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ABSTRACT

The performance of a Kalman filler used to track a hurricane was substantially im-

proved by implementing a fixed interval smoothing algorithm. This tracking routine was

designed and implemented in a microcomputer program. Several tracking scenarios were

simulated and analyzed. Actual storm tracks obtained from the Joint Typhoon Warning

Center in Guam, Mariana Islands, were used for this research. I he application of the

Kahnan tracker to a tropical storm's wind speed tracking was also investigated by using

the best track data and observed data.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases ol interest. While every effort has been made, within

the time available, to ensure that the programs are Tree of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

Conceived over warm tropical oceans, born amid torrential thundcrshowers, and

nurtured by water vapor drawn inward from far away, the mature tropical cyclone is an

offspring of the atmosphere with both negative and positive consequences for life. Se-

vere cyclones are among the most destructive of all natural disasters, capable of annihi-

lating coastal towns and killing hundreds of thousands of people. On the positive

though less dramatic side, they provide essential rainfall over much of lands they cross.

It is difficult to convey to those who have never experienced a tropical cyclone the hor-

ror that great hurricanes can bring to ships at sea or people living near the coast.

Tropical cyclones cause a variety of damage and the same tropical cyclone often affects

several nations during its lifetime. They arc called "Hurricanes" in the Atlantic and

eastern Pacific" [Ref. 1J. Hurricanes were identified by female or male names like Pat

and Tcss. These storms will be discussed in this thesis. Tropical cyclones arc also

numbered sequentially according to their starting date. This numbering system is used

with caution when referencing storms from other data bases.

This thesis attempted to improve the estimation of the hurricane's future course,

speed, and position by using a Kalman filter with smoothing. This problem is similar

to the ship tracking problem which is discussed in a previous thesis [Ref. 2]. 1 he major

dilfcrcncc between ship tracking and storm tracking problem is the measurement process

which is given actual position coordinates (latitude and longitude) in the storm tracking

problem. Therefore, the linearization required in the ship tracking problem is unneces-

sary in the storm tracking problem. The measurement noise varies with the type of the

sensor (aircraft, satellite, and radar).

An accurate and reliable method of tracking and targeting is necessary. The current

methods used to track a storm include the use of radar, aircraft, and satellite. However,

the data may or may not be available when needed for a number of reasons. As an ex-

ample, aircraft may not be available due to flight restrictions. A Kalman filter with a

fixed interval smoothing algorithm can be used to track a storm. The smoothing algo-

rithm is an off-line calculation that uses all measurements taken dining a time interval

< k < M to improve the estimate. By having a more accurate assessment of what the

storm has done in the past, we will be better able to predict ahead and estimate a storm's

future course, speed, and position.



The estimation of the wind speed is as important as the storm position estimate. In

an dibit to estimate the possible damage a hurricane's sustained winds and storm surge

could do to a coastal area, the Kalman filter and the smoother was used to estimate the

wind speed and to categorize the hurricane. If the wind speed estimate is accurate, a

hurricane is categorized correctly. This thesis attempts to estimate the hurricane's future

wind speed. This will help to design a timely warning system.



II. PROBLEM STATEMENT

' A. GENERAL

The storm-tracking scenario parallels the ship tracking problem in that both prob-

lems developed a position, course, and speed solution for a target with similar system

dynamics. The tracking scenario used here involves two storms. The positions of the

storms arc given in jc (longitude), and y (latitude) coordinates. This problem will be

analyzed using state space methods. Given the longitude and latitude (the measure-

ments) received by a radar, aircraft, or satellite, we are interested in estimating the lo-

cation, course, and speed of the storm (the states of the plant). The state variables for

this plant are x, x,y, and y.

B. SYSTEM MODEL
This system can be described by the state space equation

l-k+\
= (f>k£k + Wh (2.1)

where

xh
= state vector to be estimated,

4> k
- state transition matrix which describes how the states of the dynamic system arc

related, and

w
k
= random forcing function with a covariance matrix Qk

that is defined as

Qk =

100

100

100

100

(2.2)

The state vector is

(2.3)

and the system state equations are
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C. MEASUREMENT MODEL
The measurements are linearly related to the state variables, using the measurement

equation

ik = 7ta + *k (2.5)

Since the x and y position states arc observed directly and given by latitude and longi-

tude position coordinates, the measurement equation can be written as

|_ZV J/H-1
- 10

10 k + 2k (2.6)

where the measurement noise v
k
has a variance associated with the source of the meas-

urement. In this thesis, mean deviation (nm) of satellite-derived tropical cyclone posi-

tions from best track positions (PCN values) were used in the calculation of the

measurement noise covariance matrix for the satellite data. The measurement noise

covariance matrix values and PCN values are shown in Table 1. The equation used in

this calculation is

Rk
= (Mean deviation) (2.7)

Table 1. THE MEASUREMENT NOISE COVARIANCE MATRIX VALUES
FOR SATELLITE

PCN Mean Deviation A\

1. or 2 16 256

3. or A 30 900

5, or 6 40 1600

The measurement noise covariance matrix values were calculated by using the ac-

curacy number for the aircraft and radar data. liquation (2.8) was used for aircraft data

and Equation (2.9) was used for the radar data



Rk = yj ((Navigational) + (Meteorological)
)

Rk
= (Radar Accuracy)

where the radar accuracy numbers are shown in Table 2

(2.8)

(2.9)

Table 2. THE MEASUREMENT NOISE COVAR1ANCE MATRIX VALUES
FOR RADAR

Accuracy Number Radar Accuracy K
1, 4, or G 10 100

2, 5, or F 15 22.5

3, 6, or P 25 625

7, or Blank 30 900

D. KALMAN FILTER

Basically, the Kalman filter takes an a priori estimate of the states, projects it ahead

in time to some predicted estimate, and then calculates a gain vector based on the error

covariance of these estimates. The error between the observed measurements and the

predicted measurements of the corresponding state estimates is multiplied by the gain

vector and the result is added to the predicted state estimates to give the best estimate

of tiie true states based on optimal combinations of a priori estimates and current

measurements.

The Kalman filter is the proper algorithm to be used when both the system model

and the measurement model are linear functions of the state variables. The basic oper-

ation of the filter is a relatively straightforward recursive process. The equations used

in the Kalman filter [Rcf. 3] arc

^k+\ <ta + rkwk&k

zk
= Hjfa + vk

£(k\k-i) = <PkX(k\k)

i\k\k-\)
s=

4>kpw)(
i>k + Qk

Gk
= l\k\k-l)Hk{HkP{Jc\k-l)Hk + Rk

-1

(2.10)

(2.11)

(2-12)

(2.13)

CM)



£(k\k) - &{k\k-\) + Gk{zk — Hic£{k\k-l)) (2.15)

where

«£<*i*-i)
= projected ahead state estimate,

A*ia-u
= projected ahead state error covariance matrix,

Gk
= Kalman gain matrix,

R/, = state measurement noise covariance matrix, and

Hk
= linearized measurement matrix.

The Kalman gain matrix serves to minimize the mean square estimation error and

is an indication of how much weight will be placed on the current observation. A large

gain, indicating a large error covarincc, will place more weight on the current observa-

tion as the filter tries to correct the states. The gain matrix is proportional to the vari-

ance of the uncertainty in the estimate and inversely proportional to the variance of the

measurement noise. It can be expressed as

Gk - l\k\k-\)HkRk (2.17)

An initial velocity estimate is taken to be zero since there is no velocity information

at the beginning. The initial state estimates carry with them some error and it is this

error, or rather an estimate of this error, that is used to construct the initial error

covariance matrix. The initial position error was estimated to be 10 nautical miles in the

xy direction and the initial velocity was estimated to be 0.1 58 nautical miles per minute.

The error was assumed to be zero mean and uncorrected. With these approximations,

the initial error covariance matrix is given by

P,
<o |— 1 >

100

0.025

100

0.025

(2.18)

E. SMOOTHING ALGORITHM
Smoothing is a procedure that uses all of the state estimates produced by an esti-

mator and attempts to improve the accuracy of these estimates by using the negative



time dynamics to produce the smoothed estimate. The estimator used here is the

Kalman filter. The basic idea behind smoothing is that, for a time interval from to A'

(K > k), an estimate at time k based on all previous estimates up to time K, ( x(kK) ).

t
will be more accurate than an estimate based only on the estimates up to time k, (.v(tA) ).

" It is a non-real time operation where the available data arc processed to obtain an es-

timate xWK) for some past value of k " [Ref. 4J.

Smothing algorithms were categorized into three groups by Meditch [Ref. 5];

Fixed Point Smoothing smooths the estimate jc^ at a fixed point k as A' increases.

Fixed Lag Smoothing smooths the estimate x(K— N \
K) at a fixed delay A' as A' in-

creases.

Fixed Interval Smoothing smooths the estimate x{kK) over the time interval from to

K where K is fixed and k varies from to K.

A fixed-interval smoothing algorithm was used in this thesis. This smoothing rou-

tine provides the optimal state estimate at each time k over a fixed interval from to

K. The equations used in the smoothing algorithm [Ref. 5] arc

=v
(/<i,v)

= *(k\k) + M£{k+]\N) - *(* + 1
1
*)) (2 -2°)

P(k\ V)
=

P(k\k) + Ak(^(k+\\N) ~ l\k+\\k)) /lk (-•-')

where

A k
= smoothing filter gain matrix,

i(/; ;V)
= smoothed state estimate a time k based on N observations, and

PpN) ~ smoothed state error covariancc matrix.

At the beginning of the smoothing, the last filtered estimate becomes the initial

smoothed estimate. The index k is decremented by one for each pass during the

smoothing algorithm with the starting value of /< equal to the number of data points to

be smoothed, minus one (A'— 1 ). Consequently, the tracking program makes (A'- 1)

passes through the smoothing algorithm.



III. STORM TRACKING

' A. GENERAL

The Kalman filter program STORM.FOR was used in computer simulations. This

program was originally written for a ship tracking problem and was modified to use on

storm tracking problem. The graphing routines of the MATLAB were used to generate

the graphs. A complete listing of the program is included in Appendix A. Typhoon Tcss

and Typhoon Pat were used for simulations. The storm tracks used were obtained from

data collected at the Joint Typhoon Warning Center located in Guam. Each storm is

given a separate deck name. Tropical cyclones are numbered sequentially according to

their starting date by the JTWC. There are four types of data:

Best Track -This file is the 6-hourly storm positions based on a post storm,

subjectively smoothed path.

Forecasts -This data contains the real time storm positions, objective forecasts, and the

official forecast. Each date-time group may contain one, two, or all three types of

data.

Forecast Errors -Eight different errors were computed for each of the objective and
official forecasts.

Fixes -Tropical cyclone fixes (observations) from four different platforms arc con-

tained in the data base.

The position coordinates were obtained using aircraft, satellite, and radar. The data

obtained included: raw data (observations); best track data; and 12, 24, and 48 hour

predictions. The raw data was processed just as if it was real-time observation of the

hurricane. The first storm, Pat, originated east of Taiwan in the western Pacific on 24

August 19S5. The warning period for this storm was six days. The storm traveled 1337

nm. The maximum speed of the wind was over 107 kt and the minimum sea level pres-

sure was 1002 mb. The Typhoon Pat caused significant damage in southwestern and

northeastern Japan; primarly on the islands of Kyushu and Hokkaido. Kyushu was hit

the hardest with wind gusts of 107 kt. A total of 23 people were reported killed with over

180 people injured. An estimated 3000 homes were damaged. Pat also severely dis-

rupted transportation by land, sea, and air.

The second storm track analyzed was that of Typhoon Tess which originated

southeast of Guam on 30 August 1985. The warning period for this storm was seven

days. The storm traveled 1470 nm with maximum wind speeds of over 90 kt. The storm



brought needed rain to the Philippines during a spell of drier than normal weather. The

storm also brought death and destruction. Considerable flooding and crop damage oc-

curred over southern China as Tess moved inland (Ref. 6]. The observed track of

Typhoon Pat and Typhoon Tess are shown in Figure 1 and Figure 2, respectively.



Figure I. The observed track of Typhoon Tat [Ref. 6]
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B. COMPUTER SIMULATIONS

1. Typhoon Pat

The best track of Typhoon Pat is shown in Figure 3. The best track positions

, arc in 6-hourly increments. The first tracking data point corresponds to the day-time

group 08270000Z. Figure 4 shows the Kalman filter position estimates and Figure 5

shows the smoothed position estimates. Figure 6 was constructed using the filtered and

smoothed position estimates. In general, the smoother does improve the track accuracy.

In the area of the track where the true positions do vary, the smoother tracking error is

zero. Specifically, this area occurs between 23° N, 124° E, and 38° N, 133° E. This area

can be seen easily in Figure 7. This figure was constructed by using the tracking error

of the filter and smoother. The average tracking errors for this storm are ± 4 nautical

miles for the filter and + 2 nautical miles for the smoother estimates.

2. Typhoon Tess

The performance of the smoother on the track of Typhoon Tess was similar to

that of Typhoon Pat. Figure 8 shows Typhoon Tess best track. Typhoon Tess best

track data are also in 6-hourly increments. The filter and smoother tracking results are

shown in Figure 9 and Figure 10, respectively. Figure 11 shows the track results ob-

tained with the Kalman filter and smoothing algorithm. The smoother shows some im-

provement near 17.5° N, 120°F and 15.2° N, 130°E. The filter average tracking error

increased slightly, to about ± 5 nm, but the smoother average tracking error jump to

about ± 5 nm. 'I his is because the smoother gives 30 nautical miles tracking error near

18.8° N, HC'E due to large change on the direction of Typhoon Tess. Figure 12 shows

the tracking errors of the filter and smoother. It is observed that the smoother was

much less sensitive to the large course changes than the Kalman filter. It is, therefore,

reasonable to assume that similar results could be expected from the smoother for a

large course change more than 90°
. However, the smoother's estimates arc quite good

over the entire trajectory and the estimates closely follow* the course changes as in

Typhoon Pat.

12



w
b

I

I

CO
W
o
2

^5
OS
O
C/0

in
CO

co

CM
co

CO

o
CO

CD
02

co

02

CM

CM

WW
O
W
Q

I

W
w
Q

>

—

i

O
o

in o ID
CO

o
CO

10
CM

o
CO

(aa^joaa)--N aaruuvr

Figure 3. The Best Track of Typhoon Pal

13



I

en

>

CO

o

Pi
o
CO

wu
o
Q

!

w
w
Q
P
fa

o

(aauDaa)

—

n aaaiun

rigme -4. Pilfered Track of Typhoon Pat

14



3
GO

U

o
00

in
co

CO

CO
CO

CM
CO

CO

in o in
CO

o
CO

ID
CM

o
CM

CO
02

CM

CD
CM

CM

ww
K
O
W
Q

o 1

CO W
>—

1

w
Q
P

03 H
CM —

<

•—I O
^
o
(-1

(aaaoau)

—

n aaruiivi

Figure 5. Smoothed Track of Typhoon Pat

15



ID
CO

2
CO

>

d
Pm

00

CJ
<

Pi
O
CO

10 o
CO

o
CO

IT)

CM

in
c\jo ^

CM

w

Q

I

w
w
o

o
o

(aa^aci)

—

n aaruuvi

Figure 6. Filtered and Smoothed Track of Typhoon Pat

16



Figure 7. Tracking Errors of the Filler and Smoother lor typhoon Pat
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Figure 11. Filtered and Smoothed Track of Typhoon Tess
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IV. STORM WIND TRACKING

A. GENERAL

In an effort to estimate the possible damage a hurricane's sustained winds and

storm surge could do to a coastal area, the SafTir-Simpson damage-potential scale was

developed. The scale numbers are based on actual conditions at some time during the

life of the storm " [Ref 7J. Table 3 shows these categories.

Table 3. SAFFIR-SIMPSON HURRICANE DAMAGE-POTENTIAL SCALE

Scale Num-
ber

Wind
spccd(knots)

Damage

1 64-82
Damage mainly to trees, shrubbery, and unanchorcd

mobile homes.

2 83-95
Some trees blown down; major damage to exposed
mobile homes; some damage to roofs of buildings.

3 96-113
Foliage removed from trees; large trees blown down;
mobile homes destroyed; some structural damage to

small buildings.

4 114-135

All signs blown down; extensive damage to roofs, win-

dows, and doors; complete destruction of mobile

homes; flooding inland as far.

5 > 135

Severe damage to windows and doors; extensive dam-
age to roofs of homes and industrial buildings; small

buildings overturned and blown away; major damage
to lower floors of all structures less than 4.5 m above

sea level within 500 m of shore.

The storm wind tracking scenario parallels the storm tracking problem. The track-

ing scenario used here involves two storms. This problem will be analyzed using state

space methods. Given the tropical cyclone intensity values the observed speed of the

storm wind will be estimated by using the Kalman filter and smoother. Table 4 shows

the relationship between intensity and wind speed. The wind speed was used directly as

a measurement for the best track data of the storm. The state variables for this plant

arc iv, and w.

The system can be described by the state space equation

wk+i =<j> kwk +fk (4.1)

23



where

w
k
= state vector to be estimated,

</>*= state transition matrix which describes how the states of the dynamic system are

related, and

fk
= random forcing function with a covariance matrix Qk that is defined as

Qk

T
4

7°
4

7
3

2

T2

2

mrkn (4.2)

The state vector is

*-[S (4.3)

and the system state equations are

U_T+1
_

l_0 1 |Ar
+ ^*] (4.4)

The measurements are linearly related to the state variables. Using the measurement

equation

zk = Hk&k + ?k (4.5)

The measurement equation can be written as

zA+1 = cio: k + ^k i (4.6)

where the measurement noise vh has a variance associated with the source of the meas-

urement. The measurement noise covariance matrix values arc calculated in the same

manner as in storm position tracking problem by using Equations (2.8) and (2.9) for the

aircraft and radar data.

The initial error covariance matrix used in the wind speed tracking is
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(0|-1)

1000000

0.25

1000000

0.25

(4.7)

Table A. MAXIMUM SUSTAINED WIND SPEED AS A FUNCTION Ol
FORECAST INTENSITY NUMBER

Intensity Wind specd(nm'h)

00 25

05 25

10 25

15 25

20 30

25 35

30 45

35 55

40 65

45 77

50 90

55 102

60 115

65 127

70 140

75 155

80 170

B. COMPUTER SIMULATIONS '

1. The Best Track Data

a. Typhoon Pat

Using the best track data wind speed values as the measurements, future

wind speed values were estimated by the filter and the smoother. There is an initial track

error due to the error in the initial state estimates. When the wind speed increases at

24 hours, the tracking error decreases and becomes zero for the fifth data as the filter

gains the wind track. However, it increases after 90 hours when the wind speed de-

creases very fast and it returns to zero two data points later as the filter regains the wind
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track. Figure 14 shows the filter tracking accuracy. The smoother is not as accurate as

in the position estimate due to the large change in wind speed, but these errors remain

in the acceptable ranges. The smoother track is shown in Figure 15. The average

t
tracking errors arc ± 0.5 mph for the filter and + 1.1 mph for the smoother. Best track

data represents the weather service's estimate of truth [Rcf. 6]. Figure 16 compares the

forward time estimate (filter, FIL(o)) with the forward and negative time estimate

(smoother, SM(x)) for Typhoon Pat. Figure 17 denotes the error in these estimates.

b. Typhoon Tess

The tracking results for this storm are shown in Figures 18-22. From Figure

19 and 20, we can see how the Kalman filter and the fixed interval smoothing improve

the overall track estimate. During the overall track estimate, two large filter tracking

errors arc detected. This is shown in Figure 19. In both instances the smoother also

gives large tracking errors. Figure 20 shows the smoother estimates. At other times,

however, the filtered and smoothed estimate arc accurate. Figure 21 is the comparison

of the filter and smoother estimates. The filter average tracking error is + 1.5 mph and

the smoother average tracking error is ± 2.0 mph. Figure 22 shows the tracking errors

of the filter and smoother estimates.



Figure 13. The Best Track Wind Speed of Typhoon Pat [Ref. 6]
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figure 14. Tillered Track of Typhoon Pat's Best Track Wind Speed
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figure 15. Smoothed Track of Typhoon Pat's Best Track Wind Speed
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Figure 16. nilcicd and Smoothed Track of Typhoon Pat's Best Track Wind Speed
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Figure 17. The Filter and Smoother Tracking Errors of Typhoon Pat
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Figure 18. The Best Track Wind Speed of Typhoon Tess [Ref. 6
]
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Figure 19. Filtered Track of Typhoon Tess' Best Track Wind Speed
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Figure 20. Smoothed Track of Typhoon Tess' Best Track Wind Speed
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Figure 21. Filtered and Smoothed Track of Typhoon Tess' Best Track. Wind Speed
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Figure 22. The Filter and Smoother Tracking Errors of Typhoon Tess
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2. The Observed Wind Speed Data

There was uncertainty in the observed data obtained from the JTVVC [Rcf. 6J.

This data has more than one data at the same time instant for the different positions

from the eye of the hurricane. This is shown in Figures 23 and 24. There was a strong

potential for the filter to go unstable. This was data smoothed using the Equations (4.8)

and (4.9). The data obtained before and after curve fitting is shown in Figures 25 and

26.

Ih

1.0 -T_
2 Tt 2

i.o -r_, rl,

1.0 0.0 0.0

7^2
1.0

1.0

T
i

7", Ti

H-8)

Zk = [ll
T
k HkyH T

k
-
H (4.9)

where

z k
= measurements to be smoothed, and

xk= smoothed measurements.

a. Typhoon Pat

Using the interpolated data as an observed data, tracking results obtained

for typhoon Pat arc shown in Figures 27 and 28. The filter and smoother estimates the

wind speed accurately. There is no potential for the filter and smoother to go unstable.

The accuracy of the filter is about 70%, and the smoother is about 65%. Due to the

instant change in the wind speed, the smoother cannot adapted to this change easily.

b. Typhoon Tcss

The performance of the filter and the smoother arc better in Typhoon Tcss.

They estimate the wind speed very accurately. Again, there is no potential for the filter

and smoother to go unstable. During the tracking scenario the filter gives the actual

observed value and the smoother docs improve the accuracy of these estimates. "1 he

tracking error is usually zero or very close to zero. The accuracy of the filter and

smoother arc almost the same in this hurricane which is about 85%. The tracking re-

sults are shown in Figures 29 and 30.
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Figure 23. The Observed Wind Speed at Some Distance of Typhoon Tat (Ref. 6
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Figure 24. The Observed \N'iiid Speed at Some Distance of Typhoon less [Ref. (']
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The Observed and Interpolated Track of Typhoon Pat
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Figure 26. The Observed and Interpolated Track of Typhoon Tess



Figure 27. Filtered Track of Typhoon Pat's Observed Wind Speed
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Figure 28. Smoothed Track of Typhoon Pat's Observed Wind Speed
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Figure 29. Filtered Track of Typhoon less' Observed Wind Speed
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Figure 30. Smoothed Track of Typhoon less' Observed Wind Speed
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V. CONCLUSIONS

The purpose of this research was to improve the accuracy and storm tracking ca-

pability of a Kalman filter tracking by implementing a fixed interval smoothing algo-

rithm. Two dilfcrent tropical storms were simulated and the accuracy of the observed,

the filtered, and the smoothed storm tracks were analyzed and discussed.

The fixed interval smoothing algorithm improved the position accuracy of the storm

in all of the tracking scenarios simulated. However, the smoothed result was not always

the most accurate for every storm track. The smoother did improve the track accuracy

on the basis of the best track storm positions. The effectiveness of the smoother in-

creased as the storm lifetime increased and the storm course change decreased.

The storm wind speed tracking scheme implemented worked well. However, because

this tracking involves the addition of a time-varying value of the state excitation matrix.

Qk , there was a strong potential for the filter to go unstable. 'I his was observed during

the storm wind speed tracking. It was difficult to decide the value of Qh
and Rh for ob-

served wind speed tracking, because intensity could not be observed main times. This

problem was solved by using a curve fitting method and then this data was used for in-

puts to the tracking problem, flic results show that this method can be used to in-

terpolate the uncertain data and to avoid an unstable filter.

The application of the Kalman filter tracker to the storm tracking problem would

be very useful in attempting to predict the storm's track when little data is available, as

seen in observed wind speed tracking problem. Then, by using the filter and smoothing

algorithm, track of the storm's past history can be calculated allowing for a more accu-

rate prediction of the storm's future track. I here was no standard deviation for observed

wind data. If JTWC can obtain standard deviations for observed wind data, this can

be used. The wind data obtained has much missing data, some times causing an unsta-

ble filter.
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APPENDIX A. STORM.FOR

This is a listing of the STORM.FOR program used to generate the data for the

target tarcks presented in this thesis. In order to run this program, the STORMl.DAT
or STORM2.DAT file must be available.

STORM 1**'

******** T0 RUN **************

1) ENSURE STORM DATA IS AVAILABLE
2) RUN STORM 1 OR ST0RM2
3) COPY OESDATA,FILDATA, & SMDATA
4) BEGIN MATLAE --> RUN ST0RM2.

M

--> MATLAB SUB-DIR.

A, -»- -'- »t- *»- »t-J- JL «.»- J .JL JL »». JL J-JL JL JL JL

THIS PROGRAM EMPLOYS AN ADAPTIVE EXTENDED KALMAN
FILTER WITH A FIXED INTERVAL SMOOTHING ALGORITHM TO TRACK A
TROPICAL STORM USING OBSERVED LATITUDES AND LONGITUDES.

—'VARIABLE DEFINITIONS--

c AK
c ART
c BRG
c BRKKM1
c

c DBRG
c DT
c

c DTOR
c Ei,E2
c E1M1,E2M1
c

c E1M2,E2M2
c

c FAC1
c G
c GATE1
c

c

c H
c KDG
c HT
c I
fl
u I MAT

SMOOTHING FILTER GAIN MATRIX
TRANSPOSE OF AK
MEASURED TARGET BEARING IN RADIANS
PREDICTED TARGET BEARING MEASUREMENT
IN RADIANS BRG(K|K-1)
MEASURED TARGET BEARING IN DEGREES
TIME DELAY BETWEEN OBSERVATIONS, T(K)
- T(K1)
DEGREE TO RADIAN CONVERSION FACTOR
MEASUREMENT RESIDUAL, Z(K) - H(X(K|K-1))
MEASUREMENT RESIDUAL AT PREVIOUS
OBSERVATION
MEASUREMENT RESIDUAL TWO OBSERVATIONS
PREVIOUS
RECIPROCAL OF VARE
KALMAN GAIN VECTOR
1. 5 -'-STANDARD DEVIATION OF RESIDUAL
PROCESS, USED AS A GATE IN
MANEUVER DETECTION
MEASUREMENT MATRIX
ESTIMATED TARGET HEADING IN DEGREES
TRANSPOSE OF H
COUNTER
4X4 IDENTITY MATRIX
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c J
c K
c LPKK
c

c LPKKM1
c LXKK
c LXKKM1
c M1,M2
c

c PHI
c PHIT
c PI
c PKK
c PKKS
c PKKM1
c

c PKKM1S
c

c IPKKM1S
c PSS
c

c R
c RANGE
c

c RTOD
c SPD
c TEMP
c

c VARE
c XDIFF
c

c XKK
c XKKS
c XKKM1
c

c XKKM1S
c

c XPOS
^

c xs
c xss
c

c XT
n YD IFF
c

c YPOS
c YS
c YT
c ZX
c ZY

COUNTER
ITERATION INTERVAL
STATE COVARIANCE MATRIX AFTER PREVIOUS
OBSERVATIONS
A PRIORI STATE COVARIANCE ESTIMATE
STATE ESTIMATE AFTER PREVIOUS OBSERVATIONS
A PRIORI STATE ESTIMATE
AVERAGE OF RESIDUALS OVER LAST THREE
OBSERVATIONS
DISCRETE-TIME STATE TRANSITION MATRIX
TRANSPOSE OF PHI
3. 141592654
ESTIMATION ERROR COVARIANCE MATRIX, P(K|K)
SMOOTHED ERROR COVARIANCE MATRIX
PREDICTED ESTIMATION ERROR COVARIANCE
MATRIX, P(K|K-1)
PREDICTED ERROR COVARIANCE MATRIX FOR
SMOOTHING, P(K+1|K)
INVERSE OF PKKM1S
ERROR COVARIANCE MATRIX FOR
SMOOTHING, P(K|K)
MEASUREMENT NOISE COVARIANCE
DISTANCE FROM SENSOR TO A PRIORI TARGET
POSITION
RADIAN TO DEGREE CONVERSION FACTOR
ESTIMATED TARGET SPEED IN KNOTS
TEMPORARY STORAGE MATRICES USED IN
MATRIX OPERATIONS
VARIANCE OF RESIDUALS PROCESS
DISTANCE IN X DIRECTION FROM SENSOR TO
A PRIORI TARGET POSITION
ESTIMATED TARGET STATE VECTOR, X(K|K)
SMOOTHED TARGET STATE VECTOR
PREDICTED TARGET STATE VECTOR,
X(K|K-1)
PREDICTED TARGET STATE VECTOR FOR
SMOTHING, X(K+1|K)
ESTIMATED TARGET POSITION IN X
DIRECTION
SENSOR POSITION IN X DIRECTION
TARGET STATE VECTOR FOR SMOOTHING,
X(K|K)
TRUE TARGET POSITION IN X DIRECTION
DISTANCE IN Y DIRECTION FROM SENSOR TO
A PRIORI TARGET POSITION
ESTIMATED TARGET POSITION IN Y DIRECTION
SENSOR POSITION IN Y DIRECTION
TRUE TARGET POSITION IN Y DIRECTION
OBSERVED POSITION IN X DIRECTION
OBSERVED POSITION IN Y DIRECTION

C VARIABLE DECLARATIONS
CHARACTER" 1 A,B

REAL*4 XKK (4,1), XKKM 1(4,1), LPKKM 1(4,4), LXKKM 1(4,1)
REAL*4 H( 2 , 4) ,HT( 4

,

2)

,

G( 4 , 2) ,TEMP1( 2 , 1) ,TEMP2( 2 ,4) ,TEMP3(2 ,1)
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REAL*4 TEMP4(4,2),TEMP5(4,1),TEMP6(4,4),TEMP7(4,4)
REAL*4 PKK( 4,4), PKKM1( 4 , 4) , Z( 2 , 1)
REAL*4 LXKK(4, 1) ,LPKK(4,4) ,XS( 10) ,YS( 10) ,DBRG( 10) ,BRG
REAL*4 PHI(4,4),PHIT(4,4),IMAT(4,4),XT,YT
REAL*4 GATE1,E(2,1),VARE(2,2) ,IVARE(2,2)
REAL*4 DT, DTF,XD IFF, YD IFF, RANGE, XS1 , YS1 ,BRG1 ,BRKKM1
REAL*4 DATE, HR,MN,LAT, LONG, TOTIM, TIME, TIMEM1, DATE 1

REAL*4 OBSERR(300),FAC1,SIGTH2,SIGVT2,R(2,2),ETOTAL,EAVG,RTOD
REAL*4 X2,YS2,BRG2,ZX,ZY,M1,E1,E1M1,E1M2,DT0R,TRKERR(300)
REAL*4 M2 , E2 ,E2M1 ,E2M2 , Gl 1 , G13 , G21 , G23 , ZXM1 , ZYM1
REAL*4XKKS(4,1,300),PKKS(4,4,300)
REAL*4 XNNM1( 4 , 1) ,XSS( 4 , 1) ,XKKM1S( 4 , 1

)

REAL*4 PNNM1( 4 , 4) , PSS( 4 , 4) , PKKM1S( 4 , 4) , IPKKM1S( 4 ,4)
REAL---4 AK(4,4),AKT(4,4),II(4,4),STRKERR(300),DTS(300)
REAL*4 TEMP1S(4,4),TEMP2S(4,1),TEMP3S(4,1)
REAL*4 TEMP4S(4,4),TEMP5S(4,4),TEMP6S(4,4)
REAL*4 AS,ASA,ASL,NAV,MET
INTEGERS NP
INTEGER--'--, PCN

C OPEN OUTPUT DATA FILES
OPEN(UNIT=2,FILE=' ST0RM1.DAT' ,STATUS=' OLD'

)

OPEN(UNTT=3,FILE =' OUTDATA. DAT' ,STATUS='NEW'

)

0PEN(UNIT=4,FILE='TRUDATA. DAT' ,STATUS=' NEW
1

)

OPEN ( UNI T=5,FILE='FILDATA. DAT' , STATUS=' NEW'

)

OPEN(UNTT=6,FILE=' SMDATA. DAT' ,STATUS=' NEW'

)

OPEN(UNIT=7,FILE='ELLIPDAT. DAT
1

,STATUS=' NEW'

)

OPEN(UNTT=8,FILE=' MATRIX. DAT' , STATUS=' NEW'

)

OPEN(UNIT=9,FILE='ERRDATA. DAT' , STATUS=' NEW'

)

OPEN(UNTT=10,FILE='ERRSDATA. DAT' , STATUS=' NEW'

)

C RADIAN/DEGREE CONVERSION FACTORS
RTOD=57. 29577951
DTOR=0. 01745293

C COMPUTE 4X4 IDENTITY MATRIX
DO 5 1=1,4
DO 5 J=l,4
IF (I.EQ. J) THEN

IMAT(I,J)=1.
ELSE

IMAT(I,J)=0.
END IF

5 CONTINUE

DO 6 1=1,2
DO 6 J=l,4

H(I,J)=0.
6 CONTINUE

H(l,l) = l.

K(2,3) = l.

C INITIALIZE TIME COUNTER
TOTTIM=0.
TI MEM 1=0.

NP=0

C INITIALIZE COUNTER FOR MANEUVER GATE
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E1M1=0.
E1M2=0.

C COMPUTE BEARING MEASUREMENT COVARIANCE
C BEARING ERROR STANDARD DEVIATION = 1 NM

WRITE(*,*) 'FILTERING OBSERVED DATA WITH KALMAN FILTER'
WRITE ( * , * ) ' ***=***

'

810 READ(2,1001,END=800)DATE,HR,MN,LAT,A,LONG,B,PCN,NAV,MET
C SATELLITE DATA FOR MEASUREMENT NOISE COV. MATRIX VALUES

IF(PCN. EQ. 1)THEN
AS=256.

ELSEIF(PCN. EQ. 3)THEN
AS=900.

ELSEIF(PCN. EQ. 5)THEN
AS=1600.

C RADAR DATA
ELSEIF(PCN. EQ. 2)THEN

AS=100.
ELSEIF(PCN. EQ. 4)THEN

AS=225.
ELSEIF(PCN. EQ. 6)THEN

AS=625.
C AIRCRAFT DATA

ELSE
AS=((NAV)**2+(MET)**2)**0.

5

END IF
R(1,1)=AS
R(l,2)=0.
R(2,l)=0.
R(2,2)=AS

C READ IN OBSERVATION PACKET (DATE , TIME , LAT, LONG)
C DT=TIME(K)-TIME(K-1)

C READ ( 2 , 1 1 , END=3 ) DATE , HR , MN , LAT , A , LONG ,

B

1001 FORMAT(F6. 0,F2. 0,F2.
S
F3. 0,A1,F4. , Al , II ,2(F2. 0))

NP=NP+1

MN=MN/60.
LAT=LAT/10
LONG=LONG/10
TIME=HR+MN

C WRITE (3,1) DATE , HR , MN, LAT , A , LONG ,

B

1 F0RMAT(1X,F7. 0,4X,F3. , IX, F6. 4 , 6X,F4. 1,A1,3X,F5. 1,A1)

IF (NP.EO. 1) THEN
DATE 1=DATE
TIMEM1=TIME

END IF
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IF (DATE. NE. DATE 1) THEN
TIME=TIME+24
DT=TIME-TIMEM1
TIME=TIME-24

ELSE
DT=TIME-TIMEM1

END IF

DTF=DT*60.
DTS(NP)=DT
TOTTIM=TOTTIM+DT

C WRITE (3,2) TIME,TOTTIM,DT
2 F0RMAT(1X,F7.4,5X,F6. 2,5X,F6. 2)

CALL FINDPHI(PHI,DT)

Z(1,1)=L0NG
Z(2,1)=LAT
ZX=LONG
ZY=LAT

IF(NP.EQ. 1) THEN
CALL INIT(LONG,LAT,XKK,PKK)

C WRITE(* J*)'X(0|0,0):
'

DO 601 1=1,4
LXKK(I,1)=XKK(I,1)

C WRITE (3,*) '*****^******'
C WRITE(3,*) (XKK( 1,1) ,1=1,4)
601 CONTINUE

C WRITE(3,*)'p(0|0,0): '

DO 602 1=1,4
DO 602 J=l,4

C LPKK(I,J)=PKK(I,J)
C WRITE(3,401)PKK(I,J)
401 F0RMAT(4F14. 4)
602 CONTINUE

ENDIF

C PROJECT AHEAD STATE AND ERROR COVARIANCE ESTIMATES
C X(K+1|K) = PHI * X(K|K)

CALL MATMULf PHI , XKK ,4,4,1, XKKM 1

)

C WRITEOVO ' X( ' .TIME
,

' |

' ,TIMEM1
,

' ,0):
'

DO 603 1=1,4
C WRITEC3,*) (XKKM1(I,1),I=1,4)
C WRITE ( 3 ,*) ' *>^^v^Hr****»-f****

'

LXKKM 1(1,1) =XKKM 1(1,1)
603 CONTINUE

P(K+1|K) = (PHI * P(K|K) * PHIT) + Q
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CALL MATRAN(PHI,PHIT,4,4)
CALL MATMULC PHI , PKK , 4 , 4 , 4 , TEMP6)
CALL MATMULC TEMP6 , PHIT , 4 , 4 , 4 , TEMP7

)

CALL GETQ(Q)
CALL MATADD( TEMP 7 , Q , 4 , 4 , 1 , PKKM1

)

DO 408 1=1,4
DO 408 J=l,4

LPKKM1(I,J)=PKKM1(I,J)
408 CONTINUE

C WRITE(*,*)'P(' .TIME,'
|

'
,TIMEM1,' ,0):

DO 604 1=1,4
C WRITE(3,402)(PKKM1(I,J),J=1,4)
402 F0RMAT(4F14.4)
604 CONTINUE

204 CONTINUE

C COMPUTE OBSERVATION RESIDUAL
C E=Z(K)-H*X(K|K-1)

CALL MATMUL( H , XKKM 1,2,4,1, TEMP 1

)

CALL MATSUB(Z,TEMP1,2
3
1,E)

C COMPUTE VARIANCE OF RESIDUALS SEQUENCE
C AND ADAPTIVE GATE VALUE
C VAR( E ) =H*PKKM1*HT+R

CALL MATRAN(H,HT,2,4)
CALL MATMULC H , PKKM 1,2,4,4, TEMP2

)

CALL MATMULC TEMP2 , HT , 2 , 4 , 2 , TEMP3

)

CALL MATADD(TEMP3,R,2,2,1,VARE)
C WRITE (3,*)' VARIANCE OF RESIDUALS = ' ,VARE
C GATE 1=1. 5*SQRT(VARE)

C COMPUTE KALMAN GAIN MATRIX
C G=PKKM 1*HT* ( H*PKKM 1*HT+R ) ** -

1

CALL MATRAN(H,HT,2,4)
CALL MATMULC PKXM1 ,HT,4 ,4 , 2 ,TEMP4)
CALL MATINVCVARE , 2 , IVARE)
CALL MATMULC TEMP4 , IVARE , 4 , 2 , 2 , G

)

C V/RITEC 3 , * )
' PKKM 1*HT =

'

DO 414 1=1,4
C WRITE(3,*)TEMP4(I,1)
414 CONTINUE

C WRITE (
3,'-'-) 'G = '

DO 613 1=1,4
C WRITE(3,*)G(I,1)
613 CONTINUE

C IF (L. EQ. 1) THEN
C G11=G(1,1)
C G13=G(3,1)
C ELSE



C G21=G(1,1)
C G23=G(3,1)
C END IF

C COMPUTE UPDATED ESTIMATE
C X(K|K)=X(K|K-1)+G*E, WHERE E=Z(K) -H*X(K|K-1)

CALL MATMUL( G ,E , 4 , 2 , 1 , TEMPS

)

CALL MATADD( TEMPS ,XKKM1 ,4, 1 , 1 ,XKK)

C WRITE(3,*)'X(',TIME,' I'.TIME,
1

,

1

,L,'):
'

DO 605 1=1,4
C WRITE(3,*)XKK(I,1)
605 CONTINUE

C COMPUTE UPDATED ERROR COVARIANCE MATRIX
C P(K|K)=(I - G*H)*P(K|K-1)

CALL MATMUL(G,H,4,2,4,TEMP6)
CALL MATSUB(IMAT,TEMP6,4,4,TEMP7)
CALL MATMUL(TEMP7 , PKKM1 , 4 , 4 , 4 , PKK)

C WRITE(3,*)'P(' ,TIM£,' |

'
,TIME,'

,

',L,'):

'

DO 606 1=1,4
C WRITE(3,406)(PKK(I,J),J=1,4)
406 F0RMAT(4F14.4)
606 CONTINUE

C THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM

DO 620 1=1,4
XKKS(I,1,NP)=XKK(I,1)

620 CONTINUE

DO 630 1=1,4
DO 630 J=l,4

PKKS(I,J,NP)=PKK(T,J)
630 CONTINUE

C COMPUTE TRUE TRACKING ERROR
ASA=XKK(1,1)
ASL=XKX(3,1)
TRKERR( NT ) =SQRT( ( LAT- ASA ) **2+( LONG-ASL)**2

)

C COMPUTE OBSERVATION ERROR
C OBSERR(NP)=SQRT((ASLAT-ZX)**2+(ASLONG-ZY)**2)

C SAVE LATEST RESIDUALS FOR AVERAGING
C E1=E

COMPUTE THE AVERAGE RESIDUAL OVER THE PAST THREE OBSERVATIONS
u Ml=(El+ElMl+ElM2)/3

C WRITE(^,--"")'PAST THREE RESIDUALS FOR SENSOR 1 ARE :
' ,E1,E1M1 ,E1M2

C WRITE(*,*)' BEARING AVERAGE OF SENSOR 1 = ' ,M]

C WRITE(*,*)' MANEUVER GATE FOR SENSOR 1 = ' ,GATE1
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C E1M2=E1M1
C E1M1=E1

C COMPUTE ERROR ELLIPSE DATA
C CALL ELLIP(XKK(1,1),XKK(3,1),PKK(1,1),PKK(3,3),PKK(1,3))

C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED
XPOS=XKK(l,l)
YPOS=XKK(3,l)
IF (XKK(2,1).EQ. .AND. XKK(4, 1). EQ. 0) THEN

HDG=0.
ELSE

HDG=RTOD*ATAN2 ( XKK( 2 , 1 ) , XKK( 4 , 1 )

)

ENDIF
IF (HDG. LT. 0.0) HDG=HDG+360
SPD=60*SQRT( XKK( 2 , 1)**2+XKK( 4 , 1)**2

)

C WRITE (*, *) 'FILTERED DATA FOR DATA POINT' ,NP
WRITE (3, *) 'FILTERED DATA FOR DATA POINT' ,NP

C WRITE(*,*) 'TIME X POS Y POS HEADING SPEED'
WRITE(3,*) 'TIME X POS Y POS HEADING SPEED'

C WRITE ( * , *)TOTTIM , XPOS , YPOS , HDG , SPD
WRITE(3,*)TOTTIM,XPOS,YPOS,HDG,SPD
WRITE( 4 ,*)TOTTIM , ZX , ZY
WRITE(5, *)TOTTIM,XPOS, YPOS, PKK( 1,1)
WR ITE ( 9

, * ) NT , TRKERR ( NP

)

1002 FORMAT(1X,5F10. 3)
1003 F0RMAT(1X,F6. 2,3X,F10. 1,2X,F11. 1,3X,F8. 1,3X,F8. 1)
1004 F0RMAT(1X,F6. 2,3(F8. 1,2X))

C COMPARE BEARING ERRORS TO MANEUVER DETECTION GATES

IF ((ABS(Ml).GT. (GATE1))) THEN-

WRITE (*,*) '*** MANEUVER DETECTION ***'

C WRITE (3, *)'*** MANEUVER DETECTION ***'

CALL REINITC DT , ZX , ZY , ZXM1 , ZYM1 , LPKKM1 ,XKKM1 , PKKM1

)

E1M1=0.
E1M2=0.
GOTO 204

ENDIF

TIMEM1=TIME
DATE 1=DATE

ZXM1=ZX
ZYM1=ZY

GOTO 810

C THIS IS WHERE THE SMOOTHING ALGORITHM STARTS
C FIXED INTERVAL SMOOTHING
800 WRITE(*,*) 'SMOOTHING FILTERED DATA WITH A'

WRITE (*,•-
) 'FIXED INTERVAL SMOOTHING ALGORITHM'

:•?*ITE(*,*)
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DO 1000 KK=1,NP-1
K=NP-KK

DT=DTS(K+1)

TIME=TIMEM1-DT
CALL FINDPHI(PHI,DT)

DO 901 1=1,4
XSS(I,1)=XKKS(I,1,K)

901 CONTINUE

DO 902 1=1,4
DO 902 J=l,4
PSS(I,J)=PKKS(I,J,K)

902 CONTINUE

C CALCULATE THE PREDICTED STATE AND ERROR COVARIANCE MATRICES
C X(K+1|K)=PHI*X(K|K)

CALL MATMUL ( PHI ,XSS ,4 ,4 , 1 ,XKKM1S)
C P(K+1|K)=PHI*F(K|K)*PHIT+Q

CALL MATRAN ( PHI ,PHIT,4 ,4)
CALL MATMUL( PHI , PSS , 4 , 4 , 4 ,TEMP6

)

CALL MATMUL( TEMP6 , PHIT , 4,4,4, TEMP 7

)

CALL GETQ(Q)
CALL MATADD(TEMP7,Q

5
4,4,1,PKKM1S)

C CALCULATE THE SMOOTHING FILTER GAIN MATRIX
C AK=F f K | K ) *PH IT* INV ° P( K+ 1 1 K

)

CALL MATINV (PKKM1S ,4 , IPKKM1S)
CALL MATMUL ( PKKM1S , IPKKM1S ,4 ,4 ,4 , II)

CALL MATMUL ( PSS , PHIT, 4, 4 ,4, TEMP IS)

CALL MATMUL (TEMP1S , IPKKM1S ,4 ,4 ,4 , AK)

DO 904 1=1,4
XNNM1( I , 1)=XKKS( I , 1 ,K+1)

904 CONTINUE

C CALCULATE THE SMOOTHED STATE ESTIMATE
C XKKS=X( K |K)+AK*(X(K+1 |

N) -X( K+l |K)

CALL MATSUE (XNNM1 ,XKKM1S , 4 , 1 ,TEMP2S)
CALL MATMUL ( AK,TEMP2S ,4,4, 1 ,TEMP3S)
CALL MATADD (XSS ,TEMP3S ,4, 1 ,K,XKKS)

DO 906 1=1,4
DO 906 J=l,4

PNNM 1 ( I , J ) =PKKS ( I , J , K+ 1

)

906 CONTINUE

C CALCULATE THE SMOOTHED COVARIANCE MATRIX
C PKKS=P ( K ! K ) +AK* [ P ( K+ 1 | N ) - ? ( K+ 1 | K )

] *AKT
CALL MATSUB (PNNM1,PKKM1S,4,4,TEMP4S)
CALL MATRAN (AK,AKT,4,4)
CALL MATMUL (AK,TEMP4S,4,4,4,TEMP5S)



CALL MATMUL (TEMP5S,AKT,4,4,4,TEMP6S)
CALL MATADD (PSS ,TEMP6S ,4,4,K,PKKS)

C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED
SXPOS=XKKS(l,l,K)
SYPOS=XKKS(3,l,K)
IF (XKKS(2,1,K).EQ. .AND. XKKS(4 , 1 ,K). EQ. 0) THEN

SHDG=0.
ELSE

SHDG=RT0D*ATAN2(XKKS(2,1,K),XKKS(4,1,K))
END IF
IF (SHDG. LT. 0. 0) SHDG=SHDG+360
SSPD=60*SQRT(XKKS( 2 , 1 ,K)**2+XKKS(4, 1 ,K)**2)

C WRITE (*,-'') 'SMOOTHED DATA FOR DATA POINT* ,K

WRITE(3,*) 'SMOOTHED DATA FOR DATA POINT' ,K

C WRITE(*,*) 'TIME X POS Y POS HEADING SPEED'
WRITE (3,*) 'TIME X POS Y POS HEADLNG SPEED'

C WRITE(*,*)TOTTIM, SXPOS, SYPOS, SHDG, SSPD
WRITE ( 3

, *)TOTTIM , SXPOS , SYPOS , SHDG , SSPD
1010 FORMAT(1X,5F10. 3)
1020 F0RMAT(1X,F6. 2,3X,F10. 1,2X,F11. 1,3X,F8. 1,3X,F8. 1)
1030 F0RMAT(1X,F6. 2,3(F8. 1,2X))

TIMEM1=TIME
1000 CONTINUE

C CLOSE (UNIT=4)

C CALCULATE THE SMOOTHED TRACKING ERROR
C 0PEN(UNIT=4,FILE='TRUDATA. DAT' , STATUS=' OLD'

)

DO 1100 K=1,NP
SXPOS=XKKS(l,l,K)
SYPOS=XKKS(3,l,K)

C READ(4,1001)DATE,KR,MN,LAT,A,LONG,B,PCN
STRKERR( K)=SQRT((LAT-SXPOS )**2+( LONG- SYPOS )**2)
WRITE( 6 , 1 120)K , SXPOS , SYPOS , PKKS( 1 , 1 ,K)

WR ITE ( 10 , *)K , STRKERR ( K

)

1100 CONTINUE
1110 FORMAT(I4,2F8. 1)

1120 F0RMAT(I4,3(F8. 1,2X))
1130 F0RMAT(I4,3F8. 1)

CLOSE (UNIT=2)
CLOSE(UNIT=3)
CLOSE (UNIT=4)
CLOSE(UNIT=5)
CLOSET UXIT=6)
CLOSE(UNIT=7)
CLOSE(UNIT=8)
CLOSE(UNIT=9)
CLOSE (UNIT=10)

WR ITE ( -,-••) 'FILTERED & SMOOTHED OUTPUT DATA IS LOCATED IN THE'
WRITE(*,*) 'DATA FILE OUTDATA.DAT. FOR GRAPHIC RESULTS,'
WRITEC*,*) 'ENSURE OBSDATA.DAT, FILDATA.DAT, & SMDATA.DAT ARE'
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WRITEOV") 'IN THE MATLAB SUB-DIRECTORY AND RUN THE MATLAB'
WRITE (*,*) 'M-FILE STORM2.M'
STOP
END

C SUBROUTINES

SUBROUTINE FINDPHI(PHI ,DT)

C COMPUTES THE VALUES OF THE PHI MATRIX

R£AL*4 PKI(4,4),DT

DO 1501 1=1,4
DO 1501 J=l,4
DO 1501 K=l,2

PHI(I,J)=0.
1501 CONTINUE

C COMPUTE PHI MATRIX
DO 1500 1=1,4
PHI(I,I) = 1.

1500 CONTINUE
PHI(1,2)=DT
FHI(3,4)=DT

RETURN

END

SUBROUTINE INIT( LONG , LAT , XKK , PKK)

C THIS ROUTINE INITIALIZES THE STATE
C AND ERROR COVARIANCE ESTIMATES

REAL*4 XKK( 4,1), PKK( 4,4)
REAL-4 LAT, LONG

C INITIAL STATE ESTIMATE
XKK(3,1)=LAT
XKK(2,1)=0.
XKK(l,l)=LONG
XKK(4,1)=0.

C INITIAL ERROR COVARIANCE ESTIMATE
PKKf 1,1)=100.
PKK(1,2)=0.
PKK(1,3)=0.
PKK(1,4)=0.
PKK(2,1)=0.
PKK(2,2)=0. 025
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PKK(2,3)=0.
PKK(2,4)=0.
PKK(3,1)=0.0
PKK(3,2)=0.
PKK(3,3)=100
PKK(3,4)=0.
PKK(4,1)=0.
PKK(4,2)=0.
PKK(4,3)=0.0
PKK(4,4)=0. 025

RETURN

END

SUBROUTINE GETQ(Q)

C ROUTINE TO GET Q MATRIX

REAL*4 Q(4,4)

100

DO
DO

Q(I
do :

Q(I

100
IOC

,J)=

200

,D =

1=1.

) J=J
=0.

1=1,
= 100.

,4

l,4

,4

RETURN

END

subroutine reinit( dt , zx , zy , zxn1 , zym1 , lpkkm1 , xkkm1 , pkkm1

)

c this routine re -initializes the state and error
c covariance estimates

real*4 dt , xkkm 1(4,1), pkkm 1(4,4)
real-4 zx , zy , zxm1 , zym1 , lpkkmk 4 , 4

)

xdiff=zx-zx: ,

i

ydiff=zy-zym1

XKKM1(1,1)=ZX
XKKM1(2,1)=XDIFF/DT
XKKM1(3,1)=ZY
XKKM1(4,1)=YDIFF/DT

C WRITE (3,*)' RE INITIALIZED STATES ARE:'
DO 100 1=1,4

C WRITE(3,*)XKKM1(I,1)
100 CONTINUE

PKKMK1 ,1)=2. 25*LPKKM1( 1,1)
PKKM1(1,2)=0.
PKKMl(i,3)=2. 25*LPKKM1(1,3)
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PKKM1(1,4)=0.
PKKM1(2,1)=0.
PKKM1(2,2)=0. 1111
PKKM1(2,3)=0.
PKKM1(2,4)=G.
PKKM1(3,1)=2. 25*LPKKM1(3,1)
PKKM1(3,2)=0.
PKKM1(3,3)=2. 25*LPKKM1(3,3)
PKKM1(3,4)=0.0
PKKM1(4,1)=0.
PKKM1(4,2)=0.
PKKM1(4,3)=0.
PKKM1(4,4)=0. 1111

RETURN

END

SUBROUTINE MP( XS 1 , YS 1 , XS2 , YS2 , BRG1 , BRG2 , ZX , ZY)

C THIS ROUTINE COMPUTES THE ESTIMATED
C X,Y POSITION OBTAINED FROM MEASUREMENTS

REAL*4 ZX,ZY
REAL*4 XS1 , YS1 ,XS2 , YS2 ,BRG1 ,BRG2
REAL*4 NUMER.DENOM

C INITIAL STATE ESTIMATE

NUMER=(-YS2*TAN(BRG2))+(YS1*TAN(BR61))+XS2-XS1
DENOM=TAX( BRG1 ) -TAN( BRG2

)

ZY=NUMER/DENOM
ZX=(ZY-YS1)---TAN(BRG1)+XS1

RETURN

END

SUBROUTINE ELLIPf XT,YT,P1 ,P3,P13)

C THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA
C FROM ERROR COVARIANCE DATA

C DIMENSIONS AND DECLARATIONS
REAL*4 XT,YT,XP(21),YP(21),A,B,THE1,SIG2X,SIG2Y
REAL*4 SX , SY , FT , CT , ST , P 1 , P 1 3 , P3

A=2*P13
E=P1-P3
THE 1=0. 5*ATAN2(A,B)
A=(Pl+P3)/2
B=0.
IF (P13. EQ. G. 0) GOTO 10
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B=P13/SIN(2. 0*THE1)
10 SIG2X=ABS(A+B)

SIG2Y=ABS(A-B)
SX=SIG2X**0. 5

SY=SIG2Y**0.

5

PT=3. 141592654/10
CT=C0S(THE1)
ST=SIN(THE1)

DO 100 IE=1,21
XP(IE)=SX*COS(PT*IE)*CT-SY*SIN(PT*IE)*ST+XT
YP( IE )=SX*COS ( PT*IE ) *ST+SY*SIN( PT*IE ) *CT+YT
WRITE(7,*)XP(IE),CHAR(9),YP(IE)

100 CONTINUE

RETURN

END

SUBROUTINE MATMUL( A,B,L,M,N,C)

C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
C ° C(L,N) = A(L,M) * B(M,N)

C DIMENSIONS AND DECLARATIONS
REAL*4 A(L

3
M),B(M,N),C(L,N)

DO 10 1=1,

L

DO 10 J=1,N
C(I,J1=0.

10 CONTINUE

DO 100 1= 1,L
DO 100 J= 1,N
DO 100 K= 1,M
C(I,:n = C(I,J) + A(I,K)*B(K,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATRAN(A,B ,N,M)

C THIS ROUTINE TRANSPOSES A MATRIX
C ° B(M,N) = A'(N,M)

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), B(M,N)

DO 100 1= 1,N
DO 100 J= 1,M
B(J,I) = A(I,J)

100 CONTI1
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RETURN

END

SUBROUTINE MATSCL(Q, A,N,M,C)

C THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
C ° C(N,M) = Q * A(N,M)

C DIMENSIONS AND DECLARATIONS
REAL-4 A(N,M), C(N,M), Q

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J) = Q*A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSUBC A,B ,N,M,C)

C THIS ROUTINE SUBTRACTS TWO MATRICES
C ° C(N,M) = A(N,M) - B(N,M)

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M) ,B(N,M) ,C(N,M)

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J)=A(I,J)-B(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATADD( A , B ,N,M,L , C)

C THIS ROUTINE ADDS TWO MATRICES
C ° C(N\M) = A(N\M) + B(N,M)

C DIMENSIONS AND DECLARATIONS
REAL*4 A( N , M ) , B ( N , M ) , C ( N , M , L)

DO 100 I = 1,N
DO 100 J = 1,M
C(I S J,L)=A(I,J)+B(I,J)

100 CONTINUE

RETURN
END
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SUBROUTINE MATINV (A,N,C)

C THIS ROUTINE COMPUTES THE INVERSE OF
C A MATRIX
C C(N,N)=INV [A(N,N)]

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I = 1,N
DO 100 J = 1,N

100 D(I,J)=A(I,J)

DO 115 1=1,

N

DO 115 J=N+1,2*N
115 D(I,J)=0.0

DO 120 1=1,

N

J=I+N
120 D(I,J) = 1.0

DO 240 K=1,N
M=K+1
IF (K. EQ. N) GOTO 180
L=K
DO 140 I=M,N

140 IF (ABS(D(I,K)). GT. ABS(D(L,K))) L=I
IF (L. EQ. K) GOTO ISO

DO 160 J=K,2*N
TEMP=D(K,J)
D(K,J)=D(L,J)

160 D(L,J)=TEMP

180 DO 1S5 J=M,2*N
185 E(K,J)=D(K,J)/D(K,K)

IF (K. EQ. 1) GOTO 220
M1=K-1
DO 200 1=1, Ml
DO 200 J=M,2--'-N

:

200 D(I,J)=D(I,J)-D(I,K)*D(K,J)

IF (K.EQ.N) GOTO 260

220 DO 240 I=M,N
DO 240 J=M,2---N

240 D(I J J)=D(I,J)-D(I,K)*D(K,J)

260 DO 265 1=1,

N

DO 265 J=1,N
K=J+N

265 C(I,J)=D(I,K)

RETURN
END
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APPENDIX B. WIND.FOR

This a listing of the WIND.FOR micro computer program used to generate the data

for the storm wind speed tracks presented in this thesis. In order to run this program,

the WINDOl.DAT file must be available.

C ***VARIABLE DEFINITIONS***

c AK
c AKT
c BRG
c BRKKM1
c

c DBRG
c DT
c DTOR
c E1,E2
c E1M1.E2M1
c E1M2,E2M2
c FAC1
c G
c GATE1
c

c H
c HDG
c KT
c I

IMAT
c J
c K
c LPKK
c LPKKM1
c LXKK
c LXKKM1
c M 1,112

c PHI
c PHIT
c PI
c PKK
c PKKS
c PKKM1
c PKKM1S
c IPKKM1S
c PSS
c p

c RANGE
c RTOD
c SFD
c TEMP

SMOOTHING FILTER GAIN MATRIX
TRANSPOSE OF AK
MEASURED TARGET BEARING IN RADIANS
PREDICTED TARGET BEARING MEASUREMENT IN RADIANS

BRG(K|K-1)
MEASURED TARGET BEARING IN DEGREES
TIME DELAY BETWEEN OBSERVATIONS ,T(K) - T(K1)
DEGREE TO RADIAN CONVERSION FACTOR
MEASUREMENT RESIDUAL, Z(K) - H(X(K|K-1))
MEASUREMENT RESIDUAL AT PREVIOUS OBSERVATION
MEASUREMENT RESIDUAL TWO OBSERVATIONS PREVIOUS
RECIPROCAL OF VARE
KALMAN GAIN VECTOR
1.5*STANDARD DEVIATION OF RESIDUAL PROCESS, USED AS /

GATE IN MANEUVER DETECTION
MEASUREMENT MATRIX
ESTIMATED TARGET HEADING IN DEGREES
TRANSPOSE OF H
COUNTER
4X4 IDENTITY MATRIX
COUNTER
ITERATION INTERVAL
STATE COVARIANCE MATRIX AFTER PREVIOUS OBSERVATIONS
A PRIORI STATE COVARIANCE ESTIMATE
STATE ESTIMATE AFTER PREVIOUS OBSERVATIONS
A PRIORI STATE ESTIMATE
AVERAGE OF RESIDUALS OVER LAST THREE OBSERVATIONS
DISCRETE -TIME STATE TRANSITION MATRIX
TRANSPOSE OF PHI
3. 141592654
ESTIMATION ERROR COVARIANCE MATRIX, P(K|K)
SMOOTHED ERROR COVARIANCE MATRIX
PREDICTED ESTIMATION ERROR COVARIANCE MATRIX, P(K|K-1
PREDICTED ERROR COVARIANCE MATRIX FOR SMOOTHING, P(K4
INVERSE OF PKKM1S
ERROR COVARIANCE MATRIX FOR SMOOTHING, P(K|K)
MEASUREMENT NOISE COVARIANCE
DISTANCE FROM SENSOR TO A PRIORI TARGET POSITION
RADIAN TO DEGREE CONVERSION FACTOR
ESTIMATED TARGET SPEED IN KNOTS
TEMPORARY STORAGE MATRICES USEI IN MATRIX
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c

c VARE
c XDIFF
c

c XKK
c XKKS
c XKKM1
c XKKM1S
c XPOS
c XS
c XSS
c XT
c YDIFF
c

c YPOS
c YS
c YT
c ZX
c ZY

OPERATIONS
VARIANCE OF RESIDUALS PROCESS
DISTANCE IN X DIRECTION FROM SENSOR TO A PRIORI
TARGET POSITION
ESTIMATED TARGET STATE VECTOR, X(K|K)
SMOOTHED TARGET STATE VECTOR
PREDICTED TARGET STATE VECTOR, X(K|K-1)
PREDICTED TARGET STATE VECTOR FOR SMMOTHING, X(F
ESTIMATED TARGET POSITION IN X DIRECTION
SENSOR POSITION IN X DIRECTION
TARGET STATE VECTOR FOR SMOOTHING, X(K|K)
TRUE TARGET POSITION IN X DIRECTION
DISTANCE IN Y DIRECTION FROM SENSOR TO A PRIORI
TARGET POSITION
ESTIMATED TARGET POSITION IN Y DIRECTION
SENSOR POSITION IN Y DIRECTION
TRUE TARGET POSITION IN Y DIRECTION
OBSERVED POSITION IN X DIRECTION
OBSERVED POSITION IN Y DIRECTION

C VARIABLE DECLARATIONS
CHARACTER* 1 A,B

REAL*4 XKK (2,1), XKKM 1(2,1), LPKKM 1(2,2), LXKKM 1(2,1)
REAL*4 H( 2 , 2) ,HT( 2 , 2) , G( 2 , 1 ) ,TEMP1( 2 ,1) ,TEMP2( 2 ,2) ,TEMP3( 2,1)
REAL*4 TEMP4( 2,2) , TEMPS ( 2 ,1) ,TEMP6( 2 ,2) ,TEMP7( 2 ,2)

REAL*4 PKK( 2,2), PKKM1( 2 , 2 ) , Z( 1 , 1

)

REAL*4 LXKK(2 , 1) ,LPXK(2,2) ,XS( 10) ,YS( 10) ,DBRG( 10) ,BRG
REAL*4 PHI ( 2 , 2 ) , PHIT( 2,2), IMAT( 2 , 2 ) , XT , YT
REAL-4 GATE1,E(2,1) , VARE(2 ,2) , IVARE (2 , 2)
REAL*4 DT,DTF, XDIFF, YDIFF, RANGE, XS1 ,YS1,BRG1,BRKKM1
REAL*4 DATE , HR , MN , LAT , LONG , TOTIM , TIME , TIMEM 1 , DATE 1

REAL*4 OBSERR(300) ,FAC1 ,SIGTH2,SIGVT2 ,R( 2 , 2) ,ETOTAL,EAVG ,RTOD
REAL*4 X2,YS2,BRG2,ZX,ZY,M1,E1,E1M1,E1M2,DTOR,TRKERR(300)
REAL*4 M2 ,E2 ,E2M1 ,E2M2 ,G1 1 , G13 ,G21 ,G23 , ZXM1 , ZYM1
REAL*4 XKKS(2, 1,300) ,PKKS(2 , 2, 300)
REAL*4 XNNM1( 2 , 1 ) ,XSS( 2 , 1 ) , XKKM IS ( 2 ,1)
REAL*4 PNNM1(2 , 2) , PSS( 2 , 2) , PKKM1S( 2 , 2) , IPKKM1S( 2 ,2)

REAL*4 AK(2,2) , AKT( 2 , 2) , II( 2 ,2) ,STRKERR( 300) ,DTS(300)
REAL*4 TEMP IS ( 2 , 2 ) ,TEMP2S( 2,1) ,TEMP3S( 2 , 1

)

REAL*4 TEMP4S( 2 ,2) ,TEMP5S( 2 ,2) ,TEMP6S( 2 ,2)

REAL*4 AS , ASA , ASL , WIND , WINDD , NAV , MET
INTEGERS NP,ASIM,K
INTEGER*, PCN

C OPEN OUTPUT DATA FILES
OPEN(UNIT=2,FILE=' WIND01.DAT' , STATUS=' OLD'

)

OPEN(UNIT=3,FILE ='OUTDATA. DAT' ,STATUS='NEW'

)

0PEN(UNIT=4,FILE='0BSDATA. DAT* , STATUS= ' NEW '

)

OPEN(UNIT=5,FILE='FILDATA. DAT' , STATUS= ' NEW '

)

OPEN(UNIT=6,FILE=' SMDATA. DAT' ,STATUS=' NEW'

)

OPEN(UNIT=8,FILE =' MATRIX. DAT' ,STATUS='NEW'

)

OPEN(UNIT=9,FILE =' PALDATA. DAT' , STATUS= ' NEW
'

)

C RADIAN/DEGREE CONVERSION FACTORS
RTOD=57. 29577951
DTOR=0. 01745293
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C COMPUTE 4X4 IDENTITY MATRIX
DO 5 1=1,2
DO 5 J=l,2
IF (I.EQ.J) THEN

IMAT(I,J)=1.
ELSE

IMAT(I,J)=0.
ENDIF

5 CONTINUE

H(l,l) = 1.0
H(l,2)=0.

C INITIALIZE TIME COUNTER
TOTTIM=0.
T I MEM 1=0.

WIND=0.
NP=0

C INITIALIZE COUNTER FOR MANEUVER GATE
E1M1=0.
E1M2=0.

C COMPUTE BEARING MEASUREMENT COVARIANCE
C BEARING ERROR STANDARD DEVIATION = 1 NM

WRITE (*,*) 'FILTERING OBSERVED DATA WITH KALMAN FILTER'
WR I TE ( * ,

* )
' ***==***

'

810 READ(2a001,END=800)DATE,HR,MN,LAT,A,LONG,B,PCN,WINDD,NAV,MET
C RADAR DATA FOR MEASUREMENT NOISE COV. MATRIX

IF(PCN'.EQ. 1)THEN
AS=100.

ELSEIFCPCN. EQ. 2)THEN
AS=225.

ELSEIFCPCN. EQ. 3)THEN
AS=62.".

ELSEIFCPCN. EQ. 4)THEN
AS=900.

C AIRCRAFT LATA
ELSE

A S= ( ( NAV ) ** 2+ ( MET ) ** 2 ) **
. 5

ENDIF
R(1,1)=AS
R(l,2)=0.
R(2,l)=0.
R(2,2)=AS

C READ IN OBSERVATION PACKET (DATE , TIME, LAT, LONG)
C DT=TIME(K)-TIME(K-1)

1001 FORMAT(F6. 0,F2. 0,F2. ,F3. ,A1 ,F4. , Al , 1 1 ,F3. 0,2(F2. 0)1
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MN=MN/60.
LAT=LAT/10
LONG=LONG/10
TIME=HR+MN

1 F0RMAT(1X,F7. 0,4X,F3. , IX, F6. 4,6X,F4. 1,A1,3X,F5. 1,A1)
NP=NP+1
IF (NP.EQ. 1) THEN

DATE1=DATE
TIMEMI=TIME

ENDIF
IF (DATE. NE. DATE 1) THEN

TIME=TIME+24
DT=TIME-TIMEM1
TIME=TIME-24

ELSE
DT=TIME-TIMEM1

ENDIF

DTF=DT*60.
DTS(NP)=DT
TOTTIM=TOTTIM+DT

C WRITE (*,*) DT,NP,WINDD
2 F0RMAT(1X,F7. 4,5X,F6. 2,5X,F6. 2)

CALL FINDPKI(PHI,DT)

Z(1,1)=WINDD
ZY=WINDD

IF( NP.EQ. 1) THEN
CALL INIT(WINDD,XKK,PK10

C WRITE(*,*)'X(0|0 1 0):
'

DO 601 1=1,2
LXKK( I,1)=XKK(I,1)

C WRITE(3*) ***************

C WRITE(*,*) (XKK(I,1),I=1,2)
601 CONTINUE

WRITE(^,^) '*************'

WRITE(*,*) ZY

C WRITE(3,*)'P(0|0,0): '

DO 602 1=1,2
DO 602 J=l,2

C LPKK(I,J)=PKK(I,J)
C WRITE(3,401)PKK(I,J)
401 F0RMAT(2F14. 4)
602 CONTINUE

ENDIF

C PROJECT AHEAD STATE AND ERROR COVARIANCE ESTIMATES
C X(K+1|K) = PHI •-•- X(K|K)

CALL MATMUL( PHI , XKK ,2,2,1, XKKM1

)
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DO 603 1=1,2
LXKKM1(I,1)=XKKM1(I,1)

603 CONTINUE

C P(K+1|K) = (PHI * P(K|K) * PHIT) + Q

CALL MATRAN(PKI,PHIT,2,2)
CALL MATMULC PHI , PKK , 2 , 2 , 2 , TEMP6

)

CALL MATMULC TEMP6 , PHIT ,2,2, 2 ,TEMP7

)

CALL GETQ(Q,DT)
CALL MATADD( TEMP 7 , Q , 2 , 2 , 1 , PKKM 1

)

DO 408 1=1,2
DO 408 J=l,2

LPKKM1(I,J)=PKKM1(I,J)
408 CONTINUE

204 CONTINUE

C COMPUTE OBSERVATION RESIDUAL
C E=Z(K)-H*X(K|K-1)

IF(WINDD.EQ. 0)THEN
E(1,1)=0.
E(2,l)=0.
ELSE
CALL MATMUL( H , XKKM 1,2,2,1, TEMP 1

)

CALL MATSUB(Z,TEMP1,2,1,E)
END IF

C COMPUTE VARIANCE OF RESIDUALS SEQUENCE
C AND ADAPTIVE GATE VALUE
C VAR( E ) =H*PKKM 1*HT+R

CALL MATRAN(H,HT,2,2)
CALL MATMULC H , PKKM 1,2,2,2, TEMP2

)

CALL MATMULC TEMP2 , HT , 2 , 2 , 2 , TEMP3

)

CALL MATADDCTEMP3,R,2,2,1,VARE)
C WRITE( 3 ,*)' VARIANCE OF RESIDUALS = ' ,VARE
C GATE 1= 1 .

5 ••'•• SQRT ( VARE )

C COMPUTE KALMAN GAIN MATRIX
C G=PKKM 1*HT* C H*PKKM 1*HT+R ) ** -

1

CALL MATRAN(H,HT,2,2)
CALL MATMULC PKKM 1 , HT , 2 , 2 , 2 , TEMP4

)

CALL MATINVC VARE , 2 , IVARE)
CALL MATMULC TEMP4 , IVARE , 2 , 2 , 1 , G)

u COMPUTE UPDATED ESTIMATE
C X(K|K)=X(K|K-1)+G*E, WHERE E=Z(K)-H*X(K|K-1)

CALL MATMULC G,E , 2,2 , 1 , TEMPS

)

CALL MATADDC TEMP5 , XKKM 1,2,1,1, XKK

)



C WRITE(3,*)'X(' ,TIME,' |

'
,TIME,' ,' ,L,'):

'

DO 605 1=1,2
C WRITE(3,*)XKK(I,1)
605 CONTINUE

C COMPUTE UPDATED ERROR COVARIANCE MATRIX
C P(K|K)=(I - G*H)*P(K|K-1)

CALL MATMUL(G,H,2,2,2,TEMP6)
CALL MATSUB(IMAT,TEMP6,2,2,TEMP7)
CALL MATMUL(TEMP7 , PKKM1 , 2 , 2 , 2 , PKK)

C THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM

DO 620 1=1,2
XKKS(I,1,NP)=XKK(I,1)

C WRITE(*,*)XKKS(I , 1 ,NP) ,PKKS( I , 1 ,NP)
620 CONTINUE

DO 630 1=1,2
DO 630 J=l,2

PKKS(I,J,NP)=PKK(I,J)
630 CONTINUE

VRITE(3,-'0 'FILTERED DATA FOR DATA POINT' ,NP
WRITE(3,*) 'TIME VEL. ACCELL. HEADING SPEED'
WRITE(3,*)T0TTIM ) XKK(1,1),XKK(2,1)
WRITE(4,*)T0TTIM,ZY
WRITE ( 5

,

» ) TOTTIM , XKK( 1 , 1 ) , XKK( 2 , 1 ) , PKK( 1,1)
WRITE(9,*)NP

1002 FORMAT(1X,5F10. 3)
1003 F0RMAT(1X,F6. 2,3X,F10. 1,2X,F11. 1,3X,F8. 1,3X,F8. 1)
1004 F0RMAT(1X,F6. 2,3(F8. 1,2X))

C COMPARE BEARING ERRORS TO MANEUVER DETECTION GATES

IF ((ABS(Ml).GT. (GATE1))) THEN
C WRITE( *,*)'*** MANEUVER DETECTION ***'

C WRITE (' 3 , * )

' *** MANEUVER DETECTION *** •

CALL REINIT(DT,ZY,ZYM1,LPKKM1,XKKM1,PKKM1)
E1M1=0.
E1M2=0.
GOTO 204

END IF

TIMEM1=TIME
DATE 1=DATE

ZYM1=ZY
GOTO 810
WRITE(6,*)T0TriM,XKK(l,l),XKK(2,l),PKK(l,l)

C THIS IS WHERE THE SMOOTHING ALGORITHM STARTS
C riXED INTERVAL SMOOTHING
800 WRITE (*,*) 'SMOOTHING FILTERED DATA WITH A'

WRITE (*,*) 'FIXED INTERVAL SMOOTHING ALGORITHM'
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WRITE(*,*)

C WRITE (*,*) DT,NP,WINDD
DO 1000 KK=1,NP-1

C CALL REINIT(DT,ZY,ZYM1,LPKKM1,XKKM1,PKKM1)
K=NP-KK
BT=ETS(K+1)

TIME=TIMEM1-DT
TOTTIM=TOTTIM-DT
CALL FINDPHI(PHI,DT)

BO 901 1=1,2
XSS(I,1)=XKKS(I,1,K)

901 CONTINUE

DO 902 1=1,2
DO 902 J=l,2
PSS(I,J)=PKKS(I,J,K)

902 CONTINUE

C CALCULATE THE PREDICTED STATE AND ERROR COVAR1ANCE MATRICES
C X(K+1|K)=PHI*X(K|K)

CALL MATMUL (PHI ,XSS ,2 ,2 , 1 ,XKKM1S)
C P(K+1|K)=PHI*P(K|K)*PHIT+Q

CALL MATRAN (PHI ,PHIT,2 , 2)
CALL MATMULC PHI , PSS , 2 , 2 , 2 , TEMP6 )

CALL MATMULC TEMP6 , PHIT, 2 , 2 , 2 , TEMP 7

)

CALL GETQ(Q,DT)
CALL MATADD ( TEMP 7 , Q , 2 , 2 , 1 , PKKM IS

)

C CALCULATE THE SMOOTHING FILTER GAIN MATRIX
C AK=P(K|K)*PHIT*INV°P(K+1|K)

CALL MATINV (PKKM1S ,2 , 1 PKKM IS")

CALL MATMUL ( PKKM 1 S , I PKKM 1 S , 2 , 2 , 2 , I I

)

CALL MATMUL (PSS ,PHIT, 2 ,2 ,2 ,TEMP1S)
CALL MATMUL (TEMP1S , IPKKM1S , 2 , 2 , 2 , AK)

DO 904 1=1,2
XNNM1( I , 1)=XKKS( I , 1 ,K+1)

904 CONTINUE

C CALCULATE THE SMOOTHED STATE ESTIMATE
C XKKS=X(K|K)+AK*(X(K+1|N)-X(K+1|K)

CALL MATSUB (XNNM1 ,XKKM1S , 2 , 1 ,TEMP2S)
CALL MATMUL ( AK.TEMP2S , 2 , 2 , 1 ,TEMP3S)
CALL MATADD (XSS ,TEMP3S , 2 , 1 ,K,XKKS)

DO 906 1=1,2
DO 906 J=l,2

PNNM1(I,J)=PKKS(1,J,K+1)
906 CONTINUE

C CALCULATE THE SMOOTHED COVARIANCE MATRIX
C PKKS=P( K

|
K ) +AK* [ P( K+l | N ) -P( K+l | K) ] *AKT
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CALL MATSUB (PNNM1,PKKM1S,2,2 ,TEMP4S)
CALL MATRAN (AK,AKT,2,2)
CALL MATMUL ( AK,TEMP4S,2,2 , 2 .TEMP5S)
CALL MATMUL (TEMP5S ,AKT, 2,2,2, TEMP6S)
CALL MATADD (PSS,TEMP6S,2 ,2,K,PKKS)

WRITEC3,*) 'SMOOTHED DATA FOR DATA POINT* ,K

WRITE (3,*) 'TIME VEL. ACCEL. HEADING SPEED'
WRITE(3,*)T0TTIM,XKKS(1,1,K),XKKS(2,1,K)
WRITE(6,*)TOTTIM,XKKS(l,l,K),XKKS(2,l,K),PKKS(l,l,K)

1010 FORMAT(1X,5F10. 3)
1020 F0RMAT(1X,F6. 2,3X,F10. 1,2X,F11. 1,3X,F8. 1,3X,F8. 1)
1030 F0RMAT(1X,F6. 2,3(F8. 1,2X))

TIMEM1=TIME
1000 CONTINUE

1100 CONTINUE
1110 F0RMAT(I4,2F8. 1)
1120 FORMAT(I4,3(F8. 1,2X))

CLOSE(UNIT=2)
CLOSE(UNIT=3)
CL0SE(UNIT=4)
CLOSE(UNIT=5)
CLOSE (UNIT=6)
CLOSE(UNTT=9)
CLOSE (UNIT=8)
WRITE(-V-) 'FILTERED & SMOOTHED OUTPUT DATA IS LOCATED IN THE'
WRITEOVO 'DATA FILE OUTDATA.DAT. FOR GRAPHIC RESULTS,'
WRITE (-•'-,"•) 'ENSURE OBSDATA.DAT, FILDATA.DAT, & SMDATA.DAT ARE'
WRITE(*,*) 'IN THE MATLAB SUB -DIRECTORY AND RUN THE MATLAB'
WR I TE ( * , * ) '

M - F I LE STORM2 .

M

'

STOP
END

Q Vr V? Vr VrV"V Vr VrV—V Vr Vr :VVr vr* Vr V.-Vw r^
C SUBROUTINES

SUBROUTINE FINDPHI ( PHI ,DT)

C COMPUTES THE VALUES OF THE PHI MATRIX

REAL- 4 PHI(2,2),DT

C DO 1501 1=3,4
C DO 1501 J=l,4

PHI(I,J)=0.
C501 CONTINUE

C COMPUTE PHI MATRIX
DO 1500 1=1,2
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PHI(I,I) = 1.

1500 CONTINUE
PHI(1,2)=DT
PHI(2,1)=0.

c PHI(2,3)=0.
c PHI(2,4)=0.
c PHI(1,3)=0.0
c PHI(1,4)=0.0

RETURN

END

SUBROUTINE INIT(WINDD,XKK,PKK)

C THIS ROUTINE INITIALIZES THE STATE
C AND ERROR COVARIANCE ESTIMATES

REAIM XKK(1,1),PKK(2,2)
REAL*4 WIND,WINDD

C INITIAL STATE ESTIMATE
XKK(1,1)=WINDD
WRITE(*,*) XKK(1,1)

C XKK(3,1)=0.
C XKK(4,1)=0.0

C INITIAL ERROR COVARIANCE ESTIMATE
PKK(1,1)=1000000.
PKK(1,2)=0.

C PKK(1,3)=0.
C PKK(1,4)=0.

PKK(2,1)=0.
PKK(2,2)=0. 25

C PKK(2,3)=0.
C PKK(2,4)=0.0
C PKK(3,1)=0.0
C PKK(3,2)=0.0
C PKK(3,3)=0.0
C PKK(3,4)=0.0
C PKK(4,1)=0.0
C PKK(4,2)=0.
C PPCK(4,3)=0.
C PKK(4,4)=0.0

RETURN

END

SUBROUTINE GETQ(Q,DT)
Q >'>- Vr Vr i'c •;',- >V -V -.'.- -.'.- -,'.- -.'.- -.'.- -.'.- -.'.-

-,'r
-.'.- -'.-

V.- •;'.- »V •>': »V «'» •.'; -V ;'.- t'cVr >>ir -.V -.V VrVr -.V -,V -.V Vr -.V i'ri'r t'cA -,V V.- 1'r :'.- i; ;'.- V.- i'r -,'c
-'.--.'.-

-,'r :

C ROUTINE TO GET Q MATRIX

REAL- 4 Q(2,2),DT
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c

c

coo

c

c

coo

DO 100 1=1,4
DO 100 J=3,4
Q(I,J)=0.0
Q(l,l)=(DT**4)/4.
Q(l,2)=(DT**3)/2.
Q(2,l)=(DT**3)/2.
Q(2,2)=(DT**2 )

DO 200 1=3,4
DO 200 J=l,4

Q(I,J)=0.0

RETURN

END

SUBROUTINE REINIT(DT,ZY,ZYM1 ,LPKKM1 ,XKKM1 ,PKKM1)

C THIS ROUTINE RE-INITIALIZES THE STATE AND ERROR
C COVARIANCE ESTIMATES

REAL-4 DT , XKKM 1(2,1), PKKM 1(2,2)
REAL*4 ZX , ZY , ZXM1 , ZYM1 , LPKKM1( 2 , 2

)

C XDIFF=ZX-ZX.M1
C YDIFF=ZY-ZYM1

100

XKKM1(1,1)=ZX
XKKM1(1,I)=ZY
XKKM1(3,1)=0.
XKKM1(4,1)=0.

WRITE(*,*) 'REINITIALIZED STATES ARE:'
DO 100 1=1,2

WRITE(*,*)XKKM1( 1,1)
CONTINUE

PKKMK 1,1'1=2. 25-LPKKMK1 1)

PKKMK 1,2")=0.

c PKKMK 1,3 25*LPKKM1(1 3)
c PKKMK 1,4')=0.

PKKMK 2,K1=0.
PKKMK.2,2- i

=0. 1111
c PKKMK•2,3-)=0.
c PKKMK 2,4")=0.

c PKKMK 3,1 )=2. 25*LPKKM1(3 1)

c PKKMK'3,2- )
= 0.

c PKKMK 3,3'1=2. 25*LPKKM1(3 3)
c PKKMK 3,4")=0.

c PKKMK 4,1')=0.

c PKKMK 4,2 1=0.

c PKKMK 4,3 )=0.

c PKKMK'4,4.)=0. 1111

RETURN
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END

SUBROUTINE MP( XS 1 , YS 1 , XS2 , YS2 , BRG 1 , BRG2 , ZX , ZY)

C THIS ROUTINE COMPUTES THE ESTIMATED
C X,Y POSITION OBTAINED FROM MEASUREMENTS
Q sVVcVfVrVf***********vVrvV^VV^^^

REAL*4 ZX,ZY
REAL*4 XS1,YS1,XS2,YS2,BRG1,BRG2
REAL*4 NUMER , DENOM

C INITIAL STATE ESTIMATE

NUMER=(-YS2*TAN(BRG2))+(YS1*TAN(BRG1))+XS2-XS1
DENOM=TAN( BRG1 ) -TAN( BRG2

)

ZY=NUMER/DENOM
ZX=( ZY-YS 1 )*TAN( BRG1 )+XS 1

RETURN

END

SUBROUTINE ELLIP(XT, YT,P1 ,P3 ,P13)

C THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA
C FROM ERROR COVARIANCE DATA

C DIMENSIONS AND DECLARATIONS
REAL-4 XT,YT,XP(21),YP(21),A,B,THE1,SIG2X,SIG2Y
REAL*4 SX , SY , PT , CT , ST , PI , P13 , P3

A=2*P13
B=P1-P3
THE 1=0. 5*ATAN2(A,B)
A=(Pl+P3)/2
B=0.
IF (P13.E0.0.0) GOTO 10

B=P13/SIN(2. 0*THE1)
10 SIG2X=ABS(A+B)

SIG2Y=ABS(A-E)
SX=SIG2X**0. 5

SY=SIG2Y**0.

5

PT=3. 141592654/10
CT=C0S(THE1)
ST=SIN(THE1)

DO 100 IE=1,21
XP(IE)=SX*COS(PT*IE}*CT-SY*SIN(PT*IE)*ST+XT
YP( IE)=SX*COS(PT*IE)*ST+SY*SIN( PT*IE)*CT+YT
WRITE(7,*)XP(IE),CHAR(9),YP(IE)

100 CONTINUE

RETURN
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END

SUBROUTINE MATMUL( A,B,L,M,N,C)

C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
C ° C(L,N) = A(L,M) * B(M,N)
r* jl »i- »*- .'- ..*. -•- -'- „'. .»- «*- -t- .t. >?« .*. -». Jt. ^'- .*. »u -u »'- *•- »'- jl. **- *t- -*. -- -- **- -'- -'. ^r- -»- »'

f«y »ujl
-i-~uy-j.»v^-V ^UV- »*--v-V^"

C DIMENSIONS AND DECLARATIONS
REAL*4 A(L,M),B(M,N),C(L,N)

DO 10 1=1,

L

DO 10 J=1,N
C(I,J)=0.

10 CONTINUE

DO 100 1= 1,L
DO 100 J= 1,N
DO 100 K= 1,M
C(I,J) = C(I,J) + A(I,K)*B(K,J)

100 CONTINUE

RETURN-

END

SUBROUTINE MATRAN( A,B,N,M)

C THIS ROUTINE TRANSPOSES A MATRIX
C ° B(M,N) = A'(N,M)

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), B(M,N)

DO 100 1= l.N
DO 100 J= 1,M
B(J,I) = A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSCL(Q,A,N,M,C)

THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
C ° C(N,M) = Q * A(N,M)

DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), C(N,M), Q

DO 100 I = 1,N
DO 100 J = l.M
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C(I,J) = Q*A(I,J)
100 CONTINUE

RETURN

END

SUBROUTINE MATSUB( A,B ,N,M,C)

THIS ROUTINE SUBTRACTS TOO MATRICES
C ° C(N,M) = A(N,M) - B(N,M)

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M) ,B(N,M) ,C(N,M)

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J)=A(I,J)-B(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATADD( A , B , N , M , L , C

)

C THIS ROUTINE ADDS TWO MATRICES
C ° C(N,M) = A(N,M) + B(N,M)

C DIMENSIONS AND DECLARATIONS
REAL-4 A(N,M),B(N,M),C(N,M,L)
DO 100 I = 1,N
DO 100 J = 1,M
C(I,J,L)=A(I,J)+B(I,J)

100 CONTINUE

RETURN
END

SUBROUTINE MATINV (A,N,C)

C THIS ROUTINE COMPUTES THE INVERSE OF
C A MATRIX
C C(N,N) = INV [A(N,N)]

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I = 1,N
DO 100 J = 1 ,N

100 D(I,J)=A(I,J)

DO 115 1=1,

N

DO 115 J=N+1,2*N
115 D(I,J)=0.0
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DO 120 1=1,

N

J=I+N
120 D(I,J) = 1.

DO 240 K=1,N
M=K+1
IF (K.EQ. N) GOTO 180
L=K
DO 140 I=M,N

140 IF (ABS(D(I,K)).GT. ABS(D(L,K))) L=I
IF (L.EQ. K) GOTO 180

DO 160 J=K,2*N
TEMP=D(K,J)
D(K,J)=D(L,J)

160 D(L,J)=TEMP

180 DO 185 J=M,2*N
185 D(K,J)=D(K,J)/D(K,K)

IF (K.EQ. 1) GOTO 220
M1=K-1
DO 200 1=1, Ml
DO 200 J=M,2*N

200 D(I,J)=D(I,J)-D(I,K)*D(K,J)

IF (K. EQ. N) GOTO 260

220 DO 240 I=M,N
DO 240 J=M,2*N

240 D(I,J)=D(I,J)-D(I,K)*D(K,J)

260

265

do :165 1=1 ,N

DO 265 J= 1,N
K==J+N

C(I ,J)=D(I ,K)

RETURN
END
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