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ABSTRACT

The unsteady aerodynamic forces and moments of an oscillating airfoil for the

fixed wing case were determined by Theodorsen along with the development of a lift

deficiency function. Loewy subsequently developed an analogous lift deficiency

function for the rotary wing case in which there are an infinite number of layers of

shed vorticity, or wakes, below the reference airfoil. With the advent of computer

panel codes that calculate the time histories of the wakes generated by oscillating

airfoils, a theory is developed for the rotary wing case in which there are a finite

number of layers of shed vorticity below the reference airfoil. This theory includes a

lift deficiency function that is completely analogous to Loewy and Theodorsen.

It has long been recognized that an airfoil oscillating in pure plunge produces a

propulsive force ("Katzmayr effect"). Garrick used Theodorsen's work to develop

equations for the propulsive force that include the lift deficiency function as a

parameter. When either Loewy's lift deficiency function or the finite wake lift

deficiency function is used, the effect of the propulsive force is greatly enhanced with

the proper phase relationship of the wakes. The finite wake theory along with

Garrick's work is used to describe the performance characteristics of Higher Harmonic

Control. Specifically for the OH-6A, coupled pitch-plunge motion results in a

propulsive force that significantly reduces the rotor drag force.
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a non-dimensional elastic axis 1< .tic 1 measured from midchord
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G' imaginary part of Loewy's lift deficiency function
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h non-dimensional distance between layers of shed vorticity (wake spacing)

bQ£i

h simple harmonic motion of vertical deflection, h = h e
twt
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h,, amplitude of deflection in simple harmonic motion of h e'^' (plunge)

li non-dimensional amplitude of deflection, h = -~-

b

h first derivative with respect to time of vertical deflection motion (plunge)

fi second derivative with respect to time of vertical deflection motion (plunge)

Hn
(2) Hankel function (complex Bessel function) of second kind of order n,

H <2> = J + Y

i complex notation , i = \f-i

Jn real part of complex Bessel function of order n

k reduced frequency, k =

v

m ratio of oscillation frequency to rotational frequency, m = —
i L

Ma aerodynamic moment about the elastic axis (positive clockwise)

n revolution number

N number of rotor revolutions (reduces to the number of wakes for single-blade

rotor)

Ap pressure difference across airfoil

P x propulsive force

q blade number

Q total number of rotor blades

r blade section radius

S x-component of induced downwash velocity

t time

U vortex distribution per unit length
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v freestream velocity

V forward airspeed

w downwash velocity

W Loewy's wake weighting function

WN finite wake weighting function

x non-dimensional distance from midchord

x non-dimensional distance from midchord

Yn imaginary part of complex Bessel function

a simple harmonic motion of pitch angle, a = a
oe

im

a amplitude of rotation in simple harmonic motion of a e
,ul

a first derivative with respect to time of rotation motion (pitch)

& second derivative with respect to time of rotation motion (pitch)

a real part of Loewy's wake weighting function

a N real part of finite wake weighting function

(3 imaginary part of Loewy's wake weighting function

P N imaginary part of finite wake weighting function

Y a
vorticity generated by reference airfoil

Y nq vorticity generated by qih blade in nth revolution

r total circulation around airfoil

|i advance ratio, u = —
fir

£ non-dimensional distance from midchord

p density of air

vui



$>, (p velocity potentials

<p phase angle between initiation of rotation input and arbitrary reference point

<p 2 phase angle between initiation of amplitude input and arbitrary reference point

\J/ q
phase angle by which notion of qih blade leads reference blade

<*) frequency of oscillation

Q rotational frequency of rotor
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I. INTRODUCTION

A. GENERAL

The present knowledge of rotar) wing unsteady aerodynamics is limited. The

fundamental closed form solutions by Theodorsen [Ref. 1] and Loewy [Ref. 2] provide

the basis for the theoretical work in this area. While Loewy's work on wake-induced

flutter helps explain the phenomenon, it aso points out the difficulty to be overcome

which is the closed form theory shews rapid changes in the lift deficiency function

with changes in reduced frequency (A), wake spacing (/?), and frequency ratio (m).

In the past, emphasis in the study of unsteady aerodynamics has tended to focus on

flutter instability and the effects of unsteady aerodynamics on lift generation and

torsional loads, and not on performance. In this thesis, the emphasis will be on

performance and the effect of unsteady aerodynamics on the drag of the airfoil. The

classic work on this subject was performed by Garrick [Ref. 3]. In this work, Garrick

found that the drag force could be reversed, acting to propel the airfoil forward. This

drag reversal is generally referred to as either negative drag or propulsive force.

The primary objective of this thesis is twofold. First, the effect of rotary wing

unsteady aerodynamics on the drag of an airfoil will be analyzed. It will be shown

that this effect can be either substantially greater than that shown by Garrick, or

substantially less depending on the frequency ratio (w). This change in the effect is

due to layers of shed vorticity (or wakes) below the rotor blades. Second, with the



recent advent of computer panel code c; >able of calculating the time histories of the

wakes generated by oscillating airfoil?, a :losed form theory is developed for the

rotary wing aerodynamics in which t .-re ire a finite number of wakes below the rotor

blades. It will be shown that this uY ry i s completely analogous to Theodorsen and

Loewy's work, and applicable to Ga r :k': work.

B. SCOPE

Chapter II is a short review of tin wc k of Theodorsen [Ref. 1] and Garrick [Ref.

3]. The material is presented inan: me to allow one to understand the key

assumptions made in each theory v» about being overcome by the details. Chapter III

contains an analysis of Loewy's work [Rt f. 2] and applies it to Garrick. The closed

form finite wake theory is also presented here, as well as the special case of a single

wake. Chapter IV is a limited discussion on applications of finite wake rotary wing

unsteady aerodynamic theory. The fust section discusses logical extensions of this

theory to include forward airspeed [Re*. 4] and compressibility effects [Ref. 5 and 6].

A comparison of this theory to the Naval Postgraduate School (NPS) Unsteady Panel

Code [Ref. 7 and 8] for the case of pare plunge is also included in the first section.

The second section presents an explanation for the performance benefits due to Higher

Harmonic Control (HHC). Appendix A is another application of this theory describing

the efficient nature of flight of the hummingbird. The discussions in Chapter IV and

Appendix A are not designed to provide all the answers to the questions arising from

these applications. They are designed tc show that positive performance effects can be

found in the application of rotary wing unsteady aerodynamics.



D. BACKGROUND

A. THEODORSENS LIFT DEFICIENCY FUNCTION

The aerodynamic forces and moments on an oscillating airfoil for the fixed-wing

case as determined by Theodorsen [Ref. 1] are based on potential flow theory and the

Kutta condition. Potential flow theory reduces to Laplace's equation for the case of

incompressible subsonic flow.

£* £* = (1)

dx 2 dy 7

Since potential flow theory follows the principle of superposition, the potentials can be

treated as two types: non-circulatory and circulatory. The non-circulatory terms are

primarily from the effects of the freestream with the airfoil. The circulatory terms

result from the vorticity generated in the wake of the airfoil. It is in the circulatory

terms that the lift deficiency function is defmed.

The aerodynamic forces and moments on a thin airfoil, depicted in Figure 1, are

obtained by integrating the pressure difference across the airfoil determined from the

generalized Bernoulli equation as follows:

P = b\ p(x)dx (2);[p«
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Figure 1. Parameters of the thin airfoil.
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where the generalized Bernoulli equation is written as

m
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'

In the manner suggested by Scanlan and Rosenbaum [Ref. 9], the potential flow

for the non-circulatory terms can be written as



* »°* l-jr^-y/T^y^?

l-jr^/T^yf1?
(5)

The pressure difference across the airfoil for the non-circulatory terms is

Lp(x)N
-2

j'(j)pb

'/El w(l)dl

l-xt-JT^yfl^}
(6)

[

\-xl + y/l-X2
J\-Z

2

wiftdl ,

where the downwash 1 w(£) = h + b(£-a)ti + va, and simple harmonic motion is

assumed, or w = w e'
u

'. Integrating the pressure difference in equation (6) to obtain

the non-circulatory forces and moments yields

PN = -npb 2 (va +Ji- baa) (7)

and

(M)N = -irpb : (—-a)vba + b 2 (—+a 2 )a -abh
2 o

(8)

The potentials of the circulatory terms are determined by integrating the velocity

potential resulting from a single vortex element with a vortex distribution per unit

length, U(xJ, that is assumed to vary sinusoidally. This yields a circulation potential

of

'Only two degrees of freedom (pitch and plunge) are presented here since most rotary

wing aircraft do not have ailerons incorporated on the rotor blades.



4>r PW 2tt
tan

1 - AT -X„
dx. (9)

The Kutta condition, which requires the velocity at the trailing edge to be finite, can

be written as

p& A\ . finite.
\ dx 'edee \ dx /edee

(10)

This results in

(id

Now defining a lift deficiency function as

I
e °dx„

CXk)
fiT*

I
e °dx„

V^o-1

(12)

the Kutta condition becomes

-2w£)dl 111
N i-5

CU) = 03)

Using equation (4) the pressure difference across the airfoil for the circulatory terms is



*p{X )T
-

2pF \ak)+x[\-gk)]}[ .rpl w{i)di (14)

Integrating the pressure difference in equation (14) to obtain the circulatory forces and

moments yields

PT = -2TTpvbC{k)[va+h+b(- -a)d] (15)

and

[MY = 2Trpvb 2
(a + -)C{k)[va + h + b(--a)a] . (16)

The total pressure difference is obtained by adding the pressure differences for the

non-circulatory and circulatory terms. After some algebraic manipulation the total

unsteady pressure distribution can be written as

^-™fWM w(™
V

i+z

"flog

.\ \+x\ \-l\x-Z

{\-xl-J\-x 2
J\-j

2

l-xl+)/l-x 2
\/l-l

2j -

w(l)dl

(17)

Likewise the total forces and moments are obtained by adding their two parts together

yielding

P = -Trpb 2(va+Ji-baa)-2npvbC(k) va + h + b{— - a\a (18)



and

A/ = -Trpb 2 \(--a)vb. <l\± + a
2)a-abh\

2 8 *

(19)

+ 27rp vb ?
a + - -) C\.£) ra + ^ + b{— - a)a\ .

The analytical solution to the lift efi iency function involves the use of complex

Bessel functions (or Hankel functions , ai d can be written as

rr(2)

C{k) — -3 , (20)

where Hj 2> = J„ - iYn is the Hankel functi :>n of the second kind of order n. The lift

deficiency function can be separated into its real and imaginary parts as

dk) - F[k) * JG(k) ,
(2D

where

. /,(yr ) + r,(r,-/ )

(7,. K )
2 + ( Yi

-/
)
2

and

GU) =
K'*o + Vo

, (23)

(y
1

+ y )
2 + (y,-/ )

2

and all Bessel functions are evaluated at the reduced frequency (k). A typical plot of

F(k) and G(k) as given by Theodorsen [lief. 1], is shown in Figure 2. Figure 3 is a

semi-logarithmic plot of Theodorsen's lif deficiency function, and the limits of F(k)

8
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and G(k) as k approaches zero and infinity can be more easily seen. It is an

interesting note that when — = 0, k - -G - 0.188773655....
dk

B. GARRICKS PROPULSIVE FORCE EQUATION

One of the earliest investigations on the effect of an oscillating airfoil on the

resultant drag was conducted by Katzmaj r [Ref. 101 hi two series of experiments. In

his second series, Katzmayr measured a i egative drag or propulsive force for certain

velocities and frequencies. This discovery, later to be known as the "Katzmayr

effect", helped answer questions or how birds propel themselves through the air.

Richardson [Ref. 11] used the "Katzmayr effect" to explain the locomotion of fish

through the water. Garrick [Ref. 3] applied the equations of motion determined by

Theodorsen [Ref. 1], equations (18) and (19), to a method developed by von Karman

and Burgers [Ref. 12] to obtain a closed form analytical solution for the propulsive

force generated by an oscillating airfoil.
2

Garrick determines the average horizontal force by two methods: energy and

force. He then compares the results of these methods, and shows they are identical.

For simplicity only the force method is presented here. First he assumes simple

harmonic motion for each of the degrees of freedom, resulting in

a - a e
i{u,t^ (24)

2Though Garrick developed his equations for three degrees of freedom, only two

degrees of freedom (pitch and plunge) will be presented here.

10



and

h = v /(w ' +<P2)
.

{25)

where (p and <p 2 are phase angles between the initiation of the input and an arbitrary

reference point.

The total horizontal force on the airfoil is given by

Px = TrpS 2 + aP (26)

where Px is the propulsive force on the airfoil (positive to the left), P is the resultant

force on the airfoil (positive down), and 5 is the component of induced downwash in

the x-direction. The time averaged propulsive force is found by

x 2n Jo

The x-component of the induced downwash is

S = —hc(k)\va+h + b(--a)ayba\ . (28)

In finding the solution to the time averaged propulsive force equation, it is

arbitrary whether one chooses to employ the real or imaginary parts; the results will be

the same. Garrick [Ref. 3] chose the imaginary parts, and determined the time

averaged propulsive force to be

11



Px = npbu 2 \/i;(F2
+ G 2

)

*Vc (^^xi*(i-^M-^--i)--f('4J

+((l-^ + ^) + I(i-|-F))cos(cp
2
-cp )

(29)

It is interesting to note that in the special cases of only one degree of freedom, the

effects of the arbitrary phase angles between initiation and the reference point

disappear. The propulsive force equations become for pure plunge (a = 0)

Px = Trpbu 2 li;(F2
+ G 2

) ,

(30)

- n\3and for pure pitch (h = 0)

--^t^b^l^^G^^-afyU^-a)

Fli- s+ ±)-l± + a
)G)

^2 1A I
V 2 I k)

(31)

If it is assumed that pitch and plunge are in phase with each other (they reach their

maximum deflections at the same time), the coupled propulsive force equation

becomes

3The result presented here differs from Garrick's equation (34) in reference 3. When
equation (29) in reference 3 is simplified using the definitions of a2 and b2 , the result is

equation (31) above. This result has been confirmed by Garrick's work in reference 10.

12



P. = Trpbu 2 \hl(F2 +G 2

b 2a\

+ ba Qh
(

±- a)(Fi + G>y±(±-<!-F)

(32)

Since propulsive force is analogous to negative drag, it is convenient to define a

propulsive force coefficient as

CD =
1 \pv 2

{2b) Qv2 b
(33)

The propulsive force coefficients for the special cases become for pure plunge

(«„ = 0)

C
Pj

= Trlc
2P (F2

+ G 2

),
(34)

where h is the amplitude of deflection non-dimensionalized by the semi-chord, for

pure pitch (h =0)

C^^VI(^ + ^)^ +(l-^ + l(l-,)-^-,^)-(l +^ . (35)
k2 v

2 2*2 A2 ' '2 >k

and for coupled pitch and plunge

-1i-*p)-(i*«)iM(i-r^)4(r-f-')

(36)

13



II) / NALYSIS

A. LOEWY'S LIFT DEFICIENT FLECTION

The aerodynamic forces and mo; nts on an oscillating airfoil for the rotary-wing

case are more complex than the fixe i .vir ; counterpart. Loewy [Ref. 2] determines

these forces and moments for the hc\ r c se where k = —— , but uses a slightly
ilr

different approach to the problem by solv: ig the integral downwash equation which

leads to an equation for the pressure distri >ution which is in the same form as

Theodorsen. Loewy then defines a modif id lift deficiency function, and states that

the integration of the pressure distribution across the airfoil would be identical to

Theodorsen. This makes the expressions for forces and moments identical except for a

modified lift deficiency function.

The first step that Loewy performs is to set up a system to account for the wakes

generated by the previous blades in the same revolution and all blades in previous

revolutions as shown in Figure 4. He u^es two indices to account for the vorticity

shed by a given wake: n indicates the re\ olution and q indicates the blade whose

wake it is. The induced velocity or down,vash resulting from an element of vorticity

is obtained from the Biot-Savart TheoreiL,

dw{x) = — q— ——
, (37)

2Tr\(x-L)2 + (nQ+q)2
Ji

2

}

14



YooOM)

Qh

Yio(x,t)

n = revolution number q = blade number

Figure 4. Aerodynamic model for a multi-blade rotor system.

where y^ is the vorticity, Q is the number of rotor blades, and h is the non-

dimensional wake spacing. Writing the integrals involving the bound vorticity and the

vorticity in the wake of the reference airfoil separately from the rows of vorticity

below the plane of the rotor yield

w(x)
2n

-l i.

Yoo(0^
Q-\ oe

*EE
00 /> 0000 /»

77=1 J.

x £ q=\ 77=0

IJ.ZKx-Ddl

{x-if + n 2 Q2h [

Y«,(E)U-g)</E

{x-lf +(nQ+qfb 2

(38)

In essence the problem has been broken down in the same manner as Theodorsen.

The first integral represents the effects of the freestream on the airfoil (non-circulatory

15



terms). The second integral represents th velocity created by the vorticity generated

by the reference wake (circulatory term). The third and fourth integrals represent the

velocity created by the vorticity generated by previous blades or in previous

revolutions (circulatory terms). The main difference between Loewy and Theodorsen

is the terms which account for the vortici.y generated by previous blades or in

previous revolutions.

Loewy [Ref. 2] shows that the vortici y shed by the qih blade in the nth revolution

is

where T is the total circulation around the airfoil, i|»
9

is the phase angle by which the

motion of the qih blade leads that of the reference blade, and m is the ratio of

oscillatory frequency to rotational frequency. Substituting the vorticity expression

from equation (39) into the integral downwash equation (38) yields

r ^
1

x 1&)dl _ ikY Ce'
ikl dl

OC n 00

pi h S-„(x-Z,) 2
+ {nQ+q)2

ti'

ikTY e
- ilirmn [

e~ik^(x-V)dl

The last two integrals in equation (40) have the form

L
e-ik^{x-l)dl = /7re-w*+A) (41)

{x-tf + A 2
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Substituting equation (41) into equation (40) and noting that the summations over n

are convergent geometric series give

f ^
1

I
'y.«>*

ikT
U-0 J, u-o

+ TrkTe'ikx W{kthtm)\ , (42)

where

Q-\

+ V^ leUQe i2nm\(Q-q)IQ e
'*

g

W{k,hjn) =
g=1

...
gkhQgilTrm _ i

(43)

The function W(k,h,m) may be thought of as a weighting function for the vorticity

shed by previous blades or in previous revolutions.

The form of the downwash equation in equation (42) can be solved by applying

Sohngen's inversion formula [Ref. 14], which shows that the solution to an equation in

the form

gM - tX (44)

is

/U) = -±
n \

Elf
I

1+E gil)dl (45)

Satisfying the condition f(l) = finite is the same as employing the Kutta condition.

The bound vorticity becomes
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yM = -
N

\-x

jJcT

2n

l+£ iKO^

(46)

_,N i -5 *-e

Evaluating the circulation over the entire airfoil yields

= e
i.

r = e'
k

\
tlx)dx

I \

ill
1-5

iK5)^
(47)

Arlf-i^ + iH™) + (/, + //
) WtfA/a)]

where the Hankel and Bessel functions are evaluated at reduced frequency (k).

Since the airfoil can be thought of as a vortex sheet, the generalized Bernoulli

equation (4) becomes

Lp(x) = -p v-i a
{x,f) + bl\

X

y M(U)dl
OtJ-l

(48)

If simple harmonic motion is assumed,

dt
U U (49)

and equation (48) becomes

ip{x) = -p vy.(x,t) + y'co bf*yA,Qd* (50)

Substituting the bound vorticity equation (46) and the airfoil circulation equation (47)

into equation (50) yield
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pClr

2/

77

H™ + 2JQ W{k,hM

r(2) r(2)

2

/, + j'J

IT
,

\-x

M + ^r

1 + 5 1

/,"
1-A- 111 wi&dl

- flog

N l-^Jr-5

\-*Z-yl\-X2
\l\-l

2

\-xl+yl\-X2
y[\7l

l'\

w{l)di

(51)

The pressure distribution in equation (51) has the same form as Theodorsen's in

equation (17) if the factor multiplying the fust integral is written as

M\ - C'{kji,m)\
,

IT L J

(52)

where C'(k,h,m) is Loewy's lift deficiency function. Solving for C'(k,h,m) yields

C\kjijri) =
H{2)

+ 2J
X
W{k,hjn)

H™ * JH<2)
+ 2[/, + i/

]
Wf&hjn)

(53)

where the Hankel and Bessel functions are evaluated at reduced frequency (k). Since

C'(k,h,m) is not a function of location along the airfoil, the integration of the pressure

distribution in equation (51) across the airfoil will yield equations of motion identical

to Theodorsen's in equations (18) and (19) except C(k) will be replaced by C'(k,h,m).

It can be seen that as W(k,h,m) approaches zero, C'(k,h,m) = C(k), and this condition

corresponds to an infinite wake spacing (/*-»).

Since the wake weighting function is periodic in nature, Loewy [Ref. 2] shows that

the wake weighting function for a multi-blade rotor can be expressed by a single-blade

19



rotor with modified values of h and n th : yield the same value of W. For a single-

blade rotor, the wake weighting func >n >ecomes

WXhrf - -—i
, (54)

t kb pil-nm _ i

where /i and w are the modified vali. o: wake spacing and frequency ratio

respectively. For the case of the sir % a-b ade rotor the wake weighting function can

be separated into its real and imagh .i , p its,

where

cos 2rrm - e'kba =

ekh 2cos2n/n + e'kh
(56)

and

=
_sin27r^

(57)

Separating Loewy's lift deficiency function into its real and imaginary parts similar to

Theodorsen yields
4

C'{k,hjn) = F'+iG' <58)

where

4This is equivalent to Loewy's equati< >ns in reference 2 when the substitutions

a = 1 + 2a and p = -2 (3 are used.
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=
J

x
{\^2a)A-{Y

x
-2J^)B

(59)

/4
2 + #2

^ =
{Y

x -2jfi)A + J
x
(\+2a)B

(60)

A 1
+ B1

and

A = J
x
{\+2a)+ Y -2J fr

(61)

B = -y; + 2/,£ + / (l+2d) .
(62)

Plots of Loewy's lift deficiency function are shown in Figures 5 through 8. It is easily

seen that there are rapid changes in the lift deficiency function as reduced frequency

(k), wake spacing (h), and frequency (m) vary.

Since Loewy's lift deficiency function is completely analogous to Theodorsen's lift

deficiency function, the propulsive force determined by Garrick [Ref. 3] and the

propulsive force coefficient can be calculated for the rotary-wing case by substituting

F' and G' for F and G. For pure plunge (a = 0)

C
Pi
-nkH 2

{{F')^{G !

)

2

)
t

(63)

for pure pitch (h = 0)

c,,-*&.[{w.i<wt±*(\-*YH(\-.)
k1 v

2 ' J 2 V 2

J_
k2-^\-°^Hh>m-

(64)

21



Reduced Frequency (k)

0.5

0.4

0.3

0.2

0.1

O

-0.1

-0.2

-0.3

-0.4

"A

i — -t -•
i ii t— — 1

I 1— I
-1" I II 1 1 T "I f "I" I" I

_.l I i.J_L.l i_i_j J 1 i J_l I U-L
)' 10' 10°

Reduced Frequency (k)

_i „l l_.J_l.l I.

10'

Figure 5. Loewy's lift deficiency function as a function of wake spacing for

m = 0.

22



1

0.9

OR

0.7

0.6

0.5

0.4

0.3

0.2

0.1

fl.

i t—i—

r

-
t rr

I

; i . i

h=0.5

.1 J i LJ.

10'
J L J l_J_(_J_L- -i—i ill.

10° 10'

Reduced Frequency (k)

-i 1 — i—i-i iti t— 1 1 r—i—r i i i i l 1—-1—1—t—i t?-

J i_J_J__LUJ.
10'

J 1 Li I I I iJL

10" 10'

Reduced Frequency (k)

Figure 6. Loewy's lift deficiency function as a function of wake spacing for

m = 0.25.

23



a,
.1 I i 1.J.J JUL-

IO-'

J i l l I i .

10°

Reduced Frequency (k)

O

0.5 r 1
1-

0.4

0.3
i

0.2 .

0.1 \~-^g*\H^

-0.1

-0.2 •

-0.3
j

1

-0.4
! ! : i

% i 1 Li
2

I" I T 1 1-1" ~i 1—I—

r

_ T -n

h=0.5

•

:

i L_L.1_..i_Jj_

10'

L_i_Li..J..Jjj l_J_J_LLUjlL
10' 10°

Reduced Frequency (k)

_i L_.L_Ll. Llj
10

Figure 7. Loewy's lift deficiency function as a funciton of wake spacing for

m = 0.5.

24



f

i

i

f

1

t

1

! -

i

'

.1

i

i

!

j i i t .»_

in 1 io°

Reduced Frequency (k)

10'

0.5

0.4

--T--'-r r—I f ii»t

! . :

0.3
yS

0.2 ! jJ^r
"u.

0.1^^-^
b \

-0.1
'

-0.2
i

-0.3 ; i

-0.4 : ...
"A

1 L_.i__.J i J _l _i_i.

* 10'

-t— ?—i—pi

-ji=b.5

_h=10

h=100

J L_J_L.LL
10"

.1 I i i_ J...I- i_i_

10'

Reduced Frequency (k)

Figure 8. Loewy's lift dieficiency function as a function of wake spacing for

m = 0.75.

25



and for coupled pitch and plunge

C
Px

= 7^*2
|^((/")

2
+ (ff

,

)

2
+ a ((F')>HG>?,j:+(±-*)

2

)

2 \2 "2 kl] l 2 1 k

(H(">
J («v)4(7-^-c^))

(65)

+ a h00
L

v 2 /v
1 2^2

Plots of propulsive force coefficient 1. a J inction of frequency ratio for k = 0.1234 are

shown in Figure 9 through 11. It c* ? be . een that CPx is reasonably constant for 0.15

< m < 0.8 and greater that the "Katzmayr effect." (In this case h = 100 is sufficient to

represent /*-«>). For m < 0.15 and m > 0.X, CPx begins to decrease to the point where

it eventually becomes less than the "Katzmayr effect."

B. FINITE WAKE LIFT DEFICIENCY FUNCTION

1. General

Loewy's theory can be extended to the case of a finite number of wakes

below the rotor blade by modifying the wike weighting function. This modified wake

weighting function is completely analogous with Loewy's which makes the definition

of the lift deficiency function the same, but with a and (5 modified by the new wake

weighting function. Since the lift deficiei cy function is of the same form, the

aerodynamic forces and moments will be the same, but with a modified lift deficiency

function. Loewy has already shown that he rotary-wing problem reduces to the case

of a single rotor. The modified wake weighting function will also be developed for
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Figure 11. Propulsive force coefficient in coupled pitch-plunge as a function of wake

spacing with an infinite number of wakes (Loewy's lift deficiency function).

the case of the multi-blade rotor, and then reduced to the case of the single-blade rotor

with modified wake spacing and frequency ratio.

The development of a finite wake lift deficiency function is the same as

Loewy's described earlier. Changing the integral downwash equation (40) to a finite

number (A/) of revolutions yields

w{x) = - J_
2n I. I

C-i

-/*rj> -i(lirmqlQ- +

g-l

r
/"V'«</g

J, *-l
N /•

/7 = J-<

- ikYY e
-i2vmn [ e-in {x-%)dl

&\ J.*{x-Z)2
+ n 2 (?A 2

.

(66)
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where the summations from n equal zero to infinity have been replaced by finite

summations from n equal zero to N. Using equation (41) to solve the last two

integrals in equation (66) results in

( A 1

J-, xl i, *-l
Q-\ N

+ nkT
e' ikx

( y e

'

KllTmqlQ ' +PV* ^ '«""" e ~k(nQ+q)h (67)

a=\

Since this is in the same form as equation (42), the terms enclosed by the parentheses

can be defined as the finite wake weighting function, or

Q-\ N N
W^hjii) = £ e'***»«Q-*}i£ e -iinmne -itoQ. q)b+Y, e

~i2™a e~aQkb . (68)

It is easily seen that this modified wake weighting function is periodic once the

relationship \^
q

is known, and a multi-blade rotor can be reduced to a single-blade

rotor with modified wake spacing and frequency ratio. For the case of the single-

blade rotor (Q = 1),

W^kjijri) =
y^ e-n™ne -nkh (69)

N

E
J7=l

It can be shown that as Af-oo
}
the finite wake weighting function in equation (69)

becomes a convergent geometric series equivalent to Loewy's wake weighting function

in equation (54) provided m * and h * 0. A singularity in the solution exists when

m = and h = 0, and the case of h = has no real physical significance.
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The solution to the remainder of the finite wake problem is identical to

Loewy, but using the modified finite wake lift deficiency function. To keep the finite

wake lift deficiency function separate from Loewy's lift deficiency function, the former

is defined as follows:

C\kjhjri) - 2 -^»
. (70)

Separating the finite wake weighting function in equation (69) into real and imaginary

parts,

WN - <V^v .
(71)

yields

A'

I
27=1

aN = Y^e-^coslirmn (72)

and

b=i

The finite wake lift deficiency function becomes

$n= Y,(-e-
Dkb s\n2Trinn) .

(73)

C = F'+jG'
,

<74)

where
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F. =
J

l
(U2aN)AN -(Yl

-2J^N)BN ^
A 2

N +B
2

N

G , __
{Y

x
-2J^N)AN+ J

l
{\ + 2aN)BN

(?6)

AN +BN

and

AN = 7,(1+24^+ r -27^ (77)

BN = -Y
x
+2J$N+J {\+2aJ .

(78)

2. Single Wake Case

For the case of a single wake, the wake weighting function reduces to

W
x

= <? -<'*««>
,

(79)

where

dj = e'
tJl

cos 2ttin (80)

and

£, = -e^A
sin27r/77 .

(81)
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Plots of the single wake lift deficient fi ction are shown in Figures 12 through 15.

The propulsive force coeffic :it an be calculated by replacing F and G in

equations (34), (35), and (36) with / inc G\ For pure plunge (a = 0)

C, =ttA :

;\ F') 2
+ (G') 2

) ,
(82)

for pure pitch (r^ = 0)

C,.-»A5{((^)» + (0-)';:J .(\-afy\(\-a)

-(/ .+±\-ti+.\mH\«m-k2 ' v 2 ' k

(83)

and for coupled pitch and plunge

CPj =Trk2 \h
2
({F-) 2

+ {G') 2

2
+ a. Ifrrwrt-L+fi-.f)

*ia.G-)-<r>(i
1

2 v 2 2 k2 '
X 2 I

(G*)

+
<*o
ho

L

(i-,)(
(
^)-% (^)2

)

+ i(i-(^)-(^))

(84)

Plots of the propulsive force coefficient ;:s a function of frequency ratio for k = 0.1234

are shown in Figures 16 through 18. It is interesting to note that for 0.24 < m < 0.7

the propulsive force is greater than the "JCatzmayr effect" with the maximum occurring

just prior to m = 0.5. Comparing Figure ; 9, 10, and 11 with Figures 16, 17, and 18
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m = 0.25.
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respectively, the maximum propulsive force (at approximately m = 0.5) for a single

wake is always greater than the infinite number of wakes. The reason for this increase

is that the absolute value of C and C re never greater than 1.0, but C* as m

approaches 0.5 exceeds 1.0 for certain .vake spacings.

When m = 0.5, this corresponds to the wakes being 180° out of phase as

shown in Figure 19, and the vortex from the wake of the reference blade in the current

revolution is directly above an opposi'cly spinning vortex from the single wake of the

previous blade or revolution. This efficient use of the vortices in the wake causes C

to exceed 1.0. As the number of wakes increases the vortices from lower wakes are

not always 180° out of phase with the reference blade. When m = 0.5, each wake is

180° out of phase with the wake above a ;d below it. Thus, each wake is in phase
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Figure 19. Vortex interaction when wakes are 180° out of phase (m = 0.5).

with the wakes ±2 wake spacings from it. Since the finite wake weighting function

contains the term e''
2nm

, the value of each term in the wake weighting function will

alternate in sign. However, since the wake spacing is greater for each subsequent

wake, the absolute value of each term is not as large as the first term, and thus, the

effect of the in-phase wakes are not as strong. As the wake spacing increases this

effect diminishes.

3. Multiple Wake Case

When the number of wakes increases, the value of frequency ratio at which

the maximum propulsive force coefficient occurs changes as shown in Figures 20

through 22 for h = 2.0. This change is analogous to the estimation of a square wave
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by a finite number of terms in a Fourier series, where the propulsive force coefficient

determined using Loewy's wake weighting function is considered the square wave. As

Figures 16 through 18 and 20 through 22 show, an increase in either wake spacing (h)

or the number of wakes (/V) will decrease the maximum propulsive force that can be

obtained. The limit of this decrease will be Loewy's case for a hover.

h o = 0.14

0.1 0.2 6.3 0.4

j.

0.5 0.6

Frequency Ratio (m)

0.7 0.8 0.V

Figure 20. Propulsive force coefficient in pure plunge as a function of the number of

wakes at h = 2.0.
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Figure 22. Propulsive force coefficient in coupled pitch-plunge as a function of the

number of wakes at h = 2.0.
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IV. APPLICATIONS

A. EXTENSIONS AND COMPARISON OF THEORY

1. Forward Airspeed

Extension of the finite wake theory can easily be made to include forward

airspeed. Shipman and Wood [Ref. 4] expand on Loewy's work incorporating forward

airspeed via the advance ratio (|i) into the rotary wing unsteady aerodynamic problem.

The defmition of reduced frequency becomes

ub
(85)

(1+H)H/

The Biot-Savart Theorem is used with wakes extending out to infinity. Since

freestream velocity at any point on the rotor blade is a function of both blade section

radius and azimuth position, the shed vorticity will experience a build-up and decay as

azimuth varies from 0° to 360°. Shipman and Wood developed a decay function to

account for the variation in vorticity and incorporate this function and the advance

ratio into the integral downwash equation. The pressure distribution is found by

applying Sohngen's inversion formula [Ref. 14] to the downwash equation. The

pressure distribution is shown to be in the same form as Theodorsen and Loewy, and a

modified lift deficiency function is defmed to account for the differences. Since this

modified lift deficiency function includes Loewy's wake weighting function as one of

its terms, the finite wake weighting function could be directly substituted into Shipman
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and Wood's lift deficiency function. If the segment of the wake weighting function

due to the vorticity decay (AW) is modified to account for a finite number of wakes

instead of an infinite number, a new finite wake forward airspeed lift deficiency

function can be defined, and the remainder of the problem is the same as Shipman and

Wood.

2. Compressibility Effects

Adding the effects of compressibility to the rotary wing unsteady aerodynamic

problem was first accomplished by Jones and Rao [Ref. 5]. Hammond [Ref. 6]

provided an alternate approach to the problem shortly after Jones and Rao, but only

the method by Jones and Rao will be presented here.

Jones and Rao expand on Loewy's work by taking the known solution to the

fixed wing two-dimensional unsteady airfoil theory and modifying it to include the

effect of an infinite number of wakes below the reference airfoil (or rotor disk).

Eulefs equation is used with a coordinate change to determine the downwash equation.

An interesting result is found, and that is for a given circulation, the downwash due to

an infinite system of wakes is the same for compressible and incompressible flow. In

other words, the circulation generated by layers of shed vorticity beneath an airfoil is

independent of Mach number. This fact will be true whether there is an infinite

number of wakes or a finite number of wakes. Thus, the finite wake theory can be

applied here, and the remainder of the problem is the same as Jones and Rao.
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3. NPS Unsteady Panel Code

The NPS Unsteady Panel C jv as written by Pang [Ref. 7] to solve the

potential flow for two airfoils execul i u isteady motion in an inviscid,

incompressible flow. In this code, tl. tw » airfoil surfaces are approximated by a large

number of surface elements, and a uii or i source distribution and vorticity are placed

on each element. The source streng ) vai es from element to element , while the

vortex strength is the same for all e,e en >. The singularity strengths are determined

from the flow tangency condition 01. oth airfoil surfaces and the two Kutta

conditions.

Extensive comparisons of th; ; co te with Theodorsen was accomplished by

Riester [Ref. 17], and the code (usinz an SACA 0007 airfoil) shows very good

agreement with flat plate theory. Comparison of this code with Loewy could not be

accomplished easily since it would require a very large number of airfoils to generate

the infinite number of wakes. Using i; i finite wake theory, the code could easily be

compared to the case of a single wak. . A comparison for pure plunge [Ref. 8] with h

= 2.0, k = 0.1234, and ~h = 0.14 are presented in Figure 23. The results show that the

NPS Panel Code has very good agreeme it with the finite wake theory.

B. HIGHER HARMONIC CONTROL

Higher Harmonic Control (HHC) is in active vibration control system for

helicopters. The concept of HHC is to a.ter the aerodynamic loads on the rotor blades

such that the blade response is reduced, vhich in turn reduces the vibratory forces and
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Figure 23. Comparison of propulsive force coefficient in pure plunge (h - 2.0, k =

0.1234, and 7j = 0.14).

moments acting at the hub that cause vibration. HHC flight test results [Ref. 15],

under a joint NASA-Army sponsored program using a modified OH-6A, show a

reduction of airframe vibrations up to 90 percent. Basically, HHC is an electronic,

computer-controlled active vibration suppression system which senses and cancels

vibrations in a helicopter by Q per revolution feathering or pitch motion of the rotor

blades, where Q is the number of rotor blades.
5 On the OH-6A, higher harmonic

blade pitch control was achieved by superimposing 4/rev (or 4P) swashplate motion on

basic cyclic and collective control inputs. The aircraft was flown from hover to 100

knots, but the remainder of the discussion will focus on the hover performance.

'Normally for helicopters, N is used to represent the number of blades, but to

remain consistent with Chapter III Q will be used.
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In addition to reducing vibration levels HHC on the OH-6A showed the potential

for decreased helicopter power requirements. Figures 24 and 25 show hover power

required for three different schedules of HHC open loop excitation. What is of

interest here is that the amount of power reduction achieved (on the order of 10% or

20 horsepower) appears to be relatively independent of the type of excitation applied.

This power reduction is important, especially in hover where power required is large,

because of the benefit of lowering fuel consumption, which can be translated into a

larger payload or increased mission time.

The physics behind HHC can be explained by unsteady aerodynamics. The input

by HHC to the rotor blade is a pitch oscillation, ±Vz degree on the OH-6A. From

Figure 10 (infinite wakes) it can be seen that the propulsive force coefficient is

negative (drag) for the wake spacing of the OH-6A (h = 2.0) regardless of the phasing

of the wakes (m). Thus, it might be concluded that pitch oscillations alone cannot

account for the substantial reduction of power recorded by the flight tests. If it is

assumed that viscous interaction of vortices reduce the problem to a finite wake

solution as shown in Figures 17 and 21, the propulsive force obtained is still not

sufficient to account for the power reduction even if the wakes were optimally phased.

As stated earlier, HHC provided a 4P pitch input in both collective and cyclic were

applied at the blade root. The collective input results in a 4P oscillation along the

blade, while the cyclic input results in 3P and 5P oscillations along the blade. From

the Southwell plot of the OH-6A [Ref. 161 shown in Figure 26, it can be seen that the

second flapwise and third flapwise natural frequencies occur near 3P and 5P
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Figure 24. Effect of HHC on main rotor shaft power in hover for selected set of three

open loop inputs.

respectively. During the course of a revolution of a blade about the hub, the blade

will naturally experience flapping motion due to changes in angle of attack, or pitch

changes, as the blade proceeds around. Since 3P and 5P flapping frequencies are
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near natural frequencies, small 3P and 5P pitch inputs will result in much greater

flapping outputs. Thus, the unsteady aerodynamics of HHC for the OH-6A is coupled

pitch-plunge oscillations. Figures 11, 18, and 22 show that coupled pitch-plunge
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oscillations always result in a propul^i e >rce regardless of the number of wakes

considered or phasing of those wake: W iat is of greater importance is that if the

wakes are optimally phased together. le
,
ropulsive force is an order of magnitude

higher than pure plunge or pure pitcl Ts i bottom line for the OH-6A is that the

inherent natural frequencies of the b! es .long with 4P cyclic inputs result in coupled

pitch-plunge oscillations which yielc ; pi pulsive force large enough to account for a

substantial power reduction for the \ t co- er.
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V. CONCLUSION

The unsteady aerodynamics of rotary wings is inherently more complicated

because of the layers of shed vorticity, or wakes, beneath the rotor disk that interact

with the rotor blades. The Biot-Savart Theorem is used to account for the effects of

these wakes, and a modified lift deficiency function is developed for use with

Theodorsen's equations of motion [Ref. 1]. Loewy [Ref. 2] develops a lift deficiency

function for the case of an infinite number of wakes, while this thesis develops a lift

deficiency function for any finite number of wakes. This thesis also presents the

special case of a single wake, and shows that for small wake spacings there are certain

reduced frequencies where the lift is actually enhanced. In other words, the lift

deficiency function becomes a lift efficiency function.

The equations describing the propulsive force generated by an oscillating airfoil

are developed by Garrick [Ref. 3]. These equations are derived from Theodorsen's

equations of motion, and included the lift deficiency function as a parameter. Since

the rotary wing lift deficiency functions (Loewy's and the finite wake) are just

modifications of Theodorsen's work, Garrick's work can be applied to rotary wing

unsteady aerodynamics. When either Loewy's lift deficiency function or the finite

wake lift deficiency function is used, the propulsive force can be greatly enhanced

with the proper phase relationship of the wakes. The use of coupled pitch and plunge

can result in a propulsive force which is an order of magnitude higher than either pure
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plunge or pure pitch. This coupling of plunge and pitch is used to explain the

performance benefits reported in the flight test data for the OH-6A equipped with

Higher Harmonic Control. Coupled pitch-plunge oscillations with proper phase

relationships of the wakes yield a propulsive force large enough to account for a

substantial power reduction for the helicopter.
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APPENDIX A

I. FLIGHT OF THE HUMMINGBIRD

For thousands of years, man has been intrigued by the flight of birds. Early Greek

mythology includes a tale of Daedalus and Icarus who made wings held together by

wax, and escaped their imprisonment on the island of Crete by flying through the air

like birds. Early attempts by man to fly were usually designed around imitations of

birds. Most of these early attempts met disastrous results because of a lack of clear

understanding of the aerodynamics of ornithological flight, and that is the wing on a

bird is a coupled lift and propulsion device. In fact, the Wright brothers first

successful flight demonstrated man's limited knowledge of aerodynamics by

decoupling lift and propulsion in order to achieve flight. To this day lift and

propulsion remain decoupled.

The coupling of lift and propulsion in birds can be explained by unsteady

aerodynamics. As a bird flaps its wing down, the trailing edge also begins to rise

[Ref. 18]. Thus, the motion of the wing is a coupled pitch-plunge motion. It was

shown earlier that coupled pitch-plunge motion yields a propulsive force that is an

order of magnitude higher than pure plunge. Since most birds require some forward

airspeed before being capable of achieving flight and the rate of flapping is between 1

to 5 beats per second, the analogy to unsteady aerodynamics can be described by

Garrick's equation for coupled pitch-plunge using Theodorsen' lift deficiency function
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(equation (36)). Birds take advantage of the extra propulsive benefit of coupled pitch-

plunge to make flight appear effortlessly.

A few birds, most notably the hummingbirds, are capable of hovering. In hovering

flight the hummingbird's body is angled upward at about 45°, so that the plane of

wing flapping is approximately horizontal. As the wing moves up (backward) and

down (forward), the angle of attack, or pitch, changes making a figure eight pattern

that is on its side. In essence, the hummingbirds wing motion is similar to the motion

of the hands of a swimmer when he is treading water. Once again the hurnmingbird

takes advantage of a coupled pitch-plunge motion to achieve a higher propulsive force.

What is unique about the hummingbird is the rate of flapping, or the oscillation

frequency; it is on the order of 40 to 80 beats per second. Welty [Ref. 18] states that

the hovering flight of the hummingbird is grossly inefficient when compared to

helicopter rotor blades, but this is overcome by an increase in apparent velocity

created by trailing currents from the previous reverse stroke. This is not exactly

correct. The hummingbird's wing motion is similar to that of helicopter rotor blades.

Both are cyclic motions of changes in pitch (angle of attack) and plunge (flapping).

The hummingbird is just as efficient as a helicopter - both have a large power required

in hover. The apparent increase in velocity can be explained by trailing vortices.

Since the hummingbird's rate of flapping is large in a hover, the wake created by a

previous stroke will not dissipate and be carried downstream. Each stroke of the wing

always has layers of shed vorticity directly below it. If these wakes are optimally

phased depending on the number of wakes, the benefit will be a propulsive force
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greater than that of non-hovering birds. The hummingbird must use wakes efficiently,

or it will not hover. Thus, the analogy of the hummingbird to unsteady aerodynamics

can be described by Garrick's equation for coupled pitch-plunge using the finite wake

lift deficiency function, or in the case of a pure hover Loewy's lift deficiency function.
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