

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1989

A Kalman filter with smoothing for hurricane tracking and prediction

Mutaf, Asim.

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/26034

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

with stars.

Million -- -

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

M98663

A KALMAN FILTER WITH SMOOTHING FOR HURRICANE TRACKING AND PREDICTION

bу

Asim Mutaf

Thesis Advisor

Harold A. Titus

Approved for public release; distribution is unlimited.

lassified

rity classification of this page

				REPORT DOCUM	ENTATION PAGE		
Report Security Classification Unclassified				1b Restrictive Markings			
Security Classification Authority Declassification Downgrading Schedule					3 Distribution Availability of Report Approved for public release; distribution is unlimited.		
erforming Organization Report Number(s)					5 Monitoring Organization Report Number(s)		
Name of Performing Organization wal Postgraduate School				6b Office Symbol (if applicable) 62	7a Name of Monitoring Organization Naval Postgraduate School		
Address (clty, onterey, C	, state, and \ 93943-5	ZIP code, 5000)		7b Address (city, state, and ZIP code) Monterey, CA 93943-5000		
Name of Funding Sponsoring Organization 8b Office (if applica			anization	8b Office Symbol (if applicable)	9 Procurement Instrument Identification Number		
Address (city,	, state, and	ZIP code)		10 Source of Funding Numbers		
					Program Element No Project No Task No Work Unit Accession No		
Title (include REDICTIC	security cla	ssljication) A KAL	MAN FILTER WITH	I SMOOTHING FOR HURRICAN	E TRACKING AND	
Personal Aut	hor(s) Asii	n Muta	f				
a Type of Report 13b aster's Thesis Fro		13b Tune From	Covered To	14 Date of Report (year, month, day) December 1989	15 Page Count 88		
Supplementar ion of the I	y Notation Departme	The vie ent of D	ews expres efense or	ssed in this thesis are the U.S. Government.	hose of the author and do not reflect t	he official policy or po-	
Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)							
eld Gr	Group Subgroup Kalman filter, Smoothing, Storm Tracking.						
		······································					
Abstract (cor The perfo noothing al enarios wer	n <i>tinue on re</i> rmance o gorithm. e simulat	verse if ne f a Kalm This tr .ed and	cessary and nan filter acking ro analvzed.	<i>identify by block number)</i> used to track a hurrica utine was designed and Actual storm tracks	ne was substantially improved by impl 1 implemented in a microcomputer pr obtained from the Joint Typhoon W	ementing a fixed interval ogram. Several tracking arning Center in Guam.	

noothing algorithm. This tracking routine was designed and implemented in a microcomputer program. Several tracking enarios were simulated and analyzed. Actual storm tracks obtained from the Joint Typhoon Warning Center in Guam, lariana Islands, were used for this research. The application of the Kalman tracker to a tropical storm's wind speed tracking as also investigated by using the best track data and observed data.

í

Distribution Availability of Abstract Distribution Availability of Abstract Distribution availability of Abstract Distribution Distribution availability of Abstract	21 Abstract Security Classification Unclassified		
2a Name of Responsible Individual	22b Telephone (include Area code)	22c Office Symbol	
Iarold A. Titus	(408) 646-2560	62 I S	

D FORM 1473,84 MAR

83 APR edition may be used until exhausted All other editions are obsolete security classification of this page

T245569

Unclassified

Approved for public release; distribution is unlimited.

A Kalman Filter With Smoothing for Hurricane Tracking and Prediction

by

Asim Mutaf Lieutenant Junior Grade, Turkish Navy B.S.E.E., Turkish Naval Academy, 1983

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE (EE)

from the

NAVAL POSTGRADUATE SCHOOL December 1989

Department of Electrical and Computer Engineering

ABSTRACT

The performance of a Kalman filter used to track a hurricane was substantially improved by implementing a fixed interval smoothing algorithm. This tracking routine was designed and implemented in a microcomputer program. Several tracking scenarios were simulated and analyzed. Actual storm tracks obtained from the Joint Typhoon Warning Center in Guam, Mariana Islands, were used for this research. The application of the Kalman tracker to a tropical storm's wind speed tracking was also investigated by using the best track data and observed data.

ſ

1 Kesis M98663 C.1

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.

TABLE OF CONTENTS

I. INTRODUCTION	I
II. PROBLEM STATEMENT	3
A. GENERAL	3
B. SYSTEM MODEL	3
C. MEASUREMENT MODEL	4
D. KALMAN FILTER	5
E. SMOOTHING ALGORITHM	6
III. STORM TRACKING	8
A. GENERAL	8
B. COMPUTER SIMULATIONS	12
I. Typhoon Pat	12
2. Typhoon Tess	12
IV. STORM WIND TRACKING	23
A. GENERAL	23
B. COMPUTER SIMULATIONS	25
1. The Best Track Data	25
a. Typhoon Pat	25
b. Typhoon Tess	26
2. The Observed Wind Speed Data	37
a. Typhoon Pat	37
b. Typhoon Tess	37
V. CONCLUSIONS	46
APPENDIX A. STORM.FOR	47
APPENDIX B. WIND.FOR	63

.

LIST OF REFERENCES	 	 77
INITIAL DISTRIBUTION LIST	 	 78

LIST OF FIGURES

Figure	1.	The Observed Track of Typhoon Pat [Ref. 6] 10
Figure	2.	The Observed Track of Typhoon Tess [Ref. 6]
Figure	3.	The Best Track of Typhoon Pat
Figure	4.	Filtered Track of Typhoon Pat 14
Figure	5.	Smoothed Track of Typhoon Pat
Figure	6.	Filtered and Smoothed Track of Typhoon Pat
Figure	7.	Tracking Errors of the Filter and Smoother for Typhoon Pat 17
Figure	8.	The Best Track of Typhoon Tess
Figure	9.	Filtered Track of Typhoon Tess 19
Figure	10.	Smoothed Track of Typhoon Tess
Figure	11.	Filtered and Smoothed Track of Typhoon Tess
Figure	12.	Tracking Errors of the Filter and Smoother for Typhoon Tess 22
Figure	13.	The Best Track Wind Speed of Typhoon Pat [Ref. 6]
Figure	14.	Filtered Track of Typhoon Pat's Best Track Wind Speed
Figure	15.	Smoothed Track of Typhoon Pat's Best Track Wind Speed 29
Figure	16.	Filtered and Smoothed Track of Typhoon Pat's Best Track Wind Speed 30
Figure	17.	The Filter and Smoother Tracking Errors of Typhoon Pat
Figure	18.	The Best Track Wind Speed of Typhoon Tess [Ref. 6]
Figure	19.	Filtered Track of Typhoon Tess' Best Track Wind Speed
Figure	20.	Smoothed Track of Typhoon Tess' Best Track Wind Speed 34
Figure	21.	Filtered and Smoothed Track of Typhoon Tess' Best Track Wind Speed 35
Figure	22.	The Filter and Smoother Tracking Errors of Typhoon Tess
Figure	23.	The Observed Wind Speed at Some Distance of Typhoon Pat [Ref. 6] . 38
Figure	24.	The Observed Wind Speed at Some Distance of Typhoon Tess [Ref. 6] 39
Figure	25.	The Observed and Interpolated Track of Typhoon Pat
Figure	26.	The Observed and Interpolated Track of Typhoon Tess
Figure	27.	Filtered Track of Typhoon Pat's Observed Wind Speed
Figure	28.	Smoothed Track of Typhoon Pat's Observed Wind Speed
Figure	29.	Filtered Track of Typhoon Tess' Observed Wind Speed 44
Figure	30.	Smoothed Track of Typhoon Tess' Observed Wind Speed

ACKNOWLEDGEMENTS

,

The author wishes to express his sincere appreciation to Prof. Hal Titus for his guidance and constructive criticism which made this study a great learning experience. I also want to thank my wife Selime, whose love and support made this thesis "doable" and my son Nidal who kept me laughing the whole way.

ſ

I. INTRODUCTION

"Conceived over warm tropical oceans, born amid torrential thundershowers, and nurtured by water vapor drawn inward from far away, the mature tropical cyclone is an offspring of the atmosphere with both negative and positive consequences for life. Severe cyclones are among the most destructive of all natural disasters, capable of annihilating coastal towns and killing hundreds of thousands of people. On the positive though less dramatic side, they provide essential rainfall over much of lands they cross. It is difficult to convey to those who have never experienced a tropical cyclone the horror that great hurricanes can bring to ships at sea or people living near the coast. Tropical cyclones cause a variety of damage and the same tropical cyclone often affects several nations during its lifetime. They are called "Hurricanes" in the Atlantic and eastern Pacific" [Ref. 1]. Hurricanes were identified by female or male names like Pat and Tess. These storms will be discussed in this thesis. Tropical cyclones are also numbered sequentially according to their starting date. This numbering system is used with caution when referencing storms from other data bases.

This thesis attempted to improve the estimation of the hurricane's future course, speed, and position by using a Kalman filter with smoothing. This problem is similar to the ship tracking problem which is discussed in a previous thesis [Ref. 2]. The major difference between ship tracking and storm tracking problem is the measurement process which is given actual position coordinates (latitude and longitude) in the storm tracking problem. Therefore, the linearization required in the ship tracking problem is unnecessary in the storm tracking problem. The measurement noise varies with the type of the sensor (aircraft, satellite, and radar).

An accurate and reliable method of tracking and targeting is necessary. The current methods used to track a storm include the use of radar, aircraft, and satellite. However, the data may or may not be available when needed for a number of reasons. As an example, aircraft may not be available due to flight restrictions. A Kalman filter with a fixed interval smoothing algorithm can be used to track a storm. The smoothing algorithm is an off-line calculation that uses all measurements taken during a time interval $0 \le k \le M$ to improve the estimate. By having a more accurate assessment of what the storm has done in the past, we will be better able to predict ahead and estimate a storm's future course, speed, and position.

The estimation of the wind speed is as important as the storm position estimate. In an effort to estimate the possible damage a hurricane's sustained winds and storm surge could do to a coastal area, the Kalman filter and the smoother was used to estimate the wind speed and to categorize the hurricane. If the wind speed estimate is accurate, a hurricane is categorized correctly. This thesis attempts to estimate the hurricane's future wind speed. This will help to design a timely warning system.

١

II. PROBLEM STATEMENT

' A. GENERAL

The storm-tracking scenario parallels the ship tracking problem in that both problems developed a position, course, and speed solution for a target with similar system dynamics. The tracking scenario used here involves two storms. The positions of the storms are given in x (longitude), and y (latitude) coordinates. This problem will be analyzed using state space methods. Given the longitude and latitude (the measurements) received by a radar, aircraft, or satellite, we are interested in estimating the location, course, and speed of the storm (the states of the plant). The state variables for this plant are x, \dot{x} , y, and \dot{y} .

B. SYSTEM MODEL

This system can be described by the state space equation

$$\underline{x}_{k+1} = \phi_k \underline{x}_k + w_k \tag{2.1}$$

where

 \underline{x}_k = state vector to be estimated,

 ϕ_k = state transition matrix which describes how the states of the dynamic system are related, and

 w_k = random forcing function with a covariance matrix Q_k that is defined as

$$Q_k = \begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 100 & 0 & 0 \\ 0 & 0 & 100 & 0 \\ 0 & 0 & 0 & 100 \end{bmatrix}$$
(2.2)

The state vector is

$$\mathbf{x}_{k} = \begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \\ \dot{y} \end{bmatrix}$$
(2.3)

and the system state equations are

$$\begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{bmatrix}_{k+1} = \begin{bmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{bmatrix}_{k} + \begin{bmatrix} w_k \end{bmatrix}$$
(2.4)

C. MEASUREMENT MODEL

The measurements are linearly related to the state variables, using the measurement equation

$$\underline{z}_k = H_k \underline{x}_k + \underline{y}_k \tag{2.5}$$

Since the x and y position states are observed directly and given by latitude and longitude position coordinates, the measurement equation can be written as

$$\begin{bmatrix} z_x \\ z_y \end{bmatrix}_{k+1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \\ \dot{y} \end{bmatrix}_k + \underline{y}_k$$
(2.6)

where the measurement noise \underline{v}_k has a variance associated with the source of the measurement. In this thesis, mean deviation (nm) of satellite-derived tropical cyclone positions from best track positions (PCN values) were used in the calculation of the measurement noise covariance matrix for the satellite data. The measurement noise covariance matrix values are shown in Table 1. The equation used in this calculation is

$$R_k = (Mean \ deviation)^2 \tag{2.7}$$

 Table 1. THE MEASUREMENT NOISE COVARIANCE MATRIX VALUES

 FOR SATELLITE

PCN	Mean Deviation	R_k
1. or 2	16	256
3, or 4	30	9()()
5, or 6	41()	1600

The measurement noise covariance matrix values were calculated by using the accuracy number for the aircraft and radar data. Equation (2.8) was used for aircraft data and Equation (2.9) was used for the radar data

$$R_k = \sqrt{\left(\left(Navigational\right)^2 + \left(Meteorological\right)^2\right)}$$
(2.8)

$$R_k = \left(Radar \ Accuracy\right)^2 \tag{2.9}$$

where the radar accuracy numbers are shown in Table 2

 Table 2.
 THE MEASUREMENT NOISE COVARIANCE MATRIX VALUES FOR RADAR

Accuracy Number	Radar Accuracy	R_{\star}
1, 4, or G	10	100
2, 5. or F	15	225
3, 6, or P	25	625
7, or Blank	30	900

D. KALMAN FILTER

Basically, the Kahnan filter takes an a priori estimate of the states, projects it ahead in time to some predicted estimate, and then calculates a gain vector based on the error covariance of these estimates. The error between the observed measurements and the predicted measurements of the corresponding state estimates is multiplied by the gain vector and the result is added to the predicted state estimates to give the best estimate of the true states based on optimal combinations of a priori estimates and current measurements.

The Kalman filter is the proper algorithm to be used when both the system model and the measurement model are linear functions of the state variables. The basic operation of the filter is a relatively straightforward recursive process. The equations used in the Kalman filter [Ref. 3] are

$$\underline{x}_{k+1} = \phi_k \underline{x}_k + \Gamma_k \underline{w}_k \tag{2.10}$$

$$\underline{z}_k = H_k \underline{x}_k + \underline{y}_k \tag{2.11}$$

$$\hat{\underline{X}}_{(k|k-1)} = \phi_k \hat{\underline{X}}_{(k|k)} \tag{2.12}$$

$$P_{(k|k-1)} = \phi_k P_{(k|k)} \phi_k^T + Q_k$$
(2.13)

$$G_k = P_{(k|k-1)} H_k^T (H_k P_{(k|k-1)} H_k^T + R_k)^{-1}$$
(2.14)

$$\hat{\underline{x}}_{(k|k)} = \hat{\underline{x}}_{(k|k-1)} + G_k(\underline{z}_k - H_k \hat{\underline{x}}_{(k|k-1)})$$
(2.15)

$$P_{(k|k)} = (I - G_k H_k) P_{(k|k-1)}$$
(2.16)

where

 $\hat{\underline{x}}_{(k|k-1)}$ = projected ahead state estimate,

 $P_{(k,k-1)}$ = projected ahead state error covariance matrix,

 G_k = Kalman gain matrix,

 R_k = state measurement noise covariance matrix, and

 H_k = linearized measurement matrix.

The Kalman gain matrix serves to minimize the mean square estimation error and is an indication of how much weight will be placed on the current observation. A large gain, indicating a large error covarince, will place more weight on the current observation as the filter tries to correct the states. The gain matrix is proportional to the variance of the uncertainty in the estimate and inversely proportional to the variance of the measurement noise. It can be expressed as

$$G_k = P_{(k|k-1)} H_k^T R_k^{-1}$$
(2.17)

An initial velocity estimate is taken to be zero since there is no velocity information at the beginning. The initial state estimates carry with them some error and it is this error, or rather an estimate of this error, that is used to construct the initial error covariance matrix. The initial position error was estimated to be 10 nautical miles in the x y direction and the initial velocity was estimated to be 0.158 nautical miles per minute. The error was assumed to be zero mean and uncorrelated. With these approximations, the initial error covariance matrix is given by

$$P_{(0|-1)} = \begin{bmatrix} 100 & 0 & 0 & 0\\ 0 & 0.025 & 0 & 0\\ 0 & 0 & 100 & 0\\ 0 & 0 & 0 & 0.025 \end{bmatrix}$$
(2.18)

E. SMOOTHING ALGORITHM

Smoothing is a procedure that uses all of the state estimates produced by an estimator and attempts to improve the accuracy of these estimates by using the negative time dynamics to produce the smoothed estimate. The estimator used here is the Kalman filter. The basic idea behind smoothing is that, for a time interval from 0 to K (K > k), an estimate at time k based on all previous estimates up to time K, $(\hat{x}_{(k,K)})$, will be more accurate than an estimate based only on the estimates up to time k, $(\hat{x}_{(k,K)})$. "It is a non-real time operation where the available data are processed to obtain an estimate $\hat{x}_{(k,K)}$ for some past value of k " [Ref. 4].

Smothing algorithms were categorized into three groups by Meditch [Ref. 5];

Fixed Point Smoothing smooths the estimate $\hat{x}_{(k|K)}$ at a fixed point k as K increases.

Fixed Lag Smoothing smooths the estimate $\hat{x}(K - N \mid K)$ at a fixed delay N as K increases.

Fixed Interval Smoothing smooths the estimate $\hat{x}_{(k|K)}$ over the time interval from 0 to K where K is fixed and k varies from 0 to K.

A fixed-interval smoothing algorithm was used in this thesis. This smoothing routine provides the optimal state estimate at each time k over a fixed interval from 0 to K. The equations used in the smoothing algorithm [Ref. 5] are

$$A_k = P_{(k|k)} \Phi^T P_{(k+1|k)}^{-1}$$
(2.19)

$$\hat{\underline{x}}_{(k|N)} = \hat{\underline{x}}_{(k|k)} + A_k (\hat{\underline{x}}_{(k+1|N)} - \hat{\underline{x}}(k+1|k))$$
(2.20)

$$P_{(k|N)} = P_{(k|k)} + A_k (P_{(k+1|N)} - P_{(k+1|k)}) A_k^T$$
(2.21)

where

 A_k = smoothing filter gain matrix,

 $\hat{\underline{x}}_{(k,N)}$ = smoothed state estimate a time k based on N observations, and

 $P_{(k,N)}$ = smoothed state error covariance matrix.

At the beginning of the smoothing, the last filtered estimate becomes the initial smoothed estimate. The index k is decremented by one for each pass during the smoothing algorithm with the starting value of k equal to the number of data points to be smoothed, minus one (N-1). Consequently, the tracking program makes (N-1) passes through the smoothing algorithm.

III. STORM TRACKING

' A. GENERAL

The Kalman filter program STORM.FOR was used in computer simulations. This program was originally written for a ship tracking problem and was modified to use on storm tracking problem. The graphing routines of the MATLAB were used to generate the graphs. A complete listing of the program is included in Appendix A. Typhoon Tess and Typhoon Pat were used for simulations. The storm tracks used were obtained from data collected at the Joint Typhoon Warning Center located in Guam. Each storm is given a separate deck name. Tropical cyclones are numbered sequentially according to their starting date by the JTWC. There are four types of data:

Best Track -This file is the 6-hourly storm positions based on a post storm, subjectively smoothed path.

Forecasts -This data contains the real time storm positions, objective forecasts, and the official forecast. Each date-time group may contain one, two, or all three types of data.

Forecast Errors -Eight different errors were computed for each of the objective and official forecasts.

Fixes -Tropical cyclone fixes (observations) from four different platforms are contained in the data base.

The position coordinates were obtained using aircraft, satellite, and radar. The data obtained included: raw data (observations); best track data; and 12, 24, and 48 hour predictions. The raw data was processed just as if it was real-time observation of the hurricane. The first storm, Pat, originated east of Taiwan in the western Pacific on 24 August 1985. The warning period for this storm was six days. The storm traveled 1337 nm. The maximum speed of the wind was over 107 kt and the minimum sea level pressure was 1002 mb. The Typhoon Pat caused significant damage in southwestern and northeastern Japan; primarly on the islands of Kyushu and Hokkaido. Kyushu was hit the hardest with wind gusts of 107 kt. A total of 23 people were reported killed with over 180 people injured. An estimated 3000 homes were damaged. Pat also severely disrupted transportation by land, sea, and air.

The second storm track analyzed was that of Typhoon Tess which originated southeast of Guam on 30 August 1985. The warning period for this storm was seven days. The storm traveled 1470 nm with maximum wind speeds of over 90 kt. The storm

brought needed rain to the Philippines during a spell of drier than normal weather. The storm also brought death and destruction. Considerable flooding and crop damage occurred over southern China as Tess moved inland [Ref. 6]. The observed track of Typhoon Pat and Typhoon Tess are shown in Figure 1 and Figure 2, respectively.

Figure 1. The observed track of Typhoon Pat [Ref. 6]

.

:

Figure 2. The observed track of Typhoon Tess [Ref. 6]

11

B. COMPUTER SIMULATIONS

1. Typhoon Pat

The best track of Typhoon Pat is shown in Figure 3. The best track positions , are in 6-hourly increments. The first tracking data point corresponds to the day-time group 08270000Z. Figure 4 shows the Kalman filter position estimates and Figure 5 shows the smoothed position estimates. Figure 6 was constructed using the filtered and smoothed position estimates. In general, the smoother does improve the track accuracy. In the area of the track where the true positions do vary, the smoother tracking error is zero. Specifically, this area occurs between 23° N, 124° E, and 38° N, 133° E. This area can be seen easily in Figure 7. This figure was constructed by using the tracking error of the filter and smoother. The average tracking errors for this storm are ± 4 nautical miles for the filter and ± 2 nautical miles for the smoother estimates.

2. Typhoon Tess

The performance of the smoother on the track of Typhoon Tess was similar to that of Typhoon Pat. Figure 8 shows Typhoon Tess best track. Typhoon Tess best track data are also in 6-hourly increments. The filter and smoother tracking results are shown in Figure 9 and Figure 10, respectively. Figure 11 shows the track results obtained with the Kalman filter and smoothing algorithm. The smoother shows some improvement near 17.5° N, 120°E and 15.2° N, 130°E. The filter average tracking error increased slightly, to about ± 5 nm, but the smoother average tracking error jump to about ± 5 nm. This is because the smoother gives 30 nautical miles tracking error near 18.8° N, 116°E due to large change on the direction of Typhoon Tess. Figure 12 shows the tracking errors of the filter and smoother. It is observed that the smoother was much less sensitive to the large course changes than the Kalman filter. It is, therefore, reasonable to assume that similar results could be expected from the smoother for a large course change more than 90°. However, the smoother's estimates are quite good over the entire trajectory and the estimates closely follow⁴ the course changes as in Typhoon Pat.

Figure 3. The Best Track of Typhoon Pat

.

Figure 4. Filtered Track of Typhoon Pat

Figure 5. Smoothed Track of Typhoon Pat

Figure 6. Filtered and Smoothed Track of Typhoon Pat

Figure 7. Tracking Errors of the Filter and Smoother for typhoon Pat

Figure 8. The Best Track of Typhoon Tess

STORM2 TRACKS -- TRU(◦) vs FILT(x) LONGITUDE E--(DEGREE) j, IVLILODE N--(DECKEE)

Figure 9. Filtered Track of Typhoon Tess

Figure 10. Smoothed Track of Typhoon Tess

-

STORM2 TRACKS -- FIL(o) vs SM(x)LONGITUDE E--(DEGREE) į 14 |_____ 110 24 IATITUDE N--(DEGREE)

Figure 11. Filtered and Smoothed Track of Typhoon Tess

Figure 12. Tracking Errors of the Filter and Smoother for typhoon Tess

IV. STORM WIND TRACKING

A. GENERAL

" In an effort to estimate the possible damage a hurricane's sustained winds and storm surge could do to a coastal area, the Saffir-Simpson damage-potential scale was developed. The scale numbers are based on actual conditions at some time during the life of the storm " [Ref. 7]. Table 3 shows these categories.

Scale Num- ber	Wind speed(knots)	Damage
1	64-82	Damage mainly to trees, shrubbery, and unanchored mobile homes.
2	83-95	Some trees blown down; major damage to exposed mobile homes; some damage to roofs of buildings.
3	96-113	Foliage removed from trees; large trees blown down; mobile homes destroyed; some structural damage to small buildings.
4	114-135	All signs blown down; extensive damage to roofs, win- dows, and doors; complete destruction of mobile homes; flooding inland as far.
5	> 135	Severe damage to windows and doors; extensive dam- age to roofs of homes and industrial buildings; small buildings overturned and blown away; major damage to lower floors of all structures less than 4.5 m above sea level within 500 m of shore.

 Table 3.
 SAFFIR-SIMPSON HURRICANE DAMAGE-POTENTIAL SCALE

The storm wind tracking scenario parallels the storm tracking problem. The tracking scenario used here involves two storms. This problem will be analyzed using state space methods. Given the tropical cyclone intensity values the observed speed of the storm wind will be estimated by using the Kalman filter and smoother. Table 4 shows the relationship between intensity and wind speed. The wind speed was used directly as a measurement for the best track data of the storm. The state variables for this plant are \dot{w} , and \ddot{w} .

The system can be described by the state space equation

$$\underline{w}_{k+1} = \phi_k \underline{w}_k + f_k \tag{4.1}$$

where

 \underline{w}_k = state vector to be estimated,

 ϕ_k = state transition matrix which describes how the states of the dynamic system are related, and

 f_k = random forcing function with a covariance matrix Q_k that is defined as

$$Q_{k} = \begin{bmatrix} \frac{T^{4}}{4} & \frac{T^{3}}{2} \\ \frac{T^{3}}{2} & T^{2} \end{bmatrix} E[(f_{k})^{2}]$$
(4.2)

The state vector is

$$\underline{w}_k = \begin{bmatrix} \dot{w} \\ \dot{w} \end{bmatrix} \tag{4.3}$$

and the system state equations are

$$\begin{bmatrix} \dot{w} \\ \dot{w} \end{bmatrix}_{k+1} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{w} \\ \dot{w} \end{bmatrix}_k + \lfloor f_k \rfloor$$
(4.4)

The measurements are linearly related to the state variables. Using the measurement equation

$$z_k = II_k \underline{w}_k + \underline{v}_k \tag{4.5}$$

The measurement equation can be written as

$$z_{k+1} = \begin{bmatrix} 1 \ 0 \ \end{bmatrix} \begin{bmatrix} \dot{w} \\ \ddot{w} \end{bmatrix}_k + \underline{r}_k \tag{4.6}$$

where the measurement noise \underline{y}_k has a variance associated with the source of the measurement. The measurement noise covariance matrix values are calculated in the same manner as in storm position tracking problem by using Equations (2.8) and (2.9) for the aircraft and radar data.

The initial error covariance matrix used in the wind speed tracking is

$$P_{(0|-1)} = \begin{bmatrix} 1000000 & 0 & 0 & 0 \\ 0 & 0.25 & 0 & 0 \\ 0 & 0 & 1000000 & 0 \\ 0 & 0 & 0 & 0.25 \end{bmatrix}$$
(4.7)

 Table 4. MAXIMUM SUSTAINED WIND SPEED AS A FUNCTION OF FORECAST INTENSITY NUMBER

Intensity	Wind speed(nm/h)
00	25
. 05	25
10	25
15	25
20	30
25	35
30	45
35	55
40	65
45	77
50	90
55	102
60	115
65	127
70	140
75	155
80	170

B. COMPUTER SIMULATIONS

1. The Best Track Data

a. Typhoon Pat

Using the best track data wind speed values as the measurements, future wind speed values were estimated by the filter and the smoother. There is an initial track error due to the error in the initial state estimates. When the wind speed increases at 24 hours, the tracking error decreases and becomes zero for the fifth data as the filter gains the wind track. However, it increases after 90 hours when the wind speed decreases very fast and it returns to zero two data points later as the filter regains the wind

track. Figure 14 shows the filter tracking accuracy. The smoother is not as accurate as in the position estimate due to the large change in wind speed, but these errors remain in the acceptable ranges. The smoother track is shown in Figure 15. The average tracking errors are ± 0.5 mph for the filter and ± 1.1 mph for the smoother. Best track data represents the weather service's estimate of truth [Ref. 6]. Figure 16 compares the forward time estimate (filter, FIL(o)) with the forward and negative time estimate (smoother, SM(x)) for Typhoon Pat. Figure 17 denotes the error in these estimates.

b. Typhoon Tess

The tracking results for this storm are shown in Figures 18-22. From Figure 19 and 20, we can see how the Kalman filter and the fixed interval smoothing improve the overall track estimate. During the overall track estimate, two large filter tracking errors are detected. This is shown in Figure 19. In both instances the smoother also gives large tracking errors. Figure 20 shows the smoother estimates. At other times, however, the filtered and smoothed estimate are accurate. Figure 21 is the comparison of the filter and smoother estimates. The filter average tracking error is ± 1.5 mph and the smoother average tracking error is ± 2.0 mph. Figure 22 shows the tracking errors of the filter and smoother estimates.

Figure 13. The Best Track Wind Speed of Typhoon Pat [Ref. 6]

Figure 14. Filtered Track of Typhoon Pat's Best Track Wind Speed

Figure 15. Smoothed Track of Typhoon Pat's Best Track Wind Speed

Figure 16. Filtered and Smoothed Track of Typhoon Pat's Best Track Wind Speed

Figure 17. The Filter and Smoother Tracking Errors of Typhoon Pat

Figure 18. The Best Track Wind Speed of Typhoon Tess [Ref. 6]

Figure 19. Filtered Track of Typhoon Tess' Best Track Wind Speed

i. T

Figure 20. Smoothed Track of Typhoon Tess' Best Track Wind Speed

Figure 21. Filtered and Smoothed Track of Typhoon Tess' Best Track Wind Speed

.

Figure 22. The Filter and Smoother Tracking Errors of Typhoon Tess

2. The Observed Wind Speed Data

There was uncertainity in the observed data obtained from the JTWC [Ref. 6]. This data has more than one data at the same time instant for the different positions from the eye of the hurricane. This is shown in Figures 23 and 24. There was a strong potential for the filter to go unstable. This was data smoothed using the Equations (4.8) and (4.9). The data obtained before and after curve fitting is shown in Figures 25 and 26.

$$H_{k} = \begin{bmatrix} 1.0 & -T_{-2} & T_{-2}^{2} \\ 1.0 & -T_{-1} & T_{-1}^{2} \\ 1.0 & 0.0 & 0.0 \\ 1.0 & T_{1} & T_{1}^{2} \\ 1.0 & T_{2} & T_{2}^{2} \end{bmatrix}$$
(4.8)

$$\hat{x}_k = \left[II_k^T II_k \right]^{-1} II_k^T z_k \tag{4.9}$$

where

 z_k = measurements to be smoothed, and

 $\hat{x}_k =$ smoothed measurements.

a. Typhoon Pat

Using the interpolated data as an observed data, tracking results obtained for typhoon Pat are shown in Figures 27 and 28. The filter and smoother estimates the wind speed accurately. There is no potential for the filter and smoother to go unstable. The accuracy of the filter is about 70%, and the smoother is about 65%. Due to the instant change in the wind speed, the smoother cannot adapted to this change easily.

b. Typhoon Tess

The performance of the filter and the smoother are better in Typhoon Tess. They estimate the wind speed very accurately. Again, there is no potential for the filter and smoother to go unstable. During the tracking scenario the filter gives the actual observed value and the smoother does improve the accuracy of these estimates. The tracking error is usually zero or very close to zero. The accuracy of the filter and smoother are almost the same in this hurricane which is about 85%. The tracking results are shown in Figures 29 and 30.

:

ť

Figure 23. The Observed Wind Speed at Some Distance of Typhoon Pat [Ref. 6]

Figure 24. The Observed Wind Speed at Some Distance of Typhoon Tess [Ref. 6]

Figure 25. The Observed and Interpolated Track of Typhoon Pat

Figure 26. The Observed and Interpolated Track of Typhoon Tess

.

Figure 27. Filtered Track of Typhoon Pat's Observed Wind Speed

Figure 28. Smoothed Track of Typhoon Pat's Observed Wind Speed

Figure 29. Filtered Track of Typhoon Tess' Observed Wind Speed

Figure 30. Smoothed Track of Typhoon Tess' Observed Wind Speed

V. CONCLUSIONS

The purpose of this research was to improve the accuracy and storm tracking capability of a Kalman filter tracking by implementing a fixed interval smoothing algorithm. Two different tropical storms were simulated and the accuracy of the observed, the filtered, and the smoothed storm tracks were analyzed and discussed.

The fixed interval smoothing algorithm improved the position accuracy of the storm in all of the tracking scenarios simulated. However, the smoothed result was not always the most accurate for every storm track. The smoother did improve the track accuracy on the basis of the best track storm positions. The effectiveness of the smoother increased as the storm lifetime increased and the storm course change decreased.

The storm wind speed tracking scheme implemented worked well. However, because this tracking involves the addition of a time-varying value of the state excitation matrix. Q_k , there was a strong potential for the filter to go unstable. This was observed during the storm wind speed tracking. It was difficult to decide the value of Q_k and R_k for observed wind speed tracking, because intensity could not be observed many times. This problem was solved by using a curve fitting method and then this data was used for inputs to the tracking problem. The results show that this method can be used to interpolate the uncertain data and to avoid an unstable filter.

The application of the Kalman filter tracker to the storm tracking problem would be very useful in attempting to predict the storm's track when little data is available, as seen in observed wind speed tracking problem. Then, by using the filter and smoothing algorithm, track of the storm's past history can be calculated allowing for a more accurate prediction of the storm's future track. There was no standard deviation for observed wind data. If JTWC can obtain standard deviations for observed wind data, this can be used. The wind data obtained has much missing data, some times causing an unstable filter.

APPENDIX A. STORM.FOR

This is a listing of the STORM.FOR program used to generate the data for the target tarcks presented in this thesis. In order to run this program, the STORM1.DAT or STORM2.DAT file must be available.

С	707676	STORM1***			
C**	*******	TO RUN	vlovlovlo vlovlovlovlovlovlovlovlovlo	stesteste	
		1) ENSURE ST 2) RUN STORM 3) COPY OESD	ORM DATA IS 1 OR STORM2 ATA,FILDATA,	AVAILABLE & SMDATA> MATLAB SUB-DIR.	
C		4) BEGIN MAT	LAB> RUN	STORM2. M	
C					
C C C C C	THIS PROGRAM EMPLOYS AN ADAPTIVE EXTENDED KALMAN FILTER WITH A FIXED INTERVAL SMOOTHING ALGORITHM TO TRACK A TROPICAL STORM USING OBSERVED LATITUDES AND LONGITUDES.				
С	rie sie sie V	ARIABLE DEFI	NITIONS****		
С		ΔK	_	SMOOTHING FILTER GAIN MATRIX	
C		ALT	_	TRANSPOSE OF AK	
C		RPC	_	MEASURED TARGET REARING IN RADIANS	
C		BRKKM1	=	PREDICTED TARGET BEARING MEASUREMENT IN RADIANS BEG(K[K-1])	
C		DBRG	=	MEASURED TARGET BEARING IN DEGREES	
C C		DT	=	TIME DELAY BETWEEN OBSERVATIONS, T(K) - T(K1)	
С		DTOR	=	DEGREE TO RADIAN CONVERSION FACTOR	
Ċ		E1.E2	=	MEASUREMENT RESIDUAL, $Z(K) = H(X(K K-1))$	
C C		E1M1,E2M1	=	NEASUREMENT RESIDUAL AT PREVIOUS OBSERVATION	
C C		E1M2,E2M2	=	MEASUREMENT RESIDUAL TWO OBSERVATIONS PREVIOUS	
С		FAC1	=	RECIPROCAL OF VARE	
Ĉ		G	=	KALMAN GAIN VECTOR	
Ĉ		GATE 1	=	1. 5*STANDARD DEVIATION OF RESIDUAL	
C C		00000		PROCESS, USED AS A GATE IN MANEUVER DETECTION	
Ċ		Н	=	MEASUREMENT MATRIX	
C		HDG	=	ESTIMATED TARGET HEADING IN DEGREES	
C		HT	=	TRANSPOSE OF H	
C		7	=	COUNTER	
C		TMAT	=	4 N 4 IDENTITY MATRIX	
0		T 1 1 7 7 7		CANASES AND A A A A A A A A A A A A A A A A A A	

С	J	=	COUNTER
С	К	=	ITERATION INTERVAL
C	LPKK	=	STATE COVARIANCE MATRIX AFTER PREVIOUS
C			ORSERVATIONS
C	TDVVM1	_	A DDIADI STATE COVADIANCE ESTIMATE
C		_	A FRIORI DIALE COVARIANCE EDITALE
	LARK	_	A DDIODI CTATE ECTIVATE
C	LXKKMI	=	A PRIORI STATE ESTIMATE
C	M1,M2	=	AVERAGE OF RESIDUALS OVER LAST THREE
С			OBSERVATIONS
С	PHI	=	DISCRETE-TIME STATE TRANSITION MATRIX
С	PHIT	=	TRANSPOSE OF PHI
С	PI	=	3. 141592654
С	PKK	=	ESTIMATION ERROR COVARIANCE MATRIX, P(K K)
С	PKKS	=	SMOOTHED ERROR COVARIANCE MATRIX
C	PKKM1	=	PREDICTED ESTIMATION ERROR COVARIANCE
Č.	* *******		MATRIX $P(K K-1)$
C	DVVM1S	_	DEDICTED EDDOD COUNDIANCE MATDIV FOD
C	I KKHIS	-	SMOOTHING D(VII)V)
C	TDUUULO		SMOUTHING, P(K+I K)
C	IPKKMIS	=	INVERSE OF PKKMIS
C	PSS	=	ERROR COVARIANCE MATRIX FOR
С			SMOOTHING, P(K K)
С	R	=	MEASUREMENT NOISE COVARIANCE
С	RANGE	=	DISTANCE FROM SENSOR TO A PRIORI TARGET
C			POSITION
С	RTOD	=	RADIAN TO DEGREE CONVERSION FACTOR
С	SPD	=	ESTIMATED TARGET SPEED IN KNOTS
C	TEMP	=	TEMPORARY STORAGE MATRICES USED IN
C			MATRIX OPERATIONS
Č	VAPE	=	VARIANCE OF RESIDUALS PROCESS
C	VALL	_	DISTANCE IN Y DIPECTION FROM SENSOR TO
0	ADILL	-	A DRIODI TARCET DOSITION
0	1 *1*1/	_	A FRIORI IARGEI FUSITION
0	ANN	_	ESTIMATED TARGET STATE VECTOR, X(K K)
G	XKKS	=	SMOOTHED TARGET STATE VECTOR
С	XKKM1	=	PREDICTED TARGET STATE VECTOR,
С			X(K K-1)
С	XKKM1S	=	PREDICTED TARGET STATE VECTOR FOR
С			SMOTHING, X(K+1 K)
С	NPOS	=	ESTIMATED TARGET POSITION IN X
C			DIRECTION
C	7.6	_	SENSOR POSITION IN Y DIRECTION
C	Vee	-	TADGET STATE VECTOR FOR SMOOTHING
C	200	_	V(VIV)
0	1.00		A(A A)
C	λT	=	TRUE TARGET POSITION IN X DIRECTION
С	YDIFF	=	DISTANCE IN Y DIRECTION FROM SENSOR TO
С			A PRIORI TARGET POSITION
С	YPOS	=	ESTIMATED TARGET POSITION IN Y DIRECTION
С	YS	=	SENSOR POSITION IN Y DIRECTION
С	YT	=	TRUE TARGET POSITION IN Y DIRECTION
C	ZX	=	OBSERVED POSITION IN X DIFECTION
C	7V	_	OBSERVED POSITION IN Y DIRECTION
0			ODDIAND TODITION IN T DIALOTION

C VARIABLE DECLARATIONS CHARACTER*1 A,B

REAL*4 XKK(4,1),XKKM1(4,1),LPKKM1(4,4),LXKKM1(4,1)
REAL*4 H(2,4),HT(4,2),G(4,2),TEMP1(2,1),TEMP2(2,4),TEMP3(2,1)

REAL*4 TEMP4(4,2), TEMP5(4,1), TEMP6(4,4), TEMP7(4,4) REAL*4 PKK(4,4), PKKM1(4,4), Z(2,1) REAL*4 LXKK(4,1),LPKK(4,4),XS(10),YS(10),DBRG(10),BRG REAL*4 PHI(4,4), PHIT(4,4), IMAT(4,4), XT, YT REAL*4 GATE1, E(2,1), VARE(2,2), IVARE(2,2) REAL*4 DT, DTF, XDIFF, YDIFF, RANGE, XS1, YS1, BRG1, BRKKM1 REAL*4 DATE, HR, MN, LAT, LONG, TOTIM, TIME, TIMEM1, DATE1 REAL*4 OBSERR(300), FAC1, SIGTH2, SIGVT2, R(2,2), ETOTAL, EAVG, RTOD REAL*4 X2, YS2, BRG2, ZX, ZY, M1, E1, E1M1, E1M2, DTOR, TRKERR(300) REAL*4 M2, E2, E2M1, E2M2, G11, G13, G21, G23, ZXM1, ZYM1 REAL*4 XKKS(4,1,300), PKKS(4,4,300) REAL*4 XNNM1(4,1),XSS(4,1),XKKM1S(4,1) REAL*4 PNNM1(4,4), PSS(4,4), PKKM1S(4,4), IPKKM1S(4,4) REAL*4 AK(4,4), AKT(4,4), II(4,4), STRKERR(300), DTS(300) REAL*4 TEMP1S(4,4), TEMP2S(4,1), TEMP3S(4,1) REAL*4 TEMP4S(4,4), TEMP5S(4,4), TEMP6S(4,4) REAL*4 AS, ASA, ASL, NAV, MET INTEGER*2 NP INTEGER*, PCN C OPEN OUTPUT DATA FILES OPEN(UNIT=2,FILE='STORM1.DAT',STATUS='OLD') OPEN(UNIT=3,FILE='SIOKHILDAT, STATUS='NEW') OPEN(UNIT=4,FILE='TRUDATA.DAT',STATUS='NEW') OPEN(UNIT=5,FILE='FILDATA.DAT',STATUS='NEW') OPEN(UNIT=6,FILE='SMDATA.DAT',STATUS='NEW') OPEN(UNIT=7, FILE='ELLIPDAT. DAT', STATUS='NEW') OPEN(UNIT=8,FILE='MATRIX.DAT',STATUS='NEW') OPEN(UNIT=9,FILE='ERRDATA.DAT',STATUS='NEW' OPEN(UNIT=10, FILE='ERRSDATA. DAT', STATUS='NEW') C RADIAN/DEGREE CONVERSION FACTORS RTOD=57.29577951 DTOR=0.01745293 C COMPUTE 4X4 IDENTITY MATRIX DO 5 I=1.4 DO 5 J=1.4 IF (I.EQ.J) THEN IMAT(I, J) = 1.0ELSE IMAT(I,J)=0.0ENDIF 5 CONTINUE DO 6 I=1,2 DO 6 J=1,4 H(I, J) = 0.06 CONTINUE H(1,1)=1.0H(2,3)=1.0C INITIALIZE TIME COUNTER TOTTIM=0.0 TIMEM1=0.0 NP=0 C INITIALIZE COUNTER FOR MANEUVER GATE

```
E1M1=0.0
                         E1M2=0.0
C COMPUTE BEARING MEASUREMENT COVARIANCE
С
                         BEARING ERROR STANDARD DEVIATION = 1 NM
                        WRITE(*,*) 'FILTERING OBSERVED DATA WITH KALMAN FILTER'
WRITE(*,*) '***====****'
                         READ(2,1001,END=800)DATE,HR,MN,LAT,A,LONG,B,PCN,NAV,MET
810
C SATELLITE DATA FOR MEASUREMENT NOISE COV. MATRIX VALUES
                         IF(PCN. EQ. 1)THEN
                                  AS=256.0
                         ELSEIF(PCN. EQ. 3)THEN
                                  AS=900.0
                         ELSEIF(PCN. EQ. 5)THEN
                                  AS=1600.0
C RADAR DATA
                        ELSEIF(PCN. EQ. 2)THEN
                                  AS=100.0
                         ELSEIF(PCN. EQ. 4)THEN
                                  AS=225.0
                         ELSEIF(PCN. EQ. 6)THEN
                                  AS=625.0
C AIRCRAFT DATA
                        ELSE
                                  AS=((NAV)**2+(MET)**2)**0.5
                         ENDIF
                        R(1,1) = AS
                        R(1,2)=0.0
                         R(2,1)=0.0
                         R(2,2) = AS
C = the strength of the str
C READ IN OBSERVATION PACKET (DATE, TIME, LAT, LONG)
                        DT=TIME(K)-TIME(K-1)
С
                         READ(2,1001,END=800)DATE,HR,MN,LAT,A,LONG,B
                         FORMAT(F5.0,F2.0,F2.0,F3.0,A1,F4.0,A1,I1,2(F2.0))
1001
                         NP=NP+1
                         MN=MN/60.0
                         LAT=LAT/10
                         LONG=LONG/10
                         TIME=HR+MN
                         WRITE (3,1) DATE, HR, MN, LAT, A, LONG, B
С
                        FORMAT(1X,F7.0,4X,F3.0,1X,F6.4,6X,F4.1,A1,3X,F5.1,A1)
ĩ
                         IF (NP.EO.1) THEN
                                  DATE 1=DATE
                                  TIMEM1=TIME
                         ENDIF
```

50

	IF (DATE.NE.DATE1) THEN TIME=TIME+24 DT=TIME-TIMEM1 TIME=TIME-24 ELSE
	ENDIF
C 2	DTF=DT*60.0 DTS(NP)=DT TOTTIM=TOTTIM+DT WRITE (3,2) TIME,TOTTIM,DT FORMAT(1X,F7.4,5X,F6.2,5X,F6.2)
	CALL FINDPHI(PHI,DT)
	Z(1,1)=LONG Z(2,1)=LAT ZX=LONG ZY=LAT
С	IF(NP.EQ.1) THEN CALL INIT(LONG,LAT,XKK,PKK) WRITE(*,*)'X(0 0,0):' D0 601 I=1,4 LYEV(L 1)=YEV(L 1)
C C 601	WRITE(3,*) '***********************************
C C	WRITE(3,*)'P(0 0,0):' DO 602 I=1,4 DO 602 J=1,4 LPKK(I,J)=PKK(I,J)
401 602	FORMAT(4F14.4) CONTINUE
	ENDIF
C PROJE C	CT AHEAD STATE AND ERROR COVARIANCE ESTIMATES X(K+1 K) = PHI * X(K K) CALL MATMUL(PHI,XKK,4,4,1,XKKM1)
С	WRITE(*,*)'X(',TIME,' ',TIMEM1,',0):'
C C	WRITE(3,*) (XKKM1(I,1),I=1,4) WRITE(3,*) '***********************************
603	LXKKM1(I,1)=XKKM1(I,1) CONTINUE
С	P(K+1 K) = (PHI * P(K K) * PHIT) + 0

CALL MATRAN(PHI,PHIT,4,4) CALL MATMUL(PHI, PKK, 4, 4, 4, TEMP6) CALL MATMUL(TEMP6, PHIT, 4, 4, 4, TEMP7) CALL GETQ(Q) CALL MATADD(TEMP7,Q,4,4,1,PKKM1) DO 408 I=1,4 DO 408 J=1,4 LPKKM1(I,J)=PKKM1(I,J)408 CONTINUE WRITE(*,*)'P(',TIME,'|',TIMEM1,',0):' С DO 604 I=1,4 WRITE(3,402)(PKKM1(I,J),J=1,4) С 402 FORMAT(4F14.4)604 CONTINUE 204 CONTINUE C COMPUTE OBSERVATION RESIDUAL С E=Z(K)-H*X(K|K-1)CALL MATMUL(H,XKKM1,2,4,1,TEMP1) CALL MATSUB(Z, TEMP1, 2, 1, E) C COMPUTE VARIANCE OF RESIDUALS SEQUENCE C AND ADAPTIVE GATE VALUE VAR(E)=H*PKKM1*HT+R С CALL MATRAN(H, HT, 2, 4) CALL MATMUL(H, PKKM1, 2, 4, 4, TEMP2) CALL MATMUL(TEMP2, HT, 2, 4, 2, TEMP3) CALL MATADD(TEMP3,R,2,2,1,VARE) WRITE(3, \star)'VARIANCE OF RESIDUALS = ',VARE С С GATE1=1.5*SQRT(VARE) C COMPUTE KALMAN GAIN MATRIX G=PKKM1*HT*(H*PKKM1*HT+R)**-1 С CALL MATRAN(H, HT, 2, 4) CALL MATMUL(PKKM1, HT, 4, 4, 2, TEMP4) CALL MATINV(VARE, 2, IVARE) CALL MATMUL(TEMP4, IVARE, 4, 2, 2, G) WRITE(3,*)'PKKM1*HT =' С DO 414 I=1,4 С WRITE(3,*)TEMP4(1,1)414 CONTINUE WRITE(3,*)'G = 'С DO 613 I=1,4 С WRITE(3, *)G(I, 1)613 CONTINUE С IF (L.EQ.1) THEN С G11=G(1,1)С $G_{13}=G_{(3,1)}$ C ELSE

C C C	G21=G(1,1) G23=G(3,1) ENDIF	
C COMPUT C X(H	<pre>TE UPDATED ESTIMATE K K)=X(K K-1)+G*E, WHERE E=Z(K)-H*X(K K-1) CALL MATMUL(G,E,4,2,1,TEMP5) CALL MATADD(TEMP5,XKKM1,4,1,1,XKK)</pre>	
C C 605	WRITE(3,*)'X(',TIME,' ',TIME,',',L,'):' DO 605 I=1,4 WRITE(3,*)XKK(I,1) CONTINUE	
C COMPUT C P(H	<pre>TE UPDATED ERROR COVARIANCE MATRIX K K)=(I - G*H)*P(K K-1) CALL MATMUL(G,H,4,2,4,TEMP6) CALL MATSUB(IMAT,TEMP6,4,4,TEMP7) CALL MATMUL(TEMP7,PKKM1,4,4,4,PKK)</pre>	
C C 406 606	WRITE(3,*)'P(',TIME,' ',TIME,',',L,'):' DO 606 I=1,4 WRITE(3,406)(PKK(I,J),J=1,4) FORMAT(4F14.4) CONTINUE	
C THESE	STATEMENTS ARE FOR THE SMOOTHING ALGORITHM	
620	DO 620 I=1,4 XKKS(I,1,NP)=XKK(I,1) CONTINUE	
630	DO 630 I=1,4 DO 630 J=1,4 PKKS(I,J,NP)=PKK(I,J) CONTINUE	
C COMPUT	TE TRUE TRACKING ERROR ASA=XKK(1,1) ASL=XKK(3,1) TRKERR(NP)=SQRT((LAT-ASA)**2+(LONG-ASL)**2)	
C COMPUT C	TE OBSERVATION ERROR OBSERR(NP)=SQRT((ASLAT-ZX)**2+(ASLONG-ZY)**2)	
C SAVE I C	LATEST RESIDUALS FOR AVERAGING E1=E	
COMPUT	TE THE AVERAGE RESIDUAL OVER THE PAST THREE OBSERVATIONS M1=(E1+E1M1+E1M2)/3	
C C C	<pre>WRITE(*,*)'PAST THREE RESIDUALS FOR SENSOR 1 ARE : ',E1,E1M1,E1M WRITE(*,*)'BEARING AVERAGE OF SENSOR 1 = ',M1 WRITE(*,*)'MANEUVER GATE FOR SENSOR 1 = ',GATE1</pre>	12

С E1M2=E1M1 С E1M1=E1 C COMPUTE ERROR ELLIPSE DATA C CALL ELLIP(XKK(1,1),XKK(3,1),PKK(1,1),PKK(3,3),PKK(1,3)) C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED XPOS=XKK(1,1)YPOS=XKK(3,1)IF (XKK(2,1).EQ.0 .AND. XKK(4,1).EQ.0) THEN HDG=0.0ELSE HDG=RTOD*ATAN2(XKK(2,1),XKK(4,1))ENDIF IF (HDG.LT.O.O) HDG=HDG+360 SPD=60*SQRT(XKK(2,1)**2+XKK(4,1)**2) WRITE(*,*) 'FILTERED DATA FOR DATA POINT', NP WRITE(3,*) 'FILTERED DATA FOR DATA POINT', NP С WRITE(*,*) 'TIME С X POS Y POS HEADING SPEED' WRITE(3,*) 'TIME X POS Y POS HEADING SPEED' WRITE(*,*)TOTTIM, XPOS, YPOS, HDG, SPD С WRITE(3,*)TOTTIM, XPOS, YPOS, HDG, SPD WRITE(4,*)TOTTIM,ZX,ZY WRITE(5,*)TOTTIM, XPOS, YPOS, PKK(1,1) WRITE(9,*)NP, TRKERR(NP) FORMAT(1X,5F10.3) 1002 1003 FORMAT(1X, F6. 2, 3X, F10. 1, 2X, F11. 1, 3X, F8. 1, 3X, F8. 1) 1004 FORMAT(1X, F6. 2, 3(F8. 1, 2X)) C COMPARE BEARING ERRORS TO MANEUVER DETECTION GATES IF ((ABS(M1).GT.(GATE1))) THEN WRITE(*,*)'*** MANEUVER DETECTION ***' WRITE(3,*)'*** MANEUVER DETECTION ****' С CALL REINIT(DT,ZX,ZY,ZXM1,ZYM1,LPKKM1,XKKM1,PKKM1) E1M1=0.0 E1M2=0.0 GOTO 204 ENDIF TIMEM1=TIME DATE1=DATE ZXM1=ZX ZYM1=ZY GOTO 810 C THIS IS WHERE THE SMOOTHING ALGORITHM STARTS C FIXED INTERVAL SMOOTHING WRITE(*,*) 'SMOOTHING FILTERED DATA WITH A' 008 WRITE(*,*) 'FINED INTERVAL SMOOTHING ALGORITHM' WRITE(*,*) '***====****

```
DO 1000 KK=1,NP-1
         K=NP-KK
         DT=DTS(K+1)
         TIME=TIMEM1-DT
         CALL FINDPHI(PHI, DT)
         DO 901 I=1,4
          XSS(I,1)=XKKS(I,1,K)
901
         CONTINUE
         DO 902 I=1,4
          DO 902 J=1.4
           PSS(I,J)=PKKS(I,J,K)
902
         CONTINUE
C CALCULATE THE PREDICTED STATE AND ERROR COVARIANCE MATRICES
     X(K+1|K) = PHI*X(K|K)
С
         CALL MATMUL (PHI, XSS, 4, 4, 1, XKKM1S)
     P(K+1|K) = PHI*P(K|K)*PHIT+Q
С
         CALL MATRAN (PHI, PHIT, 4, 4)
         CALL MATMUL(PHI, PSS, 4, 4, 4, TEMP6)
         CALL MATMUL(TEMP6, PHIT, 4, 4, 4, TEMP7)
         CALL GETQ(Q)
         CALL MATADD(TEMP7,Q,4,4,1,PKKM1S)
C CALCULATE THE SMOOTHING FILTER GAIN MATRIX
     AK=P(K|K)*PHIT*INV°P(K+1|K)
С
         CALL MATINV (PKKM1S, 4, IPKKM1S)
         CALL MATMUL (PKKM1S, IPKKM1S, 4, 4, 4, II)
         CALL MATMUL (PSS, PHIT, 4, 4, 4, TEMP1S)
         CALL MATMUL (TEMP1S, IPKKM1S, 4, 4, 4, AK)
         DO 904 I=1,4
           XNNM1(I,1)=XKKS(I,1,K+1)
904
         CONTINUE
C CALCULATE THE SMOOTHED STATE ESTIMATE
     XKKS=X(K|K)+AK*(X(K+1|N)-X(K+1|K))
C
         CALL MATSUB (XNNM1, XKKM1S, 4, 1, TEMP2S)
         CALL MATHUL (AK, TEMP2S, 4, 4, 1, TEMP3S)
         CALL MATADD (XSS, TEMP3S, 4, 1, K, XKKS)
         DO 906 I=1,4
          DO 906 J=1,4
             PNNM1(I,J)=PKKS(I,J,K+1)
906
         CONTINUE
C CALCULATE THE SMOOTHED COVARIANCE MATRIX
     PKKS=P(K|K)+AK*[P(K+1|N)-P(K+1|K)]*AKT
C
          CALL MATSUB (PNNM1, PKKM1S, 4, 4, TEMP4S)
          CALL MATRAN (AK, AKT, 4, 4)
         CALL MATMUL (AK, TEMP4S, 4, 4, 4, TEMP5S)
```

CALL MATMUL (TEMP5S, AKT, 4, 4, 4, TEMP6S) CALL MATADD (PSS, TEMP6S, 4, 4, K, PKKS) C COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED SXPOS=XKKS(1,1,K) SYPOS=XKKS(3,1,K) IF (XKKS(2,1,K).EQ.0 .AND. XKKS(4,1,K).EQ.0) THEN SHDG=0.0 ELSE SHDG=RTOD*ATAN2(XKKS(2,1,K),XKKS(4,1,K)) ENDIF IF (SHDG.LT.O.O) SHDG=SHDG+360 SSPD=60*SQRT(XKKS(2,1,K)**2+XKKS(4,1,K)**2) WRITE(*,*) 'SMOOTHED DATA FOR DATA POINT',K С WRITE(3,*) 'SMOOTHED DATA FOR DATA POINT' ,K WRITE(*,*) 'TIME X POS Y POS HEADING С SPEED' WRITE(3,*) 'TIME X POS Y POS HEADING SPEED' С WRITE(*,*)TOTTIM, SXPOS, SYPOS, SHDG, SSPD WRITE(3,*)TOTTIM, SXPOS, SYPOS, SHDG, SSPD FORMAT(1X,5F10.3) 1010 FORMAT(1X, F6. 2, 3X, F10. 1, 2X, F11. 1, 3X, F8. 1, 3X, F8. 1) 1020 FORMAT(1X, F6. 2, 3(F8. 1, 2X)) 1030 TIMEM1=TIME 1000 CONTINUE С CLOSE(UNIT=4) C CALCULATE THE SMOOTHED TRACKING ERROR OPEN(UNIT=4, FILE='TRUDATA. DAT', STATUS='OLD') C DO 1100 K=1,NP SXPOS=XKKS(1,1,K) SYPOS=XKKS(3,1,K) READ(4,1001)DATE, HR, MN, LAT, A, LONG, B, PCN С STRKERR(K)=SQRT((LAT-SXPOS)**2+(LONG-SYPOS)**2) WRITE(6,1120)K,SXPOS,SYPOS,PKKS(1,1,K) WRITE(10,*)K,STRKERR(K) 1100 CONTINUE 1110 FORMAT(14,2F8.1) 1120 FORMAT(14,3(FS.1,2X)) 1130 FORMAT(14, 3F8.1)CLOSE(UNIT=2) CLOSE(UNIT=3) CLOSE(UNIT=4) CLOSE(UNIT=5) CLOSE(UNIT=6) CLOSE(UNIT=7) CLOSE(UNIT=8) CLOSE(UNIT=9) CLOSE(UNIT=10) WRITE(*,*) 'FILTERED & SMOOTHED OUTPUT DATA IS LOCATED IN THE' WRITE(*,*) 'DATA FILE OUTDATA.DAT. FOR GRAPHIC RESULTS, WRITE(*,*) 'ENSURE OBSDATA. DAT, FILDATA. DAT, & SMDATA. DAT ARE' WRITE(*,*) 'IN THE MATLAB SUB-DIRECTORY AND RUN THE MATLAB' WRITE(*,*) 'M-FILE STORM2.M' STOP END

Conception of the standard of С SUBROUTINES SUBROUTINE FINDPHI(PHI, DT) C states are experienced as a construction of the second as construction of the second as a construction of the second as a co С COMPUTES THE VALUES OF THE PHI MATRIX REAL*4 PHI(4,4),DT DO 1501 I=1,4 DO 1501 J=1,4 DO 1501 K=1,2 PHI(I,J)=0.0CONTINUE 1501 C COMPUTE PHI MATRIX DO 1500 I=1,4 PHI(I,I)=1.0 1500 CONTINUE PHI(1,2)=DTPHI(3,4)=DTRETURN END SUBROUTINE INIT(LONG,LAT,XKK,PKK) ***** С С THIS ROUTINE INITIALIZES THE STATE С AND ERROR COVARIANCE ESTIMATES REAL#4 XKK(4,1), PKK(4,4) REAL#4 LAT, LONG C INITIAL STATE ESTIMATE XKK(3,1)=LATXKK(2,1)=0.0XKK(1,1)=LONGXKK(4,1)=0.0C INITIAL ERROR COVARIANCE ESTIMATE PKK(1,1)=100.0 PKK(1,2)=0.0 PKK(1,3)=0.0PKK(1,4)=0.0PKK(2.1)=0.0 PKK(2,2)=0.025
PKK(2,3)=0.0PKK(2,4)=0.0PKK(3,1)=0.0PKK(3,2)=0.0PKK(3,3)=100PKK(3,4)=0.0PKK(4,1)=0.0PKK(4,2)=0.0PKK(4,3)=0.0PKK(4,4)=0.025

RETURN

END

SUBROUTINE GETQ(Q) Colores and a second and a ROUTINE TO GET Q MATRIX С Construite a serie of REAL*4 Q(4,4)

	DO	100	I=1,4
	DC) 100) J=1,4
100	Q(I	,J)=	=0.0
	DO	200	I=1,4

200 Q(I,I)=100.

RETURN

END

```
SUBROUTINE REINIT(DT, ZX, ZY, ZXM1, ZYM1, LPKKM1, XKKM1, PKKM1)
Content a la content de la conte
С
                                                    THIS ROUTINE RE-INITIALIZES THE STATE AND ERROR
                                                    COVARIANCE ESTIMATES
С
С
        strates to be a service to a serv
                                                    REAL*4 DT, XKKM1(4,1), PKKM1(4,4)
                                                    REAL*4 ZX, ZY, ZX11, ZYM1, LPKKM1(4,4)
                                                    XDIFF=ZX-ZXM1
                                                    YDIFF=ZY-ZYM1
                                                    XKKM1(1,1)=ZX
                                                    XKKM1(2,1)=XDIFF/DT
                                                    XKKM1(3,1)=ZY
                                                    XKKM1(4,1)=YDIFF/DT
                                                    WRITE(3,*)'REINITIALIZED STATES ARE: '
С
                                                    DO 100 I=1,4
С
                                                                                                      WRITE(3,*)XKKM1(1,1)
100
                                                    CONTINUE
                                                    PKKM1(1,1)=2.25*LPKKM1(1,1)
                                                    PKKM1(1,2)=0.0
                                                    PKKM1(1,3)=2.25*LPKKM1(1,3)
```

PKKM1(1,4)=0.0 PKKM1(2,1)=0.0 PKKM1(2,2)=0.1111 PKKM1(2,3)=0.0 PKKM1(2,4)=0.0 PKKM1(3,1)=2.25*LPKKM1(3,1) PKKM1(3,3)=2.25*LPKKM1(3,3) PKKM1(3,4)=0.0 PKKM1(4,1)=0.0 PKKM1(4,2)=0.0 PKKM1(4,3)=0.0 PKKM1(4,4)=0.1111

RETURN

END

C INITIAL STATE ESTIMATE

NUMER=(-YS2*TAN(BRG2))+(YS1*TAN(BRG1))+XS2-XS1 DENOM=TAN(BRG1)-TAN(BRG2)

ZY=NUMER/DENOM ZX=(ZY-YS1)*TAN(BRG1)+XS1

RETURN

END

	SUBROUTINE ELLIP(XT,YT,P1,P3,P13)
С	<i>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</i>
C C	THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA FROM ERROR COVARIANCE DATA
Č	*******
С	DIMENSIONS AND DECLARATIONS
	REAL*4 XT, YT, XP(21), YP(21), A, B, THE1, SIG2X, SIG2Y
	REAL*4 SX,SY,PT,CT,ST,P1,P13,P3
	A=2☆P13

A=2*P13 E=P1-P3 THE1=0.5*ATAN2(A,B) A=(P1+P3)/2 P=0.0 IF (P13.EQ.0.0) GOTO 10

B=P13/SIN(2.0*THE1) 10 SIG2X = ABS(A+B)SIG2Y = ABS(A - B)SX=SIG2X**0.5 SY=SIG2Y**0.5 PT=3.141592654/10 CT=COS(THE1) ST=SIN(THE1) DO 100 IE=1,21 XP(IE)=SX*COS(PT*IE)*CT-SY*SIN(PT*IE)*ST+XT YP(IE)=SX*COS(PT*IE)*ST+SY*SIN(PT*IE)*CT+YT WRITE(7,*)XP(IE),CHAR(9),YP(IE) 100 CONTINUE RETURN END SUBROUTINE MATMUL(A, B, L, M, N, C) \mathbb{C}^{-1} where the interaction is the interaction of the interaction is the interaction of the interaction is the interaction of the interacti С THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER ^o C(L,N) = A(L,M) * B(M,N)С С С DIMENSIONS AND DECLARATIONS REAL*4 A(L,M), B(M,N), C(L,N)DO 10 I=1,L DO 10 J=1,N C(I,J)=0.010 CONTINUE DO 100 I= 1,L DO 100 J= 1.N DO 100 K= 1.M C(I,J) = C(I,J) + A(I,K)*B(K,J)CONTINUE 100 RETURN END SUBROUTINE MATRAN(A, B, N, M) С THIS ROUTINE TRANSPOSES A MATRIX G B(M,N) = A'(N,M)С С С DIMENSIONS AND DECLARATIONS REAL*4 A(N,M), B(M,N)DO 100 I= 1,N DO 100 J= 1,M B(J,I) = A(I,J)

100

CONTINUE

```
RETURN
```

END

```
SUBROUTINE MATSCL(Q,A,N,M,C)
С
С
              THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
С
                <sup>o</sup> C(N,M) = Q \div A(N,M)
   where the the the treatest is the treatest is the treatest end of the treatest is the treatest end of the treatest is the treatest end of t
7
C
               DIMENSIONS AND DECLARATIONS
                           REAL*4 A(N,M), C(N,M), Q
               DO 100 I = 1, N
               DO 100 J = 1.M
                 C(I,J) = Q*A(I,J)
                CONTINUE
100
               RETURN
               END
                SUBROUTINE MATSUB(A, B, N, M, C)
   С
                THIS ROUTINE SUBTRACTS TWO MATRICES
С
              ^{\circ} C(N,M) = A(N,M) - B(N,M)
С
   С
С
                DIMENSIONS AND DECLARATIONS
                REAL*4 = A(N,M), B(N,M), C(N,M)
                DO 100 I = 1, N
                DO 100 J = 1.M
                  C(I,J)=A(I,J)-B(I,J)
                CONTINUE
100
                RETURN
                END
                SUBROUTINE MATADD(A, B, N, M, L, C)
С
                THIS ROUTINE ADDS TWO MATRICES
                <sup>o</sup> C(N,M) = A(N,M) + B(N,M)
С
Creater to the trade to
С
                DIMENSIONS AND DECLARATIONS
                REAL*4 A(N,M),B(N,M),C(N,M,L)
                DO 100 I = 1, N
                DO 100 J = 1, M
                 C(I,J,L)=A(I,J)+B(I,J)
100
                CONTINUE
                RETURN
                END
```

(* ala ala ala ala ala ala al	SUBROUTINE MATINV (A,N,C)
Cananan	
C	THIS ROUTINE COMPUTES THE INVERSE OF
С	A MATRIX
С	C(N,N) = TNV [A(N,N)]
O Olalasiasiasiasiasiasi	المتامية والمامية والمنامية والمتعاد والمتامية والمتارية المارية المارية المارية المارية المارية المارية الماري
Canadana	· · · · · · · · · · · · · · · · · · ·
С	DIMENSIONS AND DECLARATIONS
	REAL#4 A(N N) C(N N) D(20 20)
	DO 100 T = 1 N
	DU 100 1 = 1, N
	DO 100 $J = 1, N$
100	D(I,J) = A(I,J)
	DO 115 T-1 N
	DO 115 J=N+1,2*N
115	D(I,J)=0.0
	DO 120 T-1 N
	DU 120 I-I,N
	J=1+N
120	D(I,J)=1,0
	5(1,0) 1.0
	DO O U = 1 N
	DU 240 K=1, N
	M=K+1
	IF (K EO N) GOTO 180
	II (N. EQ. N) 0010 100
	DO 140 I=M,N
140	IF $(ABS(D(I,K)), GT, ABS(D(I,K)))$ I=I
	IE (I E (U) C (0 T (180)) = 180
	Ir (L.EQ.K) GOIO 100
	DO 160 J=K,2*N
	TEMP=D(K,J)
	D(Y I) - D(I I)
1 (0	$D(\mathbf{K}, \mathbf{J}) - D(\mathbf{L}, \mathbf{J})$
160	D(L,J) = TEMP
180	DO 185 J=M.2*N
1.9.5	D(Y = I) - D(Y = I) / D(Y = Y)
100	$D(\mathbf{K}, \mathbf{J}) = D(\mathbf{K}, \mathbf{J}) / D(\mathbf{K}, \mathbf{K})$
	IF (K.EQ.1) GOTO 220
	M1 = K - 1
	DO 200 T - 1 M1
	$DO 200 \rightarrow 1, 11$
	DO 200 J=M,2*N
200	D(I,J)=D(I,J)-D(I,K)*D(K,J)
	IT (I' TO N') COTO 260
	IF (K.EQ.N) GOIO 200
220	DO 240 I=M,N
	DO 240 J=M 2*N
2/0	$D(T \to D(T \to D)))))))))))))))))))))))))))))))))))$
240	D(1, J) - D(1, J) - D(1, K) - D(K, J)
260	DO 265 I=1,N
	DO 265 J=1.N
	K= T-N
0/5	
265	U(1,J)=D(1,K)
	RETURN
	END

APPENDIX B. WIND.FOR

This a listing of the WIND.FOR micro computer program used to generate the data for the storm wind speed tracks presented in this thesis. In order to run this program, the WINDO1.DAT file must be available.

C

C ****VARIABLE DEFINITIONS****

С	AK	=	SMOOTHING FILTER GAIN MATRIX
С	AKT	=	TRANSPOSE OF AK
С	BRG	=	MEASURED TARGET BEARING IN RADIANS
C C	BRKKM1	=	PREDICTED TARGET BEARING MEASUREMENT IN RADIANS BRG(K K-1)
С	DBRG	=	MEASURED TARGET BEARING IN DEGREES
С	DT	=	TIME DELAY BETWEEN OBSERVATIONS, T(K) - T(K1)
С	DTOR	=	DEGREE TO RADIAN CONVERSION FACTOR
С	E1,E2	=	MEASUREMENT RESIDUAL, Z(K) - H(X(K K-1))
С	E1M1,E2M1	=	MEASUREMENT RESIDUAL AT PREVIOUS OBSERVATION
С	E1M2,E2M2	=	MEASUREMENT RESIDUAL TWO OBSERVATIONS PREVIOUS
С	FAC1	=	RECIPROCAL OF VARE
С	G	=	KALMAN GAIN VECTOR
С	GATE 1	=	1.5*STANDARD DEVIATION OF RESIDUAL PROCESS, USED AS /
С			GATE IN MANEUVER DETECTION
С	Н	=	MEASUREMENT MATRIX
С	HDG	=	ESTIMATED TARGET HEADING IN DEGREES
С	HT	=	TRANSPOSE OF H
С	I	=	COUNTER
С	IMAT	=	4 X 4 IDENTITY MATRIX
С	J	=	COUNTER
C	K	=	ITERATION INTERVAL
С	LPKK	=	STATE COVARIANCE MATRIX AFTER PREVIOUS OBSERVATIONS
C	LPKKM1	=	A PRIORI STATE COVARIANCE ESTIMATE
C	LXKK	=	STATE ESTIMATE AFTER PREVIOUS OBSERVATIONS
C	LXKKM1	=	A PRIORI STATE ESTIMATE
Ċ	M1.M2	=	AVERAGE OF RESIDUALS OVER LAST THREE OBSERVATIONS
C	PHT	=	DISCRETE-TIME STATE TRANSITION MATRIX
C	PHIT	=	TRANSPOSE OF PHI
C	PT	=	3. 141592654
C	PKK	=	ESTIMATION ERROR COVARIANCE MATRIX, P(K K)
č	PKKS	=	SMOOTHED ERROR COVARIANCE MATRIX
C	PKKM1	=	PREDICTED ESTIMATION ERROR COVARIANCE MATRIX. P(K K-1
C	PKKM1S	=	PREDICTED FROM COVARIANCE MATRIX FOR SMOOTHING P(K+
C	TPREMIS	=	INVERSE OF PREMIS
C	DCC	_	FREDR COVARIANCE MATRIX FOR SMOOTHING P(K K)
C	D	_	MEASUREMENT NOISE COUNDIANCE
C	T DANCE		DICTANCE EDON SEVEND TO A DETODI TARCET DOSITION
C	RANGL	_	PADIAN TO DECODE CONVERSION EACTOR
C	RIOD	=	RADIAN IU DEGALE GUNVERSIUN FAGIUA
C	SFD	=	ESTIMATED TAKGET SPEED IN NNUTS
C	1LNF	=	IEMPURARI SIURAGE MAIRIUES USED IN MAIRIX

С			OPERATIONS
С	VARE	=	VARIANCE OF RESIDUALS PROCESS
С	XDIFF	=	DISTANCE IN X DIRECTION FROM SENSOR TO A PRIORI
С			TARGET POSITION
С	XKK	=	ESTIMATED TARGET STATE VECTOR, X(K K)
С	XKKS	=	SMOOTHED TARGET STATE VECTOR
С	XKKM1	=	PREDICTED TARGET STATE VECTOR, X(K K-1)
С	XKKM1S	=	PREDICTED TARGET STATE VECTOR FOR SMMOTHING, X(I
С	XPOS	=	ESTIMATED TARGET POSITION IN X DIRECTION
С	XS	=	SENSOR POSITION IN X DIRECTION
С	XSS	=	TARGET STATE VECTOR FOR SMOOTHING, X(K K)
С	XT	=	TRUE TARGET POSITION IN X DIRECTION
С	YDIFF	=	DISTANCE IN Y DIRECTION FROM SENSOR TO A PRIORI
С			TARGET POSITION
С	YPOS	=	ESTIMATED TARGET POSITION IN Y DIRECTION
С	YS	=	SENSOR POSITION IN Y DIRECTION
С	YT	=	TRUE TARGET POSITION IN Y DIRECTION
С	ZX	=	OBSERVED POSITION IN X DIRECTION
С	ZY	=	OBSERVED POSITION IN Y DIRECTION

C VARIABLE DECLARATIONS

CHARACTER*1 A, B

REAL*4 XKK(2,1),XKKM1(2,1),LPKKM1(2,2),LXKKM1(2,1) REAL*4 H(2,2),HT(2,2),G(2,1),TEMP1(2,1),TEMP2(2,2),TEMP3(2,1) REAL*4 TEMP4(2,2), TEMP5(2,1), TEMP6(2,2), TEMP7(2,2) REAL*4 PKK(2,2), PKKM1(2,2), Z(1,1) REAL*4 LXKK(2,1),LPKK(2,2),XS(10),YS(10),DBRG(10),BRG REAL*4 PHI(2,2), PHIT(2,2), IMAT(2,2), XT, YT REAL*4 GATE1, E(2,1), VARE(2,2), IVARE(2,2) REAL*4 DT, DTF, XDIFF, YDIFF, RANGE, XS1, YS1, BRG1, BRKKM1 REAL*4 DATE, HR, MN, LAT, LONG, TOTIM, TIME, TIMEM1, DATE1 REAL*4 OBSERR(300), FAC1, SIGTH2, SIGVT2, R(2,2), ETOTAL, EAVG, RTOD REAL*4 X2, YS2, BRG2, ZX, ZY, M1, E1, E1M1, E1M2, DTOR, TRKERR(300) REAL*4 M2, E2, E2M1, E2M2, G11, G13, G21, G23, ZXM1, ZYM1 REAL*4 XKKS(2,1,300), PKKS(2,2,300) REAL*4 XNNM1(2,1),XSS(2,1),XKKM1S(2,1) REAL*4 PNNM1(2,2),PSS(2,2),PKKM1S(2,2),IPKKM1S(2,2) REAL*4 AK(2,2),AKT(2,2),II(2,2),STRKERR(300),DTS(300) REAL*4 TEMP1S(2,2), TEMP2S(2,1), TEMP3S(2,1) REAL*4 TEMP4S(2,2),TEMP5S(2,2),TEMP6S(2,2) REAL*4 AS, ASA, ASL, WIND, WINDD, NAV, MET INTEGER*2 NP,ASIM,K INTEGER*, PCN C OPEN OUTPUT DATA FILES OPEN(UNIT=2,FILE='WINDO1.DAT',STATUS='OLD') OPEN(UNIT=3, FILE ='OUTDATA. DAT', STATUS='NEW') OPEN(UNIT=4,FILE='OETDATA.DAT',STATUS='NEW') OPEN(UNIT=4,FILE='OESDATA.DAT',STATUS='NEW') OPEN(UNIT=5,FILE='FILDATA.DAT',STATUS='NEW') OPEN(UNIT=6,FILE='SMDATA.DAT',STATUS='NEW') OPEN(UNIT=8,FILE='MATRIX.DAT',STATUS='NEW') OPEN(UNIT=9,FILE='PALDATA.DAT',STATUS='NEW') C RADIAN/DEGREE CONVERSION FACTORS RTOD=57.29577951 DTOR=0.01745293

C COMPUTE 4X4 IDENTITY MATRIX DO 5 I=1,2 DO 5 J=1,2 IF (I.EQ.J) THEN IMAT(I,J)=1.0ELSE IMAT(I, J)=0.0ENDIF 5 CONTINUE H(1,1)=1.0H(1,2)=0.0C INITIALIZE TIME COUNTER TOTTIM=0.0 TIMEM1=0.0 WIND=0.0 NP=0C INITIALIZE COUNTER FOR MANEUVER GATE E1M1=0.0 E1M2=0.0C COMPUTE BEARING MEASUREMENT COVARIANCE BEARING ERROR STANDARD DEVIATION = 1 NM С WRITE(*,*) 'FILTERING OBSERVED DATA WITH KALMAN FILTER' WRITE(*,*) '***====*** READ(2,1001,END=800)DATE,HR,MN,LAT,A,LONG,B,PCN,WINDD,NAV,MET 810 C RADAR DATA FOR MEASUREMENT NOISE COV. MATRIX IF(PCN. EQ. 1)THEN AS=100.0 ELSEIF(PCN. EQ. 2)THEN AS=225.0 ELSEIF(PCN. EQ. 3)THEN AS=625.0 ELSEIF(PCN. EQ. 4)THEN AS=900.0 C AIRCRAFT DATA ELSE AS=((NAV)**2+(MET)**2)**0.5 ENDIF R(1,1)=ASR(1,2)=0.0R(2,1)=0.0R(2,2) = ASC READ IN OBSERVATION PACKET (DATE, TIME, LAT, LONG) С DT=TIME(K)-TIME(K-1)1001 FORMAT(F6.0,F2.0,F2.0,F3.0,A1,F4.0,A1,I1,F3.0,2(F2.0))

1 FORMAT(1X,F7.0,4X,F3.0,1X,F6.4,6X,F4.1,A1,3X,I NP=NP+1 IF (NP.EQ.1) THEN DATE1=DATE TIMEM1=TIME ENDIF IF (DATE.NE.DATE1) THEN TIME=TIME+24 DT=TIME-TIMEM1 TIME=TIME-24 ELSE DT=TIME-TIMEM1 ENDIF	
C WRITE (*,*) DT,NP,WINDD 2 FORMAT(1X,F7.4,5X,F6.2,5X,F6.2) CALL FINDPHI(PHI,DT)	
Z(1,1)=WINDD ZY=WINDD	
IF(NP.EQ.1) THEN CALL INIT(WINDD,XKK,PKK) C WRITE(*,*)'X(0 0,0):' DO 601 I=1,2 LXKK(I,1)=XKK(I,1) C WRITE(3,*) '***********************************	
C WRITE(3,*)'P(0 0,0):' DO 602 I=1,2 DO 602 J=1,2 C LPKK(I,J)=PKK(I,J) C WRITE(3,401)PKK(I,J) 401 FORMAT(2F14.4) 602 CONTINUE	
ENDIF	

C PROJECT AHEAD STATE AND ERROR COVARIANCE ESTIMATES C X(K+1|K) = PHI * X(K|K) CALL MATMUL(PHI,XKK,2,2,1,XKKM1)

DO 603 I=1,2 LXKKM1(I,1)=XKKM1(I,1) 603 CONTINUE

$$C \qquad P(K+1|K) = (PHI * P(K|K) * PHIT) + Q$$

CALL MATRAN(PHI,PHIT,2,2) CALL MATMUL(PHI,PKK,2,2,2,TEMP6) CALL MATMUL(TEMP6,PHIT,2,2,2,TEMP7) CALL GETQ(Q,DT) CALL MATADD(TEMP7,Q,2,2,1,PKKM1) DO 408 I=1,2 DO 408 J=1,2 LPKKM1(I,J)=PKKM1(I,J)

408 CONTINUE

204 CONTINUE

C COMPUTE OBSERVATION RESIDUAL С E=Z(K)-H*X(K|K-1)IF(WINDD. EQ. 0)THEN E(1,1)=0.0E(2,1)=0.0ELSE CALL MATMUL(H,XKKM1,2,2,1,TEMP1) CALL MATSUB(Z, TEMP1, 2, 1, E) ENDIF C COMPUTE VARIANCE OF RESIDUALS SEQUENCE C AND ADAPTIVE GATE VALUE VAR(E)=H*PKKM1*HT+R С CALL MATRAN(H,HT,2,2) CALL MATMUL(H, PKKM1, 2, 2, 2, TEMP2) CALL MATMUL(TEMP2, HT, 2, 2, 2, TEMP3) CALL MATADD(TEMP3,R,2,2,1,VARE) WRITE(3,*)'VARIANCE OF RESIDUALS = ',VARE С С GATE1=1.5*SORT(VARE) C COMPUTE KALMAN GAIN MATRIX С G = PKKM1 + HT + (H + PKKM1 + HT + R) + - 1CALL MATRAN(H, HT, 2, 2) CALL MATMUL(PKKM1, HT, 2, 2, 2, TEMP4) CALL MATINV(VARE, 2, IVARE) CALL MATMUL(TEMP4, IVARE, 2, 2, 1, G)

COMPUTE UPDATED ESTIMATE
C X(K|K)=X(K|K-1)+G*E, WHERE E=Z(K)-H*X(K|K-1)
CALL MATMUL(G,E,2,2,1,TEMP5)
CALL MATADD(TEMP5,XKKM1,2,1,1,XKK)

C C 605	WRITE(3,*)'X(',TIME,' ',TIME,',',L,'):' DO 605 I=1,2 WRITE(3,*)XKK(I,1) CONTINUE
C COMPUJ C P(F	TE UPDATED ERROR COVARIANCE MATRIX (K)=(I - G*H)*P(K K-1) CALL MATMUL(G,H,2,2,2,TEMP6) CALL MATSUB(IMAT,TEMP6,2,2,TEMP7) CALL MATMUL(TEMP7,PKKM1,2,2,2,PKK)
C THESE	STATEMENTS ARE FOR THE SMOOTHING ALGORITHM
C 620	DO 620 I=1,2 XKKS(I,1,NP)=XKK(I,1) WRITE(*,*)XKKS(I,1,NP),PKKS(I,1,NP) CONTINUE
630	DO 630 I=1,2 DO 630 J=1,2 PKKS(I,J,NP)=PKK(I,J) CONTINUE
1002 1003 1004	<pre>WRITE(3,*) 'FILTERED DATA FOR DATA POINT',NP WRITE(3,*) 'TIME VEL. ACCELL. HEADING SPEED' WRITE(3,*)TOTTIM,XKK(1,1),XKK(2,1) WRITE(4,*)TOTTIM,ZY WRITE(5,*)TOTTIM,XKK(1,1),XKK(2,1),PKK(1,1) WRITE(9,*)NP FORMAT(1X,5F10.3) FORMAT(1X,F6.2,3X,F10.1,2X,F11.1,3X,F8.1,3X,F8.1) FORMAT(1X,F6.2,3(F8.1,2X))</pre>
C COMPAR	RE BEARING ERRORS TO MANEUVER DETECTION GATES
C C	<pre>IF ((ABS(M1).GT.(GATE1))) THEN WRITE(*,*)'*** MANEUVER DETECTION ***' WRITE(3,*)'*** MANEUVER DETECTION ***' CALL REINIT(DT,ZY,ZYM1,LPKKM1,XKKM1,PKKM1) E1M1=0.0 E1M2=0.0 GOTO 204 ENDIF</pre>
	TIMEM1=TIME DATE1=DATE
C THIS I C FIXED 800	ZYM1=ZY GOTO 810 WRITE(6,*)TOTTIM,XKK(1,1),XKK(2,1),PKK(1,1) IS WHERE THE SMOOTHING ALGORITHM STARTS INTERVAL SMOOTHING WRITE(*,*) 'SMOOTHING FILTERED DATA WITH A' WRITE(*,*) 'FINED INTERVAL SMOOTHING ALGORITHM'

WRITE(*,*) '****====******

С WRITE (*,*) DT,NP,WINDD DO 1000 KK=1,NP-1 С CALL REINIT(DT, ZY, ZYM1, LPKKM1, XKKM1, PKKM1) K=NP-KK DT=DTS(K+1) TIME=TIMEM1-DT TOTTIM=TOTTIM-DT CALL FINDPHI(PHI, DT) DO 901 I=1,2 XSS(I,1)=XKKS(I,1,K)901 CONTINUE DO 902 I=1,2 DO 902 J=1.2 PSS(I,J) = PKKS(I,J,K)902 CONTINUE C CALCULATE THE PREDICTED STATE AND ERROR COVARIANCE MATRICES X(K+1|K) = PHI*X(K|K)С CALL MATMUL (PHI, XSS, 2, 2, 1, XKKM1S) С P(K+1|K) = PHI*P(K|K)*PHIT+QCALL MATRAN (PHI, PHIT, 2, 2) CALL MATMUL(PHI, PSS, 2, 2, 2, TEMP6) CALL MATMUL(TEMP6, PHIT, 2, 2, 2, TEMP7) CALL GETQ(Q,DT) CALL MATADD(TEMP7,Q,2,2,1,PKKM1S) C CALCULATE THE SMOOTHING FILTER GAIN MATRIX AK=P(K|K)*PHIT*INV⁰P(K+1|K) C CALL MATINV (PKKM1S,2,IPKKM1S) CALL MATMUL (PKKM1S, IPKKM1S, 2, 2, 2, 1I) CALL MATMUL (PSS, PHIT, 2, 2, 2, TEMP1S) CALL MATMUL (TEMP1S, IPKKM1S, 2, 2, 2, AK) DO 904 I=1,2 XNNM1(I,1)=XKKS(I,1,K+1) 904 CONTINUE C CALCULATE THE SMOOTHED STATE ESTIMATE C XKKS=X(K|K)+AK*(X(K+1|N)-X(K+1|K))CALL MATSUB (XNNM1, XKKM1S, 2, 1, TEMP2S) CALL MATMUL (AK, TEMP2S, 2, 2, 1, TEMP3S) CALL MATADD (XSS, TEMP3S, 2, 1, K, XKKS) DO 906 I=1,2 DO 906 J=1,2 PNNM1(I,J)=PKKS(I,J,K+1)906 CONTINUE C CALCULATE THE SMOOTHED COVARIANCE MATRIX PKKS=P(K|K)+AK*[P(K+1|N)-P(K+1|K)]*AKTС

CALL MATSUB (PNNM1, PKKM1S, 2, 2, TEMP4S) CALL MATRAN (AK, AKT, 2, 2) CALL MATMUL (AK, TEMP4S, 2, 2, 2, TEMP5S) CALL MATMUL (TEMP5S, AKT, 2, 2, 2, TEMP6S) CALL MATADD (PSS, TEMP6S, 2, 2, K, PKKS) WRITE(3,*) 'SMOOTHED DATA FOR DATA POINT',K WRITE(3,*) 'TIME VEL. ACCEL. HEADING SPEED' WRITE(3,*)TOTTIM,XKKS(1,1,K),XKKS(2,1,K) WRITE(6,*)TOTTIM,XKKS(1,1,K),XKKS(2,1,K),PKKS(1,1,K) FORMAT(1X,5F10.3) 1010 1020 FORMAT(1X, F6. 2, 3X, F10. 1, 2X, F11. 1, 3X, F8. 1, 3X, F8. 1) 1030 FORMAT(1X, F6. 2, 3(F8. 1, 2X)) TIMEM1=TIME 1000 CONTINUE 1100 CONTINUE 1110 FORMAT(14,2F8.1) 1120 FORMAT(I4, 3(F8.1, 2X))CLOSE(UNIT=2)CLOSE(UNIT=3) CLOSE(UNIT=4) CLOSE(UNIT=5) CLOSE(UNIT=6) CLOSE(UNIT=9) CLOSE(UNIT=8) WRITE(*,*) 'FILTERED & SMOOTHED OUTPUT DATA IS LOCATED IN THE' WRITE(*,*) 'DATA FILE OUTDATA. DAT. FOR GRAPHIC RESULTS, WRITE(*,*) 'ENSURE OBSDATA. DAT, FILDATA. DAT, & SMDATA. DAT ARE' WRITE(*,*) 'IN THE MATLAB SUB-DIRECTORY AND RUN THE MATLAB' WRITE(*,*) 'M-FILE STORM2.M' STOP END

Construction of the constr

```
SUBROUTINE FINDPHI(PHI,DT)

C COMPUTES THE VALUES OF THE PHI MATRIX

C DO 1501 I=3,4

C DO 1501 J=1,4

PHI(I,J)=0.0

C501 CONTINUE

C COMPUTE PHI MATRIX

DO 1500 I=1,2
```

	PHI(I,I)=1.0
1500	CONTINUE
	PHI(1,2)=DT
	PHI(2,1)=0.0
С	PHI(2,3)=0.0
С	PHI(2, 4) = 0.0
С	PHI(1,3)=0.0
С	PHI(1,4)=0.0

RETURN

END

	SUBROUTINE INIT(WINDD, XKK, PKK)
С	na na se ste ste ste ste ste ste ste ste ste
С	THIS ROUTINE INITIALIZES THE STATE
С	AND ERROR COVARIANCE ESTIMATES
С	nie
	REAL*4 XKK(1,1),PKK(2,2)
	REAL*4 WIND, WINDD
С	INITIAL STATE ESTIMATE
	XKK(1,1)=WINDD
	WRITE(*,*) XKK(1,1)
С	XKK(3,1)=0.0
С	XKK(4, 1) = 0.0
С	INITIAL ERROR COVARIANCE ESTIMATE
	PKK(1,1)=1000000.
	PKK(1,2)=0.0
С	PKK(1,3)=0.0
С	PKK(1, 4) = 0.0
	PKK(2,1)=0.0
	PKK(2,2)=0.25
С	PKK(2,3)=0.0
С	PKK(2, 4) = 0.0
С	PKK(3,1)=0.0
С	PKK(3,2)=0.0
С	PKK(3,3)=0.0
С	PKK(3,4)=0.0
С	PKK(4, 1) = 0.0
С	PKK(4,2)=0.0
С	PKK(4,3)=0.0
С	PKK(4,4)=0.0

RETURN

END

SUBROUTINE GETQ(Q,DT) Chicksic contract and C ROUTINE TO GET Q MATRIX REAL*4 Q(2,2),DT

С	DO 100 I=1,4
С	DO 100 J=3,4
C00	Q(I,J)=0.0
	$Q(1,1)=(DT^{**4})/4$
	Q(1,2)=(DT**3)/2
	$Q(2,1)=(DT^{**3})/2$
	Q(2,2)=(DT**2)
С	DO 200 I=3,4
С	DO 200 J=1,4
C00	Q(I,J)=0.0

RETURN

END

C ****** C C ******	SUBROUTINE REINIT(DT,ZY,ZYM1,LPKKM1,XKKM1,PKKM1) THIS ROUTINE RE-INITIALIZES THE STATE AND ERROR COVARIANCE ESTIMATES REAL*4 DT,XKKM1(2,1),PKKM1(2,2) REAL*4 ZX,ZY,ZXM1,ZYM1,LPKKM1(2,2)
C C	XDIFF=ZX-ZXM1 YDIFF=ZY-ZYM1
C C C	XKKM1(1,1)=ZX XKKM1(1,1)=ZY XKKM1(3,1)=0.0 XKKM1(4,1)=0.0
100	WRITE(*,*)'REINITIALIZED STATES ARE: ' DO 100 I=1,2 WRITE(*,*)XKKM1(I,1) CONTINUE
C C C	PKKM1(1,1)=2.25*LPKKM1(1,1) PKKM1(1,2)=0.0 PKKM1(1,3)=2.25*LPKKM1(1,3) PKKM1(1,4)=0.0 PKKM1(2,1)=0.0 PKKM1(2,2)=0.1111 PKKM1(2,3)=0.0
00000000000	PKKM1(2,4)=0.0 PKKM1(3,1)=2.25*LPKKM1(3,1) PKKM1(3,2)=0.0 PKKM1(3,3)=2.25*LPKKM1(3,3) PKKM1(3,4)=0.0 PKKM1(4,1)=0.0 PKKM1(4,2)=0.0 PKKM1(4,3)=0.0 PKKM1(4,4)=0.1111

RETURN

END

С

С

С X, Y POSITION OBTAINED FROM MEASUREMENTS С REAL*4 ZX,ZY REAL*4 XS1, YS1, XS2, YS2, BRG1, BRG2 REAL*4 NUMER, DENOM C INITIAL STATE ESTIMATE NUMER=(-YS2*TAN(BRG2))+(YS1*TAN(BRG1))+XS2-XS1 DENOM=TAN(BRG1) - TAN(BRG2) ZY=NUMER/DENOM ZX=(ZY-YS1)*TAN(BRG1)+XS1 RETURN END SUBROUTINE ELLIP(XT, YT, P1, P3, P13) where the size of С С THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA FROM ERROR COVARIANCE DATA С where the star is С С DIMENSIONS AND DECLARATIONS REAL*4 XT, YT, XP(21), YP(21), A, B, THE1, SIG2X, SIG2Y REAL#4 SX, SY, FT, CT, ST, P1, P13, P3 A=2*P13 B=P1-P3 THE1=0.5*ATAN2(A,B) A = (P1 + P3)/2B=0.0 IF (P13.E0.0.0) GOTO 10 B=P13/SIN(2.0*THE1) 10 SIG2X=ABS(A+B) SIG2Y=ABS(A-B) SX=SIG2X**0.5 SY=SIG2Y**0.5 PT=3.141592654/10 CT=COS(THE1) ST=SIN(THE1) DO 100 IE=1,21 XP(IE)=SX*COS(PT*IE)*CT-SY*SIN(PT*IE)*ST+XT YP(IE)=SX*COS(PT*IE)*ST+SY*SIN(PT*IE)*CT+YT WRITE(7,*)XP(IE),CHAR(9),YP(IE) 100 CONTINUE

SUBROUTINE MP(XS1, YS1, XS2, YS2, BRG1, BRG2, ZX, ZY)

 δ is the state of a state of a state st

THIS ROUTINE COMPUTES THE ESTIMATED

RETURN

```
SUBROUTINE MATMUL(A, B, L, M, N, C)
 С
С
      THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
       <sup>a</sup> C(L,N) = A(L,M) * B(M,N)
С
 aterie aterie
С
С
       DIMENSIONS AND DECLARATIONS
       REAL*4 A(L,M), B(M,N), C(L,N)
       DO 10 I=1,L
       DO 10 J=1,N
       C(I, J) = 0.0
       CONTINUE
10
       DO 100 I= 1,L
       DO 100 J= 1,N
       DO 100 K= 1,M
       C(I,J) = C(I,J) + A(I,K)*B(K,J)
100
       CONTINUE
       RETURN
       END
       SUBROUTINE MATRAN(A, B, N, M)
 С
С
       THIS ROUTINE TRANSPOSES A MATRIX
              0
С
               B(M,N) = A'(N,M)
 С
       DIMENSIONS AND DECLARATIONS
С
       REAL*4 A(N,M), B(M,N)
       DO 100 I= 1.N
       DO 100 J= 1,11
       B(J,I) = A(I,J)
       CONTINUE
100
       RETURN
       END
       SUBROUTINE MATSCL(Q,A,N,M,C)
THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
С
      <sup>o</sup> C(N,M) = Q * A(N,M)
С
 DIMENSIONS AND DECLARATIONS
            REAL*4 A(N,M), C(N,M), Q
       DO 100 I = 1, N
       DO 100 J = 1, M
```

100	$C(I,J) = Q^*A(I,J)$ CONTINUE
	RETURN
	END
C ****** C C ****** C	SUBROUTINE MATSUB(A,B,N,M,C) THIS ROUTINE SUBTRACTS TWO MATRICES ° C(N,M) = A(N,M) - B(N,M) DIMENSIONS AND DECLARATIONS REAL*4 A(N,M),B(N,M),C(N,M)
100	DO 100 I = 1,N DO 100 J = 1,M C(I,J)=A(I,J)-B(I,J) CONTINUE
	RETURN
	END
C****** C C C******* C	SUBROUTINE MATADD(A,B,N,M,L,C) THIS ROUTINE ADDS TWO MATRICES ^o C(N,M) = A(N,M) + B(N,M) DIMENSIONS AND DECLARATIONS REAL*4 A(N,M),B(N,M),C(N,M,L) DO 100 I = 1,N DO 100 J = 1,M C(I,J,L)=A(I,J)+B(I,J) CONTINUE
	RETURN
C****** C C C C C ******* C	SUBROUTINE MATINV (A,N,C) THIS ROUTINE COMPUTES THE INVERSE OF A MATRIX C(N,N)=INV [A(N,N)] DIMENSIONS AND DECLARATIONS REAL*4 A(N,N).C(N,N),D(20,20) DO 100 I = 1,N DO 100 J = 1,N D(I,J)=A(I,J)
115	DO 115 I=1,N DO 115 J=N+1,2*N D(I,J)=0.0

120	DO 120 I=1,N J=I+N D(I,J)=1.0
	DO 240 K=1,N M=K+1 IF (K.EQ.N) GOTO 180 L=K DO 140 I=M,N
140	IF (ABS(D(I,K)).GT.ABS(D(L,K))) L=I IF (L.EQ.K) GOTO 180
	DO 160 J=K, $2*N$ TEMP=D(K, J) D(K, J)=D(L, J)
160	D(L,J)=TEMP
180 185	DO 185 J=M,2*N D(K,J)=D(K,J)/D(K,K)
200	IF (K. EQ. 1) GOTO 220 M1=K-1 DO 200 I=1,M1 DO 200 J=M,2*N
200	D(1, J) - D(1, J) - D(1, K) - D(K, J)
220	DO 240 J=M,N DO 240 J=M,2*N
240	D(I,J)=D(I,J)-D(I,K)*D(K,J)
260	DO 265 I=1,N DO 265 J=1,N K=J+N
265	C(I,J)=D(I,K)
	RETURN END

LIST OF REFERENCES

- 1. Anthes, R. A., Tropical Cyclones, pp. 1-10, Boston, MA, 1982.
- Galinis W. J., Fixed Interval Smoothing Algorithm for an Extended Kalman Filter for Over the Horizon Ship Tracking, M.S.E.E. Thesis, Naval Postgraduate School, Monterey, CA, March 1989.
- 3. Gelb, Arthur, Applied Optimal Estimation, pp. 100-128, MIT Press, Cambridge, MA, 1974.
- Lewis, F. L., Optimal Estimation with an Introduction to Stochastic Control Theory, pp. 127-128, School of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, 1986.
- 5. Meditch, J. S., Stochastic Optimal Linear Estimation and Control, pp. 204-205, McGraw-Hill Book Co., New York, NY, 1969.
- Joint Typhoon Warning Center, Guam, Mariana Islands, 1985 Annual Tropical Cyclone Report, pp. 64-77, Naval Oceanography Command Center/Joint Typhoon Warning Center, 1985.
- 7. Ahrens, C. D., Meteorology Today, pp. 426-428, San Francisco, CA, 1985.

INITIAL DISTRIBUTION LIST

. .

.

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Chairman, Code 62 Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5000	1
4.	Professor II. A. Titus, Code 62Ts Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5000	2
5.	Professor R.Cristi, Code 62Cr Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5000	1
6.	Genel Kurmay Baskanligi Personel Dairesi Bakanliklar - Ankara / TURKEY	2
7.	AR-GE Bakanliklar - Ankara / TURKEY	2
8.	Deniz Kuvvetleri Komutanligi Personel Daire Baskanligi Bakanliklar-Ankara / TURKEY	1
9.	Kara Harp Okulu Komutanligi Okul Kutuphanesi ve Elektrik Bolumu Kutuphanesi Bakanliklar - Ankara / TURKEY	2
10.	Deniz Harp Okulu Komutanligi Okul Kutuphanesi ve Elektrik Bolumu Kutuphanesi Tuzla - Istanbul / TURKEY	2

11.	Hava Harp Okulu Komutanligi Okul Kutuphanesi ve Elektrik Bolumu Kutuphanesi Istanbul / TURKEY	2
12.	Fakulte ve Yuksek Okullar Komutanligi Kutuphanesi Dikimevi - Ankara / TURKEY	1
13.	Fakulte ve Yuksek Okullar Komutanligi Kutuphanesi Cankurtaran - Istanbul / TURKLY	1
14.	Gurkan TURKES NPGS. SMC.# 2983 Monterey, CA 93943	1
15.	Asim MUTAF Esendere Mah. 52/29 sk. No.:14/2 Guzelyali-1zmir / TURKEY	-
16.	Bogazici Universitesi Elektrik Fakultesi Istanbul / TURKEY	I
17.	Ortadogu Universitesi Elektrik Fakultesi Ankara / TURKEY	1
18.	Istanbul Teknik Universitesi Elektrik Fakultesi Istanbul / IURKEY	1
19.	Cinarli Teknik Lisesi Elektrik Bolumu Cinarli-Izmir/ TURKEY]

.

Thesis M98663 Mutaf c.1 A Kalman filter with smoothing for hurricane tracking and prediction.

Thesis M98663 Mutaf

c.1 A Kalman filter with smoothing for hurricane tracking and prediction.

