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ABSTRACT

Using linear systems theory as a framework, the solution for the acoustic field

present in a range -independent acoustic channel excited by a complex -weighted,

planar array of point sources with an arbitrary input electrical signal is derived.

The ocean medium is characterized by a transfer function, obtainable as the solution

to the Helmholtz wave equation. The transfer function for an isospeed, three-layer

waveguide is derived. The unbounded homogeneous medium equations are derived

as a special case of the waveguide problem. The problem of interference due to the

presence of a pressure -release surface is also derived as a special case. The linear

sysiGms approai n lends it sell to a mouUiar computer implement 3.1 ion. in which

different ocean medium models are represented by subroutines implementing their

transfer functions. The equations for a range-independent medium are implemented

as a group of subprograms. Results are presented for the special cases of a

homogeneous medium and the surface reflection problem, which can be checked

against known, easily interpreted analytical solutions. Finally, an example of

waveform prediction for the isospeed, three-layer waveguide is presented.
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I. INTRODUCTION

Model -based or matched -field signal processing refers to the use of the

knowledge of the physics of a problem for the construction of mathematical models

and its application to suitable signal processing algorithms. Its application to

underwater acoustics has been the subject of many papers in the signal processing

literature, as in Ziomek and Blount [Ref. 1], Baggeroer, Kuperman and

Schmidt [Ref. 2] and references therein. As the interest in this field grows and new-

algorithms are developed, so will the need for simulation tools to verify the behavior

of those algorithms. Such tools should be able to generate signals with spatial and

temporal structures like those found in real environments.

The waveform prediction problem has been studied by Officer [Ref. 3:pp.

101-110,130] for the specific cases of pulse reflection from a boundary and

transmission in shallow water. DiNapoli and Deavenport [Ref.4:pp. 131-134]

describe briefly a method employing the Fast -Field -Program (FFP) suitable to

range-independent problems. Our purpose is to derive a generic solution for the

range-independent, time-invariant, deterministic acoustic channel excited by an

array of point sources transmitting an arbitrary signal. In our derivation we will

use a linear systems approach to the acoustic problem, as described in

Ziomek [Ref. 5], whose notation we follow closely. In particular, we will apply our

results to the isospeed Pekeris waveguide. As we will show, the linear systems

approach lends itself to a modular computer implementation, where different ocean

media are represented by subroutines or functions implementing their transfer

function.



In Section II we present the basic input -output relationships for a

space -variant, time -independent linear system, which are the basis of our

derivations. Next, we show how those equations can be used to represent an

acoustic channel. The particular case of a range -independent ocean is then studied,

when we derive the output waveform equation and describe the process of derivation

of the medium transfer function. Finally, we apply the above results to the isospeed

Pekeris waveguide. In Section III we discuss computer implementation issues and

present some results of a computer implementation of the Pekeris waveguide

equations.



II. ANALYSIS

A. THE ACOUSTIC CHANNEL AS A LINEAR SYSTEM

In this section we will present some results from the theory of space -time linear

systems [Ref. 5], establish the notation to be used, and derive some intermediate

results to be used in subsequent sections.

1. Space -Variant, Time -Invariant Linear Systems

a. Impulse Response

Linear, time-invariant, space-variant filters, as shown in Fig. 1, are

represented by linear partial differential equations whose coefficients are time

independent. In lir.par systems terminology, such systems are characterized by their

time -invariant, space-dependent impulse response A(r,r ; r). The output {{Li) is

given by [Ref. 5;p. 6]

?uo =11 g(t-T,i-i ) h(r,T \i) dr drc (1)

F(--r)A(r,r :r)

Fig. 1. A Linear, Time-Invariant, Space-Variant System



A physical interpretation of h, r and r can be obtained by letting the

input be an impulse applied at time t = to and at position r = rs , that is,

g(ti) = 6(t-t ,T-is )
= 6(t-to) <5(r-rs ). Substituting this expression for gitj) into

Eq. (1) and using the sifting property of the impulse function we obtain, for the

output,

<p(t,i) = h( t-t
,
r-r s ;r), (2)

XX XX
r r

from which we can define h(rj c;j) as the response of the system at time t and

position r due to the application of an impulse r seconds ago, that is, at the instant

to = t-T, when the point source is positioned at rs = r-r . Figure 2 illustrates the

geometry of this problem.

b. Transfer Function

Let the input to the system be a plane wave, that is, ^(^r) =

= r~ J°
, with frequency X and spatial frequency vector i/ . The output of

the system is given by Eq. (1) as

"00

a
00

^' 2*-vro) ft(wWdro)

(3a)

(3b)
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Fig. 2. Basic Geometry for the Interpretation of h{ r,r :r).



or

rftf = JWot-'o-i) Sr_frcJ h(r,r ;r) } hh>
(3C)

J/=M

where £ /represents the time- domain Fourier transform and $" represents the
t-j *o~v

spatial- domain Fourier transform. The subscripts under the symbol §" represent the

variables involved in each transform. We define H(f,v,i), the system transfer

function, as follows:

- oo - 00

Using this definition, the output of the system can be written as

<p(tj) = H(j0) v ;i)J
2 *{fo t

-
l/Q

- l)
, (5)

the expected result from linear systems theory.

The parameter r in the integrations in Eqs. (1) and (4) represents the

vectorial difference between the observation point r and the point source position rs .

The integrations must be performed taking r as a constant, that is, by changing the

source position rs so that r assumes all possible values in R3
, and the results, <p(t,i)

or f/(Jk,i/ ;r), are valid for that "fixed" observation point r.



c. Response to a Time-Harmonic Point Source

When evaluating the transfer function, it is convenient to use a

time -harmonic point source as the input, ^(i,r) = e
J J° 6(t-ts ) with frequency X

and location rs . The output, from Eqs. (1) and (4), is given by

aoo
e
)2rf (t-T)

£(r _
rs

_ro) h{T)lQ .

T ) dr dlQ
(

go 00

p(j,r) = e*
2**M e

-J2*foT /*(r,r-rs ;r) dr,

(6a)

<p(t,x) = e
3 r

'o $
T
_A h(r,r ;r) } /=/o '

rc= r-rs

(6b)

(6c)

or

d. Transform Relationships

(1) Fourier Transform Definitions and Notation. The time -domain

Fourier transform of a function g(tj) = g(Lxj,z) and its inverse are given,

respectively, by

g{t,x)e'
j2Tft

dt, (7)



an(

J

00 .

(8)

The spatial Fourier transform and its inverse are given, respectively, by

G(t,v) = y
r_v { £(*,r) } = f%(tr) e?

27ri" r
<ir

,

"00

(9)

an<

f
00

-o
dv

%
(10)

where dr = dx dy dz , dv — dfx djy dj? , and vi = xfx + yfy + zfz . The above

transforms involve triple integrals and can be split into three spatial transforms in x

\k)^ y (fy) ar| d 2 {jz}- For example, the transforms in x (f^) are written as

G(t,jx,y,z) = ff^ { jf(USf^) } =
j
j(U^) <?

2*&dx, (11)

and

J

00

Gtt&**)e"j2Ti*«k. (12)



The transforms in y (Jy) and z (j£) follow the same notation. The full space -time

transforms can be written as

G(M = dH^.v { 9(t,T) } = S,.^ 9
y
_, 9^ { 9(t,r) } ,

(13a)

or

an(

or

noo
e
-J2*(ft-»'I)

g (
t1I)dtdTl (13b)

git- d = KpT-v { G^
)
= KfKk Kh r

*-k
{ G(J "

] }
>

(14a)

^KUt-VT)
Q(f)V)dfdt, t (Hb)

" oc 00

The above relationships are valid for the impulse response/transfer function pair if t

is replaced by rand r is replaced by r = (ib,J/o,2o)) that is,

#(/r ;r) = $
T_j{

h(r,r ;r) }, (15)

H(t^r) = dT 1/
{h(r,r ;r)}

) (16)



#Ujk,yo,2b;r) = £_ f { h(r,ib,yo,2o;r) } , (17)

and

//(^^^.^(w)}. (4)

The same applies for the respective inverse transforms.

(2) Input -Output Relationships. During our developments, we will

need to express the output of the system, ^(t,r), in terms of the transformed input

function G(f,v) and the transfer function. From the Fourier transform definition

a
00

,J'Mft-v!) GUvU!dv (18)

follows the transform property

^-,,,]Mfr-,,)G{iv)dsdv . m

Substituting this expression into Eq. (1) yields

/•oo /»oo /»oo y«oo . .

p(*,r) = jMft-wi) rJ 2 *(>-„• r ) g(jW

x /i(r,r ;r) d/di/ dr drG , (20a)

oo oo - oo - 00

10



n»
. ,

/• 00 /• 00

e
j2»(/H'-i)

GWv)
| j MT , rc,

;r) e
-}S<fr-yto)

iT Ao dfd„ (20b)

oc oc * - oo -

> y '

or

<p(t,i) = f f G(JM W(^;r) jWt-r'Jyfr
j

(20c)

- oo - oo

which is the desired relationship.

Analogous to a time -variant system, for which the frequencies at

the output are different from the input, a space-variant system causes the output

spatial frequency vector to be different from the input. We will use /? to represent

the output spatial frequency vector. The input -output relationship in the

transformed form can be obtained by substituting Eq. (20c) into the Fourier

transform definition

{ ip(t,i)} e-
j2n -

ft-P' T)
dtdr. (21)

-oo -oc

Doing so yields

/•oc /•oc /»oo /• oo r o \

Hm =
) ) J

l^l^"^"^^ ¥''/ '

l)d
'' d,' e

'
:
'

}t'P
' dtd^ <22a >

oc "OC -oc - oc

*(/£)= Pr ("0(77^) //(^r) e
-i2*(i/-0Tlf

e
"i2^/-^^U(fa-dy, (22b)

oo - oc - oc

11



4>m = ff\fGM^^ e

~J2ir(l"®' T^ ^
}

dT d
"'

(22c)

* "00 "00 \ -oo '

Hm =ffG(M Hifai) e-^^'^rd.. (22d)

•^ - oo*^ - 00

2. The Acoustic Channel

As long as we deal with small -amplitude acoustic signals, the governing

wave equation is linear. We will restrict ourselves to time -invariant problems,

where the properties of the medium do not change with time, and the source,

receiver and the boundaries are motionless.

Figure 3 is a pictorial representation of the acoustic channel. A source or

transmitter rectangular array "couples" an electrical signal to the medium and a

receiver array transforms the acoustic signal back to electrical form. Both arrays

are assumed to act as linear filters. We will not be concerned here with the

generation of the electrical transmitted signal, assumed given, nor with the

processing done on the received electrical signals at each hydrophone position. The

acoustic channel can be represented by the block diagram shown in Fig. 1, which

can be broken down into the three basic components sketched in Fig. 3: transmitter

array, medium and receiver array. Figure 4 shows these components in block

diagram form. [Ref. 5;pp. 3-4]

a. The medium

The propagation of the acoustic signal through the medium is governed

by the wave equation

12
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*(*,r)
^
T
(/,r)

$(<,r)

*(/,")

*
M
(j">r ;r)

y/,*;r)

F(*,r)

•(/,«

y/,r)

y/,«

y(<,r)

'(/>")

Transmitter
array

Propagation
medium

Receiver
array

Fig. 4. Block -Diagram Representation of the Acoustic Channel.

1 A*-

<r(r)*r
(23)

and appropriate boundary conditions, where p(£,r) is the velocity potential

2 -1 / .

(m~s ), g(Li) is the source term, which represents the rate of mass injection into

the space per unit mass or rate at which fluid volume is added per unit volume

( s
)
[Ref. 5;p. 1]. These two terms are represented in Fig. 4 as the output and

input to the acoustic medium block, respectively. The solution of Eq. (23) is

obtained from Eqs. (1) or (20c) as

KtO-JT g(t-T,i-i
) h„(r,r ;r) dr </rL (24)

or

G(M H
H
(/i/;r) J 2^H'V ' T

^ dfdp . (25)

- rtft

14



The transform of the output $(//?) is a function of the spatial

frequency vector /?, which is, in general, different from v, due to the space -variant

nature of the medium. The physical meaning, in terms of ray acoustics, is that a

non -homogeneous medium (f/is a function of r) causes change in the direction of

propagation of the sound.

The input -output relationship in the transformed form can be obtained

from Eq. (22d), resulting in

*(/0= [ f G(M //
M
0;r)*•&***ft'* drdv (26)

If the system is space -invariant, an unbounded homogeneous medium

for example, then H is independent of r and Eq. (26) reduces to the expected

expression for a time-invariant, space-invariant linear system:

f x A 00 .

*(/0= G{fr) H^U^X (

~
J - ni/-P )

' T
didv, (27a)

-oc "00

Joe
G(j*) !{(&*) 6(w-fi &v

,
(27b)

*{M= G(f,fl H^ttfi . (27c)

15



b. The Transmitter

The transmitter array, the first block in Fig. 4, is characterized by a

complex aperture function A (f,i) (Amp" s" ) relating the electrical input x(t,r)

(Amp) to the source distribution g{t,i) (s~ ) through the expression [Ref. 5:p. 30]

G(f,i) = A'Ur) A Mi) . (28)

3 -1 -1 •

The far -field directivity function D (f,v) (m Amp s ) is related to the complex

aperture function through the transform [Ref. 5:p. 38]

D
T U,*>) = Z

I . t

,{A
T{M}- (29)

Using Eq. (29), the spatial Fourier transform of Eq. (28) is given by

G(M = X(MID (fr), (30a)

or

JoeXUaG(fv) = X(M Z)
T
(>-a) da, (30b)

" 00

where the symbol (*) denotes a three-dimensional convolution with respect to v.

Equations (30a) and (30b) give the relationship between the electrical input and the

source of the acoustic signal. The relationship between the input electrical signal

and the velocity potential (the output of the medium block of Fig. 4) is obtained by

16



substituting Eq. (30b) into Eqs. (25) or (26). Let us introduce the simplifying

assumption that the electrical input signal is independent of position, that is.

x(t,T) = x{t) and X(f,v) = X(f) 6(v) . This is justified by the fact that the

complex weights applied to the electrical signal (array shading and beam steering)

are taken into account in D (f,v), the far -field directivity function. With that

assumption, Eq. (30a) becomes

G(M = XU)6{y)lDT (iul (31a)

or

G(» = X(/)D
T(M (31b)

which, when substituted into Eq. (25), gives the required relationship between the

input electrical signal and the velocity potential at the output of the medium block.

Pttr)= f f XU)D
T{MHn {tKt)

J 27rift'v ' T)
dpdf. (32)

- oc - oc

A further restriction we impose to our problem is that the transmitter array is

composed of point sources, has rectangular shape, is parallel to the XY plane, as

shown in Fig. 3. and is centered at position rs = (j^,ys ,2s). The array has

dimensions Mt * iVt (first dimension along the X direction and second dimension

17



along Y), with interelement spacing dxt meters along X and dyt meters along the Y

direction. Then, the far -field directivity function for Aft and Nt odd is given

by [Ref. 5;ch. 4]

Mt-1 Nt
-1—T T

Mt -1 _ Nt-1
p = -—T q = -—y

where r = (p^xt + Ts- 9^yt + !/s, ^s) represents the position of each element and

c (/) = a (/) e* PQ^ is the complex weight associated with the element at

position r .

c. The Receiver

The receiver array, the last block in Fig. 4, is characterized by a

complex aperture function A _(/r) (V s m ) relating the velocity potential <p(t,i)

to the electrical signal y(tj) (V m ) through the expression [Ref. 5:p. 31]

Y(M = *(J[r) \(ir) . (34)

As stated earlier, we are not concerned with the signal processing done

on the received signal. Our purpose is to predict the waveform at the output of

each receiver array element. So. we consider the term A (fj) as pertaining to a
R

single transducer element. The quantity y(t,i) is the electrical signal distribution

-3
(V m ) due to the velocity potential <p(t,i) at a point r on the transducer. In order

18



to obtain the total electrical signal y(t) at the transducer terminals, we must

integrate y(t,i) over the whole transducer volume, that is, integrate with respect to

r,

-J
Y(f) = YU,t) di

,

y»oo

Y(f)= *&) A^fc) dr

.

(35)

For a point sensor located at rr , the complex aperture function is given

by

\(/r)=.4(/)*(r-rr ), (36)

which results in an electrical signal at the terminals given [ see Eq. (35) ] by

Y(j) = *(/rr) A(f) . (37)

If the transducer is a pressure sensor, then A(j) is proportional to the frequency /,

that is, A(j) ** jj and Y(f) ~ jf<&(f,is) ~ pressure . For simplicity, we take A(f)

as unity, and a pressure sensor can be simulated by inserting a suitable filter into

the block diagram of Fig. 4. So, the output electrical signal will be numerically

equal to the velocity potential. The receiver array, like the transmitter, is a

rectangular array of point sensors of dimension Mr * Nr ,
parallel to the XY plane,

with interelement spacings dKr and dyr meters, centered at rr = {ir , yr , 2r ). The

19



output electrical signal at each element {m,n), given by Eq. (37) with A(f) = 1

and i
r
= imn = (m (k r + x?

,
n dyr + yr , -Sr). is

W/)«*(JSO, (38 )

or

ymn (t)=K«,rran). (39)

<f. Overall Transfer Function

The overall transfer function relates the output electrical signal ymn (t)

at each point sensor (m,n) of the receiver array to the electrical input signal x(t) at

the transmitter array. Substituting Eq. (39) into Eq. (32) we obtain, for the output

signal,

noo
X(f) D

T(M ^(JfrO ^
jMjt ' V ' I^ ) dv df, (40a)*mn

J

oo y«oo

X(f)j D
T(M W

M
(.^;rmn ) c

-J-w ' r-» dv J^^df. (40b)

oo "00

The last expression can be rewritten as

J

00

*(/) "WO e^'/ty, (40c)

20



or

2/mn(0 = ^/
{X(/)H(/r

ran )} )
(40d)

where H(Jjrran ) is the overall transfer function, given by

J

00

D
T(M H^ifai^) ,''2n"*"d» . (41)

00

Note that Eq. (40c) is valid only when the input electrical signal is independent of

position and the receiver is a point sensor with unit frequency response, that is,

A(f) — 1. On the other hand, Eq. (32) assumes only the independence of the input

electrical signal with respect to position.

B. THE RANGE INDEPENDENT ACOUSTIC CHANNEL

In this section we will derive the expression for the overall transfer function for

the particular case of a range independent medium. With reference to Fig. 3, the

range independent medium characteristics change only with the Y (depth)

direction, and the boundary conditions are independent of i and z, that is, the

problem presents cylindrical symmetry.

1. Medium Transfer Function

In order to obtain the medium transfer function, we will solve the wave

equation using a time -harmonic point source, that is,

V
2
<p(t,i) --Tj— $L<p(t,i) = e?

2^ (r -
rs ) ,

(42)

c\y)dt

21



with suitable boundary conditions . The solution, as shown in Eq. (6d), is of the

form y?(i,r) = £(r) e*
w

'° with £(r) satisfying the Helmholtz wave equation

V
2
e(r) + ^(j/)^(r)=6(r-rs ), (43)

where k(y) — 2x/ /c(y) is the depth dependent wave number. Applying the spatial

Fourier transform with respect to rand z to Eq. (43), we obtain

K(y) HU^jt) +^OUi) = JMkx*
+W *(»-*) • (44)

dy

.0 . . ,0 . , 9 0, „ .

where Ary
( 3/) = A"(j/)-47r

w
(j

,

x"+ jfe") and ^(ic,$/,Jz) is the spatial Fourier transform

of £(r) with respect to j and z. Solutions to Eq. (44) are usually obtained by

approximate methods, most notably the WKB approximation. We can write the

solution to Eq. (44), without loss of generality, as

E(jUi) = <y) U e-A< y) + B JW>\ e*
2«4* +W

. (45)

v ^ *

The (transformed) velocity potential, obtained from Eq. (45) and the assumed

p(£,r) = £(r) e' " ^°
, is given by

mkMto'VikMk)'? 2 ****.
(46)
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The velocity potential p(£,r) is given by the inverse Fourier transform of Eq. (46)

with respect to rand 2, namely

rftf = .J' 2*)"" fltt.j.J) t-Jtotee-i^k'H, ik . (47)

*^ -« -00

Next, we will relate these results to those obtained in Section II-A-lc, the

response of a linear time -invariant, space-variant system to a time-harmonic point

source, as given by Eq. (Gd), which can be written as

p(4r) = ^^ TH(UxJy,^) r^'W^V' 2****, (48)

where r = (xq, y0) 2o) = (x-Xs, y-Jfe, *-%) and rfi/ = </£ df
b
dj2 . In order to

compare Eqs. (47) and (46), we rewrite Eq. (47) using the term ^ defined in

Eq. (45) as follows:

noo

pUi) = </
2t/°< f f\ e-J

2T4* e-i^&df* djz . (49b)

- 00 - 00

Comparing the Fourier transform expressions in Eqs. (48) and (49b). the term ty.

obtained from the solution of the inhomogeneous wave equation when the source is a

23



unit amplitude, time -harmonic point source, is seen to be related to the medium

transfer function through the transform

or

J

00 .

H
K ULf,,k,y)

e~
j2 *fyyo dfy ,

(50b)

where ?/ has been substituted for r as an argument of H in order to stress the

depth -only dependence of the medium transfer function. Notice also that the

arguments of *1> have been written in accordance with the linear systems notation

introduced in Section II-A-1.

The transfer function can then be obtained as the direct spatial Fourier

transform of ^( f,fx.y >J7.\y) with respect to yQ — y-y
s

- In the next section we will

see that this last step is not necessary, so long as the transmitter array is composed

of point sources.

2. Output Electrical Signal

The overall transfer function for a range independent medium can be

computed from Eq. (41) by substitution of the expressions for D (ft v) and the

medium transfer function. As we just mentioned, it will not be necessary to

compute the medium transfer function if the transmitter elements are point sources.

The directivity function for the transmitter array is a sum of terms of the form

c
pq (/)

e
7 " P9 , where r = (x , yq ,

Zg) is the position of each transmitter
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element. Substituting that general summation term into Eq. (41) and expanding

the exponential factors yields the result that the overall transfer function is a

summation—over p and q—of terms of the form

or

Vl (/) r e
-j2^-y

e
-i24(sfn -,q)

e
-y2^(,r -,B) ^(iiijWiJb) *

where r
ra
= r

r
+m d

xr
and yn = z/

r
+n d are the (x,y) coordinates of the receiver

array elements, and the (x,y) coordinates of the transmitter array elements are

x = J
g
-+-p d

xt
and y = y^+q d

t
. Recall from Section II -A -1 that the parameter

rG is the vectorial difference between observation point and source position. The

integral in this last expression is the inverse spatial Fourier transform of the transfer

function H' ( £jk, ^.£;?/n) with respect to jk, Jy and ji which yields a function of

(xo, Vo- 2o)i where rc = x^-t
, y = yn~ya • and Zq — zr -Zs . But the transform

with respect to fy is already given by Eq. (50b) as the function ^(JJx,yo:fi\y)

obtained from the solution of the wave equation. As a result, we can rewrite the

above last expression as

C
pq
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Therefore, the overall transfer function for the range-independent medium is given

by

it-l jVt-l

"(kj= x x c
pq(/)rr%aiC) y0)i;yn)^*

2^o

P = --^- = -—3-

x e
-i 23r^o rf/x ^ . (51)

The output electrical signal at each receiver position is given by Eq. (40c),

repeated here for convenience:

ymn (t)= X(f)H(jTmJr>
2 *ft

df, (40c)

where H(j,i
n ) is given by Eq. (51). Again, we stress that Eq. (40c) incorporates

three assumptions regarding the linear system:

• The input electrical signal is independent of position r, that is, x(tj) = x(t) .

• The receiver array elements are point sensors, that is, A (f,i) — A(f) 6(r-r r ) .

R.

• The sensors have unit frequency response, that is, A(j) = 1 .

Equation (51) assumes, in addition:

• The transmitter array elements are point sources.

• The medium has range independent characteristics and boundary conditions.

• Transmitter array geometry is as described in Section I -A -2b.
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a. An Alternative Representation

We will now compare our results, as given by Eqs. (51) and (40c), with

the results obtained by solving the wave equation for a range -independent medium

in cylindrical coordinates and written in terms of a Fourier-Bessel integral.

DiNapoli and Deavenport [Ref. 4:p. 80], for example, use that representation as a

starting point for the description of numerical methods applied to range independent

problems.

The integral in Eq. (51) can be seen as the overall transfer function due

to a single point source. From this point of view, H(fimn ) is just the weighted sum

of the transfer functions due to each transmitter array element, as one would expect

for a parallel connection of linear systems. These elementary overall transfer

functions /^ q
(/rmn ) are given by

"pqUO =
J

"
P*(J& »),&*) e'^^o t"^^ dfz . (52)

The overall transfer function ran then be written as

A/ t -l Nt
-1—T ~~2~

" (>ran )= X X w^v^-*- (53)

Mt
-1 Nt

-1

T = -—j- q = -—T

Let us make a change of variables in the integral in Eq. (52), exploiting

the fact that the dependence of *(/j5c,y ,i;j/h) with £ and £ occurs due to the

factor k
2
(y) = k

2
{y)A

2
{fx

2
+ f

2
) in Eq. (44), that is. * is a function of (j& + £ ).



Introduce the variables /r and 7 such that

k = /r cos 7 and /z = /r 5*n 7 (54)

which is a change from "rectangular" coordinates (kJz ) to tne "polar" coordinates

(Jf.,7). With this change of variables, Eq. (52) becomes

2*

^q(Kn ) =
J
*«*,*;*) Jt

J

e-i 2'*^ c<* * + ^o «*» 7)^
7 rfJ

r
, (55)

where

*m»yo;!fa) = *Ukyo,kyn)
/x=/r «>* 7

/z=/r
*»'» 7

(56)

Equation (55) can be written as

#Da(/W =
pq \-" rnn (57)

where sin a = x / Rc , cos a = z j R , and R = J xQ + z^ . Because of the

periodicity of the sine function, the term a can be dropped from the exponent

without altering the result. The last integral can then be recognized as the

zero -order Bessel function of the first kind [Ref. 6:p. 184], that is,
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-2.

(58)

which leads us to the Fourier -Bessel integral representation

/•oo

(59)

Equation (59) is the same as Eq. (3.1) in [Ref. 4] if we perform the

trivial change of variables k
r
= 2rfr . There, ^ is interpreted as the depth dependent

Green's function. Equation (59) is the starting point to several approaches to the

range independent problem, both numerical and analytical [Ref. 4:pp. 80-134].

Using the Fourier -Bessel integral representation, the overall transfer function

H(fi ) can be written, from Eqs. (53) and (59). as

Mt-1 A't-1
T~ T

*«o- i i c
pq
(/)2xf

Mt-1 iVt -l
J(

>

*(U,yo;yn)J (2*frR )fr dfr . (60)

C. THE LAYERED WAVEGUIDE

In this section we will derive the function # for the case of a three fluid medium

waveguide, commonly referred to as the Pekeris waveguide.
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1. Statement of The Problem

Figure 5 shows the relevant physical aspects for our derivation. The point

source is at position (x
s ,ys ,zs ) in medium II and the receiver is at (x,y,z) in the same

medium. Medium II, with characteristic impedance /^Cj, is bounded at y = , the

surface, by a fluid with characteristic impedance p {

c
{
and at y = D , the bottom, by

another fluid with characteristic impedance />3
c
3

. As described in Section B-l, in

order to obtain #, we need to solve the Helmholtz wave equation, Eq. (44), and

isolate the terms with y dependence from the solution, as shown in Eq. (45). An

inspection of those two expressions show us that by setting x
s
and z

s
to zero, the

solution of the wave equation will be automatically the function #. The wave

equations that describe the propagation in the three media are:

#¥,+^¥, = 0, (61)
dy

£
ky

2
¥

2 +^ ^
2 = 6(y-y*)

,
(62)

dy

anc

w

2

*y 3 *3 + T2 *s = , (63)
dy

2 2 2 2°
here k

Vl
= k—iir (jk + j£ ) , k

1
= 2irf/c

i
and the subscripts 1, 2, and 3 refer to

the three different media. The argument of ^ has been dropped for simplicity. We

seek the solution tyo because we shall be concerned only with those problems where

both source and receiver are in medium II. The boundary conditions are the
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Fig. 5. The Three Layer Waveguide.
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continuity of the acoustic pressure and the normal component of the acoustic

particle velocity at each boundary. Acoustic pressure is related to the velocity

potential by

Pi(f) = J2*fPi*i, (64)

and the normal component of the acoustic particle velocity at the boundaries is

related to velocity potential by

Uni = f *« ' (65)

ay

2. Solution

With the source located in medium II, the solutions in media I and III must

be in the form of propagating waves moving outward from the boundaries. In

media II. there are waves propagating in both directions—increasing and decreasing

y—due to the reflections at the boundaries. The expected form of the solutions are

vj/, = A
K

t

jX
vi y ,y<0, (66)

* 2a = 4a c
jky

'
y
- A>a e~

jky2 y ,0<y<ys , (67)

*2b = 4b^ V
+ &>b e~

jk
*2 y ,y*<y<D, (68)
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an<

*
3
= B, e'*r* y ,y>D (69)

The solution in medium II has been split in two in order to account for the point

source, as usual in the Green's Function determination. Two more boundary

conditions are necessary:

• Continuity of the solution ty 2
at y = ys

.

• Discontinuity of the first derivative of ^
2
at y = y5

.

The value of the discontinuity can be found by integrating Eq. (62) over a region

|
y-yj < t and taking the limit as e -»

. Performing this operation and taking into

account that, in the limit, the integration of the continuous function ^
2

is zero, we

obtain

l i m —
7j ^ 2

dy = 1
,

^OJ dy~
y s

- e
yI

(70a)

or

dy
$ 2b

V
* dy

2a
= 1 . (70b)
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a. Boundary Condition at y —

In order to obtain the expression that represents the continuity of

pressure at y = 0, we equate the value of pressures due to $, and ^ 2a - Substituting

the assumed solutions—Eqs. (66) and (67)—into Eq. (64) yields

P\ A
\
= Pi (A>a + A>a) • ( 71 )

For the normal component of particle velocity, Eq. (65) and the assumed solutions

yield

k
vl
A

x

= k
2
(A>a

-£
2a ) . (72)

Substituting Eq. (71) into (72). .4, is eliminated and the relationship between the

amplitudes of the solution 4>.,
a

is found to be

Pi

a
a

p~
2

k
y* ' A

vi

-— = ^2. = f • (73)
A P\

p2
V + K

y\

When k
2

is real, corresponding to propagating waves in medium II, the factor FU\ is

physically interpreted as the plane wave reflection coefficient at the surface.

b. Boundary Condition at y = D

Following the steps of the previous section, using the forms of the

assumed solutions for ^
3
and ty ob at y = D , we find
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^3 As e-fcy* = p2
(A 2b

&*D + R> b e'$Y*
D

)

,

(74)

and

-*
y3

^
3
e"^y3

D = ^2 (4b A'
D
-B2b e^D

) . (75)

Substituting Eq. (74) into (75), -4
3

is eliminated and the relationship between the

other two amplitude factors is found to be

Ik - t^ _ ^ e
-j 2kyiD _ ^± »

e
-j 2krD m

When A" o is real, i^
3

has the physical meaning of the plane wave reflection

coefficient at the bottom.

c. Source Condition

Using the results of the two last sections. Eqs. (73) and (76). the

solutions in medium II become

$ 2a
= A2a (<P

k
Y*y + A,, ef^ ), < y < ys ,

(77)

anc

*2b = B2t (^23 e'
j2k

y^
D^y + e"**' ), ys

< y < D . (78)
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The condition of continuity of #
2

at y = ys ,
applied to the above two equations,

gives the relation between the amplitudes A 2a
and £^b :

4a *
2 s

e-J
2k

v*
D e#y»*+ e-^y^s

(79)

#26 eJ
ky2 Vs + R2l

€
-Jk y2 Vs

Finally, apply the condition on the derivative of ^
2

at y = ys , as given by

Eq. (70b), to obtain:

52b (#23 e~*
2k

y*
D JK^-e'^s ).,4

2a ( Aa^-Aj, e'^% ) = J_ | ( 80 )

which, together with Eq. (79), forms the necessary system of equations to obtain the

two amplitude factors. B.,
ti
and .42a . Upon substitution of the expressions for B2b

and A2a into Eqs. (77) and (78), we obtain the solutions ^ 2a and ^ 2b ,
which form

the transformed transfer function ^(.ijxji/cjz; y) we seek. Written in an

abbreviated form, the final expression is

1
Rn e

-J'2k yiD e^y2 V> + e ~3\i y>

^iikyo-fcy) = i

-V l,-Rai R23
eJ l *^D

x (As y< + R
2i

e'fiy* 9*
), (81)

where < y < D
, < ys

< D
,
and, as usual, y> is the greater and y< the smaller

between y and #_ .
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3. Special Cases

In order to check the solution for the layered waveguide, we will now

derive the expression for the output electrical signal in two special cases whose

analytical solutions are known. These results will be used to check the computer

implementation. In both cases, the input will be a time-harmonic point source.

a. Unbounded Homogeneous Medium (Free Space)

An unbounded homogeneous medium can be represented by Fig. 5 if

the sound speeds Cj and densities p x
are equal for the three media. In this case, the

reflection coefficients, as given by Eqs. (73) and (76). become zero. The

transformed transfer function—Eq. (81)—reduces to

*(JJt,*.i;ri = j— ?~jk
y2y> ^2V<

• (82a)

*(/it,Sb,jt;») = J— e"-*^ y<]
(82b)

-'•v
9

or

*(Jte,Slb,Ay) = J— t"*^ y " ^sl = j— f"^ |yo1
• (820

-S-2 -\v2

Note that the right hand side of Eq. (82c) is expressed in terms of yQ only, meaning

that the unbounded homogeneous medium is space -invariant, as expected.

The overall transfer function H(J,i) for the case of a point source is

given by Eq. (51) with Mt
= M = c„(/)= 1. Substituting Eq. (82c) into Eq. (51)

yields

Q7
f



H(ii) = f Cj -±- e'
jkyM e~i 2<xo e-3

2*fco dk djl . (83)

oo ^^yl

The above integral is the expansion of a spherical wave into plane waves [Ref. 7:p.

B-5] and the resultant overall transfer function is

H{fc)=~- —
,

(84)

4ttH

i—

2

2—7 /
^ o 7

where R =
||
r-r

s \\
=

yf x + yQ ^ z = J(xss
)"+(y-y

B)
+{z-z

s)
.

The output electrical signal y(t)—or velocity potential p(£,r), in our

case—is given by Eq. (40c). Substituting Eq. (84) and X(/) = £(/-jk)—for the

time -harmonic source

—

into Eq. (40c) yields

y(i)= .l_^/oi-^)j (g5)
4tt/?

where h, = 2irfc /c, . Equation (85) is just the expression for a spherical wave, since

R is the distance between source and receiver.

b. Surface Reflection

Consider the case where media II and III are the same, that is, c
2
= c

3

and p2~Pz- As a result. R^ is zero and ^ reduces to

*(f,JK,yo,&y) = J— e~
jk

y2V> (A*** + ^ e"->V<
) ,

(86a)

_A.
y2
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*(£fc.ibJbK) = 3— (e"A^> - K) + ^ e
-^

y2(y> + V<)
) j

(86b)

2*
y2

or

*«A,lb,i;F) = J— (^2,?/ " %l + #2. ^M*' +
^sl

) ,
< j/, < ys . (86c)

2 A;,V

Comparing Eqs. (82c) and (86c), we see that this problem can be treated by

considering a homogeneous medium with two point sources, one located at y with

unit strength, and the second located at -y
s

with strength /&>,. The output

electrical signal due to the first term in Eq. (86c) has already been computed in the

previous section, and is given by Eq. (85). In the second term, we have the factor

FL
2 \- also a function of jx and fz through the dependence on k

,
and £

v2
. When

performing the inverse spatial Fourier transform to obtain H{j,i) y it would be easier

if R
2i

were constant. If we consider the boundary I -II as pressure release
,
that is.

pjpr, = 0, then, by Eq. (73), jRoj = -1. In this case, Eq. (86c) reduces to

2*
y2

where y
l

n = y-(-y
s

) From the results in the previous section, the output electrical

signal is, by superposition.

y{t) = _ J_ e»*A'-W) +— e»'A«-V)
,

(88)

4xR 47t/?'
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w
rn 2 7 I o 5 7

here /?' =
||
r-r^

||
= V< + Vo + zo = Vl*"**) +(3H-%) +(-2 " 2

s ) • H the distance

H is large compared to the depth of the source ys ,
a simplification is possible. From

Fig. 6, for large R , Rz R
S
-AR , R l a R

s
+ AR and AR a ys sin$ = ys yj R

s ,

where R
s

is the distance from the receiver to the midpoint between the source and

its image. With these approximations and letting R a R* a R
s

in the amplitude

factor, Eq. (88) becomes [Ref. 7:pp. 170, 408]

(A •

1 A^IJ-kR) j

ko y s Vr
)

y(t) = -J C* J° ° s ' 5171

2x/L R
s

(89)

D. SUMMARY

The transformed transfer function ^{j: fx,yo>fz',y) for a range -independent

medium is the solution to the inhomogeneous Helmholtz wave equation

2

*?(*)*+ ^-2 * = %-*), (90)
dy

2 2 2 2 2
with suitable boundary conditions, where ky = k*-4x (jk + jf) and k= 2t//c.

Under the conditions stated in Section II -B -2, related to Eq. (51), the overall

transfer function for a range -independent medium is given by

iV/t-1 JVt-1

« C-J
2
***d[& «& ,

(5i)

Mt
-1 M-l
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Fig. 6. Geometry of Surface Reflection.
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where the transmitter array is rectangular, centered at (x
s ,ys ,zs ), parallel to the XY

plane, with odd dimensions Mt x Nt , complex weights c
q (/),

and with

elements positioned at x = x
s
+px

, y = ys+qy , and z = z
s

. Also, xQ = rm -r ,

yo = yn -yQ , and zQ
= <z

r
-*

s
• The overall transfer function H(f,imn ) can also be

expressed as

Mt
-1 Nt

-1

T
y»oo

Mt
-1 Nt-1 °

* J (2xfrR ) fr dfr ,
(60)

where /r = V /x +4 > #... = v < + zQ -
and

y(fJr,yo\yn) = ^{Lkyo-.kvn)

i=/r cos 7

/z=/r **»7

(56)

The output electrical signal ymn (t)
}
under the same conditions stated for the

overall transfer function, is given by

*«(*) = J"W) «(JEO «7

"

2'/'* (40c)

where H(f,i) is given by Eqs. (51) or (60).
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The layered waveguide illustrated in Fig. 5 is characterized by the transformed

medium transfer function

y(£fx,yo,ky) = j
:

;

2A;
y2 1 - fl 2 ,

fi23 e" J 2 *y2D

xfA^ + ^e^^), (81)

which is valid for < y < D . < y. < D . and where Ho, is eiven bv Eq. ( 73) and fi«o

by Eq. (76). If all three media have the same acoustic characteristics, then Eq. (81)

reduces to

*«4,yo,i;y) = j—e^W

,

(82c)

^y2

and the corresponding output electrical signal is given by

y(t)=-— e*^/o'-V*\ (85)

4tt/?

where # is the distance from source to receiver. In the case where media II and III

are the same and the surface is pressure release, the function ^ is given by

ntkth^y) = J— (e-^l*oL e-*r»llil)
,

(87)

2*
y2
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where y
{ = y + ys

. The output electrical signal, when the source -receiver distance

is large compared to the source depth, is given by

2tR
sin

(
ko Vs Vr \

(89)

where R
s

is the distance from the receiver to the midpoint between the source and

its surface image.
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III. IMPLEMENTATION AND RESULTS

In this chapter, a computer implementation of the range independent medium

equations is described. Although only the medium transfer function of the layered

waveguide is implemented, the modular nature of the linear systems approach

enables us to analyze the results and draw conclusions valid for the more general

case. Equation (60) illustrates this point. The summations and the coefficients

cpq(/) in ^ na* equation represent the transmitter array. The Bessel function

J (2nLR ) is the range dependent factor. The function ty{f>fK ,y ,fz ',y)—from now

on referred to as the medium transfer function, for simplicity—is the (range

independent ) medium dependent factor.

Our purpose is to have a working algorithm to test the results from the previous

chapter. Care has been taken to enable the implementation of other medium

transfer functions, allowing for depth dependent speed of sound, so that the program

can be used as an academic tool. Speed and style were secondary objectives.

The implementation is based on Eq. (60), the Fourier -Bessel integral

representation.

A. IMPLEMENTED EQUATIONS

1. Medium Transfer Function

The medium transfer function ^(fjr ,y ]y) is an oscillatory or exponential

2 2
function of k

2
—as seen in Eq. (81)—which, in turn, is a function of (fK + fz ) =

= f". The function ^ is easier analyzed in terms of k
2
than in terms of /r =
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I
2 7

= v (//^V" (^2/2"")" )
which is nonlinear. Therefore, ty will be treated as a

function of k
2 , and the integral term in the expression for the overall transfer

function, Eq. (60), will be modified accordingly.

a. ty as a Function ofk^2

The function ^ is already expressed in terms of k
2

in Eq. (81). The

reflection coefficients, on the other hand, are expressed in terms of k ,, k
2 ,

and A;
3

.

In this section we establish the relationships between k
2
and the quantities /r ,

L,

and k
3

. These relationships will enable us to represent the reflection coefficients in

terms of the variable k
2 ,

as well as to change the variable of integration in the

expression for the overall transfer function to k
2

-

The correspondence between k
2 and ft is one-to-one. When /

r
< (//c

2 ) ,

I
2 1

k
2

is taken as the positive root 2-K\J (//c
2 )

-
.(. , a consequence of our choice of

solutions, Eqs. (67) and (68). When /r > (//c^), k
2

is imaginary, corresponding to

an exponentially decaying ^. When all factors in Eq. (bl) are multiplied out, ^ is

seen to be composed of a sum of factors of the form

4 P -Jkvi a

where a is a nonnegative real number. In order to have ^ be a decreasing

exponential, the negative root must be chosen when k
2

is imaginary. Similar

reasoning yields the same results regarding k
,
and A:

3 , which can be summarized as

follows:
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+ *?--*?
, K<K

Kyi ~

L i

A
2

--*
» *r > *i

(91)

where i = 1, 2 or 3 , A;
r
= 2x/

r
and h-

x
= 2tt// Ci . Using Eq. (91), the wavenumber

y-components k
,
and A

3
can be expressed in terms of A

2
as

*yp ~ 1

+ *p "~ *2 + k
y 2 ,

A
r < A

p

(92)

o oH, H~ k
y 2

- A
p ,

A
r
> A

p

I—

2

5~
where p = 1 or 3. and A

r
=

.J
k^ — A

y2
. Using Eq. (91), the integrations over /r

can be transformed into integrations over A
2

. Using Eq. (92), the reflection

coefficients R
2l

and /l23 . as given by Eqs. (73) and (76), can be expressed in terms

of *
y2

.

b. An, Water, Fast Bottom Waveguide

Thp present implementation of the medium transfer function assumes

that c,< Co. When the surface is almost pressure release, which is the case of the

air-water interface, and the bottom is fast, c
3
> Cg , the medium transfer function is

composed of many sharp peaks, which presents some difficulties for integration

routines.

(1) Poles of the Medium Transfer Function. When the surface is

pressure release, that is, R
2l
= -1

, Eq. (81) reduces to
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^U*y2 .3/o;y)
= I

^23 e
j2ky2 D e

Jky2y> + e
-jk

y2y>

l

y2 1 + R 23 e
-j2k y2D

sin( k
2 y< ) , (93)

which is valid for < y < D and < ys < D . If the bottom is fast, k
2 > k

3 ,
and,

from Eq. (91), there is a range of values of k
r

for which k 2 is real while JL
3

is

imaginary, that is, k% < k
r
< fc> or < «y2 < v *2 " ^*3 ^or *ms range °f values

of k 2 , the reflection coefficient i?^, given by

^*>a
—

Pi

J2
k
v* ~ A

v3

Ti
y2 + y3

(94)

becomes a unit magnitude complex number,

Ru"? 2*
(95)

wnere

Pi l™{ k
yZ ) Pi

tan 4> = " = — *

Pz *y2 P3

k~ — k — k~h
2

ft
y2

ft
3

V2

(96)

In this case, the denominator of the expression for ty, Eq. (93), may have zeros,

given by

1 + tf^ e~
j2k

y*
D = (97a)
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1 + e
-j'2

(V - *> = . (97b)

Therefore,

4>-k
y2D= (2n+ 1)1, n = 0, 1,2,...
y

2

(98a)

or

tan k:

2
D

1

tan (p Pi

V2

"2 " *y2 " ^3

(98b)

£an 9
Pz B

Pi
a
2 -<?

(99)

where = k
y
*D and a = D \ k% - fc^ . Solutions to the above transcendental

equation in terms of k
2
= 9/D are the poles of the medium transfer function, for

the case of a pressure release surface, Eq. (93), and a fast bottom. The physical

interpretation of these poles is that they represent the discrete eigenvalues JL2n

corresponding to the trapped or normal modes in the waveguide[Ref. 8:pp. 430-440].

The graphical solution of Eq. (99) [Ref. 8: p. 438] reveals that:
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• Poles exist only if a > x/2. If a > x . the poles will be separated by AA;
2
ss t/D.

• The total number of poles is given by the integer number equal to [(a/x)- 0.5]

or, if the result is not integer, its nearest larger integer.

When the surface is almost pressure release, that is, R
2l

« -1
,

the medium transfer function presents peaks at values of k
2
corresponding to the

poles computed as above.

2. Overall Transfer Function

In order to change the variable of integration in Eq. (60), the interval of

integration f € ( , oo ) is subdivided into ( , / / c^) and
(
//cj, oo ). After the

change of variables according to Eq. (91) and a rearrangement, Eq. (60) becomes

U )
v \h Ky1>yo,yn l <* W lo) Ky2 aK

y2 '"U^mn' -
j

7Xj~%t 'pq u ; ^ KJ^yl^o^n) ^oW'o' V a^y2 > > lw i

where the path of integration T consists of the imaginary axis over the interval

(-joe
,
j'0) plus the interval (0

, f / c) on the real axis. The summations over p and

q are as indicated in Eq. (60).

B. THE SUBROUTINES

In this section we describe the subroutines and present the results for some

examples. Also, a description of the main program and some auxiliary subroutines

is given, which will help to clarify some aspects of the implementation 1
.

'The main program and auxiliary routines were written by Dr. Lawrence J.

Ziomek, at the Naval Postgraduate School, as part of an ongoing research project in

model -based signal processing.
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1. Main Program and Auxiliary Routines

The main program's simplified pseudo-code is shown in Fig. 7. It consists

basically of calls to subroutines. The readin subroutine reads the input data,

consisting of transmitted signal characteristics, transmitter and receiver array data,

medium characteristics, and control data, including the ocean medium transfer

function (OCNTF) variable used to select a transfer function, when more than one

type of transfer function is implemented. The ccq subroutine generates the input

electrical signal x(t). The chfmn subroutine computes the overall transfer function,

Eq. (100), and its estimated error. The phfmn subroutine provides a tabular output

for the values of the overall transfer function and its error. The calyce subroutine

computes the output electrical signal, according to Eq. (40c).

Main Program /computes output waveform of an acoustic channel/

EXECUTE Readin /read input data/

EXECUTE Ccq /generate input electrical signal/

EXECUTE Chfmn /compute overall transfer function/

IF (flag print is TRUE) THEN

EXECUTE Phfmn /print overall transfer function/

END IF

EXECUTE Calyce /compute output electrical signal/

End Main Program

Fig. 7. Simplified Pseudo-Code of the Main Program.
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a. Subroutine Ccq

The subroutine ccq generates the input electrical signal x(t), using the

complex envelope representation. From the specifications read as input data, this

subroutine computes the time samples of a reference complex envelope and its

Fourier series coefficients. The Fourier series is truncated, yielding the complex

envelope of the transmitted signal.

(1) Complex Signal Representation. An amplitude and angle

modulated carrier r(t) can be represented by its complex envelope r(t) as [Ref.

5: pp. 177, 182]

r(i) = Re{ ~r{t) J'
2j&

) , (
101 )

w here

f{t) = a{t) ^^
, (102)

a(t) is the (real) amplitude modulating signal (Amp), 9(t) is the angle modulating

signal (rad), and jc is the carrier frequency (Hz). The Fourier transform of the

signal is related to its complex envelope transform by [Ref 5:p. 187]

/?(/) = 0.5[fl(/-/
c ) + #*(-/" /J]- (103)

For a rectangular -envelope LFM pulse, a(t) and $(t) are given by

a(t) =
A

,
\t\ < Tp/2

[0 ,\t\> Tp/2
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and

9(t) = - -t
2 =Dpt2

, (105)
T?

where A is the (constant) amplitude (Amp), T? is the pulse length (s), Sk is the

-2
swept bandwidth (Hz) and D? is the phase -deviation constant (rad s ). Both 5"w

and Dp are allowed to be either positive or negative, corresponding to the up chirp

and down chirp LFM pulses, respectively. If the modulated signal r(t) is made

periodic with period T , then the complex envelope can be represented by the

Fourier series

1

I
k = -I

(t)= y b
k

e
j2irk£< t

,
doe)

w here

T /2

b
k
= —

J

f(t) e'J^&dt, (107)

-* O " - T 10
Qi

and f = 1/ T . Equation (106) assumes a complex envelope bandlimited to A'j^ .

From Equation (106), the transform of the complex envelope is given by

I

«(/)- X M(/"*4)- ( 10S )

k = -/
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If the complex envelope is sampled with sampling period Ts = T /(2K + 1), which

is basically the Nyquist rate, then, from Eqs. (106) and (107),

I

f(lT8)= j b
k
e
j2irkl/L

) (109)

k = -/

anc

i

I
I = -i

1 '

6k
= - J WTs

)e-J'2 *kl/ L
, (110)

where Ts = 7VL is the sampling period, and L = 2/i+l is the total (odd)

number of time and frequency samples. From Eqs. (103) and (108), the signal

transform is given by

I

/?(/) = 0.5 £ { bk 6(f- fc - kf ) + 6* *(-/- /c - */ ) } ,
(111)

k = -I

from which the sampled signal can be derived as

(lTs) = Rel £ 6k
^2x/;//L ^2x/

c
/Ts

| (m)

(2) Subroutine Description. Figure 8 lists the pseudo-code of the

subroutine ccq. The main input data for the subroutine are:
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• Pulse length 7>, and pulse period (or pulse repetition period) T .

• Swept bandwidth 5W and pulse amplitude A.

• Maximum order of frequency component to be processed, A'max . The number of

frequency components to be processed is (2 A'max + !)•

• Sampling rate multiplier Sr, a term to be multiplied by the Nyquist rate in

order to obtain the actual sampling rate.

• Carrier frequency fc .

• A flag iesiused to indicate option for plotting.

Subroutine Ccq

Compute data for reference signal:

total number of samples L for the complex envelope /Eq. (114)/

sample period TS for the complex envelope /Eq. (113)/

phase—deviation constant DP /Eq. (105)/

Generate samples of ref . signal complex envelope /Eq. (102)/

Compute complex Fourier coefficients /Eq. (110)/

IF (flag test is TRUE) THEN

Compute and plot transmitted signal /Eq. (116)/

END IF

End Subroutine Ccq

Fig. 8. Simplified Pseudo-Code for the Signal Generator Subroutine.
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The total number of samples for the complex envelope is given by

L=T /TS , (113)

where T and Ts are the pulse repetition period and complex envelope sampling

period, respectively. The sampling frequency fs = l/Ts is the product of the

sampling rate multiplier Sr by the Nyquist rate, twice the complex envelope

bandwidth. In terms of the input parameters listed earlier, Eq. (113) can be

rewritten as

Lz T Sa 2
(

\Sv\ + 2/7p ) , (114)

v
s,

'

Z BV( envelope)

which is the expression used in the subroutine. If the number of samples is less than

the number of frequency components to be processed, (2 A'max + 1), L is increased

accordingly. If the computed value of L is even, the result is increased by one. The

phase -deviation constant D? and the sampling period Ts are computed according to

Eqs. (105) and (113), respectively.

The subroutine proceeds to compute the samples of the complex

envelope of the reference signal—using Eqs. (102), (104) and (105)—at the time

instants t = I Ts . The Fourier coefficients are computed next, using Eq. (110).

The signal to be transmitted is defined by multiplying the Fourier

coefficient series {6k }—computed for the reference signal—by a window of length
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(2 A'max + 1). The simple truncation, which corresponds to a rectangular window, is

avoided because of the ringing it would cause on the waveform. Instead, the

Hamming window

w{n) = 0.54 + 0.46 cos(t nj

K

max ) , -A'max < n < A'max , (115)

is used. Therefore, the transmitted signal and its complex envelope are given by

^T itik) b
k
J 2*kll L J 2*klT*\

t
-K < / < A'

, (116)

k = -S /

an<

"max

•(ITS)= Y «<ifc) b
k

<J 2*kliL
}
-K<1< A, (11

k = -L

The transform of the transmitted signal is given, from Eq. (116), by

'max

A'(/) = 0.S]T w{k){bk S(f-fc -kf ) + b*k 6(-f-fc -kf )}. (118)

k = "'max

While the sampling rate is high enough for the complex envelope

representation, the signal x(t) usually requires a higher rate. In order to recover the

signal from the Fourier coefficients, the series {b
k }

must be padded with zeros, so

that the modulated signal samples occur more than twice per carrier period. Both



the subroutines ccq and calyce, to be described next, use six samples per carrier

period for plotting purposes, for a total of 6fc T samples on the interval

(-To/2 , T /2). This zero padding is accomplished by using the value Lc = 6fc T

instead of L in Eq. (116).

b. Subroutine Calyce

The subroutine calyce computes the output electrical signal, both in

complex envelope y(t) and in band limited y(t) forms.

(1) Sampled Output Signal. The electrical signal ymn (t) at the

output of the element (m,n) in the receiver array is given by Eq. (40c).

Substitution of the expression for the input signal transform, Eq. (118), into Eq.

(40c) yields

{'max \

]T w(k) b
k H{fc + */ ,rmn ) J 2*kll L e-i 2*VTs

|
(n9)

ft = "'max

after performing the integration indicated in Eq. (40c), and where f Ts = 1/L .

From the definition of the complex envelope, Eq. (101), the sampled complex

envelope of the output signal is given, by inspection of Eq. (119), by

li

I
ft = "'max

'max

*-(T.)- X ^*) 'k "(/c + *Unn) ^ 2l*'/L
• (120)

Equations (119) and (120) are both implemented in the subroutine calyce The

observations made about the recovery of the signal from its Fourier coefficients

—

regarding the zero padding of Fourier coefficients—are also valid for y(i). In order
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to have a correct reconstruction of y(t), the constant L in Eq. (119) is substituted

by Lc = 6j^T , corresponding to six samples per carrier period.

(2) Subroutine Description. Figure 9 lists the pseudo-code of the

subroutine calyce. The main input data for this subroutine, besides those listed for

the subroutine ccq, are a three-dimensional array with the values of the overall

transfer function for each frequency (£. + kj ) and position (m,n) in the receiver

array, and the Fourier coefficients bk
computed in the subroutine ccq.

The computation of the total number of samples L and sampling

period Ts are as described in the previous section, in connection to the generation of

the transmitted signal. The complex envelope samples ymn (lTs ) are computed

according to Eq. (120). The signal samples ymn (lTs ) are computed using Eq. (119),

with zero padding.

Subroutine Calyce

Compute

:

total number of samples L for the complex envelope

sample period TS for the complex envelope

Compute complex envelope samples /Eq. (120)/

Compute and plot signal /Eq. (119)/

End Subroutine Calyce

Fig. 9. Simplified Pseudo-Code for the Subroutine Calyce.
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2. Computing the Overall Transfer Function

The computation of the overall transfer function is performed by a group of

subprograms subordinated to the subroutine chfmn, called by the main program.

The relationships between the subroutines used for this implementation are shown

in Fig. 10. The program was implemented in FORTRAN, with most of the

variables shared through common blocks.

The pseudo-code for the subroutine chfmn is shown in Fig. 11. This

subroutine implements Eq. (100), with the path of integration T truncated to the

intervals (-jlower
, jO) plus (0 , upper).

3. Integrand Implementation

With reference to Fig. 10, the subprograms related to the computation of

the integrand are reinteg, iminteg, integr, refl, hwvgky and dbsjO '. They are all

implemented as FORTRAN external functions.

The functions reinteg and iminteg just return the real and imaginary parts

of the integrand, respectively. They are called by the integration subroutine, whose

first argument is the name of the function to be integrated.

a. Function Integr

The function integr computes the (complex) integrand in Eq.(100).

The pseudo-code for this function is shown in Fig. 12. The argument A;
y2

is

interpreted as imaginary when it has a negative value, in all subprograms. The IF

statements marked in the list are related to the medium transfer function. New

•IMSL, Inc.. DBSJO, SFVNj Library, Bessel Functions of Integer Order, 1984.
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Subroutine Chfmn

FOR ( each frequency /= £ + k £ ) DO / -A'max < k < Km&J

EXECUTE Weight /compute transmitter array weights c^C/)/

FOR ( each position yn in receiver ) DO

EXECUTE Break /compute breakpoints for integration/

Compute upper and Iowa limits of integration

FOR ( each position xm in receiver ) DO

EXECUTE QintegCReal part) /compute Re{ //(/,rran ) }

and its error Re{ EH(f,Tmn ) }/

EXECUTE QintegOmag part) /compute lm{ //(/,rmn ) }

and its error Im{ EH(f,Tmu ) }/

Compute magnitude and phase of //and EH

END FOR each xm

END FOR each yn

Plot magnitude and phase of //versus position (x, y)

END FOR each frequency

End Subroutine Chfmn

Fig. 11. Pseudo-Code for the Subroutine Chfmn.
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Function Integr(&
2 )

/this function is executed for constant frequency, receiver

position (m,n) and k
2/

Compute k
r

/Eq. (92)/

IF' (layered waveguide) THEN

R2[
= Refl (surface data) and H23

= Refl (bottom data)

END IF

/compute product ^-£
v2 , for each y , as an array Ftraniq)/

FOE ( each position y in transmitter array ) DO

IF 1 (layered waveguide) Ftrani q) = Hwvgky / k
y2 -^if,ky2 , yQ ; yn )l

END FOR each yq

/compute integrand according to Eq. (100)/

FOR (each position i in transmitter array) DO

Compute Bessel function J (k
r
R ) J

R

a is the horizontal

distance from transmitter element to receiver position/

FOR ( each position y in transmitter array ) DO

Acumulate product c (f)- Ftran(q) • J (k
r
R ) /IS/

END FOR each yn

END FOR each i
p

Integr = (acumulated product)/27r

End Function Integr

'Other IF statements may be necessary for different medium transfer
functions

Fig. 12. Pseudo-Code for the Function Integr.
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transfer functions are implemented by adding new IF statements. The functions

integr and break, to be described later, are the only ones that need to be modified

when incorporating other medium transfer functions to the program.

b. Function Refl

This function computes the complex reflection coefficients. Its

pseudo-code is shown in Fig. 13.

The expressions for both reflection coefficients, Eqs. (73) and (76), can

be written as

i. . i.

Pp K v2 " Pi K yv
#2

P
= -^ -, (121)

Pp k
y2 + Pi k

yp

Function Refl(c
p

, a>, pp , p?, k
y2 )

/computes reflection coefficient /?2p/

Compute k /Eq. (92)/

IF (the speeds of sound are different) THEN

Compute reflection coefficient by Eq. (121)

ELSE

Compute reflection coefficient by Eq. (122)

END IF

End Function Refl

Fig. 13. Pseudo-Code for the Function Refl.
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where k
yp

is given by Eq. (92). If the speed of sound is the same in both media,

then Eq. (121) can be simplified to

PP ' Pi
R
2p =

- • (122)

Pv + Pi

c. Function Hwvgky

The function hwvgky returns the complex product k
2 ^(f,ky2,y ,yn ) ,

the medium dependent factor in the integral expression for the overall transfer

function, Eq. (100). This function is specific to the layered waveguide and

implements Eq. (81), multiplied by ky2 . It is called by the function integr. as

described earlier (see Figs. 10 and 12). Its implementation is trivial. Its arguments

are the frequency. A;
2
and the y coordinates of the transmitter and receiver array

elements, y and ya . respectively. The reflection coefficients
/£>i

anc^ ^23> an ^ tne

depth D are available through common blocks.

d. Examples

In this section we examine the behavior of the integrand in the

expression for the overall transfer function, Eq. (100). In all plots in which k
2

is

the independent variable, negative values of kvi are imaginary and positive values

are real. For simplicity, both negative imaginary and positive real values of k
2
are

plotted on the same axis. The symbol "d" appearing on the plots is used by the

plotting routine to mark different plots on the same graph, but it has no special

meaning in the present context.

(1) The Range Factor J (k
r
R ). Figures 14 and 15 show the plots of

J (k
r
R ) vs k

y2 , which is related to k
r
through Eq. (91). The frequency is /=
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= 500 Hz and the sound speed is (^ = 1,500 m/s, which results in a wavenumber

k} = 2.09 m~ . In Fig. 14, the distance is R = 100 m and, in Fig. 15, it is 1,000 m.

In those figures the range of k
2

is (-j'0.25 k^
, JO ) plus ( , k^ ) . An important

characteristic of the factor J (k
r
R ) is that it oscillates slower near k

2
« .

Another characteristic behavior is that it oscillates faster as the range increases. If

the other terms in the integrand also have "slow" oscillations, then the greater

contribution for the result of the integration comes from the region k
2
z , as a

result of the smoothing nature of the integration operation. Physically, the plane

waves that travel near the horizontal, that is, those with k
2
s

, contribute more

to the total field than those that interact more with the boundaries. In order to

compare the "frequency of oscillations" of the Bessel function and of the medium

transfer function, recall that, for k
r
R > 2x, the zeros of J (k

r
R ) occur

approximately at intervals of

&;
r
=—

.

(123)

Ra

(2) The Medium Factor. Figure 16 shows the plot of the term k 2 $

for the layered waveguide whose characteristics are shown in Table 1. The depth D

of the ocean is 100 m and the frequency is 500 Hz. The position of the point source

is (xs, ys , Zs) — (0, 30, 0) meters and the point receiver sensor is at (tt ,yr ,
zr ) =

= (1000 ,50 , 0) meters, corresponding to the range factor shown in Fig. 15.

This waveguide is of the almost -pressure -release -surface/fast

-

bottom type. The peaks are evident in the figures. From the discussion in Section

III-A-lb, there are 33 peaks in the range < k
2
< 1.04 m , separated by

A*
y2

s tt/100.
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Fig. 16. Waveguide Medium Transfer Function Times k
y2

. (a) Real Part.
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Fig. 16. Waveguide Medium Transfer Function Times kyT (a) Real Part(conL).
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TABLE 1. WAVEGUIDE ACOUSTIC CHARACTERISTICS

Medium Speed of Sound Density

(m s" ) (Kgm"3
)

I 343.0 1.21

II 1500.0 1026.0

III 1730.0 2070.0

A criterion to set an upper limit of integration in Eq. (100)—the

upper discussed in Section III-B-2—could be based on the comparison between the

"periodicities" of the medium and range factors in the integrand. If the factors in

the expression fur ^, Eq. (81), are multiplied out, the faster oscillatory factor—the

one with the greater exponent—has a "period" of x/D or more, with respect to kyt) .

that is,

«-*-£-. (124)
' D

From Eq. (91), the increments 6k
2
and 6k

t
are approximately related by

k

\6k
r
\z -2L-- 1^,1, (125)

r~2 r
V ^2

—
\1
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when k
2

is real. Equations (123) and (125) can be used to compute the interval

between zeros of the range factor, when it is plotted versus k
2

. If we require, for

example, that the integral be truncated when the Bessel function passes through

zero N times during one "period" of the medium factor, then, substituting Eq. (123)

and 6k
y2
= tt / N D into Eq. (125), yields

K
2

upper = —
. ( 126)

v/l + (Ro/ND)2

The upper limit computed according to Eq. (126) can smaller than the last peak

position, given by V &
2

- k% [see discussion following Eq. (99)]. In this case, the

limit could be increased, or those peaks outside the limit could be simply discarded.

In this implementation, the upper limit is set to L,.

The lower limit of integration, in the region where A;
y2

is

imaginary negative and
|
k
y2

-^
|

decreases exponentially as ky2
-» -Jtc ,

should be

set to minimize the error of integration for the slower decaying factor in k^-ty—the

one with the exponent of smallest absolute value. The worst case is when there is

one constant term, which happens when the source and the receiver are at the same

depth, for example. Note that the term k %•$ is pure imaginary when kyt) is

negative imaginary, and decreases towards zero as e
'^r2 '^° = e l^ 2

'. The lower

limit is set to -j 0.125 k^ in this implementation.

(3) The Integrand. Figure 17 shows the plot of the integrand for the

waveguide discussed above, at /= 500 Hz, for a range Rq = 1,000 m. For k
2

greater than about 1.5, corresponding to jVs 10 in Eq. (126), the integrand is fairly

symmetrical around zero, suggesting a low value for the integral in that region.
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4. Other Subroutines

a. Subroutine BrecJi

This subroutine divides the interval of integration in order to decrease

the error of the integration subroutine. The criteria used in this division are the

behavior of the medium transfer function and the relationship between the

"periodicities" of that function and of the Bessel function in the integrand. For

each different medium transfer function, a different interval subdivision strategy

must be implemented. The upper and lower limits of integration are independent of

the type of medium, in this implementation. Nevertheless, they could be made

medium dependent, in which case their computation should be included in the

subroutine break. Figure 18 lists the pseudo-code for this subroutine.

In the case of the layered waveguide function, the breakpoints are set

equal to the locations of the peaks, if any, as discussed in Section III-A-lb,

regarding the almost- pressure -release -surface/fast -bottom. The interval of values

of k
2

outside the range of the peaks is divided evenly into subintervals of size

57T / D , corresponding to five "periods," as given by Eq. (124).

(1) Subroutine Description. The input parameters for the subroutine

break are the frequency / the speed of sound c
2
—computed in the subroutine chfmn

and taking into account the gradient of the speed of sound, for the case of other

media. Other variables shared through common blocks are the type of medium,

OCNTF, and the waveguide characteristics. The outputs are the number of

breakpoints and a vector with the values of A;
2
at the breakpoints.

Initially, the subroutine divides the interval of integration evenly.

Then, it proceeds to check for the presence of peaks in the medium transfer

function, as discussed in Section III-A-lb. The peaks are the zeros of Eq. (99),
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Subroutine Break(/, c^ , breakpoints , number_brkpts)

IF 1 (layered waveguide) THEN

/divide range evenly (-0.125 k^, 0) U (0, k^)/

number_brkpts = (1 .125 k^ -f AA;
2
) - 1

FOR (n = 1 to numberjbrkpts) DO

breakpointsin) = (-0.125 k^) + n &k
2

IF (breakpointsin) < 0) index = n /index keeps track of

last nonpositive element of vector breakpoints/

END FOR n

/check for presence of peaks/

IF (peaks do exist) THEN /a>w±2, see Eq. (99)/

/the peaks are located at k «, = 9n -vD, see Eq. (99)/

number peaks = \(a/w)- 0.5] / discussion after Eq. (99)/

FOR ( n - indei+l to index+l+ number_peaks) DO

Compute n_th_zero of the function Denwgd

breakpointsin) = n_th_zero -r D

END FOR rc

Update numberjbrkpts to reflect total number of breakpoints

END IF

END IF

End Subroutine Break

'Other IF statements may be necessary for different medium transfer
functions

Fig. 18. Pseudo-Code for the Subroutine Break
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implemented as the FORTRAN external function denwgd. The zeros are found by

the subroutine dzbrenK The (positive) breakpoints originally computed are changed

to the values of the positions of the peaks. This implementation assumes a lower

limit of integration of -j 0.125 k^ and an upper limit equal to k^.

b. Subroutine Weight 2

The subroutine weight computes the transmitter array complex weights

Cpq(/)- The input parameters are the frequency; the transmitter array data; the

direction cosines u> (with respect to the X direction) and i/
1 (with respect to the Y

direction) of the transmitter array main lobe; the speed of sound at the center of the

array—set to c-n for the layered waveguide, but included in the present

implementation to allow for other media—and the gradient of the speed of

sound—set to zero in this implementation. The complex weights are given by [Ref.

5:p.l33]

Cpq [f) = OpqC^pq, (127)

where

apq = Ap Bq ,
(128)

Bpq = ^(u< pd
xt

+ v< qd
yt), (129)

1IMSL, Inc., DZBREN, MATH/ Library, Nonlinear Equations, 1985.

2This implementation is based on a program originally written by Dr.

Lawrence J. Ziomek, at the Naval Postgraduate School.

83



A = -, (130)

A and B are the amplitude weights along the X and Y directions, respectively, A

is the (depth -dependent) wavelength, dxt
and d

t
are the interelement spacing

along the X and Y directions, respectively, and (^{y^) is the speed of sound at the

depth yq
.

c. Subroutine Qinteg

The subroutine qinteg is an interface for the subroutine dq2ags l
, which

actually performs the integration in Eq. (100). The input arguments are the name

of the external FORTRAN function to be integrated, the limits of integration, the

breakpoints, the number of breakpoints, and the required error in the result. The

output arguments are the result of the integration and its estimated error.

Initially, each interval of integration, defined by the breakpoints, is

subdivided in order to improve the convergence of the subroutine dq2ags, which is

called by qinteg to perform each intermediate integration. If the error of the

integration of a subinterval, as computed by dq2ags, exceeds the requirements, that

subinterval is further subdivided. Finally, the results and errors of integration

provided by dq2agsa.it accumulated.

As indicated in the pseudo-code of the subroutine ckfmn, Fig. 11, each

'IMSL, Inc., DQ2AGS, MATH/ Library, Integration and Differentiation,

1985.
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integration is performed twice, for the real and imaginary parts of the integrand. In

terms of computing time, this is the most critical section of code. Not only does the

subroutine qinteg calls dq2ags many times—at least ten times between breakpoints,

in the present implementation—but, what is worse, dq2ags can execute the function

to be integrated, ultimately integr, hundreds of times. The computation time

increases with frequency and range:

•

•

The interval of integration increases as O(A^), directly proportional to

frequency.

As the range increases, the range factor Joik-Ro) oscillates faster, degrading the

convergence of the integration subroutine, causing more executions of the

function integrand more frequent interval subdivisions.

The effect of range can be minimized if the limits of integration, lower and upper,

decrease (in absolute value) with range, as in Eq. (12G) for the upper limit.

C. RESULTS

The algorithms described in the previous section are tested by using two

examples for which the results are easily interpreted. The unbounded homogeneous

medium was presented in Section II-C-3a as a particular case of the layered

waveguide, all three media with the same acoustic characteristics. The surface

reflection problem was analyzed in Section II -C -3b. In both cases, the input to the

system is a time-harmonic point source and the output electrical signal

—

numerically equal to the velocity potential—is given by Eqs. (85) and (88). From

Eq. (40c), the time-independent term of the output signal is, for a time-harmonic

input, equal to the overall transfer function, that is,
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{t)=(°X{f)H(iima )e?
2irf t

df 1
(40c)

-oo

%an(0 = J^(H) "UO e*
2'"

<*/, (131a)

-oo

^n(0 = H(/
o)

r
ran)^

2^o'. (131b)

Therefore, the magnitude of the overall transfer function is equal to the magnitude

of the velocity potential.

Results for the waveguide example used so far (see Table 1) are also presented.

j.. iJuiuuKcacuuo ivicuiuiii

Figure 19 presents the plot of the magnitude of the overall transfer function

as a function of horizontal distance i from the source. The acoustic characteristics

are those shown in Table 1 for medium II. The depth of the source is 30 m and of

the receiver array, 50 m. The expected result is a straight line on a log-log plot,

corresponding to a velocity potential proportional to the inverse of distance. At 100

m, the error of the computed value is 6%, and increases with distance up to 29% at

3,100 m. The integration routine computed the integrand 3,360 times (total for

real and imaginary parts) for 100 m of distance, a number that increased to 34,776

at 3,100 m, indicating an increased difficulty in convergence of the integral. An

analogous computation for the layered waveguide took 45,000 and 70,000

computations of the integrand, for 100 m and 3,100 m, respectively.
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2. Surface Reflection

Figure 20 shows the overall transfer function as a function of depth, for a

distance of 1,000 m between source and receiver. The acoustic characteristics of the

two media are those shown in Table 1 for media I and II. The surface is, for all

practical purposes, pressure release. The depth of the source is 30 m. For these

data, the approximations for Eq. (89) are valid, indicating a sinusoidal variation

with depth. The error increases from zero at the surface, up to a maximum error at

30 m, the depth of the source—see discussion in Section III -B -3d, regarding the

lower limit of integration. At 30 m, near a theoretical maximum, the error is 45% .

At depths greater than 60 m, the error is negligible. For comparison purposes, the

integrand was computed about 11,000 times for each value of the overall transfer

function.

3. Layered Waveguide: Waveform Prediction

Figure 21 shows the transmitted signal. This signal was obtained by

truncating the Fourier series of a CW pulse, as explained in Section III -B -la. The

reference signal is a rectangular-envelope CW pulse of duration 20 ms and

repetition period of 400 ms. The carrier frequency is £ = 500 Hz. Seventeen

frequency components are used for the transmitted signal, that is, K
raax

= 8. The

resultant bell -shaped CW pulse has a duration of 100 ms. Ringing is barely visible,

due to the low sidelobes of the Hamming window used for the truncation of the

Fourier series. The extension of time in the plot of Fig. 21 is equal to one period.
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The acoustic characteristics of the media are the same as for the examples

in Section III -B -3d and are listed in Table 1. The distance is R = 1,000 m. The

transmitter is located at (j^, ys , %) = (0, 30, 0) meters, and the receiver at

(*h ft, Zr) = (1000, 50, 0) meters.

Figure 22 shows the received pulse when the transmitter is a single point

source. The distortion due to the multipath nature of the medium is evident.

Figure 23 shows the received pulse due to a 5» 5 transmitter array. The

interelement spacing is roughly A/2 in both the X and Y directions. Note that the

pulse arrivals occur at the same instants as in Fig. 22, but the relative amplitudes

are different.

D. CONCLUSIONS

The equations that describe a range -independent acoustic communication

channel were derived by using linear systems theory, a basic engineering tool, as a

framework. They incorporate aspects of signal processing and acoustic propagation.

The main results from Chapter II are the expression for the overall transfer

function, Eq. (51) or its alternative form, Eq. (60); and the procedure to obtain the

transformed medium transfer function, the solution to the inhomogeneous

Helmholtz wave equation. Eq. (90). These results, together with Eq. (40cV were

used to implement a waveform prediction program, as described in Section III -B.

We do not claim novelty of results. Equation (60) is a mere extension of a classical

result, in which the contributions of the point sources that make up an array are
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simply added, a consequence of the linearity of the wave equation that describes

small -amplitude acoustic phenomena. The medium transfer function for the layered

waveguide was derived in order to enable us to implement a working computer

program.

The program described in Section III -B is based on a slightly modified form of

Eq. (60), in which we use the wavenumber ^/-component k
2

as the independent

variable. The only justification for this change of variable is the easier analysis of

the medium transfer function. The program works, but is slow. The computation

of the waveform shown in Fig. 23, for example, took about three minutes per

frequency component, with an overhead time—independent of the number of

frequency components—of about two minutes, in an IBM 3033U/4381 2-cpu

network. Both the speed and accuracy can be improved by using an adaptive

technique for the truncation of the interval of integration, that is, computation of

the limits of integration as a function of the behavior of the medium and range

factors in the integrand.

Other implementations are possible, for example, the Fast -Field -Program

described in [Ref. 4:pp. 90-92]. Equation (51). in the form of a two-dimensional

Fourier transform, could be useful for implementation.

Concerning the medium transfer function, analytical solutions to the

range -independent wave equation are only available for a few speed -of-sound

profiles. Approximate solutions, like those provided by the WKB method, are

candidates for implementation. On the other hand, numerical methods may not be

feasible for our purpose, waveform prediction, due to time constraints.
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As mentioned in the beginning of Chapter III, the main thrust for the present

implementation of the range -independent equations was to have a working program.

The program is working. More than an improvement, it possibly needs a different

implementation. Nevertheless, the basic important fact is that, independent of the

implementation, the modular nature of the equations should be fully exploited.

Solutions to specific problems can be implemented by adding new subprograms,

with a minimum of code change. Further investigation is recommended.



LIST OF REFERENCES

1. Ziomek, L. J., and Blount, R. J., Jr., "Underwater Acoustic Model-Based
Signal Processing," IEEE Transactions on Acoustics, Speech and Signal

Processing, v. ASSP-35, pp. 1670-1683, December 1987.

2. Baggeroer, A. B., Kuperman, W. A., and Schmidt, H., "Matched Field

Processing: Source Localization in correlated Noise as an Optimum
Parameter Estimation Problem," Journal of the Acoustic Society of America,
v. 83, pp. 571-587, February 1988.

3. Officer, C. B., Introduction to the Theory of Sound Transmission With
Application to the Ocean, McGraw-Hill Book Company, Inc., 1958.

4. DiNapoli, F. R., and Deavenport, R. L., "Numerical Models of Underwater
Acoustic Propagation." in Ocean Acoustics, ed. by J. A. DeSanto, Topics in

Current Physics, Vol. 8, Springer-Verlag, 1979.

5. Ziomek. L. X, Underwater Acoustics— .4 Linear Systems Theory Approach,

Academic Press, 1985.

6. Mathews. J., and Walker, R. L., Mathematical Methods of Physics, 2d ed.,

Benjamin/Cummings Publishing Company, 1970.

7. Ziomek, L. J., "Lecture Notes—EC 3450: Acoustic Field Theory," Naval
Postgraduate School, 1987. unpublished.

8. Kinsler, L. E., and others. Fundamentals of Acoustics, 3d ed.. John Wiley &
Sons, Inc., 1982

96



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142
Naval Postgraduate School

Monterey, CA 93943-5002

3. Chairman, Code 62
Departament of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

4. Dr. Antony A. Atchley, Code 61 Ay
Engineering Acoustics Academic Comittee
Naval Postgraduate School

Monterey, CA 93943-5000

5. Instituto de Pesquisas da Marinha, Brazilian Navy
4706 Wisconsin Avenue, NW
Washington, DC 20016

6. Brazilian Naval Comission

4706 Wisconsin Avenue, N.W.
Washington, DC 20016

7. Dr. Lawrence J. Ziomek, Code 62 Zm
Naval Postgraduate School

Monterey, CA 93943-5000

8. Dr. James H. Miller, Code 62 Mr
Naval Postgraduate School

Monterey, CA 90943-5000

9. Dr. Marshall Or, Code 1125 OA
Office of Naval Research

800 North Quincy Street

Arlington, VA 22217

11. Captain Mario Agostinho de Freitas, Brazilian Navy
Diretoria de Armamento e Comunica^oes da Marinha
4706 Wisconsin Avenue, N.W.
Washington, DC 20016



12. CDR Ivan Pinto de Freitas, Brazilian Navy
Instituto de Pesquisas da Marinha
4706 Wisconsin Avenue. N.W.
Washington, DC 20016

13. LCDR Luiz Alberto Lopes de Souza, Brazilian Navy
Instituto de Pesquisas da Marinha
4706 Wisconsin Avenue, N.W.
Washington, DC 20016

98







/

Thesis

c.

6

f
62« Sou2a

V

the°ry ann
SySteins

aco"stic c

ependent

8 Dl

hannel,

Q k 3 3

Tae£is
S666233
c.l

Souza
A linear systems

theory approach to the
range-independent
acoustic channel.

x&:




