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I. INTRODUCTION

In the last decade computer simulation has become a

widely used tool of management science. Because of the

basic similarities among computer simulation models, it

was recognized early that it would be helpful to have spe-

cial purpose computer programming systems designed specif-

ically for simulation, and many such systems have been de-

veloped. The two which appear to be the most popular in

the United States are GPSS [l] and SIMSCRIPT [6] . Each of

these offers the user a conceptual framework within which

to build his model (sometimes called the "world view"), a

language in which to express the model, and a set of computer

routines for executing the model.

Although the availability of these simulation program-

ming systems has considerably reduced the task of producing

simulation models, their use still requires the services of

somebody trained in computer programming. It would seem

that there would be some advantage to automating this part

of the task. One approach suggested for accomplishing this

is called "programming by questionnaire" [2], in which the

computer itself writes a simulation program from answers

(essentially numeric) supplied to a questionnaire. The orig-

inal implementation of this scheme was a system capable of

producing SIMSCRIPT programs for simulating job shops. How-



ever, it does not appear that this technique has been widely-

used.

In the last several years, in the field of Artificial

Intelligence much effort has been devoted to the development

of "natural- language question-answering systems," computer

programs that will accept facts and answer questions given

in English. Many papers have been written on this topic (e.g.

7, 8, 9 ]). Also, in the field of Linguistics a great deal

of work has been done on formally specifying natural- language

communication processes (e.g. [3, 4, 5, 10 J ). Up to now,

there has been no mention in the literature of any attempt

to apply any of this natural- language research to the simu-

lation programming problem, however.

A. OBJECTIVE

The objective of the research presented in this report

is to develop a simulation programming system with which an

analyst can build models through natural- language interaction

with a computer. The purpose of such a system is to automate

the computer programming part of simulation modeling. The

initial version of this system is limited to dealing only

with fairly simple queuing problems.

B. ORDEROF REPORTING

In this report the overall approach used will be discussed



first, especially the linguistic considerations. Then the

computer system developed will be described, followed by a

detailed discussion of its use for a sample problem. Finally,

there is a section of concluding remarks.

This report is intended to serve as an introduction to

the system which has been developed, and, therefore, many

details have been omitted. Additional reports with these de-

tails are forthcoming.



II. THE APPROACHUSED

If a simulation programmer were given a queuing problem

stated in a natural language, he would probably read it one or

more times to form a mental image of the system being described

and to note the points of interest in it. If the description

were not clear to him or if essential information were missing,

he might ask questions of the writer until he felt that he

completely understood the problem and had all the information

he needed to do the program. At this point he might state the

problem "in his own words" to the writer as a check on his

understanding of it. Finally, he would think about the prob-

lem in terms of the concepts of the computer language he plan-

ned to use, and then he would write the program.

The computer system developed in this research serves

the same role as the simulation programmer described above.

Therefore, it was designed to follow essentially the same over-

all procedure as he does. In this section of the report the

computer's counterpart of the programmer's mental image, the

Internal Problem Description, will be discussed first, followed

by a discussion of some linguistic considerations of the re-

search.

A. THE INTERNAL PROBLEMDESCRIPTION

The Internal Problem Description (IPD) is an entity-



attribute-value data structure for holding information about

a particular problem in a language -independent form. Entity-

attribute-value data structures have been widely used both

in artificial intelligence applications and in simulation

programming systems such as SIMSCRIPT and GPSS. In the IPD

an entity is represented by a "record", which is just a list

of attribute -value pairs. Some of the records in an IPD rep-

resent physical entities, such as a car or a dock, and others

represent abstract entities, such as an action or a function.

The attributes which a record has depend, of course, upon the

entity being represented. The value of an attribute may sim-

ply be a number or a name, or it may be a pointer to another

record.

A queuing problem typically deals with physical entities,

such as cars or ships, moving through a system to be serviced

in some manner at other physical entities, such as a pump or

a dock, in the system. Here, the former of these are termed

"mobile entities", and the latter are called "stationary en-

tities". (In SIMSCRIPT these are temporary and permanent

entities, and in GPSS they are transactions and facilities

and storages.) As the mobile entities move through the system,

they engage in "actions" at the stationary entities. Some of

these actions are instantaneous, such as arrive and leave, and

are called "events"; others, such as service and load, consume
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time and are referred to as "activities" here.

The IPD describes the flow of mobile entities through

a system, by specifying the actions which take place there.

Each of these actions is represented by a record which has

attributes to furnish such information as the type of action,

the entity doing the action (i.e. the agent), the one to whom

the action is being done (i.e. the goal), the location where

it happens, how long it takes, how often it occurs, and what

happens next. For example, the action "The men unload the

ship at a dock for eight hours" could be represented by the

record

Type unload
Agent men
Goal ship
Location dock
Duration 8 hours

where the values of at least some of these attributes are

actually pointers to other records in the IPD, such as records

to represent the men, ships, and docks. If an attribute such

as duration were specified as a probability distribution,

there would be a record in the IPD to represent that partic-

ular distribution, also. The Internal Problem Description

for the example problem in Section IV of this report will be

discussed in detail there.

B. LINGUISTIC CONSIDERATIONS

The task of translating between an Internal Problem



Description and a textual description of the same problem,

in either a natural language or a programming language, falls

into the realm of Linguistics. A language theory well suited

for the application being described here is Stratificational

Grammar [ 4, 5
J.

In this theory, language is considered to

be a system existing in the brain for translating information

in the form of text, which is one -dimensional, into equiv-

alent information in the form of a multi- dimensional network

in the mind of the receiver, and vice versa. The first of

these two processes (i.e. text-to-network) is called "decod-

ing", and the inverse process (i.e. network- to- text) is called

"encoding". The main feature of Stratificational Grammar

which distinguishes it from other language theories is that

these processes are considered to consist of several levels

(strata), each of which can be described separately, but in

a similar fashion. The idea is that by describing the proces-

ses at each of these levels separately, the overall description

of the language can be simplified.

In the work being reported on here a three- level system

is considered. The "morphology" deals with the manner in

which characters are put together to form parts of words and

parts of words are put together to form words. The "lexology"

deals with the way in which words form phrases, phrases form

clauses, and clauses form sentences. And, the "semology" is
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concerned with the relationship between the information in

a sentence and the information in some particular portion

of the Internal Problem Description.

A simple example will serve to illustrate the points

discussed above. Either of the following two sentences could

appear in an English description of a queuing problem:

The men unload the ship at a dock for 8 hours.

The ship is unloaded for 8 hours at a dock by the men,

At the morphological level the only really significant dif-

ference between the two is the form of the verb "unload".

Adding "ed" to a verb stem to form the past participle is

considered to be a morphological process. Also, there are

two additional words in the second sentence ("is" and "by").

At the lexological level the two sentences are quite

different, however. Each has a different subject ("men" vs.

"ship") and a different ordering of the modifying phrases.

A typical process in the lexology is the one which puts a

form of "be" together with a past participle to form a pas-

sive verb phrase (e.g. "is unloaded"). Other processes at

this level would do such things as recognize what each prep-

ositional phrase is for (i.e. location, duration, etc.).

At the semological level the two sentences given above

are identical. They have exactly the same meaning and, there-

fore, would be related to exactly the same structure in the



IPD. During decoding, after the completion of lexological

processing, either of these sentences would be represented

by a record identical to the one shown in the example in part

A of this section. It would then be the task of the semolog-

ical processing to merge this information properly into the

IPD.

The information given by either of the above sentences

could also be given by a series of shorter sentences, not

necessarily contiguous in the text. For example,

The men unload the ship.

Unloading takes place at a dock.

The time to unload the ship is 8 hours.

Because of the semo logical processing that would be done for

these sentences, the resulting action record in the IPD would

be identical to the one already shown.

Sentences which occur in natural language descriptions

of queuing problems can be considered to fall into two cate-

gories: "action sentences" and "attribute sentences". An

action sentence has as its main verb an action verb, which

is modified by phrases and clauses to specify the values of

the attributes of the action. For example, "After arriving,

if the dock is available, the ship is unloaded at the dock"

is an action sentence; the action is "unload", its goal is

"ship", its location is "dock", its predecessor is "arrive",

and its condition is "dock available". It should be noted
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that the order of most of the phrases and clauses in this

sentence could be changed without altering the information

content.

An attribute sentence has as its main verb an attribute

verb, and is used to specify the value of some attribute of

some record in the IPD. For example, "The time to unload

the ship is 8 hours" says that the value of the "time"

(actually duration) attribute of the action record "unload

ship" is "8 hours". An equivalent statement would be "It

takes 8 hours to unload the ship."

A detailed explanation of the processing of sentences

such as these is beyond the scope of this report. However,

some information about the way in which decoding and encoding

processes are specified to the computer is included in the

next section.



III. THE SYSTEMDEVELOPED

The computer system developed to meet the objective of

this research is in the form of a 4000- statement FORTRANpro-

gram called NLP (Natural Language Processor), which is intended

to be useful for a wide range of natural- language, man-machine

communication tasks. When run under the CP/CMS time-sharing

system on an IBM 360/67, it requires a virtual machine with

350K bytes of storage. The program consists of about 100

routines, ranging in size from one which simply unpacks a four-

byte word to another which is a compiler for a grammar-rule

language. One large group of routines provides list-processing

capabilities. The main routine serves as a monitor to provide

for interaction with the user, as will be demonstrated by the

example in the next section.

The bulk of the information maintained during the running

of the program is in a one -dimensional array called CELL.

This variable is currently DIMENSION' ed to have 19000 elements,

each of which consists of eight bytes. Each element of CELL

is capable of holding the "name" and value of one attribute,

and all information there is in the form of records (i.e.

"linked lists"), which are manipulated by the list-processing

routines.

When the NLP program is first loaded, the CELL array con-

tains no information; all of its elements are simply linked

13
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to form a free-storage list. Before a queuing problem can

be processed, the CELL array must contain information about

the relevant words and concepts and about the grammars of

the languages to be used (currently English and GPSS) and

how text is to be processed for these languages. Information

about words and concepts is entered by means of "named record"

definitions, and the grammars and processing are specified

by "decoding rules" and "encoding rules". Each of these three

types of input will be discussed briefly in this section of

the report. More detailed coverage of this material will be

left for later reports.

A. NAMEDRECORDS

A named record is just a record that has a NAME attribute,

with a character string value of eight or fewer EBCDIC charac-

ters which is considered to be the name of the record. A

named record is defined by giving its name, followed by the

values of its attributes in parentheses. This information

is usually punched on cards.

For each word that is to be recognized during decoding

there must be a corresponding named record with information

about that word and about whatever concept may be associated

with it. For example, a typical definition would be

SERVIC ('ACTIVITY 1

, E,ES,ING, ED, TRANS,AGORGL=' GOAL1

)

which could be loosely interpreted as saying that the concept
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SERVIC is in the set ACTIVITY, the verb- stem SERVIC can take

the endings E, ES, ING, and ED, the verb SERVIC is TRANSitive,

and the mobile entity in a SERVIC action would be the GOAL

of the action.

Whenever a name appears in single quotes in any definition

or rule, it is considered to be the name of a named record.

Whenever such a name appears by itself, like 'ACTIVITY' in

the example above, it is equivalent to SUP='...', e.g. SUP=

'ACTIVITY', where SUP stands for "superset"; in other words,

the value of the SUP attribute of the named record 'SERVIC'

is a pointer to the named record 'ACTIVITY'

.

The SUP attribute is used to bring related concepts to-

gether in a hierarchical fashion. For example, the SUP of

'ARRIV and 'LEAV' is 'EVENT', the SUP of 'SERVIC', 'LOAD',

'UNLOAD', etc. is 'ACTIVITY', and the SUP of both 'EVENT' and

'ACTIVITY' is 'ACTION'. A superset structure is imposed on

most other concepts in a similar manner. The existence of

these structures makes it possible to simplify considerably

the expression of some complicated decoding and encoding pro-

cesses. The basic idea of the SUP has appeared previously

in the literature [8j.

There is one record in the system whose name is predefined,

It can be referred to as either MEMORYor MEM (without quotes),

When a named record definition is processed by NLP, an
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appropriate record is created in the CELL array, with the

specified attributes. Currently, there are about 300 of

these records, and they require close to 2000 cells of the

array. It takes about 30 seconds of computer time to process

these definitions.

B. DECODINGRULES

Decoding rules are used to specify to NLP the manner in

which input text is to be processed to produce the Internal

Problem Description. These rules are grouped by strata;

there is the morphology, the lexology, and the semology.

A typical rule in the English decoding morphology is:

VERBS(ED) E D --> VERBP( SUP( VERBS) , PASTPART, PASTF

)

This rule could be loosely interpreted as saying that if in

the input stream there is a verb-stem segment with an ED at-

tribute (to indicate that it can take an "ed"), followed by

an "e" , followed by a "d" , then put these three segments of

text together to form a verb-part segment which has the same

SUP as the verb-stem and is marked as being a past-participle

and a simple-past-form. (The SUP might be a pointer to the

named record 'UNLOAD', for instance.)

A typical rule in the English decoding lexology is:

VERB('BE') VERBPH(PASTPART) -->

VERBPH(PASSIVE,VFORM=VFORM(VERB))
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This rule says that any form of the verb "be" can be put

together with a past-participle verb-phrase to create a

new verb-phrase that has all the characteristics of the old

verb-phrase, except that it is passive and has the same verb-

form (e.g. present- third-person-singular) as the verb on the

left. (e.g., This rule would apply to the phrase "is unload-

ed".)

As can be seen from the above examples, a decoding rule

consists of a list of segment types on the left of an arrow

to indicate which types of contiguous segments can be put to-

gether to form a segment of the type on the right of the ar-

row. Conditions which must be satisfied in a segment may be

stated in parentheses on the left side of the rule, and actions

to be performed when a new segment is created may be stated in

parentheses on the right side. A great variety of these con-

dition specifications and creation specifications are available

in this grammar-rule language. There have been two reports in

the recent literature of schemes bearing some resemblance to

this, but they were developed independently [3, 10 J.

Currently, there are about 300 English decoding rules

for this application. They are punched on cards, and take

about 2 minutes of computer time to "compile." Compilation

converts them into equivalent information in the CELL array,

where they require about 6000 cells.
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If it were desired to state queuing problems to the

system in a language other than English, a set of decoding

rules for that language would have to be written and supplied

to the computer. The rules in the new semology would be es-

sentially the same as those in the English semology, however,

because the rules in that strata have a high degree of lan-

guage-independence .

C. ENCODINGRULES

Encoding rules are used to specify to NLP the manner in

which the Internal Problem Representation is to be processed

to produce output text. Currently, there is a set of encod-

ing rules for English and a set for GPSS, each of which is

grouped by strata, similarly to the decoding rules just dis-

cussed.

A typical rule in the English encoding lexology is:

VERBPH( PASS IVE ) - -

>

VERB( ' BE * ,VFORM=VFORM(VERBPH)

)

VERBPH(-PASSIVE,-VFORM,PASTPART)

This rule says that a passive verb-phrase is to be expanded

to a verb which is a form of "be" (with the particular verb-

form coming from the verb-phrase), followed by a new verb-

phrase which has all the characteristics of the old verb-phrase,

except that it is not passive and it has past-participle in

place of its old verb-form.
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A typical rule from the English morphology is (as

might be expected):

VERBP(PASTPART) --> VERBS(SUP (VERBP)) E D

This rule specifies that a past-participle verb-part is

to be realized as a verb-stem with the same SUP, followed

by an "e" , followed by a "d". This particular rule could

be considered as sort of a default to be applied in the case

when none of the rules for irregular verbs is applicable.

As can be seen from the examples, an encoding rule has

the name of one segment type on the left and a list of seg-

ment types on the right. The conditions specified in paren-

theses on the left help to determine if a rule is applicable,

and the creation specifications given in parentheses on the

right determine the characteristics of the segments created.

The condition and creation specifications available for en-

coding rules are the same as for decoding rules. A scheme

for producing meaningful text which bears a slight resemblance

to this is mentioned in a paper by Simmons, et al [8J.

The current set of encoding rules for producing English

descriptions of queuing problems consists of fewer than 200

rules, and the set for producing GPSS programs is about half

as big. Compilation for both of these sets together takes

about 2 minutes and results in approximately 6000 cells of

information being put into the CELL array.
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Just as in decoding, if it were desired to have the

system produce natural- language problem descriptions in

another language, another set of encoding rules would have

to be written. However, the current "English" semology

would be used exactly as it is for many other languages;

only the lexology and morphology would have to be rewritten.

Similarly, simulation programs could be produced in another

language, such as SIMSCRIPT, by writing an appropriate set

of encoding rules. Because of the basic structural differences

among these programming languages, however, the rules of all

three strata would have to be rewritten. It should be noted

that the languages used for input and output in this system

need not be the same.



IV. AN EXAMPLE OF THE USE OF THE SYSTEM

In this section of the report a complete example will

be presented to illustrate the use of the system developed

in this research. The discussion consists primarily of an

explanation of the information which appears in Figures 1

through 7, all of which are grouped together at the end of

the section for ease of cross reference. First, stating

the example problem in English is described, including the

details of "getting on and off" the system. Then the Inter-

nal Problem Description for this particular problem is dis-

cussed, as is its development. Finally, the encoding of an

English problem description and the encoding of a GPSS pro-

gram for the problem are described in some detail „ Computer

timing information is given for each portion of the process,

also.

A. STATING THE PROBLEMIN ENGLISH

Figure 1 shows part of the first of two terminal sessions

used to produce the example being presented here. All upper

case typing was done by the computer, and all lower case

typing was done by the user. The first line is the command

to load the program. The routines of this program are grouped

into six files, the names of which are listed after "load".

21
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The next line is a standard line produced by the time- sharing

system to indicate that it is ready for another command. In-

cluded is information about the time taken to do the task just

completed -- both virtual CPU time and actual CPU time (in-

cluding overhead for paging, etc.) -- and the time of day.

In this case it took 1.70 seconds of virtual CPU time and

4.02 seconds of actual CPU time to load the program, and the

time of day was 41 seconds past 3:10 PM.

The "start" command begins execution of the program

which has just been loaded, as can be seen by the message

produced by the time-sharing system. The next message comes

from NLP, and gives the user an opportunity to change the

values of some preset parameters in the program which control

the amount of output and where it appears. For this session

the default values of these parameters were desired, so all

that had to be entered were the input delimiters "&p" and

"&end".

Then NLP requests the number of a file in cell structure

format produced by a previous run of the program. (A response

of would mean to "start from scratch".) In this case file

9 was specified because it contained the cell structure pre-

viously produced by processing the named records and the

decoding and encoding rules. After reading file 9 into

the CELL array, the program has all of the information
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it needs to "understand" an English language description of

a queuing problem presented to it, and to later produce its

own description of the problem and a GPSS program for it.

Then the program requests the number of a file in card-

image format to tell it what to do next. This could be a

file read offline from the card reader, or it could be the

terminal. In this case a response of "t" was given to spec-

ify that input is to be obtained from the terminal. The first

line of input must contain a command to tell the program what

to do. All commands to NLP must end with a colon. Currently,

there are almost twenty commands available to invoke the var-

ious routines in the system. Some of these expect additional

lines of input, and some do not.

The "decode" command given here causes the DECODEsub-

routine to be called. This routine reads text from the input

stream and applies the decoding rules to it. The remaining

nine lines in Figure 1 were processed in this way. Each sen-

tence was started on a new line just for clarity in the fig-

ure; this is not required by the program. The triple spacing

comes about because the program spaces once to indicate that

a line has been read and then once again to indicate that it

is ready to read another line. The circled sentence numbers

were added to the figure for later reference. As each sen-

tence is processed, the information extracted from it is en-



tered into the Internal Problem Description being constructed.

This will be discussed in some detail in parts B and C of

this section.

Figure 2 shows the rest of the first terminal session.

The first line is a message from the operator reminding the

user that it was almost 4:00 PM, the time at which the time-

sharing service terminates for the day. So, it was necessary

to save what had been done and "get off". First, a double

colon was typed, to signify an end-of-file to NLP. Then,

when the number of the next input file was requested, a. re-

sponse of was given. This particular response brings about

the message requesting the number of an output file. Respond-

ing to this with a 7 caused the current cell structure to be

written out into file 7. At this time a message is also

printed to inform the user about the maximum number of cells

which have been used at any point in the processing that has

been done and about the number of cells currently being used

to hold all of the information (including the rules, etc.).

In this case, the numbers were 17211 and 14217, respectively.

From this it can be seen that approximately 3000 cells were

required temporarily at some point during the decoding pro-

cess, probably for the third sentence. Both MAXLN and UCELLS

had values of about 14000 for file 9 at the beginning of this

session.



25

Again the program requests the number of an input file.

A response of "t" was given, followed by the command "end",

to terminate execution of NLP. The Ready line produced by

the time-sharing system shows that 96.42 seconds of virtual

CPU time and 212.34 seconds of actual CPU time were used by

this execution of the program. From the time of day, it can

be seen that about 50 minutes had elapsed since the program

was loaded. This high ratio of elapsed time to CPU time is

caused partly by the paging characteristics of this program

and partly by a heavy load on the time -sharing system.

Figure 3 shows the beginning of the second terminal ses-

sion used to produce the example being presented here. It is

actually quite similar to Figures 1 and 2 combined. It can

be seen that this time the initial input file was 7, the one

that had been written at the end of the previous day. After

the decode command, three more sentences were entered to com-

plete the specification of the example problem. Then the cell

structure with this additional information was written back

out into file 7, replacing the old file 7. By comparing MAXLN

and UCELLS with the corresponding values in Figure 2, it can

be seen that the maximum number of cells used during the pro-

cessing had not changed, but the number of cells currently

being used had increased by 41, due to the additional infor-

mation. These 41 cells would all be part of the IPD.



Again execution of NLP was terminated by the end command,

The Ready line shows that virtual CPU time for this run was

45.42 seconds and actual CPU time was 102.74 seconds. Also,

it can be seen that elapsed time was about 19 minutes, re-

sulting in a lower ratio of elapsed time to CPU time than

on the previous day, probably due to a lighter load on the

time-sharing system. Combining this timing information with

that obtained on the previous day shows that for NLP to de-

code the English statement of this example queuing problem

into an Internal Problem Description required about 2\ min-

utes of virtual CPU time, about 5 minutes of actual CPU time,

and a little over an hour of elapsed time at the terminal.

B. THE INTERNAL PROBLEMDESCRIPTION

A graphic portrayal of the IPD for this example problem

appears in Figure 4. Information needed to do this drawing

was obtained by making another run of the program, using 7

as the initial input file and then giving a series of print

commands (e.g. "print 'actnlist' ,2: ") . The actual run is

not included here.

In the figure each record of the IPD is represented by

a box, with the name of the record appearing at the top of

the box. With the exception of MEMORYand 'ACTNLIST', these

names do not actually exist within the computer, but were

placed on the drawing simply to furnish a means of referring
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to the various records in the discussion which follows. In

each box the attribute-value pairs of the record are shown,

with the attribute name or number on the left and its value

on the right. Many of the values are pointers to other re-

cords in the IPD, in which case an appropriate arrow is drawn.

It can be seen that MEMORYis the only record which is

not pointed to by some other record. It plays a rather cen-

tral role in the IPD, being used both to hold global informa-

tion about the problem (e.g. problem time and the basic time

unit) and to serve as sort of a directory into the rest of

the IPD. Only one portion of the "directory" was included

in this drawing in order to keep the number of lines at a min-

imum. The portion included is the "action list" ('ACTNLIST 1

)

,

which, as can be seen, contains pointers to each of the three

action records. Not included in the drawing are the lists

for mobile entities ('MOBLIST'), stationary entities ( ' STALIST' )

,

distributions ( ' DSTRLIST
' ) , and successor descriptors

('SCSRLIST') . The action list may be considered to be the

most important list, because of the key role which actions

play in a problem description.

Every IPD record, except for MEMORYand the lists just

mentioned, has a SUPerset attribute pointing to the named re-

cord representing the concept of which this record is a spe-

cific instance. For example, the SUP attribute of the first
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action record (REC11) points to the named record 'ARRIV'

,

indicating that this action (vehicles arrive at a station)

is a. specific instance of the concept "arriv".

Each action record in the IPD must have either an AGENT

or a GOAL which points to a mobile entity record. The AGENT

of an action is the one doing the action, and the GOAL is

the one to whom the action is being done. The MTR attribute

tells which of these two is pointing to a mobile entity.

Each action record must also have a LOCATION attribute point-

ing to a "location descriptor" record, which in turn points

to a stationary entity record. An event like 'ARRIV' or

'ENTER' must have an IETM (inter-event time) attribute to

specify the time between occurrences of the event, and an

activity (e.g. ' SERVIC ' or 'LOAD') must have a DURATION at-

tribute to specify the time taken to perform the activity.

These times can be given as constants, standard probability

distributions, functions, or combinations of these, some of

which can be seen in the drawing. REC42 in the drawing is

a function which has the records for car and truck as its X

values and the records for 5 minutes and 9 minutes as its Y

values. The ASNDISTR attribute of an ' ARRIV ' specifies the

percentages of the various kinds of entities which arrive,

in the form of a cumulative probability distribution. REC43

in the drawing furnishes an example of this. (The NUM attri-
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bute of a 'DECIMAL' record is considered to be in parts-per-

thousand.) The attributes DORC, FNARG, and PNUMwhich appear

in REC42 and REC43 are needed for encoding the GPSS program.

Each action record, except a 'LEAV', must have a Succes-

sor attribute to specify which action the mobile entity of

this action is involved in next. The value of SUCC may sim-

ply be a pointer to another action record, or it may be a

pointer to a "successor descriptor" record. REC51 in the

drawing is an example of one of the five types of successor

descriptors currently available in the system. This partic-

ular record, which is a 'QTYP', can be interpreted as saying,

"If the length of the line at the pump (SUCARG) is less than

two (MAXQ)
,

go to be serviced (OPENACT) ; otherwise, leave

(CLOSACT)." The other types of successor descriptors avail-

able handle such situations as "If the pump is busy, the

vehicle leaves.", "Cars are serviced, and trucks leave.",

and "Half of the vehicles are serviced, and the rest leave."

It can be seen in the drawing that the records for 'CAR'

and 'TRUCK' each have a STRUCture attribute pointing to the

record for 'VEHICLE'. This is related to the idea of the

"assignment distribution" (ASNDISTR) , and essentially means

that cars and trucks may be referred to as vehicles in the

problem description. The attribute CLASATR (class attribute)

in the 'VEHICLE' record indicates what is the distinguishing
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attribute of any records which have a STRUC attribute point-

ing to this record. (SOUP is synonymous with SUP in this

case.) Part of the usefulness of the STRUC attribute is that

it avoids some unnecessary duplication of information. For

example, the value of the CONSUMPtion attribute is the same

for both cars and trucks in this problem, so it need be stored

only once, up in the 'VEHICLE' record. (CONSUMP indicates

how many units of a resource are required by a mobile entity.)

Each entity and action record is assigned an identification

number (IDNO) for use in the GPSS program.

C. DEVELOPINGTHE INTERNAL PROBLEMDESCRIPTION

Figure 5 is included to help the reader relate the En-

glish description of the problem which the user entered,

shown in Figures 1 and 3, to the Internal Problem Description

shown in Figure 4. Basically what this figure shows is when

each record in the IPD was created and when each attribute

was given its value. The leftmost column in the figure

contains sentence numbers, the numbers which appear in circles

in the earlier figures. The next two columns give the names

of the records created or changed (i.e. given additional at-

tribute values) when each sentence was processed by the de-

coder. The attributes given values at a particular time are

listed to the right of the record name. For example, the

figure shows that when sentence 1 ("Vehicles arrive at a
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station.") was processed, REC21 and REC31 were created and

their SUP and IDNO attributes were given values. Also, REC61

was created, with values for its SUP and LOCOBJ attributes,

and REC11 was created, with values for its SUP, IDNO, AGENT,

and LOCATION. Then, when sentence 3 ("... after arriving ")

was processed, the SUCC attribute was added to REC11.

Although it is not shown in Figure 5, the list records

were affected by the creation of some of these records, also.

For example, when sentence 1 was processed, the LASTREC at-

tributes of "MOBLIST', 'STALIST 1

, and 'ACTNLIST' were incre-

mented from 10 (their initial value) to 11, and attribute 11

of each was set to point to the newly created records (REC21,

REC31, and REC11, respectively). This information was left

out of the figure so as not to clutter it unnecessarily. It

should also be noted that the order in which record names ap-

pear for a particular sentence may not be exactly the order

in which the records were created. Usually a record is cre-

ated with just a SUP at some point in the processing of a

sentence, and then other attributes are added to it as more

of the sentence is decoded.

A careful comparison of Figures 4 and 5 will reveal

that there are some attributes shown in the IPD which were

not given values during decoding. These are ones which are

needed for producing a GPSS program, and actually would get
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their values as part of the GPSS encoding process. CAPACITY,

QUANTITY, and CONSUMPare given default values of 1 or 'ONE'

if they are not specified in the original problem description,

('ONE 1 is a named record, with a SUP of "UNIT 1 and a NUM of

1.) The value of IDNAME is formed at that time by concate-

nating the first three or four letters of the NAME of the SUP

of a record with the value of its IDNO. Also, during both

decoding and encoding, a number of attributes needed tempo-

rarily for the processing "come and go" in the IPD records.

D. ENCODINGTHE ENGLISH PROBLEMDESCRIPTION

After the NLP program was run to print out the informa-

tion about the Internal Problem Description, another run was

made to encode the IPD into an English description of the

problem and into a GPSS simulation program for the problem.

The first part of this run is shown in Figure 6. It can be

seen that this run began the same as others already described,

However, in this one, after the decode command was given, in-

stead of stating some information about the problem, a com-

mand in the form of an English sentence was given. The de-

coding of that sentence resulted in a call to the encoder

being made to produce the English problem description. (Ac-

tually, the same result could have been obtained at the NLP

command level by entering "encode english:", but that would

not be quite so conversational.)
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The overall manner in which the English description is

produced can be seen by comparing the information in the text

with the information in the IPD. The first paragraph is pro-

duced by going down the action list and saying something about

the attributes of each action. The very first action is sim-

ply stated with a simple sentence containing information about

the type of action, its AGENT and/or GOAL, and its LOCATION.

If the IETM or DURATION attribute has a simple value, it will

be included also, as a prepositional phrase (e.g. "every 8

minutes" or "for 5 minutes"). Otherwise, a separate statement

will be made about the IETM or DURATION, as can be seen in

the figure. If the action has an ASNDISTR, a statement will

then be made about it, as also can be seen in the figure.

Finally, a. statement of the form "After ..., ...."is produced

from the SUCC attribute , The exact form of this statement

depends upon the type of value which SUCC has. It can be

seen in the figure that a 'QTYP' successor descriptor actual-

ly results in two sentences, with the first one having an "if"

clause and the second one beginning with "otherwise".

When describing an action which has already been mentioned

in a successor statement, it is not necessary to produce a

simple sentence about that action. If the action has a non-
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simple DURATION and/or a SUCC, the appropriate statements

about these can immediately be made. This is the case for

the 'SERVIC action in the example. When the 'LEAV 1 action

was reached in the scan of the action list, actually no out-

put was produced from it, because it had already been men-

tioned a couple of times in successor statements and it had

no additional attributes to be described. If a stationary

entity has a QUANTITY or CAPACITY attribute with a value

greater than 1, a statement will be made about it shortly

after the entity is first mentioned in an action sentence

(e.g. "There are 2 pumps in the station." or "The capacity

of the station is 8 vehicles."). After describing the actions

and the entities, a separate one-sentence paragraph is pro-

duced with the values of PROBTIME and TIMUNIT of MEMORY, as

can be seen in the figure.

Although timing information does not appear in the fig-

ure, the virtual CPU time required for NLP to encode the IPD

into English text was 25 seconds, the actual CPU time was 76

seconds, and the elapsed time was about 13 minutes.

E. ENCODINGTHE GPSS PROGRAM

After the English problem description was produced, NLP

was ready to accept another sentence to be decoded. At this

time another command in the form of an English sentence was

entered, as can be seen in Figure 7. This resulted in a call
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to the encoder, which produced the GPSS program shown there,

("encode gpssprog:" would have accomplished the same thing

at the NLP command level.)

The manner of producing the GPSS program is similar to

that for the English description, but it involves going down

several lists, not just the action list. As was mentioned

earlier, these other lists are not actually shown in the IPD

drawing in Figure 4. Their contents will be given in paren-

theses at appropriate points in the following discussion,

however. The first bit of output the GPSS encoding rules

produce is a standard SIMULATE card and RMULT card. Then a

pass is made down the stationary entity list (REC31, REC32)

to produce an EQU card for each stationary entity, to relate

its IDNAME and its IDNO and to define it as a facility or a

storage and a queue. If either the QUANTITY or CAPACITY at-

tribute is greater than 1, an appropriate STORAGEdefinition

card is also produced. Then a similar pass is made down the

mobile entity list (REC21, REC22, REC23) to output an EQU

card and a TABLE card for each type of mobile entity that

will actually appear in the simulation (i.e. those records

that do not have a CLASATR attribute). In the example, nothing

is included for 'VEHICLE 1 because any vehicle that appears is

either a car or a truck. The tables defined will be used to

record transit times during the simulation.
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Next, a standard FUNCTION 1 for the exponential distri-

bution and a standard FUNCTION 2 for the unit normal distri-

bution are produced if they are required by the problem. Then

a pass is made down the distribution list (REC41, REC42, REC43,

REC44) to define a FUNCTION for each record that requires one.

In the example, FUNCTION 3 comes from REC42, and FUNCTION 4

comes from REC43. This is followed by a similar pass down

the successor descriptor list (REC51) to define a FUNCTION

for each record that requires one. This pass produced nothing

in the example. Then the records in the distribution list are

looked at once again to define an FVARIABLE for each normal

distribution used in the problem. One of these appears in

the example. The numbers 16 and 4 appear there for the mean

and standard deviation rather than 8 and 2, as might be ex-

pected, because the basic time unit to be used for this prob-

lem was specified as 30 seconds rather than 1 minute. The

number of each FUNCTION and FVARIABLE defined in the above

passes is stored as the IDNO attribute of the record which

caused the definition, for use in later processing.

After the definitions have been taken care of, a pass

is made down the action list to produce the executable blocks

which describe the flow of transactions through the program

(which corresponds to the flow of mobile entities through the

actual system). For each action a blank comment card (with
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an asterisk in column 1), followed by a comment card with

a simple action sentence on it is immediately put out, uti-

lizing a portion of the English encoding rules. This is then

followed by the blocks appropriate to this action.

The group of blocks produced from an action actually

has two parts, the first of which depends upon the type of

action and the second of which depends upon the type of value

the SUCC attribute has. For example, an 'ARRIV 1 usually pro-

duces a GENERATEand an ASSIGN, a 'LEAV produces a TABULATE

and a TERMINATE, and most activities produce a sequence like

QUEUE, SEIZE, DEPART, ADVANCE, and RELEASE, or minor vari-

ations thereof. A 'QTYP' successor descriptor results in a

TEST, followed by a TRANSFER (if necessary), and a simple SUCC

results in an unconditional TRANSFER, as can be seen in the

example. If the 'LEAV and 'SERVIC' actions had been in re-

verse order in the action list, the resulting GPSS program

would not have needed the two unconditional TRANSFER'S which

appear in this program, and they would have been suppressed

by the encoding rules.

The contents of most of the argument fields of the vari-

ous blocks depend, of course, upon the attributes of the re-

cords in the IPD. For example, argument A of the GENERATE

block is VI here because FVARIABLE 1 corresponds to the normal

distribution which is the value of the IETM attribute of the
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'ARRIV action. Similarly, argument B of the ASSIGN block

(which assigns the transaction type, either 2 or 3, to pa-

rameter 1 of the transaction) comes from the ASNDISTR at-

tribute of the same action. Arguments A, B, and C of the

TEST block and argument B of the TRANSFERcome directly

from the attributes SUCARG, MAXQ, CLOSACT, and OPENACTof

the 'QTYP' record. The LOCATION attribute determines the

A argument for such blocks as QUEUE, DEPART, SEIZE, and

RELEASE, as can be seen in the example.

It can also be seen that argument A of the ADVANCE

block (the mean advance time) references FUNCTION 3, which

was defined from the 'TYPTABL' record which specifies the

mean of the DURATION of the * SERVIC ' action. When a trans-

action enters that ADVANCEblock, the appropriate mean time

will be obtained from FUNCTION 3 using the value of parameter

1 which was ASSIGN' ed to it when it "arrived". This will

then be modified by a value from FUNCTION 1 to yield a ser-

vice time from the desired exponential distribution. The

B argument of the last TRANSFERgets its value directly

from the SUCC attribute of the ' SERVIC ' action. All actions

are referenced by names of the form "ACTi", where i is the

value of the action's IDNO attribute.

Finally, after the blocks for the actions are put out,

a standard "timing loop" is produced to govern the run length
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of the simulation. The value in the A argument of the GENERATE

block comes from PROBTIME of MEMORY. In the example this

value is 960, because there are 960 30-second periods in

8 hours

.

Although timing information does not appear in this fig-

ure, either, the virtual CPU time required for NLP to encode

the IPD into a GPSS program was 24 seconds, the actual CPU

time was 64 seconds, and the elapsed time was about 10 min-

utes. These times are approximately the same as those for

encoding the English description.
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load nip prnams decode encode lpr bitstuff
R; T = 1.70M.02 15.10.U1

start
EXECUTION BEGINS.. .

ENTER OPTIONAL DATA
&p Send

TYPE NUMBEROF INITIAL INPUT FILE

9

TYPE NUMBEROF NEXT INPUT FILE

t

decode :

Vehicles arrive at a station. (1 )

The station has just one pump. C *0

A vehicle will leave the station immediately after arriving

if the length of the line at the pump is not less than two.

Otherwise / it is serviced there; then it leaves. ( h J

Service times are exponential with a mean of 5 minutes for

(?)cars and 9 minutes for trucks. \Ls

Three quarters of the vehicles are cars and one fourth of them

am trucks. \j/

©

Figure 1. Beginning the English Statement of the Problem
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FROM OPERATOR: GOODNIGHTSEE YOU TOMORROW!!!!!!!!!!!!!!!!!!

TYPE NUMBEROF NEXT INPUT FILE

TYPE NUMBEROF OUTPUT FILE

7

MAXLN = 17211 UCELLS = H+217

TYPE NUMBEROF NEXT INPUT FILE

t

end :

R; T = 96. I+2/212.3U 15.59.50

Figure 2. Saving the Cell Structure for Part of the Problem
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load nip prnams decode encode lpr bitstuff
R; T=l. 82/4.50 13.28.32

start
EXECUTION BEGINS.. .

ENTER OPTIONAL DATA
up &end

TYPE NUMBEROF INITIAL INPUT FILE

7

TYPE NUMBEROF NEXT INPUT FILE

t

decode :

Arrivals are normally distributed with a mean of eight minutes

and a standard deviation of two minutes. \LJ

The simulation run time desired is eight hours. 00

The basic time unit to be used in the model is 30 seconds. w)

• •

TYPE NUMBEROF NEXT INPUT FILE

TYPE NUMBEROF OUTPUT FILE

7

MAXLN = 17211 UCELLS = 14258

TYPE NUMBEROF NEXT INPUT FILE

t

end

:

R; T=45. 42/102. 74 13.47.29

Figure 3. Finishing the Statement of the Problem
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Sen- Record
tence Created Changed Attributes Given Values

1 REC21 SUP, IDNO
REC31 SUP, IDNO
REC61 SUP, LOCOBJ
REC11 SUP, IDNO, AGENT, LOCATION

2 REC32 SUP, IDNO, QUANTITY, LOCATION
REC62 SUP, LOCOBJ

3 REC12 SUP, IDNO, AGENT, LOCATION
REC63 SUP, LOCOBJ
REC51 SUP, SUCARG, MAXQ, CLOSACT

REC11 SUCC

4 REC13 SUP, IDNO, GOAL, LOCATION, SUCC
REC51 OPENACT

5 REC71 SUP, NUM
REC72 SUP, NUM
REC22 SUP, IDNO
REC23 SUP, IDNO
REC42 SUP, FNARG, DORC, XYLAST, @101-104
REC41 SUP, MEAN

REC13 DURATION

6 REC81 SUP, NUM
REC82 SUP, NUM
REC43 SUP, PNUM, FNARG, DORC, XYLAST, @101-

REC21 CLASATR
REC22 STRUC
REC23 STRUC
REC11 ASNDISTR

7 REC73 SUP, NUM
REC74 SUP, NUM
REC44 SUP, MEAN, STDEV

REC11 IETM

8 REC75 SUP, NUM
MEMORY PROBTIME

9 REC76 SUP, NUM
MEMORY TIMUNIT

Figure 5. The Development of the Internal Problem Description
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load nip prnams decode encode lpr bitstuff
R; T=l. 70/3.96 1U.19.U9

start
EXECUTION BEGINS...
ENTER OPTIONAL DATA
&p Send

TYPE NUMBEROF INITIAL INPUT FILE

7

TYPE NUMBEROF NEXT INPUT FILE

t

decode

:

Describe the problem in English.

THE VEHICLES ARRIVE AT THE STATION. THE TIME BETWEENARRIVALS

OF THE VEHICLES AT THE STATION IS NORMALLYDISTRIBUTED / WITH A MEAN OF

8 MINUTES AND A STANDARDDEVIATION OF 2 MINUTES. 75 PERCENT OF THE

VEHICLES ARE CARS/ AND THE REST ARE TRUCKS. AFTER ARRIVING AT THE

STATION, IF THE LENGTH OF THE LINE AT THE PUMP IN THE STATION IS LESS

THAN 2, THE VEHICLE WILL BE SERVICED AT THE PUMP IN THF STATION.

OTHERWISE/ THE VEHICLE WILL LEAVE THE STATION. THE TIME FOR THE

VEHICLES TO BE SERVICED AT THE PUMP IN THE STATION IS EXPONENTIALLY

DISTRIBUTED / WITH A MEAN OF 5 MINUTES FOP THE CAPS, AND 9 MINUTES FOR

THE TRUCKS. AFTER BEING SERVICED AT THE PUMP IN THE STATION, THF

VEHICLES LEAVE THE STATION.

THE SIMULATION IS TO BE RUN FOR 8 HOURS, USING A BASIC TIME

UNIT OF 30 SECONDS.

Figure 6. Producing the English Problem Description
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Write a GPSS program for this problem.

SIMULATE
RMULT

STAT1 EQU
PUMP2 EQU
CAR2 EQU
2 TARLE
TRUC3 EQU
3 TABLE
1 FUNCTION

0,0/.l,.104/.2,.
.8,1. 6/. 8U, 1.83/
.97,3. 5/. 98,3. 9/

2 FUNCTION
0,-3/. 012,-2. 25/
.104,-1. 26/. 131,
.U32, -.17/. 5,0/.
.869,1.12/. 896,1
.988,2.25/1,3/

3 FUNCTION
CAR2,10/TRUC3,18

l» FUNCTION
.750,CAR2/1.000,

1 FVARIABLE

2 77, U23, 715, 121, 655, 531, 999, 8 13
1,F,Q
2,F,Q
2,T
Ml, 1,1,

2

3,T
Ml, 1,1,

2

RN1,C2 4

222/. 3, .355/. 4, .509/. 5, .69/. 6, .915/. 7, 1.2/. 75, 1.3 9/
. 88, 2. 12/. 9, 2. 3/. 92, 2. 52/. 94, 2. 81/. 95, 2. 99/. 96, 3. 2/
. 99, 4. 6/. 995, 5. 3/. 9 98, 6. 2/. 999, 7/. 9997, 8/

RN2,C29
.02 7, -1.93/. 43, -1.72/. 62, -1.54/. 08 4, -1.3 8/
-1.1 2/. 15 9,-1/. 18 7, -.89/. 23, -.74/. 26 7, -.62/. 33 4, -.43/
5 68,. 17/. 666,. 43/. 73 2,. 62/. 77,. 7 4/. 8 13,. 8 9/. 8 41,1/
.26/. 9 16, 1.3 8/. 9 3 8, 1.5 4/. 95 7, 1.72/. 9 73, 1.93/

P1,D2
/

RN3,D2
TRUC3/

16+4*FN2

ACT2

THE VEHICLES ARRIVE AT THE STATION.
GENERATE VI
ASSIGN 1,FN4
TEST I. Q$PUMP2,2,ACT2
TRANSFER ,ACT3

THE VEHICLES LEAVE THE STATION.
TABULATE PI
TERMINATE

ACT3
THE VEHICLES ARE SERVICEO AT THE PUMP IN THE STATION.!.

QUEUE
SEIZE
OEPART
ADVANCE
RELEASE
TRANSFER

PUMP2
PUMP2
PUMP2
FN3,FN1
PUMP2
,ACT2

TIMING LOOP
GENERATE 960
TERMINATE 1

START 1

END

Figure 7. Producing the GPSS Program



V. CONCLUSION

The initial version of a simulation programming system

with which an analyst can build models through natural- lan-

guage interaction with a computer has been developed, as

evidenced by the example queuing problem presented in the

previous section of this report. Actually, this system is

just a particular application of a much more general system

developed in this research which is intended to be useful for

a wide variety of natural -language, man-machine communication

tasks. For any particular application a set of decoding and

encoding rules, along with some named record definitions,

must be written to specify the processing to be done. In

this case rules were written for subsets of English and GPSS

sufficient to produce simulation programs for simple queuing

problems stated to the computer in English.

Although the example given in Section IV is adequate

for demonstrating the overall capability of the system, it

does not show everything that it can do. The example was

intentionally kept simple, primarily so that the entire Inter-

nal Problem Description could be shown readily. It should

be noted that there is no theoretical limitation on the num-

ber of entities and actions which can appear in a problem

description. It should also be noted that the English state-

ment of the example problem entered by the user (shown in Fig-
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ures 1 and 3) is only one of the many ways in which that par-

ticular problem could be stated to the system. For instance,

the first paragraph of the English problem description encoded

by the system (shown in Figure 6) would be acceptable as in-

put to the decoder.

Although the system is basically quite capable, in its

current form it would probably not be a very practical tool

for an analyst with a queuing problem because it is limited

both in the kinds of problems that it can handle and in the

language which it will accept. These are not theoretical

limitations, however, and with additional work a practical

and useful system could be produced. As this additional work

is done, further reports will be issued.
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