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ABSTRACT

The United States Air Force uses a nonlinear programming model to assess the

utilization of weapons and sorties needed to achieve a maximum value of destroyed

targets in a multi-period, Theater-Level conflict. The current model is modified by con-

straining the consumption of weapons. Alternate objective functions are introduced.

Their meaning and influence on the optimization is compared. An increase in the worth

of destroyed targets is gained if the model can more flexibly utilize weapons than is

currently the case. The optimization can be further improved if all time periods are

considered simultaneously while assigning sorties to targets, rather than the current

myopic approach.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases ofinterest. While every effort has been made, within the

time available, to ensure that the programs are free of computational and logic errors

they cannot be considered validated. Any application of these programs without addi-

tional verification is at the risk of the user.
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I. INTRODUCTION

In 19SS the United States Air Force purchased over S 2 billion worth of weapons for

use in different theaters around the world. The projected need for the quantity of differ-

ent weapon types is based on an annual Nonnuclear-Weapon Consumables Analysis

(NCAA) performed by the Directorate of Plans, USAF [Ref. 1]. Unlike other services,

the USAF relies widely on mathematical programming models in order to optimize the

allocation of weapons.

In 1974 RAND developed a nonlinear programming model that optimizes the

number of different sortie types assigned to several target types by maximizing the mili-

tary worth of killed targets [Ref. 2: p. 5]. Since each target type was given a different

target value, the model attempts to assign sorties to maximum value targets first. To

avoid an undesired concentration of sortie allocations to a few or even one target type,

a nonlinear objective function was introduced. Within the model only the number of

available targets and sorties are constrained. The expenditure of weapons is not consid-

ered. The number of targets one sortie is able to destroy is expressed by an effectiveness

parameter that depends only on sortie and target type.

The required input data structure for the RAND-model is a simplification of the

much more complex data base contained in the Joint Munitions Effectiveness Manual

(JMEM) used by USAF. The JMEM data base determines effectiveness as a function

of weather and mission profile (tactic) as well as type of aircraft and type of target. In

the current operation a model called SELECTOR sorts the JMEM data base so that for

each sortie-target type combination, all feasible tactics are ordered from the most to the

least cost-effective, including the cost of aircraft attrition. This list is referred to as the

Preferred Weapon List.

The data in the Preferred Weapon List must be reduced to input parameters de-

pending only on sortie and target type as mentioned earlier. This is basically done by

selecting the most cost-effective tactic from the list feasible for weather situations con-

sidered in the model. After the optimization has determined the optimal number of

sorties assigned to different targets, the number of remaining targets and the expenditure

of weapons is evaluated. This process is repeated in subsequent time periods with a new

inventory of sorties and also by recording the remaining number of active targets and

weapons available. In this way. tactical changes in a given scenario over time are



considered by optimizing sequentially for discrete time periods. This process is

accomplished in one programming model and is called the HEAVY ATTACK model.

The L'SAF interest is mainly in the consumption of weapons utilized over all time

periods.

The objectives of this Thesis are to include a weapons constraint in the

RAND-model and to investigate alternatives to the currently used objective function.

In addition, the RAND-model is expanded so that more available information is in-

cluded in the optimization in order to gain a higher total military worth of killed targets

than is currently achieved. Therefore, the consumption of weapons used by less cost-

effective tactics is investigated when other weapons, used by the most cost-effective

tactic, are exhausted. As a final consideration, one global optimization over all time pe-

riods is compared to the current sequential optimization method. Global optimization

achieves a higher overall worth of killed targets. However, gaining a higher military

worth of killed targets serves only as an aid in analyzing the predicted need of weapons.

The value of the revisions suggested in this Thesis have to be measured on their ability

to satisfy the demands of the USAF and simultaneously meet budget constraints.



II. BASIC STRUCTURE OF HEAVY ATTACK

A. THE ORIGINAL RAND - MODEL
In 1974 RAND developed a nonlinear programming model whose objective was to

determine the optimal number of sorties of type i assigned to targets of type j by maxi-

mizing the total military value of destroyed targets. The relationship between an as-

signed sortie and a target kill is established by introducing "sortie effectiveness" EUj
. The

parameter E, , defines the average number of kills that one sortie of type i will achieve

when it is assigned to targets of type j.

Definition of index

i sortie type

j
target type

Parameter

T
:

total number of type j targets available at the beginning of a time period

Vj military worth of type j target

S, total number of type i sorties available

EtJ
average number of type j targets killed by one type i sortie

Variables

SX
itJ

number of type i sorties assigned to type j targets



Model

Max z

s.t.

=
Y/j x fj(\Eu X SXU

r sxu < s> v /

J

fj (Ysj x ^y) * 5 v /

7 6 •/ y

where J is a subset of all targets of type j and < c < 1.

< SX: , V /. /

^ (Y £, ,
x SA' ,) is a concave function that approaches 1 for large arguments. The

RAND - model (and HEAVY ATTACK) utilizes a specific analytic from that will be

examined in detail later. The recipe constraints Z-SA',, < c x ^SXtJ limit the number

of sorties of type i which are assigned to a list of targets by a fraction of the total number

of sorties of type i. Since these constraints are not used by the USAF in their current

weapon analysis, this inequality will omitted from now on in the Thesis.



B. THE ROLE OF SELECTOR

Based on the information contained in the J.VIEM the effectiveness of a sortie de-

pends on sortie type, target type, weapon type , weather and tactics or mission profile.

Definition of index

1 sortie type

j
target type

k weapon type

w weatherband index

r index for used tactic

Definition of parameter

£,,,,,,„ number of type j targets killed by one type i sortie using tactic r

in weatherband w

B, jrn number of weapons carried by one type i sortie which is assigned to type
j

target in weatherband w and using tactic r

K,j,r.» tvPe of weapon which is loaded on sortie i and will be deployed to target
j

by using tactic r in weatherband w

The JMEM data have too many subscripts to match the required input data structure

of the RAND - model. The number of subscripts of a sortie needs to be reduced so that

£,,depends only on sortie and target type. The first part of the task of reducing the

number of subscripts from 4 to 2 is accomplished by the sorting program SELECTOR.

The output data of SELECTOR - referred to as Preferred Weapon List - contains for

each different sortie - target type combination five distinct items:

1. The worst weatherband in which a tactic can be used.

2. The types of weapons that can be allocated.

3. The relative cost-efficiency of a tactic given by its order on the list.

4. The number of targets which can be killed by one sortie.

5. The number of weapons that can be carried by one sortie for each weapon type

(mixes of weapons are not considered).



The data structure of the Preferred Weapon List, which will be used later for the aggre-

gation of the input data EUJ
for the RAND - model, is illustrated by the following ex-

ample:

Subset of data from Preferred Weapon List

w K. £v,..
B,

29 1 4 3 0.137 4

29 2 3 1 0.664 6

29 3 2 17 1.580 2

29 4 5 17 1.600 2

For example, the most cost-eflicicnt and feasible tactic for weatherband w=3 is

tactic r=2. Tactic r= 1 is more cost-efficient because it is first on the list, but is only

feasible in weatherband w = 4 or higher. Weatherband w= 1 expresses best weather while

weatherband w= 6 represents the worst weather. Tactic r= 3 is feasible (a tactic feasible

in w is always feasible in better weatherbands) but less cost-efficient than tactic r= 2.

The given data can be represented in the following way:

Table 1. EURW - VALUES: Number of targets of type j killed by one sortie of type

i using tactic r in weatherband w.

i
J

r w= 1 w=2 w=3 w-4 w=5 w = 6

1 29 1 O 0.137 0.137 0.137

1 29 2 0.664 0.664 0.664 0.664

1 29
-^

j 1.5 SO 1.580 1.580 1.580 1.580

1 29 4 1.600 1.600



Table 2. BURW - VALUES: Number of weapons that are loaded on one sortie of
type i which is assigned to target type j and using tactic r in weatherband
w.

i
i

r w = 1 w=2 w=3 W=4 w=5 w=6
1 29 1 4 4 4

1 29 2 6 6 6 6

1 29 3 2 2 2 2 2

1 29 4 2 7

Table 3. KIJItw - VALUES: Type of weapon that is allocated to a sortie of type i

which is assigned to a target of type j and using tactic r in weatherband w

i
j

r w= 1 w=2 w=3 w=4 w = 5 w = 6

1 29 1

^
J

1 29 2 1 1 1 1

1 29 3 17 17 17 17 17

1 29 4 17 17

Since HEAVY ATTACK only considers the tactic at the top of the list for each

weatherband, and since weapon type is implied by tactics. SELECTOR essentially re-

duces the number of subscripts from 4 to 3.

C. DETERMINATION OF Eu IN HEAVY ATTACK

An important assumption for HEAVY ATTACK in order to understand the logic

behind the aggregation of E
itJ

is that the weather is not known at the time when sorties

are assigned to targets. This leads to the condition that the effectiveness of a sortie and

the consumption of weapons in a particular weatherband has to be proportional to the

probability that this weather will occur.

This probability is represented in HEAVY ATTACK by a given distribution of 6

distinct weatherbands:

PRW
= probability that weatherband w will occur at a certain time in the future,

w = 1, 2 6.



Throughout this Thesis the following distribution is used:

Table 4. WEATHER DISTRIBUTION IN HEAVY ATTACK: Probability that

weatherband w occurs when sorties are allocated to targets.

w= 1 w=2 w=3 w=4 w= 5 w=6
PR,. 0.02 0.14 0.07 0.07 0.70

Since weatherband w= 1 will never occur, the effectiveness for any sortie in this

weatherband is irrelevant. It is assumed that any weapon which is feasible for a certain

sortie - target combination can be used in the weatherband determined by SELECTOR

or in any better weather (higher weatherband).

HEAVY ATTACK uses for each weatherband only the top weapon on Preferred

Weapon List. This means that the model will allocate the most cost-efficient weapon

feasible in each weatherband. Therefore the data set £, , rii can be reduced by the sub-

script r such that:

*

Eijyy = the effectiveness of the most cost-efficient tactic in weatherband w.

Table 5. EFFECTIVENESS OF THE MOST COST - EFFICIENT TACTIC: In

each weatherband w the first effectiveness value in Table 1 greater than

zero is selected.

w= 1 w=2 w=3 w=4 w= 5 w=6
£,',,. 1.580 0.664 0.137 0.137 0.137

Applying the same reasoning on the data set B,
J<ftW

and K
iJir<w

yields :

B!J,W
number of weapons used by the most cost-efficient tactic in weatherband w,

Kuw =
lyP e of weapon used by the most cost-efficient tactic in weatherband w.



Table 6. WEAPON LOAD OF THE MOST COST - EFFICIENT TACTIC: In

each weatherband the first weapon load value in Table 2 greater than zero

is selected.

w= 1 w=2 w=3 w=4 \v=5 w=6
*,:,. 2 6 4 4 4

Table 7. WEAPON TYPE OF THE MOST COST - EFFICIENT TACTIC: In

each weatherband w the first weapon type in Table 3 not equal to zero is

selected.

w= 1 w=2 w=3 w=4 w = 5 w= 6

Kj.. 17 1 3 3 3

Since each weatherband will occur with the probability PRW , the averaged

efiectivness must be

E, j = > PRW x EiJtW
= 0.240

w

In general the process of obtaining EUi
is a little more complicated than described

above because HEAVY ATTACK is permitted to use tactics lower than first order when

first order weapon types have been exhausted. This can happen because HEAVY AT-

TACK is actually a model of protracted war. First order tactics are preferred because

they represent the most cost-effective tactic. The war may last for several periods (4 in

this Thesis), and it is possible that certain tactics may not be feasible in later periods on



account of weapon exhaustion. Suppose for example, that weapon type 3 has been ex-

hausted in a previous time period and is therefore no longer available. The top weapon

for weatherband w=4. 5 or 6 is now weapon type 1. The new effectiveness values

E, are:

Table 8. ElJiRtW - VALUES AFTER WEAPON K=3 IS EXHAUSTED: Number
of targets of type j killed by one sortie of type i using tactic r in

weatherband w that is applicable.

i
j

r w= 1 w=2 w=3 w = 4 w=5 w = 6

1 29 1 X A X A X A X A X A X A
1 29 2 0.664 0.664 0.664 0.664

1 29 3 1.580 1.5S0 1.5S0 1.5 SO 1.5 SO

1 29 4 1.600 1.600

Using the most cost-efficient tactic in each weatherband w gives the following ef-

fectiveness values £*,;„ :

Table 9. EFFECTIVENESS OF THE NEXT FEASIBLE COST - EFFICIENT
TACTIC: In each weatherband w the first applicable effectiveness value

in Table S greater than zero is selected.

w= 1 \v=2 w=3 w = 4 \v=5 w= 6

Ei'j.u 0.000 1.5 So 0.664 0.664 0.664 0.664

which results in the averaged effectiveness:

fy = Y,™« x £U," = 0.682.

w

Xote that the effectiveness has increased on account of the lack of weapon type

k=3! The SELECTOR output is ordered according to cost-effectivness (not effective-

ness), so it is quite possible that tactics far down in the Preferred Weapon List may ac-

tually be quite effective. These tactics typically have high associated attrition, but

attrition is not considered in HEAVY ATTACK once SELECTOR has done its job.

By considering the same logic, it can be observed that the fourth order tactic on the

Preferred Weapon List with £,,,,,,„ = 1.600 will never be used. This is because the third

10



order tactic uses the same weapon (in this case weapon type k= 17) in at least the same

worst weatherband as tactic r=4.

D. TIME IN HEAVY ATTACK

Once the effectiveness values E,
tJ

are evaluated, the required input data is available

in order to optimize the number of sorties assigned to the different target types. For

most cases all targets are not killed when the optimization is finished because of the

constrained number of sorties in the RAND - model. As in a real war scenario, the

outcome of a given attack will influence subsequent target consideration and planning.

Only the targets that survived the previous attack will be reconsidered. Weapons are not

resupplied and therefore may become exhausted. The current version of HEAVY AT-

TACK may actually allocate more weapons in a given period than are available at the

beginning of the period. This is because there is no explicit constraint on weapon usage.

The deletion is currently done after each period by computing weapon usage after the

optimization for the period is finished. However, a weapon will be deleted in the next

period if it is exhausted at the end of the current period.

There is no resupply of targets between periods in HEAVY ATTACK, although

there is a facility for reconstituting targets that have already been killed. This will be

discussed later. Aircraft are also not resupplied or even directly represented in HEAVY

ATTACK: the number of sorties available during each period is a direct input. Each

time period represents an attack which changes the input for the following time period.

The fact that the importance of a target will change with time is represented in

HEAVY ATTACK by the option of changing the military worth for each target type

at the beginning of a new time period. Even though the military worth of a target is

known in all future periods, the current sequential time optimization only "sees" the

worth of a target for the current time period. Following from this "myopic" way of

maximizing the military worth of killed targets it may happen that sorties are assigned

in a time period to a target type when its military worth is relatively low. A "global" (or

overall) time optimization can be expected to achieve a higher military worth of killed

targets. This is discussed later.

11



E. THE NONLINEAR MODEL IN HEAVY ATTACK

The basic structure of the current model in HEAVY ATTACK for one time period

is given by:

Parameter

Tj

D,

j

S,

PROP,

number of type j targets available at the beginning of a time period

number of dead type j targets at the beginning of a time period

military worth of type j target during the current time period

target - parameter for type j target

number of type i sorties available for the current time period

proportion of S, that can be assigned

Variables

SX
UJ

number of type i sorties that are assigned to type j targets

KILL, number of type j targets killed in the current time period

12



Model

Max z = TV, x KILL

s.t.

A7LL,- = /( 7}, c,, D
Jt *Yjkj

x SA'
( ,

j

V j

where:

The above function is the same function as used by RAND [Ref. 2].

VsA'
/;
< PROPi x Si V i

y"

< KILLj < Tj - Dj V j

o < sa;v V i, J

The nonlinear function f(T„ c. Z)„ ^£, x SA'V ) ^ s °f trie same form as in the RAND
- model. The number of targets of type j that are killed and the number of sorties of type

i are constrained. The consumption of weapons is not considered in the model itself.

After the optimal numbers of sorties are determined by the optimization, the consump-

tion of the different weapon types is evaluated by:

13



{ consumption of weapon } k
= / j / ^A'jj x ( }PRW x B

tjtW j

i j \ *
'

where the sum is over all { i, j. w } such that k = K' JW .

F. TARGET RECONSTITUTION IN HEAVY ATTACK

The ability to reconstitute killed targets is a common fact in a modern war. HEAVY

ATTACK records the number and type of targets as well as the time period when they

are destroyed. After each optimization, it determines if targets can be reconstituted and

evaluates the maximal number that are possible. A major task in this Thesis has been

to determine the conditions under which reconstitution is allowed to happen by analyz-

ing the responsible part of the HEAVY ATTACK source code. HEAVY ATTACK'S

logic seems to be as outlined below:

Definition of index

j target type index V j

p. pp time period index V p, pp e {1, 2, ... , n)

Parameter

TIME
p

length of time period p in days V p

RECOXj minimum number of days a target has to stay dead V j

QTYj maximum number of targets j that can be reconstituted in 30 days V j

Aggregated parameter

PERUPjp index of the last time period considered for reconstitution.

14



If a target of type
j is killed in time period PERVP,

t
or earlier, then there is sufficient

time available to reconstitute the target so that it once again will be available in period

p+1. The parameters TIME, and RECO.X, determine PERl'P, according to the fol-

lowing formula in HEAVY ATTACK:

Let

p+i

= f 1 if RECON, < Yj TlME
p

, - CEIL (0.5 x TIME;) V j, p < p < n

hp -p
] otherwise p-p

where the function CEIL rounds a real number to the next higher integer value.

kjj
f

indicates whether targets killed in period p are eligible for reconstitution in

period p and therefore:

p

PERUPj, =
J] kJJjt Vj.p<n
P =\

Note that always PERUP
Jp

< p.

Variables

KILLj
p

number of targets type j killed in time period p V j, p

REBUILDjp maximum number of targets of type j that are reconstituted

as live targets in time period p+1 V j. p < n

Conditions for Reconstitution

A killed target of type j can be reconstituted if the following 4 conditions are true:

1. at least a fraction of target j was destroyed in the previous or the current time pe-

riod p,

2. it has been dead for more than some defined time,

15



3. the total number of targets being reconstituted has to be less than the total number
of targets which exceeds the minimum dead time

PERCPjj,

^REBUILD
hp, < Yj KILL

J,p'
V J* P < n

P'=\ P'=\

4. the maximum number of targets type j which can be reconstituted at the end of

each time period p is given by:

QTYj
REBUILDjp < —^p x TIMEp+l V j, p < n

QTYj
where ——— represents the reconstitution rate per day.

This leads to the following submodel:

max z = y YrEBUILDjj,

s.t.

P PERUPU
^REBUILD;;,. < ^ KILLjp, V j, p < n (A)

p'=i p=i

QTYj
REBUILDjj, < -r-p x TIMEp+] V j, p < n (B)

The interpretation of (A) is that the number of targets of type j rebuilt in period p or

before cannot exceed the total number of targets that are killed during or before period

PERL'P
JP . The interpretation of (B) is that the number of targets of type j rebuilt in

period p cannot exceed a certain quantity depending on the length of period p and on

the target type. There are no targets reconstituted in the last time period p=n .

16



III. BOUNDS ON WEAPON CONSUMPTION

A. INTRODUCTION OF A WEAPON CONSTRAINT
A desired improvement for the current HEAVY ATTACK model is to add an addi-

tional constraint on the utilization of weapons inside the RAND - model.

Two important facts should be recalled:

1. For each sortie - target combination { i,
j } and each weatherband there is at most

one weapon which can be used.

2. Averaging over all weatherbands is related to the probability that weatherband w
might occur at the time sortie type i is assigned to target type j.

Let the upper bound on weapon consumption be defined as:

WPk total number of weapons of type k available

The required constraint for the consumption on weapons is then:

YjYjsxu x
( Y/** x bIj.*) * ]yp* v k

i j \ w /

where the sum is over all { i, j. w } such that k = K*IJtW

B. REVISED MODEL OF HEAVY ATTACK

Reconstitution can be included in the RAND - model. Instead of considering re-

constitution as a computational "bookkeeping" process, it can be part of the optimiza-

tion. To accomplish this, it is necessary to define a new variable for the number of dead

targets such that the time period as an additional dimension is represented by a second

subscript:

D
;r

is the total number of targets of type j killed in time periods < p less the number

of targets that are reconstituted during this time :

D
JiP

= V (KILLjj - REBUILD^
p.) V j, P

P =\

17



The military worth of a target is also time dependent:

Vh „
military worth of a target type j in time period p

Embellished Thesis Model (solved sequentially for p = 1,2, 3,..., n)

Max z
p = YSVJ,p x KILL

J,P)

s.t.

KILLU = Atj , Cj , Dlp , Y^SXy x (^PRW x E
lth

}j
j

V j

where :/{...} is one of three functions discussed in the next chapter.

KILLU < Tj - Du V j

P-\

Djp = Y (KILLj
p

,
- REBUILD

j>p.) V j

p PERUPAp

^REBUILDj^ < £ KILL
J,p'

V J

F'=\ p'=\

VsA';y- < PRO Pi x S, V i

J

where the sum is over all { i, j, w } such that k = K
tJ.w

18



< SXtJ V /. j

< KILLjp V j

< D
jj} V j

< REBUILDjp V J

where the upper bound on REBUlLD
jp

is such that:

K£Z?l7IZ>
y ,

<J

- "lo""
x ™f£̂ i if P < n V j

1=0 if p = n

The model was written in the General Algebraic Modeling System 'GAMS; [Ref. 3], All

optimization problems throughout the Thesis are solved with the nonlinear programing

solver MLXOS - Version 5.0 [Ref. 4]. A database for 2 sortie-. 26 target- and 29

weapon-types was provided [Ref. 5] in order to compare the results by using three dif-

ferent objective functions, each over four time periods.
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IV. LINEAR VERSUS NONLINEAR MODEL

In this chapter the derivation of the nonlinear objective function used by RAND is

given. In addition two alternatives are represented by introducing the Washburn-

Equation and the linear case in which the number of killed targets is proportional to the

number of assigned sorties. Each of the three objective functions is used in the model

described in the previous chapter for sequential}' optimizing sortie assignments over four

time periods. In order to compare the effect of the three objective functions, a meas-

urement for the diversity of the allocated kill capability is defined.

A. RAND EQUATION

If K represents the total number of killed targets of type j then the objective function

used in the RAND - model can be derived from the differential equation:

d K; A}
= 1 - q x — (A)

dA) > Tj

where Xj = y Eij x SX:j and < Cj < 1

The differential equation (A) with the initial condition K,(X
;
= 0) = D

s
has the solution:

Kj= -± x jl -(1 - cjx-^) x c- r, **A

Instead of bounding K, by

Dj < Kj < 7}

let KILL, be the number of targets killed in excess of D, :

KILLj = Kj - Dj

so that

2D



< KILL] < Tj - Dj

which leads to the final result:

-4- ~ D,f1-{T -^)x(l-e-T^>)

B. LINEAR EQUATION

A special case for the differential equation (A) appears when c = 0:

then

= l

dXj

which vields:

so that

or bv usins

so that

Kj = Xj + Dj

Dj<Kj<Tj

KILLj = Kj - Dj

< KILLj < Tj - Dj

where the final solution represents the linear case:

KILLj = X)
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Figure 1 illustrates the

Cj on the function KILL, = f{X-t

influence of the tarset parameter

KILL CAPAPILITY = X

NUMBER OF KILLS GAINED = KILL

C = 0.1

y^^t = 0.3

o
00 /^ c = 0.7

LJ ^^^^c = 0.9

3 S -

_l
_J

u.

UJ
m
n -

o
CM

— ^&^

o -r i i i i t i i i i i

20 40 60 80 100

KILL CAPABILITY

Figure 1. Influence of the target parameter c on the RAND-Equation: The sol-

ution of the differential equation used in the RAND-model is graphically

shown for 4 different target parameters c.

The parameter c
;
has no direct physical motivation. The model considered in the next

section also contains a single parameter, but the parameter can be motivated physically.
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C. WASHBURN EQUATION
d A'

The Washburn - Equation [Ref. 6: p. 25] defines the differential -—— in the fol-
d A.

—rr~ = Probability { attacking a live target

}

lowing way:

d Kj

dA}

or equivalently:

dA}
{ number of live targets

}

d Xj { number of targets that look alive
}

This leads to the differential equation:

dA} Tj- A}

dA} 7} - A} + o^xA}
(B)

where a, is a constant proportion of killed targets, which have the property to appear live

to a potential attacker.

The differential equation (B) with the initial condition A',(A} = 0) = D. has the sol-

ution:

Kj = Tj x
j

1 - I 1 - —
j
x e fxTj L

Using A7LL, instead of A, such that:

KILLj = A} - Dj

leads to the implicit solution for the Washburn - Equation as:

(1 - a,)x KILL, - X,

KILL: = ( 7} - A) x 1 - e »,x7j

The difference between the two differential equations (A) and (B) for two different target

parameters is shown in Figure 2 on page 24 . Observe that for target parameter c close

to or 1 the Washburn-equation tends to behave similarly to the RAND-equation.
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Target parameter a is denoted in the figure by c.

o -e^-^ RAND c=0.1

cq

o ^^^ ^vWASHBURN
X

_ \Sv X c=0.1

1.
* o

\^\RAND c=0.7 \
-o

<,
h-z *
or

°

E

- WASHBURN\ ^^ \
c=o.7 N. \A

u.

o
-

cs

d

o H 1 1 i i i i i i i N
20 40 60 80 100

KILL

Fioure 2. RAND- and Washburn-Diff. Equation >\ith varied parameter c: The two
differential equations are shown for 2 different target parameters c. Be-

cause the solution of the Washburn-Equation can be given only in an
implicit form, the differential equations are shown rather than their sol-

utions.

The influence of the three different objective functions on the RAND-model using

the same input data is shown in Figure 3.

The total worth of killed targets decreases with time for each objective function.

The main reason for this is that in the first time period sorties are assigned to those

target types for which the effectiveness is highest. When all targets are killed, sorties are

then assigned in the following time periods to the remaining targets for which the effec-

tiveness is less. As a result, more and more sorties need to be allocated in order to gain

the same number of killed targets. The number of reconstituted targets available at the

beginning of the second or third period is relatively small or even zero and can therefore

be neglected at this point. Since the variation in the number of sorties and in the mag-

24



nitude of the target values is too small to compensate for this effect, a declining trend

in the objective function value over time for all three cases is observed.

Note that the Washburn-Equation always yields a smaller value than the

RAND-Equation. This follows from the fact that the Washburn-Equation declines faster

than the RAND-Equation for the same target parameter c as shown in Figure 2. The

linear equation is larger than either one. The most important difference is not in the

absolute level of target value killed, but rather in the influence of the objective function

on the distribution of sorties over targets. This subject is taken up in the next section.

Objective Function Type:

R = RAND
L = Linear

W = Washburn

I
o

UN

O

Jf*

Figure 3. Total Military Worth of Killed Targets: represented for each different

objective function and each time period by the height of the respective

block in the figure.
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D. DIVERSITY OF KILLED TARGETS

An important reason for USAF to use a nonlinear objective function is to avoid an

undesired concentration of attacking sorties on a few targets. In analysing the effect of

the three different objective functions on the optimization, a measurement is needed in

order to indicate how many of the allocated sorties are spread over different targets.

In information theorv the function

Mp) = Yj \Pi x lo § ~p-
)

where p = {pu p2 , ... , pn) and J] Pi = ]

is used to express the diversity or "entropy" of the probability distribution p = {/>,}.

Observe that /?(p) = when p concentrates all probability in one element. The maxi-

mum possible value when p has n elements occurs when they are all equal, in which case

h(p) = log n . The diversity h(x) of an arbitary set { x, } of nonnegative members can

be measured by simply normalizing them so that they sum to 1 and then computing

entropy:

h(\)

/ Xj x log

I>
x.

Ya

The diversity of values h(\) gained from the same input data and model as used in the

previous chapter is depicted in Figure 4. Since the number of targets n equals 26, the

maximum diversity value will be

Wmax =3.26

Figure 4 makes it clear that the Linear objective function has a lower diversity value

than the other two. This is to be expected, and in fact one of the main reasons for using
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a nonlinear objective in the first place was to avoid low diversity values. However, note

that:

1. The Linear diversity is not 0; that is, several target types are still attacked.

2. None of the objective functions achieves complete (3.26) diversity.

The differences emerge most strongly in period 3. Only 4 target types are attacked when

the linear model is used, or 6 with the RAXD-model. 16 different target types are at-

tacked when the Washburn-equation is used; this is in keeping with the idea that the

Washburn-equation is the most "non-linear" of the three (see Figure 2). The three

models differ much less in period 1,2 or 4.
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Objective Function Type:

R = RAND
L = Linear

W = Washburn

f%*

T/ME PERIOD

Figure 4. Diversity of killed targets for different objective functions: The height

of each block illustrates to how many different target types (out of 26)

sorties are allocated at different time periods by using each of the three

objective functions.
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V. ALLOCATION OF SECONDARY WEAPONS

A. COST-EFFICIENCY VERSUS KILL-EFFECTIVENESS

Cost considerations are finished once SELECTOR has established the Preferred

Weapon List. Although this list contains different tactics, ordered in terms of cost-

efficiency, HEAVY ATTACK only uses the top one on the list which is feasible. The

only time at which HEAVY ATTACK may proceed to a succeeding tactic appears, as

mentioned before, when a weapon has been exhausted in earlier periods.

As a second revision of HEAVY ATTACK, the model is changed to continue target

attacks after the weapon type used by the most cost-effective tactic has been exhausted,

using those weapons still on hand.

B. A NONCONVEX CONSTRAINT

The model discussed in the previous chapter requires that only the tactic on the top

of SELECTOR'S Preferred Weapon List can be used. Once the corresponding weapon

type is depleted further attacks by that sortie type in that weatherband against that tar-

get type are impossible. The idea in this section is to relax this strict requirement to

permit using whatever tactic is highest on SELECTOR'S list among those whose weapons

have not been exhausted.

Implementing this logic in the existing model requires a modification of the variable

SY •

SXvVi„
= number of sorties of type i assigned to target of type j which use

tactic r in weatherband w

The probability that all sorties of type i assigned to target of type j will attack the target

in weatherband w has to be equal to the probability that weatherband w occurs at that

time:

),SXtJj,w = PR* X ', y, S
*iJ,r, w

w1
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Upon these redefined variables for the number of assigned sorties, it is possible to de-

termine the utilization of each weapon type:

let ll'EAPk be the consumption of all weapons of type k

then WEAPk = ZZZZ (*V/.»
x 5jW V k

i j r *•

where the sum is over all { /, j, r, w } such that k = K-
tj rw .

In order to assign sorties using less cost-effective tactics, SXw%riW must be unless the

weapon types corresponding to all more cost-effective tactics are exhausted. The fol-

lowing constraint will enforce this logic:

r-l

= SX
tJ,tW

x Y,(WPk ~ WEAPk) V i,j, r, w (C)

r'=]

where k = Kij>r>>w .

The above constraint requires that at least one of the two factors on the right hand side

of the equation equals zero, so either no sorties are assigned (first factor zero) or else

all more cost-efiective weapons are exhausted (second factor zero). The constraint thus

enforces the desired logic, but there is a disadvantage in using it. The disadvantage is

that the function on the right hand side of (C) is not only nonlinear (products of vari-

ables are involved) but nonconvex. Without constraint convexity, there is no guarantee

that the locally optimal solutions achieved by the MINOS solver are globally optimal.

There is some evidence, however, that globally optimal solutions are actually being at-

tained. For one thing, employing constraint (C) always results in a higher objective

function value than when only the most cost-efficient tactic is permitted. In addition,

some experiments were performed where the improved model was changed into a linear

model by linearizing the objective function at the optimal solution. The nonconvex

constraint was then converted into a linear constraint by using integer variables. The

optimal solution of this linearized model was identical to the solution gained by the

nonlinear model with the nonconvex constraint.

30



C. REVISED MODEL
The mathematical model is solved sequentially for p = 1. 2,..., n.

Max z
p
= Y(V

JtP
x KlLL

j>p)

s.t.

where A} = Y Y Y (EljAW x SXljAW)

i
r u

KlLL
hp

< Tj - Du V j

P-\

D
hp

= Y (KILLJp , - REBUILDj
p.) V j

p'=\

PERL
'

P
;,P

VREBUILDj
>p. < Y, KILL

J,p' *J
p'=l p'=l

y v y $xu , w < prop, x $ v /

r w

WEAPk = XXXZ (iW x SAW') v *

\ j r w

where the sum is over all { /', j, r, w } such that k = Kij rw
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<» SX,J/tW x ViM/V 117 IP,

r i

V /, /, /-, w

where A A
'J, r, W

X-s'-W /,/c -
x ZE%y

' vr'

<; S \

£KILLU

(. • /)
'/./•

Rl Bl II D ,,,

v /, y, iv

v /, j, >, w

v./

v j

v./

where the upper bound on REBl n l\
r

is such that:

Ri.m u n,
'

i

QTYj

IT s /n"<" ll p - n

if p = n

: n I \l\ - ll Pi

V j

v./

V k

I he introduced relaxation will be used in the further revision of HEAVY ATTACK

considered in the nexi chapter.
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VI. GLOBAL VERSUS MYOPIC TIME OPTIMIZATION

A. TIME-DEPENDENT MILITARY WORTH OF TARGETS
When HEAVY ATTACK optimizes the allocation of sorties for each time period,

it doesn't take advantage of the fact that the military worth of each target and each time

period is known prior to running the optimization. The decision, which target type

should be given a high priority to attack, is based on a comparison of military values

of different target types restricted to the current time period. Although military worth

of a target is given as a function of time, HEAVY ATTACK doesn't recognize the most

favorable time for attacking a certain target type. This "myopic view" is caused by re-

stricting the optimization to the time interval covered by one period.

It seems worthwhile to consider an optimization covering all time periods at once.

This "global" optimization is expected to spend resources even more effectively than

before, so that the total sum of gained military worth of killed targets might become

higher compared to sequential time optimization. In addition, it can be expected that the

number and type of killed targets in each time period will change.

The third revision for HEAVY ATTACK as presented in this chapter doesn't require

major changes to the previously discussed model. A subscript for time is added to the

variable SXi{ . w :

SXij,,w* number of sorties of type i assigned to target type j by using tactic

type r in weatherband w and in time period p

The resources on sorties available needs to be defined as a function of sortie type and

time:

S
(J

,
maximum number of sorties type i available in period p

PROP,j proportion of S
l<p

that can be assigned

Computing time increases with the number of time periods covered.

B. GLOBAL MODEL
The mathematical model is shown below. The realization of this model in GAMS,

including all inputs, is given in the Appendix.
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Max 2 -

s.t.

KILL
Lp

=
(

-7- ~ DLp) x
( 1 - e" r

;
* V) V J, p

where X
j>p = YjYjYj (£<V/,w x SXij,r<w<P )

l
r w

KILLlp < Tj - Dhp V j, p

p-\

Dlp = V (KILL
Jip

, - REBUILD^ V j, p
p'=i

PER LP,
p

^REBUILDj
p

, < Yj killj.p' v J> P
/>'=! p'=\

CSZ 5^.w * pRop
i,P

x 5<>
v <> p

WEAPy = > > > > &,_ x > SX, }rw J VA

where the sum is over all { /. j, r, w } such that A' = Kijrij,r,w

= SX
iJ/iW

x YJ ^WPk ~ WEAPk)
V i,j, r, w

r'=\

where A = KiJr, w
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r r w.

< SXijtT)Wilp V i, j\ r, w, p

< KILLjj V j, p

* ^ V y, ,

< REBUILDj
p V y

where the upper bound on REBUILDj
p

is such that:

REBUILDj
p \

* 1o~ X r/Af^+' if P < n V y

1=0 if p = n V j

< jr'£^/\ < HT,, V A-

C. RESULTS AND COMPARISONS

The above model was too large to be run in GAMS on available computer equip-

ment at reasonable cost with the same size of input data used previously. Therefore the

number of target types were reduced from 26 to 13. Other efforts were also made to

decrease required computing time.

Table 10, Table 11 and Figure 5 compare the results of the global and myopic se-

quential optimizations. The global optimization achieves more target value killed; the

percentage gain for the global approach is (135S.O - 1 123.0) 1 123.0 = 20.9 %. Com-

paring the target values of target type 5 and 27 over all 4 periods shows that the highest

target value occurs in period 3. The global optimization realizes this fact by destroying

all available targets at that time. While both target types, especially target type 5. have

a relatively high target value in the first time period, most of these targets are therefore

killed by myopic optimization in the first period.
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Table 10. NUMBER OF KILLED TARGETS: The table shows the number of

killed targets achieved by sequential and global optimization as well as

the respective target value for each time period.

Time Period 1 Time Period 2

Target
Type

Tarset
Value

Killed Targets Tarset
Value

Killed Targets

Myopic Global Myopic Global

TG 5 10 17.3 0.5 14 1.2 1.1

TG 8 10 13.0 13.0 10 0.0 0.0

TG 10 4 0.0 0.0 7 0.0 0.0

TG 11 7 0.0 9.6 9 0.0 0.0

TG 12 7 0.0 0.0 12 0.0 0.0

TG 13 4 0.0 5 0.0 0.0

TG 14 20 2.0 2.0 15 0.0 0.0

TG 22 2 0.0 0.0 2 0.0 0.0

TG 24 2 0.0 o.o 7 0.1 0.0

TG 25 5 0.0 0.0 12 22.3 26.6

TG 27 4 19.1 0.0 7 1.9 0.0

TG 29 7 0.0 0.0 7 o.o O.o

TG 34 5 8.6 0.0 5 9.4 0.0

Time Period 3 Time Period 4

Target
Type

Tarset
Value

Killed Targets Target
Value

Killed Targets

Myopic Global Myopic Global

TG 5 18 1.0 18.0 1.0 1.0 2.0

TG S 10 0.0 0.0 0.7 0.0 o.o

TG 10 10 5.4 0.0 3.1 23.6 26.3

TG 11 10 4.3 0.0 2.1 3.5 0.0

TG 12 18 o.o 0.0 2.1 0.0 O.o

TG 13 7 4.0 1.7 1.0 O.o 0. 1

TG 14 10 0. o.o 0.7 0.0 0.0

TG 22 2 0.0 ().() 2.0 6.0 6.0

TG 24 10 2.2 1.5 2.5 0.4 1.3

TG 25 10 5.5 1.1 0.9 0.0 0.0

TG 27 s 0.0 21.0 2.0 0.0 o.o

TG 29 8 0.0 0.0 1.0 0.0 0.0

TG 34 S 0.0 1S.0 0.7 O.o 0.0

36



Table 11. MILITARY WORTH OF KILLED TARGETS: gained by sequential

and by global optimization is given for each time period and as a total

sum.

Myopic
Optimization

Global
Optimization

Time Period 1 462.

S

251.3

Time Period 2 345.5 333.8

Time Period 3 220.1 674.0

Time Period 4 94.6 98.9

Total Worth
of Killed Targets

1123.0 1358.0

Figure 5. Distribution of Military Worth of Killed Targets: The height of each

block represents the numerical value given in Table 1 1 depending on the

time period and on the kind of optimization used.
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Both the global and the myopic models utilize secondary weapons. Figure 6 shows

weapon usage in the global model. Note that weapon type WP7 is used extensively in

situations where more cost-effective weapons are exhausted.

ORDER OF TACTIC = r

Figure 6. Allocation of Secondary Weapons: The height of each block represents

the number of weapons utilized by the global optimization. A significant

number of weapon type WP7 is used by tactics of order r=3. This is

only possible when weapons used by tactics of order r= 1 and r = 2 are

exhausted.

A more detailed report of the solution is given in the SOLVE SUMMARY of GAMS in

the Appendix.
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VII. CONCLUSIONS

In the first revision of the current HEAVY ATTACK model, a weapon constraint

is added and three different objective functions are compared. The objective function

best used in the model depends on the priorities of the user:

1. Using a linear objective function instead of a nonlinear one has the advantage of
simplicity and consequent computational efficiency. A disadvantage is a less dis-

persed allocation of sorties to different targets.

2. Using the Washburn - Equation instead of the RAND - Equation has the advan-
tage of using a well defined target parameter. The dispersion of attacked target

types might be somewhat less influenced due to changes in the input data.

In the second revision the current philosophy of using the most cost-efficient tactic

is relaxed such that less cost-efficient tactics can be utilized within a time period. With

this revision, tactics not at the top of the Preferred Weapon List (SELECTOR output)

can be utilized if all more cost-effective tactics are infeasible due to weapon exhaustion.

This revision is particularly important when there is a small number of time periods,

since the same capability already exists between time periods.

The third revision replaces sequential optimization (current practice) with global

optimization. The comparison between sequential and global optimization by using the

same input data shows a qualitative difference in the achieved results. There is a definite

indication that sequential time optimization tends to achieve military success in the be-

ginning of the war by sacrificing the potential for later success. Global optimization

tends to husband weapons and even targets (in cases where target value increases with

time) for later periods in the war. An argument for global optimization can be based on

the fact that it is more efficient in killing targets with large military values. On the other

hand, it could also be argued that sequential optimization is more likely to imitate what

will actually happen, "optimal" or not. In any case, if global optimization is used, then

the distribution of the value of destroyed targets seems to be much more time dependent

than is recognized by the current method of sequential optimization.

All revisions introduced in this Thesis result in gaining of more military worth.

L'SAF's general objective is to determine their future need of weapons rather than to

maximize the military worth of killed targets. With the revisions described above, utili-

zation of weapons plays a more important and direct role in the optimization, especially
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when more than one tactic is considered. The developed models are intended to provide

the necessary structure to embellish HEAVY ATTACK for this purpose.
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*

APPENDIX GLOBAL OPTIMIZATION MODEL

4

6 * *

7 * Math. Model: Klaus Wirths February 1989 *

8 * *

9 * File Name : P H C R G A M S

10 * *

1

1

*
12 * Remark : This Model is an improved version of the HEAVY ATTACK *
13 * model; it contains a subset of a larger database. *

14 *

15 * Specification: RAND - Equation *

16 - Multi-Weapon Optimization *

17 * Multi-Time Period (Global) Optimization *

18 * *

19 * *

20 * Reference : Dennis M. Coulter, Maj , USAF
21 * War, Mobilization & Munitions Division *

22 * Directorate of Plans, DCS/P&Q *
23 * *

24 * *

25 - Sortie Allocation by a Nonlinear Programming Model
26 * for Determining a Munitions Mix
27 * R. J. Clasen, G.W.Graves and J. Y. Lu
28 * RAND, Santa Monica March 1974
29 *
O f~\ "j*- <J* »'- -j

1-y- »>-
"J*-

»*- »?- ;'- »'- **- *'-»f- ;*- »'- »'- »f- *'- J- ;'- -'- »*- ^'- •'- •*'- »'- -'- *'-J> *'- -'- -'- -J- -»- •;'- -J- -'; -'- -T-Jf -'- J-~f- -'- -'- -'- -'- J- y-J- »f- -'- -'- -*- -'- -*- -'- -'- -'- -'- ^- -'j »'- <-'- -'- -'-^- ^*;

31
32 SET
33 I aircraft type index / AC1 * AC2 /

34
35 J target type index / TG5
36 TG8
37 TG10
38 TG11
39 TG12
40 TG13
41 TG14
42 TG22
43 TG24
44 TG25
45 TG27
46 TG29
47 TG34 /

48
49 K weapon type index / WP1
50 WP2
51 WP3
52 WP4
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53 WP5
54 WP6
55 WP7
56 WP8
57 WP9
58 WP10
59 WP11
60 WP12
61 WP15
62 WP18
63 WP19
64 WP21
65 WP22
66 WP24
67 WP25
68 WP27
69 WP34
70 WP42
71 WP45
72 WP46 /

73
74 W weatherband type index / WB1 * WB6 /

75
76 R order of preferred weapon type / 0D1 * 0D4 /

77

78 P time period index / PERI * PER4 /

79

80
81 ALIAS (J,JP)
82
83 ALIAS (R,RP)
84
85 ALIAS (P,PP)
86
87 ALIAS (P,PPP)
88
89 ALIAS (W,WPP)
90
91

92 ** Definition of TARGET Parameters
93
94 PARAMETERS
95

96 T(J) total number of target type J
97

98 *** all entries for T(J) has to be nonzero values ***

99
100 / TG5 18

101 TG8 13

102 TG10 29

103 TG11 32
104 TG12 3

105 TG13 4

106 TG14 2

107 TG22 6

108 TG24 3
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109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

TG25 51
TG27 21
TG29 9

TG34 18 /

C(J) TARGET parameter

/ TG5 0. 2

TG8 0. 1

TG10 0. 2

TG11 0. 1

TG12 0. 1

TG13 0. 3

TG14 0. 1

TG22 0. 2

TG24 0. 8

TG25 0. 3

TG27 0. 7

TG29 0. 1

TG34 0. 2

TABLE V(J,P) value of target type J

PERI PER2 PER3 PER4
TG5 10 14 18 1.

TG8 10 10 10 0. 7

TG10 4 7 10 3. 1

TG11 7 9 10 2. 1

TG12 7 12 18 2. 1

TG13 4 5 7 1.

TG14 20 15 10 0. 7

TG22 2 2 2 2.

TG24 2 7 10 2.5
TG25 5 12 10 0. 9

TG27 4 7 8 2.

TG29 7 7 8 1.

TG34 5 5 8 0. 7

< C < 1

Definition of Sortie numbers

TABLE S(I,P) maximum number of sorties for AC type I

PERI PER2 PER3 PER4
AC1 180 200 150 300
AC2 180 200 150 300

TABLE PR0P(I,P) proportion of available number of sorties for AC I

AC1
PERI
0. 60

PER2
0. 50

PER3 PER4
0. 70 0. 70
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165 AC2 0.45 0.60 0.70 0.70
166
167
168 PARAMETER
169
170 ** Definition of WP numbers
171
172 WP(K) maximum number of WP k - 100000 represents infinity
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200 "- Definition of Weatherband Distribution
201
202 PR(W) probability of weatherband W
203 / WB1 0.00
204 VB2 0. 02
205 WB3 0. 14

206 WB4 0. 07

207 WB5 0. 07

208 WB6 0. 70 /

209
210
211 ~'"v Parameter definition for Reconstitution
212
213 TIME(P) length of time period P

214 / PERI 3

215 PER2 4

216 PER3 8

217 PER4 15 /

218
219
220 RECON(J) number of days a killed target has to stay dead
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WP1 600
WP2 100000
WP3 100000
WP4 100000
WP5 600
WP6 100000
WP7 100000
WP8 100000
WP9 100000
WP10 100000
WP11 100000
WP12 600
WP15 100000
WP18 100000
WP19 100000
WP21 100000
WP22 100000
WP24 100000
WP25 100000
WP27 100000
WP34 100000
WP42 100000
WP45 100000
WP46 450



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

/ TG5 3

TG8 35
TG10 20
TG11 7

TG12 35
TG13 37
TG14 40
TG22 32
TG24 30
TG25 8

TG27 30
TG29 40
TG34 34

QTY(J) maximum number of targets to be reconst. in 30 days

/ TG5 4
TG8 2

TG10 10

TG11 2

TG12 2

TG13 2

TG14
TG22 7

TG24 2

TG25 20
TG27
TG29
TG34 3

PERUP(J,P) upper bound on time periods considered for reconstitution;

* a killed target must exceed a minimum time > RECON(J) < before it
* is allowed to be reconstituted

L00P((J,P),

PERUP(J,P) = SUM(PP$(ORD(PP) LE ORD(P) ) , 1$(REC0N( J) LT (SUM(PPP$

( (ORD(PPP) LE (0RD(P)+1)) AND (ORD(PPP) GE ORD(PP)) ),TIME(PPP))

- CEIL(0.5 * TIME(PP)) ) ) ) ) ;

*

Begin of aggregated INPUT DATA *

.,J, ..»- „»„ .», J„J. fct. .J f. J,. .J, ..(..^ J. J>. Jt. <J„ J. J_ fcf_ .f, J.. .A. .1.Jm Jl.Jm ^. »t. J„ J. J„ ^. Jm .1. Jtm J„ .A. _t_ JL,JL J, „»., „t.
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277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

TABLE E(I,J,R) Number of Targets type J killed by one Sortie type I

AC1.TG5
AC1.TG8
AC1.TG10
AC1.TG11
AC1.TG12
AC1.TG13
AC1.TG14
AC1.TG22
AC1.TG24
AC1.TG25
AC1.TG27
AC1.TG29
AC1.TG34
AC2.TG5
AC2.TG8
AC2.TG10
AC2.TG11
AC2.TG12
AC2.TG13
AC2.TG14
AC2.TG22
AC2.TG24
AC2.TG25
AC2.TG27
AC2.TG29
AC2.TG34

0D1
159
305
083
081
028
216
386
343
273
134
933
137
298
247
262
083
081
028
195
685
251
205
134
652
137
382

0D2
156
418
120
092
010
269
328
468
232
072
913
139
172
241
305
120
092
010
216
552
343
206
072
933
064
367

0D3 0D4
193 . 310
299 . 327
076 .276
077 . 034
020 • . 044
205 . 208
284 . 292
333 .305
273 . 218
067 . 042
792 . 741
092 . 117
150 .428
288 .282
365 .418
076 .276
077 . 034
020 .044
260 . 269
569 .388
468 . 350
273 . 138
067 .042
913 . 792
139 . 092
338 .231

TABLE B(I,J,R,W) Wea

OD1.'

AC1.TG5
AC1.TG8
AC1.TG10
AC1.TG11
AC1.TG12
AC1.TG13
AC1.TG14
AC1.TG22
AC1.TG24
AC1.TG25
AC1.TG27
AC1.TG29
AC1.TG34
AC2.TG5
AC2.TG8
AC2.TG10
AC2.TG11
AC2.TG12
AC2.TG13
AC2.TG14

Weaponload Array for each set <i j r w>

0D1.WB1 0D1.WB2 0D1.WB3 0D1.WB4 0D1.WB5 0D1. WB6
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333 AC2. TG22
334 AC2. TG24
335 AC2. TG25
336 AC2. TG27
337 AC2. TG29
338 AC2. TG34
339
340 +
341 AC1. TG5
342 AC1. TG8
343 AC1. TG10
344 AC1. TG11
345 AC1. TG12
346 AC1. TG13
347 AC1. TG14
348 AC1. TG22
349 AC1. TG24
350 AC1. TG25
351 AC1. TG27
352 AC1. TG29
353 AC1. TG34
354 AC2. TG5
355 AC2. TG8
356 AC2. TG10
357 AC2. TG11
358 AC2. TG12
359 AC2. TG13
360 AC2. TG14
361 AC2. TG22
362 AC2. TG24
363 AC2. TG25
364 AC2. TG27
365 AC2. TG29
366 AC2. TG34
367
368 +
369 AC1. TG5
370 AC1. TG8
371 AC1. TG10
372 AC1. TG11
373 AC1. TG12
374 AC1. TG13
375 AC1. TG14
376 AC1. TG22
377 AC1. TG24
378 AC1. TG25
379 AC1. TG27
380 AC1. TG29
381 AC1. TG34
382 AC2. TG5
383 AC2. TG8
384 AC2. TG10
385 AC2. TG11
386 AC2. TG12
387 AC2. TG13
388 AC2. TG14

6 6 6 6 6

6 6 6 6 6

2 2 2 2 2

6

6 6 6 6

4 4 4 4

0D2.WB1 0D2.WB2 OD2.WB3 0D2.WB4 OD2.WB5 0D2.WB6
2 2 2 2 2

6 6 6 6

2 2 2

6 6 6 6 6

2 2 2 2 2

2 2 2 2 2

4

2 2 2 2 2

6 6 6 6

6 6 6

6 6 6

0D3.WB1 0D3.WB2 0D3.WB3 0D3.WB4 OD3.VB5 0D3.WB6

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

6

2 2 2 2

2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2
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389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426 TABLE WPTYPE( I , J,R)
427
428 * For each sortie-target combination the weapon type K of order R
429 * is given if it is possible to use this weapon
430
431 0D1 0D2 0D3 0D4
432 AC1.TG5 5 6 5 4

433 AC1.TG8 5 5 7 3

434 AC1.TG10 5 5 7 18

435 AC1.TG11 5 5 7 5

436 AC1.TG12 5 5 7 5

437 AC1.TG13 5 5 7 3

438 AC1.TG14 3 3 5 3

439 AC1.TG22 5 5 7 3

440 AC1.TG24 5 3 7 3

441 AC1.TG25 24 24 24 24
442 AC1.TG27 3 3 3 7

443 AC1.TG29 3 3 7 7

444 AC1.TG34 3 5 5 3

48

AC2.TG22
AC2.TG24 2 2 2

AC2.TG25
AC2.TG27
AC2.TG29
AC2.TG34 6 6

0D4.WB1 0D4.WB2 0D4. WB3 0D4. WB4 0D4. WB5 0D4. WB6
AC1.TG5 6 6 6 6 6

AC1.TG8 6 6 6 6 6

AC1.TG10 2 2 2 2

AC1.TG11
AC1.TG12
AC1.TG13 6 6 6 6 6

AC1.TG14 6

AC1.TG22 6 6 6 6 6

AC1.TG24
AC1.TG25
AC1.TG27 2 2 2 2

AC1.TG29
AC1.TG34
AC2.TG5
AC2.TG8
AC2.TG10 2 2 2 2

AC2.TG11
AC2.TG12
AC2.TG13
AC2.TG14 6 6 6 6 6

AC2.TG22
AC2.TG24
AC2.TG25
AC2.TG27 6

AC2.TG29 2 2 2 2

AC2.TG34



445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
49 7

498
499
500

AC2. TG5
AC2.TG8
AC2.TG10
AC2.TG11
AC2.TG12
AC2.TG13
AC2.TG14
AC2.TG22
AC2.TG24
AC2.TG25
AC2.TG27
AC2.TG29
AC2.TG34

2

1

5

5

5

1

12

1

1

24
1

3

12

1

5

5

5

5

5

12

5

1

24
3

1

1

12

5

5

24
3

3

1

1

5

18
5

5

5

1

1

1

24
3

7

1

* *

End of INPUT DATA *

** Definition of Sortie Variable

,v SX( I , J,R,W,P) describes the number of sorties type I assigned
* to a target of type J carrying any weapon feasible for tactic R
* and weatherband W and in time period P

POSITIVE VARIABLES SX( I , J,R,W,P)

"" Initial Values for Variables

SX. L(I,J,R,W,P) =

;V
"V Declaration of variable EXP0(J,P)

POSITIVE VARIABLE EXP0(J,P)

** Declaration of Kill Variable

POSITIVE VARIABLE KILL(J,P)

** Declaration of Variable D(J,P)

POSITIVE VARIABLE D(J,P)

-" Declaration of Variable for cumulative weapon consumption

POSITIVE VARIABLE WEAP(K)

** Upper bound for variable Weapon Consumption

WEAP.UP(K) = WP(K)
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501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

** Declaration of variable for number of targets been reconstituted

POSITIVE VARIABLE REBUILD(J,P)

** Upper bound for variable REBUILD

REBUILD. UP( J, P) = QTY(J) * TIME(P+1) / 30

** Variable definition for objective function

VARIABLE Z

EQUATIONS

KILLVAL
KILLNL(J,P)
EXPONENT(J,P)
DEADTG(J,P)
KILLCON(J,P)
RECC0N(J,P)
S0RTC0N(I,P)
WEAPCONSUM(K)
SELECT(I,J,R,W)
DISTR(I,J,W,P)

maximize the value of destroyed targets
determines the number of killed targets
evaluates the values of the exponential terms
determines the number of dead targets
constraint the number of killed targets
constraint the max. number of targets for reconst.
constraint the number of allocated sorties
determines the consumption of each weapon type
decides if next weapon on list can be used
ensures that all weatherbands are covered prop.

;

KILLVAL.

Z =E= SUM((J,P),V(J,P) * KILL(J,P))

KILLNL(J,P). .

KILL(J,P) =E= ( (T(J)/C(J)) - D(J,P) ) * ( 1 - EXP0(J,P) ) ;

EXPONENT(J,P).

.

EXP0(J,P) =E= EXP( ((-C(J))/T(J)) * SUM((I,R,W)$B(I,J,R,W),

E(I,J,R) * SX(I,J,R,W,P)$B(I,J,R,W)) ) ;

DEADTG(J,P).

.

D(J,P) =E= SUM(PP$(ORD(PP) LT ORD(P) ) ,KILL( J,PP) - REBUILD( J ,PP) ) ;

KILLCON(J,P).

.

KILL(J,P) =L= T(J) - D(J,P) ;
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557 RECCON(J,P).

.

558
559 SUM(PP$(ORD(PP) LE ORD( P) ) ,REBUILD( J,PP) ) =L=
560
561 SUM(PP$(ORD(PP) LE PERUP( J,P) ) ,KILL( J,PP) ) ;

562
563
564 SORTCON(I,P).

.

565
566 SUM((J,R,W)$B(I,J,R,W),
567
568 SX(I,J,R,W,P)$B(I,J,R,W)) =L= PROP(I,P) * S(I,P) ;

569
570
571 WEAPCONSUM(K).

.

572
573 WEAP(K) =E= SUM( ( I , J,R,W,P)$( (ORD(K) EQ WPTYPE( I , J,R) ) AND
574
575 (B(I,J,R,W) NE 0) ),B(I,J,R,W) * SX( I , J,R,W,P)$B( I , J,R,W) ) ;

576
577
578 SELECT(I,J,R,W)$B(I,J,R,W).

.

579
580 =E= SUM(P,SX(I,J,R,W,P)$B(I,J,R,W)) *

581
582 SUM((K,RP)$( (ORD(RP) LT ORD(R)) AND
583
584 (B(I,J,RP,W) NE 0) AND (ORD(K) EQ WPTYPE( I , J,RP) ) ),
585
586 (WP(K) - WEAP(K)) ) ;

587
588
589 DISTR(I,J,W,P)$SUM(R,B(I,J,R,W)).

.

590
591 SUM(R,SX(I,J,R,W,P)$B(I,J,R,W)) =E= PR(W) *

592
593 SUM((R,WPP)$B(I,J,R,WPP),SX(I,J,R,WPP

J
P)$B(I,J,R,WPP)) ;

594
595
596
59 7 MODEL AIRATTACK /ALL/ ;

598
599
600 * Limit for number of iterations
601
602 OPTION ITERLIM = 1000 , LIMCOL = , LIMROW =

;

603
604 OPTION SOLPRINT = OFF , SYSOUT = OFF ;

605
606
607 SOLVE AIRATTACK USING NLP MAXIMIZING Z ;

608
609
610 ** The following statements represent the solution values ;

611
612 PARAMETERS
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613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

KILLTG(J,P) number of targets J killed in period P
OBJECTIVE(P) Objective Function Value
KILLPOT(J,P) potential Kill-Capability (target-type vs period)
0PS0RTIE(I,J,R,P,W) number of optimal sorties
S0RTIE( J,P, I) number of sorties I assigned to target J in period P

WPC0MB( I , J,K) number of weapons (sortie , target and weapon type)
WPC0NS(R,K) number of weapons (tactic vs weapon-type)
VEAP0N(J,K) number of weapons (target vs weapon-type)

;

KILLTG(J,P) = KILL. L(J,P) ;

OBJECTIVE(P) = SUM(J,V(J,P) * KILL. L(J,P))
;

KILLPOT(J,P) = SUM((I,R,W)$B(I,J,R,W),

E(I,J,R) * SX.L(I,J,R,W,P)) ;

WEAP0N(J,K) = SUM((I,R,W,P)$(ORD(K) EQ VPTYPE( I , J,R) )

,

B(I,J,R,W) * SX.L(I,J,R,W,P))
;

WPC0NS(R,K) = SUM((I,J,W,P)$(

(ORD(K) EQ WPTYPE(I,J,R)) AND (B(I,J,R,W) NE 0) ),

B(I,J,R,W) * SX.L(I,J,R,W,P))

0PS0RTIE(I,J,R,P,W) = SX.L(I,J,R,W,P)

SORTIE(J,P,I) = SUM((R,W),SX.L(I,J,R,W,P))

OPTION OBJECTIVE:

2

OPTION KILLTG: 1: 1: 1

OPTION KILLPOT: 1: 1: 1

OPTION 0PS0RTIE: 1: 2: 1

OPTION SORTIE: 1: 1:

2

OPTION WPCONS: 1: 1: 1

OPTION WEAPON: 1: 1: 1

OPTION WEAP:

1

OPTION REBUILD: 1: 1: 1

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

OBJECTIVE
KILLTG
KILLPOT
0PS0RTIE
SORTIE
WPCONS
WEAPON
WEAP. L
REBUILD.

L

COMPILATION TIME 2. 140 SECONDS

MODEL STATISTICS SOLVE AIRATTACK USING NLP FROM LINE 607

MODEL STATISTICS
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BLOCKS OF EQUATIONS 10
BLOCKS OF VARIABLES 7

NON ZERO ELEMENTS 9758
DERIVATIVE POOL 31
CODE LENGTH 15943

SINGLE EQUATIONS 932
SINGLE VARIABLES 1289
NON LINEAR N-Z 1889
CONSTANT POOL 61

GENERATION TIME 65.580 SECONDS

EXECUTION TIME 67. 680 SECONDS

SOLUTION REPORT SOLVE AIRATTACK USING NLP FROM LINE 607

SOLVE SUMMARY
MODEL AIRATTACK
TYPE NLP
SOLVER MIN0S5

OBJECTIVE Z

DIRECTION MAXIMIZE
FROM LINE 607

SOLVER STATUS
MODEL STATUS
OBJECTIVE VALUE

1 NORMAL COMPLETION
2 LOCALLY OPTIMAL

1358.0172

RESOURCE USAGE, LIMIT
ITERATION COUNT, LIMIT
EVALUATION ERRORS

64. 179
639

1000. 000
1000

MINOS VERSION 5.0 APR 1984

COURTESY OF B. A. MURTAGH AND M. A. SAUNDERS,
DEPARTMENT OF OPERATIONS RESEARCH,
STANFORD UNIVERSITY,
STANFORD CALIFORNIA 94305 U. S. A.

WORK SPACE NEEDED (ESTIMATE)
WORK SPACE AVAILABLE
(MAXIMUM OBTAINABLE

104191 WORDS.
134740 WORDS.
288878 WORDS. )

EXIT -- OPTIMAL SOLUTION FOUND
MAJOR ITERATIONS 22
NORM RG / NORM PI 5. 752E-08
TOTAL USED 65. 17 UNITS
MINOS5 TIME 56.27 (INTERPRETER 9. 78)

REPORT SUMMARY : NONOPT
INFEASIBLE
UNBOUNDED

ERRORS
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648 PARAMETER OBJECTIVE OBJECTIVE FUNCTION VALUE

PERI 251.30, PER2 333.84, PER3 674.04, PER4 98.84

649 PARAMETER KILLTG

PERI PER2

TG5 0.5 1. 1

TG8 13.

TG10
TG11 9.6
TG13 2. 2

TG14 2.0
TG22
TG24
TG25 26. 6

TG27
TG34

NUMBER OF TARGETS J KILLED IN PERIOD P

PER3 PER4

18.0 2.0

26. 3

1. 7 0. 1

6.

1.5 1.3
1. 1

21.0
18.0

650 PARAMETER KTLLPOT POTENTIAL KILL-CAPABILITY (TARGET-TYPE VS
PERIOD)

PERI PER2 PER3 PER4

TG5 0. 5 1. 1 20. 1 2.5
TG8 13. 7

TG10 29.

TG11 9. 8

TG13 2.4 2.2 0. 2

TC 2. 1

TL I 6. 7

TG24 1. 9 3. 3

TG25 28. 9 1. 3

TG27 36. 1

TG34 20. 1

651 PARAMETER OPSORTIE

INDEX 1 = AC1 INDEX 2 = TG8

WB2 WB3

OD3.PER1 0.2 1.2

INDEX 1 = AC1 INDEX 2 = TG10

WB2 WB3

OD1.PER4 4.2 29.4
OD3. PER4

INDEX 1 = AC1 INDEX 2 = TG11

NUMBER OF OPTIMAL SORTIES

WB4

0.6

WB4

14. 7

WB5

0.6

WB5

14. 7

WB6

5.8

WB6

99. 9

47. 1
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WB2 WB3 WB4 WB5 WB6

0D1.PER1 2. 14. 7.0 7.0 69. 8

INDEX 1 = AC1 INDEX 2 = TG13

WB2 WB3 WB4 WB5 WB6

OD1. PER3 0. 2 1.4 0. 7 0. 7 7. 2

INDEX 1 = AC1 INDEX 2 = TG25

WB2 WB3 WB4 WB5 WB6

OD1.PER2 2. 14. 7. 7. 70.

OD1.PER3 0.2 1. 3 0. 7 0. 7 6.5

INDEX 1 = AC1 INDEX 2 = TG27

WB2 WB3 WB4 WB5 WB6

OD1. PER3 5.4 2. 7 2. 7 27. 2

OD3. PER3 0. 8

INDEX 1 = AC1 INDEX 2 = TG34

WB2 VB3 WB4 WB5 WB6

OD1. PER3 0. 9 6.5 3. 3 3. 3 32. 5

INDEX 1 = AC 2 INDEX 2 = TG5

WB2 WB3 WB4 WB5 WB6

OD1.PER1 4.

:

3313E-2 0.3 0. 2 0. 2 1.5
OD1.PER2 8. 6886E-2 0. 6 0. 3 0. 3 3.

OD1.PER3 1. 6 11.4 5. 7 5. 7 56. 9

OD1. PER4 0. 2 1.4 0. 7 0. 7 7.

INDEX 1 = AC 2 INDEX 2 = TG8

WB2 WB3 WB4 WB5 WB6

OD1. PERI 0. 9 6. 3.0 3. 29. 9

INDEX 1 = AC2 INDEX 2 = TG10

VB2 WB3 VB4 WB5 WB6

OD3. PER4 3. 1 21.9 10. 9 10. 9 109.4

INDEX 1 = AC 2 INDEX 2 = TG11

WB2 WB3 WB4 WB5 WB6
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0D1. PERI 0.4 2. 9 1.5 1.5 14.6

INDEX 1 = AC 2 INDEX 2 = TG13

WB2 WB3 WB4 WB5 WB6

OD1.PER1 0. 2 1. 7 0. 8 0.8 8.4
0D1.PER4 1. 7758E-2 0. 1 6.2153E-2 6.2153E-2 0.6

INDEX 1 = AC2 INDEX 2 = TG14

WB2 WB3 WB4 WB5 VB6

OD1.PER1 0.4 0. 2 0. 2 2. 2

OD2.PER1 6. 1764E-2

INDEX 1 = AC2 INDEX 2 = TG22

WB2 WB3 WB4 WB5 WB6

OD1. PER4 0.5 3. 7 1. 9 1.9 18. 7

INDEX 1 = AC 2 INDEX 2 = TG24

WB2 WB3 WB4 WB5 WB6

OD1.PER3 0. 1 1.

0D1.PER4 0. 3 2. 3 1. 1 1. 1 11. 3

OD3. PER3 0.5 0.5 5. 1

INDEX 1 = AC 2 INDEX 2 = TG25

VB2 WB3 WB4 WB5 VB6

OD1. PER2 2. 3 16.2 8. 1 8. 1 81.

INDEX 1 = AC2 INDEX 2 = TG34

VB2 WB3 WB4 WB5 WB6

OD1. PER3 2. 3 1. 1 1. 1 11.4
OD3. PER3 0. 3

652 PARAMETER SORTIE

PER1.AC1 PERI. AC2

TG5 2. 2

TG8 8. 3 42. 8

TG11 99. 7 20. 9

TG13 12. 1

TG14 3. 1

TG24
TG25

NUMBER OF SORTIES I ASSIGNED TO TARGET J

IN PERIOD P

PER2.AC1 PER2.AC2 PER3.AC1 PER3. AC2

4.3 81.3

100.0 115. 7

10. 3

9. 3

7.4
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TG27
TG34

+ PER4. AC1 PER4. AC2

TG5 10.

TG10 210. 156. 3

TG13 0. 9

TG22 26. 7

TG24 16. 1

653 PARAMETER WPCONS

WP1 WP2

OD1 598. 586.8
OD2
0D3 2.

+ WP46

OD1 450.

654 PARAMETER WEAPON

WP1 WP2

TG5 586. 8

38. 8

46. 5 16. 3

TG5
TG8 256. 6

TG10
TG11
TG13 77. 7

TG14
TG22 160.

TG24 103. 7

TG27
TG34 2.0

+ VP46

TG25 450.

NUMBER OF WEAPONS (TACTIC VS WEAPON-TYPE)

WP3 WP5 WP7 WP12

507.3 587.6

4.7 12.4 423.5

76.2
0.2

NUMBER OF WEAPONS (TARGET VS WEAPON-TYPE)

WP3 WP5 WP7 WP12

233.0
279.0

325.8
241. 2

20. 7

12.4

16. 7

406. 9

12.4

64. 1

655 VARIABLE WEAP.

L

WP1 600.0,
WP12 76.4,

WP2 586.8,
WP46 450.

WP3 511.9, WP5 600.0, WP7 423.5

TG5

656 VARIABLE REBUILD.

L

PERI PER2 PER3

0.5 1.1 2.0

57



TG11 0.5 1.0
TG25 5.3 10.0

EXECUTION TIME = 22. 580 SECONDS
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