
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1993-09

Usefulness of compile-time restructuring of
large grain data flow programs in
throughput-critical applications

Cross, David M.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/26318

Downloaded from NPS Archive: Calhoun

-HOG?% ^943-5101

Approved for public release; distribution is unlimited.

Usefulness of Compile-Time Restructuring of Large Grain Data Flow Programs

in Throughput-Critical Applications

by

David M. Cross

Captain, United States Army
B.S££., Rensselaer Polytechnic Institute, 1986

MSBA., Boston University, 1989

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1993

ECURfTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMEm-ATION PAGE
la. REPORT SECURITY CLASSIFICATION ITNfl ASSTFTFD

2a SECURITY CLASSIFICATION AUTHORITY

lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution is unlimited.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Department ofHectncar and Computer

Engineering, Naval Postgraduate School

OFFICE SYMBOL
Of applicable)

EC

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5121

7b. ADDRESS (City, State, and ZIP Code)

Monterey. CA 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER8b. Office symbOl
fif applicable)

10. SOURCE OF FUNDING NUMBERS"8c. ADDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT I
ACCESSION i

3

1 1 . TITLE (Include Security Classification)

USEFULNESS OF COMPILE-TTME RESTRUCTURING OF LARGE GRAIN DATA FLOW PROGRAMS IN THROUGHPUT-CRITICAL APPLICATIONS (U)

12. PERSONAL AUTHOR(S)
Cross. DavidM

13a. tYpEj>F REPORT
Master s Thesis

15. PAGE COUNT13D.TIMEOOVERED

FROM 9/TO_
9/93 DATE OF REPORT (Year, Month, Day)14, DATE OF

September

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government

17. COSATl CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Revolving Cylinder (RQ. Start-After-Finish (SAF), Start-After-Start (SAS),

Large Grain Data Flow (LGDF) Systems

:
1 9. ABSTRACT (Continue on reverse if necessary and idenbjybyblock number)

In this thesis. Large Grain Data Flow (LGDF) representation of parallelism is applied to throughput-critical applications

process periodically arriving data. The applications are represented by directed acyclic graphs in which a vertex represents an indivisu

oode program execution and an arc represents data flow from its source node to sink node. The machine and graph parameters are assund

to be such that the time to transfer one unit of data is comparable to the time to execute one operation at a processor. The marhinp. mod i

consists of a set of processors connected to a set ofmemory modules by a cross-bar interconnection network. Execution ofLGDF graphs o

such machines either requires a run-time mechanism to dispatch executable nodes on available processors or a compile-time static schedule I

of nodes to processors. The former approach, although flexible and robust, suffers from contention -related overhead and the latter, althoi

;

capable ofeliminating contention, is rigid and computationally intensive.

It is shown by simulation that throughput can be improved when compile-time graph restructuring is coupled with simple fu

come-first-serve dispatching. The restructuring is based on selectively adding control dependencies between graph nodes. This techniqi.

called the revolving cylinder analysis, is shown to be an effective framework for achieving communication / computation overlap id

reducing memory contention.

-
20 DISTRIBUTION/AVAILABILrTY OF ABSTRACT
Q UNCLASSIFIED/UNLIMITED fj SAME AS RPT. [J DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a.hlAMEOE RESPONSIBLE INDIVIDUAL

%zft§im
(indudeAr6aCode) 22cescJCE SYMBOL

)D FORM 1473, 84 MAR APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Abstract

In this thesis, Large Grain Data Flow (LGDF) representation of parallelism is

applied to throughput-critical applications that process periodically arriving data. The

applications are represented by directed acyclic graphs in which a vertex represents an

indivisible node program execution and an arc represents data flow from its source node to

sink node. The machine and graph parameters are assumed to be such that the time to

transfer one unit of data is comparable to the time to execute one operation at a processor.

The machine model consists of a set of processors connected to a set of memory modules

by a cross-bar interconnection network. Execution of LGDF graphs on such machines

either requires a run-time mechanism to dispatch executable nodes on available processors

or a compile-time static scheduling of nodes to processors. The former approach, although

flexible and robust, suffers from contention-related overhead and the latter, although

capable of eliminating contention, is rigid and computationally intensive.

It is shown by simulation that throughput can be improved when compile-time

graph restructuring is coupled with simple first-come-first-serve dispatching. The

restructuring is based on selectively adding control dependencies between graph nodes.

This technique, called the revolving cylinder analysis, is shown to be an effective

framework for achieving communication / computation overlap and reducing memory

contention.

.

TABLE OF CONTENTS

I. INTRODUCTION 1

A. THESIS SCOPE AND CONTRIBUTION 2

B. THESIS ORGANIZATION 3

C. ADDITIONAL RESEARCH 3

H. THE LARGE GRAIN DATA FLOW MODEL 4

A. SOFTWARE MODEL 4

1. Terms 5

2. Nodes 5

3. Queues 6

4. System Input Nodes and System Input Queues 8

5. System Output Nodes and System Output Queues 9

6. Synchronization Arcs 9

B. HARDWARE MODEL 10

1. Arithmetic Processor 10

2. Input/Output Processor 11

3. Scheduler 11

4. Global Memory Module 11

5. Data Transfer Network 11

C. OVERALL SYSTEM MODEL 12

1. Node Perspective 12

2. Processor Perspective 16

iv

DUDLEY KNOX LIBRARY
GRADUATE SOHOOi
I

m. SCHEDULING TECHNIQUES 19

A. TERMS 19

1. Throughput 19

2. Response Time 19

B. COMMUNICATION / COMPUTATION OVERLAP 19

1. Perfect Communication / Computation Overlap 20

2. Good Communication / Computation Overlap 21

3. Poor Communication / Computation Overlap 22

4. Realistic Communication / Computation Overlap 22

5. Revised Finite State Machine 23

C. CONTENTION 25

1. Queue Contention 25

2. Memory Contention 25

D. FIRST-COME-FIRST-SERVE SCHEDULING TECHNIQUE 25

1. Advantages 25

2. Disadvantages 26

3. Comments 26

E. REVOLVING CYLINDER SCHEDULING TECHNIQUE 27

1. Index Assignment and Synchronization Arcs 27

2. Advantages 30

3. Disadvantages 30

4. Alternate Revolving Cylinder Scheduling 31

IV. RESULTS AND ANALYSIS 32

A. INITIAL TRIALS ON TEST GRAPH 32

B. TESTS ON AN ACTUAL APPLICATION GRAPH 39

C. ADDITIONAL RESULTS 41

V. CONCLUSION 42

A. EXPANDED TESTING 42

B. FUTURE RESEARCH 43

LIST OF REFERENCES 44

INITIAL DISTRIBUTION LIST 46

LIST OF TABLES

Table 2.1 PARAMETER DEFINITIONS 14

Table 2.2 PHASE TIME DEFINITIONS 15

Table 2.3 STATE DIAGRAM CODES 17

Table 3.1 STATE DIAGRAM CODES 23

LIST OF FIGURES

Figure 2.1 Data Flow Graph Example 4

Figure 2.2 Graphical Description of Queue Parameters 8

Figure 2.3 Large Grain Data Flow Hardware Model 10

Figure 2.4 Time on Processor Representation 16

Figure 2.5 Processor Internal View State Diagram 18

Figure 2.6 Processor External View State Diagram 18

Figure 3.1 Perfect Communication / Computation Overlap 20

Figure 3.2 Good Communication / Computation Overlap 21

Figure 3.3 Poor Communication / Computation Overlap 22

Figure 3.4 Expanded Processor State Diagram 24

Figure 3.5 Data Row Graph and Processor Assignment 28

Figure 4.1 Program Usage to Produce Results 32

Figure 4.2 Test Data Flow Graph 33

Figure 4.3 Test Graph on 3 Processors (Contention Free) 34

Figure 4.4 Test Graph on 3 Processors (with Contention) 35

Figure 4.5 Test Graph on 4 Processors (with Contention) 35

Figure 4.6 Test Graph on 5 Processors (with Contention) 36

Figure 4.7 FCFS Contention versus No Contention 37

Figure 4.8 RC Contention versus No Contention 38

Figure 4.9 Throughput Decrease Due to Contention for FCFS and RC 39

Figure 4.10 Active Sonobuoy Graph 40

VUl

L INTRODUCTION

The modern military depends on real-time digital signal processing applications (such as radar and

sonar). These applications generate huge amounts of data continuously. Most of the data is of a time-critical

nature which must be processed quickly and accurately. Advances in computer technology have made itmuch

easier to analyze this data. However, the signal processing applications are constantly improving also,

generating even more data more quickly.

Large Grain Data Row (LGDF) graphs can be used to represent these applications. Data flow graphs

not only describe the dependencies between different parts of the computation required in an application, but

also provide built-in scheduling and synchronization. For example, on a hypothetical system with no

communication cost and an unlimited number of processors, nodes can synchronize by sending data and a

node can be scheduled as soon as all the required data is present at its input. Due to the generality of this

representation, it can be used to specify parallelism at the instruction level [Ref. 1] as well as at the task level

[Ref. 2]. The theoretical foundation for the consistency of such representations has been well studied [Ref. 3,

Ref. 4].

In practical implementations of this paradigm, the machine must provide mechanisms to manage the

data that flows through the graph and to capture the intrinsic scheduling and synchronizatioa These

mechanisms, typically operating at run-time, result in overhead that leads to suboptimal performance. The

amount of overhead depends critically on the granularity of the parallelism expressed by the graph and on

whether the computations have conditionals and recursion. A direct implementation in hardware of the data

flow paradigm for general applications results in unmanageable overheat [Ref. 1, Ref. 5].

Any data flow implementation must perform buffering and fetching of data, allocation of graph nodes

to processors, their ordering on each, and the exact times at which they are scheduled If all the related

decisions are done at run-time, the efficiency of the implementation suffers. The overhead can be reduced

effectively by using the node and arc attributes of the data flow graph at compile-time to simplify the run-

time management. Based on which decisions are made at compile-time and which ones are made at run-time,

data flow implementations can be classified over a spectrum that ranges from fully static to fully dynamic

[Ref. 6]. While dynamic implementations have more overhead, they are more flexible and are easier to

implement. They also degrade gracefully in the event of individual processor malfunction. On the other hand,

static implementations are more efficient and lead to predictable performance which is crucial to real-time

systems. However, they are difficult to realize, are inflexible, and do not degrade gracefully. Their

effectiveness is determined by how accurately the computational requirements of the application are known.

This is typically a difficult problem and its solution of using the worst-case estimate can result in large

inefficiencies.

Therefore, real-time systems must strike a careful balance between the compile-time effort and run-time

complexity to get the desired and guaranteed performance. For classes of applications, such as signal

processing, such balance can be obtained by exploiting two properties of the computations required, the

availability of a priori knowledge of the amount of data produced and consumed and negligible use of

conditionals and recursion. When the amounts of data produced and consumed by the nodes of a data flow

graph are known exactly, the applications are called synchronous data flow applications [Ref. 2]. When the

data arrives periodically, they have been classified as pipelined function-parallel computations [Ref. 7]. In

real-time signal processing applications, the trade-off between compile-time and run-time has an additional

dimension because of the periodic arrival of data. When external data arrives periodically, the intrinsic non-

determinism of data flow execution results in unpredictable program behavior. As a result, processed data

arrives unpredictably leading to the possibility of intolerable delays and insufficient buffer space, especially

under high loads.

A. THESIS SCOPE AND CONTRIBUTION

The focus of this work is on compile-time mechanisms for controlling data flow execution. A technique,

called revolving cylinder (RQ analysis originally introduced in [Ref. 8], in which, instead of generating

information, such as schedules, to control allocation or ordering on processors at run-time, a new data flow

graph is obtained at compile-time which gives a better throughput and behaves more predictably than the old

graph under the same run-time mechanism The key idea in restructuring based on RC analysis is that

inserting dependencies in the graph can produce a graph with better performance. This idea can be traced back

to algorithms for overlapping complex operations on pipelined processors [Ref. 9]. This restructuring

selectively changes the conditions when a node will enter the list of executable nodes; however, choosing the

processor to schedule it on is left to the run-time dispatcher. This enables the actual scheduling to remain

dynamic keeping the run-time overhead low.

This thesis defines a model for a Large Grain Data Flow system, which is loosely based on the

Department of the Navy AN/UYS-2 Digital Signal Processing System (also known as the Enhanced Modular

Signal Processor, EMSP) [Ref. 10]. Baseline results will be generated to show that it is possible to improve

the system throughput over that offered by first-come-first-serve (FCFS) scheduling by compile-time

restructuring of the LGDF programs following the RC technique. The utility of several computer programs

designed to analyze this LGDF model and FCFS and RC scheduling will be verified with the generation of

the results.

B. THESIS ORGANIZATION

Chapter II describes fully the LGDF system model. Included are descriptions of the hardware and

software, along with the joint hardware/software view. Chapter m is a description of the FCFS and RC

scheduling techniques. Chapter IV is an analysis of the data generated for the LGDF model using all the

scheduling techniques presented. Chapter V summarizes the results and presents possible topics for future

study.

C. ADDITIONAL RESEARCH

Additional results and further analysis of the concepts in this thesis are included in [Ref. 11]. The

computer programs used to generate the results in this thesis are described in detail with complete examples

and program listings in [Ref. 12].

H. THE LARGE GRAIN DATA FLOW MODEL

A Large Grain Data Flow (referred to as LGDF) computer system can be defined in terms of the two

major categories which are used to define most computer systems, hardware and software.

A. SOFTWARE MODEL

The software model of a data flow system is usually visualized as a graph. There are two primary

elements to this data flow graph, nodes and queues. There are five secondary elements to the graph, system

input nodes, system output nodes, system input queues, system output queues, and synchronization arcs.

These secondary elements are necessary for the computer program which models this system. Figure 2.1 is a

simple data flow graph example showing the graph symbols. Note that there are no special symbols for system

input and output queues, they are determined by their attachment to the system input and output nodes.

LEGEND:

NODE

SYSTEM
INPUT NODE
and

SYSTEM
INPUT QUEUE

SYSTEM
OUTPUT QUEUE
and

SYSTEM
OUTPUT NODE

QUEUE

Figure 2.1. Data Flow Graph Example

1. Terms

There are several important terms which will be defined here.

a. Cycle

The term 'cycle' is used to describe an arbitrary time unit. It could represent any unit of time,

but is usually interpreted as a microsecond.

b. Word

The term 'word' is used to describe an arbitrary data element. In the model, it could represent

any unit of data size, but is usually interpreted as a byte.

c. Processing

'Processing' refers to all activities performed by a node on a processor. This includes actual

node execution, the transfer of information between the processor and memory (both instruction and data),

and any latency.

d. Execution

'Execution' refers only to the actual execution of the node on a processor to accomplish a

given task It does not include any memory operations or latency involved with those operations.

e. Input and Output

The terms 'input' and 'output' are used in many varied contexts. To eliminate the confusion,

any reference to the beginning and end points into the graph are referred to as 'system' inputs and outputs.

2. Nodes

Nodes represent software modules which perform a specific function. This module could be a

program or a subroutine or a function. What is inside the node is not important to model the LGDF system.

The model is only concerned with the length of time it will take the node to complete its given operation and

the amount of data input into the node and output from the node.

In this model, a node is characterized by several parameters.

a. Execution Time

The execution time (in cycles) is the time required by the node to complete its function once

the data and the node instructions have been loaded onto a specific processor.

b. Setup Time

The setup time (in cycles) represents a constant latency before a node is able to access any

memory modules after being assigned to a processor.

c. Breakdown Time

The breakdown time (in cycles) represents a constant latency for the node that has completed

memory operations before the processor is made available in the free processor pool.

d. Instruction Size

The instruction size is listed in words. The instruction size is used to determine how long it

will take to load the code segment represented by the node to a processor for execution. This time is dependent

on the data transfer rate of the hardware.

e. Processor Type

The processor type is used to specify nodes which must use a specific type of processor.

3. Queues

Queues are used to represent the flow of data. Each queue connects a pair ofnodes, and the amount

of data transferred between the nodes is identified. Data is transferred from the node at the tail of the queue

(named the source node) to the node at the head of the queue (named the sink node).

In this model, a queue is characterized by several parameters.

a. ThresholdAmount

The threshold amount is the amount of data (in words) required to be on the queue for the

sink node to begin execution.

h. Produce Amount

The produce amount is the amount of data (in wards) added to the queue upon completion of

one execution instance of the source node.

c. Consume Amount

The consume amount is the amount of data (in words) removed from the queue upon the start

of one execution instance of the sink node.

d. Write Amount

The write amount is the amount of data (in words) written from the source node to memory

upon completion of one execution instance.

e. ReadAmount

The read amount is the amount of data (in words) read by the sink node from memory prior

to the beginning of one execution instance.

/. Capacity

The capacity is the total amount of data (in words) which can be stored on the queue. If the

capacity of the queue would be exceeded, a source node cannot produce any more data until the sink node

consumes data to open space on the queue.

g. Initial Length

The initial length is the amount of data (in words) is placed on the queue at system start-up.

h. Relationship among the Parameters

There are several important distinctions to be made between the parameters. It would appear

that the produce and write amounts are equivalent and the consume and read amounts are equivalent. For most

data queues, the produce and write amounts would be the same quantity as would consume and read amounts.

However, the functions performed are distinctly different. The read and write amounts represent actual data

transfers required between a processor and memory. These transfers require a large amount of time to

complete. The produce and consume amounts represent a control function within the scheduler. No data is

actually transferred but the queue length recorded by the scheduler is adjusted. The difference would become

more obvious when synchronization arcs are discussed.

There is one major requirement to be met by the parameters. This requirement is that the

capacity of the queue must be greater than or equal to the threshold. If this is not the case, then there could

never be enough data on the queue to cause the sink node to trigger.

For most data queues, the threshold and consume amounts will be the same. This means that

the sink node requires a set amount of data to trigger. When this threshold is reached, the sink node will

consume that much data in execution

In many cases, the produce amount will also be the same as the threshold and consume

amounts. This represents a linear program. The source node produces the exact amount of data which is

required and used by the sink node. However, this is not always the case. If the produce amount is less than

the threshold, then the source node must execute multiple times before triggering the sink node. If the produce

amount is greater than the consume amount, the sink node must execute multiple times upon completion of

the source node.

Figure 2.2 is a graphical representation of the queue parameters.

SOURCE
NODE

o
THRESHOLD

TAIL QUEUE

CAPACITY

WRITE

PRODUCE

SINK
NODE

HEAD /^\—*o
• • •

INITIAL LENGTH

READ

CONSUME

THRESHOLD

Figure 2.2. Graphical Description of Queue Parameters

4. System Input Nodes and System Input Queues

System input nodes are necessary to simulate multiple execution instances of the graph. Upon

initiation of a graph instance, this node is activated. System input nodes have the same parameters as nodes

as defined above. However, system input nodes will operate on a special input/output processor. The system

input node is the sink node of an external queue. This external queue does not really exist, but functions as a

queue with infinite capacity and a threshold and consume amounts of one data unit. When the graph instance

is initiated, one data unit is produced onto this queue. The output queues from the system input nodes are

designated system input queues. They function exacdy as the data queues described above. However the data

written to them comes from an I/O processor.

5. System Output Nodes and System Output Queues

System output nodes are necessary to simulate multiple execution instances of the graph. Once all

the queues into this node have exceeded threshold, this node is activated System output nodes have the same

parameters as nodes as defined above. However, system output nodes will operate on a special input/output

processor. The system output node is the source node of an inherent queue. This inherent queue does note

really exist, but functions as queue with infinite capacity. As this system output node is executed, it can be

assumed that all input queues to this node transfer the data equal to the consume amount to the outside as data

output The input queues to the system output nodes are designated system output queues. They function

exactly as the data queues described above. However the data read by them is read by an I/O processor.

6. Synchronization Arcs

Synchronization arcs are a special subclass of the queues described above. However, they function

slightly differendy. They represent control signals which will be described later. Due to the control nature of

these arcs, the produce and consume amounts are generally one, representing a counter. However, the read

and write amounts will always be zero. This is because the synchronization arcs reside only in the scheduler

memory, and no data is actually ever transferred to a processor. The threshold and initial length amounts are

highly variable depending upon the RC analysis and used to trigger nodes in a specific order.

B. HARDWARE MODEL

The Large Grain Data Flow system is a multiprocessor system. The major component of the system is

the arithmetic processor. Additional components modeled include the input/output processor, global memory

modules, the scheduler, and the data transfer network. Figure 2.3 is a diagram of the LGDF hardware model.

DATA TRANSFER NETWORK

IOP

EXTERNAL
LINK

AP AP

GM

GM

GM

AP

IOP - INPUT / OUTPUT PROCESSOR
AP - ARITHMETIC PROCESSOR
GM - GLOBAL MEMORY MODULE

SCHEDULER

MEM

Figure 2.3. Large Grain Data Flow Hardware Model

1. Arithmetic Processor

The arithmetic processors in this model consist of two units, the execution unit and the control

unit. The nodes complete their tasks on the execution unit All communications and setup and breakdown

latency are handled by the control unit Two nodes can be processing on a given processor during a given

time. One node can be doing a task on the execution unit. The other node can be on the control unit, either

preparing to execute when the execution unit is available, or removing itself from the processor and writing

results when finished execution The arithmetic processors are assumed to be sophisticated, able to control

many instructions and manipulate large amounts of data on the chip. This means that no data is transferred

during the processing of a node, only before and after execution.

10

2. Input/Output Processor

The input/output processor acts no differently from the arithmetic processors described above.

However, it only handles the system input and output nodes and system input and output queues. Data is

transferred into and out of the system through this processor. The input/output processor does not factor into

utilization statistics.

3. Scheduler

The scheduler is the unit which tracks the entire system state. It also acts as a memory controller,

maintaining a table of all the instruction and data locations, tracking the queue levels to decide when to trigger

nodes. It is assumed the scheduler has sufficient internal memory to track all of the system information. A

scheduler latency time, expressed in cycles, can be assigned to abstractly represent the time it takes the

scheduler to change the state of its local memory when the amounts on a queue are adjusted.

4. Global Memory Module

The system main memory is modeled as a series of modules. These modules are considered global

since they can be accessed by any processor. A processor must obtain control over the appropriate memory

module to access a queue for either a read or write operation, or to load a node instructioa This information

is supplied to the processor by the scheduler. Multiple module accesses can progress simultaneously;

however, at any time, only a single processor can access a given memory module. The size of the memory is

assumed large enough to meet any requirements. Nodes and queues can be assigned to specific memory

modules by the user or arbitrarily by the scheduler.

5. Data Transfer Network

The data transfer network is an abstraction in this model. It is assumed that all transactions

between all current processor and memory module pairings can proceed No transaction will be delayed

because the network is busy. Thus, the data transfer network acts as a full crossbar switching network. There

is a constant data transfer time to transfer one word of data between the processor and memory. This is known

as the word communications time expressed in cycles per word.

C. OVERALL SYSTEM MODEL

Sections A and B above describe the software and hardware specifics. To define the overall system, the

interaction of the software and the hardware must be considered. This can best be displayed by considering

the software and hardware perspectives of what is actually happening. The node and the processor are the

elements chosen for these perspectives.

1. Node Perspective

The node is the primary software element. An LGDF system is designed so that a node, when all

the data is available, can be assigned to any available processor of the type that the node requires. A ready list

is maintained of all the nodes which are ready to execute.

The scheduling unit knows the structure of the entire data flow graph and can track the status of

all nodes and queues. These events are between the node and the scheduler Check if Data is Available, Check

if Data Space is Available, Check if Processor is Available. The rest of the events are between the node and

the assigned processor.

a. Check ifData is Available

The scheduling unit checks each queue which has the node as a sink. If all of the queues

which enter the node are above threshold, then the node is 'input' ready.

b. Check ifData Space is A vailable

The scheduling unit checks each queue which has the node as a source. If all the queues have

enough space below capacity to receive the data produced when the node completes, then the node is 'output'

ready. The node is now assigned to the node ready list.

c. Check ifProcessor isA vailable

The node ready list is a Rrst-Come-First-Serve wait list The scheduler moves along the list

from head to tail and checks for each node in the list if the proper type of processor is available. If a processor

of the proper type for the node is available, the node is assigned to that processor.

d. Setup

The node begins preparation for execution as specified in the node setup latency parameter

(in cycles). The node is utilizing the processor control unit.

12

e. Load Instruction

The node loads the code segment from memory to the control unit. This is specified by the

node instruction length parameter (in words) and the word communication time (cycles per word) along with

any delay in accessing the memory unit where the instructions reside.

/. Read Data I Consume Data

The node proceeds to read the data from the appropriate queues, up to the specified read

amount parameter for the queues. The scheduler simultaneously consumes data from the queues up to the

specified consume amount parameter. The time spent for each queue is specified by the read parameter (in

words) and the word communication time (cycles per word), along with the scheduler latency time (in cycles).

Additionally, delays could result if the memory unit where the data is stored is currently being used by another

processor. This event is not complete until the information for all input queues has been read and/or

consumed.

g. Checkfor Execution Unit Availability

Once the data queues are read, the node is ready for execution. However, the execution unit

might be in use by another node. Thus, the node may be blocked, waiting on the execution unit. Once the

execution unit becomes available, the node will switch from the control unit to the execution unit

h. Execute

The node performs execution as specified by the node execution time parameter (in cycles).

i. Checkfor Control UnitA vaildbiUty

Once the node has completed execution, it is ready to output the results and remove itself

from the processor. However, the control unit might be in use by another node. Thus, the node may be

blocked, waiting on the control unit. Once the control unit becomes available, the node will switch from the

execution unit to the control unit.

j. Write Data I Produce Data

The node proceeds to write the data to the appropriate queues, up to the specified write

amount parameter for the queues. The scheduler simultaneously produces data to the queues up to the

specified produce amount parameter. The time spent for each queue is specified by the write parameter (in

words) and the word communication time (cycles per word), along with the scheduler latency time (in cycles).

13

Additionally, delays could result if the memory unit where the data is stored is currently being used by another

processor. This event is not completed until the information for all output queues has been written and/or

produced.

k. Breakdown

The node removes itself from the processor as specified by the node breakdown latency

parameter (in cycles). Upon completion of breakdown, the node is disassociated from the processor. This

completes one entire iteration for a node.

/. Summary

Table 2.1 provides a summary of the above listed events and the proper calculation of then-

processing times. The term 'delay' refers to stalls caused by memory conflicts, the inability to access a queue

or instruction in memory due to that memory module being used by another node.

Table 2.1: PARAMETER DEFINITIONS

Code Definition / Time

ExecutionTime Node Execution Time Parameter (in cycles)

SetupTime Node Setup Latency Time Parameter (in cycles)

BreakdownTime Node Breakdown Latency Time Parameter (in cycles)

InstLen Node Instruction Length Parameter (in words)

WriteAmt Queue Write Amount Parameter (in words)

ReadAmt Queue Read Amount Parameter (in words)

CommTime Word Communications Time (in cycles per word)

LatencyTime Scheduler Latency Time (in cycles)

LoadTime CommTime * InstLen + delays

ReadTime [(LatencyTime + CommTime * ReadAmt) + delays]

for all queues with the node as a sink

WriteTime [(LatencyTime + CommTime * WriteAmt) + delays]

for all queues with the node as a source

14

m. Event Reductions

Most all of the events result in a time mark for the next event. Therefore, several of the events

can be combined to simplify the model. Many of these events, although different, contribute to an overall time

which lends itself to easier analysis of the results. The resulting event reductions are defined as phases for

easy differentiation with the previously described events.

(1) Input Phase - This event represents the total time a node spends on the control unit for a

given iteration, from the time it is assigned to the time the execution unit becomes available. It includes these

events: Setup, Load Instruction, Read Data / Consume Data, and Check for Execution Unit Availability.

(2) Execution Phase - This event represents the total time a node spends on the execution

unit for a given iteration, from the time the execution unit becomes available to the time the control unit

becomes available. It includes these events: Execute, and Check for Control Unit Availability.

(3) Output Phase - This event represents the total time a node spends on the control unit for

a given iteration, from the time the control unit becomes available to the time breakdown is completed It

includes these events: Write Data / Produce Data, and Breakdown.

Table 2.2 is a summary of the time calculations for these phases. The term blockage refers to

stalls caused by the inability of a node to switch to the other processing element (control unit to execution

unit or execution unit to control unit) until the node on the other processing element completes its operation.

It is to be noted that the contention for memory modules during the input and output phases is implicit in

'ReadTime' and 'WriteTime' respectively.

Table 2.2: PHASE TIME DEFINITIONS

Code Definition / Time

InpufTime SetupTime + Load Time + ReadTime + blockage

ExecuteTime ExecutionTime + blockage

OutputTime WriteTime + BreakdownTime + blockage

15

n. Representation Comparison

Figure 2.4 is a graphical representation of these times as associated with a processor. Two

diagrams are given. The first diagram is the detailed model. The second diagram is the reduced model. As far

as node scheduling techniques are concerned, the reduced model will be used.

CONTROL EXECUTION
UNIT UNIT

CONTROL EXECUTION
UNIT UNIT

SETUP

LOAD

READ

EXECUTE

WRITE

BREAKDN

INPUT

EXECUTE

OUTPUT

DETAILED MODEL TIME REDUCED MODEL

Figure 2.4. Time on Processor Representation

2. Processor Perspective

The processor can be best described as a finite state machine. Two finite state diagrams are given.

These state diagrams represent the same system but from different points of view. Figure 2.5 is the internal

view state diagram. This is the state of the processor and nodes as it appears on the processor. Figure 2.6 is

the external view state diagram This is the state of the processor as it appears to the outside world.

16

Table 2.3 lists the codes used to define the states. Note that one control unit code and one

execution unit code are required to define a complete state.

Tkble 23: STATE DIAGRAM CODES

State Code State Description

ExeFree Execution Unit is Free

ExeBusy Execution Unit is Busy (node is in Execution Phase)

ConFree Control Unit is Free (Processor Available for Node Assignment)

ConBusy Control Unit is Busy (a node is performing either Input or Output)

Conlnput Control Unit is Busy with a node performing Input

ConOutput Control Unit is Busy with a node performing Output

Several of the transitions require further explanation. Recall that two different nodes can be

operating on a processor at any given time. One node is performing execution on the execution unit, and the

other node is performing either input or output on the control unit.

(1) In the case where one node is executing and another is performing input, then neither

node can go to the next state until both actions are completed, as the nodes must swap the units they are

currently occupying, with the node which completed execution moving to the control unit to perform output

and the node which completed input moving to the execution unit to perform execution This transition is

defined as 'Execution and Input Completed'.

(2) In the case where one node is executing and another is doing output, there are two

possible occurrences. If the node performing output completes first, then it simply is removed from the

processor. However, if the node executing completes first, it stalls while waiting for the other node to

complete output When this second node completes output, it will disassociate itself from the processor and

the node which completed execution will obtain use of the control unit This transition is defined as

'Execution Completes then Output Completes'.

17

Execution

Completed

, then
ConOutput L^ ConOutput

ExeFree / r\... * \ ExeBusy

Execution

and

Input

Completed

Figure 2.5. Processor Internal View State Diagram

START
ConFree

i ExeFree
J [

ConBusy

I V ExeBusy 1

> \ Execution

and

Input

Node
Assigned

Output

Completes

\ Output
J \

\ Completes /)

Node
Assigned

Completed

^ Execution yr \.

ConBusy
i ExeFree

\ Completes / ConFree

J \ ExeBusy i

Input Completes

Figure 2.6. Processor External View State Diagram

18

m. SCHEDULING TECHNIQUES

A key factor in the Large Grain Data How (LGDF) system is the scheduling of the nodes in the data

flow graph to the processors. This chapter will discuss important scheduling issues inherent to the LGDF

model, scheduling techniques, and possible improvements.

A. TERMS

Several important concepts are used in the analysis of the scheduling techniques.

1. Throughput

Throughput is the total number of instances completed in a given time interval. Throughput is

uniform if the time interval between the completion of consecutive graph instances is constant.

2. Response Time

The response time is the time it takes to complete one iteration of a graph. This is the actual time

from the beginning of graph processing to the end of graph processing for a given graph iteration. The

response time is uniform if each graph instance completes in a constant time.

B. COMMUNICATION / COMPUTATION OVERLAP

An important aspect of this LGDF model is the dual unit processors. Each processor has a control unit

and an execution unit. Different nodes can be operating simultaneously on different units of the same

processor. All communications and node control functions take place on the control unit. It is desirable to

have these control and communication functions done concurrently with the execution of another node. This

is known as communication / computation overlap. Ideally, the communications and control functions would

completely overlap with the execution.

To fully appreciate the techniques, the concept of communication / computation overlap must be

introduced This can best be shown graphically. Previously, Figure 2.4 displayed one node upon a processor.

However, in this LGDF model, two nodes will normally be on a processor simultaneously. There are many

possible situations which can occur.

19

Many of these situations are described graphically in detail. Note that these figures display the state of

the processor in the middle of activities. The node designated 'node 0' has been executing for some time,

'node 1
' has just been assigned to the processor.

In the following descriptions, the term 'communication' represent all communications and control

functions and latency times. The term 'computation' represents the actual processor execution. These two

terms are selected as they are prevalent in current literature.

1. Perfect Communication / Computation Overlap

Figure 3. 1 displays the perfect overlap condition. This condition is rather unrealistic as it is highly

unlikely that the communications would perfectly match the computation. However this is the theoretical

case.

TIME
fc J

node 1

r assigned

node 2

y J assigned
"^

}

CONTROL
UNIT

node 1

input

nodeO
output

node 2

input

node 1

output

EXECUTION
UNIT

nodeO
execute

node 1

execute

node 2

execute

Figure 3.1. Perfect Communication / Computation Overlap

20

2. Good Communication / Computation Overlap

Figure 3.2 displays good overlap conditions (assuming that perfect overlap will not occur). In this

case, communication is completely overlapped with computation. This situation will tend to occur when the

memory access speed is fast compared to processor speed, or the instructions represented by the nodes require

large amounts of processing compared to the amount of data transfer.

TIME node 1 node 2 node 3

^ } r asgn \ r asgn w asgn

CONTROL
UNIT

node

1

input

node

out-

put

node

2

input

node

2

input

node

1

out-

put

idle

node

3

input

node

2

out-

put

EXECUTION
node node

1

node

2

node

3

UNIT execute execute execute execute

Figure 3.2. Good Communication / Computation Overlap

Several conditions are displayed in Figure 3.2. The heavily shaded portion represents a blocked

control unit Node 2 has completed its input, but it cannot begin execution because node 1 has not completed

execution. The lightly shaded portion represents an idle control unit. In this case, no node is ready to begin

processing. Neither of these conditions is bad since the execution unit is operating at its full capability.

21

3. Poor Communication / Computation Overlap

Figure 3.3 displays poor overlap conditions. In this case, communication is not completely

overlapped with computation This situation will tend to occur when the memory access speed is slow

compared to processor speed, or the instructions represented by the nodes require small amounts of

processing compared to the amount of data transfer.

TIME
^ 1

node 1

r asgn ^
F

node 2

asgn

node 3 1

J
node 4

asgn W V asgn

CONTROL
UNIT

node

1

input

node

output

node

2

input

node

1

output

node

2

out-

put

node

3

input

node

4

input

node

EXECUTION °

UNjj execute

node

1

execute

node

1

exe-1

cute

node

2

execute
idle

node

3

execute

Figure 3.3. Poor Communication / Computation Overlap

Several conditions are displayed in Figure 3.3. The heavily shaded portion represents a blocked

execution unit. Node 1 has completed execution, but it cannot commence output until node 2 completes input.

The tightly shaded portion represents an idle execution unit In this case, the control unit is busy forcing the

execution unit to be idle. As output has priority over input in the model, the beginning of execution is further

delayed until the next ready node completes input These conditions represent bad performance because no

useful execution is being performed.

4. Realistic Communication / Computation Overlap

In actual processing, it is likely that 'good' overlap will occur at times and 'poor' overlap will

occur at other times. The various scheduling techniques to be discussed later in this chapter will attempt to

force the system to have more 'good' overlap node to processor assignments than 'poor' overlap node to

processor assignments. This is not necessarily an easy undertaking as in general, all nodes have wide ranges

of execution times and required volumes of communication.

22

5. Revised Finite State Machine

Figure 2.5 provided a state diagram to describe the processor. With the possible overlap conditions

defined in the above diagrams, an expanded state diagram can be provided to more accurately describe the

model, provided in Figure 3.4. Table 3.1 provides the processing unit state codes. Once again, an execution

unit code and a control unit code are necessary to define the system state.

Tkble 3.1: STATE DIAGRAM CODES

State Code State Description

Exeldle Execution Unit is Idle

ExeCalc Execution Unit is Calculating

ExeBlock Execution Unit is Blocked with a node waiting for the Control Unit

Conldle Control Unit is Idle (Processor Available for Node Assignment)

Conlnput Control Unit is Busy with a node performing Input

ConOutput Control Unit is Busy with a node performing Output

ConBlock Control Unit is Blocked with a node waiting for the Execution Unit

In node to processor scheduling, it is important to minimize the execution unit idle states (Exeldle)

and execution unit blocked states (ExeBlock). Ignoring the end points of operation (where there must be some

execution unit idle time), the goal is to cycle continuously through the following states (this cycle is

highlighted on the state diagram):

--> (Conldle / ExeCalc) »>

--> (Conlnput / ExeCalc) -->

--> (ConBlock / ExeCalc) -->

--> (ConOutput / ExeCalc) -->

--> recycle

23

START

Output

Completes

Node
Assigned

Input

Completes

Conldle L^
ExeCalc

Execution

Completes

Output

Completes

Node
Assigned

Output

Completes

Execution

Completes

OPTIMUM CYCLE

Input

Completes

Execution

Completes

Execution Completes

Input

Completes

Figure 3.4. Expanded Processor State Diagram

24

C. CONTENTION

Contention refers to the inability for a communications operation to occur between a processor and a

memory module due to the memory module being utilized by another processor. This results in a delay of the

node on the processor requesting use of the memory module.

1. Queue Contention

A queue can only be accessed by one node at a time. Therefore, if the source node wants to write

data and the sink node wants to read data, one would be delayed until the other completes its current operation.

2. Memory Contention

Memory contention is generally more broad than queue contention, since queue contention

represents two nodes trying to access the same set of locations in the memory module. With memory

contention, one processor is accessing a node or queue in a specific memory unit. This could be either reading

from a queue, writing to a different queue, or loading a node program. While this operation is taking place,

no other queue or node program can be accessed by another processor from the same memory module.

D. FIRST-COME-FIRST-SERVE SCHEDULING TECHNIQUE

First-Come-First-Serve (FCFS) scheduling can more properly be stated as a lack of scheduling. Nodes

are assigned to processors in the order in which they are made ready. There is no forethought or attempt at

optimization.

1. Advantages

a. Simplicity

Since there is no special order to the assignment of nodes, the amount of overhead (software

and additional hardware) required for the assignment is negligible.

b. Processor Utilization

Processors will be in use constantly. As long as nodes are in the ready list, they will be

assigned to available processors.

25

c. Minimal Queue Contention

As a function of the FCFS algorithm, the queue contention is minimized. This is due to the

fact that a node cannot begin input until all queues into the node are ready. Therefore, the source node will

write data to a queue. Then, the queue would be ready to be read by the sink node.

d. Fault Tolerance

With an FCFS implementation of scheduling, the system is fault tolerant. Since nodes will

not be assigned to processors until all data is ready, no deadlocks will occur.

2. Disadvantages

a. Communication I Computation Overlap

There is no guarantee of good communication / computation overlap with FCFS, since nodes

are placed on the next available processor, regardless if whether the communication times and computation

times can be made to overlap.

b. Unpredictable Response Time and Throughput

With the communication / computation overlap that is likely to change from one graph

iteration to the next, it is difficult to predict the graph response time and throughput.

c. Memory Contention

Since nodes are assigned to processors when they are ready, there is no way to predict which

memory modules would be required at any time.

3. Comments

It can be expected that if communication time is very small compared to computation time for

most nodes in the graph, then FCFS can perform well since the effects of the disadvantages will be minimized.

Conversely, if the communication time is large compared to computation time, then the disadvantages will

be accentuated We expect the latter to be the case precisely because the graphs are LGDF.

26

E. REVOLVING CYLINDER SCHEDULING TECHNIQUE

The Revolving Cylinder (RQ scheduling technique is designed specifically for Large Grain Data Flow

systems. It is assumed that the application requires the specified data flow graph to be executed continuously.

The premise is that at any given time the nodes of one graph equivalent must be processed This means

that not all of the nodes will be working on the same data set, but one instance of each node is ready to work

on a data set. With the RC technique, this one graph equivalent will be mapped to the available processors.

This mapping is known as the cylinder. The term revolving cylinder refers to the fact that additional cylinders,

exactly the same as the first, can be placed one after another. Essentially, the execution resembles a rotating

drum.

There are four variations of the revolving cylinder technique that will be described. The first variation

to be presented is Start After Finish (SAF). The second variation, Start After Start (SAS) determines the

synchronization arcs in a different manner. In both SAF and SAS, there is no requirement that nodes always

be scheduled to the same processor. However, SAF and SAS can be further modified by binding the nodes to

specific processors. These variations are termed SAFb and SASb respectively.

1. Index Assignment and Synchronization Arcs

In a given slice, many of the nodes will not be working on the same set of data, therefore, the nodes

are assigned an index to reference the data set that node is currently operating on Once the indices are

determined, synchronization arcs are generated. These synchronization arcs are control signals which enforce

the cylinder structure.

Figure 3.5 is a simple data flow graph which is scheduled on two processors. Note that for the

demonstration of the RC technique, the only node parameter is the execution time. Also note that the input

and output nodes do not get mapped to the cylinder. The node identifier is the letter and the node execution

time is the number inside the node. In the processor mapping, the index is the number in parenthesis.

Two cylinders are mapped Indices are assigned to the first cylinder as follows. Ignore the

synchronization arcs in determining data dependencies. The first node mapped is 'A'. Therefore, it is given

an index of '0'. Nodes 'B ' and 'D' depend on the results of 'A'. Node 'B ' appears after node 'A' on the same

processor. Therefore, it can work on the same data set as 'A', hence an index of '0'. However, node
4

D' begins

processing at the same time as node 'A'. Since it depends on the results of 'A', node 'D' must be operating

on a previous data set, hence an index of
4

-l'. Node *C depends only on node 'B' for data. Although it is

scheduled to a different processor, node 'C does not start until node 'B' completes, therefore, it can still

27

operate on the same data set as 'B\ thus an index of '0'. Node 'E' depends on data from both nodes 'C and

'D'. It is assigned an index of '-1
' for two reasons. First, node 'D' has an index of '-1'. Node 'E' starts after

*D\ so it can have the same index, '-1'. Second, node 'C is processing at the same time as node 'E'.

Therefore, node 'E' must be operating on a previous set of data. Therefore, since
4C has an index of '0', then

'E' must have an index of '-1'. The second cylinder is mapped in the same manner as the first, but with the

indices increased by one.

TIME
Processor 1 Processor 2

()
1

A(0) D(-l)

(A1)
2

B(0)

^# ii v
(B2 J

.(») 3

^T ^^^r 4
E(-l) C(0)

(
C2

)
-/

5

^@
6

A(l) D(0)

7

S

B(l)

C)
LEGEND (additions to figure 2.1)

_| ^ Synchronization Arc
9

E(0) C(l)

• Token

10

Figure 3.5. Data Flow Graph and Processor Assignment

This is the Start After Finish (SAF) version of the revolving cylinder technique for generating the

synchronization arcs. The sink node at the head of the synchronization arc will be allowed to start after the

source node at the tail of the arc completes. The synchronization arcs are generated as follows. Nodes
4A\

28

4B ' and 'C ' operate in consecutive order on the same instance. Therefore, they maintain data dependence and

no synchronization arcs are necessary between them. Likewise, nodes 'D' and 'E' maintain such a data

dependence. However, in this mapping, node 'C executes on the same process as node 'D'. To set up the

cylinder, node 'C must wait for one instance of node 'D' to execute. Therefore, a synchronization arc is

generated between 'C and
4D\ Looking at the whole cylinder, node

4

A' cannot start executing until node
4

E'

of the previous instance completes. Therefore, a synchronization arc exists between
4

E' and 'A'.

Tokens on synchronization arcs represent a counter. The tokens listed represent the initial length

parameter of the synchronization arc as defined in the previous chapter in the section on queues. It is obvious

that these tokens are needed The synchronization arcs define the need for node
4

E' to complete before node

'A' begins. However, no instance of 'E' can ever occur until one instance of node 'A' executes. Therefore,

the initial token will allow the process to start. Likewise for the token on the synchronization arc between

nodes 'D' and 'C. After multiple instances of the graph have executed, the cylinder should look as it is with

all nodes at the proper index.

Showing two cylinders back to back illustrate some important concepts of the RC algorithm. First,

it takes a number of cylinders to complete a graph iteration. This quantity is equal to the range of different

indices in the cylinder. The required time is equal to the number of cylinders multiplied by the time to

complete one cylinder. In this example, two cylinders are required Note that the range of indices is two (from

to 1). Therefore, the time to complete one graph instance is ten cycles (two cylinders multiplied by five

cycles to complete a cylinder). Note that this is longer than the minimum possible time to complete the graph

on two processors which is seven cycles (based on longest path) in this example. However, it is guaranteed

that it will take ten cycles to complete each and every instance. It is also guaranteed that one instance will

complete during each cylinder. In this example, one iteration completes every five cycles. Therefore, the

revolving cylinder technique results in uniform throughput and uniform response time.

The above example is rather simplistic and not representative of the Large Grain Data How model

studied In the LGDF model, the nodes are not operating in distinct blocks. One node actually begins

preparing to execute on a processor before the previous operating node is finished Therefore, determining

the actual indices and arcs is not a simple matter on even a moderately complex data flow graph. However,

the start after finish synchronization arc generation and revolving cylinder assignment technique is still valid.

29

2. Advantages

a. Predictable Performance

Since uniform cylinders are assigned to the processor set, the system will have more

predictable throughput and average response time.

b. Maximize Communication I Computation Overlap

The nodes in the cylinder can be placed to achieve maximum overlap ofcommunication time

with computation time. If the communication cost of the system is low, there will be little gain to the

revolving cylinder technique.

c. Reduce Memory Contention

Once the cylinder is mapped, it can be determined which nodes and queues must be accessed

at the same time. Therefore, nodes and queues can be mapped to different memory modules to ensure that

they are not active at the same time, reducing memory contention. This could be a difficult task as queues are

operated on by different nodes at different times. However, any reduction of memory contention will help.

This is impossible with FCFS as it is never known which operations will proceed at any given time.

3. Disadvantages

a. Increased Overhead

Overhead is significantly increased with the requirement to generate and track the

synchronization arcs. Also, it is important to generate proper tokens on the synchronization arcs to assure that

deadlocks will not occur due to dependencies which cannot be met.

b. No Overlap Between Cylinder Slices

In this LGDF model, all nodes have some input and some output time. However, with the

start after finish technique, the first node in the next cylinder cannot begin processing until the last node in

the current cylinder completes. Thus, there is no possible communication / computation overlap between

cylinder instances.

c. Unbalanced Loads

A related issue to the non-overlap between cylinder instances is the issue of unbalanced

loads. An ideal cylinder would have the processors completely load balanced. That is, all processors would

30

complete processing at the same instant. However, this is usually not the case. The next cylinder cannot begin

processing until the last node of the current cylinder completes processing. Therefore, if the last node on one

processor completes long after the nodes on the other processors, the additional processors would remain idle

for extended periods and the throughput reduced.

d. Queue Contention

Queue contention can be minimized through proper mapping. However, it is now a factor to

be taken into consideration.

4. Alternate Revolving Cylinder Scheduling

An alternate version of the revolving cylinder technique, Start After Start (SAS), generates the

synchronization arcs based on when a source node node begins, rather than after it ends. This eliminates the

lack of communication / computation overlap between consecutive cylinder mappings.

31

IV. RESULTS AND ANALYSIS

This chapter is an analysis of the initial results for the use of the Revolving Cylinder algorithm. The

programs used to generate the results are described fully in [Ref. 12]. Figure 4.1 is a diagram of the

relationship of the programs used to generate the results.

1 LGDF
y Graph machine configuration

communication costs

input data rateOrder Generator

1 Node Schedule

Cylinder Mapping Program (MAP)

W Cylinder

Synchronization Arc Generator (SAG)

w Restructured Crap h

FCFS Event Simulator (SIM)

SIMULATION RESULTS

Figure 4.1. Program Usage to Produce Results

A. INITIAL TRIALS ON TEST GRAPH

The initial tests were performed on a simple data flow graph to generate baseline results for the

Revolving Cylinder algorithm. This simple graph consisted of one input node and output node (execution

time = 0), and 15 uniform instruction nodes (execution time = 10000). The nodes had no setup or breakdown

latency, and an instruction size of zero. Therefore, the only communication is due to the transfer of data

between processors and memory. The produce amount, consume amount, write amount, read amount, and

threshold amount were all equal for a given queue. However, this number was different for the queues in the

system (either 1000, 2000, or 4000 words). The queue capacity is eight times this amount. Several mappings

32

of this graph were used at various communication costs over three, four, and five processors. Figure 4.2 shows

the test graph, with the number representing the quantities for the queues.

c)

[4000

2000^^

I 2000 2000

1000 J^C 1000 ioooJ^^1000

1000XA 1000 looof I 1000

1000X^* 1000

2000 \
^^2000

F 4000

h 4000

C)

Figure 4.2. Test Data Flow Graph

The mappings of the nodes to processors for this graph was determined manually, attempting to

maximize the communication / computation overlap. It is noted that in the all mappings for three processors,

the processors were uniformly load balanced, each processor having exactly the same mapping (as far as

computation and communication times) as the other two processors. The mappings for five processors were

fairly well load balanced with exactly three nodes on each processor. However, the amount ofcommunication

overlap on each processor varied The mappings on four processors were more difficult to determine as the

nodes do not map evenly to processors.

All mappings were tested at four different communication costs, one, two, three, or four cycles to

transfer one word of data between a processor and memory. The scheduler latency was set at zero. For this

33

graph, the yielded communication / computation ratios are 0.4, 0.8,

1

2, and 1 .6 respectively. The simulation

was set to compute the maximum throughput. Along with a First-Come-Hrst-Serve (FCFS) test for the graph,

each mapping was tested using four different variations of the Revolving Cylinder (RC) scheduling technique

as described in the previous section; Start After Finish (SAF), Start After Start (SAS), Start After Finish with

nodes bound to processors (SAFb), and Start After Start with nodes bound to processors (SASb).

In these tests, the number of memory modules was equal to the number of arithmetic processors in the

system. All nodes mapped to a given processor were asssigned to one memory module. The queues were

assigned to the memory module to which their sink node is assigned For FCFS tests, the same memory

assignments were used as for the RC analysis to allow for direct comparison.

One important note must be made about the charts which follow. Although there are several mappings

for each of the scheduling variations, only the result of the best mapping is shown. At different

communication costs, the best mapping would often be different. Even at the same communication cost,

various scheduling techniques could be better on different mappings.

The first test results were for a contention free situation. This is an ideal result where a node or queue

is always able to access the memory unit where its required data is located Figure 4.3 shows the results of

the contention free test on three processesors.

Figure 4.3. Test Graph on 3 Processors (Contention Free)

In this test, it is apparent that with no contention, FCFS provides the best throughput. SAS can come

close to FCFS, but SAF is lacking, due to the inability to overlap consecutive cylinders. Processor binding

yields no significant difference.

34

The next test is with memory contention a factor. Figures 4.4, 4.5, and 4.6 provide the results for three,

four, and five processors respectively.

Figure 4.4. Test Graph on 3 Processors (with Contention)

Figure 4.5. Test Graph on 4 Processors (with Contention)

35

33

31 i

30 -

T 2
!

* :

« 25 -

24 -

U 23 •

G 22 -

H « "

P "
• S:
T 17 -

16 •

16
14 -

13 -

12 •

I

'Nl-^^^<^
-<^v^

^ v^s^
-"«^\^$^^fv\^s^- X4^s\ ^w\ ^c-^\ \s.^

—•— SAF

A SAS

9— SAFb

—A— SASb

V ^N™^V ^^ ^
^\V *<^>.^ ^i=?^0^»-^ ^^^"^ "^t

^ X
~"*"*""»««

>>ll^ m

fc« 03 12

COMMUNICATION / COMPUTATION

1.6

Figure 4.6. Test Graph on 5 Processors (with Contention)

Several points are apparent. At low communication costs, FCFS will provide high throughput.

However, as the communication cost increases, FCFS throughput sharply decreases. The RC techniques show

that increased throughput over FCFS is possible, especially as the communication cost increases. This is due

to being able to map the nodes such that contention is minimized. However, as to deterrnining the best

variation of this technique, there is no consensus of results. Certain variations proved better for certain

mappings. As stated previously, these charts show the best result for the scheduling variation These results

are not necessarily from the same mapping. Furthermore, only three or four mappings were used and there

are many more mappings which are possible.

36

Figure 4.7 is a plot showing the effects of contention versus no contention for FCFS. It can be easily

that contention is a major consideration, except at very low communication costs.

5 proc, no contention

S— 5 proc, wth contention

A— 4 proc, no contention

A— 4 proc, wth contention

3 proc, no contention

G— 3 proc, wBh contention

0.8 1.2

COMMUNICATION / COMPUTATION

1.6

Figure 4.7. FCFS Contention versus No Contention

37

Figure 4.8 is a plot showing the effects of contention versus no contention for RC. Note that although

contention still affects the throughput, the effects are much reduced compared with FCFS. As with the

previous charts, the best results from RC are plotted.

5 proc, no contention

5 proc, with contention

k— 4 proc, no contention

A— 4 proc, wth contention

#— 3 proc, no contention

©— 3 proc, wth

0.4 0.8 1.2

COMMUNICATION / COMPUTATION

Figure 4.8. RC Contention versus No Contention

To demonstrate the improvements, Figure 4.9 is a plot comparing the contention free case and the

contention case for both FCFS and RC. The "Throughput Decrease' is the difference between the contention

free and contention case divided by the throughput of the contention free case for the given number of

processors and communication /computation ratio, and converted to a percentage. This percentage represents

the degradation caused by adding memory contention to the model, with a higher figure representing higher

degradation. As expected, it is seen that as the communication / computation ratio increases, the degradation

38

due to contention also increases. The number of processors plays only a small part in the ratio. An important

note is that RC is not nearly as degraded by contention compared with FCFS.

0.8 1.2

COMMUNICATION / COMPUTATION

Figure 4.9. Throughput Decrease Due to Contention for FCFS and RC

B. TESTS ON AN ACTUAL APPLICATION GRAPH

The RC techniques were next practiced on an actual application graph. The graph chosen was the

'Active Sonobuoy' graph provided by AT&T for the ECOS simulator of the EMSP system [Ref. 13], and

modified to fit the described system model. As with the test graph, the node setup and breakdown latencies

are zero, the node instruction size is zero, and the scheduler latency is zero. The produce amount, consume

amount, write amount, read amount, and threshold amount are the same for a given queue, with the capacity

eight times this quantity. The number ofmemory modules is equal to the number of processors, with all nodes

mapped to a processor assigned to the same memory and queues assigned to the memory of the sink node.

The simulator is set to determine the maximum throughput of the system.

Figure 4.10 shows the active sonobuoy graph. The node execution times and queue quantities are given

at the bottom for each 'level' of the graph, as all nodes and queues on each level are the same. The exception

39

is for the final 'level' of nodes where the execution time is below each node and the queue quantity for all

queues into that node, as the quantities differ. Note this graph provides for a high degree of parallel execution.

Queues Nodes Queues Nodes Queues Nodes Queues Nodes

512 13200 1024 12600 512 24600 512 9000

600

Q=32

Queues

512

Figure 4.10. Active Sonobuoy Graph

Only one mapping on each of three different processor arrangements (four, eight, and thirteen) was

tested. Yet in that small test sample, the results for this graph generally miiTor the results for the test graph.

With low communications costs, FCFS yields good results and there is no gain with RC. However, as

40

communication costs increase, RC can yield increasing improvements. Once again, there is no concurrence

as to which variation of RC will consistently yield the best results. For exact results, see [Ref. 1 1].

C. ADDITIONAL RESULTS

In both of the graphs tested, another result viewed is the coefficient of variation. This is a measure of

the regularity of completion, or response time of graph instances. The lower this number, the closer the

response times of all the measured graph instances to the average response time. With both graphs, the

coefficient of variation for RC is consistently less than FCFS. With some mappings, it is possible to reduce

the coefficient of variation to zero. However, it must be noted that although RC is an improvement over

FCFS, the results for FCFS were low to begin with.

41

V. CONCLUSION

This thesis provides a model for a Large Grain Data Flow (LGDF) computer system. This system

utilizes two part processors, where one part handles communications and the other handles execution. The

applications running on this computer system are modeled as data flow graphs consisting of nodes and

queues.

A scheduling technique known as the Revolving Cylinder (RC) is described, with four variations. In

tests versus simple First-Come-Hrst-Serve (FCFS) scheduling, it is shown that RC can lead to increased

throughput, especially as communication costs increase. However, it is seen that selecting the appropriate

mapping is not a simple task, and a good mapping for one communication cost is not necessarily a good

mapping for another communication cost It is also shown that none of the variations of RC are consistently

better than any other variation, and are dependent on the mapping.

A. EXPANDED TESTING

In this research, the purpose was to generate baseline results which allow for further expansion. Many

additional tests must be conducted to fully analyze the effectiveness of the RC technique. Several important

issues must be studied

For nodes, in all tests, the instruction size is zero. Therefore, there is no memory contention associated

with retrieval of the instructions from memory. The input and output nodes have no bearing on processing

with the execution time set to zero.

For queues, in all cases the produce/consume, read/write, and threshold amounts were always constant.

Varying these quantities could have a major impact on graph execution.

All latencies, node setup and breakdown, and scheduler latency were zero. This reduces the

communication overhead.

All tests were made with the number ofmemory modules equal to the number of arithmetic processors.

Tests need to be made with varying numbers of memory modules to fully analyze the effects of memory

contention.

All tests were based on maximum graph throughput. Tests need to be completed with various graph

activation rates.

42

B. FUTURE RESEARCH

The primary area for future research work regarding RC is in the area of mapping. The results of this

paper show that a mapping for RC can be found which improves performance over FCFS. However, there is

no method for easily obtaining this mapping due to the many variables involved. Accurate characterization

of the cylinder mapping is necessary to develop a metric for a good mapping. This would imply establishing

a correlation between a given mapping and its run-time performance.

43

LIST OF REFERENCES

1. Brobst, S. A., "Organization of an Instruction Scheduling and Token Storage Unit in a

Tagged Token Data Flow Machine," in Proceedings ofthe 1987 International Conference on

Parallel Processing, vol. 3, August 1987.

2. Lee, E. A., and Messerschmitt, D. G., "Static Scheduling of Synchronous Dataflow

Programs for Digital Signal Processing," in IEEE Transactions on Computing, vol. C-36, no.

1, January 1987.

3. Karp, R. M., and Miller, R. E., "Properties of a Model for Parallel Computations:

Determinacy, Termination, Queueing," in Journal of Applied Mathematics, vol. 14, no. 6,

November 1966.

4. Lee, E. A., "Consistency in Dataflow Graphs," in IEEE Transactions on Parallel and

Distributed Systems, vol. 2, no. 2, April 1991.

5. Gurd, J. R., Kirkhame, C. C, and Watson, I., "The Manchester Prototype Dataflow

Computer," in Communications of the ACM, January 1985.

6. Lee, E. A., and Bier, J. C, "Architectures for Statically Scheduled Dataflow," in Journal of

Parallel and Distributed Computing, vol. 10, December 1990.

7. King, C. T, Chou. W. H., and Ni, L. M., "Pipelined Data - Parallel Algorithms: Part I -

Concept and Modeling," in IEEE Transactions on Parallel and Distributed Systems, October

1990.

8. Shukla, S. B.. Little, B. S.. and Zaky, A., "A Compile-time Technique for Controlling Real-

time Execution of Task-level Data-flow Graphs," presented at the 1992 International

Conference on Parallel Processing.

9. Rau, B. R, Glaeser, C. D., and Picard, R. L., "Efficient Code Generation for Horizontal

Architectures: Compiler Technique and Architectural Support," in Proceedings of the 9th

International Symposium on Computer Architecture, 1982.

10. Rice, M. L.. "The Navy's New Standard Digital Signal Processor: The AN/UYS-2," paper

presented at the Association of Scientists and Engineers 27th Annual Technical Symposium,

23 May 1990.

1 1

.

Naval Postgraduate School Technical Report NPS-EC-93-015, Revolving Cylinder Analysis:

A Techniquefor Restructuring ofLarge Grain Data Flow Graphs Representing Throughput-

Critical Applications, by D. M Cross, S. B. Shukla. and A. Zaky, September 1993.

12. Naval Postgraduate School Technical Report NPS-EC-93-016, A Toolfor the Analysis of the

Parallel Execution of Throughput-Critical LGDF Programs: A User Manual, by D. M.
Cross, S. B. Shukla, and A. Zaky, September 1993.

13. AT&T Technologies, Report IN 48280, ECOS Workstation Tutorial, AT&T Bell

Laboratories, 30 March 1991.

44

14. Akin
, C, A Periodic Input Processing Data Flow Simulator, Master's Thesis, Naval

Postgraduate School, Monterey, California, March 1993.

15. Bell, H. A.,A Compile-Time Approachfor Chaining and Execution Control in the AN/UYS-2

Parallel Signal Processor, Master's Thesis, Naval Postgraduate School, Monterey,

California, June 1992.

16. Little, B. S., A Technique for Predictable Real-Time Execution in the AN/UYS-2 Parallel

Signal Processing Architecture, Master's Thesis, Naval Postgraduate School, Monterey,

California, December 1991.

17. Swank, D., Large Grain Data-Flow Graph Restructuring for EMSP Signal Processing

Benchmarks on the ECOS Workstation System, Master's Thesis, Naval Postgraduate School,

Monterey, California, June 1993.

45

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Dudley Knox Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5101

3. Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

4. Chairman, Code CS
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

5

.

Prof. Shridhar B . Shukla, Code EC/Sh

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

6. Prof. Amr Zaky, Code CS/Za

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5118

7. Mr. David Kaplan

Naval Research Laboratory

4555 Overlook Avenue, SW
Washington, DC 20375-5000

8. Mr. Richard Stevens

Naval Research Laboratory

4555 Overlook Avenue, SW
Washington, DC 20375-5000

46

9. Commander, Naval Sea Systems Command
PMS 428

Naval Sea Systems Command Headquarters

Washington, DC 20362-5101

10. American Telephone and Telegraph Bell Laboratories

Attn: Mr. Jerome Unrig, WH 46243

67 Whippany Road

P.O. Box 903

Whippany, NJ 07981-0903

11. CPT David M. Cross, USA
444 Arbor Road

Cinnaminson, NJ 08077

47

DUDLEY KNOX LIBRARY

!01

