
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1993-09

Cooperative control of multiple space manipulators

Yale, Gary E.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/26437

Downloaded from NPS Archive: Calhoun

OUDLEY
WALF

. iCHOOl
JNTERti 0* &Jd43-5101

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION
COOPERATIVE CONTROL

OF
MULTIPLE SPACE MANIPULATORS

by

Gary E. Yale

September, 1993

Dissertation Supervisor: Brij N. Agrawal

Approved for public release; distribution is unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

Unclassified

1b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

55

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING

ORGANIZATION
8b OFFICE SYMBOL

(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Program Element No Project No Task No Work unit AcceiJion

Number

1 1 . TITLE (Include Security Classification)

COOPERATIVE CONTROLOF MULTIPLE SPACE MANIPULATORS (UNCLASSIFIED)

12. PERSONAL AUTHOR(S) Yale, Gary E.

13a TYPE OF REPORT

PhD Dissertation

13b TIME COVERED

From To

14 DATE OF REPORT (year, month, day)

September 1993

15 PAGE COUNT
181

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.

Government.

17.COSATICODES

FIELD GROUP SUBGROUP

1 8 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

Space Robotics, Cooperative Control, Attitude Control

19. ABSTRACT (continue on reverse if necessary and identify by block number)

This research concerns the development of cooperative control of two spacecraft mounted two-link manipulators as they reposition a common
payload. Lagrangian formulation is used to determine the system equations of motion. Lyapunov stability theory is used to develop the

cooperative control by using a reference trajectory and reference actuator torques. Polynomial curves represent potential reference trajectories.

Numerical methods select specific reference trajectories to minimize the disturbance torque transmitted to the spacecraft during the payload

repositioning maneuver. The reference actuator torques are selected to minimize weighted norms of the torques. Analytical and experimental

models of planar motion are used to study the performance of different cooperative controllers. The fifth order polynomial reference trajectory

leads to superior performance in terms of spacecraft attitude accuracy, actuator torque magnitude, payload repositioning accuracy, and maneuver

time. The higher order polynomial reference trajectory results in only minor improvement in performance. The experimental results verify the

concept ofcooperative control.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

EJ UNCLASSIFIED/UNLIMITED J SAME AS REPORT J DT1C USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

Agrawal, Brij N.

22b TELEPHONE (Include Area code)

(408)656-3338

22c OFFICE SYMBOL
AA/Ag

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Approved for public release, distribution is unlimited.

Cooperative Control of Multiple Space Manipulators

by

Gary E. Yale

Captain, United States Air Force

B.S., United States Air Force Academy, 1981

M.S., Massachusetts Institute of Technology, 1985

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN

AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September, 1993

ABSTRACT

This research concerns the development of cooperative control of two spacecraft

mounted two-link manipulators as they reposition a common payload. Lagrangian formu-

lation is used to determine the system equations of motion. Lyapunov stability theory is

used to develop the cooperative control by using a reference trajectory and reference actu-

ator torques. Polynomial curves represent potential reference trajectories. Numerical

methods select specific reference trajectories to minimize the disturbance torque transmit-

ted to the spacecraft during the payload repositioning maneuver. The reference actuator

torques are selected to minimize weighted norms of the torques. Analytical and experi-

mental models of planar motion are used to study the performance of different cooperative

controllers. The fifth order polynomial reference trajectory leads to superior performance

in terms of spacecraft attitude accuracy, actuator torque magnitude, payload repositioning

accuracy, and maneuver time. The higher order polynomial reference trajectory results in

only minor improvement in performance. The experimental results verify the concept of

cooperative control.

in

/ /_y * • is

c.i

ACKNOWLEDGMENTS

This work would not have been possible without the contributions from many people.

Mr. RafTord Bailey designed the manipulators and toiled numerous hours in AutoCad doc-

umenting the design in drawings. Mr. John Moulton converted the drawings into expertly

crafted components. Professor John L. Junkins, the George J. Eppright Chair Professor at

Texas A&M University and visiting Co-Chair of the Space Systems Academic Group at

the Naval Postgraduate School suggested the general scope of this work and ensured suc-

cessful development of a fixed-base version. Dr. Hyochoong Bang provided significant

assistance with the theoretical work. In addition to his guidance regarding the analytical

and experimental work, Professor Agrawal was a constant source of encouragement.

Finally, the author's family supplied a tremendous amount of support for which he is

deeply grateful.

IV

>i»\y/\ Liorv\Kr
MWjU POSTGRADUATE Srwnn.
MONTEREY CA 93943 5foT°'

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND AND LITERATURE SURVEY 1

B DISSERTATION OVERVIEW AND OBJECTIVES 5

II. ANALYTICAL MODEL 7

A COORDINATE SYSTEMS 7

B EQUATIONS OF MOTION 9

1. Inertia Matrix, M 11

2. Centripetal and Coriolis Matrix, G 17

3. Generalized Forces, Q 19

4. Constraints Matrix, A 21

C SIMPLIFIED EQUATIONS OF MOTION 23

D. REFERENCE TORQUES 24

E. LYAPUNOV CONTROLLER 26

F. REFERENCE TRAJECTORIES 29

1. Calculating Redundant Coordinates 29

2. Selecting Reference Trajectories 35

IH. VALIDATION AND SIMULATION RESULTS 45

A. VALIDATION 45

1. Conservation of Kinetic Energy 45

2. Conservation of Angular Momentum 52

3. Wheel Torque and Constraints 58

B. SIMULATIONS 60

1. Lyapunov Point Controller 60

2. Lyapunov Tracking Controller 65

3. Modified Lyapunov Tracking Controller 72

4. Comparison of Controllers 75

IV EXPERIMENTAL WORK 77

A. SETUP 77

1. Centerbody 79

2. Manipulators 80

3. Payload 83

4. Controller 83

5. System Integration 84

B. RESULTS 86

V. SUMMARY AND CONCLUSIONS 93

A. SUMMARY 93

B ORIGINAL CONTRIBUTIONS 94

C. RECOMMENDATIONS FOR FURTHER STUDY 95

APPENDIX A: EXPERIMENTAL CONTROL BLOCK DIAGRAMS 97

APPENDIX B: MATLAB CODE 109

A. AngMo 110

B. AngMo2 112

C. Draw3 114

D. Eqn2 116

E. fminu2 121

F. MainMin 126

G. MainOpt 129

H. Main2 131

VI

I. Matx 142

J. MatxFix 146

K. Ref2 150

L. RefMin2 158

REFERENCES 165

INITIAL DISTRIBUTION LIST 167

VII

LIST OF FIGURES

Figure 1: Dual Two-Link Manipulator Configuration 8

Figure 2: Deriving Left Manipulator Joint Angles 30

Figure 3: Deriving Right Manipulator Joint Angles 32

Figure 4: Test Case 1 Angles 47

Figure 5: Test Case 1 Angular Rates 47

Figure 6: Test Case 1 Time Lapse Stick Figure 48

Figure 7: Test Case 1 Kinetic Energy 48

Figure 8: Test Case 1 Angular Momentum 49

Figure 9: Test Case 2 Angles 50

Figure 10: Test Case 2 Angular Rates 50

Figure 1 1 : Test Case 2 Time Lapse Stick Figure 51

Figure 12: Test Case 2 Kinetic Energy 51

Figure 13: Test Case 2 Angular Momentum 52

Figure 14: Test Case 3 Angles 53

Figure 15: Test Case 3 Angular Rates 54

Figure 16: Test Case 3 Time Lapse Stick Figure 54

Figure 17: Test Case 3 Kinetic Energy 55

Figure 18: Test Case 3 Angular Momentum 55

Figure 19: Test Case 4 Angles 56

Figure 20: Test Case 4 Angular Rates 56

Figure 21: Test Case 4 Time Lapse Stick Figure 57

vin

Figure 22: Test Case 4 Kinetic Energy 57

Figure 23: Test Case 4 Angular Momentum 58

Figure 24: Sample of Wheel Torque and Change in Angular Momentum vs. Time 59

Figure 25: Sample of Constraints vs. Time 60

Figure 26: Desired Repositioning Maneuver 61

Figure 27: Lyapunov Point Controller Angles 62

Figure 28: Lyapunov Point Controller Displacement Errors 62

Figure 29: Lyapunov Point Controller Angular Rates 63

Figure 30: Lyapunov Point Controller Command Torques 63

Figure 31: Lyapunov Point Controller Time Lapse Stick Figure 64

Figure 32: Lyapunov Point Controller Initial and Final Stick Figures 64

Figure 33: 5th Order Reference Trajectories 66

Figure 34: 5th Order Angles 66

Figure 35: 5th Order Displacement Errors 67

Figure 36: 5th Order Angular Rates 67

Figure 37: 5th Order Command Torques 68

Figure 38: 5th Order Time Lapse Stick Figure 68

Figure 39: 8th Order Reference Trajectories 70

Figure 40: 8th Order Angles 70

Figure 41: 8th Order Angular Rates 71

Figure 42: 8th Order Command Torques 71

Figure 43: 8th Order Time Lapse Stick Figure 72

Figure 44: Modified Lyapunov Tracking Controller Angles 73

Figure 45: Modified Lyapunov Tracking Controller Displacement Errors 73

IX

Figure 46: Modified Lyapunov Tracking Controller Angular Rates 74

Figure 47: Modified Lyapunov Tracking Controller Command Torques 74

Figure 48: Modified Lyapunov Tracking Controller Time Lapse Stick Figure 75

Figure 49: Spacecraft Robotics Simulator 78

Figure 50: System Top View 79

Figure 51: Left Manipulator Top and Side Views 81

Figure 52: Right Manipulator Top and Side Views 82

Figure 53: Desired Experimental Repositioning Maneuver 86

Figure 54: 6p Commanded, Actual, and Error Angles vs Time 87

Figure 55: Gjj Commanded, Actual, and Error Angles vs Time 88

Figure 56: 0L2 Commanded, Actual, and Error Angles vs Time 89

Figure 57: 0^j Commanded, Actual, and Error Angles vs Time 90

Figure 58: R2 Commanded, Actual, and Error Angles vs Time 91

Figure 59: Super Blocks Hierarchy 97

Figure 60: Overall Control Block Diagram 99

Figure 61: Parameters Block Diagram 100

Figure 62: Reference Trajectory Block Diagram 101

Figure 63: Encoders Block Diagram 102

Figure 64: Left Angles Block Diagram 103

Figure 65: Part 1 Block Diagram 104

Figure 66: Part 2 Block Diagram 105

Figure 67: Part 3 BlockDiagram 106

Figure 68: Right Manipulator Controller Block Diagram 107

Figure 69: Left Manipulator Controller Block Diagram 108

Figure 70: MATLAB Modules Hierarchy 109

XI

LIST OF TABLES

TABLE 1. GENERIC MODEL SYSTEM PROPERTIES 46

TABLE 2. COMPARISON OF HYPOTHETICAL MODEL SIMULATIONS 76

TABLE 3. MOMENTUM WHEEL MOTOR CHARACTERISTICS 80

TABLE 4. MANIPULATOR ACTUATOR CHARACTERISTICS 82

TABLE 5 POWER SUPPLIES CHARACTERISTICS 83

TABLE 6. EXPERIMENTAL ERROR ANGLES 92

XII

I. INTRODUCTION

A. BACKGROUND AND LITERATURE SURVEY

Robots are presently an integral part of industrial processes They perform tasks with

high precision, speed and reliability. These same features make robots attractive with

regards to space applications.

Space based robotics platforms experience conditions unlike those of their terrestrial

counterparts. With respect to the dynamics of the systems, the most notable difference is

the absence of a fixed base on which to locate the manipulators. The consequence of the

difference is that the motion of the space based manipulator transmits forces and moments

to its mounting base resulting in translation and rotation of the base itself. This of course

impacts the location of the manipulator's end effector. The problem is further complicated

in that the disturbances are not simply a function of the present manipulator joint angles

but are also a function of the joint angle histories preceding the current configuration.

(Ref 1)

A number of approaches have been used for dealing with this coupling of joint angle

histories and spacecraft main body attitude. Wang (Ref. 2) eliminates the problem by

carefully defining what he expects of his dual-arm maneuverable space robot. He preposi-

tions the manipulators such that they are configured to grasp the payload once the vehicle

moves within range. After the manipulators are in position, their joints are locked while

the spacecraft maneuvers to a location and attitude near the payload. Next, the vehicle

approaches the payload in a straight line until the end effectors can grasp the payload.

While the manipulator joints remain locked, the vehicle repositions the entire rigid body

system to the desired payload destination. At this point, the payload is released and the

vehicle backs away along a straight line. The repositioning of the payload is accom-

plished by means of the vehicle attitude control rather than altering the joint angles in the

manipulators. The manipulators themselves are not moved except when the attitude dis-

turbance they impart to the vehicle is of no importance. Maintaining vehicle attitude dur-

ing manipulator motion is not a requirement.

Longman, Lindberg and Zedd (Ref. 3) calculate the disturbance torques caused by

manipulator motion. This information is used to calculate reaction wheel commands

which will compensate for the disturbance torques. In this way, spacecraft attitude control

is maintained while the manipulator is repositioned.

If the vehicle does not contain reaction wheels, the primary source of attitude control

is probably reaction control thrusters Because fuel is consumable and hence mission lim-

iting, firing thrusters to hold spacecraft attitude should be avoided whenever possible.

Vafa and Dubowsky (Ref. 4) and Longman (Ref. 5) use similar approaches to eliminate

the need for reaction thruster firings. Both techniques involve constructing a manipulator

trajectory which involves revolving the manipulator in a small coning motion at interme-

diate stages of the payload repositioning maneuver. This motion imparts a slow rotation

of the spacecraft about the coning axis. Careful use of the coning locations permits repo-

sitioning of the payload between any arbitrary locations (within manipulator reach) and

attitudes while also changing the spacecraft to any desired attitude without the need for

thruster firings. This technique does not, however, maintain a particular spacecraft atti-

tude during the maneuver.

Nakamura and Mukherjee (Ref. 6) use a technique called the bi-directional approach.

This method represents a six degree of freedom (DOF) manipulator mounted on a space

vehicle as a nine variable system (six joint angles and three spacecraft attitude angles)

with six inputs (the manipulator joint torques). They attack the problem from both ends

by integrating forward from the initial conditions and backwards from the desired final

conditions. A Lyapunov function guarantees that the two solutions will converge at some

intermediate time during the maneuver. As in Ref. 4 and Ref. 5, the payload is reposi-

tioned to the desired location and attitude and the attitude of the spacecraft main body is

changed to its desired orientation. However, the main body attitude during the maneuver

is not controlled. Furthermore, the joint angle trajectories calculated by this method con-

tain rapid, large oscillations near the maneuver start and stop times and noncontinuous

derivatives at the convergence time.

Vafa (Ref. 7) succeeds in using a single space-based manipulator to control spacecraft

attitude during a repositioning maneuver. He does this by employing a nine DOF manipu-

lator. This manipulator has enough redundancy in its kinematics to control the end effec-

tor location and attitude and the spacecraft attitude. Six DOF are allocated to

repositioning the payload and the remaining three DOF are used to control the spacecraft

attitude.

Like Ref. 7, the primary objective of Chung, Desa and deSilva (Ref. 8) is to address

the disturbances transmitted to the spacecraft by the manipulator motion. They also use a

single manipulator with redundant kinematics. Because they use inverse kinematics to

find the joint torques, the manipulator redundancy prevents the existence of a unique solu-

tion. A solution is selected from among the infinity of possible solutions by means of

minimizing a cost function of the magnitudes of the forces and torques transmitted to the

base.

Torres and Dubowsky (Ref. 9) also focus on the spacecraft attitude disturbances

caused by manipulator motion. They recognize that for any given point in joint space,

there is a direction of motion which produces minimum spacecraft attitude disturbance

and a perpendicular direction of motion which produces maximum spacecraft attitude dis-

turbance. A tool called the enhanced disturbance map (EDM) depicts these directions

graphically. The EDM permits users to plan manipulator trajectories that lie on or near

zero disturbance paths. For non redundant manipulators, this may involve repositioning

the spacecraft itself prior to the manipulator repositioning maneuver. If the manipulator

has redundant kinematics, one can find a zero disturbance path to connect the manipulator

trajectory endpoints without having to reposition the spacecraft initially. This technique

considers only the location of the manipulator endpoint and not its attitude.

Configurations with multiple manipulators have also been explored. The closed chain

nature of these configurations prevent the use of some of the techniques already discussed.

In addition, controlling multiple manipulators raises the issue of cooperation between the

manipulators.

Nguyen, Pooran and Premack (Ref. 10) develop a PD controller for a fixed base, two

DOF, closed chain manipulator system. The system is linearized by means of Taylor

series expansion about a point designated as the robot's "home" point. Pole placement is

then used to select controller gains.

Hu and Goldenberg (Ref. 11) derive an adaptive control scheme for multiple nonre-

dundant manipulators mounted to a fixed base. In this reference, coordinated control

involves controlling the motion of the grasped object, the contact forces between the

object and its environment, and the internal forces within the object caused from being

held by more than one manipulator.

For a space based system, contact forces between the payload and its environment are

less likely to be important. Walker, Kim and Dionise (Ref. 12) present just such an adap-

tive controller.

Coordinated control of multiple manipulators assumes a different meaning according

to Yoshida, Kurazume and Umetani (Ref. 13). Although they propose a system with two

manipulators, only one actually grasps the payload. The other is used to provide counter-

balancing torques to the spacecraft main body. The role of the second manipulator is sim-

ilar to a reaction wheel in that its primary function is to control spacecraft attitude rather

than reposition a payload.

Ahmad and Zribi (Ref. 14) apply a Lyapunov controller to a fixed base, multiple

manipulator system. As in Ref. 12, they are concerned with controlling the payload posi-

tion and its internal forces. To do so, the method requires sensors to measure the forces

and moments created by each manipulator. They also present an adaptive version to con-

trol this system.

While still addressing payload position and internal forces, Schneider and Cannon

(Ref. 15) use a technique called object impedance control to achieve coordinated control

among the manipulators. This method views the payload as being anchored to a desired

location by a spring/damper system.

B. DISSERTATION OVERVIEW AND OBJECTIVES

This research is concerned with the cooperative control of a space based manipulator

system with multiple manipulators handling a common payload. The scope is limited to

planar motion in which the spacecraft is allowed to rotate but not to translate. These

restrictions permit experimental verification in the Spacecraft Dynamics and Control Lab-

oratory at the Naval Postgraduate School. The objectives of this research are to 1) develop

a stable control law which facilitates cooperation among the manipulators as they reposi-

tion the payload, 2) minimize joint actuator effort, 3) reduce the disturbance torque trans-

mitted to the spacecraft main body by the manipulator motion, and 4) validate the

analytical development with experimental results.

Chapter II develops the analytical model in detail. Coordinate systems are defined and

the equations of motion are derived. A technique for finding control torques which mini-

mizes a weighted norm is presented. A globally stable control law is developed using

Lyapunov methods. The idea of using a reference trajectory to describe the motion is

applied as are methods for choosing the reference trajectory.

Chapter III verifies the analytical model with several test cases. The model is evalu-

ated for compliance with the principles of conservation of kinetic energy and angular

momentum. After establishing the validity of the model, results from simulations are pre-

sented. The stability of the controller is illustrated as is the dramatic improvement in per-

formance when a reference trajectory is included Results from a simplified control law

which is more practical to implement are included and compared to the complete control

law version.

Discussion of the experimental work is contained in Chapter IV. This chapter includes

a description of the experimental setup. As might be expected, actual hardware demon-

strated that there are differences between the ideal world of the analytical model and the

real world of hardware implementation.

The summary and concluding remarks are presented in Chapter V. This chapter also

contains suggestions for future work in this field.

II. ANALYTICAL MODEL

The analytical model represents a spacecraft with two manipulators attached. The

manipulators have already firmly grasped an object hereafter referred to as the payload.

The manipulators are about to reposition the payload with respect to the spacecraft. The

ensuing dynamics between the spacecraft, manipulators, and payload are the topic of this

research. What occurs before the manipulators grasp the payload and after they release it

is beyond the scope of this investigation. The scope is narrowed further by confining the

motion to be two dimensional and allowing the spacecraft to rotate but not translate.

These assumptions are consistent with hardware restrictions during experimental verifica-

tion.

A. COORDINATE SYSTEMS

Figure 1 shows a schematic of the overall system. This diagram illustrates the rela-

tionship between the coordinate frames used to develop the equations of motion. All

angles are measured positive counterclockwise. The centerbody, manipulator links, and

payload are assumed to be rigid bodies. Therefore, member lengths (^j, ^L2' ^Rb ^R2^ and

/p), distances to member centers of mass (ZcU ,
l
c \],

l
c\2, A;Rb ^cR2' and ^ch)> ar»d the loca-

tion of the left and right shoulders (£L0 , 9{ , ^ () , and 9R0) remain constant. An inertial

axis system is located on the centerbody at the point of rotation. A body fixed coordinate

frame uses the same origin as the inertial frame but rotates with the spacecraft centerbody.

The x-axis of this frame points to the centerbody center of mass. The centerbody attitude,

O , is the angle between the inertial x-axis and the spacecraft centerbody x-axis. Each

manipulator link has its own set of body axes. A coordinate frame attached to the left

->• Inertial Axes

-O Body Axes

Figure 1: Dual Two-Link Manipulator Configuration

8

shoulder aligns its x-axis along the longitudinal axis of manipulator Link LI . The attitude

of this link, L j, is zero when the link lies on a ray extending from the inertial origin

through the left shoulder. The attitude of Link L2 is defined by a coordinate frame

attached to the left elbow. The attitude of this link, 0j 2 , is zero when the link is parallel

with the proceeding link, Link LI. Similar coordinate frames and definitions apply to the

right manipulator. The payload attitude, Q\\ is referenced to the inertial frame. The Carte-

sian coordinates of the payload center of mass are also with respect to the inertial frame.

A set of generalized coordinates which describe the system include the centerbody atti-

tude, joint angles for all of the manipulator links, and payload attitude and position.

q =
G
e
Ll

e
L2

9
Rl

e
R2 P

X
P
Y
P (1)

Six joint actuators apply torques at the shoulder, elbow, and wrist of each manipulator.

A reaction wheel applies a torque to the centerbody. The actuators can be grouped into a

control vector

u =
nT

Uwh U
LS

ULE ULW URS URE URW (2)

where the first element is the reaction wheel torque. The remaining elements are joint

actuator torques. The first letter of their torque subscripts indicates left or right arm. The

second subscript indicates shoulder (S), elbow (E) or wrist (W).

B. EQUATIONS OF MOTION

The equations of motion for this system are developed using Lagrange's equations for

a dynamic system with holonomic constraints.

dt dq
(3)

subject to constraints

A_q + A
Q
= (4)

where L = T - V

T is kinetic energy

V is potential energy

q is the generalized coordinates vector

q is the generalized velocities vector

Q is the vector of applied nonconservative forces

A A, are the constraint forces

Beginning with Lagrange's equation, the equations of motion can be rearranged into

an alternate form. The inertia matrix, M, is a function of the generalized coordinates.

Since the potential energy is a function of only the generalized coordinates, the partial of

the Lagrangian with respect to the generalized velocities does not contain any potential

energy terms.

— = Mq (5)

dq

Differentiating Eq. (5) with respect to time leads to

<d

dt

'dO **• TdM u- TdM
= Mq + q — = Mq + q ~q (6)

dt
- dq -

dL

5q

1 f :\cM \

-2^TqV-
av

"5q

Replacing the Lagrangian with expressions for kinetic energy and potential energy

results in

10

(7)

Eq. (6) and Eq. (7) can be substituted back into Eq. (3) to produce

M3 +2&V) + ar 9+A - (8)

The second term on the left-hand side of Eq. (8) contains the centripetal and Coriolis

torques. Replacing this with the G matrix leads to

Mq + G(q,q)+f^ = Q + A
T

A. (9)
dq

After substituting the matrix form of the generalized forces into the equations of

motion, one has

dV tMq + G+ — = Bu + A X (10)
3q

The following sections develop expressions for the inertia matrix, Coriolis and cen-

tripetal accelerations, generalized forces, and constraints imposed by the closed chain

geometry of the system.

1. Inertia Matrix, M

The inertia matrix is found by calculating the system kinetic energy and expressing

it in the form

T =
^q

T
[M(q)]q (11)

The inertia matrix is the term bracketed by the generalized velocity vectors. The

total system kinetic energy is the sum of the kinetic energy of all the pieces.

T = T + T
L1
+T

L2
+ T

RI
+T

R2
+ T

P « 2 >

Kinetic energy of individual components can be found from

T = -I(o
2 +-m (rr) (13)

i 2 • ' 2 >
- -

I, is the member moment of inertia about its center of mass

co, is the angular velocity

m^ is the mass

r is the inertial velocity of the center of mass

11

The centerbody angular rate and center of mass position vector are given by

Differentiating Eq. (15) results in the velocity of the centerbody center of mass

r = 'cO°V<> (16)

Substituting Eq. (14) and Eq. (16) back into the expression for kinetic energy (Eq.

(13)) and collecting on the angular rate term leads to

To= 2
(I

<'

+ m'^>Oo <17)

Similar developments are used for each of the remaining pieces in the system. For

the left manipulator link between the shoulder and elbow (Link LI), the angular velocity is

a combination of centerbody rotation and rotation of the link with respect to the center-

body.

(o
L1

= o + (i
L1 (18)

The position vector to the center of mass is

The first two terms in the position vector represent the location of the left shoulder.

Differentiating the position vector gives the expression for the velocity vector. Because

none of the coordinate axes used in the position vector expression are inertial, their rota-

tion must be included as well.

r
L ,

=
'LO

ro
O
COS0LOyoAoW ll

S1,1\o^+^cL1
«

1.,y L1
(20)

After Eqs. (18) and (20) are substituted into Eq. (13) and terms are grouped by

angular rates, the kinetic energy is

T
L1

=eo(0.5(IL)+ mL14 1+ mL]^) (21)

12

+ m
Ll

Z
LO

Z
cLl^ SineLO Sin (eLO + e

Ll
)+COSe

LO
COS(e

LO
+ e

L|)) >

+ 0.5dJ 1
(I
L
,+m

LI^L1)

+ G H L1 (I
L1
+m

L /c

2

u +m
L /1(/cM (sinH

|(|
sin ((),„ + (),,) + cos()

LO
cos (0,

f)
+ U))

)

The angular rate for the left forearm includes the centerbody angular rate as well as

the angular rates of the body axes on Links LI and L2.

o)
L2

= ()„ + <),,+(), 2 (22)

This link's center of mass position vector is

r
L2

= ^
LO

cosG
1 (J

x + J^sine, „>,, + *,_ ,«u + t^x^ (23)

Differentiating the position vector gives the velocity vector

r
L2

= ^0 0) COS°LOyoAo 0) Sin0
|.0*0+<U«>Ll?L1 H-L2

CO
L2> u (24)

The kinetic energy expression for Link L2 is found after substituting Eqs. (22) and

(24) into Eq. (13) and collecting terms with common angular rates.

T
L2 = 0j(O.5(I

L2 + mL242 + mL2£ 1

+m
L2£)

) <25)

+ m
L2

Z
LO

£
Ll

(sinG
LO

Sin(O
LO
+0

Ll
)+COSe

LO
COS(°LO

+ e
LI
))+m

L2
ZL/cL2 COsG L2

+ mL2^o'cL2 (sinOLO
sin(O

LO
+ n

i. 1

+n
L2'

+COSe
LO

COS(O
LO
+6

Ll
+0

L2>) *

.2

+ G, i (0.5 (I, . + m, -L
, +m, .1 . J + m, A. .1

,
,cos0, ,)Li L2 L2 LI L2 cL2' L2 LI cL2 L2

°-5eL2n L2
+ ni

L2^L2)+

+ eoeLi(IL2
+m

L2^i+"1

I ,42
+ 2m

L^LI
/
cL2

cos0
L2

+ mL2^0^1 (sil,% sin(V +
LI) + COS °L0 COS (6 L0

+ B
L 1 >

>

+ m
L2^cL2 (sin0

LO
si "' n

,o + (,
,,
+U

L2)
+COs0

LO
COS < 10

+ G
L.
+e

L2)> >

+ML2 (I
L2 + ^2^2 + n1 L2^Ll^cL2

COSe
L2

+ mL2^cL2 (sine
LO

Sln(n
i.O

+ ,,

,.,
+,)

L2>
+COSe

LO
COS(% +e

L 1

+e
L2)))

13

+ OLiOi. 2
(I
L2

+ m
12^

2

L:
+m

1 ^ 1 /cL;
cosn

i2)

The development for the right manipulator kinetic energy parallels that for the left

manipulator. For the upper arm portion (Link Rl), the angular rate is

(o
R1

= e +eR1 (26)

The position vector is constructed by finding the coordinates of the right shoulder

and adding the vector from the shoulder to the center of mass.

'Rl
=
*RO

COSeRO*0+V sin(Wo+'cR1
*
R)

(27)

The time rate of change of the position vector is

r
R1

=
^Ro

0)
n
coseRo>'o-^o (0

o
sin0

R(»
Xo + ^ R1

«
R1 y

R1
(28)

After calculating the kinetic energy for Link Rl and grouping terms with common

angular rates, the resulting expression is

T
R]

= M0.5(IR1+ mR14 I+ m R14) (29)

+ mRlWcRl (sin0
RO

Sin(O
RO

+ O
Kl
)+COSe

RO
COS(B

RO
+ eRl^ >

+ 0.5eR1 (IR1+ m R14,)

+ e oeR) (I
R1
+mR/c

2

R1
+m

R /Rf/cR] (sinORn sin(0RO
+0

R1
)+co S RO cos(eRO + R1)))

Angular rate of the right forearm is

»
R2 = 0o + 0ri+Gr2 (30)

Its position vector is

r
R2

=VoseRO*o + Vj silie
Royo+'R1 *

R1
+ 'cr:\ 2

(31)

Differentiating Eq. (31) produces the velocity vector for Link R2 center of mass.

f
R2

= Z
RO a> COSeROyo-^Ro

C0 8il,eRO*0+^,» RI >
R1

+'cR2 «»R2yR1 (32)

14

The kinetic energy resulting from substituting Eqs. (30) and (32) into Eq. (13) and

collecting common angular rate terms is

T
R , = 9o< -5 (IR2

+ mR2/cR2 + mR2
/
Rl

+,nR24o) (33)

+ mR2WRI (sin0
RO

Sin(0
RO

+(,
R.
)+COS

°RO COS(() RO +
R|)» +mR2^/cR2 COs0

R2

+ mR2WeR2 (sil,0
R0

sin,n Rn +O Kl
+n

R2»
+ COS °RO COS (V + 6

R1
+ (,

R2> > >

+ 6R,(0.5(IR2
+ mR24,+mR2

Z^
2
)+mR2^^cR2

coSe
R2)

+ 0.56R2 (IR2
+ m

R242)

+ e oG RI (I
R:
+m

R2
4,+i"

R/c

2

R:
+2m

R^R /cR2
cosO

R2

+ m
R2

/
R«/Rl

(sinG
R0

sin(,)
R0

+
Rl) + COS%, COS (°RO + °R 1

> >

+ nlR2VcR2 (sin0
RO Sm < U RO

+n
Rl
+O

R2)
+COsO

RO
COS(O

RO
+ e

Rl
+OR2" >

+ MR2(I
R2

+ mR2*cR2
+ m

R2*RI
/
cR:

COS
°R2

+ m
R2

ZRrAR2 (sin()
R0

Sin((,
R0

+ B
R.

+,,
R2>

+COs0
R0

COS(0
R0

+ G
Rl

+6R2»))

+ e Ri eR2(I
R2

+ m
R2

<
cR2

+nl
R2'Rl'cR2

COs0
R2)

Expressions for the payload are considerably simpler because inertial coordinates

are available. The angular rate is

»
P

= eP (34)

It is not necessary to describe the payload center of mass by passing through either

shoulder as was the case with the manipulator links. The position vector is

r
p
= X

p
flx + Yp

fl
y

(35)

The velocity vector is also simpler because of the inertial frame.

r
p

= X Pti x + YpN, (36)

15

The payload kinetic energy is derived from substituting Eqs. (14) and (16) into Eq.

(13).

T
P
= Hl

p
ep + m

p
<Xp + Yp)) (37)

After substituting the expressions for kinetic energy from Eqs. (17), (21), (25),

(29), (33) and (37) into Eq. (12) and expressing the result in the matrix form of Eq. (3), the

inertia matrix, M, is given by Eq. (38) Because the generalized coordinates for the pay-

load are referenced to an inertial coordinate frame, the inertia matrix is decoupled between

the payload and the rest of the system. Coupling does exist between the spacecraft center-

body and each of the manipulators.

M
ll
M

12
M

13
M

14
M

15 ° ° °

M =

M
2 ,
M

22
M

23

M
31
M

32
M

33

M
4 ,

M
44
M

45
°

M
5]

M
54
M

55

I
p

m
p

m,

Expressions for the individual elements in the inertia matrix are given by

M
55 = ^2 + ^2^2

M'45 M
54

= M
55

+ m
R2

*
R1

/c
R2

cose
R2

M.< = 1VL. = M., + m p^Pf/cp ,cos(0 R1 +e p ,)15 51 45 R2 R0
V
R2 R R2 J

M
44 = M45

+ l
R\
+m

R2
i
R\

tc
R2

COsQ
R2

+ m
lU

ic
l\
+mR2^\

(38)

(39)

(40)

(41)

(42)

16

M
14

= M41 = M44
+/

R0<mR/C
Rl
+mR2^1> COSe

R1

+ m
R 2WC

R2
COS (eRl'

f0
R2>

M
33 = ^2 + ^2^2

M
23 = M 32 = M33

+ mL2^/C
L2

COs9
L2

M
13

= M
31

= M
23
+mL2WC

L2
COS ^Ll +0

L2)

(43)

(44)

(45)

(46)

M
22 = M23

+ l
L\
+m

L2
lU ic

L2
QOsQ

L2
+ mU ic

l\
+m

L2
l
ll <47 >

M
12

= M
21

= M
22

+
^L0^

m
Ll^

C
I.l
+m

L2^Ll^
C0Se

i,l

+ mL2WC
L2

COS (e Ll
+0

L2>

(48)

M
ll

= I + M
22

+ M
44

+ m
(/

C
(

2

»

+ ^m
i.l
+mL2^

2

L0 +
(m Ri

+mR 2^
2

RO (49 >

+ 2/
R0 (mR] /cR1 +mR2/R])coseR1 +2mR2/R0/cR2 cos(eR1 +eR2)

+ 2Vo (mLl
/C
L 1

+ m
\Jl. 1)

C0Se
L 1

+ 2m
L2WC

L2
C0S

<
9
L 1

+ 9
L2>

2. Centripetal and Coriolis Matrix, G

The G matrix contains all of the centripetal and Coriolis terms. It is most easily

found using

G(q, q)

qV>g

qV 2
>q

T (8) .

q C q

(50)

where the elements of C^
1

-* are defined by the Christoffel symbol

Mi) 1

'jk

(dU- 5M.. DMA
i.l ik jk

dq. dq c\
(51)

17

The form of the G matrix for the system of Figure 1 is given as

G =

G
l

G,

G
i

=
~*lo (0 li +20 O9 L1) (mu *c

L
,+m

L2
*
L1

)siii9
L|

-m
L2

Z
Li'

c
L2

6L2(2 ^o + 2e L1 + GL2) sin0
L2

-m
L2

/
LO

Zc
L2

(26O^Ll+eL 2) + «>1.
1
+ ^L3>

^~

>
si " '\ |

+ L2 >

.2 . .

Ao (eRl +2e O Rl) (
mR/C

Rl
+m

R2^Rl
)Sm9

Rl

-m
R2
^/c

R2
eR2 (2e + 2oRI +e R2) sin0R2

-mR2^c
R2

(29o(ORi+eR2) +(0R,+0R2))sin(9
R1
+0R2)

.2
G

2
=

'LO 'J
(nl

Ll'
C
Ll
+m

L2'Ll
)sinOLl~ m L2^I l

/cL2°L2 (2e + 20 Ll +GL2) sine
L:

+ m
L2'L o

Zc
L2

6osin(e
L1
+G

L2)

G
3
= miA/c

L2<
9Ll +6L2) sin0

L2 + mL2
/
LO

Zc
L2 o sin(GL1

+e
L2)

.2
G

4
= ^oeO< mR/C

R|
+m

R2^Rl
)sll,eRl~ m R2^Rl

/c
R2

BR2(20 O + 20Rl +eR2) slne

+ »1R2<Ro'CR2 O sin (R 1

+0
R2>

2 .2

G
5
= m

R2^Rl^
C
R2 (0Rl +0R2) S,ne

R2
+ mR2WC

R2
9 O sln (Rl

+0
R2)

R2

(52)

(53)

(54)

(55)

(56)

(57)

18

3. Generalized Forces, Q

The generalized forces are found using the principle of virtual work. When there

is no reaction wheel on the centerbody, the system does not experience any external forces

capable of performing work. Six joint actuators apply torques at the shoulder, elbow, and

wrist of each manipulator.

U
6
= ULS ULE ULW URS URE URW (58)

uc is simply the joint actuator subset of the complete actuator torque vector, u. The

total virtual work is the sum of the torques applied to the individual bodies times their vir-

tual angular displacements.

N N

5W = £ 5W
,

= X (M ,)
60

,
<59 >

i - 1 i = 1

When the left shoulder joint actuator applies a positive torque on Link LI, a nega-

tive torque is also applied to the centerbody. The virtual work performed by the left shoul-

der motor is

5WLS
= ULS<50 (»

+ 5eLl- 6(V <60 >

where the positive angles are those associated with the change in Link LI attitude and the

negative angle is associated with the change in centerbody attitude. The left elbow actua-

tor makes a positive contribution to Link L2 attitude and a negative contribution to Link

LI attitude.

5W
LE = u

L E (8e + 6e
LI

+5e
i.2-

5e«- 5e
i.|) = ULE59L2 <61 >

The joint actuator at the left wrist makes a positive change in the payload attitude

and a negative change in Link L2.

5WLW = uLW (80
p
- 60

o
- 59

L1
- 59

L2) (62)

19

The right shoulder actuator makes a positive contribution to Link Rl attitude and a

negative contribution to centerbody attitude.

5WRS = uRS (89
()

+ 6e
R|

-50
o) = uRS89 R1 (63)

Link R2 has a positive virtual displacement due to a positive torque at the right

elbow. The same torque causes a negative virtual displacement of Link Rl

.

5WRE = URE <66 + 59
R 1

+ 86
R2 " 86

« -
86

R I
> = URE5eR2 <64 >

The right wrist actuator has a positive influence on the payload and a negative

influence on Link R2.

5W, (65)RW = URW<50p- 5e (.- 59Rl- 5e
R2)

Gathering Eqs. (60)-(65) together produces

8W = (- uLW - uRW) 50o + (uLg
- uLW) 59L {

+ (uLE
- uLW) 50 L2 (66)

+
(
URS- URw) 5e

Rl
+

^
U
Ri;-

URW> 59
R2

+
(
ULW- URw) 59

P

With respect to the system equations of motion, the generalized force correspond-

ing to a particular generalized coordinate is that portion of the virtual work associated with

the same generalized coordinate. Now Eq. (66) can be transformed into a matrix form.

% = B
6
U
6

<67>

where B is the control influence matrix given by

B
6
=

00 -10 -1

1 -10

1 -10

1 -1

00 1 -1

00 1 00 1

00 00

00

(68)

20

The only effect of a positive reaction wheel torque applied to the spacecraft is to

alter the centerbody attitude in a positive direction. This manifests itself in the control

influence matrix in the form of another column. This new column is all zeros except for a

single one corresponding to the location of the reaction wheel torque in the u vector. With

the reaction wheel torque as the first element in the control vector as in Eq. (2), the com-

plete control influence matrix is

10 0-100-1
10-100

00 1-100
10-1

1-1

1 1

00 00

00 00

B - (69)

4. Constraints Matrix, A

Because the eighth order system under consideration has only four degrees of free-

dom, an additional four equations are needed to describe the constraints. The eight gener-

alized coordinates are not independent. The constraint equations embody the information

that the manipulators are both grasping the payload forming a closed chain system. The

constraints matrix is derived by writing the system constraints in the Pfaffian form as

Aq + A
Q
= (70)

These equations come from geometric relationships of expressing the payload cen-

ter of mass Cartesian coordinates in terms of the other generalized coordinates.

/
L0

cos(6 + 9L0) +*L1 cos(9 + e
L0 + L1) +*L2cos(Oo + LO + e

Ll
+0

i.2
) + &p

cos9
p
= x

p

^ »n(e +eL0)+/L1
«n(e +9L0 +eLI)+/L2 Bin(e +e

L0
+e

LI
+e

L2
)+fc

p
8ine

p
= yp

^
RO

cos(e
o
+ e

RO) + ^ lCos(Go+ G
RO

+ e
R1) + ^

R2
cos(0

o
+ e

RO
+ GR1+ e

R:
)-(^-iCp)cosG

p
= x

p

^RoSin(G o
+ GRO)+<R1

sin(G
o
+ G

RO
+

R1
)+^

R2
sin(O

o
+ O

R(|
+ OR1+ G

R2
)-(^-^c

p
)sinG

p
= y p

(71)

21

To get the Pfaffian form of Eq. (70), differentiate Eq. (71) and rearrange terms.

The result is

AM A I2
AM A

|6
-l

A
2 ,
A
22

A^
3

A
2(

. -1

A
3 ,

A
34
A

35
A,

6
-I

A
41

A^A^A^ -1

'ii

L2(I

«R2

eP

X P

(72)

The constant term, Aq, is a zero vector. The individual element in the constraints matrix

are given by the following equations

(73)A
16

= -*c
p
sin0

P

A
26

= ^cp
cos0

p

A
36

= (^p^cp) sin0
P

A
46

= ' ^p~^cp) cos0
p

A
45 =^R2

cos(0
o
+ RO + R1

+eR2)

A
44 = A

45
+ Vl COS (e

(»

+ e
R0

+ 9
Rl)

A
41 = A

44
+ ^ ()

COS (6 + e
R0)

A
35 = ^R2 sin (U

+
RO

+
Rl

+e
R2>

A
34

= A35-^Rl sin (e
()

+
RO

+ e
Rl)

A
31

= A34-*RO sin <e + e
R0>

A
23 = ^2 cos (o

+
lo

+
li
+0

L2)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

22

A
22

= A
23

+ L
\. 1

C0S (9
U
+

°L()
+ 9

L 1

) <84)

A
21

= A
22

+ ^

I()

COS ^ e
(»
+

l.(»)
<85 >

A
13

= -^2
sin(e + e

L0
+ GL1+ e

L2) (86)

A
12 = A 13-^l sin(0

(»
+ e

i.(»
+

l.l> (87 >

A
ll
=A12^LO sin (O

+
Lo) <88 >

If the manipulators are mounted on a fixed platform rather than a rotating base, an

additional constraint equation is included in the A matrix. The constraint is that
()

is con-

stant and therefore

e = o (89)

This constraint is augmented into the A matrix by adding a fifth row. The first ele-

ment in the row is a one. The remaining seven elements are all zeros.

C. SIMPLIFIED EQUATIONS OF MOTION

The potential energy term is zero because motion is confined to the horizontal plane

and the system is composed of rigid members The inertia matrix, G matrix, B matrix, and

constraints matrix can be found from the results of the previous sections. The remaining

unknowns are the actuator torques and the Lagrange multipliers. By using the equations

of motion and the Pfaffian form of the constraints, one can eliminate the Lagrange multi-

pliers. The time derivative of Eq. (70) is

Acj + Aq = (90)

Solving Eq. (10) for q and substituting the result into Eq (90) permits one to find an

expression for the Lagrange multipliers.

23

(AM V7
) (AM 1 (G-Bu)-Aq) (91)

The inertia matrix is always a square matrix with full rank and therefore invertible. To

-IT
investigate the invertiblity of AM A , begin by creating a 4x4 matrix out of the third,

fifth, seventh, and eighth columns of the constraints matrix.

L
13

-1

L
23

-1

A
35

-1

A
45

-1

(92)

Inspection of this submatrix reveals that all of the rows and columns are linearly inde-

pendent even if A]3
= A23 and A35 = A45. Therefore, the A matrix always has rank of 4.

-l T
The 4x4 matrix product AM A will also always have rank of 4 and is therefore invert-

ible. Eq. (91) can be substituted back into the equations of motion (Eq. (10)) leaving the

actuator torques as the only unknowns. The resulting equations of motion in which the

Lagrange multipliers have been removed and potential energy is zero are

where

Mcj + G = Bu

G = G-A1 (AM]

A
F

) (AM ! G-Aq)

B = II-AT (AM V) AM"' JB

(93)

(94)

(95)

D. REFERENCE TORQUES

Given a reference trajectory of the payload with known displacements, velocities and

accelerations, one can use the simplified equations of motion (Eq. (93)) to solve for the

actuator torques that will produce the reference trajectory.

24

M A -+ G ,,.r = B rH-u r (96)
ref Vci lcl ,cl rci

The equations for specific elements in the matrices of Eq. (96) are the same as already

presented. The subscript "ref merely means that the displacement, velocity and accelera-

tion terms are the values from the reference trajectory

In this study, the total number of actuators is more than the system degrees of freedom.

This situation is caused by the geometric constraints of multiple manipulators handling a

common object. As a result, there are an infinity of solutions for the reference torques.

One method to select a soecific solution is to establish a cost function. An obvious cost

function is to minimize a weighted norm of the actuator torques.

J = - U
T W u e (97)

2 ~ref u ref
y '

The problem now becomes one of minimizing the cost function (Eq. (97)) subject to

the constraint that the reference equations of motion (Eq. (96)) are satisfied. Augmenting

the cost function with the constraint by means of another Lagrange multiplier leads to

J = 1 U
T W u +Y

T (B refu -M rq r-G„f]
(98)

2 -ref u-ref ' V Iel -ref ref^ ref ,eV y
'

The minimum of the augmented cost function is found by taking the gradient of Eq.

(98) with respect to the reference torques and with respect to the Lagrange multiplier.

Each of the gradients is set to zero.

~T
V u J = = W u +B,yu

ref
u rel rel -'

(99)

V
r

T = = Brefuref
-M

refqref
-Gref (100)

Eqs. (99) and (100) are two equations in two unknowns (y, u). Eliminating y

results in an expression for the reference actuator torques.

25

»
rer

= W^LflXrW-'O (M
refqrcf+

G
ref)

(101)

T
Although the matrix product Brefw u

'Bref is an 8x8 matrix, it is not invertible. A

pseudo-inverse is needed because the system has only four degrees of freedom. There-

fore, the matrix product Brefw~'Bref is rank deficient and has a rank of four at most. This

expression for reference actuator torques minimizes the augmented cost function (Eq.

(98)) at each instant in time. Although the value for the reaction wheel torque is calcu-

lated, it is not minimized by this function. The reaction wheel torque profile is dictated by

the disturbance torques transmitted to the centerbody as a result of manipulator and pay-

load motion. For a given reference trajectory, an infinite variety of joint actuator torques

can produce that trajectory. However, a given reference trajectory has only one reaction

wheel torque profile that is common to all the infinity ofjoint torque combinations associ-

ated with that trajectory. Equation (101) selects from among the infinity of joint actuator

torques the one combination that minimizes the weighted norm cost function. Although

the selection is limited to a single choice, Equation (101) also produces the correct reac-

tion wheel torque for the given reference trajectory.

E. LYAPUNOV CONTROLLER

This material in this section is based on Ref. 16. The purpose of any control law is to

provide system performance that satisfies a specification. As a bare minimum, the control

law must keep the system stable. Because of the highly nonlinear nature of this spacecraft

robotics system, most control laws simply do not apply The motivation behind using

Lyapunov methods is to develop a control law with guaranteed stability. Recall the equa-

tions of motion of the manipulator system are

Mq + G = Bu (102)

26

Solving Eq. (102) for q results in

q - M" 1 (Bu-G) (103)

Substituting Eqs. (94) and (95) back into Eq (103) and grouping terms according to

the form

q = CjU + C
2q

+ C
3

(104)

leads to the following expressions

C, = M" 1

{I-A
1

(AJvT'a
1

) AIVf'jB (105)

C
2
= -IVT'A^AIVf'A

1
) A (106)

C
3
= M -1

{A
T (AM _I

A
I

) AM~'-I}G (107)

Similarly, the reference maneuver accelerations can be expressed as

q = C. u +C, q p
+C. (108)

-ref l
rer'ci 2

reiref 3 ref

where again the reference subscripts on the C matrices indicate that reference maneuver

values need to be used in their calculation. Let error quantities between the actual vari-

ables and their reference maneuver counterparts be defined by

Sq = q-q
ref

(109)

5q = q-q
ref

(110)

5q = q-q
ref

(111)

Now define an error Lyapunov function as

U = 0.5(5q-5q) +f(5q) (112)

where f(6q) > 0. Differentiating Eq. (112) results in

27

= 5q-6q + £
Pf

-^(oq,)H (113)

Let

F =
af er dt

a(5q,) 3(5q
2
) c1(5q

7)

Then Eq (114) can be rewritten as

(114)

U = 5q- (5q + F) (115)

Substituting Eq. (104) and Eq. (108) into Eq (111) and then Eq. (Ill) into Eq. (115)

produces

U = 5q{(Cu-C u) + (Cq-C
2 q) + (C^ - C)+F} (116)

ref
-

' *'•' ref '
^' ref

If one lets the quantity inside the brackets of Eq (116) equal -K 5q where K is a

positive definite matrix, then one is guaranteed that U < and therefore the system will be

stable in the Lyapunov sense. Solving Eq (116) for command torques, u, leads to

u = C
1

t{-K
v5q + C]

u -(C
2
q-C

2 q)
- (C, - C

3
)-F} (117)

Cj is an 8x7 matrix so C. ' is its pseudo inverse. Equation (1 19) finds the torques that

should be used rather than the reference torques. All that remains is to choose a function

for f (5q) . One can choose

f(5q) = ^8q
TK

p5q (118)

where like K
r
, K is required to be positive definite. Selection of values for the gain

matrices is beyond the scope of this work. The simulations included in the next chapter

use diagonal matrices with uniform values simply as a matter of convenience. One might

try to adapt the linear quadratic regulator (LQR) problem to find more optimal gains.

28

After substituting Eq. (118) into Eq. (114) and that result into Eq. (119), one obtains the

final form of the Lyapunov controller.

u = C
1

t{-K
v5q + C, u -(C

2
q-C

2 q)-(C,-C
3
)-K

p5q} (119)
1 V 'rer rel Z Z

ref rel J
ref

'

If the differences between the reference trajectory and the system dynamics are small,

the Lyapunov controller approaches the form of a proportional plus derivative (PD) con-

trol law.

F. REFERENCE TRAJECTORIES

The reference trajectories describe the nominal path that the system follows in moving

from the initial conditions to the desired final conditions. One need only specify reference

trajectories for as many generalized coordinates as there are degrees of freedom. In effect,

the generalized coordinates can be divided into two sets. One set contains the minimum

number of coordinates needed to completely describe the system. The second set contains

all remaining coordinates, (redundant coordinates). The choice of which generalized

coordinates to specify is entirely arbitrary. A reasonable choice includes the payload coor-

dinates and centerbody attitude since the user will probably be especially interested in

these generalized coordinates. The redundant coordinates are the four manipulator joint

angles. Given reference trajectories for the minimum number of coordinates exist, the

redundant generalized coordinates can be derived. This research assumes trajectories are

available which define displacement, velocity and acceleration for the centerbody attitude,

payload attitude, and payload center of mass coordinates (Xp Yp, 9p and 9).

1. Calculating Redundant Coordinates

Figure 2 illustrates the relevant geometrical relationships to find the joint angles of

the left manipulator. Xp, Yp, P and
()
are obtained from the reference trajectory Point

LS is the left shoulder joint. It has Cartesian coordinates given by

29

Figure 2: Deriving Left Manipulator Joint Angles

LS
x
= <

L(]
cos(0

(i+ 10 > (120)

Ls
y
= Vin(0 +e

LO) (121)

Point Q is the joint between the manipulator end and the payload. The Cartesian

coordinates of this point are

Qx
= X

p
-*

cp
cos9

p (122)

Q = YD -Z D sinGD^y P cP P (123)

30

The distance between the left shoulder and Point Q is given by

'(Q
v
-LS

x
r + (Q

y
-LS

v
)lsq = J(

The inertial angle formed by the vector from LS to Q is

ru. -'-V
P = atan

(124)

(125)

The dimensions of the triangle formed by the manipulator joints are known. Using

the law of cosines, the interior angles at the shoulder and elbow can be found from

P 7
= acos

p, = acos

I 2*
L|
LSQ

' 2
<M<,.2

(126)

(127)

All that remains is to algebraically construct the manipulator joint angles from

other angles as follows

e
L1 = P,+P2-(VeL0) (128 >

e
L2

= p, + 180° (129)

The development for the right manipulator is similar Its geometry is depicted in

Figure 3.

Point RS is the right shoulder joint with Cartesian coordinate

(130)

(131)

Point P is the joint between the manipulator end and the payload. The Cartesian

coordinates of this point are

(132)

(133)

The distance between the right shoulder and Point P is given by

RS
x = *

RO
COS

(°O
+0

RO>

RS
y
= 'Ro

si»< e
o
+ fW

p
x

= x
p
+ (/

p
-*

cP
)cose

p

V Yp+i/p-^sinO,

31

Figure 3: Deriving Right Manipulator Joint Angles

RSP = ,/(P -RS)

2 + (P -RS)
2

*v x x y y

The inertial angle formed by the vector from RS to P is

P4
- atan

T -RS
y y

P -RS

(134)

(135)

From the law of cosines, the interior angles at the shoulder and elbow are

p, = acos
*R1+ RSP -4

2

2<
R
,RSP

" (136)

32

P, = acos
2
<R!<R2

(137)

The geometry in Figure 3 gives the manipulator joint angles based on the other

angles.

(>
R ,

= IV1V «>„ + %,) (»38)

e
R2

= i80«-p
6 (139)

Recall from the discussion of the Lyapunov controller that torques are calculated

based not only on the generalized coordinates but their velocities and accelerations as

well. The redundant coordinates have just been found, but the redundant coordinates

velocities and accelerations must still be developed.

Differentiating Eqs. (122) and (123) expresses the velocity of Point Q.

Qx = XP + ep/cp
sin0

p (140)

Qy = Yp-Vcp
COs0

p
(141)

But the coordinates of Point Q can also be expressed in terms of left manipulator

variables.

Qx
= /

L0
COS(G + e

L0)
+ ^. COS(0 + f)

L0
+0lV + ^2 COS(() +0

L0
+0

L 1

+G
L2) (l42)

Qy = <L0
si,l(e +e

L0>
+
*Ll

si"(O
+ eLO + e

Ll)
+

<I.2
sil1 (0 + 9L0

+
°L 1

+ 6
L2> (143)

Differentiate these equations and rearrange the terms in the form of

l9*j

D^n + D,
'LI

'i :

(144)

where

d
2 (i,d

= -^2
sin(e +e

LO
+e

11
+o

12
)-/

L1
sin(e +eLO

+e
L1)

D
2
(i,2) =-^

2
sin(eo+ LO+ eL1+ e

L2)

D
2
(2,l) = ^2 COS (eo +0LO + 9

Ll
+e

L2^
+/

Ll
COS f e +9

L0
+G

Ll)

(145)

(146)

(147)

33

«L1
D-'

"
D,rt

tl

1 0,

Dj », 2) t
{

.cosjo,, » ii,

n
nin i B,) (US)

0,(1,1) e
La

«in(9 + LO + e
Ll
+0

La) «
L
,dn(0 + B

L0
+ 8

L ,) «, „m.mii, ui, „» (149)

l\tl.:i /, .i-osjn,, i0
M1

>o,
,

1-0, .) I C, ,ooa(0
n
h0

L0
+ 0, ,) i

£,
oo8(9 ut, „) (150)

I efl manipulatoi joinl velocities are round by rearranging Equation (144)

(151)

where Eqs (140) and (141) provide the expressions foi qs andcx respectively

Using the same approach to find the joinl velocities of the righi manipulator, Point

P is expressed .> s .i function of right manipulatoi variables

r-j ^iin(e +e
R0) ^wntVWW »',,-" ,/ ,,„" 1

,; ,

«Mi (
153 >

Differentiate those equations and rearrange tlu* terms in the form of

>\

\\0„>\\

*m

(154)

whoie

D4 (U2) <
k
.m.ui>, m.

Ki>
m>

k
. |.eRa)

D • n J
rj
«ks(0 +0

R0
+0

b
K0

Ri) ^,008(0, «

D
4 (2,2) ^ 0081 I M)

H
K0

R
I

(155)

(156)

(157)

(158)

D,an «Rj»M» *eR0+S •M> ^^n^+e,
,
— (159)

iy,i.- <
K;^i0 *0R, ^ ^ -,— >', •, <<\ oos I 8

R0) (160)

Right manipulatoi joint velocities are found b\ rearranging Equation (154)

34

_ _
f >

Or,
= < K

- D
3
d

8R2 \ A ;

(161)

where expressions for px and p
y
are found by differentiating Eqs. (132) and (133).

Px = Xp-eP Up-ZcP)sinGp (162)

P
y
= Y

p
+ 6p(^-«cp

)cosO
p (163)

Manipulator joint accelerations are found by differentiating the expressions for

velocity (Eqs. (144) and (154)).

= D|0 O + D.6 O + D 2

= D39 +DA + D4

0L1

j»L2

«'r:

+ D.

+ D,

"i.i

9L2

Sri

8 R2

(164)

(165)

Solving for joint acceleration gives

eL2

= d:

-
/
- —

6ri v? Px

_
6 R2 VA

0,0,-0,0,-02

- D3
eo-D,0o-D4

0L2

'K I

FR2

(166)

(167)

where the accelerations of Points Q and P come from differentiating Eqs. (140)-(141) and

Eqs. (162)-(1 63). Derivatives of the D matrices are constructed by differentiating Eqs.

(145)-(150)andEqs. (155)-(160).

2. Selecting Reference Trajectories

Any path which connects the associated endpoints can be a reference trajectory.

To help ensure that the spacecraft and payload do not experience any unnecessary jerk or

excitation of flexible structures, one might further constrain the path such that the veloci-

35

ties and accelerations are zero at the endpoints Because a reaction wheel is required to

maintain spacecraft attitude, the reaction wheel torque history is a prime candidate for

optimization. Possible performance indices include the integral of the absolute value of

reaction wheel torque

J = flu , ,|dt (168)
J |

whecll v '

K

or the maximum reaction wheel torque.

J = max(|u , .1) (169)v
|
wheelr

A rigorous method for reference trajectory selection is to develop an optimal con-

trol solution to the two point boundary value problem. The performance index in the opti-

mal control problem is given by

J =jL[x(i),„(t),t]dt (170)

Using Eq. (168) as an example,

L = |uwh |

= |Du| (171)

where

l
U =

[
Uwh ULS ULE

U
I W ll

RS U
RF,

U
RVv) J ^ 172)

and

D = [l o o ooooj (173)

The state equations must be formulated as first order differential equations as

x-f[x(t),u(t),t| (!74)

Because the system dynamics of my problem are second order differential equa-

tions, the state vector for the trajectory optimization is a combination of generalized dis-

placements and velocities.

36

T T (175)

The resulting state equations are

8x8 8x8

8x8 8x8

X +
8x7

M^B
u +

8x1

-M"'(i

(176)

where G and i are the same matrices as already found in Eqs (94) and (95) respectively.

Desirable boundary conditions are such that the payload is at rest with zero accel-

eration at the beginning and end of the repositioning maneuver. However because the

state vector does not contain accelerations, they cannot be specified as a boundary condi-

tions. If the state vector is increased to include accelerations, then the first order state

equations involve third order derivatives of the equations of motion rather than second

order equations. This prevents including payload accelerations as part of the boundary

conditions. To permit further development of the optimal control problem, the boundary

conditions will be limited to desired positions and zero velocity.

X(V =
h"n» °lx«]

X(V - [q'V °.x 8]

T

(177)

(178)

The Hamiltonian formed by combining the performance index with the state equa-

tions is

H [x(t),u(t),Mt),t] = L [x(t),u(t),t] + x (OfjxCO.uOJ.tJ (179)

The performance index and the state equations are both linear with respect to the

control vector, u. The consequences of this are that one cannot find a minimum by taking

the gradient with respect to u and setting it equal to zero. The applicable control form is

bang-bang. Separating the Hamiltonian into those terms which premultiply u and those

which do not leads to the control law

37

u* = u^sigiKH,) (180)

where

H = H + H,u (181)

The other equations which must be satisfied are

i
1 .."!.-*-!**

(,82)
dx dx dx

Because the performance index is only a function of u, the first portion of the

above necessary condition is trivial.

dh

dx
(183)

3f

is not as easily found. The M, G, A, and a matrices are all functions of the state
dx

J

vector. In addition, the complexity is increased by several matrix inversions in the expres-

sion of f in the 6 and b matrices. Although an analytical expression may be theoretically

possible, finding it was found to be extraordinarily tedious.

Recall, however, that the usefulness of the reference trajectories is to specify the

generalized coordinates, velocities, and accelerations. Therefore, a convenient form for

the reference trajectory is as a polynomial function of time. The following development

uses the payload attitude generalized coordinate to illustrate how the polynomial reference

trajectories are applied. Let

A9
p
= e

p
(t

f
)-e

p
(t) (184)

where t^ is the maneuver start time and tf is the final time. The duration of the maneuver

is the difference between tf and \q. Gp(tfj) and Gp(tj-) are the initial payload attitude and the

desired final attitude respectively. If the desired reference path for the payload attitude in

moving from initial to final conditions is a curve which can be represented as a polyno-

mial function, f(x), where x is simply normalized time

38

t = — (185)

then

e
p

(t) = 8
p
(t) +f{T) (A9

p) (186)
ref

9 P (t) = f (t) (A9)[—!— (187)
'^-'o

dp (t) = r (t) (A9) I
—

-

I (188)
' tv-v

In order for Eq. (186) to produce the correct initial and final values for o , the
r.I

polynomial must be such that

f(i=0) = (189)

f(T=l)=l (190)

To produce zero velocity and acceleration at the initial and final conditions

requires that f(x) also satisfy

f(x=0) = (191)

f'(x=l) = (192)

f'(T=0) = (193)

f'(T=l) = (194)

The minimum order polynomial which satisfies the boundary conditions of Eqs.

(189)-(194) is

f(x) = 6x
5 - 15t

4
+ 10i

3
(195)

The expressions for payload reference trajectory using the fifth order polynomial

become

e
Prrf

(t) = 6
p

(t
Q
) + (6x

5
- 15i

4
+ 10t

3

) (A9 p) (196)

39

> p (t) = (30t
4
-60t

3
+ 30t

2

) (A0p)
ref *

p (t) = (120i
3 - 180t +60i) (A9 p)

ref '

*
1 >

V
l
f

X
QJ

(197)

(198)

(t
f
-t)"

The polynomial reference trajectory is also be applied to the other generalized

coordinates which form the minimum set to describe the system (i.e. centerbody attitude

and payload center of mass coordinates). The redundant generalized coordinates are cal-

culated from the reference coordinates as described earlier.

Higher order polynomials can increase the complexity of the path but offer the

advantage that an infinity of polynomial coefficients satisfy the position, velocity, and

acceleration boundary conditions. The selection of the coefficients affords an opportunity

to optimize the reaction wheel torque. In this system, manipulator actuator torques are

internal while the reaction wheel torque is the only external torque. Therefore, the reac-

tion wheel torque will be equal to the rate of change of angular momentum which can be

calculated directly from a reference trajectory. This technique is more computationally

efficient because it does not require the construction of the G and b matrices.

In general, the angular momentum about the inertial origin for each member of the

system is

H = Leo +m.(r xv) (199)

where I. is the moment of inertia of the i body about its center of mass

m is the angular rate of the i body

m
i

is the mass of the i body

r is the inertial position of the i body center of mass

v is the inertial velocity of the i body center of mass

40

The angular rate, position and velocity vectors were previously developed in con-

nection with determining kinetic energy. Those expressions require some coordinate

transformations to express all the terms with respect to the inertial coordinate frame. The

change in angular momentum is found by differentiating Eq. (199) to produce

H = I (o + m (r x a) (200)

The total system change in angular momentum is the sum of change in angular

momentum for each of the members. After collecting terms with common angular veloc-

ity or acceleration terms, the expression for the system change in angular momentum is

given by

41

H = Ip
Bp + ni

p
(XpYp-XpYp) (201)

• r 2 2 2
+ Hi i

I. . + I. t + m. ,1 . . +m. ,1 . - + in, -I. . + m, , I, ,1 . ,cos9, ,
+ in, ,1, J, .cosO.

,Ll L LI L2 LlcLl L2cL2 L2L! LILOcL) LI L2L0L1 LI

+ 2m, .I, .1 , ..cosO. ., + m, ,1. .1 . ,cos (0, +)
"1

L2 LI cL2 L2 L2 LO cL2 1.1 l 2 J

+ 6L2 [l
L2

+ m
L2

l

c

2

L2
+ ni

L2
l

L1
l

cL2
cose

L2
+ m

L2
l Ln l

cL2
coS (0

L1
+e

L2
)

+ A R. [lR ,

+I
R2

+ m
Rl

1

cRI
+m

R2
l

cR2
+n,

R:
l

k.
+m

R.
,

RO
l

cRI
COS

°Rl
+m

R2
l

R0
,

Rl
COs0

R.

+ 2m
R2

1

Rl
l

cR2
COs0

R2
+ m

R2
l RO l

cR2
COS(B

Rl
+0

R2)]

+ 6R2[lR 2
+ ni

R2
l

c

2

R2
+ ni

R2
l

R]
l

cR2
cosO

R2
+ m

R;
!

R0
l

r;
co S (0

R)
+()

r:
)

+ e Li eL2 [-2mL:
l

L1
l

cL2
si.ie

L2
-2m

L2
l

LO
l

cL2
sin(0

L1
+O

L2)]

+ G LI I" '"li'lo'cLI
sill

°Ll " n1
L2

l

LO
l

Ll
sin0

LI " mL2 ,L0 ,

cL2
sin (°L1

+
°L2>1

+ L2 [-m L2
l

L1
l

cL2
si.iG

L2
-ni

L2
l

LO
l

cI2
sin(0

L1
+e

L2)]

+ G R1 GR2 [- 2m
R2

l

R1
l

cR2
sine

R2
- 2mR2 lR0 l

cR2
sin (6

R|
+0R2)]

+ R ,[-m RI
lRo l

cR1
sine

R1
-ni

R2
l

Ro
l

R]
sin0

R1
-in

R2
l

RO
l

cR:!
sin(O

R|
+fi

R2)]

+ GR2 [-

m

R2 l

R]
l

cR2
sinOR2

- m
R2

l

R0
l

cR2
sin (0

R1
+H

R2)]

Any polynomial reference trajectory that satisfies the initial condition concerning

displacement cannot have a constant term. Polynomials which satisfy the velocity and

acceleration initial conditions must not contain linear or quadratic terms. The general n

order polynomial reference trajectory has the form

f(x) = ^xn + Vl*""
1 + V2t""

2 + - + a5 x
5
+ a4 T

4
+ a3i

3
(202)

Derivatives are

f(x) = na^"" 1 + (n-l)a„.,x
n-2 + (n-2)^. 2 x

n^ + ... + 5a
5 x

4 + 4a4x
3 + 3a3 t

2
(203)

42

f'(x) = inn-Da,,!""
2 + (n-l)(n-2)an.|i

IKl + (n-2)(n-3)an.2x
n-4 + ... + 20a5x

5 + 12a4t
4 + 6a 3 x (204)

When t=1 and the final conditions, f(l) = 1, f'(l) = nad f"(l) = 0, are substituted

into Eqs (202)-(204), these equations can be put into matrix form

n I

1 1 1

n (n-1) (n-2)

n(n- 1) (n- 1) (n-2) (n-2) (n-3)

1 1 1

5 4 3

20 12 6

[W]a (205)

The column vector of polynomial coefficients can be partitioned. One segment,

3543, contains the coefficients for the third, fourth, and fifth order terms in Eq (202). The

other segment, a^g^, contains all of the coefficients of order six and higher.

high

543

(206)

The W matrix can be partitioned accordingly.

w - [w
hlgh

w
543]

(207)

One can then solve for the lower order polynomial coefficients in terms of the

higher order coefficients by substituting Eqs (206) and (207) into Eq. (205). The result

specifies polynomial reference trajectory coefficients which satisfy the boundary condi-

tions.

fl
543 " W 543

(r
1

lp_

W a
high high (208)

An optimal solution for a polynomial reference trajectory is found by using the

MATLAB function fminu. This tool numerically finds the solution to an unconstrained

function minimization problem using a quasi-Newton method. The function to be mini-

43

mized is the rate of change of angular momentum, Eq (201), which can be found once a

reference trajectory is specified. The user makes an initial guess for the higher order refer-

ence trajectory coefficients. The lower order coefficients are calculated by Eq. (208). The

MATLAB function then varies the higher order coefficients and recalculates the lower

order coefficients as necessary to minimize change in angular momentum. One limitation

to this technique is that the algorithm may converge to a local rather than the global mini-

mum.

44

III. VALIDATION AND SIMULATION RESULTS

The computer simulations presented in this chapter were obtained using the MATLAB

subroutines included in Appendix B. The integrator uses 4 and 5 order Runge-Kutta

formulas See Appendix B for documented listings of the computer code.

A. VALIDATION

To verify the equations and find the programming bugs, test cases were developed.

The simulations are analyzed to ensure that universal principles such as conservation of

energy and angular momentum are not violated. Numeric values for the generic dual two-

link manipulator system are contained in Table 1 . The generic model is the strawman con-

figuration that all of the test cases are based on with the exception of a few minor varia-

tions. The variations will be pointed out in the appropriate test cases. The values for the

generic model's system properties are picked for uniformity and simplicity. The manipu-

lator links and the payload are modelled as slender rods of uniform density.

1. Conservation of Kinetic Energy

In the first test case, no torques are applied and the initial velocities are nonzero.

Under these conditions, the system links drift subject to the constraints of being pinned

together. Since potential energy is zero and there are no external energy sources, kinetic

energy should remain constant. The system begins with the payload parallel to a line

drawn between the two shoulders and 0.75m away from them. The initial angular rate for

the centerbody is chosen to be e = 2 deg/sec. The initial angular rate for the payload is eP

= -5 deg/sec. Initial velocities for the payload center of mass are -0.1 m/sec along the x

axis and -0.05 m/sec along the y axis. The remaining generalized velocities are calculated

45

TABLE 1. GENERIC MODEL SYSTEM PROPERTIES

Parameter Value

Length

(m)

ho 0.75

hi 0.5

hi 0.5

ho 0.5

hi 0.5

h2 0.5

h 0.75J2

Mass

(kg)

m 5

™L1 1

mL2 1

™R1 1

mR2 1

nip 1

Center

of

Mass

(m)

lc

kLI 0.25

kL2 0.25

km 0.25

km 0.25

lcP 0.25

Moments

of

Inertia

(kg-m2
)

h 5

hi 0.02083

hi 0.02083

hi 0.02083

hi 0.02083

h 0.02083

Shoulder

Location

(deg)

^LO 90

RO 45

46

based on the values specified for the centerbody and payload. Initial angular rates for the

manipulator links are o LI = 6.6607 deg/sec, () l2
= -7.0457 deg/sec, <) R1

= -2.7553 deg/sec,

and o R , = 14.9127 deg/sec. The graphical results from this test case are included in Fig-

ures 4-8. As indicated in Figure 7, kinetic energy is conserved in this case.

150

too

50

Angles

(deg)

1

o
~R2^,

—— -
^—

-

-^
% -

~~^--___

6
p -

- -

-50

-100

-150

Time (sec)

Figure 4: Test Case 1 Angles

lo

Angle Rates

(deg/sec)

Time (sec)

Figure 5: Test Case 1 Angular Rates

47

Y(m) 08

X(ml

Figure 6: Test Case 1 Time Lapse Stick Figure

0.04

Kinetic

Energy 0.02

(kgm/seC

)

Time (sec)

Figure 7: Test Case 1 Kinetic Energy

48

1.213

Angular

Momentum 0.606

(N-m-sec)

Time (sec)

Figure 8: Test Case 1 Angular Momentum

Test Case 2 is an extension of Test Case 1 . This is still a case with nonzero initial

velocities and no external torques. However, the system geometry is altered to be sym-

metrical. In addition to conservation of kinetic energy, this test case will ensure that the

symmetry is preserved. The physical alterations in the system involve moving the loca-

tion of the left shoulder from 90 degrees to 135 degrees and decreasing the distance from

the origin to the right shoulder to 0.75 meters. The payload still begins centered between

the shoulders and parallel to the y axis but is 1 .2 m from the origin. To maintain symme-

try, the initial velocities must also be symmetrical. The initial angular rate for the center-

body is chosen to be e = deg/sec. The initial angular rate for the payload is also zero.

Initial velocities for the payload center of mass are zero along the x axis and -0.05 m/sec

along the y axis. The remaining generalized velocities are again calculated based on the

values specified for the centerbody and payload. Initial angular rates for the manipulator

links are 6L1 = 2.3188 deg/sec, eL2 = -7.6851 deg/sec, e R ,
= -2.3188 deg/sec, and oR2

=

7.6851 deg/sec. This combination of system geometry and initial velocities is designed to

49

cause the payload to drift toward the origin without changing its attitude. Figures 9-13

show the results from this test case. Kinetic energy is conserved and symmetry is pre-

served.

Angles

(deg)

Tune (sec)

Figure 9: Test Case 2 Angles

10

5 -

Angle Rates

(deg/sec)

-5

10

Time (sec)

Figure 10: Test Case 2 Angular Rates

50

12

1.0

- \\ \
N\"-\

//
.06

\\\
Yv\ ^ K

04

(i

:

-

on

00

X(mi

Figure 11: Test Case 2 Time Lapse Stick Figure

4.951
xlO'

Kinetic

Energy 2476

(kg nf/sec
2

)

Time (sec)

Figure 12: Test Case 2 Kinetic Energy

51

x 10
-2.0

-2.5 "

3.0 -
Angular

Momentum

(N-m-sec) _>
5

-4.0

-4.5

10

Time (sec)

Figure 13: Test Case 2 Angular Momentum

2. Conservation of Angular Momentum

As long as a system does not include external torques, one expects that angular

momentum should be conserved. The joint actuators provide internal torques while the

reaction wheel is the only external source. Test Cases 1 and 2 did not include a reaction

wheel and are therefore subject to investigation with respect to conservation of angular

momentum Both cases do satisfy the requirement as indicated by Figures 8 and 13. Fur-

thermore, due to the symmetry in the system in Test Case 2, the angular momentum of the

left manipulator links should be cancelled out by the angular momentum of the right

manipulator links. The centerbody and payload should not have any angular momentum.

Consequently, angular momentum for the system should not only be conserved, it should

be zero. Figure 13 show that the angular momentum remained virtually zero. The non-

1
"7 f\

zero values of about 3x10 are well within the integration algorithm tolerance of 10

Test Case 3 returns to the generic system from Table 1 . Initially, the system is at

rest. Constant torques are applied at both shoulders and nowhere else. The torques are

52

0.01 N-m applied in the positive direction at the right shoulder and the negative direction

at the left shoulder. Because the joint torques are internal to the system, angular momen-

tum must still be conserved even though kinetic energy won't be. Furthermore, since the

system began at rest, the angular momentum should remain at zero. The results are shown

in Figures 14-18. Although the angular momentum did not remain identically equal to

zero, their magnitudes of less than 2x10" are within the 10 tolerance placed on the inte-

gration algorithm.

100

50 -

Angles

(deg)

-50

-100

1

(W-
-

eu
-^^^
V

1

II)

Time (sec)

Figure 14: Test Case 3 Angles

53

40

20 -

Angle Rates

(deg/sec)

-20 -

-40

1,

—

y^~^i_
'

^ZZ^^^ d^

ZZZ:::\
— -

5

Time (sec)

Figure 15: Test Case 3 Angular Rates

10

Vim)

Figure 16: Test Case 3 Time Lapse Stick Figure

54

0.030

0.025

0.020 -

Kinetic

Energy 0.015 -

(kg m /sec)

0.010

0.005

Time (sec)

Figure 17: Test Case 3 Kinetic Energy

x 10

-0.5

Angular

Momentum _i o

(N-m-sec)

-1.5

-2.0

Time (sec)

Figure 18: Test Case 3 Angular Momentum

Test Case 4 is similar to Test Case 3 but the symmetrical system geometry is used

instead of the generic geometry. This change should produce symmetric motion and zero

angular momentum. The reaction wheel is still disabled. Figures 19-23 indicate the sys-

55

tem reacted as expected. Changing the torques to time varying profiles rather than con-

stants led to similar results.

Angles

(deg)

-100

Time (sec)

Figure 19: Test Case 4 Angles

4U i

°L2

/"~"\

20 G
R1

-

Angle Rates

(deg/sec)

% %

-20

-40 i

6U ~

5

Time (sec)

Figure 20: Test Case 4 Angular Rates

10

56

Y(ml

Figure 21: Test Case 4 Time Lapse Stick Figure

0.020

0.015 ~

Kinetic

Energy 0.010

(kg nf /sec)

0.005

Time (sec)

Figure 22: Test Case 4 Kinetic Energy

57

15

Id

x 10

Angular

Momentum 5

(N-m-sec)

Time (sec)

Figure 23: Test Case 4 Angular Momentum

3. Wheel Torque and Constraints

The remaining test cases involved using the reaction wheel on the centerbody. The

wheel's function was to maintain attitude pointing. The system begins at rest. The torque

applied by the wheel is an external torque in this model. Therefore, its value must be the

same as the change in angular momentum. The wheel torque is found by means of the

inverse kinematics equations in Chapter II. These calculations are entirely independent of

finding the change in angular momentum. After a simulation is finished, a separate sec-

tion in the program code calculates the change in angular momentum using the general-

ized coordinates, velocities and accelerations produced by the integration. These values

are plotted along with those of the reaction wheel torque. A sample plot is contained in

Figure 24. This particular plot is for the case of a fifth order polynomial reference trajec-

tory. The rest of the plots associated with this case are presented later in the Simulations

section. The validation tests concerning conservation of kinetic energy and angular

momentum required special circumstances to create those conditions. The requirement

58

that the reaction wheel torque equal the change in angular momentum is more universal.

It is a verification check performed with every simulation involving a reaction wheel.

o.io

0.05 -
Wheel

Torque

&

Change in

Angular

Momentum

-0.05

(N-m)

-0.10

Time (sec)

Figure 24: Sample of Wheel Torque and Change in Angular Momentum vs. Time

An even more universal check also performed with every simulation is the require-

ment that the constraint equations (Aq + A
(J

= o) are satisfied. Figure 25 shows a sample

plot. This plot was also taken from the fifth order polynomial reference trajectory case.

The values plotted represent the four constraint equations contained in Eqn 72. The non-

zero values are attributed to numerical errors created by the integration.

Finally, a common sense check also performed with every simulation is simply to

verify that the payload was repositioned to the desired final location. This cannot happen

if the torques applied to the system were incorrect. This test is a necessary but not suffi-

cient condition that the code operates correctly.

59

x 10

2nd Constraint Eqn

1 st Constraint Eqn

4th Constraint Eqn

3rd Constraint Eqn

Time (sec)

Figure 25: Sample of Constraints vs. Time

B. SIMULATIONS

This section presents results from several simulations of an analytical model. The

desired payload repositioning maneuver is illustrated in Figure 26. The final position for

the payload involves a 90 degree rotation and the right endpoint finishes where the left

endpoint started.

1. Lyapunov Point Controller

In the first simulation, the repositioning is done entirely by the Lyapunov control-

ler without the benefit of a reference trajectory. The behavior is that of a point controller

with an initial displacement rather than that of a tracking controller. Due to the absence of

the weighted norm reference torques, this controller cannot be consider to have coopera-

tive nature. Figure 27 presents the angular displacement history. The asterisks on the

right side of the plot indicate the desired final angles Although the system is approaching

the desired final geometry, it has not completely settled down even after 40 seconds. Posi-

tion errors (Figure 28) are still present as well as nonzero velocities (Figure 29). Also note

that the reaction wheel torque is quite high during the maneuver (Figure 30). The joint

60

actuator torques are considerably less than the reaction wheel torque They are not identi-

fied individually because the most important feature of Figure 30 is the reaction wheel

torque. As a quantitative measure of this controller's quality, j|uwh |dt produces a value of

17.3841. The oscillatory nature of the system is evident in the angular position and veloc-

ity plots. Despite the oscillations, however, the stability of the controller is also illus-

trated. Figure 31 depicts the system geometry at several instances during the maneuver.

The left manipulator links actually cross over each other. In experimental hardware, the

links would collide instead. Figure 32 removes the clutter that is present in Figure 3 1 and

displays only the initial and final geometry. The Lyapunov point controller also does a

poor job of maintaining the centerbody attitude. This is clearly evident in Figures 27 and

3 1 . The attitude error peaks at about 1 6 degrees.

1.6

14

1 2

Left

Elbow

Left

r

Payload

1

Right

MVrisIWrist/-
1

1

/ Right

/ Elbow -

(m) 08

06

\/
Left '

Shoulder yT Right

Shoulder

0.4

("enterbody ^r

-e- Initial Geomtry

02
-H- Final Geomtry

-0 5 5 1

X(m)

Figure 26: Desired Repositioning Maneuver

61

Tildas vs Time

200

100 -

Angles

(deg)

-100

-200

'/ \

y
R2

/^H

1

r

,
* Desired Final Value*

20

Time (sec)

40

Figure 27: Lyapunov Point Controller Angles

100

50

6 - ORef

(deg)

-50

-100

Displacement Errors vs Time

^°L2

i

X-
~6r2

^ e
o

-

/ \ 7/ \ J1 ^~^

/ V/ A,
r~^ e

Ri

/—

e

P
1

20

Time (sec)

40

Figure 28: Lyapunov Point Controller Displacement Errors

62

ThetaDots vs Time
T

Anglc Rates

(deg/sec)

Figure 29: Lyapunov Point Controller Angular Rates

Command Torques vs Time

Command

Torques

Figure 30: Lyapunov Point Controller Command Torques

63

Figure 31: Lyapunov Point Controller Time Lapse Stick Figure

X(m)

Figure 32: Lyapunov Point Controller Initial and Final Stick Figures

64

2. Lyapunov Tracking Controller

This controller uses the following equation to calculate control torques

u = C
1

t{-K
v
5q + C, u -(Cq-C q)-(C -C

3
)-K5q} (209)

i v i rer rel <*•- -
rcf rel J

ref
i

This equation was developed in the analytical chapter and repeated here for conve-

nience. The command torques are based on errors with a reference trajectory. Reference

torques which resulted from minimizing a weighted norm of the actuator torques associ-

ated with the reference trajectory are also included.

a. 5 Order Reference Trajectory

In this simulation, a fifth order polynomial reference trajectory is applied to the

payload generalized coordinates. The payload coordinates displacements, velocities, and

accelerations resulting from this polynomial are depicted in Figure 33. When calculating

the reference torques from the inverse kinematics, the six joint actuators are all weighted

equally The maneuver time is selected to last 10 seconds. As is demonstrated in Figures

34-36, the system successfully moves from initial conditions to desired final conditions.

The displacement errors are less than 10 deg (Figure 34). The command torques (Figure

37) are an order of magnitude smaller than for the previous simulation which lacked a

reference trajectory. Evaluating J|uwh |di leads to the dramatically improved value of

0.5746. More importantly, the centerbody attitude is maintained throughout the maneuver.

Figure 38 shows the time lapse depiction of the maneuver.

65

Displacement vs Normalized Time

06 -

Displacement

Velocity 1

s 4 3

flT)-6T-15T+K)T

Acceleration vs Normalized Time

:tli
Figure 33: 5 Order Reference Trajectories

Thetas vs Time

Angles

(deg)

Time (sec)

Figure 34: 5
th Order Angles

66

Displacement Errors vs Time

1.0
x 10

0.5 -

6- 6Ref

(deg)

-0.5

-1.0

1

-0

/ —

U
1.2°1.2

Rer

e
p
-e -^ //: \y

°i,-
(

V. Rer
^^ \

20

Time (sec)

;. ^th

40

Figure 35: 5 Order Displacement Errors

20

10 -

Angle Rales

(deg/sec)

-10 -

-20

ThetaDots vs Time

-

/
/

y
A,

-

\\^^ %

~~

e\K_/
i

(,
R2

—

10

Time (sec)

Figure 36: 5 Order Angular Rates

67

0.10

0.05

Command
Torques

(N-m)

-0.05

-0.10

Command Torques vs Time

Time (sec)

:th
Figure 37: 5 Order Command Torques

16

1.4

1 2

1.0

Y(m) 8

06

04

-0 5

i i

^r^r '
^^^> :

~

* '
i

0.5

X(m)

1.0

Figure 38: 5 Order Time Lapse Stick Figure

68

h. 8 Order Reference Trajectory

By increasing the order of the reference trajectory polynomial while

maintaining the same boundary conditions concerning velocity and acceleration, one

hopes to achieve improved performance. For example, the domain of all sixth order

polynomial functions includes all fifth order polynomial functions as a subset. Therefore,

when searching all sixth order polynomials for coefficients which will minimize the cost

function, one possible solution is the fifth order polynomial already used. Using the

function minimization routine discussed in the previous chapter, a sixth order polynomial

function was found. Although there was some improvement, the change in performance

was not significant. The same was true for a seventh order function. An eighth order

function is presented here. It was hoped that the increased order would be enough of a

departure from the fifth order cause to produce significant improvement in reducing the

centerbody disturbance torque. The algorithm converged to a solution for the eighth order

polynomial after running approximately two hours on a personal computer with an Intel

486-DX50 cpu. The resulting trajectories are very similar to those for the fifth order case

and are displayed in Figure 39. The most obvious difference is a lack of symmetry. Plots

for this case are contained in Figures 40-43. The value of J|uwh |dt for this case was 0.5705.

69

Dtsplicemert vs Norrrahttd 1 ime

f{t) = 0.0794 t
8
-0.64 10 1 +0.0278

1

+ 1.2764i
5

-8.5973t'
,

+7.5727x
3

Acceleration vs Normalized Time

Velocity |.o

Figure 39: 8 Order Reference Trajectories

Angles

(deg)

100

50

-50

100 -

-150

Thetas vs Time
i

V-- - 5

:

-

°LJ_
-r^^^Ri

—

,

"<^
%

-

i —r-*:

10

Time (sec)

Figure 40: 8
th Order Angles

70

20

10 -

Angle Rates

(deg/see)

-20

ThelaDots vs Time

(V ^
-

/

/
/

^\
"C^

-

°o

"

\Z

i

(

>R2

"

10

Time (sec)

Figure 41: 8 Order Angular Rates

0.10

0.05 -

Command
Torques

(N-m)

-0.05 -

-0.10

Command Torques vs Time

/ WhVU
LS

"/ \ "^
-

// _^-'
U
LW

i->--Z^^--^^*^^:;^::^^^^^

-
\ urw

\ u^ y/ -

U
LE

10

Time (sec)

Figure 42: 8 Order Command Torques

71

1 (•

1 4

— .

y^ ^~L
,-----

«.

1 2 //>
1

1/7

Y(m) 08

06

r

-

04 yS
02

r ' '

X(m)

>th
Figure 43: 8 Order Time Lapse Stick Figure

3. Modified Lyapunov Tracking Controller

This simulation represents a compromise between the Lyapunov point controller

and the Lyapunov tracking controller. Because the Lyapunov point controller does not use

a reference trajectory, the cost function which minimizes the weighted norm of the actua-

tor torques is completely bypassed. The modified Lyapunov controller removes the refer-

ence torque term from the command torque calculation (Eqn 209) but calculates command

torques based on errors with a reference trajectory. Like the Lyapunov point controller,

the modified Lyapunov tracking controller does not minimize a weighted norm of the

actuator torques and is therefore not a cooperative controller. The angle histories in Figure

44 exhibit less of the oscillatory nature than the point controller simulation, but the accu-

racy shown in Figure 45 is considerably worse than the reference trajectory simulations.

Figures 46-48 also illustrate behavior better than the point controller but not as good as

when command torques are found using Eqn 209. The magnitude of the command torques

show an order of magnitude improvement over the point controller This is directly attrib-

utable to using intermediate reference points on the way to a desired final state rather than

72

attempting to achieve the desired final state all at once. Calculating J|uwh |di produced a

value of 2.4523. The time lapse figure shows that the motion is much less wild but the

centerbody attitude error is still noticeable.

200

100 -

Angles

(dcg)

ion -

-200

Thetas vs Tunc

" G
R2 /-

i

An
/ °p

— i

:

.:

— ::

G X,
i:

/—^—OhL—
-

i

20

Time (sec)

40

Figure 44: Modified Lyapunov Tracking Controller Angles

20

10

G-GRef

(deg)

-10 -

-20

Displ acement Errors vs Time

/ \ /' \

A 9r2

//'Tv\ ilWV^

V1\\h\

1

-

20

Time (sec)

40

Figure 45: Modified Lyapunov Tracking Controller Displacement Errors

73

ThetaDots vs Time
30

20 -

Angle Rates

(deg/sec)

10 -

-10

-20

i

f~\

/- 6
R1 .

A

' /A'
' / \

9
L,

-

-

7 UR2
6L2,

-

20

Time (sec)

40

Figure 46: Modified Lyapunov Tracking Controller Angular Rates

0.2

0.1

Command

Torques

-0.2

-0.3

-0.4

Command Torques vs Time

-

U
LE

\
X

r, U 1

V "
rs

\ / u
A rC LW

-

-

RW

-

u
iwli

i

"

20

Time (sec)

40

Figure 47: Modified Lyapunov Tracking Controller Command Torques

74

-0 5 05 10

X (m)

Figure 48: Modified Lyapunov Tracking Controller Time Lapse Stick Figure

4. Comparison of Controllers

Table 2 summarizes the results of the Lyapunov point controller, the two Lyapunov

tracking controller cases, and the modified Lyapunov tracking controller. The point con-

troller clearly has the worst performance with high reaction wheel torque and large center-

body attitude error. The tracking controller performs much better. Reaction wheel torque

is greatly reduced and centerbody attitude error is eliminated. As expected, increasing the

order of the polynomial reduces the reaction wheel torque further, but the improvement is

relatively small. The modified tracking controller strikes a compromise between the point

controller and the tracking controller.

75

TABLE 2. COMPARISON OF HYPOTHETICAL MODEL
SIMULATIONS

Khl dt
I

mail

Centerbody

Attitude

Error (deg)

Cooperative

Point Controller 17.3841 2.9365 16.2261 No

Tracking

Controller

5
th Order 0.5746 0.0961 0.0000 Yes

8
lh
Order 0.5705 0.0885 0000 Yes

Modified Tracking

Controller
2.4523 0.3950 1.1910 No

76

IV. EXPERIMENTAL WORK

The experimental phase of this research was conducted on the Spacecraft Robotics

Simulator (SRS). The SRS is a derivative of the Flexible Spacecraft Simulator (FSS) ini-

tially developed by Watkins [Ref 17] and later modified by Hailey [Ref 18]. Sorensen

[Ref 1 8] began the work to convert the FSS into the SRS.

A. SETUP

The SRS permits experimental investigation of two dimensional robotics motion and

rotational spacecraft dynamics. The SRS is illustrated in Figures 49 and 50. The simula-

tor hardware is floated on an eight foot by six foot granite table by means of a thin layer of

air supplied by an external source. The table is polished to within 0.001 inch peak to val-

ley and leveled to prevent gravitational accelerations from impacting the motion across its

surface. The following sections describe the simulated spacecraft with its associated sen-

sors and actuators and the controller which together form the SRS. The spacecraft compo-

nents are the centerbody, two manipulators, and a payload.

77

Figure 49: Spacecraft Robotics Simulator

78

Figure 50: System Top View

1. Centerbody

The centerbody is a 30 inch diameter, 7/8 inch thick aluminum disk. The center-

body carries a position sensor, rate sensor, momentum wheel, thrusters, and an air tank to

power the thrusters. The centerbody also serves as the mounting platform for the manipu-

lators. The centerbody is floated by a central air bearing and three air pads located at 120

degree intervals near the outer edge. The air pads are each capable of floating 60 pounds

when the air pressure supplied to the pads is 80 psi The air bearing is attached to an over-

head I-beam which restricts to motion of the centerbody to rotation only.

79

Centerbody angular position is sensed by a Rotary Variable Displacement Trans-

ducer (RVDT) mounted directly above the air bearing. The RVDT is a model R30D man-

ufactured by Schaevitz Sensing Systems. Its linear range is restricted to ± 40 degrees.

Centerbody angular rate is measured by a rate transducer manufactured by Humphrey, Inc.

The instrument has a range of ±100 deg/sec and a minimum threshold of 0.01 deg/sec.

Centerbody angular position is controlled by a momentum wheel. The momentum

wheel speed is measured by a tachometer contained in the servo motor which drives the

momentum wheel. The centerbody momentum wheel is powered by a model JR16M4CH/

F9T servo motor manufactured by PMI Industries. Characteristics of this motor are sum-

marized in Table 3. Although the centerbody also carries two thrusters, they are not used

in this research.

TABLE 3. MOMENTUM WHEEL MOTOR
CHARACTERISTICS

Manufacturer PMI Industries

Model JR16M4CH/F9T

Rated Output Speed (rpm) 3000

Rated Current (amps) 7.79

Rated Voltage (volts) 168

Rated Torque (in-lb) 31.85

Height (in) 4.5

Weight (lb) 17.5

Outside Diameter (in) 7.4

2. Manipulators

Two two-link manipulators are mounted 60 degrees apart on the centerbody. Each

manipulator has three joints. The shoulder joints are supported by the centerbody while

the elbow and wrist joints are supported by two air pads apiece. The links between the

80

joints are stiff laterally but permit some flexibility vertically This feature increases the

tolerances on the air pad height adjustment

Left arm joint angles are measured by the same model RVDT as is used on the cen-

terbody All three of the left arm actuators are series 9FGHD servo disk motors manufac-

tured by PMI Industries. Joint angles on the right arm are sensed by encoders purchased

with the joint actuators. The encoder resolution is 0.005 degrees. The right arm joint

actuators arm are harmonic drive dc servo actuators manufactured by HD Systems, Inc.

The shoulder actuator is model RFS-25-6018-E036AL while the elbow and wrist actua-

tors are model RFS-20-6012-E036AL. Specifications for the three types ofjoint actuators

are contained in Table 4.

Air Pad

Figure 51: Left Manipulator Top and Side Views

81

Actuator/Encoder

Air Pad

Figure 52: Right Manipulator Top and Side Views

TABLE 4. MANIPULATOR ACTUATOR CHARACTERISTICS

Manufacturer HD Systems HD Systems PMI Industries

Model RFS-25-6012 RFS-25-6018 9FGHD

Reduction Ratio 1:50 1:50 1:148.5

Rated Output Speed (rpm) 60 60 17

Rated Current (amps) 2.9 3.9 5.6

Rated Voltage (volts) 75 75 12

Rated Torque (in-lb) 174 260 80

Height (in) 8.8 9.6 3

Weight (lb) 9.3 14.1 3.2

Footprint (in) 4.3<
! > 5.1") 48(2)

1

Side of square
2 Diameter of circle

82

The joint actuators are all driven by Kepco power supplies. These bipolar, pro-

grammable, linear amplifiers can be controlled manually from the front panel or con-

trolled remotely with a ±10 volt signal. In this application, the power supplies are

operated in the current control mode with the voltage and current limits manually set con-

sistent with the values in Table 4. The specific power supply models and their characteris-

tics are summarized in Table 5.

TABLE 5. POWER SUPPLIES CHARACTERISTICS

Model BOP 72-6M BOP 72-3M BOP20-10M

Actuators Controlled Right Shoulder
Right Elbow,

Right Wrist

All Left Arm
Joints

DC Output Range
±72 volts

±6 amps

±72 volts

±3 amps

±20 volts

±10 amps

Closed Loop Gain 0.6 (amp/volt) 0.3 (amp/volt) 1.0 (amp/volt)

3. Payload

The payload is a rigid bar mechanically fastened to the ends of both manipulators.

The payload is supported entirely by the air pads on the manipulator wrist joints. Ballast

can be added to the payload to change the mass and inertia characteristics of the system.

This allows for the construction of cases in which the mass of the payload is nontrivial

compared to the spacecraft centerbody. The payload contains no sensors or actuators.

Payload position is derived from the manipulator joint angles.

4. Controller

The AC-100 programmable controller manufactured by Integrated Systems, Inc.

controls the SRS. The AC-100 includes an Intel 80386 Application Processor, an Intel

80386 Multibus II Input/Output Processor, an Intel 80386 Communication Processor, and

83

Intel 80387 Coprocessor, a Weitek 3167 Coprocessor, and Analog-To-Digital and Digital-

To-Analog Data Translation DT2402 Input/Output Board, two INX-04 Encoder and Digi-

tal-To-Analog Servo Boards, and an Ethernet Interface Module The AC-100 also

includes software installed on a VAX 3100 Series Model 30 workstation. The software

permits design of a controller in block diagram graphical form and conversion of the dia-

gram to C language programming code. The user is also able to design an interactive ani-

mation window to operate the controller. The AC-100 receives input signals from the

sensors and the graphical user interface. AC-100 output signals go to the power supplies

driving the actuators or to the graphical user interface for display.

5. System Integration

The differences between the ideal world of an analytical simulation and the real

world of actual hardware became apparent during system integration. A few problems

arose then requiring some modification of the experiment. The first problem concerned

floating the centerbody. It exhibited a noticeable resistance to rotation. This is due in part

to the air pressure of the available air supply. Because it was only 40 psi, the air pads per-

formance was degraded by a factor of two. Prior to mounting the manipulators, the cen-

terbody weighed approximately 125 lbs. Adding the shoulder motors increased the

centerbody weight to 145 lbs. The extra weight may have been enough to overwhelmed

the centerbody air pads. A second contributing factor to the centerbody drag is the inabil-

ity of the central air bearing to function except under very low lateral loading. The modi-

fication to the experiment created by the centerbody problem is to not float the centerbody.

A second problem involved using the RVDTs. As envisioned, the experiment

requires one RVDT for the centerbody and three for the left manipulator joints. The Space

Dynamics laboratory has a total of three in stock. Although a fourth has been ordered, it

did not arrive in time to be used. Using the existing RVDTs revealed another problem.

Data acquisition of the RVDT signal by the AC-100 exhibited a random toggling of the

84

sensed value between a good reading and a value of zero. Because the angle information

is critical to calculating actuator commands, this behavior is unacceptable. Consultation

with the Integrated Systems technical support group revealed that this type of behavior is a

bug within the AC-100 software which has been corrected in more recent versions. Use of

the newer version was not possible because it requires upgrading the VAX workstation

hardware and an updated version of the VMS operating system. The experimental modifi-

cation used to overcome these difficulties is to derive the joint angles and velocities of the

left manipulator by using the sensed information from the right manipulator encoders.

Velocities were not sensed directly but approximated by the change in displacement which

occurred since the last sample divided by the sample rate

A third obstacle involved the limitations of software to design the control algo-

rithm. The block diagram construction method did not permit convenient matrix opera-

tions. Matrix multiplication must be programmed in an element by element basis. Matrix

inversion must also be calculated by constructing a series of blocks to find each element.

This handicap is not serious when the system equations of motion are of low order. How-

ever, the dual two link manipulator configuration is eighth order and beyond the practical

means of programming complex matrix operations, especially matrix inverses. Recall that

the command torques are calculated by the following relationship

u = (C[C)

_1

c]VK
v
5q + C u "(Cq-C q)

- (C - C,)-K5q}

(210)

When the differences between the actual path and the reference path are small, this control

law simplifies to something very similar to a PD controller. Therefore, the control law

used by the experiment is a PD controller rather than the complete Lyapunov controller.

Performance differences between the left and right manipulator actuators also pre-

sented some problems. Because of the actuator redundancy, any three joint actuators

should be enough to follow a reference trajectory. This fact can be demonstrated by using

85

only the three right joint actuators. However, the same trajectory is not possible with only

the left actuators. The torque provided by the left joint actuators is insufficient to com-

pletely overcome the internal friction of the right joint actuators. Even when the left joint

actuators are commanded manually from the front panel, there is no correction to reduce

the position error. When steadily increasing the commanded current to the motor, the cur-

rent limit is reached before the motor responds.

B. RESULTS

The reference trajectory for the experimental phase is slightly different from that used

in the analytical section. The reference maneuver still involves a 90 degree rotation of the

payload with the right endpoint ending where the left endpoint began. The differences

arise from the system parameter such as lengths and masses not being the same as in the

generic hypothetical model. The desired reference maneuver is depicted in Figure 53.

Results are shown in Figures 54-58 and summarized in Table 6. The sudden changes from

believable values to zero in the figures are problems with the data acquisition software and

do not indicate actual changes in the experimental hardware geometry.

Y(m) 6

<^ '*-~
' o

^€^^^7-^t1 iT^\ \

- _5^3s^——

/

kJ^^^
^^. 1

-±*—
-0 2

X(ml

2 4

Figure 53: Desired Experimental Repositioning Maneuver

86

I

1

1 1

>

1 ^ 1

—

r

.

1

1 1 1 i 1 1 1 1.1 1 1 1 1 1 1 1 1

i ! i

i \ i

V i

•

i t
;]

i i
I \ 1

1 ! ' \ '

i i i v

1 ;\

! ! \

i i i i i i i i i i i i i i i i i i i
i i i88838 °g§SS8 8«* «* ^ ^

(Dep) puiQdm (Bap) dm (Bap) jjg dm

Figure 54: 0p Commanded, Actual, and Error Angles vs Time

87

i
1

i

t

i

v

!

1 1 1 1 1111 1 1 1 1 i 1 1 1 1 i 1 I 1 1

-

<

Li
i ;

i !

j ;

I

;

\

1 1 1 Mill .11.1 1 i i i I i ; l

O)

in

2.

E

CM

O U) in o moo mo m
•

in o mm ^ «\j o oj ^ to
*? *7 • >' i"
• •

(Bap) puiQ nu (top) HMl (Bap) a? nm

Figure 55: 0]j Commanded, Actual, and Error Angles vs Time

88

I

1 1 1 1 :

Mli j /...

1 I

'

J
\

h

\

.

i i

f

1

! ! i

i i !

i ii ii i i i
i i i i i i

O O O O O OO O O O O OM O P4 « tf> COn up en tst in o to o> cm io * ,',',',•

(0«p) puiQnm (Bep) Jim (Bap) JJ3 Zim

Figure 56: 0^2 Commanded, Actual, and Error Angles vs Time

89

i i

•

\ ! :

\

! \

i l\
j

i

j j

i :

j
!

i i

V

i i

j
i

j :

i -i

j
i

1 1 ! 1 I 1 1 1 1 1 1 ! 1 1 !!h I .in hi il in i I n i il i i n I i inn i i i li iff

o o o
8 ? %

(5»p) piuo mm

o © o o
T- « «3 o on r> in ci in t- m

o ^ ioo cj »~ ' °.

(B»p) iam (b»p) U3 mm

Figure 57: R1 Commanded, Actual, and Error Angles vs Time

90

I < »•

I I I

t »
-

i ill I I I I 1 I I i .! I iT7l li Mllll I I I 1 I I I 1 : I II ll lunnillllirrli hi in n innin.

8 O Q O OO O O O O OKI r- Ifl O « r Ifl «
00 tO # CM O CO lO TT CM t- o o , t- ,•

(0«p) piuo zum (Bap) jam (B»p) Jjg jam

Figure 58: R2 Commanded, Actual, and Error Angles vs Time

91

TABLE 6. EXPERIMENTAL ERROR ANGLES

Errors (deg)

Initial Final
Maximum

Magnitude

0p

©Rl

6R2

0.2550

-0.4574

0.0225

0.1037

0.3350

-0.3383

0.0366

0.1873

-0.0808

0.3950

0.5527

0.7797

0.3035

0.1628

0.7742

92

V. SUMMARY AND CONCLUSIONS

A. SUMMARY

The dynamics of a dual two-link manipulator system which is repositioning an already

grasped payload have been analyzed. The equations of motion for the system were devel-

oped using Lagrange's method. The resulting equations were highly nonlinear, coupled,

second order differential equations. Given any reference trajectory, the actuator torques

that will produce that trajectory were calculated to minimize a weighted norm of the

torques. Stability of the system during the repositioning maneuver was ensured by a con-

troller derived from Lyapunov stability theory. Equations for deriving joint angles from

centerbody and payload reference values was also developed. Polynomial reference tra-

jectories were presented as an attractive means to specify a reference trajectory.

The analytical model was validated using test cases in which some results could be

predicted in advance. The model demonstrated conservation of energy when no torques

were applied. It also exhibited conservation of angular momentum whenever the reaction

wheel was disabled. The model also maintained symmetric geometry in the appropriate

test cases. In cases which used the reaction wheel, conservation of energy and angular

momentum did not apply, However, comparison of the change in angular momentum with

the reaction wheel torque provided validation. Finally, in all test cases as well as simula-

tions, the constraints were satisfied as measured by Aq+A = o.

Results from simulations indicated that the Lyapunov point controller, although stable,

behaved poorly. Large centerbody attitude errors, high command torques, and wild oscil-

lations make this controller undesirable for large repositioning maneuvers. The Lyapunov

93

tracking controller exhibited dramatic a improvement in performance. Centerbody atti-

tude errors were removed and reaction wheel torque decreased significantly.

The experimental phase revealed that the controller required further simplification for

compatibility with the laboratory resources. Acceptable results were obtained using a PD

control law with a reference trajectory.

The objectives of this research were to 1) develop a stable control law that facilitates

cooperation among the manipulators as they reposition the payload, 2) minimize the joint

actuator effort, 3) reduce the disturbance torque transmitted to the spacecraft main body

by the manipulator motion, and 4) validate the analytical development with experimental

results. The Lyapunov controller satisfies the first objective. The second objective is

achieved by the weighted norm calculation of the actuator torques. Reduction of the cen-

terbody disturbance torque is accomplished through reference trajectory selection.

Although a rigorous application of classical optimal control techniques proved impracti-

cal, a polynomial reference trajectory in which the coefficients were selected to reduce the

disturbance torque was easily applied. Difficulties were encountered with regards to the

fourth objective, experimental work. The controller developed analytically could not be

directly transferred to the laboratory. This was due to a combination of hardware limita-

tions and real world conditions instead of the ideal environment of the analytical model.

The controller was adapted to the realities of the laboratory and resulted in successful

accomplishment of a payload repositioning maneuver.

B. ORIGINAL CONTRIBUTIONS

A simulation tool has been developed to analyze the dynamics of a space based robot-

ics system. Some of the features of this tool include:

94

(i) rotational motion of the spacecraft centerbody and planar motion of the manip-

ulators and payload;

(ii) minimization of a weighted norm of the actuator torques based on a user sup-

plied weighting matrix;

(iii) calculation of polynomial reference trajectory coefficients to produce a local

minimum for the integral of the absolute value of the disturbance torque based

on a user supplied order for the reference polynomial and an initial guess for

the coefficients;

(iv) a reference trajectory with zero velocity and acceleration at the beginning and

end of the maneuver;

(v) a Lyapunov controller which guarantees stability in the face of perturbations

between the reference trajectory and the actual dynamics caused by errors in

the initial conditions.

An experimental test bed was also developed. This effort involved the design of the

manipulator components and the development of a real time controller. This test bed

remains in the Spacecraft Dynamics and Control Laboratory and is available for follow-on

work.

C. RECOMMENDATIONS FOR FURTHER STUDY

As with any research, this work answers some questions but raises others. One of the

areas that could receive further attention is the selection of the Lyapunov controller gains.

The theory requires positive definite matrices to ensure stability but offers no insights con-

cerning selection of the matrices to improve performance. For any given set of controller

matrices, one expects the relative merits of the point controller, tracking controller, and

95

modified tracking controller to remain the same However, still better performance might

be achieved across the board if the gains were optimized.

Rather than merely changing Lyapunov controller gains, one might investigate another

Lyapunov controller by beginning with a different candidate Lyapunov function than the

one presented here The choices are infinite and the results and performance difficult to

predict.

Trajectory optimization is another area that would benefit from further work. The

function minimization algorithm used to select polynomial coefficients converged to local

minima solutions depending on the initial guess for the coefficients. The search for a glo-

bal minimum for a particular order polynomial requires further investigation. An alternate

approach with respect to trajectory optimization is to use some function other than a sim-

ple polynomial to describe the trajectory. Possible trajectories might be Tchebycheff poly-

nomials, Legendre polynomials, or Fourier series.

To help bridge the gap between the analytical model and the real world hardware, one

could consider modifying the controller to include joint friction, actuator backlash, sensor

noise, and flexibility. One could also consider using a minimum generalized coordinate

formulation. One might also attack the differences from the hardware perspective by

seeking components that more closely resemble those in the analytical model. Another

improvement in the experiment would be to replace the existing joint velocity approxima-

tions with either an observer or an actually velocity measurement.

Finally, it's a three dimensional world. Extending the analytical mode! and, if possi-

ble, the laboratory experiment to include out of plane motion should be considered.

96

APPENDIX A: EXPERIMENTAL CONTROL BLOCK
DIAGRAMS

This appendix includes the block diagrams of the System Build super blocks made to

control the SRS. The heirarchy among the super blocks is illustrated in Figure 59. Both is

the parent superblock. The ohters are lower level super blocks.

Both

Parameters

Trajectories

Encoders

LeftAngles -

Controller
Parti

Part2

Part3

Figure 59: Super Blocks Hierarchy

The block diagram for super block Both is shown in Figure 60. Inputs into the dia-

gram include the sensor signals from the hardware and user operated dials to select the

controller gains and enable switches which select the combination of joint actuators to

enable. The outputs include commanded, reference, and error signals for each of the cen-

terbody angle, joint angles, and payload angle Motor current commands to the Kepco

97

power supplies are also outputs. Block 56 contains the system parameter values for the

experimental hardware. This block is expanded and displayed in Figure 61 . Block 8 con-

tains the position and velocity values for a reference trajectory in a look-up table. It also

contains a table to reset the system back to its original geometry to permit rerunning the

reference trajectory. This block is expanded in Figure 62. Conversion of the encoder

pulses from the right manipulator into angle and angle rate information is done in Block 7

which is expanded in Figure 64. Conversion of the encoder pulses from the right manipu-

lator into angle information for the left manipulator is done in Block 49. Details of this

block are shown in Figures 64-64. The PD controllers which convert the error signals into

actuator commands are in Block 40. This block is expanded in two parts. The actuator

commands for the right and left manipulator are shown in Figures 68 and 69 respectively.

98

HHHMHH

3
a
55

J <">

M s

U
, ^ «i

i 1

B i1

Figure 60: Overall Control Block Diagram

99

FT I-

•1

E
M

So

a>

I'

w

w

8

r:

S §
¥

w: w

w

@"

w: w

w

Figure 61: Parameters Block Diagram

100

IS
5

i

5«

o n
I w
n -H

&£
to

«)

• •!->

I) M

y

Figure 62: Reference Trajectory Block Diagram

101

e a.'

•h c

i

u n
« i-

CO o
o

S 5

Figure 63: Encoders Block Diagram

102

06^666666^^

Figure 64: Left Angles Block Diagram

103

H

a

52

M

Is
a*

E

Figure 65: Part 1 Block Diagram

104

Figure 66: Part 2 Block Diagram

105

3 s

I

iH
to

to ^

a

a

inn

G

B B

R B

3 p

a ||
a

c c

it
h

=Ji S

8 5
«

666
&a

Figure 67: Part 3 Block Diagram

106

W Cl,

8 a

I H
H V
&2
3 O
to H

«J
•) CJ o
«l o
H
o

w
9 ^

i

T~r

I

6

2 5

r
a a

Figure 68: Right Manipulator Controller Block Diagram

107

9
S

•3 a.

u
g.

So

o
o
~(
«n
I W
M «
8.3
3 O

re

1

I

1

Figure 69: Left Manipulator Controller Block Diagram

108

APPENDIX B: MATLAB CODE

The following listings are the MATLAB code used for the analytical simulations. The

modules are included in alphabetical order. The hierarchical relationship between the

modules is illustrated in Figure 70. The integration modules ode2 and odemin are minor

variants of the MATLAB supplied module ode45 The modifications permit more param-

eters to be passed to and from these modules without having to include the extra variables

in the state vector. Similarly, fminu2 modified the MATLAB unconstrained function min-

imization module, fminu, to include some diagnostic statements while running.

MainOpt

fminu2

MainMin

odemin

Main2 RefMin2

ode2 AngMo2

Draw3 Eqn2

AngMo Ref2

Matx

MatxFix

Matx

MatxFix

Matx

MatxFix

AngMo2 AngMo2

Figure 70: MATLAB Modules Hierarchy

109

A. AngMo

% Filename is "AngMo.m"

% This file calculates the angular momentum of the system

function [Hs] = AngMo(Ls,Ms,CMs,Is,Q,Qdot)

% OUTPUT:
% Hs = 1x7 row vector of angular velocities. The first element is for

% the centerbody. The next four elements are for the left upper

% and lower arm followed by the right upper and lower arm The
% last two elements are for the pavload and a total of all the

% previous elements. [HO HL 1 HL2 HR1 HR2 1 IP I ITotal]

%
% INPUT:
% Ls = 7x1 vector of lengths (m)
% 1st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)

% 4th element = pay load length

% 5th & 6th elements wrt right arm (from wrist toward shoulder)

% 7th element = distance from right arm mount to origin

% [L0;L1;L2;LP;R2;R1;R0]
% Ms = 6x 1 column vector containing the masses (kg)

% 1 st element = mass of spacecraft centerbody

% 2nd & 3rd elements = mass of left arm (upper aim then lower aim)

% 4th & 5th elements = mass of right arm (upper arm then lower arm)

% 6th element = pay load mass
% [MO; ML 1 ; ML2; MR 1 ; MR2; MP]
% CMs = 6x1 column vector containing center of mass locations

% [LcO; LcL 1 ; LcL2; LcR 1 ; LcR2; LcP]
% Is = 6x1 column vector containing the moments of inertias about the

% respective body's center of mass (kg m A
2)

% 1 st element = inertia of spacecraft centerbody

% 2nd & 3rd elements = inertia of left arm (upper aim then lower aim)

% 4th & 5th elements = inertia of right arm (upper arm then lower aim)

% 6th element = pavload inertia

% [10; IL 1 ; IL2; IR1 ; IR2; IP]

% Q = 8x1 column vector of generalized coordinates

% Qdot = 8x1 vector of generalized velocities

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lengths (m)
L0 = Ls(l);

LI =Ls(2);

L2 = Ls(3);

LP = Ls(4);

R2 = Ls(5);

Rl =Ls(6);
R0 = Ls(7);

% Member masses (kg)

MO =Ms(l);
ML1 =Ms(2);
ML2 = Ms(3);

MR1 =Ms(4);
MR2 = Ms(5);

MP = Ms(6),

% Center of mass distances (m)

110

LcO =CMs(l);
LcLl = CMs(2);
LcL2 = CMs(3);
LcRl =CMs(4);
LcR2 = CMs(5);
LcP = CMs(6); %measured from left end

% MOl about center of mass
10 = Is(l);

IL 1 = Is(2);

IL2 = Is(3);

1R1 =Is(4);

IR2 = Is(5);

IP = Is(6);

% Coordinates (rad & m)
ThO =Q(1);
ThLl = Q(2);

ThL2 = Q(3);
ThR 1 = Q(4).
ThR2 = Q(5);
ThP = Q(6);
XP =Q(7);
YP =Q(8);

% Coordinate Rates (rad/sec & m/sec)

ThOd =Qdot(l);
ThLld = Qdot(2);

ThI.2d = Qdot(3);

ThRld = Qdot(4);

ThR2d = Qdot(5);

ThPd = Qdot(6);

XPd =Qdot(7);
YPd =Qdot(8);

% Angular Momentum
HO = Th0d*(I0 + MO*LcOA

2);

HLl=Th0d*(ILl+MLl*(L0A2+LcLl A2+2*L0*LeI,l*cos(ThLl))) + ...

ThL 1 d*(IL 1 +ML 1 *(LcL 1
A2+L0*LcL 1 *cos(ThL 1)));

HL2 = Th0d*(IL2+ML2*(L0A2+L 1
A2+LcL2A2+2*LO*I , 1 *cos(ThL 1) + ..

2*L 1 *LcL2*cos(ThL2)+2*L0*LcL2*cos(Thl - 1 +ThL2))) + ...

ThL 1 d*(IL2+ML2*(L 1
A2+LcL2A2+L()*L 1 *cos(ThL 1) + ...

2*Ll*LcL2*cos(ThL2)+L0*LcL2*cos(ThI.l+TliI.2))) + ...

ThL2d*(lL2+ML2*(LcL2A2+Ll*LcL2*eos(ThL2) + ...

L0*LcL2*cos(ThL l+ThL2)));

HR1 =Th0d*(IRl+MRl*(R0A2+LcRl A2+2*R0*I,cRl*cosfThRl))) + ...

ThR 1 d*(IR 1 +MR 1 *(LcR 1

A2+R0*LcR 1 *cos(ThR 1))):

HR2 = Th0d*(IR2+MR2*(R0A2+R 1
A2+LcR2 A2+2*RO*R 1 *cos(ThR 1) +

2*Rl*LcR2*cos(ThR2)+2*R0*LcR2*cos(ThRI+ThR2))) + ...

ThRld*(IR2+MR2*(Rl A2+LcR2A2+RO*Rl*cos(ThRl) + ...

2*Rl*LcR2*cos(ThR2)+RO*LcR2*cos(ThRl+ThR2))) + ...

ThR2d*(IR2+MR2*(LcR2A2+Rl*LcR2*cos(ThR2) + ...

R0*LcR2*cos(ThR 1 +ThR2)));

HP = ThPd*IP + MP*(-XPd*YP + YPd*XP);
HTotal = HO + HL 1 + HL2 + HR1 + HR2 + HP;
Hs = [HO HL1 HL2 HR1 HR2 HP HTotal];

111

B. AngMo2

% Filename is "AngMo2.m"
% This file calculates the angular momentum of the system

% Version 2 also finds the rate of change of angular momentum
function [Hs, Hdots] = AngMo2(Ls,Ms,CMs,Is,Q,Qdot.Qddot)

% OUTPUT:
% Hs = 1x7 row vector of angular velocities. The first element is for

% the cenlerbody. The next four elements are for the left upper

% and lower aim followed by the right upper and lower arm The
% last two elements are for the payload and a total of all the

% previous elements. [HO HL 1 HL2 HR1 1 1R2 I IP I ITotal]

% Hdots = 1x7 row vector of the change in angular velocities. 7 he order

% is the same as for Hs
%
% INPUT:
% Ls = 7x1 vector of lengths (m)
% 1 st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)

% 4th element = payload length

% 5th & 6th elements wrt right arm (from wrist toward shoulder)

% 7th element = distance from right arm mount to origin

% [LO; LI; L2; LP; R2; Rl; ROJ
% Ms = 6x1 column vector containing the masses (kg)

% 1 st element = mass of spacecraft cenlerbody

% 2nd & 3rd elements = mass of left arm (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper arm then lower ami)
% 6th element = pav load mass
% [MO; ML 1 ; ML2; MR 1 ; MR2; MP]
% CMs = 6x1 column vector containing center of mass locations

% [LcO; LcL 1 ; LcL2; LcR 1 ; LcR2; LcP]
% Is = 6x1 column vector containing the moments of inertias about the

% respective body's center of mass (kg m A
2)

% 1 st element = inertia of spacecraft centerbody

% 2nd & 3rd elements = inertia of left arm (upper arm then lower aim)
% 4lh & 5th elements = inertia of right arm (upper arm then lower aim)
% 6th element = payload inertia

% [I0;IL1;IL2; IR1; IR2; IP]

% Q = 8x 1 column vector of generalized coordinates

% Qdot = 8x1 vector of generalized velocities

% Qddot = 8x1 vector of generalized accelerations

%%%%%%%%%%%%%%%%%%/o%%%%%%%% /i,%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lengths (m)

L0 = Ls(l);

LI =Ls(2);

L2 = Ls(3);

LP = Ls(4);

R2 = Ls(5);

Rl =Ls(6);

RO = Ls(7);

% Member masses (kg)

MO =Ms(l);
ML1 =Ms(2);
ML2 = Ms(3);

MR1 =Ms(4);

n:

MR2 = Ms(5);

MP = Ms(6),

% Center of mass distances (m)
LcO =CMs(l);
I.el.l =CMs(2);
LcL2 = CMs(3);
LcRl = CMs(4),
LcR2 = CMs(5);
LcP = CMs(6); %measured from left end

% MOI about center of mass
10 =Is(l);

11,1 =Is(2);

IL2 = Is(3);

IR1 =ls(4);

IR2 - Is(5);

IP =Is(6);

% Coordinates (rad & m)
ThO =Q(1);
ThL 1 = Q(2);
ThL2 = Q(3);

ThRl =Q(4);
ThR2 = Q(5);
ThP = Q(6);
XP =Q(7);
YP =Q(8);

% Coordinate Rates (rad/sec & m/sec)

ThOd =Qdot(l);
ThLld = Qdot(2);

ThL 2d = Qdot(3);

ThRld = Qdot(4);

ThR2d - Qdot(5);

ThPd =Qdot(6);
XPd =Qdot(7);
YPd =Qdot(8);

% Coordinate Accelerations (rad/sec
A
2 & m/secA2)

ThOdd =Qddot(l);
ThLldd = Qddot(2);

ThL2dd = Qddot(3);

ThRldd = Qddot(4),

ThR2dd = Qddol(5);

ThPdd = Qddot(6),

XPdd =Qddot(7);
YPdd =Qddot(8),

% Angular Momentum
HO = Th0d*(I0 + M0*Lc0A

2),

HL1 = ThOd*(IL 1+ML 1 *(L0A2+LcL 1
A2+2*L0*Ld . I *cos(ThL 1))) + ...

ThL 1 d*(IL 1 +ML 1 *(LcL 1
A2+L0*LcL 1 *cos(Thl , 1)));

HL2 = Th0d*(IL2+ML2*a0A2+L 1
A2+LcL2A2+2*l ,0*L 1 *cos(ThL 1) +

2*Ll*LcL2*cos(ThL2)+2*L0*LcL2*cos(ThLl+ThL2))) + ...

ThL ld*(IL2+ML2*(L 1
A2+LcL2A2+LO*L 1 *cos(ThL 1) + ...

2*Ll*LcL2*cos(ThL2)+L0*LcL2*cos(Thl.l+ThL2))) + ...

ThL2d*(IL2+ML2*(LcL2A2+Ll*LcL2*cos(ThL2) + ...

L0*LcL2*cos(ThL l+ThL2)));

IIR1 =Th0d*(IRl+MRl*(R0A2+LcRl A2+2*R0*LcRl*cos(ThRl))) + ..

ThRld*(lRl+MRl*(LcRl A2+R0*LcRl*cos(ThRl))):

113

HR2 = ThOd*(IR2+MR2*(ROA2+Rl A2+LcR2 A2+2*RO*Rl*cos(ThRl) + ...

2*Rl*LcR2*cos(ThR2)+2*R0*LcR2*cos(ThRl+ThR2))) + ...

ThRld*(IR2+MR2*(Rl A2+LcR2A2+RO*Rl*cos(ThRl) + ...

2*Rl*LcR2*cos(ThR2)+R0*LcR2*cos(ThRI+ThR2))) + ...

ThR2d*(IR2+MR2*(LcR2A2+Rl*LcR2*cos(ThR2) + ...

R0*LcR2*cos(ThR 1 +ThR2)));

I IP = ThPd*IP + MP*(-XPd*YP + YPd*XP);
HTotal = HO + HL 1 + ML 2 + HR1 + HR2 + HP,
Hs = [HO HL1 HL2 HR1 HR2 HP HTotal],

% Change in angular momentum
HOd = Th0dd*(10 + M0*Lc0A2),
HL Id = ThOdd*(ILl+MLl *(L0A2+LcLl A2+2*L0*LcLl*cos(ThLl))) + ..

.

ThL 1 dd*(IL 1 +ML 1 *(LcL 1
A2+L0*LcI . 1 *cos(ThL 1)))-.. .

ThOd*ThI > ld*2*ML 1 *LO*LcL 1 *sin(ThL 1) - ...

ThL 1 dA2*ML 1 *L0*LcL 1 *sin(ThL 1).

HL2d = ThOdd*(IL2+ML2*(LOA2+Ll A2+LcL2 A2+2*LO*L 1 *cos(ThL 1) + ...

2*Ll*LcL2*cos(ThL2)+2*L0*LcL2*cos(ThLl+ThL2))) + ...

ThLldd*(IL2+ML2*(Ll A2+LcL2A2+L0*Ll*cos(ThLl) + ...

2*Ll*LcL2*cos(ThL2)+L0*LcL2*cos(ThLl+ThL2))) + ...

ThL2dd*(IL2+ML2*(LcL2A2+Ll*LcL2*cos(ThL2) + ...

L0*I.cL2*cos(ThL1+ThL2))) - ...

Th0d*ThLld*2*ML2*(L0*Ll*sin(ThLl)+L0*LcL2*sin(ThLl+ThL2))-...
ThOd*ThL2d*2*ML2*(Ll*LcL2*sin(ThL2)+LO*LcL2*sin(ThI.l+Thl2))-...
ThLld*ThL2d*2*ML2*(Ll*LcL2*sinfThL2)+L0*LcL2*sin(ThLl+ThL2))-...
ThL 1 dA2*ML2*(L0*L 1 *sin(ThL 1)+L0*LcL2*sin(ThL 1 +ThL2)) - ...

ThL2dA2*ML2*(L 1 *LcL2*sin(ThL2)+I.O*LcL2*sin(ThL 1 +ThL2));

HRld = Th0dd*(IRl+MRl*(R0A2+LcRl A2+2*R()*I.cRl*cos(ThRl))) + ...

ThRldd*(IRl+MRl*(LcRl A2+R0*LcRl*cos(ThRl)))-...

ThOd*ThR 1 d*2*MR 1 *R0*LcR 1 *sin(ThR 1) - ...

ThR 1 dA2*MR 1 *R0*LcR 1 *sin(ThR 1);

HR2d = ThOdd*(IR2+MR2*(ROA2+Rl A2+LcR2A2+2*RO*Rl*cos(ThRl) + ...

2*Rl*LcR2*cos(ThR2)+2*RO*LcR2*cos(ThRl+ThR2))) + ...

ThRlddW2+MR2*(Rl A2+LcR2A2+RO*Rl*cosfThRl) + ...

2*Rl*LcR2*cos(ThR2)+R0*LcR2*cos(ThRl+ThR2))) + ...

ThR2dd*(IR2+MR2*(LcR2A2+Rl*LcR2*cos(ThR2) + ...

R0*LcR2*cos(ThRl+ThR2))) - ...

Th0d*ThRld*2*MR2*(R0*Rl*sin(ThRl)+R0*LcR2*sin(ThRl+ThR2)) - ...

Th0d*ThR2d*2*MR2*(Rl*LcR2*sin(ThR2)+R0*LcR2*sin(ThRl+ThR2))-...
ThRld*ThR2d*2*MR2*(Rl*LcR2*sin(ThR2)+RO*LcR2*sin(ThRl+ThR2))-
ThR 1 dA2*MR2*(R0*R 1 *sin(ThR 1)+R0*LcR2*sin(ThR 1 +ThR2)) -

. ..

ThR2dA2*MR2*(Rl*LcR2*sin(ThR2)+RO*LcR2*sin(ThRl+ThR2));
HPd = ThPdd*IP + MP*(-XPdd*YP - XPd*YPd + YPdd*XP + YPd*XPd);
HdTotal = HOd + HL 1 d + HL2d + HR 1 d + HR2d + HPd.
Hdots = [HOd HLld HL2d HRld HR2d HPd HdTotal J;

C. Draw3

% Filename is 'Draw3.m'

function[X,Y] = Dra\v3(Lengths,AngConst,AngHist. Interval)

%%%%%%%%%%%%%%/o%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This file draws the dual arm spacecraft stick figure

%
% INPUTS:
%
% Lengths = 7x1 vector of link lengths (m)

114

% 1st element is distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)

% 4th element is pay load length

% 5th & 6th elements wrt right arm (from wrist toward shoulder)

% 7th element is distance from right ami mount to origin

% AngConst = vector of angles to ami mounting locations wrt centcrhody coord

% frame (angle for left ami then angle for right ami)
% AngHist = n\6 matrix of angle histories Each row represents a

% specific time. Kach column represents a specific joint

% angle (except the pay load angle is inertial)

% 1st column is the center body angle

% 2nd & 3rd columns are the left arm shoulder and elbow
% 4th & 5th columns are the right arm shoulder and elbow
% 6th column is the pay load (this angle is inertial)

% Interval = plot every "interval'th" time

%
%
% OUTPUTS:
%
% X = vector history of joint x coordinates

% Y = vector history of joint y coordinates

% X & Y treat the system as a closed chain beginning at the centerbody origin,

% outward along the left arm, across the pay load, inward along the right arm,

% and back to the origin.

%
%%%%%%%%%%%%%%%%%%%%%%%%%% ,M,%%%%%%%%%%%%%%

[Times,dummy] = size(AngHist);

Links = length(Lengths);

X(1,1) = 0;

Y(1,1) = 0;

% Convert the joint angles to inertial angles and reorder them for closed chain use

NAng(
NAng(
NAng(
NAng(
NAng(
NAng(
NAng(

) = AngHist(:,l) + AngConst(l)*ones(Times.l);

,2) = NAng(:,l) + AngUist(:,2);

,3) = NAng(:,2) + AngHist(:,3);

,4) = AngHist(:,6);

,7) = AngUist(:,l) + AngConst(2)*ones(Times,l) + pi;

,6) = NAng(:,7) + AngHist(:,4);

,5) = NAng(:,6) + AngHist(:,5);

p=l;
while p <= Times

for q = l:Links

Lastx = 0;

Lasty = 0;

for r = 1 :q

Lastx = Lastx + Lengths(r)*cos(NAng(p,r));

Lasty = Lasty + Lenglhs(r)*sin(NAng(p,r));

end
X(q+l,p) = Lastx;

Y(q+l,p) = Lasty;

end

p = p + Interval;

end

X= [X(l:Links,:); X(2,;); X(Links,:); X(Links+l,:)J,

Y = [Y(l:Links,:); Y(2,:); Y(Links,:); Y(Links+l,:)];

% Plot the Final Case
for q= LLinks

Lastx = 0;

Lasty = 0;

115

for r = 1 :q

Lastx = Lastx + Lengths(r)*cos(NAng(Times,r));

Lasty = Lasty + Lengths(r)*sin(NAng(Times,r));

end
XFinaI(q+l,l) = Lastx;

YFinal(q+l,l) = Lasty;

end
XFinal = fXFinal(l:Links,:); XFinal(2,:); XFinalfLinks,:); XFinal(Links+l,:)];

YFinal = [YFinal(l:Links,:); YFinal(2,:); YFmal(Links,:); YFinal(Links+l,:)];

clg;

axis('square')

plot(X,Y;-
,

,XFinal.YFinai:-',XFinal,YFinal,V, X(:,I),Y(:,1),V);

xlabel('X (m)');ylabel('Y (m)');

axis('normal')

D. Eqn2

% Filename is 'Eqn2.m'

% Differential Equations for numerical integrator

function [Xdot,U.TorqRef,Aqdot,J,Res,LHS,RHS.Delql =...

Eqn2(T,X,Ls,Ms,CMs,Is,BoundC,Gains,XfDes.Wu.Wc,Coef,ConslMat)

% OUTPUT:
% xdot = derivatives of state vector at time T
% U = column vector of actual torques commanded at time T arranged

% as [U 1 ; U2; U6; U5] where the number denotes the joint

% associated with that torque

% TorqRef = column \ tor of reference torques that should be applied

% at time T if the motion followed the reference maneuver exactly

% These are arranged in the same order as U.

% Res = column vector of residuals after EOM are evaluated with the

% calculated reference torques (Residuals should be zero).

% Aqdot = column vector of A*qdot. This is a test to see if the

% constraint equation (A*qdot = 0) is satisfied

% LHS - column vector of the EOM left hand side (1.1 IS = M*qddot + C.Tilda)

% RI IS = column vector of the EOM right hand side (Rl IS = BTilda*u)
%
% INPUTS:
% T = time (sec)

% State Vector, X, is defined as follows:

% XI =ThetaO(rad)
% X2 =ThetaLl (rad)

% X3 = Theta L2 (rad)

% X4 = Theta Rl (rad)

% X5 = Theta R2 (rad)

% X6 = Theta P (rad)

% X7 = X component of Payload Center of mass position (m)
% X8 = Y component of Payload Center of mass position (m)
% X9 = Theta Dot (rad/sec)

% X 1 = Theta L 1 Dot (rad/sec)

% X 1 1 = Theta L2 Dot (rad/sec)

% X 1 2 = Theta R 1 Dot (rad/sec)

% X 1 3 = Theta R2 Dot (rad/sec)

% X 1 4 = Theta P Dot (rad/sec)

% X 1 5 = X component of Payload Center of mass velocity (m/sec)

% X16 = Y component of Payload Center of mass velocity (m/sec)

% X 1 7 = integral of the absolute value of the centerbody disturbance torque

% XI 8 = integral of the centerbody disturbance torque squared

116

% Ls = 7x1 vector of lengths (m)
% 1st element = distance from ongin to left ami mount
% 2nd & 3rd elements vvrt left arm (from shoulder toward wrist)

% 4th element = pay load length

% 5th & 6lh elements wrt right arm (from wrist toward shoulder)

% 7th element = distance from right ami mount to origin

% [L0;L1;L2; LP; R2; Rl; R0[
% Ms = 6x1 column vector containing the masses (kg)

% 1 st element = mass of spacecraft centerhody

% 2nd & 3rd elements = mass of left ami (upper ami then lower arm)

% 4th & 5th elements = mass of right ann (upper ami then lower ami)

% 6th element = pavload mass
% [MO; ML 1 ; ML2; MR 1 ; MR2; MP]
% CMs = 6x1 column vector containing center of mass locations

% [LcO; LcL 1 ; LcL2; LcR 1 ; LcR2; LcP]

% Is = 6x1 column vector containing the moments of inertias about the

% respective body's center of mass (kg m A
2)

% 1 st element = inertia of spacecraft centerhody

% 2nd & 3rd elements = inertia of left arm (upper arm then lower ami)

% 4th & 5th elements = inertia of right arm (upper arm then lower arm)

% 6th element = payload inertia

% [10; IL1; IL2; IR1; IR2; IP]

% BoundC = boundry conditions for the problem. The first column
% contains the initial x and y component of points Q & P
% respectively, the x component of the right arm base, the

% problem start time, and the simulation stop time. The second

% column contains the x and y component of points Q & P
% respectively, the x component of the right arm base, the

% stop time for the ideal reference maneuver, and a Hag to

% activate or deactivate the controller. The origin for the

% x and y components is the base of the left arm.

% Wu = 6x6 control torque cost weighting matrix

% Wc = 8x8 constraint cost weighting matrix

% Gains = 1 x2 column vector of controller gains. The first value is

% for position gains and the second value is for velocity

% gains.

% XfDes = column vector containing desired values for the angles at

% the conclusion of the maneuver. These are the same angles

% the reference maneuver is trying to create. Thev are arranged

% as [ThOf; ThL If; ThL2f; ThR 1 f; ThR2f; ThPf].'

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ThO =X(1);
ThL 1 = X(2);

ThL 2 = X(3);

ThRl =X(4);
ThR2 = X(5);

ThP = X(6);

Xc =X(7);
Yc =X(8);
ThOd =X(9);
ThLld = X(10);

ThL2d = X(ll);

ThRld = X(12);

ThR2d = X(13),

ThPd =X(14);
Xcd =X(15);
Ycd =X(16);

117

% Arms mount locations wrt spacecraft centerbodv coordinate frame (rad)

ThLO = BoundC(5,l); ThRO = BoundC(5,2);

% Stop Times
TfR = BoundC(6,2); % Reference Torque stop time (sec)

TfC = BoundC(7,l); % Controller stop time (sec)

% Controller Flag

ContFlag = BoundC(7,2);

% Constraints Matrix Flag

AMatFlag = BoundC(8,l),

% Centerbody Reaction Wheel Flag

WheelFlag = BoundC(8,2);

% Kinetic Energy Test Flag

KEFlag = BoundC(ll,l);

% Inverse Kinematics Bypass Flag

ByPass = BoundC(ll,2);

% Torque selection if bypass is enabled

TorqFlag = BoundC(12,l);

% Maximum torque from reaction wheel

TorqCap = BoundC(13,l), % Limit enabled

TorqMax = BoundC(13,2); % Limit amount

% Controller Gains:

Gpos = Gains(l);

Gvel = Gains(2);

%%%%%%%%%%%%%%
%% CALCULATIONS %%
%%%%%%%%%%%%%%
% ROM: M*qddot + dV/dq + G - Qf + A'*Lam
% M is mass matrix

% qddot is column vector of generalized coordinate accelerations

% dV/dq is the partial derivative of the potential function with

% respect to the generalized coordinates This term is zero for

% this problem because all motion is in the horizontal plane (there

% is no change in potential energy caused by the motion)

% G is a column vector which is a function of q and qdot

% Qf are generalized forces caused by joint torques

% A' is transpose of constraints matrix

% Lam are Lagrange multipliers

%%%%%%%%%%%%%%%%%%
%% State Vector & Derivative %%
%%%%%%%%%%%%%%%%%%
Q =[ThO; ThLh ThL2; ThRL. ThR2; ThP; Xc; Yc];

Qdot = [ThOd; ThLld; ThL2d; ThRld; TliR2d; ThPd; Xcd. Ycd];

%%%%%%%%%
%% Matrices %%
%%%%%%%%%
AngConst - [ThLO; ThRO].

if AMatFlag
[M,G,A,Adot,B] = MatxFix(Ls,Ms,CMs,Is,Q,Qdot,AngConst);

else

118

|M,G,A,Adot,BJ = Matx(Ls,Ms,CMs,Is,Q,Qdot,AngConst);
end

ifWheelFlag
B7 = [l;0;0;0;0;0;0;0];
B = [B7 B],

end

if ByPass % If true, then bypass calculating torques using inverse

% kinematics. This branch of logic is a verification test

% during program development and is not intended for regular

% use once the program is checked out.

if TorqFlag ==

U = zeros(6,l); J = 0;

else

if TorqFlag ==
1

U = [-0.01;0;0;0;0;0]; .1 = 0;

else

U = [-0.0 1;0;0; 0.01 ;0;0]; J = 0;

end
end

if WheelFlag
U = [0; U];

end
else % Normal program flow to find control torques

%%%%%%%%%
%% Torques %%
%%%%%%%%%
if T <= TfR, % Get the appropriate torque and angle values

% from the reference maneuver calculations

[TorqRef, QRef, QdotRef, Aqdot, J, CIRef, C2Ref, C3Ref] = ...

Ref2(Ls,Ms,CMs,Is,BoundC,T,Wu,Wc,Coef,ConstMat);
else % Simulation is longer than ideal reference maneuver

% Use no reference torques

% Use the desired final values as references

TorqRef = [0; 0; 0; 0; 0; 0];

QRef(l) =XfDes(l)
QRef(2) = XfDes(2)
QRef(3) = XfDes(3)
QRef(4) = XfDes(4)
QRef(5) = XfDes(5)
QRef(6) = XfDes(6)
QRef(7) = XfDes(7)
QRef(8) = XfDes(8)
QdotRef(l) = XfDes(9);

QdotRef(2) = XfDes(10)
QdotRef(3) = XfDes(ll)
QdotRef(4) = XfDes(12)
QdotRef(5) = XfDes(13)
QdotRef(6) = XfDes(14)
QdotRef(7) = XfDes(15)
QdotRef(8) = XfDes(16)
if WheelFlag

TorqRef =[0; TorqRef];

end

% Matrices

if AMatFlag
[MRef,GRef,ARef,AdotRef] = Mat\Fi\(Ls.Ms,CMs,Is,...

QRef,QdotRef,AngConst);

else

119

[MRef,GRef,ARef,AdotRef] = Matx(Ls.Ms.CMs,Is,QRef,QdotRef, ...

AngConst);

end
BRef=B;
Pt 1 Ref = ARer*inv(ARef*inv(MReO*ARef);
CIRef = inv(MRef)*(eve(M) - PtlRef*ARef*inv(MRef))*BRef,

C2Ref = -mv(MRef)*Pt 1 Ref*AdotRef;

C3Ref = inv(MRef)*(PtlRef*ARef*inv(MRef) - eye(M))*GRef;

end

if ContFlag % Controller is on

Delq - Q - QRef

;

Delqdot = Qdot - QdotRef

;

% Controller caleulalions

Ptl = A'*inv(A*inv(M)*A');

CI = inv(M)*(eve(M) - Ptl*A*inv(M))*B;
C2 = -inv(M)*P'tl*Adot;

C3 = inv(M)*(Ptl*A*inv(M) - eye(M))*G;

F2 = Gpos * Delq;

F2 = [F2(1:6);0;0];

Kv = Gvel * eye(M);

Kv(7,7)=0; Kv(8,8)=0;

Pt3 = pinv(Cl);

% Pt3 = uiv(Cr*Cl)*Cl'; % Resulted in poorly conditioned matrix

%%%%%%%%%%%%%%%%%%%%
%% Complete Lyapunov Controller %%
%%%%%%%%%%%%%%%%%%%%

U - Pt3*(-Kv*Delqdot + ClRef*TorqRcf - (C2*Qdot - C2Ref*QdotRcD
(C3 - C3Ref) - F2);

%%%%%%%%%%%%%%%%%%%%%%
%% Simplified Lyapunov Controller %%
%% (removes reference torques and %%
%% assumes C2 and C3 terms are small) %%
%%%%%%%%%%%%%%%%%%%%%%
% Kp = Gpos * eye(M);

% Pt3 = pinv(ClReO;
% U = Pt3*(-(Kv+C2ReO*Delqdot - Kp*Delq) + TorqRef;

else % Controller is off

U = TorqRef; % Don't adjust torques from reference maneuver

Delq = 999*ones(8.
1); % Dummy value for trajectory error

end % End of Control Loop
if WheelFlag

J = abs(U(l));

else

J = 0;

end
end % End of Kinetic Energy Test Conditional

if TorqCap % Upper limit on wheel torque enabled?

ifabs(U(l))>TorqMax
ifU(l)>0

U(l) = TorqMax;
else

U(l) = -TorqMax;
end

end
end

%%%%%%%

120

%% Qf %%
%%%%%%%
% Qf = B*u These are tlie generalized forces

Qf=B*U;

%%%%%%%%%%%%%%%
%% Lagrange Multipliers %%
%%%%%%%%%%%%%%%
% EOM: M*qddot + dV/dq + G = Qf + A'*Lam
% Solving the EOM for qddot gives: qddot = inv(M)*(Qf + A'*Lam - G)
% Differentiating the Pfaffian form of the constraint equations

% results in: Adot*qdot + A*qddot = 0.

% Substitution of the expression for qddot into the previous equation

% permits solving for Lam:
% Lam = inv(A*inv(M)*A')*(A*inv(M)*(G-Qf) - Adot*qdot);
Lam = inv(A*inv(M)*A')*(A*inv(M)*(G-Qf) - Adot*Qdot);

%%%%%%%%%%%%%%%
%% Putting it all together %%
%%%%%%%%%%%%%%%
Qddot = inv(M) * (Qf + A'*Lam - G),

[lis, Hdots] - AngMo2(Ls,Ms,CMs,Is,Q,Qdot,Qddot);
% Change in total angular momentum
Hd = Hdots(7);

•I = [J; Hd];

% Assemble derivative of state vector for integrator

Xdot = [Qdot; Qddot; J(l); (J(1))
A
2];

%%%%%%%%%%%%%%%
%% Troubleshooting Info %%
%%%%%%%%%%%%%%%
Aqdot = A*Qdot;
LHS - M*Qddot + G;
RHS = Qf + A'*Lam;
Res = LHS - RHS.

E. fminu2

function [x,OPTIONS] = fminu2(FUN,x)OPTIONS,GI^ADFUN,Pl,P2.P3,P4,P5,P6,...
P7,P8,P9,P10)

%FMINU Finds the minimum of a function of several variables.

% X=FMINU('FUN',X0) starts at the matrix X() and finds a minimum to the

% function which is described in FUN (usually an M-file: FUN.M)
% The function 'FUN' should return a scalar function value: F=FUN(X).
%
% X=FMINU('FUN',X0,OPTIONS) allows a vector of optional parameters to

% be defined. OPTIONS(l) controls how much display output is given; set

% to 1 for a tabular display of results, (default is no display: 0).

% OPTIONS(2) is a measure of the precision required for the values of
% X at the solution OPTIONS(3) is a measure of the precision

% required of the objective function at the solution.

% For more information type HELP FOPTIONS
%
% X=FMINU('FUN',X0,OPTIONS,'GRADFUN') enables a function'GRADFUN'
% to be entered which returns the partial derivatives of the function,

% df/dX, at the point X: gf = GRADFUN(X).
%

121

% The default algorithm is the BFGS Quasi-Newton method with a

% mixed quadratic and cubic line search procedure.

% Copyright (c) 1990 by the MathWorks, Inc.

% Andy Grace 7-9-90.

% — Initialization-

XOUT=x(:);
nvars=length(XOUT);

evalstr = [FUN];
if~any(FUN<48)
evalstr=[evalstr, '(x'];

for i=l:nargin - 4

evalstr = [evalstr,',P',num2str(i)];

end
evalstr = [evalsu\ ')'];

end

if nargin < 3. OPTIONS=f]; end
if nargin < 4, GRADFUN=[]; end

if length(GRADFT IN)

evalstr2 = [GRADFUNJ;
if~any(GRADFUN<48)

evalstr2 = [evalstr2, '(x'J;

for i=l margin - 4

evalstr2 = [evalstr2,',P',num2str(i)];

end
evalstr2 = [evalstr2, ')'];

end

end

f = eval(evalstr);

n = length(XOUT);
(JRAD=zeros(nvars, 1);

OLDX=XOUT;
MATX=zeros(3,l);
MATL=[f;0,0J;
OLDF=f;
FIRSTF=f;
[OLDX,OLDF,HESS,OFTIONS]=optint(XOUT,f.OPTIONS)-.
CHG = le-7*abs(XOUT)+le-7*ones(nvars,l);

SD = zeros(nvais, 1),

diff = zeros(nvars, 1);

OPTIONS(10)=2; % Iteration count (add 1 for last evaluation)

status =-
1

;

while status ~= 1

% Work Out Gradients

if -length(GRADFUN) | OPTIONS(9)
OLDF=f;

% Finite difference perturbation levels

% First check perturbation level is not less than search direction.

f = find(10*abs(CHG)>abs(SD));

CHG(f) = -0.1*SD(f);

% Ensure within user-defined limits

122

CHG = sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17));
for gcnt=l:nvars

XOUT(gcnt, 1)=XOUT(gcnt)+CI IG(gcn1);

OPTIONS! 1 0)=OPTIONS(1 0)+ 1

;

disp('While Loop Iteration in Progress');

disp(| 'Iterations: ',num2str(OPTIONS(10))]);

disp(['Allowable: \num2str(OPTIONS(14))J).
x(:) = XOUT; f = eval(evalstr);

GRAD(gcnt)=(f-OLDF)/(CHG(gcnt));
iff<OLDF

OLDF=f;
else

XOUT(gcnt)=XOUT(gcnt)-CHG(gcnt);
end

end
% Try to set difference to le-8 for next iteration

CHG= le-8./GRAD;
f=OLDF;

% OPTIONS(10)=OPTIONS(10)+nvars;
% Gradient check

ifOPTIONS(9)== 1

GRADFD - GRAD;
x(:)=XOUT; GRAD = eval(evalstr2);

graderr(GRADFD, GRAD, evalstr2);

OPTIONS(9) = 0;

end

else

OPTIONS(ll)=OPTIONS(ll)+l;
x(:)=XOUT; GRAD = eval(evalstr2);

end
%— Initialization of Search Direction

if status == -1

SD=-GRAD;
FIRSTF=f;
OLDG=GRAD;
GDOLD=GRAD'*SD;
% For initial step-size guess assume the minimum is at zero.

OPTIONS(18) = max(0.01, mm([l,2*abs(f/GDOLD)])),
ifOPTIONS(l)>0
% disp([sprintf('%5.0f %12.3g %12.3g ',OPfIONS(10),f,..

OPT10NS(1 8)),spnntf('% 1 2.3g ',GDOLD)J);
end
XOUT=XOUT+OPTIONS(1 8)*SD;
status=4;

if OPTIONS(7)==0; PCNT=1 ; end

else

%— Direction Update —
gdnew=GRAD'*SD;
ifOPTIONS(l)X),

num=[sprintf('%5.0f%12.3g%12.3g
,

,OFTlONS(10),f,OPTIONS(18)),...

sprintf('%12.3g ',gdnew)];

end
if (gdne\v>0 & f>FIRSTF)|~finite(0

% Case 1 : New function is bigger than last and gradient w.r.t. SD -ve

% ...interpolate.

how-inter';

[stepsize J-cubici 1 (f,FIRSTF,gdne\v,GDOLD,OPTIONS(1 8));

if stepsize<0|isnan(stepsize), stepsize=OPTIONS(1 8)/2; how='C 1 f '. end

if OPTIONS(1 8)<0. 1 &OPriONS(6)==0

123

if stepsize*norm(SD)<eps

randOnormal')

stepsize=rand(l);

how='RANDOM STEPLENGTII';
status=0;

else

stepsize=stepsize/2;

end
end

OPTIONS(18)=stepsize;
XOUT=OLDX;

elseif f<FIRSTF
[newstep,fbest] =cubici3(f,FIRSTF,gdnew,GDOLD,OPTIONS(1 8));

sk=(XOUT-OLDX)'*(GRAD-OLDG);
ifsk>le-20

% Case 2: New function less than old fun. and OK lor updating HESS
% update and calculate new direction

how=";
if gdnewO

how-incstep';

if newstep<OPTIONS(1 8)

newstep=2*OPriONS(1 8)+ 1 e-5

.

how=[how,' IF'];

end
OPTIONS(1 8)=min([max([2, 1 .5*OPTIONS(1 8)]), 1 +sk+ahs(gdnew)+..

.

max([0,bPTIONS(18>l]),(1.2-K).3*(~OPTIONS(7)))*abs(newstep)]);

else % gdnew>0
ifOPTIONS(18)>0.9

how='int_st';

OPTIONS(18)=min([l,abs(newstep)]);

end
end %if gdnew
[HESS,SDj=updhess(XOUT,OLDX,GRAD,OLDG,HESS.OPTIONS);
gdnew=GRAD'*SD;
OLDX=XOUT;
status=4;

% Save Variables for next update

FIRSTF=f;
OLDG=GRAD;
GDOLD=gdnew;

% If mixed interpolation set PCNT
if OPTIONS(7)=0, PCNT=1 ; MATX=zeros(3, 1). MATL(1)=f; end

elseif gdne\v>0 %sk<=0
% Case 3: No good for updating HESSIAN . interpolate or halve step length,

how-interst';

ifOPTIONS(18)>0.01
OPTIONS(1 8)=0.9*newstep;

XOUT=OLDX;
end
if OPTIONS(1 8)> 1 , OPTIONS(1 8)= 1 . end

else

% Increase step, replace starting point

OPTIONS(18)=max(lmin(lnewstep-OFI'IONS(18) ?
31),0.5*OPTIONS(18)]);

how-incst2',

OLDX=XOUT;
FIRSTF=f,
OLDG=GRAD;
GDOLD=GRAD'*SD;
OLDX=XOUT;

end % if sk>
% Case 4: New function bigger than old but gradient in on

124

% ...reduce step length,

else %gdne\v<0 & F>FIRSTF
ifgdnew<0&tf>FIRSTF

how-redstep';
if norm(GRAD-OLDG)<le-10; HESS=eye(nvars); end

ifabs(OPT!ONS(18))<eps
rand('normal')

SD=norm(SD)*rand(SD)
OPTIONS(18)=abs(rand(l))*le-6;
how='RANDOM SD';

else

OPTIONS(1 8)=-OPTIONS(1 8)/2;

end
XOUT=OLDX;

end %gdnew>0
end % if (gdnc\v>0 & F>FIRSTF)|~finite(F)

XOUT=XOUT+OPTIONS(1 8)*SD;
ifOPTIONS(l)X)
% disp([num,how])

end
end % End of Direction Update

% Check Termination

if max(abs(SD))<2*OPTIONS(2) & (GRAD'*(SD)) < 2*OPTIONS(3)
ifOPT!ONS(l)>0

disp(");disp("),disp(");

disp(");disp("),disp(");

disp('Optimization Terminated Successfully'),

% disp('Gradient less than options(2)').

disp([' NO OF ITERATIONS-', num2slr(OPTIONS(10))]);
end
status=l;

elseif OPTIONS(10)>OPTIONS(14)
ifOPT!ONS(l)>=0

disp(");disp("),disp(");

disp(");disp(");disp(");

disp('Waming: Maximum number of iterations has been exceeded'),

dispC - increase options(14) for more iterations. ')

end
status=l;

else

% Line search using mixed polynomial interpolation and extrapolation.

ifPCNT~=0
while PCNT >

OPTIONS! 10)=OFTIONS(10)+1;
disp(");disp(");disp(");

disp('Termination Check in Progress');

disp(['Iterations: ',num2str(OPTIONS(10))]),

x(:) = XOUT;
f = eval(evalstr),

[PCNT,MATL,MATX,steplen,f,how]=searchq(PCNT,f,OLDX,...
MATL,MATX,SD,GDOLD,OPTIONS(1 8), how);

OPTIONS(18)=steplen;
XOUT=OLDX+steplen*SD;
if abs(steplen) < le-6, PCNT=0; status=l ; end

end

else

x(:)=XOUT;
OPTIONS(10)=OPTIONS(10)+1;

disp("),disp(");disp(");

disp('Tennination Check in Progress');

disp(['Iterations: \num2str(OFnONS(10))]);
f = eval(evalstr);

end
end
end

x(:)=XOUT,
disp("),disp(");disp(");

disp(");disp(");disp(");

disp(");disp(");disp(");

disp('Final Evaluation in Progress');

f = eval(evalstr);

iff>FIRSTF
OPTIONS(8) = FIRSTF;
x(:)=OLDX;
else

OPTIONS(8) = f;

end

F. MainMin

% Filename is "MainMin.
m"

% This is the routine used by "MainOpt.m" to optimi/e the reference

% trajectory polynomial coefficients. It is a scaled down version

% of the dual arm spacecraft program, "Main2.m". This version does

% not integrate the state variables not include a Lyapunov controller.

% The only integration that does take place is the optimization cost

% function.

function [JOpt] = MainMin(UpCoef,ConstMat,Flags)

%clg;clear;

format compact;format short;

k = length(UpCoef);

A543 = inv(ConstMat(:,k+l :k+3))*([l; 0; 0] - ConstMat(:,l:k)*UpCoef);

Coef = [UpCoef; A543J; % Reference trajectory polynomial coefficients

% Reference Maneuver Start and Stop Times
TO = 0;

TfR= 10,

TfC= 10;

MetaFlag =Flags(l);

ContFlag = Flags(2);

PertFlag = Flags(3);

AMatFlag = Flags(4);

WheelFlag = Flags(5);

EOMFlag =Flags(6);

PInvFlag =Flags(7);

KEFlag = Flags(8);

OutFlag =Flags(9);

Trace =Flags(10);

SymFlag = Flags(1 1);

By Pass =Flags(12);

TorqFlag =Flags(13),

Tol = le-6; % Integration tolerance

126

R2D = 180/pi; % Conversion factor from radians lo degrees

% Lengths (m)

LO = 0.75, % Origin to left shoulder

LI =0.5; % Left upper ami
1,2 = 0.5; % Left forearm

LP = 0.5; % Pay load

R2 = 0.5; % Right forearm

R 1 = 0.5; % Right upper arm
R0 = sqrt(2*0.75A2); % Origin to right shoulder

Ls = [L0; L 1 ; L2; LP; R2; R 1 ; R0],

% Member masses (kg)

M0 = 5,

ML1 = 1;

ML2= 1;

MR1 = 1;

MR2= 1;

MP = 1;

Ms = [M0; ML1; ML2; MR1, MR2; MP];

% Center of mass distances (m)
LcO =0;
LcLl =0.25;

LcL2=0.25;
LcRl =0.25;

LcR2 = 0.25.

LcP =0.25;
CMs = [LcO, LcLl; LcL2; LcRl; LcR2; LcP];

% MOI about center of mass: Ic = (l/12)*(mass)*(length)A2

10 = M0,
%I0 = 0;

IL1 =(1/12)*ML1 *L1 A
2;

IL2 = (1/12)*ML2*L2A2;
IR1 =(1/12) *MR1 *R1 A

2;

IR2 = (1/12)*MR2*R2A
2;

IP =(1/12)* MP *LPA
2;

Is= [10; IL1; IL2; IR1; IR2; IP];

% Nominal initial and desired final locations of pay load

% Point Q is at wrist of left arm
% Point P is at wrist of right arm
Qx0n = 0.125; QyOn = 1.5;

Px0n = 0.625; Py0n=1.5,
Qxf =0.125; Qyf = 1.0;

Pxf =0.125, Pyf = 1.5;

% Nominal initial and desired final locations of centerbody

ThOO = 0;

Th0f = 0/R2D;

% Arms mount locations wrt centerbody coordinate frame (rad)

ThL0 = pi/2;

ThRO = pi/4;

AngConst(l) = ThL0;
AngConst(2) = ThRO;

% Symmetric geometry to center arms and test kinetic energy

if SymFlag
Th'LO = 3*pi/4;

127

AngConst(l) = ThLO;
RO = LO; % Origin to right shoulder

Ls(7,l) = R0;
QxOn = -0.25; QyOn = 1.2;

PxOn = 0.25; PyOn = 1.2;

end

BoundC(1 ,
1
) = QxOn; BoundC(1.2) = QyOn;

BoundC(2,l) = PxOn; BoundC(2,2) = PyOn;
BoundC(3,l) = Qxf; BoundC(3,2) = Qvf.
BoundC(4,l) = Pxf; BoundC(4,2) = Pyf;

BoundC(5,
1
) = ThLO; BoundC(5,2) = ThRO;

BoundC(6,l) = TO; BoundC(6,2) = TfR;
BoundC(7,l) = TfC; BoundC(7,2) = ContFlag;

BoundC(8,
1
) = AMatFlag; BoundC(8,2) = WheelFlag;

BoundC(9,l) = ThOO; BoundC(9,2) = ThOf;

BoundC(10,l)= EOMFlag; BoundC(10,2)= PInvFlag;

BoundC(11,1)= KEFlag; BoundC(1 1 ,2)= By Pass;

BoundC(12,l)=TorqFlag;

% Weighting Matrices

% Control torques are calculated to minimize the following cost function:

% J = 0.5*(u'*Wu*u + (A'*Lam)'*Wc*(A'*Lam))

if WheelFlag
Wu = eye(7); % Control Torque Weighting

else

Wu = eye(6);

end
%if WheelFlag
% Wu = zeros(7,7);

%else
% Wu = zeros(6,6),

%end
%Wu(4,4)=le5;
%Wu(7,7)=le5;
%Wu(2,2)=lelO;
%Wu(5,5)=lelO;
Wc = zeros(8,8), % Constraint Force Weighting

%Wc = eye(8);

%%%%%%%%%%%%%%%%%
%% INITIAL CONDITIONS %%
%%%%%%%%%%%%%%%%%
% Desired Initial Pavload Parameters

ThPO = atan2(Py0n-Qy0n,Px0n-Qx0n);

XcO = 0.5 * (PxOn + QxOn);
YcO = 0.5 *(PyOn + QyOn);

QxO = QxOn;
QyO = QyOn;
PxO = PxOn;

PyO = PyOn;

% Initial State

X0 = 0;

%%%%%%%%%%%%%
%% INTEGRATION %%
%%%%%%%%%%%%%
% RefMin2 uses change in angular momentum to find wheel command torque

fTJInt,J] = odemin(
,

RefMin2
,

)
T0,TfR,X0,Tol,Trace.Ls,Ms.CMs,Is.BoundC,...

128

Wu,Wc,Coef,ConslMat);
% Optimization cost function is integral of J

k = lenglh(T);

JOpt = Jlnt(k);

%JOpt = max(abs(J));

G. MainOpt

% Filename is "MainOpt.
m"

% This routine optimizes the dual arm spacecraft cost function

% by changing the polynomial coefficients which describe the

% reference trajectory. It calls "Main2.m"

%clear

clc

home
format compact
format short

I JpCoefO = [0]; % Starting Guess
%UpCoefO = UpCoef; % Use last values for starting guess

k = length(UpCoefO);

options =
[]; % Default values

options(l) = 0; % Display dunng optimization cycle: l=On, 0=Off
options(14) = 100*k; % Maximum number of iterations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Flags during optimization %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
MetaFlag = 0, % Creates metafile named "main. met"

ContFlag = 0; % Controller Status Flag: l=On; 0=Off
PertFlag = 0; % Perturbation Flag (0=no perturbation, 1 =perturbation)

% The perturbation is to check the controller by

% disturbing the actual initial state away from nominal.

% The reference torques are based on nominal.

AMatFlag = 0; % Size of A matrix: = 4x8 (Free Centerbody

)

% 1 = 5x8 (Fixed Centerbodv)
'

WheelFlag = 1; % Centerbody Reaction Wheel (l=On, 0=Off)

EOMFlag = 8; % Specifies number of cost function constraint equations

% 3 = only payload equations

% 5 = only spacecraft equations

% any other value = all 8 equations

PInvFlag =
1 ; % Psuedo-Inverse Flag (for use in finding reference torques)

% 1 = Use psuedo-inverse

% = Use inverse

KEFlag = 0; % KE Test Flag

% 1 = Nonzero velocity initial conditions

% = Zero velocity initial conditions

OutFlag = 0; % Output Flag

% 1 = Display output

% = Don't display output

Trace =1; % Observe integration

% 1 = Observe

% = Don't observe

OptFlag = 0, % Optimization Flag

% 1 = Perform optimization

% = Don't perform optimization

SymFlag = 0; % Symmetric Geometry Flag

% 1 = Symmetric geometry

129

% = Nonsymmetric geometry

ByPass = 0; % Torque calculation bypass flag

% 1 = Bypass
% = Use inverse kinematics

TorqFlag= 0; % Torques to use if bypass enabled

% = No Torques (Drift)

% 1 = One Shoulder Torque
% 2 = Symmetric Shoulder Torques

TorqCap = 0; % Maximum limit on wheel torque

% 1 = Enabled
% = Disabled

TorqMax = 0.075;% Limit on wheel torque if TorqCap enabled

Flagsl(l) = MetaFlag;

Flags 1(2) = ContFlag;

Flagsl(3) = PertFlag;

Flags] (4) = AMatFlag;
Flagsl(5) = WheelFIag;

Flagsl(6) = EOMFlag;
Flagsl(7) = PInvFlag;

Flagsl(8) = KEFlag;
Flagsl(9) = OutFIag;

Flagsl (10)= Trace;

Flags] (11)= SvmFlag;
Flagsl (1 2)= ByPass;

Flagsl (13)= TorqFlag:

Flagsl(14)= TorqCap;

Flagsl (15)= TorqMax,
%%%%%%%%%%%%%%%%
%% Flags after optimization %%
%%%%%%%%%%%%%%%%
Flags2 = Flagsl

Flags2(l) =

Flags2(2) = 1

Flaes2(3) =
Flags2(5) = 1

Flags2(8) =
Flags2(9)= 1

Flags2(10)= 1

Flags2(ll)=0
Flags2(12)=0
Flags2(13)=0

% MetaFlag: l=On, 0=Off (File is "main. met")

% Controller Flag: 1 =On, 0=Off
% Perturbation Flag: 1 =On, ()=0ff

% Wheel Flag: l=On, 0=Off
% Kinetic Energy Flag: l=On, 0=Off
% Output Flag: l=On,0=Ofl'
% Trace Flag: 1 =On, 0=Off
% Symmetric Geometry Flag: l=Sym, 0=NonSym
% Inverse Kinematics Bypass: l=Bypass, 0=lnverse Kinematics

% Torq Flag: 0=No Torq, l=One Torq. 2=Two Symmetric Torqs

% Torq Flag is for when the bypass is enabled

Flags2(14)=0; % TorqCap: l=On, 0=Off
Flags2(15)= 0.075;% Limit on maximum wheel torque

Flags2(16)=0; % DocFlag: l=On,0=Off
% separate meta files for each page ("doc#.met")

DiaFlag =0; % Diary Flag

% 1 = Create diary file "main dia"

% = No diar>' file

ConstMat = ones(3,k+3);

forn=l:k+3
ConstMal(2,n) = k+6-n;

ConstMat(3,n) = ConstMat(2,n)*(ConstMal(2,n)-l),

end

if OpfFlag

[UpCoeLoptions] = fminu2('MainMin
,

,UpCocf0,options,[],ConstMat,Flagsl);

end

if DiaFlag

diary main dia

end

130

if—OptFlag
UpCoef=UpCoefO;

end

[Jlnt] = Main2(UpCoef,ConstMat,Flags2);

% Plot position, velocity, & acceleration reference trajectories

k = lengthfUpCoef);
A543 = inv(ConstMat(:,k+l:k+3))*([l; 0; 0] - ConstMat(:,l:k)*UpCoef);
Coef = [UpCoef, A543J, % Reference trajectory polynomial coefficients

k = length(Coef),

Steps = 21;

form = 1: Steps

Tau = (m-l)/(Steps-l);

for n=l:k
CTau(k+l-n) = Coef(k+l-n)*TauA(n+2);
CTaud(k+l-n) = Coef(k+l-n)*TauA(n+l);
CTaudd(k+l -n) = Coef(k+l -n)*TauA(n);

end
W(m) =ConstMat(l,:)*CTau';
Wd(m) = ConstMat(2,:)*CTaud';

Wdd(m) = ConstMat(3,:)*CTaudd';

end
clg

T=0: 1 /(Steps- 1):1;

subplot(221)

plot(T,W);title('Position vs Normalized Time'),

xlabel('Tau (sec)');ylabel('Position');

subplot(222)

title('Reference Trajectories')

subplot(223)

plot(T,Wd);tille('Velocity vs Normalized Time');

xlabel(Tau (sec)');ylabei('Velocity');

subplot(224)

plot(T,Wdd);title('Acceleration vs Noimalized Time');

xlabel('Tau (sec)');ylabel('Acceleration');

if Flags2(l)

meta main
end

if Flags2(16)

meta doc6
end

pause

disp('Initial guess for highest order coefficienls');disp(l IpCoefO');

disp('Coefficients in descending order');disp(Coef);

disp('Integral of Cost Function,(JIntAbs & .UntSqr)'),disp(.IInt),

ifOptFlag

disp('lterations');disp(options(10));

end

diaiy off

H. Main2

% Filename is "Main2.m"
% This routine is the driver for the dual arm spacecraft problem

% but is called by "MainOpt.m" after the polynomial reference trajectory

% coefficients have been optimized.

131

function fJIntTotal] = Main2(UpCoef,ConstMat,Flags)

% Calculate the coefficients for orders five, four, and three.

% Include these with the higher order coefficients in a vector.

k = lcngth(UpCoef);

A543 = mv(ConstMat(,k+l :k+3))*([l; 0; 0] - ConsuMat(:,l:k)*UpCoef);
Coef = fUpCoef ; A543], % Reference trajectory polynomial coefficients

%%%%%%%%
%% Times %%
%%%%%%%%
% Reference Maneuver Start and Stop Times and Controller Stop Times
% Setting the controller time longer than the reference maneuver time

% ensures that the controller eliminates any errors remaining after the

% reference trajectory should be complete. To exercise the controller

% only with no reference trajectory, set the reference maneuver stop

% time to a negative value.

TO = 0;

TfR= 10;

TfC= 10;

MetaFlag = Flags(l);

ConlFlag = Flags(2);

PertFlag = Flags(3);

AMatFlag = Flags(4);

WheelFlag = Flags(5);

EOMFlag =Flags(6);

PInvFlag =Flags(7);

KEFlag = Flags(8);

OutFlag = Flags(9);

Trace =Flags(10);

SvmFlag =Flags(ll);

ByPass =Flags(12);

TorqFlag =Flags(13);

TorqCap =Flags(14);

TorqMax = Flags(1 5);

DocFlag =Flags(16);

Pert = -10; % Perturbation of initial payload angle, ThetaP (deg)

Tol = 1 e-6; % Integration tolerance

Interval = 3; % Stick figure drawing includes every Interval'th time

R2D = 180/pi; % Conversion factor from radians to degrees

%%%%%%%%%%%%%%
%% System Parameters %%
%%%%%%%%%%%%%%
% Lengths (m)

L0 = 0.75; % Origin to left shoulder

LI =0.5; % Left upper arm
L2 = 0.5; % Left forearm

LP = 0.5; % Pavload

R2 = 0.5; % Right forearm

R 1 = 0.5; % Right upper arm
R0 = sqrt(2*0.75A2); % Origin to right shoulder

Ls = [LO;Ll;L2;LP;R2;Rl;RO];

% Member masses (kg)

M0 = 5;

ML1 = 1;

ML2 = 1;

MR1 = 1;

132

MR2= 1;

MP = 1

;

Ms = [MO. ML1; ML2; MR1; MR2; MP];

% Center of mass distances (m)
I.cO =0;
LcLl =0.25;
Lcl,2 = 0.25;

LcRl =0.25;

LcR2 = 0.25;

LcP =0.25;
CMs= [LcO; LcLl; LcL2; LcRl; LcR2; LcP],

% MOI about individual centers of mass
% Arms are modelled as slender rods: Ic = (l/12)*(mass)*(length)

A
2

10 =M0,
IL1 =(1/12)*ML1 *L1 A

2;

IL2 = (1/12)*ML2*L2A
2;

IR1 = (1/12)*MR1 *R1 A
2;

IR2 = (1/12)*MR2*R2A
2;

IP =(1/12)* MP *LPA
2,

Is=[10;ILl;IL2;IRl;IR2;IP];

% Nominal initial and desired final locations of pay load

% Point Q is at wrist of left arm
% Point P is at wrist of right arm
Qx0n = 0.125; QyOn = 1.5;

Px0n = 0.625; PvOn = 1.5;

Qxf =0.125; Qvf = 1.0;

Pxf =0.125; Pyf = 1.5;

% Nominal initial and desired final locations of centerbody

ThOO = 0/R2D;
Th0f=0/R2D;

% Arms mount locations wrt centerbody coordinate frame (rad)

ThLO = pi/2;

ThRO = pi/4;

AngConst(l) = ThL0;
AngConst(2) = ThRO;

% Symmetric geometry to center aims and test kinetic energy

if SymFlag
ThLO = 3*pi/4;

AngConst(l) = ThL0;
R0 = L0; % Origin to right shoulder

Ls(7,l) = R0;

Qx0n = -0.25; QyOn = 1.2;

Px0n= 0.25; PyOn = 1.2;

end

% Assemble information required in other subroutines into a matrix

BoundC(l,l) = QxOn; BoundC(l,2) = QvOn;
BoundC(2,l) = PxOn; BoundC(2,2) = PyOn;

BoundC(3,l) = Qxf, BoundC(3,2) = Qvf;

BoundC(4,l) = Pxf; BoundC(4,2) = Pyf;

BoundC(5,l) = ThLO; BoundC(5,2) = ThRO.
BoundC(6,

1
) = TO; BoundC(6,2) = TfR;

BoundC(7,l) = TfC; BoundC(7,2) = ContFlag;

BoundC(8,l) = AMatFlag; BoundC(8,2) = WheelFlag;

BoundC(9,
1
) = ThOO; BoundC(9,2) = ThOf

;

133

BoundC(10,l)= EOMFlag; BoundC(10,2)= PInvFlag;

BoundC(ll,l)= KEFlag, BoundC(ll,2)= ByPass;
BoundC(12,l)=TorqFlag;
BoundC(1 3, 1)= TorqCap; BoundC(1 3,2)= TorqMax;

% Gip are gains for angle i position error

% Giv are gains for angle i velocity error

Gpos = 0.5; % Position error gain

Gvel = 0.2; % Velocity error gain

Gains = [Gpos; Gvel],

% Weighting Matrices

% Control torques are calculated to minimize the following cost function:

% J = 0.5*(u'*Wu*u + (A
,*Lam)'*Wc*(A'*Lam))

% Wu is the control torque weighting matrix

% Wc is the constraint force weighting matrix

ifWheelFlag
Wu = eye(7); % Control Torque Weighting

else

Wu = eye(6);

end
%if WheelFlag
% Wu = zeros(7,7);

%else
% Wu = zeros(6,6);

%end
%Wu(4,4)=le5; % Penalty on wrist motors for free centerbodv case

%Wu(7,7)=le5;
%Wu(2,2)=lel0; % Penalty on wrist motors for fixed centerbody case

%Wu(5,5)=lel0;
Wc = zeros(8,8); % Constraint Force Weighting
%Wc = eye(8);

%%%%%%%%%%%%%%%%%
%% INITIAL CONDITIONS %%
%%%%%%%%%%%%%%%%%
% Desired Initial Payload Parameters

ThPO = atan2(Py0n-Qy0n,Px0n-Qx0n);
XcO = 0.5 * (PxOn + QxOn);

Yc0 = 0.5*(Py0n + Qy0n);

ifPertFlag % Perturbation enabled

ThPO = ThPO + Pert/R2D; % Perturb payload angle

0x0 = XcO - LcP*cos(ThP0); % Perturb arm end points

QvO = YcO - LcP*sin(ThP0);

PxO = XcO + (LP-LcP)*eos(ThP0);
PyO = YcO + (LP-LcP)*sin(ThP0);

else % No Perturbation

QxO = QxOn;
QyO = QyOn;
PxO = PxOn;

PyO = PyOn;
end
PertCrd = [QxO QyO PxO PyO];

% Left Arm
% Elbow is left of line from arm base to Q (RQ)
LSx = L0 * cos(Th00 + ThLO);

LSy = LO * sin(ThOO + ThLO);

RQ = sqrt((QxO-LSx)A2+(QyO-LSy)A2); % Length from arm base to Q
Betal = atan2(QyO-LSy,QxO-LSx); % Angle from arm base to RQ

134

% Law of cosines: cos(A) = (b
A2 + c

A2 - a
A
2)/(2bc)

% Applv to find angle between RQ and Link LI

Num = Ll A
2 + RQA2-L2A

2;

Den = 2 * L 1 * RQ,
Beta2 = acos(Num/Den); % Angle bom RQ to Link 1

ThI .10 = (Beta 1 + Beta2) - (ThOO + ThLO); % Theta L

1

% Use law of cosines to find the interior angle at the elbow
Num = Ll A2 + L2A2-RQA

2;

Den = 2 * L 1
* L2;

Beta3 = acos(NumZDen);
ThL20 = -(pi-Beta3),

% Right Arm
% Elbow is right of line from arm base (shoulder) to P (wrist) (RP)
RSx = R0 * cos(Th00 + ThRO);
RSy = R0 * sin(ThOC) + ThRO);
RP = sqrt((PxO-RSx)A2+(PyO-RSy)A2); % Length from arm base to P
Bctal = atan2(Py0-RSy,Px0-RSx); % Angle from arm base to RP
% Law of cosines: cos(A) = (b

A2 + cA2 - aA2)/(2bc)

% Applv to find angle between RP and Link Rl
Num='Rl A

2 + RPA2-R2A
2;

Den = 2*Rl * RP;
Beta2 = acos(Num/Den); % Angle from Link R 1 to RP
Beta4 = Betal - (ThOO + ThRO);
ThR10 = -(Beta2-Beta4);

Num = Rl A2 + R2A2-RPA
2;

Den = 2*Rl * R2;
Beta.l = acos(Num/Den),
ThR20 = pi - Beta3;

% Desired Initial State

X0 = [ThOO, ThLlO; ThL20; ThRlO; ThR20; ThPO, XcO; YcO;...

0; 0; 0; 0; 0; 0, 0; 0];

%%%%%%%%%%%%%%%%%%%%
%% Kinetic Energy Test Conditions %%
%%%%%%%%%%%%%%%%%%%%
% Specify Payload and Centerbody Initial Rates

% Compatible Rates for the Redundant Coordinates are calculated

ifKEFlag
ThPdO = 0/R2D; % Rates to specify

Xcd0 = -0.03;

Ycd0 = -0.03;

ThOdO = 0/R2D;
%%%%%%%%%%%
%% LEFT ARM %%
%%%%%%%%%%%
% IQxd; Qyd] = [Hl]*Th0d + [H2]*Thd
% Qxd & Qyd are x & y components of point Q inertial velocity.

% Thd = [ThL ldot; ThL2dot]
% H matrices are made from expressing the x & y components of Q in

% terms of L0, ThO, ThLO, L 1 , ThL 1 , L2, and ThL2.
% Qx=L0*cos(Th0+ThL0)+L 1 *cos(Th()+ThL()+TL 1)+L2*cos(Th()+.

% ThL0+ThLl+ThL2)
% Qy=L0*sin(Th0+ThL0)+Ll*sin(Th0+ThL0+ThLl)+L2*sin(Th0+.
% ThL0+ThLl+ThL2)
% The differentiation of these equations lead to

% [Qxd; Qyd] = [Hl]*Th0d + [H2]*Thd which can be solved for Thd
QxdO = XcdO + LcP * ThPdO * sin(ThPO);

QydO = YcdO - LcP * ThPdO * cos(ThPO);

II'2(1,2) = -L2*sin(Th00+ThL0+ThL10+ThL20);

135

H2(1,1)= H2(1 ,2) - L 1 *sin(ThOO+ThLO+ThI . 1 0);

112(2,2)= L2*cos(ThOO+ThLO+ThL10+ThL20);
H2(2,l) = H2(2,2) + Ll*cos(Th()0+ThLO+ThL 10);

111(1,1)= H2(1,1)- L0*sin(Th00+ThL0);
H 1 (2, 1) = H2(2,

1) + L0*cos(Th00+ThL0);
ThdO = inv(H2) * ([QxdO; QydO] - HI *ThOdO);

% Angle rates

ThLldO = ThdO(l);

ThL2dO = ThdO(2);

%%%%%%%%%%%%
%% RIGHT ARM %%
%%%%%%%%%%%%
% The development is similar to the left arm
% Px=RO*cos(ThO+ThRO)+R 1 *cos(ThO+ThRO+ThR 1)+R2*cos(Th()+.

% ThR0+ThRl+ThR2)
% Py=RO*sin(ThO+ThRO)+Rl*sin(Th()+ThRO+ThRl)+R2*sin(Th()+...
% ThR0+ThRl+ThR2)
% [Pxd; Pyd] = [Hl]*ThOd + [H2]*Thd
PxdO = XcdO - (LP - LcP) * ThPdO * sin(ThPO);

PydO = YcdO + (LP - LcP) * ThPdO * cos(ThPO);

112(1,2) = -R2*sin(Th()0+ThR0+ThR10+ThR2O);
112(1,1)= H2(1 ,2) - R 1 *sin(ThOO+ThRO+ThR 10);

H2(2,2) = R2*cos(ThOO+ThRO+ThR10+ThR20);
H2(2,

1) = H2(2,2) + R 1 *cos(ThOO+ThRO+ThR 1 0);

H 1 (1 , 1) = H2(1 , 1) - R0*sin(Th00+ThR0);
H 1 (2, 1) = H2(2, 1) + R0*cos(Th00+ThR0);
ThdO = inv(H2) * ([PxdO; PydO] - Hl*ThOdO);
% Angle rates

ThRldO = ThdO(l);

ThR2dO = ThdO(2);

XO = [ThOO; ThLlO; ThL20; ThRlO; ThR20; ThPO; XcO. YcO;...

ThOdO; ThLldO; ThL2dO; ThRldO; ThR2dO; ThPdO; XcdO, YcdO],

end

%%%%%%%%%%%%%%%%
%% FINAL CONDITIONS %%
%%%%%%%%%%%%%%%%
% Desired Final Pay load Angle
ThPf = atan2(Pyf-Qyf,Pxf-Qxf);

% Left Arm
% Elbow is left of line from arm base to Q (RQ)
LSx = LO * cosfThOf + ThLO),
LSv = LO * sin(ThOf + ThLO);

RQ = sqrt((Qxf-LSx)A2+(Qyf-LSy)A2); % Length from arm base to Q
Betal = atan2(Qyf-LSv,Qxf-LSx); % Angle from arm base to RQ
% Law of cosines: cos(A) = (b

A2 + c
A2 - a

A
2)/(2bc)

% Apply to find angle between RQ and Link L

1

Num = Ll A2 + RQA2-L2A
2;

Den = 2 * L 1 * RQ;
Beta2 = acos(Num/Den); % Angle from RQ to Link 1

ThI . 1 f = (Beta 1 + Beta2) - (ThOf + ThLO); % Theta L

1

% Use law of cosines to find the interior angle at the elbow
Num = Ll A2 + L2A2-RQA

2;

Den = 2*Ll *L2;
Beta3 = acos(Num/Den),

ThL2f=-(pi-Beta3);

% Right Arm
% Elbow is right of line from arm base (shoulder) to P (wrist) (RP)

RSx = RO * cos(ThOf + ThRO).

136

KSv = RO * sin(ThOf + ThRO);
RP = sqrt((Pxf-RSx)A2+(Pyf-RSy)A2); % Length from arm base to P
Beta 1 = atan2(Py f-RSy,Pxf-RSx); % Angle from arm base to RP
% Law of cosines: cos(A) = (b

A2 + cA2 - a
A
2)/(2be)

% Apply to find angle between RP and Link Rl
Num = Rl A

2 + RPA2-R2A
2;

Den = 2*Rl * RP;
Beta2 = acos(Num/Den); % Angle from Link R 1 to RP
Beta4 = Beta 1 - (ThOf + ThRO);
ThRlf=-(Beta2-Beta4);
Num = R

1

A2 + R2A2 - RPA2;
Den = 2*Rl * R2;
Beta3 = acos(Num/Den);
ThR2f=pi-Beta3;

% Desired Final State

Xcf=0.5*(Pxf + Qxf);

Ycf=0.5*(Pyf + Qyf);

QfDes = [ThOf; ThLlf; ThL2f; ThRlf; ThR2f; ThPL Xcf; Ycf;...

0; 0; 0; 0, 0; 0; 0; ()];

ifOutFlag
%%%%%%%%%%%%%%%%%
%% PROBLEM SUMMARY %%
%%%%%%%%%%%%%%%%%
disp('PROBLEM SUMMARY')
disp(")

disp('Initial Angles (deg)')

dispCInitial Angular Rates (deg/sec)')

disp('Desired Final Angles (deg)')

disp(' ThetaO ThetaLl ThetaL2 ThetaRl ThctaR2 ThetaP')

disp(X0(l:6)'*R2D)

disp(X0(9:14)'*R2D)

disp(QfDes(l:6)'*R2D)
disp(")

disp('Payload Coordinates (m)')

dispC Nominal Initial, Perturbed Initial, and Final')

disp(' Qx Qy Px Py')

TableCrd - [QxOn QyOn PxOn PyOn; PertCrd; Qxf Qyf Pxf Pyf],

disp(TableCrd)

disp(")

disp('Arm Mounting Locations wrt Centerbody Coordinate Frame (deg)')

disp(ThL0*R2D);disp(ThR0*R2D)
disp(")

disp('Start, Reference Manuever Slop, & Simulation Stop Times (sec)')

disp(T0);disp(TfR);disp(TfC)

disp(")

disp('Controller Status (1 = On; = Off)')

disp(ContFlag)

disp(")

disp('Perturbation Status (1 = On; = Off)')

disp(PertFlag)

disp(")

disp('Centerbody Status in Forward EOM (1 = Fixed, = Free)')

disp(AMatFlag)

disp(")

disp('Reaction Wheel Status (1 = On; = Off)')

disp(WheelFlag)

disp(")

disp('Number of Equations in Cost Function Constraint (3, 5 or 8)')

disp(EOMFlag)

137

disp(")

disp('Psuedo-Inverse Status (1 = On; = Off)')

disp(PInvFlag)

disp(")

disp('Nonzero Initial Velocity Status (1 = On. = Off)')

disp(KEFlag)

dispf)
disp('Geometry Status (1 = Symmetric, = Nonsymmetric)')

disp(SymFlag)

disp(")

disp('Inverse Kinematics Bypass Status (1 = Bypass. = Use inv. kinematics)')

disp(ByPass)

disp(")

disp('Torques if Bypass Enabled (0=None, l=One, 2=T\vo Symmetnc)')
disp(TorqFlag)

disp(")

disp('Reaction Wheel Torque Cap Status (l=Enabled, 0=Disabled)')

disp(TorqCap)

if TorqCap
disp('Limit on Wheel Torque');

disp(TorqMax);

end
disp(")

disp('Controller Gains (position and velocity)')

disp(' Gpos Gvel')

disp(Gains')

disp(")

dispCCost Function: J = 0.5*(uT*Wu*u + (AT*Lam)T*Wc*(AT*Lam))')
disp(' where T signifies transpose')

disp('Control Torques Weighting Matrix, Wu')

disp(Wu)
%disp('Constraint Forces Weighting Matrix, We')

%disp(Wc)

end % End of OutFlag branch

%%%%%%%%%%%%%
%% INTEGRATION %%
%%%%%%%%%%%%%
% "ode" is a variable step size Runge-Kutta integrator function

% supplied with MATLAB. "ode2" is the same as "ode" in its function

% but permits the passing of more variables into and out of the function.

[T,X,Torq,TorqRef,Aqdot,J,Res,LHS,RIIS,Delq] = ...

ode2('Eqn2',TO,TfC,XO,Toi;rrace,Ls.Ms,CMs.Is.BoundC,...

Gains,QfDes,Wu,Wc,Coef,ConstMat);
k = length(T),

JInt = X(:,17:18);

JIntTotal = X(k,17:18);

if OutFlag
%%%%%%%%%%
%% OUTPUT %%
%%%%%%%%%%

clg;

% Angle Histories

n = length(T);

Q = X(:,1:6);

subplot(221)

plot(T,Q(:,l)*R2D,T,Q(:,2)*R2D,T,Q(:,3)*R2D,...

T,Q(:,4)*R2D,T,Q(:,5)*R2D,T,Q(:,6)*R2D);

138

hold on
plot(T(n),QfDes(l)*R2D,

,* ,

,T(n),QfDes(2)*R2D,
,* ,

,T(n),QfDes(3)*R2D;*',...

T(n),Qn)es(4)*R2D
)

,* ,

>
T(n),QfDes(5)*R2D,

,

*M(n),Qn^cs(6)*R2D:*'),

title('Thetas vs Time');

xlabel('Time (sec)');ylabel('Angles (dcg)');

hold off

% Angle Rate Histories

Qdot = X(:,9:14);

subplot(223)

plot(T,Qdot(:,l)*R2D,T,Qdol(:)2)*R2D,T,Qdot(:,3)*R2D,...

T,Qdot(:,4)*R2D,T,Qdot(:,5)*R2D,T,Qdot(:,6)*R2D);

titlefThetaOots vs Time');

\label('Time (sec)');ylabel('Angle Rates (deg/sec)');

%Departures from Referenee Trajectory

if ~BvPass
subplot(222)

plot(TDelq(l,:)*R2D,T,Delq(2,:)*R2D,TDclq(3.:)*R2D,...

T,Delq(4,:)*R2D,T,Delq(5,:)*R2D,T,Delq(6,:)*R2D);

title('Displacement Errors vs Time');

xlabeK'Time (sec)');ylabel('Q-QRef (deg)');

end

if MetaFlag
meta main

end

if DoeFlag
meta doc 1

end
pause

% Draw Motion
Angles = Q(:, 1:6);

[Xcoord,Yeoord] = Draw3(Ls,AngConst,Angles,Interval);

if MetaFlag
meta main

end
if DoeFlag
meta doc2

end
pause

disp(-);

disp('STATE VECTOR TIME HISTORY:');
disp('Angles (deg)')

Tablel = [T X(:,1:6)*R2D],

disp(' Time ThetaO ThetaLl ThetaL2 ThetaRl ThetaR2 ThetaP');

disp(Tablel)

pause

disp(");

disp('Angle Rates (deg/sec)')

Table2 = [T Qdot(:,l :6)*R2D];

disp(' Time ThOdot ThLldot ThL2dot ThRldot ThR2dot ThPdol');

disp(Table2)

pause

if ~ByPass
disp(");

disp('TRA.IECTORY ERROR TIME HISTORY'):
disp('Angles (deg)')

139

Table2a = |T R2D*Delq(l:6,:)'];

disp(' Time DelThO DelThLl DelThL2 DclThRl DelThR2 DclThP);
disp(Table2a)

end
pause

% Reference Torque Histories

clg.

if TfR >
if TfR < TfC

|r,s] = size(TorqRef),

TorqRef = [TorqRef zeros(s, 1)]

;

TRef=[T(l:r);TfR],
else

TRef=T;
end
subplol(22I)

plot(TRef,TorqReO;

title('Reference Torques vs Time'),

xlabel('Time (sec)');ylabel('Reference Torques');

end
% Command Torque Histories

%Torq = [Torq, zeros(4,l)];

k=n;

subplot(223)

plot(T(l:k)',Torq);

titlefCommand Torques vs Time');

xlabel('Time (sec)');ylabel('Command Torques');

% Cost Function

subplot(222)

pIot(T,J(l,:));title('Cost vs Time');

xlabel('Time(sec)');\iabel('J=abs(Uwh)');

subplot(224)

plot(T,JInt),title('lntegrated Cost vs Time');

xlabeI(Time(sec)');ylabelCJInt');

if MetaFlag
meta main

end

if DocFlag
meta doc3

end
pause

ifTfR>0
disp(")

dispCREFERENCE TORQUE HISTORY'):
if WheelFlag

disp(' Time UO ULS ULE ULW URS URE URW),
else

dispO Time ULS ULE ULW URS URE URW);
end
Table4 = [TRef TorqRef],

disp(Table4)

end
pause

disp(")

disp('COMMAND TORQUE HISTORY');
if WheelFlag

dispC Time UO ULS ULE ULW URS URE URW);
else

140

dispC Time ULS ULE ULW URS URE URW);
end

Table5 = [T(l:k)Torq'];

disp(Table5)

pause

Table6 = [T(l:k)J(l,:)
,

JInt];

disp(");

disp('COST FUNCTION HISTORY'),
disp(' Time J JIntAbs JIntSqr');

disp(Table6);

pause

% Angular Momentum
k = length(T);

for n = 1 :k

[Hs] = AngMo(Ls,Ms,CMs,Is,X(n,l:8),X(n,9:16));

if n = 1

HHist = Hs;
else

HHist = [HHist; Hs];

end
end

clg

subplot(221);

plol(T,HHist(:,l :6));title('Angular Momentum of Pieees vs Time');

xlabel(Time (sec)'),ylabel('Ang Momentum (N-m-sec)');

subplot(223);

plot(T,HHist(:,7));title('Total Angular Momentum vs Time'),

\label(Time (sec)');ylabel('Ang Momentum (N-m-see)').

% Kinetie Energy
form = Ik
if AMatFlag

[M,G,A,Adol,B] = MatxFix(Ls,Ms,CMs,Is,X(m, 1 :8),X(m,9: 16),AngConst);
else

[M,G,A,Adot,B] = Matx(Ls,Ms,CMs,Is,X(m,l :8),X(m,9: 16),AngConst);

end

LHSTot(m) = 0;

RI ISTot(m) = 0;

ResTot(m) = 0;

for n= 1:8

LHSTot(m) = LHSTot(m) + LHS(n,m);
RHSTot(m) = RHSTot(m) + RHS(n.m),

end
ResTot(m) = LHSTot(m) - RHSTot(m);
KE(m) = U.5*X(m,9: 1 6)*M*X(m,9: 16)';

end

subplot(224)

plot(T,KE),title('Kinetic Energy vs Time'),

xlabeK'Time (sec)');ylabel('KE (kg mA
2/s

A
2)');

% Compare wheel torque to change in total angular momentum
Hd = J(2,:)';

subplot(222)

plot(T(1 :k)',Torq(1 ,:),T(1 :k)',Hd);

title('Compare Wheel Torque to Change in Ang. Mom.');

xlabel(Time (sec)');

pause

if MetaFlag
meta main

end

if DocFlag

141

mcta doc4
end
%pause

clg

subplot(221)

plot(T,Res);title('Residuals of Equations'),

\lahcl(Time (sec)');ylabel('Ll IS-RHS');

subplot(223)

plot(T,ResTot);title(Total Residuals');

xlabel(*Time(sec)');ylabelCLHS-RHS');

% Constraints: see if A*Qdot = is satisfied

subplot(222)

plot(T(l:k),Aqdot(l,:),T(l:k),Aqdot(2,:),T(l;k).Aqdot(3,:),

T(l:k),Aqdot(4,:));

[dum 1 ,dum2J = size(Aqdot);

if duml ==5

hold on
plot(T(l:k),Aqdol(5,:));

hold off

end

litleCCon.siraints: A*Qdot vs Time');

xlabeK'Time (sec)');ylabel('A*Qdot');

if MetaFlag
meta main

end
if DocFlag
meta doc5

end
pause

end % End of OutFlag branch

I. Matx

% Filename is 'Matx.m'

% This routine calculates the matrices for the dual arm
% spacecraft EOM when it is grasping a payload. Each arm
% has two links. This version assumes that the centcrbody

% is NOT fixed. This impacts A and Adot.

function [M,G,A,Adot,B] = Matx(Ls,Ms,CMs,Is,ThsJhdots,AngConst)

% OUTPUTS:
% M = 8x8 mass matrix

% G = 8x1 vector with coriolis and centripetal terms
% A = 4x8 constraints matrix

% Adot = 4x8 derivative of constraints matrix

% B = Control influence matrix

%
% INPUTS:
% Ls = 7x 1 vector of lengths (m)
% 1 st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder to wrist)

% 4th element = payload length

% 5th & 6th elements wrt right arm (from wnst to shoulder)

% 7th element = distance from right arm mount to origin

% [L0;L1;L2;LP,R2;R1;R0]
% Ms = 6x1 column vector containing the masses (kg)

142

% 1 st element = mass of spacecraft centerbodv

% 2nd & 3rd elements = left ami (upper then lower ami)
% 4th & 5th elements = right ami (upper then lower ami)

% 6th element = pay load mass
% | MO. ML 1 ; ML2; MR 1 ; MR2; MP]
% CMs = 6x1 column vector containing center of mass locations (m)
% [LcO; LcLl;LcL2; LcRl, LcR2, LcP]
% Is = 6x 1 column vector containing the moments of inertias

% about the respective body's center of mass (kg m A
2)

% 1 st element = inertia of spacecraft centerbody

% 2nd & 3rd elements = left arm (upper then lower arm)

% 4th & 5th elements = right arm (upper then lower arm)
% 6th element = pay load inertia

% [10; IL1; IL2; IR'l ; IR2; IP]

% Ths = 6 element vector containing the angles which describe

% the configuration of the system.

% [ThO; ThL 1 ; ThL2; ThR 1 ; ThR2; ThP

|

% Thdots = 6 element vector containing the angle rates

% AngConst = 2 element vector of arm mounting locations

% [ThLO; ThRO]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lengths (m)

LO = Ls(l);

LI =Ls(2)
L2 = Ls(3)

LP = Ls(4)

R2 = Ls(5)

Rl =Ls(6)
RO = Ls(7)

% Member masses (kg)

MO =Ms(l);
ML1 =Ms(2);
ML2 = Ms(3);

MR1 =Ms(4);
MR2 = Ms(5);

MP =Ms(6);

% Center of mass distances (m)

LcO =CMs(l);
LcLl =CMs(2);
LcL2 = CMs(3);
LcRl =CMs(4);
LcR2 = CMs(5);

LcP = CMs(6), %measured from left end

% MOI about center of mass
10 =Is(l);

1L1 =Is(2);

IL2 = Is(3);

IR1 =Is(4);

IR2 = Is(5);

IP = Is(6);

% Angles
ThO =Ths(l);
ThLl=Ths(2);
ThL2 = Ths(3);

143

ThR 1 = Ths(4);

ThR2 = Ths(5);

ThP =Ths(6);

% Angle Rates

ThOd =Thdots(l);

ThLld = Thdots(2);

ThL2d - Thdots(3);

ThRld = Thdots(4);

ThR2d = Thdots(5);

ThPd = Thdots(6);

% Arm mount locations

ThLO = AngConst(l);

ThRO = AngConst(2);

%%%%%%%%%%%
%% MassMatnx %%
%%%%%%%%%%%
M = zeros(8,8);

M(8,8) = MP;
M(7,7) = MP;
M(6,6) = IP;

M(5,5) = IR2 + MR2*LeR2A
2;

M(5,4) = M(5,5) + MR2*Rl*LcR2*cos(ThR2);
M(4,5) = M(5,4);

M(5, 1) = M(4,5) + MR2*R0*LcR2*cos(ThR 1 +ThR2);

M(1,5) = M(5,1);

M(4.4) = M(4,5)+IR 1 +MR2*R 1 *LcR2*cos(ThR2)+MR 1 *LcR 1
A2+MR2*R 1

A
2,

M(4,l)=M(4,4)+R0*(MRl*LcRl+MR2*Rl)*cos(ThRl)+MR2*R()*I.cR2*...
cos(ThRl+ThR2);

M(1,4) = M(4,1);

M(3,3) = IL2 + ML2*LcL2A
2;

M(3,2) = M(3,3) + ML2*L i *LcL2*cos(ThL2);

M(2,3) = M(3,2);

M(3,l) = M(3,2) + ML2*L0*LcL2*cos(TliL 1+Thl,2);

M(1,3) = M(3,1);

M(2,2) = M(3,2)+ML2*L 1 *LcL2*cos(ThL2)+IL 1 +ML 1 *LcL 1
A2+ML2*L 1

A
2;

M(2,l)=M(2,2)+L0*(ML 1 *LcL 1 +ML2*L 1)*eos(ThL 1)+ML2*L0*LcL2*...
cos(ThLl+ThL2);

M(1,2) = M(2,1);

Parti =I0+M(2,2)+M(4,4)+M0*Lc0A2+(MLl+ML2)*I.()A2+(MRl+MR2)*R0A
2)

Part2 = 2*LO*(MLl*LcLl+ML2*Ll)*cos(ThLl)+2*ML2*LO*LcL2*...
cos(ThLl+ThL2);

Part3 = 2*R0*(MRl*LcRl+MR2*Rl)*cos(ThRl)+2*MR2*R0*LcR2*...
cos(ThRl+ThR2);

M(l,l) = Partl + Part2 + Part3;

%%%%%%
%% G %%
%%%%%%
G = zeros(8,l);

Pt 1 = -L0*(ThL 1 dA2+2*Th0d*ThL 1 d)*(ML 1 *I,cI , 1 +ML2*L 1)*sin(ThL 1);

Pt2 = -ML2*Ll*LcL2*ThL2d*(2*Th0d+2*ThI.1d+ThL2d)*sin(ThL2);
Pt3=-ML2*L0*LcL2*(2*Th0d*(ThLld+ThL2d)+(ThLld+ThL2d)A

2)*...

sin(ThLl+ThL2);
Pt4 = -R0*(ThR 1 dA2+2*Th0d*ThR 1 d)*(MR 1 *LcR 1 +MR2*R I)*sin(ThR 1);

Pt5 = -MR2*Rl*LcR2*ThR2d*(2*Th0d+2*ThRld+ThR2d)*sin(ThR2);
Pt6=-MR2*RO*LcR2*(2*ThOd*(ThRld+ThR2d)+(ThRld+ThR2d)A

2)*...

sin(ThRl+ThR2);
G(l) = Ptl + Pt2 + Pt3 + Pt4 + Pt5 + Pt6;

144

I'll = L0*Th0dA2*(MLl*LcLl+ML2*Ll)*sin(ThLl);
Pt2 = -ML2*Ll*LcL2*ThL2d*(2*ThOd+2*ThLld+ThL2d)*sin(ThL2);
Pt3 = ML2*L0*LcL2*Th0dA2*sin(ThLl+ThL2);
G(2) = Ptl +Pt2 + Pt3;

G(3) = ML2*LcL2*(Ll*(Th0d+ThLld)A2*sin(ThL2)+L0*Th0dA2*...
sin(ThLl+ThL2));

Ptl =R0*Th0dA2*(MRl*LcR1+MR2*Rl)*sin(ThR1);
Pl2 = -MR2*Rl*LcR2*ThR2d*(2*Th0d+2*ThRld+ThR2d)*sin(ThR2);
Pt3 = MR2*R0*LcR2*Th0dA2*sin(ThRl+ThR2);
G(4) = Ptl + Pt2 + Pt3;

G(5) = MR2*LcR2*(Rl*(ThOd+ThRld)A2*sin(ThR2)+RO*ThOdA2*...
sin(ThRl+ThR2));

%%%%%%%%%%%%%%
%% Constraints Matrix %%
%%%%%%%%%%%%%%
% The constraint matrix comes from putting the constraint equations

% into the Pfaffian form: A*qdot + AO = 0. The fust two constraint

% equations are found by finding the x and y components of the

% Pay load's center of mass by starting at the origin and moving
% up the left ami The second two constraint equations find the x

% and y components of the Payload's center of mass bv starting at the

% origin and moving to the base of the right arm and then

% up the right arm. Differentiating these equations results

% in the Pfaffian form with AO = 0.

A = zeros(4,8);

A(l,7)--1;
A(2,8)--l;
A(3,7) = -l;

A(4,8) = -l;

A(l,6) = -LcP*sin(ThP);

A(2,6) = LcP*cos(ThP);
A(3,6) = (LP-LcP)*sin(ThP),

A(4,6) = -(LP-LcP)*cos(ThP);

A(4,5) = R2*cos(Th()+ThRO+ThRl+'fhR2);
A(4,4) = A(4,5) + R 1 *cos(ThO+ThR()+ThR 1);

A(4,l) = A(4,4) + R0*cos(Th0+ThR0);
A(3,5) - -R2*sin(Th0+ThR0+ThRl+ThR2);
A(3,4) = A(3,5) - R I *sin(ThO+ThRO+ThR 1);

A(3,l) = A(3,4) - R0*sin(Th0+ThR0);
A(2,3) = L2*cos(Th0+ThL0+ThLl+ThL2);
A(2,2) = A(2,3j + Ll*cos(ThO+ThLO+ThLl);
A(2,l) = A(2,2) + L0*cos(Th0+ThL0)
A(1 ,3) = -L2*sin(ThO+ThLO+Thl . 1 +Thl , 2).

A(1 ,2) = A(l ,3) - L 1 *sinf ThO+Thl ,0+ThL 1);

A(1,1) = A(1 ,2) - L0*sin(Th0+ThL0);

Adot = zeros(4,8);

Adot(l,6) = -ThPd*LcP*cos(ThP);
Adotf2,6) = -ThPd*LcP*sin(ThP);
Adot(3,6) = ThPd*(LP-LcP)*cos(ThP);
Adot(4,6) = ThPd*(LP-LcP)*sinCThP);
Adot(4,5) = -(ThOd+ThR ld+ThR2d)*R2*sin(Th()+ThRO+ThR 1 +ThR2);
Adot(4,4) = Adot(4,5) - (ThOd+ThRld)*Rl*sin(ThO+ThRO+ThRl);
Adot(4,l j

= Adotf4,4) - ThOd*RO*sin(ThO+ThRO);
Adot(3,5) = -(Th0d+ThRld+ThR2d)*R2*cos(Th0+ThR0+ThRl+ThR2);
Adot(3,4) = Adot(3,5) - (ThOd+ThR ld)*R I *cos(ThO+ThRO+ThR 1);

Adot(3,l) = Adolf3,4) - Th0d*R0*cos(Th0+ThR0);
Adot(2,3) = -(ThOd+ThLld+ThL2d

>
)*L2*sin('Ih(J+ThI.O+ThLl+ThL2);

Adotf2,2) = Adot(2,3) - (ThOd+ThLld)*Ll*sin(ThO+ThLO+ThLl);
Adot(2,l) = Adotf2,2) - Th0d*L0*sinfTh0+ThL0),

145

Adot(l,3) = -(ThOd+ThLld+ThL2d)*L2*cos(ThO+ThLO+ThLl+ThL2);
Adot(I,2) = Adot(l,3) - (ThOd+ThLld)*Ll*cos(Th()+TiiL()+ThLl);

Adot(l,l) = Adot(l,2) - ThOd*LO*cos(ThO+ThLO);

%%%%%%
%% B %%
%%%%%%
B = zeros(8,6);

B(l,3) = -1;

B(l,6)--1;
B(2,l)= 1;

B(2,3) = -l;

B(3,2)= 1;

B(3,3) = -l;

B(4,4)= 1;

B(4,6) = -l;

B(5,5) = 1;

B(5,6) = -l;

B(6,3)= 1;

B(6.6)= 1;

J. MatxFix

% Filename is 'MatxFix.
m'

% This routine calculates the matrices for the dual arm
% spacecraft EOM when it is grasping a payload. Each arm
% has two links. This version assumes that the centerbody

% is fixed. This impacts A and Adot.

function [M,G,A,Adot,B] = Matx(Ls,Ms,CMs,Is,ThsJhdots.AngConst)

% OUTPUTS:
% M = 8x8 mass matrix

% G = 8x1 vector with coriohs and centripetal terms
% A = 5x8 constraints matrix

% Adot = 5x8 derivative of constraints matrix

% B = Control influence matrix

%
% INPUTS:
% Ls = 7x 1 vector of lengths (m)
% 1 st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder to wrist)

% 4th element = payload length

% 5th & 6th elements wrt right arm (from wrist to shoulder)

% 7th element = distance from right arm mount to origin

% [L0;L1;L2;LP;R2;R1;R0]
% Ms = 6x1 column vector containing the masses (kg)

% 1 st element = mass of spacecraft centerbody

% 2nd & 3rd elements = left arm (upper then lower arm)
% 4th & 5th elements = right arm (upper then lower arm)

% 6th element = payload mass
% [MO; ML 1 ; ML2; MR 1 ; MR2; MP]
% CMs = 6x 1 column vector containing center of mass locations (m)
% [LcO; LcL 1 ; LcL2; LcR 1 ; LcR2, LcP]
% Is = 6x1 column vector containing the moments of inertias

% about the respective body's center of mass (kg m A
2)

% 1 st element = inertia of spacecraft centerbody

% 2nd & 3rd elements = left arm (upper then lower arm)
% 4th & 5th elements = right arm (upper then lower arm)

146

% 6th element = pay load inertia

% [10; IL1; II.2; IR1, IR2, IP]

% Ths = 6 element vector containing the angles which describe

% the configuration of the system

% [ThO; ThL 1 ; ThL2; ThR 1 ; ThR2. ThP]
% Thdots = 6 element vector containing the angle rates

% AngConst = 2 element vector of ami mounting locations

% [ThLO; ThROJ

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCAI.ARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lengths (m)
L0 = Ls(l);

L 1
= Ls(2)

L2 = Ls(3)

LP = Ls(4)

R2 = Ls(5)

R 1 = Ls(6)

R0 = Ls(7)

% Member masses (kg)

MO =Ms(l);
ML1 =Ms(2);
ML2 = Ms(3);

MR1 =Ms(4);
MR2 = Ms(5),

MP =Ms(6);

% Center of mass distances (m)
LcO =CMs(l);
LcLl =CMs(2);
LcL2 = CMs(3);
LcRl =CMs(4);
LcR2 = CMs(5);

LcP = CMs(6); %measured from left end

% MOI about center of mass
10 =Is(l);

1L1 =Is(2);

IL2 = Is(3);

IR1 =Is(4);

IR2 = Is(5);

IP =Is(6);

% Angles
ThO =Ths(l);
ThL 1 = Ths(2);

ThL2 = Ths(3);

ThRl =Ths(4);

ThR2 = Ths(5);

ThP =Ths(6);

% Angle Rates

ThOd =Thdots(l);

ThLld = Thdots(2);

ThL2d = Thdots(3);

ThRld = Thdots(4);

ThR2d = Thdots(5);

ThPd =Thdots(6),

147

% Arm mount locations

ThLO = AngConst(l);

ThRO = AngConst(2);

%%%%%%%%%%%
%% Mass Matrix %%
%%%%%%%%%%%
M = zeros(8,8);

M(8,8) = MP;
Mt7,7) = MP;
M(6,6) = IP;

M(5,5) = IR2 + MR2*LcR2A2;
M(5,4) = M(5,5) + MR2*R1 *LcR2*cos(ThR2);
M(4,5) = M(5,4);

M(5,
1
) = M(4,5) + MR2*R0*LcR2*cos(ThR 1 +ThR2);

M(1,5) = M(5,1);

M(4,4) = M(4,5)+IR1 +MR2*R 1 *LcR2*cos(ThR2)+MR 1 *LcR 1

A2+MR2*R 1
A
2;

M(4,l)=M(4,4)+R0*(MR 1 *LcR I +MR2*R 1)*cos(ThR 1)+MR2*R0*LcR2*...
cos(ThRl+ThR2);

M(1,4) = M(4,1);

M(3,3) = IL2 + ML2*LcL2 A
2;

M(3,2) = M(3,3) + ML2*Ll*LcL2*cos(ThL2).
M(2,3) = M(3,2);

M(3,l) = M(3,2) + ML2*L0*LcL2*cos(ThI. l+T!iL2);

M(1,3) = M(3,1);

M(2,2) = M(3,2)+ML2*L 1 *LcL2*cos(ThL2)+IL 1 +ML 1 *LcL 1
A2+ML2*L 1

A
2;

M(2, 1)=M(2,2)+L0*(ML 1 *LcL 1 +ML2*L 1)*cos(ThL 1)+ML2*L0*LcL2*.. .

cos(ThLl+ThL2);
M(1,2) = M(2,1);

Parti = I0+M(2,2)+M(4,4)+M0*Lc0A2+(ML 1+ML2)*L0A2+(MR1+MR2)*R0A2;
Part2 = 2*L0*(MLl*LcLl+ML2*Ll)*cos(ThIJ)+2*ML2*L0*LcL2*...

cos(ThLl+ThL2);
Part3 = 2*R0*(MR 1 *LcR 1 +MR2*R 1)*cos(ThR 1)+2*MR2*R0*LcR2*.. .

cos(ThRl+ThR2).
M(l,l) = Parti + Part2 + Part3;

%%%%%%
%% G %%
%%%%%%
G = zeros(8,l);

Pt 1 = -L0*(ThL 1 dA2+2*ThOd*ThL 1 d)*(ML 1 *LcL 1 +MI ,2*L 1)*sinfThL 1);

Pl2 = -ML2*Ll*LcL2*ThL2d*(2*ThOd+2*ThLld+ThI.2d)*sin(ThL2);
Pt3=-ML2*LO*LcL2*(2*Th()d*(ThLld+TliL,2d)+(ThLld+ThL2d)A2)*...

sin(ThLl+ThL2);
Pt4 = -R0*(ThR 1 dA2+2*Th0d*ThR 1 d)*(MR 1 *I ,cR 1 +MR2*R 1)*sin(ThR 1);

Pl5 = -MR2*Rl*LcR2*ThR2d*(2*Th0d+2*ThRld+ThR2d)*sin(ThR2);
Pt6=-MR2*R0*LcR2*(2*Th0d*(ThRld+ThR2d)+(ThRld+ThR2d)A

2)*...

sin(ThRl+ThR2);
G(l) = Ptl + Pt2 + Pt3 + Pt4 + Pt5 + Pt6;

Pi 1 = L0*Th0dA2*(ML 1 *LcL 1 +ML2*L 1)*sin(ThI . 1).

Pt2 = -ML2*Ll*LcL2*ThI.2d*(2*Th0d+2*ThLld+ThL2d)*sin(ThL2);
Pt3 = ML2*L0*LcL2*Th0dA2*sin(ThLl+ThL2),
G(2) = Ptl +Pt2 + Pt3;

G(3) = ML2*LcL2*(Ll*(ThOd+ThLld)A2*sin(ThL2)+L()*Th()d A2*...
sin(ThLl+ThL2));

Pt 1 = R0*Th0dA2*(MR 1 *LcRl +MR2*R 1)*sin(ThR I);

Pt2 = -MR2*R 1 *LcR2*ThR2d*(2*Th0d+2*ThR 1 d+ThR2d)*sin(ThR2);
Pt3 = MR2*RO*LcR2*ThOdA2*sin(ThRl+ThR2);
G(4) = Ptl +P12 + P13;

G(5) = MR2*LcR2*(Rl *(Th0d+ThRld)A2*sin(ThR2)+R()*Th0dA2*...
sin(ThRl+ThR2));

148

%%%%%%%%%%%%%%
%% Constraints Matrix %%
%%%%%%%%%%%%%%
% The constraint matrix comes from putting the constraint equations

% into the Pfaffian form: A*qdot + AC) = 0. The fust two constraint

% equations are found by finding the x and y components of the

% Payload's center of mass by starting at the origin and moving
% up the left arm The second two constraint equations find the x

% and y components of the Payload's center of mass by starting at the

% origin and moving to the base of the right arm and then

% up the right arm. Differentiating these equations results

% in the Pfaffian form with A0 = 0.

A = zeros(5,8);

A(5,l)=l;
A(l,7) = -1;

A(2,8) = -l;

A(3,7) = -l;

A(4,8) = -l;

A(l,6) = -LcP*sin(ThP);

A(2,6)= LcP*cos(ThP);

A(3,6) = (LP-LcP)*sin(ThP),

A(4,6) = -(LP-LcP)*cos(ThP);

A(4,5) - R2*cos(fhO+ThRO+ThRl+ThR2);
A(4,4) = A(4,5) + R 1 *cos(Th()+ThR0+ThR 1);

A(4,l) = A(4,4) + R0*cos(Th0+ThR0);
A(3,5) = -R2*sin(Th0+ThR0+ThRl+ThR2);
A(3,4) = A(3,5) - Rl *sin(ThO+ThRO+ThR 1);

A(3,l) = A(3,4) - R0*sin(Th0+ThR0);
A(2,3) = L2*cos(ThO+ThLO+ThLl+ThL2).
A(2,2) = A(2,3) + L 1 *cos(Th()+ThL0+ThL 1);

A(2,l) = A(2,2) + L0*cos(Th0+ThL0);
A(l,3) = -L2*sin(ThO+ThLO+ThLl+ThL2);
A(l,2) = A(l,3)-Ll*sin(ThCK-ThL0+ThLl);
A(1 , 1) = A(1 ,2) - L0*sin(Th0+ThL0);

Adot = zeros(5,8);

Adol(l,6) = -ThPd*LcP*cos(ThP);
Adot(2,6) = -ThPd*LcP*sin(ThP);
Adot(3,6) = ThPd*(LP-LcP)*cos(ThP);
Adot(4,6) = ThPd*(LP-LcP)*sin(ThP);
Adot(4,5) = -(ThOd+ThRld+ThR2d)*R2*sin(ThO+ThRO+ThRHThR2).
Adot(4.4) = Adot(4,5) - (Th0d+ThRld)*Rl*sin(ThO+ThRO+ThRl).
Adot(4,l) = Adot(4,4) - Th0d*R0*sin(Th0+ThR0):
Adot(3,5) = -(ThOd+ThRld+ThR2d)*R2*cos(Th()+ThRO+ThRl+ThR2);
Adot(3,4) = Adot(3,5) - (ThOd+ThRld)*Rl*cos(Th()+ThR()+ThRl);
Adot(3,l) = Adot(3,4) - Th0d*R0*cos(Th0+ThR0);
Adot(2,3) = -(ThOd+ThLld+ThL2d)*L2*sin(ThO+ThLO+ThL l+ThL2);
Adot(2,2) - Adot(2,3) - (ThOd+ThLld)*Ll*sin(ThO+ThLO+ThLl);
Adot(2,l) = Adot(2,2) - ThOd*LO*sin(ThO+ThL(>);

Adot(1 ,3) - -(ThOd+ThL 1 d+ThL2d)*L2*cos(Th()+ThI ,0+ThL 1 +ThL2);
Adot(1 ,2) = Adot(1,3)- (ThOd+ThL 1 d)*L 1 *cos(ThO+ThLO+ThL 1);

Adot(1,1) = Adot(1 ,2) - Th0d*L0*cos(Th0+ThL0);

%%%%%%
%% B %%
%%%%%%
B = zeros(8,6);

B(l,3) = -1;

B(l,6) = -1;

B(2,l)= 1;

149

B(2,3) = -

B(3,2) =

B(3,3) = -

B(4.4) =

B(4,6) = -

B(5,5) =

B(5,6) = -

B(6,3) =

B(6,6) =

K. Ref2

% Filename is 'Ref2.m'

% Reference Maneuver using cost function

% This routine assumes that the spacecraft centerbody is held fixed.

function [Torques,QRef,QdotRef,Aqdot,J,Cl,C2,C3] = ...

Ref2(Ls,Ms,CMs,Is,BoundC,T,Wu,Wc,Coef,ConstMat)

% OUTPUTS:
% Torques = 7x1 column vector of torques that should he applied at

% time T if the motion is to follow the reference traiectory

% exactly. The vector is arranged as [UO; ULS; ULE; ULW; URS, URE, URW]
% which are the centerbody torque followed by the torques at the

% shoulder, elbow, and wrist of the left arm and then the right arm
% respectively.

% QRef = 8x1 column vector of reference generalized coordinates

% QdotRef = 8xi column vector of reference generalized velocities

% Aqdot = 4x1 or 5x1 column vector (depends on status of AMatFlag) which
% check to see if the constraint equation A*Qdot = is satisfied

% J = scalar value of the reaction wheel torque absolute value This

% number will be integrated to find the value for the cost function.

% Lvapunov Controller matrices (reference trajectory values)

% CI =8x7 matrix

% C2 = 8x4 or 8x5 (depends on status of AMatFlag) matrix

% C3 = 8x1 matrix

%
% INPUTS:
% Ls = 7x1 vector of lengths (m)
% 1st element = distance from origin to left arm mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)

% 4th element = payload length

% 5th & 6th elements wrt right ami (from wrist toward shoulder)

% 7th element = distance from right arm mount to origin

% [LO; L 1 ; L2; LP; R2; R 1 ; RO]
% Ms = 6x1 column vector containing the masses (kg)

% 1 st element = mass of spacecraft centerbody

% 2nd & 3rd elements = mass of left arm (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper aim then lower arm)
% 6th element = payload mass
% [MO; ML 1 ; ML2; MR 1 ; MR2; MP]
% CMs = 6x1 column vector containing center of mass locations

% [LcO; LcL 1 ; LcL2; LcR 1 ; LcR2; LcP]
% Is = 6x1 column vector containing the moments of inertias about the

% respective body's center of mass (kg mA
2)

% 1 st element = inertia of spacecraft centerbody

% 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)

% 4th & 5th elements = inertia of right arm (upper aim then lower arm)
% 6th element = payload inertia

150

% [10; IL1; IL2; IR1; IR2; IP]

% BoundC = boundry conditions for the problem The first column
% contains die initial x and y component of points & P
% respectively, the x component of the right aim base, the

% problem start time, and the simulation slop time. The second

% column contains the x and y component of points Q & P
% respectively, the x component of the right arm base, the

% stop time for the ideal reference maneuver, and a Hag to

% activate or deactivate the controller. The origin for the

% x and y components is the base of the left arm
%T =time
% Wu = 6x6 or 7x7 control torque cost weighting matrix

% We = 8x8 constraint cost weighting matrix

% Coef = (n-2)xl column vector of reference polynomial coefficients

% beginning with order n coefficient

% ConstMat = 3x(n-2) matrix of coefficients for reference displacement

% (row 1), velocity (row 2), and acceleration (row 3)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lengths (m)

L0 = Ls(l);

1,1 =Ls(2);

L2 = Ls(3);

LP = Ls(4);

R2 = Ls(5);

Rl =Ls(6);
R0 = Ls(7);

% Member masses (kg)

MO =Ms(l);
ML1 =Ms(2),
ML2 = Ms(3);

MR1 =Ms(4);
MR2 - Ms(5);

MP =Ms(6),

% Center of mass distances (m)
LcO =CMs(l),
LcLl =CMs(2);
LcL2 = CMs(3);
LcRl =CMs(4);
LcR2 = CMs(5);
LcP = CMs(6), %measured from left end

% MOI about center of mass
10 =Is(l);

IL 1 = Is(2);

IL2 = Is(3);

IR1 =Is(4);

IR2 = ls(5);

IP =Is(6);

% Initial and final locations of third link

% Point Q is at Node 3 (joint between Links 2 & 3)

% Point P is at Node 4 (joint between Links 3 & 4)

QxO = BoundC(1,1); QyO = BoundC(1,2),

PxO = BoundC(2,l); PyO = BoundC(2,2);

Qxf = BoundC(3,
1); Qyf = BoundC(3,2),

Pxf - BoundC(4,
1); Pyf = BoundC(4,2);

151

% Arms mount locations wrt spacecraft centerbody coordinate frame (rad)

ThLO - BoundC(5,l), ThRO = BoundC(5,2).

% Reference Maneuver Start and Stop Times
TO =BoundC(6,l); Tf = BoundC(6,2);

% Constraints Matrix Flag

AMatFlag = BoundC(8,l);

% Centerbody Reaction Wheel Flag

WheelFlag = BoundC(8,2);

% Centerbody Initial and Final Conditions

ThOO = BoundC(9,l);
Th0f=BoundC(9,2);

% Number of equations in the cost function constraint equations

EOMFlag = BoundC(10,l);

% Psuedo-Inverse Flag

PInvFlag = BoundC(10,2);

%%%%%%%%%%%%%%%%%%%%%%
%% PRELIMINARY CALCULATIONS %%
%%%%%%%%%%%%%%%%%%%%%%
R2D = 180/pi, % Conversion from radians to degrees

% Total rotation of Pay load

ThPO = atan2(PyO-Qy'0,PxO-QxO); % Initial angle of Payload (rad)

ThPf = atan2(Pvf-Qyf,Pxf-Qxf); % Final angle of Payload (rad)

DelTliP = ThPf - ThPO; % Total delta angle of Payload (rad)

% Initial and final locations of Payload center of mass
XPO = QxO + (PxO - QxO) * (LcP/LP);

YPO = QyO + (PyO - QyO) * (LcP/LP);

XPf = Qxf + (Pxf - QxO * (LcP/LP),

YPf = Qyf + (Pyf - QyO * (LcP/LP);

Tau = (T-TO) / (Tf-TO); % Normalize time

% Function Weighting Factors for how the pa\ load will move
% These factors will cause the velocity and acceleration of

% the payload coordinates to be zero at t = and t = tf.

% They also permit the displacements for the payload coordinates

% to match their initial and fmal values. These weighting

% factors will also apply to the centerbody rotation.

k = length(CoeO;

for n=l:k
CTau(k+l-n) = Coef(k+l-n)*TauA(n+2);
CTaud(k+l-n) = Coef(k+l-n)*TauA(n+l),
CTaudd(k+l-n) = Coef(k+l-n)*TauA(n);

end
% Weighting factors

W =ConstMat(l,:)*CTau';

Wd =ConstMat(2,:)*CTaud';

Wdd = ConstMat(3,:)*CTaudd',

% Centerbody angle, angular velocity, angular acceleration

DelTh() = ThOf-Th00;

152

ThO = ThOO + W * DelThO; % Angle (rad);

ThOd = Wd * DelThO / (Tf - TO); % Velocity (rad/sec);

ThOdd = Wdd * DelThO / (Tf - TO)A2; % Acceleration (rad/secA2);
%Th() =0;
%ThOd = 0;

%ThOdd = 0;

% Save for plotting

QRef(1) = ThO;

QdotRef(l) =ThOd;
QddotRef(l) = ThOdd,

% Pay load angle, angular velocity, angular acceleration

ThP = ThPO + W * DelThP; % Angle (rad)

ThPd = Wd * DelThP / (Tf - TO); % Velocity (rad/sec)

ThPdd = Wdd * DelThP / (Tf - T0)A2; % Acceleration (rad/secA2)
% Save for plotting

QRef(6) = ThP;

QdotRef(6) = ThPd;
QddotRef(6) = ThPdd,

% Pavload center of mass position, velocity, and acceleration

Xc = XP0 + W * (XPf - XPO);
Xcd = Wd * (XPf - XPO) / (Tf - TO);

Xcdd = Wdd * (XPf - XPO) / (Tf - T0)A2;
Yc = YPO + W * (YPf - YPO);

Ycd = Wd * (YPf - YPO) / (Tf - TO);

Ycdd = Wdd * (YPf - YPO) / (Tf - T0)A2,
% Save for plotting

QRcf(7) = Xc;

QdotRef(7) =Xcd;
QddotRef(7) = Xcdd;
QRef(8) = Yc;

QdotRef(8) = Ycd.

QddotRef(8) = Ycdd;

% Payload endpoint coordinates: Qx, Qy, Px, Py
Qx = Xc - LcP * cos(ThP);

Qy = Yc - LcP * sin(ThP);

Px = Xc + (LP - LcP) * cos(ThP);

Py = Yc + (LP - LcP) * sin(ThP);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Solve for Arm Angles Required by desired path %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%
%% LEFT ARM %%
%%%%%%%%%%%
% Elbow is left of line from arm base to Q (RQ

)

LSx = L0 * cos(ThO + ThLO);
LSy = L0 * sin(ThO + ThLO);
RQ = sqrt((Qx-LSx)A2+(Qy-LSy)A2); % Length from arm base to Q
Betal = atan2(Qy-LSy,Qx-LSx); % Angle from arm base to RQ
% Law of cosines: cos(A) = (b

A2 + cA2 - a
A
2)/(2bc)

% Apply to find angle between RQ and Link LI

Num = Ll A2 + RQA2-L2A
2;

Den = 2* LI * RQ;
Beta2 = acos(Num/Den); % Angle from RQ to Link 1

ThL 1 = (Beta 1 + Beta2) - (ThO + ThLO); % Theta 1 .

1

% Use law of cosines to find the interior angle at the elbow

Num = Ll A2 + L2A2-RQA
2;

Den = 2* LI * L2;

153

Beta.l = acos(Num/Den);
ThL2 = -(pi-Beta3);

%Save for plotting

QRef(2) = ThLl;
QRef(3) - ThL2;

%%%%%%%%%%%%
%% RIGHT ARM %%
%%%%%%%%%%%%
% Elbow is right of line from arm base (shoulder) to P (wrist) (RP)
RSx = RO * cos(ThO + ThRO);
RSv = RO * sin(ThO + ThRO);
RP = sqrt((Px-RSx)A2+(Py-RSy)A2); % Length from arm base to P
Betal = atan2(Py-RSy,Px-RSx); % Angle from arm base to RP
% Law of cosines: cos(A) = (b

A
2 + c

A
2 - a

A
2)/(2bc)

% Apply to find angle between RP and Link Rl
Num = Rl A2 + RPA2-R2A

2;

Den = 2*Rl * RP;
Beta2 = acos(Num/Den); % Angle from Link Rl to RP
Beta4 = Betal - (ThO + ThRO);
ThRl = -(Beta2 - Beta4);

Num = Rl A2 + R2A2-RPA
2;

Den = 2*Rl * R2;
Beta3 = acos(Num/Den);
ThR2 = pi - Beta3;

% Save for plotting

QRef(4) = ThRl;
QRef(5) = ThR2;

%%%%%/o%%%%%%/o%%%%%%%%%%%%%%%%%%%%%%%%
%% Solve for Arm Angle Rates & Accelerations required by desired path %%
%%%%%%%%%%%%%%%/o%%% /o/o%%%%%%%%% /o% /o%%%%
%%%%%%%%%%%
%% LEFT ARM %%
%%%%%%%%%%%
% [Qxd; Qyd] = [Hl]*ThOd + [H2]*Thd
% Qxd & Qyd are x & y components of point Q inertial velocity.

% Thd = [Thl, 1 dot; ThL2dot]
% H matrices are made from expressing the x & v components of Q in

% terms of LO, ThO, ThLO, LI, ThLl, L2, and Tlil,2

% Qx=LO*cos(ThO+ThLO)+L 1 *cos(ThO+ThLO+ThL 1)+L2*cos(ThO+...

% ThL0+ThLl+ThL2)
% Qv-LO*sin(ThO+ThLO)+L 1 *sm(ThO+ThLO+TliL 1)+L2*sin(ThO+...

% ThL0+ThLl+ThL2)
% The differentiation of these equations lead to

% [Qxd; Qyd] = [Hl]*ThOd + [H2]*Thd which can be solved for Thd
Qxd = Xcd + LcP * ThPd * sin(ThP);

Qyd = Ycd - LcP * ThPd * cos(ThP);

H'2(l,2) = -L2*sin(Th0+ThL0+ThL l+ThL2);
H2(1 , 1) = H2(1 ,2) - L 1 *sin(Th0+ThL0+ThL 1);

112(2,2) = L2*cos(Th0+ThL0+ThL 1 +ThL2);
1 12(2, 1) = H2(2,2) + L 1 *cos(ThO+ThLO+ThL 1);

H 1(1,1)= H2(l,l)-L0*sin(Th0+ThL0);
111(2,])= H2(2,

1
) + L0*cos(Th0+ThL0);

Thd = inv(H2) * ([Qxd; Qyd] - Hl*ThOd);
% Angle rates

ThLld = Thd(l);

ThL2d = Thd(2);

% Save for plotting

QdotRef(2) = ThLld;
QdotRef(3) = ThL2d;

154

% Differentiation of [Qxd, Qyd] - [Hl]*Th()d + |II2|*Thd leads lo

% [Qxdd. Qvddl = [Hldot]*Th()d+[IU]*Th()dd + |I I2dot|*Thd+|II2]*fhdd

Qxdd = Xedd + LcP*(ThPdd*sin(ThP) + ThPdA2*cos(ThP));
Qydd = Ycdd - LcP*(ThPdd*cos(ThP) - ThPdA2*sin(ThP));
I I2dot(1 ,2) = -L2*(Th0d+ThL 1 d+ThL2d)*eos('fhO+ThLO+ThL 1 +ThL2);
H2dot(l,l)= H2dot(l,2) - Ll*(ThOd+ThLld)*cos(ThO+ThLO+ThLl).
H2dot(2,2) = -L2*(Th0d+ThLld+ThL2d)*sin(Th0+ThI.0+ThLl+ThL2);
I I2dot(2,

1) = H2dot(2,2) - L 1 *(ThOd+ThL 1 d)*sin(Th(>+ThL0+ThL 1),

1 I 1 dot(1,1)= H2dot(l , 1) - LO*ThOd*cos(Th()+Thl .<))•.

1 1 1 dot(2, 1) = H2dot(2,
1) - LO*ThOd*sin(Th()+Thl -0);

Thdd = inv(H2)*([Qxdd; Qydd]-H2dot*Thd-[Hldot]*Th0d-[Hl]*Th0dd);
% Angle accelerations

ThLldd = Thdd(l);

ThL2dd = Thdd(2);

QddotRef(2) = ThLldd;
QddotRef(3) - ThL2dd;

%%%%%%%%%%%%
%% RIGHT ARM %%
%%%%%%%%%%%%
% The development is similar to the left ami
% Px=R()*cos(ThO+ThRO)+R 1 *cos(ThO+ThR()+ThR 1)+R2*cos(Th0+...

% ThR0+ThRl+ThR2)
% Py=R0*sin(Th0+ThR0)+Rl *sin(ThO+ThRO+ThRl)+R2*sin(Th0+...

% ThR0+ThRl+ThR2)
% [Pxd; Pyd] = [Hl]*Th()d + [H2]*Thd
Pxd = Xcd - (LP - LcP) * ThPd * sin(ThP);

Pyd = Yed + (LP - LcP) * ThPd * cos(ThP),

H2(l,2) = -R2*sin(Th0+ThR0+ThRl+ThR2).
I12(1 , 1) = H2(1 ,2) - R 1 *sin(ThO+ThRO+ThR 1);

H2(2,2) = R2*cos(ThO+ThRO+ThRl+ThR2);
1 12(2, 1) = H2(2,2) + R 1 *cos(ThO+ThRO+ThR 1);

H 1 (1 , 1) = H2(1,1)- R0*sin(Th0+ThR0);
H 1 (2, 1) = H2(2, 1) + R0*cos(Th0+ThR0);
Thd = inv(H2) * ([Pxd, Pyd] - HlThOd);
% Angle rates

ThRld = Thd(l);

ThR2d = Thd(2);

% Save for plotting

QdotRef(4) = ThRld;
QdotRef(5) = ThR2d,

% [Pxdd; Pydd] = [Hldot]*Th0d+[Hl]*Th0dd + [H2dot]*Thd+[H2]*Thdd
Pxdd = Xcdd - (LP - LcP)*(ThPdd*sm(ThP) + ThPdA2*cos(ThP));

Pvdd = Ycdd + (LP - LcP)*(ThPdd*cos(ThP) - ThPd A2*sin(ThP));

H2dot(l ,2) = -R2*(ThOd+ThRld+ThR2d)*cos(Thl)+ThRO+ThRl+ThR2);
H2dot(1,1)= H2dot(l ,2) - R 1 *(Th0d+ThR 1 d)*cos(ThO+ThRO+ThR 1);

H2dot(2,2) = -R2*(Th0d+ThRld+ThR2d)*sin(ThO+ThR0+ThRl+ThR2);
H2dot(2,l) = H2dot(2,2) - Rl*(ThOd+ThRld)*sin(ThO+ThRO+ThRl);
Hldot(l.l) = H2dot(l,l) - R0*Th0d*cos(Th0+ThR0);
Hldot(2,l) = H2dot(2,l) - R0*Th0d*sin(Th()+ThR0).
Thdd = inv(H2)*([Pxdd; Pydd]-H2dot*Thd-[Hldot]*Th0d-[Hl]*Th()dd);
% Angle accelerations

ThRldd = Thdd(l);

ThR2dd = Thdd(2);

QddotRef(4) = ThRldd;
QddotRef(5) = ThR2dd;

%%%%%%%%%%%%%%%%%%%
%% Find needed control torques, u %%

155

%%%%%%%%%%%%%%%%%%%
% EOM: M*qddot + G = B*u + A'*Lam
% Constraint Eqns: A*qdot =

% Solve EOM for qddot leads to

% qddot = inv(M)*(B*u + A'*Lam - G)
% Differentiate Constraint Eqns gives Adot*qdot + A*qddot =

% Substitute qddot derived from EOM into differentiated constraint

% eqns and solve for Lam
% Lam = -inv(A*inv(M)*A')*(A*inv(M)*(B*u-G)+Adot*qdot)
% Substitute this expression for Lam into ongianl EOM. Collect terms

% into the form MTilda*qddot + GTilda = BTilda*u
% where MTilda = M
% GTilda = G + A'*inv(A*inv(M)*A')*(Adot*qdot-A*inv(M)*G)
% BTilda =(l-A

,*inv(A*inv(M)*A ,)*A*inv(M))*B
% The first five resulting equations apply to the spacecraft centerbody

% and arms. The final three apply to the payload. The matrix form of
% the last three equations is

% MPTilda*QPddot + GPTilda = BPTilda*u

%%%%%%%%%
%% Matrices %%
%%%%%%%%%
AngConst = [ThLO, ThRO],
%AMatFlag =

1

;

if AMatFlag
|M,G,A,Adot,B] = MatxFix(Ls,Ms,CMs,Is,QRef,QdotRef.AngConst);

else

|M,G,A,Adot,B] = Matx(Ls,Ms,CMs,Is,QRef,QdotRef,AngConst);
end

if WheelFlag
B7 = [l;0;0;0;0;0;0;0];
B = [B7 B];

end

% If the cost function is subject to the constraint that the payload

% satisfy the reference motion, then three equations of motion are used.

% To include the centerbody reference motion, use four equations from
% the equations of motion

%%%%%%%%%
%% MTilda %%
%%%%%%%%%
if EOMFlag = 3 % Use only the payload equations

MPTilda - M(6:8,6:8);

else

if EOMFlag= 5 % Use the spacecraft equations

MPTilda = M(1:5, 1:5);

else % Use all eight equations

MPTilda = M,
end

end

%%%%%%%%%
%% GTilda %%
%%%%%%%%%
Odot = QdotRef

,

GTilda = G + A'*inv(A*inv(M)*A')*(Adot*Qdol - A*inv(M)*G);
if EOMFlag = 3 % Use only the pavload equations

GPTilda = GTilda(6:8,l);

else

156

if EOMFlag == 5 % Use the spaceerafl equations

GPTilda = GTilda(l:5,l);

else % Use all eight equations

GPTilda = GTilda;

end
end

%%%%%%%%%
%% BTilda %%
%%%%%%%%%
BTilda = (eye(8) - A'*inv(A*inv(M)*A

,

)*A*inv(M))*B.
if EOMFlag == 3 % Use only the pay load equations

BPTilda = BTilda(6:8,:);

else

if EOMFlag == 5 % Use the spacecraft equations

BPTilda = BTilda(1:5,:);

else % Use all eight equations

BPTilda = BTilda;

end
end

%%%%%%%%%
%% Gl &G2 %%
%%%%%%%%%
% Use previous expression for Lam and regroup terms into the following

% form A'* Lam = Kl + K2*u
Kl = A'*inv(A*inv(M)*A')*(A*inv(M)*G-Adot*Qdot);

K2 = -A'*inv(A*inv(M)*A')*A*inv(M)*B;

%%%%%%%%%
%% Torques %%
%%%%%%%%%
% Torques are calculated to minimize the following cost function:

% J = 0.5*[u'*Wu*u + Lam ,*A*Wc*A ,*Lam + Tr*Wr*Tr]
% Subject to the constraint: MP*QPddot + GPTilda - BPTilda*u =

% Combine the constraint into the cost function by multiplying the

% constraint eqn by another Lagrange multiplier. Gam, and adding that

% to the cost function. Take the gradient with respect to u results in

% (Wu+K2'*Wc*K2)*u + K2'*Wc*K 1 - BPTilda^Gam =
% Solve for u

% u = inv(Wu+K2'*Wc*K2)*(BPTilda ,*Gam - K2'*Wc*K 1

)

% Substitute this into the constraint eqn. Solve the result for Ciam

% Gam = mv(BPTilda*inv(Wu + K2'*Wc*K2)*BPTilda')*(MP*QPddot+
% GPTilda+BPTilda*inv(Wu + K2'*Wc*K2)*K2'*Wc*Kl)
% Substitute this expression into the torque equation, u.

Qddot = QddotRef

;

if EOMFlag= 3 % Use only the payload equations

QPddot = Qddot(6:8,l);

else

if EOMFlag = 5 % Use the spacecraft equations

QPddot = Qddot(1:5,1);

else % Use all eight equations

QPddot = Qddot;

end

end

%%%%%%%%%%%%%%%%
%% PSUEDO-INVERSES %%
%%%%%%%%%%%%%%%%

157

% To avoid the problems with poorly conditioned matrices, I've used the

% psuedo-inverse rather than the traditional inverse in the next two

% equations.

ifPlnvFlag
Parti = pinv(Wu + K2'*Wc*K2);
(Jam = pinv(BFrUda*Partl*BPTilda') * (MPTilda*QPddot + GPTilda +.

BPTilda*Part 1 *(K2'*Wc*K 1));

else

Part 1 = inv(Wu + K2'*Wc*K2);
Gam = inv(BPTilda*Partl *BPTiIda') * (MPTilda*QPddot + GPTilda +...

BPTilda*Part 1 *(K2'*Wc*K 1));

end

% Reference Torques

Torques = Part 1 *(BPTilda'*Gam - K2'*Wc*K 1);

% Cost Function, J

.1 = abs(Torques(l));

%Controller Info

Ptl = A'*inv(A*inv(M)*A');

CI = inv(M)*(eye(M) - Ptl*A*mv(M))*B;
C2 = -inv(M)*Ptl*Adot,

C3 = inv(M)*(Ptl*A*inv(M) - eye(M))*G;

%%%%%%%%%%%%
%% DEBUG INFO %%
%%%%%%%%%%%%
%% Are constraint equations, A*qdot=0, satisfied?

Aqdot = A*QdotRef

;

L. RefMin2

% Filename is 'RefMin2.m'
% Reference Maneuver using cost function

% This routine is used by "MainOpt.m" to find the optimal combination

% of reference trajectory polynomial coefficients.

% Version 2 uses the rate of change of angular momentum to find

% the wheel torque.

function [Joptl,Jopt2] = RefMin2(T,Ls,Ms,CMs,Is,BoundC,Wu,Wc,Coef
)
ConstMat)

% OUTPUTS:
% Jopt = absolute value of the reaction wheel torque. This is the cost

% function value for purposes of optimizing the reference

% trajectory polynomial coefficients. Jopt I will be integrated by
% odemin.m while Jopt2 is the same value but won't be integrated.

%
% INPUTS:
% T = time (sec)

% Ls = 7x1 vector of lengths (m)
% 1st element = distance from origin to left ami mount
% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)

% 4th element = pay load length

% 5lh & 6th elements wrt right arm (from wrist toward shoulder)

% 7th element = distance from right arm mount to origin

% [L0;L1;L2;LP;R2;R1;R0]
% Ms = 6x1 column vector containing the masses (kg)

% 1 st element = mass of spacecraft centerbody

158

% 2nd & 3rd elements = mass of left arm (upper arm then lower ami)

% 4th & 5th elements = mass of right ami (upper ami then lower arm)

% 6th element = pay load mass
% |M(), ML 1 ; ML2; MRU MR2; MP]
% CMs = 6x1 column vector containing center of mass locations

% [LcO; LcLl; LcL2, LcRl; LcR2; LcP]
% Is = 6x 1 column vector containing the moments of inertias about the

% respective body's center of mass (kg m A
2)

% 1 st element = inertia of spacecraft eenterbody

% 2nd & 3rd elements = inertia of left ami (upper arm then lower ami)

% 4th & 5th elements = inertia of right arm (upper ami then lower arm)

% 6th element = payload inertia

% [10; IL1; IL2; IR1; IR2; IP]

% BoundC = boundry conditions for the problem The first column
% contains the initial x and y component of points & P

% respectively, the x component of the right ami base, the

% problem start time, and the simulation slop time The second

% column contains the x and y component of points Q & P
% respectively, the x component of the right arm base, the

% stop time for the ideal reference maneuver, and a flag to

% activate or deactivate the controller. The origin for the

% x and y components is the base of the left ami.

% Wu = 6x6 control torque cost weighting matrix

% Wc = 8x8 constraint cost weighting matrix

% Coef = (n-2)xl vector of polynomial reference trajectory coefficients

% in descending order where n is the highest order coefficient

% ConstMat = 3x(n-2) matrix of coefficients for reference trajectory

% displacement (row 1), velocity (row 2) and acceleration (row 3)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Lengths (m)

L0 = Ls(l);

LI = Ls(2);

L2 = Ls(3),

LP = Ls(4),

R2 = Ls(5);

Rl =Ls(6),

R0 = Ls(7);

% Member masses (kg)

MO =Ms(l);
ML1 =Ms(2),
ML2 = Ms(3);

MR1 =Ms(4);
MR2 = Ms(5);

MP =Ms(6);

% Center of mass distances (m)
LcO =CMs(l);
LcLl =CMs(2);
LcL2 = CMs(3);
LcRl =CMs(4);
LcR2 = CMs(5),
LcP = CMs(6); %measured from left end

% MOI about center of mass
10 =ls(l);

II. 1 =Is(2);

IL2 = Is(3);

159

IR1 = Is(4);

IR2 = Is(5);

IP = Is(6);

% Initial and final locations of third link

% Point Q is at Node 3 (joint between Links 2 & 3)

% Point P is at Node 4 (joint between Links 3 & 4)

QxO = BoundC(l,l); QyO = BoundC(l,2);

PxO = BoundC(2,l); PyO = BoundC(2,2);

Qxf = BoundC(3,l); Qyf = BoundC(3,2);

Pxf = BoundC(4, 1); Pyf = BoundC(4,2);

% Arms mount locations wrt spacecraft centerbodv coordinate frame (rad)

ThLO = BoundC(5,l); ThRO = BoundC(5,2);

% Reference Maneuver Start and Stop Times

TO = BoundC(6,l); Tf = BoundC(6,2);

% Constraints Matrix Flag

AMatFlag = BoundC(8,l);

% Cenlerbody Reaction Wheel Flag

WheelFlag = BoundC(8,2);

% Cenlerbody Initial and Final Conditions

ThOO = BoundC(9,l);

Th0f=BoundC(9,2);

% Number of equations in the cost function constraint equations

HOMFlag = BoundC(10,l);

% Psuedo-Inverse Flag

PlnvFlag = BoundC(10,2),

%%%%%%%%%%%%%%%%%%%%%%
%% PRELIMINARY CALCULATIONS %%
%%%%%%%%%%%%%%%°/0%%%%%%
R2D = 180/pi; % Conversion from radians to degrees

% Total rotation of Payload
ThPO - atan2(PyO-QyO,PxO-QxO); % Initial angle of Payload (rad)

ThPf = atan2(Pvf-Q\'f,Pxf-Qxf); % Final angle of Payload (rad

)

DelThP = ThPf - ThPO; % Total delta angle of Payload (rad)

% Initial and final locations of Payload center of mass
XPO = QxO + (PxO - QxO) * (LcP/LP);

YPO = QyO + (PyO - QyO) * (LcP/LP);

XPf = Qxf + (Pxf - Qxf) * (LcP/LP),

YPf = Qyf + (Pyf - QyO * (LcP/LP);

Tau - (T-TO) / (Tf-TO); % Normalize time

% Function Weighting Factors for how the payload will move
% These factors will cause the angular velocity and angular

% acceleration of the payload to be zero at t = and t = tf

% They also permit the payload angle to match its initial

% and final values. These weighting factors will also apply

% to the translational motion of the payload center of mass

k = length(Coef);

for n=l:k

160

CTau(k+l-n) = Coef(k+l-n)*TauA(n+2);
CTaud(k+l-n) = Coef(k+l-n)*TauA(n+l);

CTaudd(k+l-n) = Coef(k+l-n)*TauA(n);
end
W = ConstMat(l,:)*CTau';

Wd = ConstMat(2,:)*CTaud';

Wdd = ConstMat(3,:)*CTaudd';

% Centerbody angle, angular velocity, angular acceleration

DelThO = ThOf - ThOO;
ThO = ThOO + W * DelThO; % Angle (rad);

ThOd = Wd * DelThO / (Tf - TO), % Velocity (rad/sec);

ThOdd = Wdd * DelThO / (Tf - TO)A2; % Acceleration (rad/sec
A
2);

% Save for plotting

QRef(1) = ThO;

QdotRef(1) = ThOd;
QddotRef(l) = ThOdd;

% Payload angle, angular velocity, angular acceleration

ThP = ThPO + W * DelThP, % Angle (rad)

ThPd = Wd * DelThP / (Tf - TO); % Velocity (rad/sec)

ThPdd = Wdd * DelThP / (Tf - T0)A2; % Acceleration (rad/sec
A
2)

% Save for plotting

QRcf(6) = ThP;
QdotRef(6) = ThPd;
QddotRef(6) = ThPdd,

% Payload center of mass position, velocity, and acceleration

Xc = XP0 + W * (XPf - XPO);

Xcd = Wd * (XPf - XPO) / (Tf - TO);

Xcdd = Wdd * (XPf - XPO) / (Tf - T0)A2;
Yc = YPO + W * (YPf - YPO);

Ycd = Wd * (YPf - YPO) / (Tf - TO);

Ycdd = Wdd * (YPf - YPO) / (Tf - T0)A2;
% Save for plotting

QRcf(7) = Xc;

QdotRef(7) = Xcd;
QddotRef(7) = Xcdd;
QRef(8) = Yc;

QdotRef(8) = Ycd;

QddotRef(8) = Ycdd;

% Payload endpoint coordinates: Qx, Qy, Px, Py
Qx = Xc - LcP * cos(ThP);

Qv = Yc - LcP * sin(ThP);

Px = Xc + (LP - LcP) * cos(ThP),

Py = Yc + (LP - LcP) * sin(ThP);

%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Solve for Arm Angles Required by desired path %%
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%
%% LEFT ARM %%
%%%%%%%%%%%
% Elbow is left of line from arm base to Q (RQ)
LSx = LO * cos(ThO + ThLO);

LSy = LO * sin(ThO + ThLO);

RQ = sqrt((Qx-LSx)A2+(Qy-LSy)A2); % Length from arm base to Q
Betal = atan2(Qy-LSy,Qx-LSx); % Angle from arm base to RQ
% Law of cosmes: cos(A) = (b

A2 + c
A
2 - a

A2)/(2bc)

% Apply to find angle between RQ and Link L

1

161

Num = Ll A
2 + RQA2-L2A

2,

Den = 2* LI * RQ;
Beta2 = acos(Num/Den); % Angle from RQ to Link 1

Thl . 1 = (Beta 1 + Beta2) - (ThO + ThLO); % Theta L

1

% Use law of cosines to find the interior angle at the elbow

Num = Ll A2 + L2A2-RQA
2;

Den = 2 *L1 * L2;

Beta3 = acos(Num/Den);

ThL2 = -(pi-Beta3);

%Save for plotting

QRef(2) = ThLl;
QRef(3) = ThL2;

%%%%%%%%%%%%
%% RIGHT ARM %%
%%%%%%%%%%%%
% Hlbow is right of line from arm base (shoulder) to P (wrist) (RP)

RSx = RO * cos(ThO + ThRO);

RSv = RO * sin(ThO + ThRO);
RP = sqrt((Px-RSx)A2+(Py-RSy)A2); % Length from arm base to P

Betal = atan2(Py-RSy,Px-RSxj; % Angle from ami base to RP
% Law of cosines: cos(A) = (b

A2 + c
A
2 - a

A
2)/(2be)

% Apply to find angle between RP and Link R

1

Num = Rl A2 + RPA2-R2A
2;

Den = 2*Rl * RP;
Beta2 = acos(Num/Den); % Angle from Link Rl to RP
Beta4 = Betal - (ThO + ThRO);

ThRl = -(Beta2 - Beta4);

Num = Rl A2 + R2A2-RPA2;
Den = 2*Rl * R2;
Bet a 3 = acos(Num/Den);
ThR2 = pi-Beta3;
% Save for plotting

QRef(4) = ThRl;
QRef(5) = ThR2;

%%%%%%%%%%%%%%%%%%%%%%%%%
%% Solve for Arm Angle Rates & Accelerations %%
%% required by desired path %%
%/0%%%%%%%%%%%%%%/0%%%%%%% /0%
%%%%%%%%%%%
%% LEFT ARM %%
%%%%%%%%%%%
% [Qxd; Qyd] = [Hll*ThOd + [II2]*Thd

% Qxd & Qyd are x & y components of point Q inertial velocity.

% Thd = [ThL ldot; ThL2dot]
% H matnces are made from expressing the x & v components of Q in

% terms of LO, ThO, ThLO, L 1 , ThL 1 , L2, and ThL2.

% Qx=LO*cos(ThO+ThLO)+L 1 *cos(ThO+Thl ,0+ThL 1)+L2*cos(ThO+.
ThL0+ThLl+ThL2)

% Qy=LO*sin(ThO+ThLO)+L 1 *sin(ThO+ThLO+ThL 1)+L2*sin(ThO+...

ThL0+ThLl+ThL2)
% The differentiation of these equations lead to

% [Qxd. Qvd] = [Hl]*ThOd + [H2]*Thd which can be solved for Thd
Qxd = Xcd + LcP * ThPd * sin(ThP);

Qvd = Ycd - LcP * ThPd * cos(ThP);

1 12(1 ,2) = -L2*sin(Th0+ThL0+ThL 1 +ThL2);
H2(1 ,

1) = H2(1 ,2) - L 1 *sin(ThO+ThLO+ThL 1);

H2(2.2) = L2*cos(ThO+ThLO+ThLl+ThL2),
H2(2,

1) = H2(2,2) + L 1 *cos(ThO+ThLO+ThL 1);

H 1 (1 , 1) = H2(1 ,
1) - LO*sin(ThO+ThLO);

162

1 1 1 (2. 1) = H2(2,
1) + LO*cos(ThO+ThI .(

I).

Thd = inv(H2) * ([Qxd; Qyd] -Hl*ThOd);
% Angle rales

ThLld = Thd(l);

ThL2d = Thd(2);

% Save for plotting

QdotRef(2) = ThLld;
QdotRef(3) = ThL2d;

% Differentiation of [Qxd, Qvd] = [Hll*ThOd + |I I2]*Thd leads to

% |Qxdd, Qvdd] = [Hldot]*ThOd+[Hl]*ThOdd + [U2dotl*Thd+[H2]*Thdd
Qxdd = Xcdd + LcP*(ThPdd*sin(ThP) + ThPd A2*cos(ThP));

Qydd = Ycdd - LcP*(ThPdd*cos(ThP) - ThPdA2*sin(ThP));
I I2dot(l,2) = -L2*(Th()d+ThIJd+ThL2d)*cos(Th()+ThI,0+ThL 1 +ThL2);
1 12dot(1,1)- H2dot(1 ,2) - L 1 *(Th()d+ThI . 1 d)*cos(ThO+ThLO+ThL 1);

112dot(2,2) = -L2*(ThOd+ThLld+ThL2d)*sin(Th()+ThLO+ThLl+Tlil.2).
H2dot(2,l)= H2dot(2,2) - Ll*(Th0d+ThLld)*sin(Th()+ThLO+ThLl);
Hldot(l,l)= H2dot(l,l)-L0*Th0d*cos(Th()+ThI.(>);

IIldot(2,l)= H2dot(2,l) - LO*ThOd*sin(ThO+ThLO).
Thdd = inv(H2)*([Qxdd; Qydd]-H2dot*Thd-[IIldot)*Th0d-[ini*Th0dd);
% Angle accelerations

ThLldd = Thdd(l);

ThL2dd = Thdd(2);

QddotRef(2) = ThLldd;
QddotRef(3) = ThL2dd.

%%%%%%%%%%%%
%% RIGHT ARM %%
%%%%%%%%%%%%
% The development is similar to the left ami
% Px=R0*cos(Th0+ThR0)+Rl*cos(Th0+ThR0+ThRl)+R2*cos(Th0+...

ThR0+ThRl+ThR2)
% Py=RO*sin(ThO+ThRO)+R 1 *sin(ThO+ThR()+ThR 1)+R2*sin(Th()+...

ThR0+ThRl+ThR2)
% [Pxd, Pyd] = [Hl]*ThOd + [H2]*Thd
Pxd = Xcd - (LP - LcP) * ThPd * sin(ThP),

Pvd = Ycd + (LP - LcP) * ThPd * cos(ThP).

H'2(l,2) = -R2*sin(ThO+ThRO+ThRl+ThR2);
H2(l,l)= H2(l,2)-Rl*sin(Th0+ThR0+ThRl).
H2(2,2) = R2*cos(Th0+ThR0+ThRl+ThR2).
1 12(2, 1

) = H2(2,2) + R 1 *cos(ThO+ThRO+ThR 1);

HI (1 , 1
) = H2(1 ,

1
) - RO*sin(ThO+ThRO);

H 1 (2, 1) = H2(2, 1) + RO*cos(ThO+ThRO);
Thd = inv(H2) * ([Pxd, PydJ - HlThOd);
% Angle rates

ThRld = Thd(l),

ThR2d = Thd(2);

% Save for plotting

QdotRef(4) = ThRld;
QdotRef(5) = ThR2d;

% [Pxdd; Pydd] = [Hldot]*ThOd+[Hl]*Th()dd + [H2dot]*Thd+[H2|*Thdd
Pxdd = Xcdd - (LP - LcP)*(ThPdd*sm(ThP) + ThPdA2*cos(ThP));

Pydd = Ycdd + (LP - LcP)*(ThPdd*cos(ThP) - ThPdA2*sin(ThP));

H2dot(l,2) = -R2*(Th0d+ThRld+ThR2d)*cos(Th0+ThR0+ThRl+ThR2),
H2dot(l,l) = H2dot(l,2) - Rl*(ThOd+ThRld)*cos(ThO+ThRO+ThRl);
H2dot(2,2) = -R2*(Th()d+ThR 1 d+ThR2d)*sin(Th()+ThR0+ThR 1 +ThR2),

H2dot(2,l) = H2dot(2,2) - Rl*(ThOd+ThRld)*sm(Th()+ThRO+ThRI);
H 1 dot(1,1)= H2dot(1,1)- RO*ThOd*cos(Th(1+ThRO);
Hldot(2,l)= H2dot(2,l) -RU*ThOd*sin(ThO+ThRO);
Thdd = inv(H2)*([Pxdd; Pydd]-H2dot*Thd-[Hldot]*Th0d-[Hl]*Th0dd);

163

% Angle accelerations

ThRldd = Thdd(l);

ThR2dd = Thdd(2);

QddotRef(4) = ThRldd;
QddotRef(5) = ThR2dd;

%%%%%%%%%%%%%%%%%%%%
%% Find needed control wheel torque %%
%%%%%%%%%%%%%%%%%%%%
Q = QRef;
Qdot = QdotRef;
Qddot = QddotRef

;

[Hs, Hdots] = AngMo2(Ls,Ms,CMs,Is,Q.Qdot,Qddot);

% Cost Punction, Jopt

% Wheel torque is the change in total angular momentum
% Jopt 1 is integrated while Jopt 2 is not

Joptl = abs(Hdots(7));

Jopt2 = Jopt 1

;

164

REFERENCES

1. Robert E. Lindberg, Richard W. Longman, and Michael F. Zedd, "Kinematic and

Dynamic Properties of an Elbow Manipulator Mounted on a Satellite," The Journal

ofthe Astronautical Sciences, Vol. 38, No 4, October-December 1990, pp 397-421.

2. P K. C. Wang, "Control Strategy for a Dual-Arm Maneuverable Space Robot," Pro-

ceedings of the Workshop on Space Telerobotics, Vol 2, 1987, pp. 257-266.

3. Richard W Longman, Robert E. Lindberg, and Michael F. Zedd, "Satellite-Mounted

Robot Manipulators -- New Kinematics and Reaction Moment Compensation," The

InternalionalJournal ofRobotics Research, Vol. 6, No. 3, pp. 87-103, Fall 1987.

4. Z. Vafa and S. Dubowsky, "On the Dynamics of Manipulators in Space Using the

Virtual Manipulator Approach," Proceedings of the 19H7 IEEE International Con-

ference on Robotics and Automation, Raleigh, NC, 1987, pp. 579-585.

5. Richard W. Longman, "The Kinetics and Workspace of a Satellite-Mounted Robot,"

The Journal ofthe Astronautical Sciences, Vol. 38, No. 4, October-December 1990,

pp. 423-441.

6. Yoshihiko Nakamura and Ranjan Mukherjee, "Nonholonomic Path Planning of

Space Robots via Bi -Directional Approach," 1990 IEEE International Conference of

Robotics and Automation, Cincinnati, Ohio, pp. 1764-1769.

7. Z. Vafa, "Space Manipulator Motions with No Satellite Attitude Disturbances," Pro-

ceedings of 1990 IEEE International Conference on Robotics and Automation, Cin-

cinnati, Ohio, 1990, pp. 1770-1775.

8. C. L. Chung, S. Desa, and C. W. deSilva, "Base Reaction Optimization of Redun-

dant Manipulators for Space Applications," Report No. NASA-CR-1 86274, 1988.

9. Z. Vafa and S. Dubowsky, "On the Dynamics of Space Manipulators Using the Vir-

tual Manipulator, with Applications to Path Planning," Journal of the Astronautical

Sciences, Vol. 38, No. 4, Oct-Dec 1990, pp. 441-472.

10. C. C. Nguyen, F. J. Pooran, and T. Premack "Trajectory Control of Robot Manipula-

tors with Closed-Kinematic Chain Mechanism," Report No. NASA-TM-89305,
1987.

11. Y. Hu and A. Goldenberg, "An Adaptive Approach to Motion and Force Control of

Multiple Coordinated Robot Arms," Proceedings of 1989 IEEE International Con-

ference on Robotics and Automation, Scotsdale, Arizona, 1989, pp 1091-1096.

165

12. Michael W. Walker, Dongmin Kim, and Joseph Dionise, "Adaptive Coordinated

Motion Control of Two Manipulator Arms," Proceedings of 1989 IEEE Interna-

tional Conference on Robotics and Automation, Scotsdale, Arizona, 1989, pp. 1084-

1090.

13. K. Yoshida, R. Kurazume, and Y. Umetani, "Torque Optimization Control in Space

Robots with a Redundant Arm," Proceedings oflROS '91, Osaka, Japan, 1991, pp.

1647-1652.

14. Shaheen Ahmad and Mohamed Zribi, "Lyapunov Based Control Design for Multiple

Robots Handling a Common Object," Mechanics and Control: Proceedings of the

4th Workshop on Mechanics and Control, University of Southern California, Los

Angeles, Jan. 21-23, 1991, edited by J.M. Skowronski, H Flashner, and R.S. Gut-

taul, pp. 1-17, Springer-Verlag, 1992.

15. Stanley A. Schneider and Robert H. Cannon Jr., "Object Impedance Control for

Cooperative Manipulation: Theory and Experimental Results," Proceedings of1989

IEEE International Conference on Robotics and Automation, Scotsdale, Arizona,

1989, pp. 1076-1083.

16. Discussions between John L. Junkins, George J. Eppright Chair Professor at Texas

A&M University and visiting Co-Chair of the Space Systems Academic Group at

the Naval Postgraduate School and the author, July-August 1992.

1 7. Watkins Jr., R.J., Tfie Attitude Control ofFlexible Spacecraft, Master's Thesis, Naval

Postgraduate School, Monterey, California, June 1991.

18. Hailey, Jeffrey A., Experimental Verification of Attitude Control Techniques for

flexible Spacecraft Slew Maneuvers, Master's Thesis, Naval Postgraduate School,

Monterey, California, March 1992.

1 9. Sorenson, Dennis, Design and Control ofa Space Based Two Link Manipulator with

Lyapunov Based Control Laws, Master's Thesis, Naval Postgraduate School,

Monterey, California, September 1992

166

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 52 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Chairman, Code AA 1

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

4. Chairman, Code SP 1

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

5. Professor Brij N. Agrawal, Code AA/Ag 2

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

6. Professor Donald A. Danielson, Code Dd 1

Department of Mathematicss

Naval Postgraduate School

Monterey, California 93943-5002

7. Professor I. Michael Ross, Code AA/Ro 1

Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

8. Professor Harold A. Titus, Code EC/Ts 1

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5002

167

9. Dr. Hyochoong Bang, Code AA/Ba
Department of Aeronautics and Astronautics

Naval Postgraduate School

Monterey, California 93943-5002

10. Professor John L. Junkins

Department of Aerospace Engineering

H R. Bright Building

Texas A&M University

College Station, TX 77843-3141

1 1

.

Capt Gary E. Yale

10801 Cordova NE
Albuquerque, NM 87112

-/!

168

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHnn,
MONTEREY CA SS^Isfoi

GAYLORD S

