream)
(progn

(Toopfor *step-var* (length lengthbuffer) 4
(wr i te- s t r ing "0" talking- s t ream) )

(my-wr i te- string lengthbuffer t alking- s t ream) ) )

(send t alking- s t ream : force-output )

(my-wr i te- s t ring buffer t alking- s t ream)
(send talking- s t ream : force-output ) ) ) )

(defmethod (:stop-iris conver sat ion-wi th- i r i s)
()

(progn (send t al king- s t ream :close)
(send 1 i s

t

ening- s t ream :close) ) )

(defun select-host (host-name)
(send talk : ini t -des

t

inat ion-hos t host-name) )
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APPENDIXD - TESTANDUTILITY PROGRAMS

1. gprog.c

a. Calling Protocols

This is a test program for the direct connect protocol. By command line

argument, another machine to receive direct connect messages from can be specified.

The default is to receive messages from iris2. It must be run in conjunction with

gprog2.c to function properly, as the port assignments are hardcoded. Since it is the

server program, it must be started before gprog2.c.

b. Code and Description

/* this is file gprog.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

This is the SERVER side program and runs first!!!.

*/

#inciude "shared. h"
#inc lude "gl .

h"

#include "device. h"

main( argc
,
argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

I

Machine remot emachine

;

/* structure for remote machine */

char other_machine[50]

;

/* name of other machine */

char mybuf fer [LARGESTREAD]

;

/* received data */

char ou

t

going [LARGESTREAD]

;

/* outgoing message's buffer */

int mybufferl[LARGESTREAD/INTEGER_SIZE]

int ou
t
go ingl [LARGESTREAD/ INTEGER_SIZE]

float mybuffer2[LARGESTREAD/FLQAT_SIZE]

float outgoing2[LARGESTREAD/FLQAT_SIZE]

/* received integer data */

/* outgoing integer message's buffer */

/* received float data */

/* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */
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char temp[10]; /* temp array used to make outgoing message */

long count = 0; /* message counter */

char received_type( )

;

char type_received;

int element s_received;

long i; /* temp loop variable */

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */
i f ( argc > 2)
I

pr int f
( "GPROG: incorrect argument count! use gprog <alias>\n");

exit(l);
I

/* pull out the name of the other string, if it exists */
i f ( argc == 2 )

I

strcpy( other_machi ne , "npscs-" );
strcat( other_machine , argvflj );

}

else
strcpy( other_machine , "npscs - i r i s 1" );

/* create a path to a particular machine (irisl default) */
/* the first argument is the key for the shared memory segment,

the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use.
the fifth argument indicates whether the processes should

act as a server or a client,
the sixth argument is the returned pointer to the structure

r emo t etna chine.
it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

the seventh argument is the amount of freespace desired for dynamic
memory allocation during execution of the program.

•/
dynamicmach i nepa t h( 1 , ot her_mach i ne ,1,2, "server" ,&remotemachine , 2000000)

;

/* the loop for polling the shared segment */
while(TRUE)

I

/* make an outgoing message */
strcpy(outgoing, "GPROGORIGINATED MESSAGE: ");

count = count - 1;

ou

t

goi ng 1 [0 | = count;

noutgoing = s

t

rlen(out going) ;

outgoing2[0] = count;

/* is there data in the shared segment? */
i f

(

receive r_has_dat a(&remot emac hi ne)

)

I

type_recei ved = recei ved_t ype (Areniot emachi ne )

;
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printf("The message received by GPROGis of type %c \n" ,

t ype_recei ved)

;

switch ( type_recei ved)
{

case CHARACTER_ARRAY_TYPE:
e lemen

t

8_recei ved = number_rece i ved(&remot emachine )

;

printf("The message received by GPROGis %d elements long!\n",
element s_received);

read_charact er s (Aremot emachine , mybuffer, element s_recei ved)

;

break

;

case INTEGER_TYPE

:

read_in t ege r (Aremot emachine .mybuffer 1 )

;

break

;

case PLOAT_TYPE:
read_ float (Aremot emachine .mybuffer 2)

;

b r e ak

;

I

/* at this point in the program, process the received data...*/
pr int f ("GPROG has received the following data:\n");

switch ( type_recei ved)
I

case CHARACTER_ARRAY_TYPE

:

for(i=0; i < element s_received ; i+=l)
I

pr int f
( "%c" .mybuffer [ i ] )

;

I

break ;

case INTEGERJTYPE

:

print f("%d", mybuffer 1[0]);
break ;

case FLOAT_TYPE:
print f("%f" .mybuf fer2[0]);
break;

I

print f(*\n");

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

i f ( sender_i s_f ree( Aremot emachine )

)

I

if((j % 3) == 0)
wr i te_character s (Aremot emachine .outgoing, noutgoing);

/* wait until message sent before attempting to send another */
while( I sender_i s_free(Aremot emachine ) ) /* do nothing */ ;

if((j % 3) == 1)
wr i te_in t ege r (Aremot emachine , out going 1)

;

/* wait until message sent before attempting to send another */
while( ! sender_i s_free(Aremot emachine) ) /* do nothing */

;

if((j % 3) == 2)
wr i t e_f loa t (Aremot emachi ne , ou

t

going2)
;

e 1 se

++j;
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/* assume socket connection broken */
pr in t f( "Sender wasn't freel Termina t ing. . . \n" )

;

break ;

} /* endif while TRUE /
/* get rid of the path to the other machine...*/
del e t emach i nepa th (&remot emachine )

;
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2. gprog2.c

a. Calling Protocols

This is a test program for the direct connect protocol. By command line

argument, another machine to receive direct connect messages from can be specified.

The default is to receive messages from irisl. It must be ran in conjunction with

gprog.c to function properly, as the port assignments are hardcoded. Since it is the

client program, it be started after gprog.c is ready for it.

b. Code and Description

/* this is file gprog2.c

It is a sample top level graphics program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

This is the CLIENT side program and runs second!!!.

*/

#include "shared. h"
#define TRUE 1

ma in( argc , argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

(

Machine remot emachine

;

/* structure for remote machine */

char other_machine [50]

;

/* name of other machine */

char mybuf fer [LARGESTREAD]

;

/* received data */

char out going | LARGESTREAD1

;

/* outgoing message ' s buffer */

int mybuf fer 1 [LARGESTREAD/INTEGERJSIZE]

int ou
t
go ingl [LARGESTREAD/INTEGER_SIZE]

float mybuffer2[LARGESTREAD/FLOAT_SIZE]

float outgoing2[LARGESTREAD/FLOAT_SIZE]

/* received integer data */

/* outgoing integer message's buffer */

/* received float data */

/* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */

char temp[ 10]; /* temp array used to make outgoing message */

long count = 0; /* message counter */

char recei ved_t ype( )

;
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char type_recei ved

;

int element s_received;

long i; /* temp loop variable */

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */
i f ( argc > 2)
I

pr in t f
( "GPROG2: incorrect argument count) use gprog2 <alias>\n");

exi t(l)

;

I

/* pull out the name of the other string, if it exists */
i f ( argc == 2 )

I

strcpy( o t her_machine , "npscs-" );
strcat( other_machine , argv[l] );

I

else
strcpy( other_machine , "npscs - i r i s2" );

/* create a path to a particular machine (iris2 default) */
/* the first argument is the key for the shared memory segment,

the second argument is the name of the machine to connect to.
the third argument is the sending port number for the socket to use.
the fourth argument is the receiving port number for the socket to use
the fifth argument indicates whether the processes should
act as a server or a client,
the sixth argument is the returned pointer to the structure

remot emachine .

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

•/
mach i nepa t h ( 1 , o t he r_machine ,2,1, "client" ,&remot emachine )

;

/* the display loop and loop for polling the shared segment */
whi le(TRUE)

(

/* make an outgoing message */
st rcpy( out going, "GPROG2 ORIGINATED MESSAGE: "

)

;

count = count + 1;

outgoingl[0] = count;

noutgoing = s t rl en(out going)

;

outgoing2[0] = count;

/* is there data in the shared segment? */
if(receiver_has_dat a (&remot emachine )

)

I

t ype_recei ved = rece ived_type(&remot emachine )

;

printf("The message received by GPROG2 is of type %c \n"

,

t ype_recei ved)

;

switch ( type_recei ved

)

I

case CHARACTER_ARRAY_TYPE

:

e lemen

t

s_rece i ved = number_rece ived(&remot emachine ) ;
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printf("The message received by GPR0G2 is %d elements longl\n",
element s_received);

read_charac t er s (Aremot emachine .mybuf f er

,

e lemen t s_received) ;

break;

case INTEGERTYPE

:

read_ integer (&remot emachine ,mybuf f er 1 )

;

break;

case FLQVTTYPE:
read_ float (Aremot emachine , mybuf fer2)

;

break;
}

/* at this point in the program, process the received data...*/
pr int f

( "GPROG2 has received the following data:\n");

switch ( type_received)
(

case CHARACTER_ARRAY_TYPE

:

for(i=0; i < e lemen

t

s_rece ived ; i+=l)
I

pr in tf("%c", mybuf fer[i]);
)

break;

case INTEGER_TYPE

:

pr int f("%d", mybuf ferl[0]);
break;

case FLOAT_TYPE:
printf("%f" ,mybuffer2[0]);

break;

I

print f("\n" )

;

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(8ender_i s_free (Aremot emachine )

)

(

if((j % 3) == 0)
wri te_char ac t er s(&remot emachine , out going ,nou

t

going) ;

/* wait until message sent before attempting to send another */
while( ! sender_i s_f ree(Aremot emachine ) ) /* do nothing */ printf("2");

if((j % 3) == 1)
wr i te_integer (Aremot emachine

,

outgo ingl) ;

/* wait until message sent before attempting to send another */
while( ! sender_i s_free(&remot emachine) ) /* do nothing */ printf("3");

if((j % 3) == 2)
write_float (Aremot emachine ,outgoing2);

++j;
I

else
(

/* assume socket connection broken */
pr int f( "Sender wasn't free! Termina

t

ing . . . \n" )

;

break;
I
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/* at this point, you can do the rest of the display loop */

} /* endif while TRUE */

/* get rid of the path to the other machine...*/
de 1 e temachinepa th(&remot emachine )

;
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3. prog.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,

another machine to receive broadcast messages from can be specified. The default is to

receive messages from iris2. It must be run in conjunction with prog2.c to function

properly, as the port assignments are hardcoded.

b. Code and Description

/* this is file prog .

c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

#include "shared. h'
#define TRUE 1

main( argc

,

argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

Machine remot emachinel

;

Machine remot emachine2;

char o ther_machine [50]

;

char mybuf fer [LARGESTREAD]

;

char ou

t

going [LARGESTREAD]

;

/* first structure for remote machine */

/* second structure for remote machine */

/* name of other machine */

/* received data */

/* outgoing message's buffer */

int mybuf ferl [LARGESTREAD/ INTEGERSI ZE ]

int out go ingl [LARGESTREAD/INTEGER_SIZE]

float mybuffer2[LARGESTREAD/FLOAT_SIZE]

float outgoing2[LARGESTREAD/FLOAT_SIZE]

long noutgoing;

char t emp [10];

:eived integer data */

/* outgoing integer message's buffer */

/* received float data */

/* outgoing float message buffer */

/* size of the outgoing message */

/* temp array used to make outgoing message */

long count = 0;

char rece i ved_type( )

;

char type_rece i ved;

/* message counter */
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int element s_rece ived;

long i; /* temp loop variable */

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */
i f ( argc > 2)
I

pr in t f
( "PROG: incorrect argument count! use prog <alias>\n");

exi t(l);
}

/* pull out the name of the other string, if it exists */
if( argc == 2 )

I

strcpy( ot her_machine , argv[l] );

I

else
strcpy( other_machine , "npsc s - i r i s2" );

/* create a pair of paths to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created,

the second argument is the key for the shared memory segment,
the third argument is the name of the machine to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use
the sixth argument indicates whether the processes should
act as a receiver or a broadcaster.
the seventh argument is the returned pointer to the structure

r emo t emachinel or r emo t emac h i n e 2

.

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sends em id,
and the returned receivesem id.

*/
dynanii cmach i nepa t h s ( 2 , 1 , o t he r_mach i ne ,2,1, "receive" ,&remot emachinel ) ;

sleep(5); /* to let both sides set up receiving channels first */

dyn ami cmach inepaths(2, 1 .other _mac hi ne , 4 , 3

,

"broadcas t " ,&remot emach ine2) ;

/* the loop for polling the shared segment limited to avoid send buffer
overflow */

whi le(TRUE)
{

/* make an outgoing message */
strcpy(outgoing,"PROG ORIGINATED NESSAGE: ");

count = count + 1;

ou
f

go i ng 1 [0] = count;

noutgoing = s t r 1 en( ou
t go i ng )

;

outgoing2[0] = count;

/ * is there data in the shared se gmen t ? *

/

if(receiver_has_dat a(&remot emach i ne 1 )

)

I

type_rece i ved = rece i ved_t ype (&remot emach i ne 1 )

;

printf("The message received by PROG is of type %c \n"

,

t ype_rece ived)
;

switch ( type_recei ved)
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case CHARACTER_ARRAY_TYPE:
e 1 erne lit s_reccived = numbe r_rece i ved(&remot emach ine 1 ) ;

printf("The message received by PROG is %d elements longl\n"
element s_received);

read_ characters (&remot emach inel ,mybuf f er

,

element s_received);
break;

case INTEGER_TYPE

:

read_integer (Aremot emach inel .mybufferl)
;

break;

case FLOATJTYPE:
read_float (Aremot emach inel ,mybuf f er2)

;

break

;

}

/* at this point in the program, process the received data...*/
pr i 11 1 f ( "PROG has received the following data:\n")

;

switch ( type_rece ived)
(

case CHARACTER_ARRAY_TYPE

:

for(i=0; i < element s_received ; i+=l)
I

print f
( "%c" ,mybuf f er [ i ] )

;

}

break ;

case INTEGER_TYPE

:

print f("%d",mybufferl[0]);
break;

case FLOAT_TYPE:
printf("%f " .mybuf fer2[0] )

;

break;

)

print f
( "\n" )

;

/ at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender_i s_f ree (Aremot emach i ne2 )

)

I

if((j % 3) == 0)
wr i te_charac ter s (Aremot emach ine 2

,

outgoing, nout going) ;

/* wait until message sent before attempting to send another */
while( I sende r_i s_f ree(Aremot emach

i

ne2 ) ) /* do nothing pr in t f
( "2" )*

/

if((j % 3) == 1)
wr i te_integer (Aremot emach ine2, outgoingl) ;

/* wait until message sent before attempting to send another */
while( ! sender_i s_f ree(Aremot emachine2) ) /* do nothing pr in t f

( "3" )*/

if((j % 3) == 2)
wr i te_f loat (Aremot emach ine 2 ,outgoing2) ;

/* wait until message sent before continuing */
while( ! sender_i s_f ree (Aremot emachine2) ) /* do nothing pr in t f

( "4" )*/

)

else
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/* assume socket connection broken */
pr int f( "Sender wasn't free!\n");

break;
I

/* at this point, you can do the rest of the display loop */

) /* endif while TRUE */

/* get rid of the path to the other machine...*/
dele temachi nepa th(&remot emachine 1 )

;

del e temachi nepa th(&r emotemachi ne2)

;
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4. prog2.c

a. Calling Protocols

This is a test program for the broadcast protocol. By command line argument,

another machine to receive broadcast messages from can be specified. The default is to

receive messages from irisl. It must be run in conjunction with prog.c to function

properly, as the port assignments are hardcoded.

b. Code and Description

/* this is file prog2.c

It is a sample top level program for the asynchronous reading
and writing of sockets via shared memory and two other processes.

This program spawns off the required processes.

This program uses structure type Machine declared in file shared. h.

*/

#include "shared. h"
#define TRUE 1

ma in( argc
,
argv)

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

Machine remot emachinel

Machine remot emachine2

char o ther_mach ine [50]

/* first structure for remote machine */

/* second structure for remote machine */

/* name of other machine */

char mybuffer [LARGESTREAD]
; /* received data */

char out going [LARGESTREAD] ; /* outgoing message's buffer */

int mybufferl [LARGESTREAD/INTEGER.SIZE]

int ou
t
go ingl [LARGESTREAD/ INTEGER^SIZE]

float mybuffer2[LARGESTREAD/FLOAT_SIZE]

float outgoing2[LARGESTREAD/FLOAT_SIZE]

/* received integer data */

/* outgoing integer message's buffer */

/* received float data */

/* outgoing float message buffer */

long noutgoing; /* size of the outgoing message */

char tempi 10]; /+ temp array used to make outgoing message */

long count = 0; /* message counter */

char rece i ved_t ype( )

;

char type_rece i ved;
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int e lemen

t

s_rece i ved;

long i; /* temp loop variable */

long j = 0; /* variable to control message sending */

/* pull out the string from the argument list */
i f ( argc > 2)
I

pr in t f
( "PROG2 : incorrect argument count! use gprog2 <alias>\n");

exi t(l) ;

}

/* pull out the name of the other string, if it exists */
if( argc == 2 )

I

strcpy( ot her_machine , argvfl] );

I

else
strcpy( other_machine , "npscs - i r i s2" );

/* create a path to a particular machine (iris2 default) */
/* the first argument is the maximum number of channels to be created,

the second argument is the key for the shared memory segment,
the third argument is the name of the machine to connect to.
the fourth argument is the sending port number for the socket to use.
the fifth argument is the receiving port number for the socket to use
the sixth argument indicates whether the processes should
act as a server or a client,
the seventh argument is the returned pointer to the structure

remot emachinel or remotemachine2

.

it includes the pointer to the shared memory segment,
the system generated shared memory id, the sendsem id,
and the returned receivesem id.

*/
dynami emach i nepa ths (2,1, o t he r_mach i ne ,3,4, "receive" ,&remot emach ine2 ) ;

sleep(5); /* to let both ends of the process get set up */

dynamicmachi nepa ths (2,1 ,other_machine ,1,2, "broadcas t " ,&remot emach ine 1 ) ;

/* the display loop and loop for polling the shared segment */
while (TRUE)

I

/* make an outgoing message */
strcpy(outgoing, "PROG2 ORIGINATED MESSAGE: ");

count = count + 1;

out goi ngl [0] = count;

noutgoing = s t rlen(out going)

;

outgoing2[0] = count;

/* is there data in the shared segment? */
if(receiver_has_dat a(&remot emach i ne2

)

)

(

1 ype_rece i ved = recei ved_t ype(&remot emachine2 )

;

print f ("The message received by PR0G2 is of type %c \n"

,

t ype_rece i ved)

;

switch ( type_received)
I
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case CHARACreR_ARRAY_TYPE

:

element s_received = numbc trece i ved(&remot emachine2 )

;

printf("The message received by PR0G2 is %d elements long!\n",
element s_received);

read_charac t er s(&remot emachine2 .mybuf fe r

,

el emen

t

s_recei ved)

;

break
;

case INTEGERJTYPE

:

read_in t ege r (Aremot cmach inc2 ,mybuf

f

erl )

;

break;

case FLQATTYPE:
read_f loat (Aremot emach i ne2 , mybuf f er2)

;

break;
I

/* at this point in the program, process the received data...*/
pr in t f

( "PROG2 has received the following data:\n");

switch ( type_received)
(

case CHARACreR_ARRAY_TYPE:
for(i=0; i < element s_recei ved ; i+=l)
I

print f ("%c", mybuf fer[i J);

break;

case INTEGER_TYPE

:

printf("%d" .mybuf fer 1 [0] )

;

break;

case FLOAT_TYPE:
print f("%f " ,mybuffer2[0]);

break;

printf("\n" );

/* at this point, we would look at our system and see if we needed
to send data. Instead, I will check if the sender is free.
If the sender is free, I will send one of three messages */

if(sender_i s_f ree (Aremot emach ine 1 )

)

I

if((j % 3) == 0)
wr

i

te_charac ters (Aremot emach ine 1 ,ou

t

going ,nout going )

;

/* wait until message sent before attempting to send another */
while( ! sender_i s_f ree (Aremot emach inel ) ) /* do nothing pr in t f

( "2" )*/ ;

if((j % 3) == 1)
wr i t e_i n t ege r (Aremot emach ine 1 .outgoingl)

;

/* wait until message sent before attempting to send another */
while( ! sender_i s_f ree(Aremot emachinel ) ) /* do nothing prin t f

( "3" )*/ ;

if((j % 3) == 2)
wr i t e_f loat (Aremot emach ine 1 ,out going2) ;

/* wait until message sent before continuing */
while( ! sender_i s_f ree(Aremot emachinel ) ) /* do nothing pr in t f

( "4" )* / ;

)

else
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/* assume socket connection broken */
print f( "Sender wasn't free! Tenninat ing. . . \n"

)

break
;

} /* endif while TRUE */

/* get rid of the path to the other machine
de 1 e temach i nepa t h(&remot emach ine2) ;

de 1 e t emach t nepa th (&remot emach inel )

;
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5. rmshare.c

a. Calling Protocols

This is a stand-alone utility. It will remove all shared memory segments owned

by the user. By command line argument, selective segments can be removed.

b. Code and Description

* TITLE

rmshare .

c

In ter -Computer Communication Package

1.0

25 February 1988

Theodore H. Barrow

* NCDULE
*

* VERSION
*

* DATE
*

* AUTHOR
*

* HISTORY:

* VERSION

* DATE

1.0

25 February 1988

Theodore H. Barrow

Removes shared memory segments identified on command line

* AUTHOR

* DESC.

* RECORDOF CHANGES
*

Version* Date * Author * * Affected *Reqd
* * Change Description * Modules *Vers

* * * * *
* * * *
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#include <errno.h>
#include <sy s/sy smacros . h>
#include <stdio.h>
#include <sy s /

t
ypes . h>

#include <sys/ipc.h>
#include <sys/shm.h>
#i nc lude <gl . h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2
#ifdef FLAT
#define MACHINE IRIS4D

#define MACHINE IRIS3000
#endi f

extern int errno;

ma in( argc , argv )

int argc; /* argument count */
char *argv[]; /* pointers to the passed in arguments */

I

int first = 1;
int last = 1000;
key_t i

;

int shmid;
key_t key;
static struct shmid_ds buffer;

/* set the number of shared memory keys to remove */
i f ( argc > 1

)

I

for( i=first; i<argc; i++ )

I

key = atoi( argv[i] );
if( (shmid = shmget( key, 0, 0)) == -1 )

I

if( errno != ENOENT )

I

write_error( shmid, key, errno );

)

)

else
I

if( shmctl( shmid, IPC_RMID, Abuffer ) == - 1 )

(

write_error( shmid, key, errno )

;

I

e 1 se
write_done( shmid, key );

} /* if( (shmid = shmget( i , 0, ) ) == - 1 ) */

I /• for */

}

else
I

for( i=first; i < 1 a s t ; i++ )

I

if( (shmid = shmget( i, 0, 0)) == -1 )

I

if( errno != ENOENT )

(

write_error( shmid, i, errno );

}
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)

else
I

if( shmctl( shmid, IPC_RMID, Abuffer ) == - 1 )

I

write_error( shmid, i, errno );

}

else
write_done( shmid, i );

} /* if( (shmid shmget( i, 0, )) == -1 ) */
} /* for /

I

print f( "\nComple ted . \n" );

) /* main() */

write_error( shmid, key, error )

int shmid;
key_t key;
int error;

(

printf( "\nShared Memory ID %d (key %d) caused error %d.",
shmi d, key, error );

} /* wr i te_error( ) */

write_done( shmid, key )

i n t shmid

;

key_t key;

(

print f( "\nShared Memory ID %d (key %d) removed.", shmid, key );

j /* wri te_done( ) +/
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6. testshare.c

a. Calling Protocols

This is a stand-alone utility. It will print current parameters for all active

shared memory segments. By command line argument, selective segments can be

printed.

b. Code and Description

!++*+******+******************************************************************
* *

* TITLE : In t er -Compu t er Communication Package *

* *

* MXXJLE : testshare.c *

* *

* VERSION: 1.0 *

* *

* DATE : 25 February 1988 *
* *

* AUTHOR : Theodore H. Barrow *

* *

******************************************************************************
*> *

* HISTORY: *

* *

* VERSION
*

* DATE
+

* AUTHOR

* DESC.

*

1.0

25 February 1988

Theodore H. Barrow

Determines which shmid values are used and what their
par ame t e r s are.

******************************************************************************

* RECORDOF CHANGES *

* Affected *Reqd*
* Modules *Vers*

Version* Date * Author *

* * Change Description
******************************************************************************
* * * * * * *

* + * * *
*********** ******************************************************************^
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#include <errno.h>
#include <sy s / sy smac ros . h>
^include <stdio.h>
#include <sy s /

t
ype s . h>

^include <sys/ipc.h>
^include <sys/shni.h>
#i nc lude <g 1 . h>

/* The following defines will have to be modified for different machines
but one of the underlying shared memory attachment mechanisms should
work for any system V implementation. */

#define IRIS4D 1

#define IRIS3000 2
#ifdef FLAT
#define MACHINE IRIS4D
IP c 1 s c
#define MACHINE IRIS3000
#endi f

extern int errno;

ma i n ( )

I

int first = 1

;

int last = 1000;
int i ;

int 8 hmi d

;

for( i = first; i< 1 as t ; i++ )

I

if( (shmid = shmget( i, 0, 0)) == -1 )

I

if( errno != ENOEOT )

I

write_error( shmid, i, errno );

}

)

else
(

if( wr i t e_s t rue t ( shmid ) == - 1 )

write_error( shmid, i, errno );

) /* if( (shmid = shmget( i, 0, )) == -1 ) */

}
/* for */

printf( "\nCompleted.\n" );

} /* main() */

write_error( shmid, key, error )

int shmid

;

key_t key;
int error ;

I

printf( "\nShared Memory ID %d (key %d) caused error %d .

"

,

shmid, key , error )

;

) /* wr i te_error ( ) */

struct shmid_ds *get_struct( shmid )

int shmid

;

I

static struct shmid_ds buffer;

if( shmctl( shmid, IPC_STAT, Abuffer ) == - 1 )
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return( (struct shmid_ds *)-l );

I

e 1 se
return( &buf f er )

;

I /* get_struct() /

wr i t e_s t rue t ( shmid )

int shmid;

struct shmid_ds *buf;

if( (int)(buf = get_struct( shmid )) == -1 )

re t urn( (int)buf );

pr int f

pr int f

pr in t f

Pr
pr in t f

P r

P r

P r

pr
P r

Pr

Pr
Pr

ntf

ntf
ntf
ntf
ntf
ntf

print f

ntf
pr int f

pr i n t f

pr int f

ntf
ntf

pr int f

return

) /* wr i

"\nSha
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n
"\n

);

red Memor
shm_perm

cuid i

cgid i

uid is
gid is
mode i

seq is
key i s

s hm_s e g s z
s hm_ r e g i

s hm_ 1 p i d
shm_cpid
shm_nat t c

shm_cnat t

shm_a t ime
shm_dt ime
slim c t ime

y ID %d h
has the f

s %d.
"

, b
s %d .

" , b
bu
bu

b
bu
bu
or

%d .
"

,

s %o."

%d."
,

is %d
s a st rue
is %d.",
is %d.",
h i s %d .

"

ch i s %d .

is %d .

"

,

is %d."
,

is %d." ,

as the following structure:", shmid );
ol lowing structure:" );
uf ->shm_perm. cuid );
uf ->shm_perm. cgid );
f ->shm_perm. u id );
f ->shm_perm. gid );
uf ->shm_perm.mode );
f - > s hm_pe rm . s e q )

;

f ->shm_perm.key );
%x .

"
, buf ->shm_segsz , buf ->shm_segsz );

ture incompletely defined in region. h!" )

buf ->shm_lpid )

;

buf ->shm_cpid );
, buf ->shm_na t tch );
", buf ->shm_cnat tch );

buf ->shm_a t ime )

buf ->shm_dt ime )

buf ->shm_segsz )

e_s t rue t ( ) */
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