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ABSTRACT

An arrival process {N(t), i t £ T} is to be dispatched one
or more times in the time interval (0,T). The problem is to deter-
mine the optimal number of dispatches K given there are n avail-
able and to determine sequentially the epochs of dispatch t , ...,t .

There are two trade off costs c and c , which are respectively
the cost per unit time of a waiting customer and the cost of dis-
patching a single unit. A general result is found which gives us

optimal t t for fixed K (i.e. the K-optimal policy) under
certain regularity conditions. This is used to obtain suboptimal
policies for multiple dispatching of a Poisson process and single
dispatching of a birth-death process. Applications to problems in

transportation, repair facilities and insect-control are indicated.

Prepared by:





SOME FINITE HORIZON DISPATCHING PROBLEMS

Edward A. Brill
Naval Postgraduate School

1. Introduction and Background .

In this paper, the following general model is considered:

Let {N(t) , £ t £ T} denote an arrival process in the time

interval [0,T]. Available to a central dispatcher are n dis-

patching units to be dispatched at his discretion during this time

interval. If a unit is dispatched to the queue site at time t,

then the queue instantly becomes either partially or totally

diminished, the exact assumptions depending on the context of the

problem. Introducing a lag time is also possible. Assume that

there are two trade-off costs c and c,, where c is the cost
w d w

per unit time of a waiting arrival and c , is the cost of dis-

patching a single unit. The problem of minimizing cost (expected

cost) is twofold:

(1) Determine the number of units K to be dispatched

in [0,T],

(2) Determine the times t ,t ,...,t when these units
± Z K.

should be dispatched.

The applications of such problems appear widespread. An

example is the problem of dispatching buses to waiting commuters

or generally that of dispatching a server (typically expensive)

to a waiting line. A possibly important application of the latter



might be to the problem of dispatching a complicated repair facility

to sea for repair of ships with subcritical malfunctions. Still

another possible application is to the problem of optimally dis-

patching insecticide-spraying units to field crops during a given

season. In this problem c may be interpreted as the cost per
w

unit time of an insect's damage to crops. It also appears that

the choice of n enters here as a constraint dictated by the

harmful side effects of insecticides.

Naturally, if the process {N(t), £ t £ T} is determin-

istic then the decision variables K,t i5 ...,t will be explicit
1 K

functions of c , c J} T as well as a functional of the arrival
w a

process. More realistically, if this process is stochastic, then

we have the added option of determining the dispatching times

sequentially.

When the arrival process is deterministic with arrival

epochs £ ,£,...,£ (N>n) , the problem of finding optimal

t.,...,tw for each K < n reduces to finding which of ( )

J. K. Js.

allocations is optimal. This is so because a dispatch should

always be made at the instant after an arrival. After this is

done, one may then find which K from among 0,1,..., n yields

the optimal policy. It almost goes without saying that the above

formulation may be handled more elegantly via dynamic programming.

We will not enter into this here, for this author cannot foresee

the development of any qualitative insights. For a solution to a



related problem, where the cumulative arrival process is continuous

and deterministic with K = n, the reader is referred to Newell [2].

The simplest prototype of a dispatching problem with stochastic

arrivals is discussed by Ross [3], and is one in which the arrival

process is Poisson with known rate A with one available dispatch-

ing unit. However, it is assumed that the dispatch must be used

so that the decision variable K is excluded from the problem.

This was then generalized to include nonhomogeneous Poisson arrivals

with nonincreasing intensity function X(t). The basic tool used

in solving these problems is the "monotone case" concept of optimal

stopping as set forth by Chow and Robbins [1] and as extended to

continuous time processes by Ross [4].

In section 2, we mention briefly a simple deterministic

case. In section 3 we derive a general theorem for obtaining a

K-optimal policy: that is, finding t ,...,t for a given K.
JL Is.

In section 4, the result of section 3 is applied to the problem of

multiple dispatching of a Poisson process. In section 5, we intro-

duce into consideration the decision variable K, and in section

6 the problem of dispatching a spatially homogeneous birth-death

process is discussed.



2. A Simple Deterministic Model .

Suppose N(t) = At for £ t a T, and assume that a dispatching unit

totally diminishes the queue. For fixed K, the cost c, does
d

not affect the choice of decision variables x ,...,t . Thus, we
1 K

must find t„ < T .<...< x
n

to minimize the total waiting time
K K—i L

wk- Jn
X(Trvi)2/2

i=o J

where x n = T and !„,, - 0. Elementary calculus yields

TK-j+l

and

* I:. = jT/(K+l)
, j = 0,1,...,K+l

W* = XT 2 /2(K+1)
K

as the K-optimal values.

Thus for fixed K, the minimum cost of this K-optimal

policy is

(1) C*(K) = AT 2 c /2(K+1) + Kc .

w d

Minimizing (1) over the unrestricted variable K yields the value

of K as one of the integers adjacent to

(2) -1 + (XT2 c /2 c) 1/2
.

w d

Call this integer M*. This may be seen by setting the derivative

of C* (K) equal to zero and noting that C* (K) is convex in K.



It is thus clear that

t n if M* > n

K* = < M* if £ M* < n

^ if M* <

This together with t* j = 1,...,K* yields the optimal policy.

It is worthwhile to note that (2) tells us that the interval

between dispatches is inversely proportional to the square root

of the arrival rate X

.



3. A General Theorem for the Stochastic Model .

In this section we consider the problem of obtaining sequen-

tially the times of dispatch i < . . . < t for a given K, i.e.

the K-optimal policy. Assume without loss of generality that

c = 1. Also assume total dispatching.

Consider an integrable stochastic process {N(t), % t £ T},

with N(t) t a.e. Let N(t) s N(t) - N(y ) where y = epoch of

most recent dispatch before time t; i.e. let i(t) = min{n:i it}
n

whence y = t., ». Thus the process {N(t), < t £ T} depends

on the dispatching policy x < . . . < t, ; in particular N(t)
K. 1

depends on {N(s) , -£. s £ t} and the particular sequential policy.

Let F be the a-field generated by {N(s), <. s i t} and let

E denote conditional expectation given F . We shall also add

the continuity condition

(3) E NCs)* N(t) a.e. as s \ t for every t.

Let w.(t,T) be the j -optimal expected waiting time (assumed to

exist) of only those arrivals in [t,T] when j dispatching times

remain. Thus,

w
Q
(t,T) = E

T

[N(s) - N(t)]ds.

The following theorem, a dynamic programming extension of the

infinitesimal look-ahead stopping rule of Ross [4], gives us the

K-optimal policy under certain conditions.



Thzoum 1 . AMu/ne. that w.(t,T) a/ic dt^eAcntiablt and

convex, lu.nctl.oni> o^ t In [0,T] ^on. j = 0,1,...,K-l.

Tkcn tkc [6 cqu&ntsLcLt) cLUpatcklng tunoj> t <t <...<t
K K—1 1

defined by t = inf{t:N(t) ;> -— w.(t,T)} conAtUutz

a K-optimal poticy.

Proof . Suppose we are at time t with j + 1 dispatches remain-

ing (j = 0,1, . .
.
,K-1) . If we dispatch at t, our "loss" from

time t under a j-optimal policy is w.(t,T), since the cost of

dispatching is irrelevant. If instead we go on to dispatch at

t + e (e > arbitrary), our optimal expected loss from t is

(4) N(t) • e + E

t+e

[N(s) - N(t)]ds + w.(t+e,T)

t

We now compare (4) with w.(t,T) noting that (4) ^ w.(t,T) iff
J J

-1 -1 (

t+e
-

(5) N(t) ^ e [w.(t,T)-w. (t+e,T)] - e E
t
N(s)ds - N(t).

Thus dispatching at t is better than dispatching at t+e iff (5)

holds. By (3) as well as the convexity and differentiability of

w.(t,T), the right-hand side of (5) / -— w.(t,T) = -w!(t,T) as

e \ 0. Thus if N(t) ^ -w!(t,T) then dispatching now (at t) com-

pares favorably with dispatching at t+e for any e > 0. Not only

is this the case, but if we go on from t and refrain from dispatch-

ing we should note that since -w!(t,T) is nonincreasing in t and

N(s) nondecreasing (a.e.) for s > t, our fortunes will not change.

That is to say, N(t) ^ -w!(t,T) implies N(s) ;> w!(s,T) for all s > t



We thus find ourselves in the monotone case (Chow and Robbins [1])

and hence with j + 1 dispatches remaining x . is optimal. q.e.d.

We may extend this theorem to include certain types of partial

dispatching. Let Z-,Z ,...,Z be i.i.d. and concentrated on the interval

(0,1] with EZ . = p. Here Z. represents the proportion of units dis-

patched at t.. Thus we may define N(t), the number waiting at time

t, in the intervals t . < t •£ x . (j = K+1,K,...,1) as follows: N(t) =
J J K

N(t) for T
T., n

< t -c x^ and recursively N(t) = N(t) - J Z.N(x.) for
K+l K. . . i i

x. < t •£ t .
1

for j = K,...,l. Note that we have implicitly assumed

that Z ,...,Z is also independent of (N(t), -c t £ T}.
i K

Let w (t,T) be the cost of waiting due to those customers

arriving in (t,T). In the one-stage problem, if we dispatch at

t, our expected loss from t is

w
Q
(t,T) + N(t)(l-p)(T-t).

If we go on to dispatch at t + e, the expected loss is

t+e

[N(s) - N(t)]dsN(t)-e + w (t+e,T) + E [N(t+e) ] (1-p) (T-t-e) + E
u t t

The same argument as in Theorem 1 yields x 5 inf{t: N(t) ^ -w'(t,T)}

to be 1-optimal provided w_(t,T) is dif ferentiable and convex. In

fact, x, e inf{t: N(t) ^ -w'(t,T)} (k = 0,1,..., j-1) is j-optimal by the same

reasoning provided w (t,T) is dif f erentiable and convex for
K.

k = 0,...,j-l.



4. Multiple Dispatching of a Poisson Process .

In this section we apply the theorem of section 3 to the

problem of finding the K-optimal policy t , ...,t when
1 K

{N(t), £ t £ T} is a Poisson process with known rate X. See

Ross [3] for the 1-optimal policy.

For this problem EN(s) = As, whence

w
Q
(t,T) A(s-t)ds = A(T-t) 2 /2 and -w^(t,t) = A(T-t)

Therefore, by Theorem 1, t. = inf{t:N(t) ;> A(T-t)} is the

1-optimal policy. It remains to find w.(t,T) (j = 1,...,K-1)

with the hope they are everywhere dif ferentiable and convex.

We make the simple observation that w.(t,T) depends only

on T - t since N(t) has stationary independent increments.

Thus we may write w.(t,T) = w.(0,T-t) and proceed to investigate

w.(0,T) as a function of T, noting that w.(0,T) is convex in

T iff w.(t,T) is convex in t.

From Ross [3], we find that

(6) AT 2 /4 - T/2 - 1/4A £ w (0,T) s= AT 2 /4 for all T ;> 0.

Now it remains to ponder whether w (0,T) itself is convex in T,

Even if this were so, it would not then follow that the

inequality in (6) would be preserved under differentiation. It

seems prudent to forego rigor for convenience and heurism. Since
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the approximation in (6) results only from a possible excess over

the boundary at t , it would seem that when this excess is small

relative to AT, that w (0,T) « AT 2 /4 is a close approximation.

In fact, for T large, AT 2 /4 dominates the left hand side of

(6) . In any event we should have

(7) -w|(t,T) a A(T-t)/2.

If we "approximate" w (t,T) by the left hand side of (6), then

(8) -w{(t,T) « [A(T-t) - l]/2

Since the three stage (three dispatch) problem depends on

which boundary is used in the two stage problem, we would do well

to show that the difference between the upper and lower approxi-

mations of w'(t,T) is "small." In fact we shall show by induc-

tion that the differences between successive upper and lower

approximations of w'(t,T) are for all n bounded by 1. Suppose

that

(9) w n (0,T) :» AT 2 /2n - 3 .T + B' for some n,
n-1 n-1 n-1 ?

with £ £ . * 1. Thus (9) holds for n = 1,2, with 3n = &A = °
n—

I

U u

and $
1

= 1/2, $' = 1/4A . Thus the "lower approximation" to

-w' At,T) is
n-1

(10) A(T-t)/n - B^
n—

1
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1~h

and constitutes the boundary at the n stage. Since we use (10)

to define the n stage dispatching time X , we must investigate

w (0,T). We proceed to find a lower bound for w (0,T):
n n

(11) w (0,T) :> E{[X(T-t )/n - 6 ,
- 1]t /2 + w . (0,T-t )}

n n n—1 n n—1 n

Since (N(t) - Xt} is a zero mean martingale, a simple martingale

systems theorem yields

(12) XEt = EN(t ) £ EX(T-t )/n - 3 , + 1
n n n n-i

whence

(13) Ex £ T/(n+l) + n(l-B -)/X(n+l)
n n—

1

Combining (9) with (11), (13) and much tedious algebra yields

(14) w (0,T) £ XT 2 /2(n+l) - 6 T + &'
n n n

where

(15) 3n
=

6n-l
+ (1_6

n-l
)/(n+1) f °r n = 1 > 2""

It may be seen from (15) that { B } is an increasing sequence
n

bounded by 1. The conclusion we may draw from this is that for

XT/n fairly "large" it will not matter a great deal which approxi-

mations are used. Thus, an approximate n-optimal policy is given

by

(16) t. = inf{t:N(t) ;> X(T-t)/j} for j = 1,2,. . . ,n
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See Figure 1. This same policy is "almost" optimal under the partial

dispatching of section 3.

As a final comment, we mention that if {N(t), £ t £ T}

is nonhomogeneous Poisson with continuous intensity function X(t),

that

w
Q
(t,T) = A(u) (T-u)du

whence -w'(t,T) = X(t)(T-t). Thus if X(t)(T-t) is nonincreasing,

t. = inf{t:N(t) ;> A(t)(T-t)} is 1-optimal. The problem of finding

the K-optimal policy for K > 1 is more difficult and will not

be pursued.

Figure 1. The approximate K-optimal policy for Poisson

arrivals and K = 3.
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5. The Decision Variable K .

We begin this section by discussing the simple problem

where the dispatcher has exactly one unit which he has the option

not to dispatch if he chooses. Thus, K may be either or 1.

The assumptions of Theorem 1 are assumed throughout.

Consider the general stochastic model of section 3. If the

dispatcher is contemplating use of his single unit, Theorem 1 says

that he should dispatch at time t = inf{t:N(t) 2: -w'(t,T)>.

Suppose, however, that at time t.. he reconsiders his decision

and compares the expected losses associated with dispatching at

x, and not dispatching at all in (0,T). Clearly, he should not

dispatch at t, if the former is greater; that is, if

C
d
+ C

w * W (V T) * C
w
N(t)(T-t) + C

w ' V T 1' T)

or equivalently

(17) N(t) < c,/(T-t)c
a w

Evidently, should an unexpected throng arrive shortly thereafter,

the dispatcher could again reconsider. It then follows that the

optimal policy is:

(i) Dispatch at x = inf{t:N(t) 2. max[-w^(t,T) ,cj (T-t) ] ,

(18) (ii) Do not dispatch at all if N(t) < max[-w^(t,T) ,cj (T-t) ]

for all £ t £ T.
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When {N(t), t ^ 0} is a Poisson Process with rate A, then the

"dispatching region" is shown in Figure 2.

Figure 2: Dispatch when process enters shaded region.
Otherwise do not dispatch.

We now define c.(t,T) as the optimal total expected cost,

with j available dispatches, of all arrivals in (t,T). The

difference here from section 3, is that we have the option to use

a subset of these j dispatches. In principle, we would proceed

as follows

:

(i) Determine c (t,T) from (18).

(19)

(ii) For the 2 stage problem, wait until t , as given

by Theorem 1, and then dispatch only if

c, < N(t)E. (t -t) • c .

d t I w
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The iteration continues, but tells us nothing of how to

compute E[t |e tJ, This is a complex problem as it involves

investigation of first passage times to boundaries of a very

intractable nature. We do not enter into such a discussion here.
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6. Dispatching a Birth-Death Process .

Suppose {N(t), £ t S* T} is a spatially homogeneous

birth-death process, with state space consisting of all integers

both positive and negative, and with birth parameter A and death

parameter y. Actually this model allows for a negative queue size,

and will serve only as an approximation to the usual birth-death

process with reflecting barrier at 0. Thus we allow the possi-

bility of dispatching a negative queue although this is never

optimal. The reason we do this is that for the latter process,

the derivations of w.(t,T) are intractable by virtue of the

impenetrable barrier at the origin. However, we should note that

if A >> y, which in queueing parlance means that the traffic

intensity p >> 1, then the dispatching rule should be "very

nearly" optimal. In fact, it is this author's conjecture that the

same rule is optimal for both problems.

We can no longer use Theorem 1 because we are not in the

monotone case. This is so because {N(t)} is not nonincreasing.

However, intuition suggests that because the "drift" of the process

is A - y >0, we ought to use the same type rule as that dictated

by Theorem 1.

Consider then the rule:

T- = min[T, inf{t:N(t) £ (A-y)(T-t)}]
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Tk2.on.rn 2 . Von. tkz. b-Outh-dnatk pn.oc.ZM mentioned at the

beginning o{, thti 6e.cJU.on x u> 1 -optimal.

Proof . Let a be any policy. We shall show that x.. is good as

a and hence optimal. If there is any t < T with £ N(t)< (A-y) (T-t)

where a tells us to dispatch, then let us modify a by choosing

instead to dispatch at t + [(A-y) (T-t) - N(t)]/(A-y) = t + h .

If N(t) < 0, we shall dispatch at T (i.e. h = T - t) . Call

this modified policy a
1

and note that a.. is as good as a since

(A-y)(T-t) 2 /2 ^ N(t) • h
x
+ (A-y)h2 /2 + (A-y) (T-t-t^) 2 /2

.

Since N(t) may go ap or down we distinguish between two cases.

Let

A = {oo:x
1
S t + h } with A = {w.x, > t + h }

Naturally P(A^) = if this t is such that N(t) < 0. On A
,

t + h = x
n
+6 where 6 is nonnegative and random. Since the

expected wait from x.. is at least

N(x
1

) • 6 + (A-y)(T-x
1
-<S)

2 /2 > (A-y ) (T-x^ 2^

,

we conclude that on A we should dispatch at x, . Thus on A.. ,

c
x, is as good as a, . On A , if it is nonempty, we have

t + h < t so that N(t+h ) < (A-y) (T-t-h ) . Recall, however,

that a, tells us to dispatch at t + h . Let us modify a
1

by

choosing to dispatch at
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t + h
1
+ h

2
= t + h

±
+ [(A-M)(T-t-h

1
) - NCt+h^J/a-y).

If N(t+h ) < 0, let h = T - t - h . Call this policy a and

note that a is as good as a . Such an iterative scheme will

lead us eventually to a sequence of nested sets

A? e {ukt > t + h, + ... + h.}.
J 1 1 J

For some j N(t+h,+. . .+h. n ) < whence P[A.l = in which

case having shown that i. is as good as a. on A.,A„i...,A.

proves that t is as good as a.

q.e.d,



19

REFERENCES

[1] Chow, Y. S. and H. Robbins, (1961) "A Martingale Systems
Theorem and Applications," VH.OC,. FouAth BoAkeZcy Symposium
on Matk. Stat, and Piob., Univ. of Calif. Press.

[2] Newell, G. F. (1971) "Dispatching Policies for a Transporta-
tion Route," TsianApositation Science, 5, 91-105.

[3] Ross, S. (1969) "Optimal Dispatching of a Poisson Process,"
J. kppl. Vtiob., 6, 692-699.

[4] Ross, S. (1971) "Infinitesimal Look-Ahead Stopping Rules,"
Ann. oh Math. Stat., 42, 297-303.



20

INITIAL DISTRIBUTION LIST

Defense Documentation Center (DDC) 20
Cameron Station
Alexandria, Virginia 22314

Dean C. E. Menneken (Code 023 2

Dean of Research Administration
Naval Postgraduate School
Monterey, California 93940

Library, Code 0212 2

Naval Postgraduate School
Monterey, California 93940

Professor Donald P. Gaver (Code 55Gv) 1

Naval Postgraduate School
Monterey, California 93940

Professor Glenn Stoops (Code 53Zt) 1

Naval Postgraduate School
Monterey, California 93940

Professor Peter Wang (Code 53Wg) 1

Naval Postgraduate School
Monterey, California 93940

Professor Herb Solomon 1

Department of Statistics
Stanford University
Stanford, California 94305

Department of Transportation 5

Bureau of Public Roads
Federal Highway Administration
425 13th Street N.W.

Washington, D. C. 20004

Dr. Edward Brill (Code 55Zg) 15

Naval Postgraduate School
Monterey, California 93940

Dr. Bill Mitchell 1

California State College
Hayward, California 94542



21

Professor Paul Milch (Code 55Mh)
Naval Postgraduate School
Monterey, California 93940

Professor Kneale Marshall (Code 55Mt)
Naval Postgraduate School
Monterey, California 93940

Professor Richard Butterworth (Code 55Bd)
Naval Postgraduate School
Monterey, California 93940

Professor Sidney Yackowitz
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

Professor Bruno Shubert (Code 55Sy)

Naval Postgraduate School
Monterey, California 93940

Professor Hans Zweig (Code 55Zw)

Naval Postgraduate School
Monterey, California 93940

Professor Peter Zehna (Code 55Ze)

Naval Postgraduate School
Monterey, California 93940

Professor F. R. Richards (Code 55Rh)

Naval Postgraduate School
Monterey, California 93940





UNCLASSIFIED
Security Clinlficstlon 22

DOCUMENT CONTROL DATA -R&D
(Security claialtlratlon of till*, body et abitract and Indanlng annotation muat ba antarad whan tha ovatall tapott la elaaalllad)

I ORIGINATING *C Ti vi ty (Corporal* author)

Naval Postgraduate School
Monterey, California

2a. REPORT SECURITY C L AID W\ C * TIOI'

Unclassified
26. aROUP

3 NIPORT TITLI

Some Finite Horizon Dispatching Problems

4. OKSCRiRTivK NOTIl (Typa of rapott and.lnelualva dataa)

Technical Report
• AuTHOR(t) (Flral nama, mlddla Initial, laat nam*)

Edward A. Brill

*. RKRORT D»TI

June 1971

7a. TOTAL NO. OF PA9II

25

?b. NO. OF KIPI

• «. CONTRACT OR ORANT NO.

6. RROJKCT NO.

M. ORIGINATOR'S RKRORT NUMIIRIH

•b. OTHER RCRORT NOIli (Any othar numbara that may ba maataytad
thla rapott)

10. DISTRIBUTION STATKMBNT

Approved for public release; distribution unlimited,

It. SUPPLEMENTARY NOTIl

S. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

An arrival process {N(t), i t i T) is to be dispatched one

or more times in the time interval (0,T). The problem is to determine

the optimal number of dispatches K given there are n available and

to determine sequentially the epochs of dispatch x-,..., T„. There are

two trade off costs c and c,, which are respectively the cost per

unit time of a waiting
W
customer and the cost of dispatching a single

unit. A general result is found which gives us optimal t,,...,t

for fixed K (i.e. the K-optimal policy) under certain regularity

conditions. This is used to obtain suboptimal policies for multiple

dispatching of a Poisson process and single dispatching of a birth-

death process. Applications to problems in transportation, repair

facilities and insect-control are indicated.

DD7r..1473 «'**»
t/N 0101»t07*ff11

UNCLASSIFIED

A-I140I



UNCLASSIFIED
Stvufity Classification 23

KIV WO RDI

Dispatch

Optimal stopping

Monotone case

Dynamic programming

Poisson process

Birth-Death process

DD /Jr..1473 back)
J

UNCLASSIFIED
S/N 0101 -807-6821 Security Classification A-31 409



U 139673



llllSSlM

N°X LI8RARY
"
RESEARCH REpORTS

5 6853 01058203 4


