
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2000-03-01

Fault-tolerant approach for deploying Server
Agent-based Active Network Management
(SAAM) server in Windows NT environment to
provide uninterrupted services to routers in
case of server failure(s)/ Efraim Kati

Kati, Efraim
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/26543

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAV
MON i ; - CA '.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
FAULT-TOLERANT APPROACH FOR DEPLOYING

SERVER AGENT-BASED ACTIVE NETWORK MANAGEMENT (SAAM)
SERVER IN WINDOWS NT ENVIRONMENT TO PROVIDE

UNINTERRUPTED SERVICES TO ROUTERS INCASE OF SERVER
FAILURE(S)

by

Efraim KATI

March 2000

Thesis Advisor:

Second Reader:

Geoffrey Xie

James Bret Michael

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing

data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate

or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1 204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2000
3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: FAULT TOLERANT APPROACH FOR DEPLOYING SERVER AGENT
BASED ACTIVE NETWORK MANAGEMENT (SAAM) SERVER IN WINDOWS NT ENVIRONMENT TO
PROVIDE UNINTERRUPTED SERVICES TO ROUTERS INCASE OF SERVER FABLURE(S).

6. author(S) Kati, Efraim

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA and NASA
10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
G417

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of

the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRD3UTION CODE

Statement A
13. ABSTRACT (maximum 200 words)

With the explosive growth of the Internet and high demand on real-time network applications, the need for

integrated service networks has emerged. Therefore, the Next Generation Internet project and as a part of this project the

Server Agent-based Active network Management (SAAM) project was initiated. SAAM is a server based hierarchical

routing architecture designed to provide Quality of Service routing services for network resource intensive applications.

In the SAAM architecture, a small number of dedicated SAAM servers perform most of the network management tasks

on behalf of the routers. The SAAM server has a great responsibility in the SAAM architecture and failure of the SAAM
server can have a devastating effect on the performance of the entire network. In order to tolerate the failure of the

SAAM server, this thesis examines the fault tolerance (ft.) for the SAAM server in two phases: local area ft., and remote

area ft. For the local area ft., after a survey of the literature and commercial offerings, a recommended solution is

proposed. For the remote area ft., a backup server model is designed and prototyped. The prototyped model provides

robust error detection and a fast recovery from the failure of the primary SAAM server.

14. SUBJECT TERMS Fault Tolerance, Heartbeat Protocol, Next Generation Internet, Networks 15. NUMBER OF PAGES

328

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSD7I-
CATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

298-102

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

FAULT-TOLERANT APPROACH FOR DEPLOYING
SERVER AGENT-BASED ACTIVE NETWORK MANAGEMENT (SAAM) SERVER IN
WINDOWS NT ENVIRONMENT TO PROVIDE UNINTERRUPTED SERVICES TO

ROUTERS INCASE OF SERVER FAILURE(S)

Efraim KATI
First Lieutenant, Turkish Army

B.S., Turkish Military Academy, 1992

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Tjdoo

THIS PAGE INTENTIONALLY LEFT BLANK

I

ABSTRACT

The current data networks are mainly based on sophisticated stand-alone routers

that provide best effort service. However, with the explosive growth of the Internet and

high demand on real-time network applications, the need for integrated service networks

has emerged. For this purpose the Next Generation Internet (NGI) Project and as a part of

this project the Server Agent based Active network Management (SAAM) project was

initiated. SAAM is a server based hierarchical routing architecture designed to provide

Quality of Service (QoS) routing services for network resource intensive applications. In

the SAAM architecture, a small number of dedicated SAAM servers perform most of the

network management tasks on behalf of the routers. The SAAM server has a great

responsibility in the SAAM architecture and failure of the SAAM server can have a

devastating effect on the performance of the entire network. In order to tolerate the failure

of the SAAM server and provide uninterrupted services to routers, this thesis examines

the fault tolerance for the SAAM server in two phases: local area fault tolerance, and

remote area (disaster recovery) fault tolerance. For the local area fault tolerance, after a

survey of the literature and commercial offerings, a recommended solution is proposed.

For the remote area fault tolerance, a backup server model is designed and prototyped.

The prototyped model provides robust error detection and a fast recovery from the failure

of the primary SAAM server.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OVERVIEW OF SAAM 2

C. PURPOSE OF THIS THESIS 5

D. SCOPE OF THIS THESIS 6

E. ORGANIZATION OF THIS THESIS 6

E. OVERVIEW OF FAULT TOLERANCE 9

A. BASIC CONCEPTS AND DEFINITIONS 9

B. REDUNDANCY CONCEPT 12

1. Hardware Redundancy 13

a. Passive Hardware Redundancy 13

b. Active Hardware Redundancy 15

2. Software Redundancy 18

a. Consistency Checks 19

b. Capability Checks 19

c. N-Version Programming 19

d. Recovery Blocks 20

3. Information Redundancy 21

4. Time Redundancy 22

C. OBJECTIVES OF FAULT TOLERANCE 22

1. Dependability 23

2. Reliability 23

3. Availability 25

4. Safety 26

5. Performability 27

6. Maintainability 27

7. Testability 28

D. PHASES IN FAULT TOLERANCE 28

1. Error Detection 29

a. Replication Checks 30

b. Timing Checks 31

c. Structural Checks 31

d. Reasonableness Checks 32

e. Diagnostics Checks 32

2. Damage Confinement and Assessment 32

3. Error Correction 33

a. Error Recovery 33

b. Error Masking 34

4. Fault Treatment and Continued Service 34

vii

m. FAULT TOLERANCE IN WINDOWS NT OPERATING SYSTEM 37

A. ERROR HANDLING AND PROTECTED SUBSYSTEMS 38

B. NT FILE SYSTEM (NTFS) 39

C. AUTOMATIC RESTART 40

D. TAPE BACKUP SUPPORT 42

E. UNINTERRUPTIBLE POWER SUPPLY (UPS) 43

F. FAULT-TOLERANT STORAGE 44

1. Stripe Set 46

2. Mirror Set 46

3. Stripe Set With Parity 47

G. MICROSOFT CLUSTER SERVER (MSCS) 49

1. Overview of Server Cluster 49

2. MSCS 50

H. WINDOWS NT LOAD BALANCING SERVICE (WLBS) 56

1. WLBS Features 57

2. WLBS Shortcomings 59

IV. LOCAL AREA FAULT TOLERANCE FOR SAAM SERVER 61

A. PRODUCTS OVERVIEW 61

1. ARCserve Replication 4.0 for Windows NT 62

2. Co-StandbyServer 4.2 for Widows NT 66

3. Double-Take 3.0 71

4. Endurance 4000 82

5. Octopus 3.2 89

B. RECOMMENDATIONS 93

V. REMOTE AREA FAULT TOLERANCE FOR SAAM SERVER 97

A. MODELING 97

1. Server States 98

2. Failure Detection 100

a. Constant Heartbeat Protocol (V.0) 102

b. Accelerated Heartbeat Protocol (V.l) 104

c. Prototyping of the Heartbeat Protocols 107

d. Performance Comparison of the Heartbeat Protocols 119

e. Preventing False Failure Detection 128

f. Preventing Late Failure Detection 133

g. Existence of Two Active Servers at the Same Time 135

3. Damage Confinement and Assessment 136

4. Failure Recovery 139

a. Size of PIB Data Records 140

b. Selected Approach 144

viii

5. Fault Treatment and Continued Service 145

B. INTEGRATION WITH THE EXISTING SOURCE SODE 147

1. Packet Formats 147

2. Integration of Error Detection Mechanism 150

a . HeartbeatQuery Class 151

b . HeartbeatResponse Class 152

c . HeartbeatController Class 153

d . BannerFrame Class 154

3. Modifications Done on the Existing Source Code 155

a . Message Class 155

b . Server Class 156

c . ServerAgent Class 158

d . PacketFactory Class 158

C. TESTING 159

1. Testbed 159

2. Tests Performed 161

a. Failure Detection Test 162

b. Heartbeat Response Message Loss Test 165

c. Message Numbering Scheme Test 168

d. Unsolicited Heartbeat Test 173

e. Control Channel Auto-configuration Test 175

VI. CONCLUSIONS 179

A. SYNOPSIS AND CONCLUSION 179

B. FUTURE WORK 180

1. Testing of Recommended COTS-Based Product 181

2. Detection of Backup SAAM Server Failures 181

3. Reinstating of a Repaired Server 182

4. Handling of Two Simultaneously Active Servers 182

5. Field Test 182

6. Alert Mechanism 183

APPENDIX A. THE CONSTANT HEARTBEAT PROTOCOL SOURCE FILES 185

APPENDIX B. THE ACCELERATED HEARTBEAT PROTOCOL SOURCE FTLES207

APPENDIX C. NEWLY ADDED SOURCE FILES FOR INTEGRATION 241

APPENDIX D. MODIFIED SOURCE FILES FOR INTEGRATION 259

LIST OF REFERENCES 307

INITIAL DISTRIBUTION LIST 311

IX

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENT/DEDICATIONS

The author would like to acknowledge the Defense Advance Research Projects

Agency (DARPA) and the National Aeronautics and Space Agency (NASA) for

sponsoring this thesis research.

I would like to extend my sincere gratitude to my thesis advisor, Professor

Geoffrey Xie and Professor James Bret Michael, for their patience. I would like to thank

my wife, Ozlem Kati for her love and support during the entire thesis process. I would

also like to thank to my parents, Arife and Sakir Kati, without whose love and sacrifice I

would not have the opportunities that I am enjoying today. And finally, I would like to

dedicate this thesis to my son, Efekan Ozgur Kati for his unconditional love.

XI

I. INTRODUCTION

A. BACKGROUND

With the explosive growth of the Internet and increasing demand on real-time

network applications, the need for an integrated services network has emerged. An

integrated services network supports all types of data using a single network and must

meet two requirements. First, an integrated services network must guarantee Quality of

Service (QoS) to individual user sessions. Second, an integrated services network must

support real-time applications that have very stringent packet delay requirements. [Ref.

35] However, the current data networks are mainly based on sophisticated stand-alone

routers that provide best-effort service. Therefore, current data networks are not capable

of supporting integrated services. To solve this problem, the Next Generation Internet

(NGI) initiative, an advanced research program, was initiated. Specifically, the NGI

initiative fosters partnerships among academia, industry, and Federal laboratories to

develop and experiment with technologies that will enable more powerful and versatile

information networks of the 21st century.

One proposal developed under the NGI initiative is the SAAM project. [Ref. 35]

SAAM stands for Server Agent-based Active network Management. The SAAM project

is currently sponsored by the Defense Advanced Research Projects Agency (DARPA)

and the National Aeronautics and Space Administration (NASA), and is an ongoing

project. More information on the SAAM project can be obtained from the project's

World Wide Web home page (www.saamnet.org).

1

B. OVERVIEW OF SAAM

SAAM is a network management system that enables a network to provide

integrated services. Instead of a totally router-based architecture, SAAM utilizes a server-

based hierarchical routing architecture that provides Quality of Service (QoS) routing

services for network resource intensive applications.

Compared to the current shortest path algorithms, QoS-based routing algorithms

must deal with more constraints. Therefore, QoS-based routing requires more processing

power at each router. Due to this processing power requirement, when the QoS-based

routing is implemented, current sophisticated stand-alone routers can easily become

performance bottlenecks. However, SAAM relieves individual routers from most routing

and management tasks by employing a small number of dedicated SAAM servers to

perform these tasks on behalf of the routers. Such a lightweight router approach

implemented by SAAM increases the performance of the routers to support QoS-based

routing for real-time applications.

The SAAM server maintains an accurate picture of the QoS capabilities of the

network by periodically retrieving link performance information from the routers, and

aggregating this information into a ready-to-use database of useful paths. This database is

called the Path Information Base (PIB) (shown in Figure 1.1). By using the PIB, the

SAAM server can efficiently implement network functions such as QoS routing and re-

routing of real-time flows, which are required for providing integrated services.

Flow Routing Table

Flow-id next hop

atagram Routing Table

Figure 1.1. Logical Model of SAAM.

To make its service scalable for large networks, SAAM organizes its SAAM

servers in a hierarchy, as shown in Figure 1.2. At the first level of the hierarchy, SAAM

partitions the network into autonomous regions. These regions are called SAAM regions.

SAAM assigns one SAAM server for each SAAM region. At the first level, each SAAM

server is responsible for collecting link performance information from routers in its own

region and summarizing this collected information for a higher-level server. In the second

level of the hierarchy, the child servers periodically send the summarized path

performance information to the parent server. In each SAAM region, there is subset of

routers, called border gateways, responsible for traffic in and out of this region. The

parent server determines the routing cross-regions.

Source

©
•*

1
—
Ic
u
JS
Ug

s
>
U
u
M
<D
>
u

a
. 5

H

:> <:

Destination

a router e SAAM
server

Example

data path

.SAAM ^

—

- —~^Legacy
region "'-———-—- networks

Figure 1.2. Hierarchical Organization of SAAM Servers. [From Ref. 36]

The Internet currently consists of many independently operated Internet Service

Providers (ISPs). In Figure 1.2, the regions are considered as ISPs. SAAM is completely

compatible with the legacy networks and supports existing inter-domain routing

protocols. The border gateway routers make the necessary translation between the

different domain protocols. Therefore, whether or not an ISP is using SAAM is

transparent to other ISPs. A non-SAAM ISP can still send traffic through a SAAM ISP.

Therefore, SAAM can be deployed incrementally, providing improvements of network

performance to ISPs that use SAAM. The ISP that uses a SAAM server has total control

over the operation of its internal SAAM server. In this case, the parent server only

provides performance-enhancing advice to the internal servers. The internal server will

verify the advice based on local policies before updating the states of its routers.

4

C. PURPOSE OF THIS THESIS

A SAAM server is responsible for performing most of the routing and network

management tasks on behalf of the routers in its region. Therefore, the quality of the

integrated services provided by the network region depends entirely upon the

performance of the SAAM server. If not carefully designed, a failure of the SAAM server

can have a devastating effect on the performance of the entire network.

The main purpose of this thesis is to add fault tolerance features to the SAAM

architecture in order to tolerate server failures. Consequently, a failure of the SAAM

server will not interrupt SAAM services to the routers. Fault tolerance features to be

added should address the following fault tolerance related requirements of the SAAM

server:

• No singe point of failure should be allowed.

• Detection, isolation, and recovery of the failures should happen in seconds

(preferably under two seconds).

• Environmental faults such as flood, fire, and earthquake should be

addressed.

• Failed SAAM server should be repaired while the system is in operation.

• Reinstating the repaired SAAM server should not affect the provided

SAAM services to routers.

D. SCOPE OF THIS THESIS

In order to provide a fault tolerance solution for the SAAM server that best meets

the aforementioned requirements, fault tolerance for the SAAM servers is implemented in

two phases: local and remote. The first phase, local area fault tolerance for the SAAM

server, focuses mainly on tolerating component failures of one server such as processor

failure, disk failure and network interface card failure. The second phase, remote area

fault tolerance (disaster recovery) for the SAAM server, backup servers are used to

tolerate environmental faults such as fire, earthquake, and flood that cause unrecoverable

server failures. The function of the second phase is to tolerate the failure of the local area

fault tolerance implementation of the SAAM server.

A Commercial-Off-The-Shelf (COTS) based solution is proposed for local area

fault tolerance after a survey of the literature and commercial offerings. For remote area

fault tolerance, a backup server model is designed and implemented. Additionally, the

implemented model is tested in a live SAAM testbed.

E. ORGANIZATION OF THIS THESIS

The remainder of this thesis is organized into the following chapters:

• Chapter II: Overview of Fault Tolerance . Provides an overview of fault

tolerance. Also explains basic terminology and the principles of fault

tolerance.

• Chapter IH: Fault Tolerance in Windows NT Operating System . Explores

the fault tolerance related features of the Windows NT operating system.

• Chapter IV: Local Area Fault Tolerance for SAAM Server . Focuses

mainly on tolerating component failures of one server. Also examines the

five most promising third-party products for the Windows NT operating

system and proposes one of these products as a recommended solution.

• Chapter V: Remote Area Fault Tolerance for SAAM Server . Focuses on

tolerating environmental faults such as flood, fire, and earthquake. A

backup server model is designed and prototyped. Also explains the

integration of the prototype with the existing SAAM server source code.

• Chapter VI: Conclusions . Summarizes the test results of the implemented

backup server model and outlines the work that remains to be done in the

SAAM project.

THIS PAGE INTENTIONALLY LEFT BLANK

II. OVERVIEW OF FAULT TOLERANCE

A. BASIC CONCEPTS AND DEFINITIONS

First the definitions of system, error, fault, and failure will be presented. These

terms are used in a variety of ways in different contexts. Although the terms, fault,

failure, and error are generally used interchangeably, they have distinct meanings in fault

tolerance terminology. The definitions presented in this section, will clarify the

distinctions among the meanings of these terms. Throughout this thesis, the terms, fault,

failure, and error will be used in accordance with the following provided definitions.

The concept of a system is quite general and it is used in other disciplines. In

general, a system is defined as an identifiable mechanism that maintains a pattern of

behavior at an interface between the system and its environment [Ref. 1]. In computer

systems, the term interface represents identifiable hardware or physical entities. Although

a system is considered as a single module, in fact systems are composed of a number of

subsystems. Therefore, terminology used for the system under consideration also applies

recursively to its subsystems.

Each system has an ideal specified behavior and an observed actual behavior. A

failure is a deviation of the actual behavior from the specified behavior [Ref. 2]. An error

is that part of the system state which is liable to lead to a failure [Ref. 3]. A fault is a

physical defect, imperfection, or flaw that occurs within some hardware or software

component [Ref. 4]. Although a fault has the potential of generating errors, it may not

cause any errors during the period of observation. On the other hand, the existence of an

error always indicates that the system has a faulty part.

Faults can be classified using two different key attributes, duration and cause.

The duration specifies the length of the time that a fault is active. When duration is

considered, faults are classified as transient, intermittent or permanent. Transient faults

appear and disappear within a very short period of time. Intermittent faults repeatedly

appear, but always for a short duration. Permanent faults remain in existence indefinitely

if no corrective action is taken.

According to their causes, faults are classified as design or operational faults.

Design faults appear during the system design or modification phases. Operational faults

appear during the system lifetime and they are caused by physical reasons such as

electromagnetic interference, battle damage, operator mistakes, and environmental

extremes.

If the system behaves as it is specified, then this state is called service

accomplishment state. However if the system behaves different from its specifications,

then the system enters a state called a service interruption state. Usually a system's

actual behavior replicates its specified behavior. As shown in Figure 2.1, a fault

occasionally creates an error causing a system to fail.

When a system fails, it enters a service interruption state. After the error is

detected, reported, and corrected, the system returns to a service accomplishment state.

The time between the occurrence of a fault and the appearance of an error is called fault

latency. The time between the occurrence of an error and the appearance of the resulting

10

failure is called error latency. The total time between the occurrence of a physical failure

and the appearance of a failure is the sum of the fault latency and the error latency.

Service Interruption State

Failure
-

A

Error latency

Error V

Fault

Fault

Detect >i
Report,

correct,

repair, „

A
latency

Figure 2.1. Service States of a System. [After Ref. 2]

In order to improve or maintain the system's normal performance (i.e., to keep the

system in the service accomplishment state) three techniques are used: fault avoidance,

fault masking, and fault tolerance. The fault avoidance technique is used for preventing

the occurrence of faults. Fault avoidance can include some quality control measures

implemented before the system becomes operational, such as design reviews, components

screening, and testing. The fault masking technique is used for preventing faults in a

system from introducing errors. The fault tolerance technique is used for preventing

system failures from occurring, even if errors caused by faults appear in the system. Since

11

failures are directly caused by errors, the terms fault tolerance and error tolerance are

often used interchangeably.

A system is considered to be fault-tolerant if the actual behavior of the system

stays consistent with its specifications, despite the failures of its sub-systems. It is not

possible to make a system fault tolerant against its own failures. If the system fails due to

an error, then there is nothing that can be done in terms of fault tolerance. However, a

system can be designed to be fault tolerant against the failure of its sub-systems.

Consequently, the ultimate goal of fault tolerance is to prevent a system failure when

some of its sub-systems fail.

B. REDUNDANCY CONCEPT

Redundancy is defined as those parts of the system that are not needed for the

correct functioning of the system if no fault tolerance is to be supported [Ref. 1].

Redundancy is the guiding principle behind fault tolerance. In order to build a fault-

tolerant system, some redundant sub-systems must exist in the system to be used instead

of a failed sub-system. Therefore, redundancy is essential for fault tolerance. On the other

hand, redundancy can introduce some side effects into the system. These side effects can

take the form of performance degradation, an increase in the size and weight of the

system, or reduced reliability*.

* Probability of hardware failure, not the entire system.

12

Four types of redundancy could be implemented. They are hardware redundancy,

software redundancy, time redundancy and information redundancy. The following

sections will discuss the four redundancy techniques in detail.

1. Hardware Redundancy

Hardware redundancy refers to the replication of the hardware components of the

system. As the hardware sizes have become smaller and less expensive, the concept of

hardware redundancy becomes more practical. Hardware redundancy can be

implemented using one of two techniques, passive hardware redundancy and active

hardware redundancy.

a. Passive Hardware Redundancy

Passive hardware redundancy can be used to mask the occurrence of faults

and to prevent the faults from causing the system to fail. This approach does not require

any error detection or system reconfiguration. The passive hardware redundancy

technique implementations rely upon the voting mechanism among the replicated

hardware components, and inherently tolerate the faults.

A simple passive hardware redundancy design can be implemented using

three replicated hardware units and a voter, as shown in Figure 2.2. This type of passive

redundancy is called Triple Modular Redundancy (TMR). In triple modular redundancy,

outputs of the three modules are voted and the majority of the output is allowed to pass

through the voter. If one of the three modules becomes faulty, the remaining two modules

can mask the faulty module.

13

OUTPUT

VOTER

MODULE 1

ifPiSllSii

MODULE 2 MODULE 3

Figure 2.2. Basic Triple Modular Redundancy Design.

The major problem with the TMR is the fact that the voter is a single-

point-of-failure. A failure of the voter results in the failure of the system. Thus, the

reliability of the system is directly proportional to the reliability of the voter. One

approach to overcome this dilemma is to triplex the voters as well as the modules and to

provide three independent outputs. A sample design for the voter triplexing approach in

TMR is shown in Figure 2.3.

Voter Voter Voter

MODULE 1 MODULE 2 MODULE 3

Figure 2.3. Triplexing of the Voters in a TMR Design.

A generalization of the TMR approach is called N-Modular Redundancy

(NMR). In the NMR technique, N represents the number of replicated modules in the

design and it is usually an odd number greater than three so that majority voting can be

14

used. Although TMR can mask only one faulty component, NMR can mask the effect of

more than one faulty modules. For example, in a 5-MR design, it is possible to mask two

faulty modules. It can be shown that the number of faulty components that can be masked

using the NMR approach equals [N - 1)/ 2 .

The simple and powerful passive hardware redundancy technique seems to

have solved the hardware fault-tolerance problem. It can mask almost all physical device

failures. However, it does not mask failures caused by hardware design flaws. If all the

modules have faulty designs, then the comparators or voters, no matter how many of

them, will not help.

Passive hardware redundancy itself does not improve availability or

reliability. In fact, adding redundancy reduces reliability in some designs as explained

above. This parallels the airplane analogy: A two-engine airplane costs twice as much

and has twice as many engine problems as a one-engine airplane. Redundancy designs

require repair to dramatically improve availability. [Ref. 2]

b. Active Hardware Redundancy

In active hardware redundancy, fault tolerance is implemented by fault

detection, location and recovery instead of by fault masking. In active hardware

redundancy, erroneous states are acceptable as long as the system is capable of detecting

the errors, reconfiguring itself and regaining its operational state.

The main states of the active redundancy approach are shown in Figure

2.4. Once the fault occurs during normal operation, an error in the system results. If the

error is not detected and corrected, the consequence will be system failure. Once the error

15

is detected, and then the faulty component causing the error has to be located and

removed from the system's configuration. Then, the system must be reconfigured with

the redundant component instead of the failed one. Finally, the system returns to either its

normal operational state or a degraded operational state, depending on the performance of

replacement component.

X X
Normal

Operation

Degraded

Operation

i r

Fault

Occurs

detected

^i

not detec

r

ted

r

Error

Occurs

detected Fault detection

and Location
v-

i

not detec

r

ted

i f

System

Failure

Reconfiguration

And Recoverynot successful

successfill

Figure 2.4. Operation of an Active Hardware Redundancy Approach. [After Ref. 4]

In the active hardware redundancy approach, the detection of faults is of

great importance. The duplication with comparison scheme is an example of a fault

detection mechanism that can be used. Duplication with comparison refers to the

development of two identical pieces of hardware, having them perform the same

computation in parallel, and comparing the results of those computations. If the results of

16

the two computations do not match, a fault is detected and an error message is generated.

Although duplication with comparison does not provide fault tolerance by itself, it is

mainly used as a fault detection mechanism in the active hardware redundancy approach.

Once the faulty component is detected and identified, the system should be

reconfigured to replace the faulty component. This reconfiguration can be achieved by a

technique called standby replacement or standby sparing. Standby replacement refers to

replacing the faulty component with the provided spares.

The standby replacement process introduces a momentary interruption in

the service delivered by the system. To minimize this interruption, a form of standby

replacement process called hot standby sparing can be used. In hot standby sparing, a

redundant component operates in parallel with the online component, establishing the

readiness for the redundant component to take over in the feature.

There is another form of the standby replacement technique, called cold

standby sparing. Unlike the hot standby sparing method, the spares in cold standby

sparing remain non-operational until they are needed. The process of bringing the spare

into an operational state increases the service interruption time. However, power

consumption is lower for cold standby sparing than for of hot standby sparing.

A variation of the standby replacement technique is called pair-and-spare

or dual-dual. Basically, the pair-and-spare scheme uses both hot standby sparing and

duplication with comparison techniques in its design. It combines two fail-fast modules,

as shown in Figure 2.5, to produce a super module that continues operating, even if one

of the sub modules fails. Fail-fast modules are designed in such a way that they either

operate correctly or stop operating immediately. This is achieved by using duplication

17

with the comparison approach. When the outputs of the modules in the fail-fast module

do not match, an error signal is generated and the other module is stopped immediately.

Additionally the two fail-fast modules operate in parallel similar to the hot standby

sparing method. Because each sub module is fail-fast, the combination is just like the

logical "OR" of the two sub modules.

ti

Comparator Comparator

Figure 2.5. Basic Pair-and-Spare Design.

2. Software Redundancy

Redundancy in software can be implemented in many ways—it is not necessary to

replicate the complete software program to achieve software redundancy. Software

redundancy can appear as several extra lines in the code for checking specific values or

as a routine used to periodically test the specific locations in the system's memory. The

following sections will discuss some basic software redundancy techniques.

18

a. Consistency Checks

Consistency checks are used to verify the correctness of specific

information in the software application. In some applications, a specific set of data

members are required to remain in certain value ranges. If the value of the data exceeds

their predetermined value, then an error is declared. Memory address checking

mechanisms, implemented in the operating system software, can be given as an example

of consistency checks. The memory address checking mechanism determines if the

address access generated by the application is outside of the available address range of

the memory.

b. Capability Checks

Capability checks are performed to verify that a system possesses the

required capability. For example, a capability check would be useful if one would like to

know if the entire memory is available, or if all of the processors in a multiprocessor

system are working properly. Or, one might want to know if the ALU in the processor is

working properly, in which case the capability check would again be used. [Ref. 4]

c. N-Version Programming

N-version programming attempts to tolerate the design faults in software

modules. The basic principle of the N-version programming is to produce the code of the

same application N-times with the same specifications and same functionality, but by

using different programmers and then voting among the outputs of these N results

produced by these different software versions. (Illustrated in Figure 2.6.) The concept of

19

producing different versions of the same software provides different failure modes in

each version and is called design diversity.

Unfortunately, even different programmers can make the same mistake, or

a common mistake can arise from the original specification. N-version programming is

expensive, raising the system implementations and maintenance cost by factor of N or

more [Ref. 4].

k Program Version

1
w

k.
Program Version

2
w

Program
•

•

•

•

•

•

inputs

k.
Program Version

N
w

w. Program
outputs

Figure 2.6. The N-Version Programming Concept. [From Ref. 4]

d. Recovery Blocks

The recovery block approach is very similar to the cold standby sparing

approach that is used in hardware redundancy. The concept is illustrated in Figure 2.7.

One of the N versions of a program, called primary version, is always used, unless it fails

to pass the acceptance tests. The acceptance checks are, essentially, checks performed on

the results produced by the program and may be created using consistency checks and

20

capability checks. If the primary version fails to pass the acceptance tests, then the first

secondary version is tried. This process continues until one version passes the acceptance

tests. When all versions fail to pass the acceptance test, a system failure will occur.

Assuming perfect coverage and independent faults, the recovery block approach can

tolerate up to N -
1 faults. [Ref. 4]

r~>
Primary

Program

-> Secondary Version

1

Program

inputs •

Secondary Version

N-l

Results

Figure 2.7. The Recovery Block Approach. [From Ref. 4]

3. Information Redundancy

Information redundancy refers to the addition of redundant information to the data

with the objective of providing fault tolerance. The purpose of the information

redundancy is to protect the state of the information or to protect the transport of

messages. The basic idea behind adding extra bits is so that errors in some bits can be

detected, and if possible, corrected. The process of adding check bits is called encoding.

The reverse process of extracting the information from the encoded information is called

decoding. Error detection and error correction codes (e.g., the Hamming Code) are

examples of the information redundancy technique.

21

4. Time Redundancy

Time redundancy refers to the repetition of a computation or communication

action in the domain of time. The purpose of time redundancy is to detect and possibly

tolerate the occurrence of transient faults.

The repetition of computation can be used either to compare the results of

different computations to determine if a discrepancy exists, or to determine if the existing

discrepancy has been corrected or not. This approach is effective when the fault causing

the erroneous state is transient. In order to repeat the computation correctly each time, it

is essential that the same data is provided to the system. However, when the system

enters into an erroneous state, data used in the computation may be corrupted. If this

happens, then it becomes impossible to repeat the computation.

The repetition of the communication action can be used to tolerate transient faults

resulting in errors in the messages transmitted among the system components. If the

message is corrupted or lost due to a transient fault, then repeating the message

transmission most likely will not introduce the same error again.

C. OBJECTIVES OF FAULT TOLERANCE

Fault tolerance is an attribute that is designed into a system to achieve some

design requirements. The significant requirements are dependability, reliability,

availability, safety, performability, maintainability, and testability. Fault tolerance is one

system attribute capable of fulfilling such requirements. [Ref. 4]

22

1. Dependability

Dependability is defined as the quality of the delivered service such that reliance

can justifiably be placed on this service [Ref. 3]. Dependability covers all the measures

used for quantifying the quality of the delivered service such as reliability, availability,

safety, maintainability, and testability.

2. Reliability

The reliability of a system is a function of time, R(t), defined as the conditional

probability that the system performs correctly throughout the interval of time, [t ,t],

given that the system was performing correctly at a time t [Ref. 4]. In other words,

reliability is a measure of the continuous service accomplishment from a reference initial

instant. If the lifetime of a system is exponentially distributed, then the reliability of that

system is:

R(t) = e~
M

(2.1)

The parameter A is called the failure rate of the system, and is defined as the

expected number of failures of a system per unit of time. The commonly accepted

relationship between the failure rate and time for electronic components is called the

bathtub curve, and illustrated in Figure 2.8. The decreasing section of the bathtub curve is

called the infant mortality phase. The increasing section of the bathtub curve is called the

worn-out phase. In this region, failures begin to appear and increase rapidly due to the

physical wearing of electronic components. The intermediate phase is called the useful

23

phase of the component. During this phase the failure rate is assumed to be constant,

which is the A value explained above.

as

t
3
ra
CB

fa

A

i.

|
/

/

Infant
Wear-out phase

mortality
Useful phase

phase

—
Time

Figure 2.8. Bathtub Curve Relationship Between Failure Rate and Time. [From Ref. 4]

The exponential relationship between the reliability and the time is known as the

exponential failure law. The exponential failure law is extremely valuable for the analysis

of electronic components, and is by far the most commonly used relationship between

reliability and time. [Ref. 4]

When the exponential failure law is applied to a system, the life of the system is

assumed to be exponentially distributed. With this assumption, the Mean Time to Failure

(MMTF) (or expected life) of the system can be calculated with the following equation:

MTTF=- (2.2)

24

3. Availability

Availability is a function of time, A(t) , defined as the probability that a system is

operating correctly and is available to perform its functions at the time t . Availability is

related to, but different than reliability. Reliability measures how frequently the system

fails, whereas availability measures the percentage of time the system is in its operational

state. When the mean time to failure of a system is represented as MTTF, and the Mean

Time to Repair of the failed system is represented as MTTR, then the availability, a , is

calculated as follows:

MTTF
a = (2.3)

MTTF + MTTR

System availability is frequently classified by measuring the percent of time in

which the system is available. Table 2.1 shows these common classes and the associated

availability percentages and related annual downtime. Systems are characterized as

having a certain number of "9"s (e.g., "five nines system") or as being a certain

availability class (e.g., "Class 5") according to the band of availability it achieves. A

Class 5 system, for example, has 99.999% - 99.9999% availability.

25

AVAILABILITY

MEASUREMENT
ANNUAL OUTAGE AVAILABILITY

CLASS

90% More than a month One nines

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

99% Just under four days Two nines

99.9% Just under nine hours Three nines

99.99% About an hour Four nines

99.999% A little over five minutes Five nines

99.9999% About half a minute Six nines

99.99999% About three seconds Seven nines

Table 2.1. Availability Classes. [From Ref 10]

4. Safety

Safety, S(t), is the probability that a system will either perform its functions

correctly or will discontinue its functions in a manner that does not disrupt the other

systems or compromise the safety of any people associated with the system. Safety is a

measure of the fail-safe capability of the system; if the system does not operate correctly,

it is desirable to have the system fail in a safe manner. [Ref. 4]

In order to increase the safety of a system, the likelihood of undetected error in

the output should be made negligible so that when an uncorrectable error in the output is

detected, it is possible to carry out the safe failure of the system.

Although the concept of safety seems similar to that of reliability, they are in fact

different. Reliability is the probability that a system will perform its functions correctly,

whereas safety is the probability that a system will either perform its functions correctly

26

or will discontinue the functions in a harmless manner. It may be noted that when a

system is reliable, it is also safe. However the reverse is not always true.

5. Performability

The performability of a system is a function of time, P(L,t), defined as the

probability that the system performance will be at or above, some level, L, at the instance

of time, t. Performability differs from reliability in that reliability is a measure of the

likelihood that all of the functions are performed correctly, while performability is a

measure of the likelihood that some subset of functions is performed correctly. [Ref. 4]

Graceful degradation, which refers to the ability of a system to automatically

decrease its performance level, is an important system feature closely related to

performability. Fault tolerance can support graceful degradation and performability by

neutralizing the effects of hardware and software faults of a system, thereby allowing

performance at some reduced level. [Ref. 4]

6. Maintainability

The maintainability is a measure of the ease with which a system can be repaired

once it has failed. In other words, maintainability is the probability, M(t), that a failed

system will be restored to an operational state within a period of time, t. [Ref. 4]

Maintainability encapsulates not only the failures of the system, but also the

modifications that are necessary for the required level of system performance. In order to

keep a system in a state that is relevant to its users, it is mandatory to repeatedly modify

and enhance the system functions. The ease with which such modifications can be

27

performed is dependent on the modularization of the system. If the consequences of a

modification can be localized to well-defined small modules, then the maintenance effort

can be minimized.

Fault tolerance can support maintainability in the problem detection and problem

location process. Once the problem is detected and located maintenance can be

performed. Fault tolerance can also support maintainability in the modification process

by allowing maintenance actions without interrupting the service delivered by the system.

7. Testability

The testability is simply the ability to test for certain specifications of the system.

In order to improve the testability, certain tests can be automated and integrated into the

system. Fault tolerance techniques can be used to detect and locate the problems for the

purpose of improving testability. [Ref. 4] Since a system must be retested after every

modification or fix, testability is closely related to maintainability.

D. PHASES IN FAULT TOLERANCE

The implementation of fault tolerance in a particular system is dependent upon the

system itself, and differs from one system to another. Every system requires a different

type of implementation of fault tolerance depending on its needs, functionality, and

architecture. Therefore it is very difficult to propose a general technique for adding fault

tolerance to a system. However, there are some general actions that systems must

perform during the implementation of fault tolerance. These actions can be classified

28

according to the phase in which they occur: error detection, damage confinement, error

correction, andfault treatment and continued system service.

1. Error Detection

Before starting any fault tolerance activity, an error must be detected. Presence of

the fault and failure cannot be observed directly. Since the error is defined as a state of a

system, the presence of error can be detected by checking the system's states. Afterwards,

the presence of failures and faults can be deduced from the detected error in the system.

The effectiveness of the fault tolerance implementation depends directly on the

effectiveness of the error detection mechanism employed.

There are some important properties that an ideal error detection mechanism

should satisfy. First, an ideal check should be determined solely from the specifications

of the system, and should not be influenced by the internal design of the system. Any

influence of the system on the check can cause the same error in the check as is present in

the system. For that reason, while designing an error detection mechanism, the system

should be treated as a "black box". [Ref. 1]

Secondly, the error detection mechanism should be complete and correct. All

possible errors should be detected, and all declared errors should actually be present in

the system. In other words, the detection mechanism should prevent false alarms.

Thirdly, the check should be independent from the system with respect to

susceptibility of faults. If the detection mechanism fails when the system fails, then the

check is useless. The detection mechanism should have a different failure mode than the

29

system. This minimizes the probability that the detection mechanism will fail at the same

time as the system.

Implementation of real detection mechanisms rarely satisfies all criteria explained

above, due to their complexity, impracticality or cost. Therefore, instead of ideal checks,

acceptable checks are used for error detection in real designs. An acceptable check is an

approximation performed by ignoring errors that rarely occur. This type of checking

design aims to lower the cost of implementation, and at the same time tries to maximize

errors detected.

In computer systems, different types of error detection mechanisms are employed

depending on the system and the errors to be detected. In the following sections, some

general types of checks that are most frequently employed in computer systems will be

discussed.

a. Replication Checks

In this type of check, some components of the system are replicated as

many times as needed depending upon the application, and then the results of these

components are compared or voted to detect the errors. Since replication checks involve

replication of the system components, it is one of the most expensive methods of error

detection. However, this type of check can be fairly complete and can be implemented

without the internal design information of the system being replicated.

30

b. Timing Checks

Timing checks are used for controlling the time-related constraints of the

system in order to see if those constraints are being met. Usually a timer is set to a value

according to the system's specifications. Expiration of the timer indicates that the time-

related constraints of the system are violated. Timing checks are used in both hardware

and software systems.

Timing-related errors are very important, especially in distributed systems.

In most distributed systems, a working node must respond within some pre-determined

time to show that it is up and running. If a node fails to respond within the timeout

period, then its failure is declared. This is the most common method of detecting node

failures.

c. Structural Checks

When data is the primary concern of the fault tolerance, structural checks

are used to detect errors. In structural checks, redundancy of information added to the

data to be protected can be used for detecting the errors.

Structural checks are mostly used in hardware in a process called coding.

In the coding mechanism, some extra bits are added to the actual data bits. These coding

bits are calculated according to relationship rules based on the value of data bits. The

structural check mechanism recalculates coding bits and compares them with the existing

ones. When the coding bits or the data bits are corrupted, newly calculated coding bits

will not match the old ones, and thus the error will be detected (e.g., digital signatures.)

31

d. Reasonableness Checks

Reasonableness checks determine if the state of some object in the system

is "reasonable." Reasonableness checks can be implemented either by checking the range

or the rate of change. The range checks attempt to determine if a certain value is within a

specified range. The rate of change checks attempt to determine if the rate of change of a

certain value is within specified bounds.

e. Diagnostics Checks

Diagnostic checks are implemented by employing special input values to a

system, whose output values are known. These types of detection mechanisms are usually

built into the system and are used for the system's initial self-checking process.

2. Damage Confinement and Assessment

The main goal of the damage confinement and assessment phase is to determine

the boundaries of corruption before starting the error recovery process. During the time

delay between the failure and the event of error detection, an error may propagate and

spread to other parts of the system.

The main reason for the error propagation is that the communication takes places

among the system components. For that reason, the information flow between the

components of the system has to be examined after the error is detected in order to assess

the extent of the damage. The goal is to identify a state in which no information exchange

has occurred. Then the damage could be limited to this boundary.

32

3. Error Correction

After the error is detected and the damage is assessed, the erroneous state of the

system should be corrected. This correction can be made using a process called effective

error processing. Effective error processing refers to the correction made after an error

has taken effect. The goal of effective error processing is to bring the effective error back

to a latent state, and before occurrence of failure if possible. Effective error processing

may take two forms: error recovery and error masking.

a. Error Recovery

The error recovery mechanism typically denies the service request and sets

the system to an error-free state so that it can service subsequent requests. Error recovery

can be classified as backward error recovery andforward error recovery.

In backward error recovery, when the error is detected, the system is

restored to previously occupied (correct) state prior to the error becoming effective. In

this method, states of the system are periodically checkpointed on some stable storage

that would not be affected by a failure. When the error is detected, the system is rolled

back to the last checkpointed state, which is assumed to be error free. It is very suitable

for transient faults, because restarting the system from the last checkpointed state will not

introduce the error again. Since checkpointing has to be performed periodically on a

stable storage, the backward error recovery technique introduces a great amount of

overhead to the system. However, due to its simplicity, the backward error recovery

mechanism is the most commonly used error recovery technique.

33

In forward error recovery, instead of rolling back, the system is set to a

new error-free state (one not previously occupied) by taking the necessary corrective

actions. In order to decide on the necessary actions, the exact nature of the error has to be

known, and the exact damage has to be determined. These qualifying characteristics

make the forward error recovery technique very difficult to implement.

b. Error Masking

In error masking, the erroneous state of the system contains enough

redundancy to enable the delivery of an error-free service from the erroneous internal

state. Examples of error masking are the error-correcting codes used for electronic,

magnetic, and optical storage. Additionally, NMR technique, discussed previously in the

passive hardware redundancy section, can be given as an example of error masking.

4. Fault Treatment and Continued Service

Unlike the first three phases, this phase does not deal with errors. Faults are the

main focus of the fault treatment and continued phase. If the fault is transient, then when

the system is restarted from the error free state, the same problem will not occur again.

However, if the error is caused by a permanent fault, then restarting the system from the

error-free state will cause the same error again. Thus, the identification of the faulty

component and its exclusion from the computation performed after recovery is essential.

This phase can be divided into two phases. These sub-phases are known as the fault

location phase and the system repair phase.

34

In the fault location phase, the component of the system containing the fault is

identified. In the system repair phase, the located faulty component is repaired. This

repair can be done on-line and without manual intervention.

When the system repair phase is completed, the system can continue to provide its

services again. The overall effect of fault tolerance phases on the system would take the

form of a minor discontinuity in service or some performance degradation.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

Ill, FAULT TOLERANCE IN WINDOWS NT OPERATING SYSTEM

The SAAM server runs as an application and builds a Path Information Base

(PIB) on the volatile memory to support QoS routing. Specifically, the server identifies

those paths or sub paths that can potentially be used to route flows, and maintains up-to-

date performance parameters for each of them. The server computes path performance

parameters by aggregating link level performance data passed up from each router.

The SAAM server is currently prototyped as a Java application on the Windows

NT Server 4.0 operating system environment. When choosing Windows NT Server,

influencing factors included reliability, scalability, stability, speed, and ease of

administration.

Since the SAAM project is currently prototyped in the Windows NT operating

system environment, it is essential to be aware of the provided fault tolerance related

features with this operating system to not reinvent the wheel. Therefore, this chapter will

focus on the Windows NT server operating system features that support fault tolerance.

The Windows NT Server 4.0 includes the following fault tolerance related

features:

• Error handling and protected subsystems

• NT File System

• Automatic restart

• Tape backup support

• Uninterruptible power supply (UPS) support

• Fault Tolerant Storage

37

In addition to these features, the Windows NT Server Enterprise Edition offers the

following services:

• Microsoft Cluster Server (MSCS)

• Windows NT Load Balancing Service (WLBS)

A. ERROR HANDLING AND PROTECTED SUBSYSTEMS

Software applications do not always operate as expected; they can enter into

faulty states. Windows NT Server is designed to tolerate these faults by ensuring that

they do not affect other components of the operating system. For the Windows NT

Server, the first line of defense against software errors is its structured method of

exception handling. When an abnormal event occurs, the event is captured and either the

processor or the operating system issues an exception. This design ensures that no

undetected error is allowed to influence the system or other user programs. [Ref. 5]

Windows NT Server also employs protected subsystems in its design. Protected

subsystems are separate, unique memory locations that are assigned to different processes

and applications. By isolating programs in this way, Windows NT Server ensures that a

program fault will not affect the system's kernel and, as a result, crash the operating

system. Similarly, programs are isolated from each other so that when a program faults, it

does not adversely affect other programs running on the system. This architecture makes

it safe to deploy new Windows NT Server-based applications. New applications can be

run and tested on a Windows NT Server-based machine without concern that they will

adversely affect the system or other production applications. As a result, deploying

38

powerful, new server-based applications on Windows NT Server is less risky than it is

with some other server operating systems. [Ref. 5]

B. NT FILE SYSTEM (NTFS)

NTFS is a recoverable file system that uses caching and allows recovery from a

disk failure. NTFS helps guarantee the consistency of the disk volume by using standard

transaction logging and recovery techniques, although it does not guarantee the protection

of user data. All data is accessed via the file cache. While the user searches folders or

reads files, data to be written to disk accumulates in the file cache. If the same data is

modified several times, all those modifications are captured in the file cache. The result is

that the file system needs to write to a disk only once to update the data. [Ref. 6]

When a disk error occurs during a write operation, NTFS is capable of

automatically re-mapping the bad sector, and allocates a new cluster for the data. The

following section discusses how Windows NT automatically recovers from some kinds of

disk errors. Windows NT provides two kinds of disk error recovery: dynamic data

recovery by using sector sparing and NTFS cluster remapping.

Dynamic data recovery by using sector sparing is only available on SCSI disks

that are configured as part of a fault-tolerant volume. Sector sparing works on fault-

tolerant volumes because a copy of the data on the sector with the error can be

regenerated. Windows NT Server obtains a spare sector from the disk device driver to

replace the bad sector. It then recovers the data by reading the sector from the mirror disk

or recalculating the data from a stripe set with parity, and writes the data to the new

sector. This processing is transparent to any applications performing disk input/output

39

(I/O) operation. Sector sparing eliminates error messages such as the "Abort, Retry, or

Fail?" that occur when a file system encounters a bad sector. [Ref. 7]

NTFS cluster remapping is another disk recovery technique. When Windows NT

returns a bad sector error to the NTFS file system, NTFS dynamically replaces the cluster

containing the bad sector and allocates a new cluster for the data. If the error occurred

during a read on a non-fault-tolerant volume, NTFS returns a read error to the calling

program, and the data are lost. When the error occurs during a write, NTFS writes the

data to the new cluster, and no data are lost. NTFS puts the address of the cluster

containing the bad sector in its Bad Cluster File so the bad sector will not be reused.

[Ref. 7]

Windows NT Server provides additional recovery mechanisms for fault-tolerant

volumes (mirror sets and stripe sets with parity). Table 3.1 summarizes what happens if a

sector goes bad on a computer running Windows NT Server.

C. AUTOMATIC RESTART

The Windows NT operating system includes an automatic restart feature. In the

event of a failure, the system can be configured to automatically restart itself. This feature

of Windows NT Server provides maximum system up-time. To assist the administrator in

determining the cause of the failure, Windows NT Server can be set to transfer its

memory contents to a disk file before restarting for later analysis. [Ref. 5]

40

Fault-Tolerant Fault-Tolerant Fault-Tolerant

Disk (FtDisk) Disk (FtDisk) Disk (FtDisk) not

Description
installed with a

SCSI disk that has

installed with a

non-SCSI disk or

installed with

any kind of disk

spare sectors disk with no spare

sectors

1. FtDisk recovers

the data.

1 . FtDisk recovers

the data.
2. FtDisk sends the

data and bad-sector

Fault-tolerant

volume (Windows
2. FtDisk replaces

the bad sector.

error to the file

system.
N/A

NT Server only)

3. File system does

not know about the

3. NTFS performs

cluster remapping.

error.
4. FAT doesn't do

anything about the

error.

1. FtDisk cannot 1. FtDisk cannot 1. Disk driver

recover the data. recover the data. returns a bad-

sector error to the

2. FtDisk sends a 2. FtDisk sends a file system.

bad-sector error to bad-sector error to

the file system. the file system. 2. NTFS performs

Non-fault-tolerant

volume
3. NTFS performs 3. NTFS performs

cluster

remapping. On a
T UlUUlt

cluster remapping. cluster remapping. read operation,

On a read operation, On a read operation, data are lost.

data are lost. data are lost.

3. FAT loses the

4. FAT loses the 4. FAT loses the data on both read

data on both read data on both read and write.

and write. and write.

Table 3.1. What Happens If a Sector Goes Bad? [From Ref. 8]

41

D. TAPE BACKUP SUPPORT

Regular tape backup is an important part of guaranteeing data availability.

Windows NT Server includes a graphical tool called Backup that makes it easy to backup

Windows NT Server-based data to tape. Windows NT Backup provides five backup

types: normal, copy, incremental, differential, and daily copy. Some backup types use

backup markers, also known as archive attributes, to track when a file has been backed

up. Table 3.2 describes the backup types.

Backup Type Actions

Normal (Full)

Backs up selected files and marks each as having been backed up.

With normal backups, one can restore files quickly because files

on the last tape are the most current.

Incremental
Backs up only those files created or changed since the last normal

or incremental backup. It marks files as having been backed up.

Differential
Backs up those files created or changed since the last normal (or

incremental) backup. It does not mark files having been backed up.

Copy

Backs up selected files, but does not mark each file as having been

backed up. Copying is useful if user wants to back up files

between normal and incremental backups, because copying does

not invalidate these other backup operations.

Daily copy

Backs up selected files that have been modified the day the daily

backup is performed. The backed up files aren't marked as having

been backed up.

Table 3.2. Backup Types and Their Functions. [From Ref. 9]

42

E. UNINTERRUPTIBLE POWER SUPPLY (UPS)

The Uninterruptible Power Supply (UPS) service is a system software component

of Windows NT, which can be configured to detect and warn of impending power failure.

It has built-in electronics that constantly monitor line voltages. If the line voltage

fluctuates above or below pre-set limits, or fails entirely, the UPS supplies power to the

computer system from built-in batteries. UPS Systems provide a hardware interface that

can be connected to the computer. Using appropriate software, this interface enables an

orderly handling of the power failure, including performing a system shutdown before the

UPS batteries are depleted.

UPS offers significant benefits when considering the fact that power loss accounts

for almost 27% of all unplanned outages. In some locations, and at certain times of the

year, power outages can occur as often as once a day. Operators should use redundant

power supplies for maximum reliability.

Windows NT has built-in UPS functionality that takes advantage of the special

features that many UPS systems provide. These features ensure the integrity of data on

the system and allow the computer system and UPS to be shutdown in a controlled

manner if a power failure outlasts UPS batteries. In addition, users connected to a

computer running Windows NT Server can be notified that a shutdown will occur and

new users are prevented from connecting to the computer. Finally, damage to the

hardware from a sudden, uncontrolled shutdown can be prevented. [Ref. 6]

43

F. FAULT-TOLERANT STORAGE

The term, Redundant Array of Inexpensive Disks (RAID), was first coined by

Chen, Gibson, Katz, and Patterson of the University of California at Berkeley. [Ref. 16]

The RAID Advisory Board (RAB) has since re-named the term, replacing "inexpensive"

with "independent."

RAID minimizes loss of data caused by problems with accessing data on a hard

disk. RAID is a fault-tolerant disk configuration in which part of the physical storage

capacity contains redundant information about data stored on the disks. The redundant

information enables regeneration of the data if one of the disks or the access path to it

fails, or a sector on the disk cannot be read. [Ref. 7]

Some vendors sell disk subsystems that implement RAID technology completely

within the hardware. Some of these hardware implementations support hot swapping of

disks, which enables the user to replace a failed disk while the computer is still running

Windows NT Server. [Ref. 7] Regardless of their implementation techniques, all RAID

disk configurations perform the following functions:

• Regeneration of data to satisfy a read request when a disk or a path to a disk

has failed.

• Reconstruction of the missing data onto the new disk when the user has

replaced the failed disk (or the path to it).

Normally a RAID set appears as a single large disk drive to applications and the

operating system, although it is actually an array of drives with equal capacity. RAID

terminology is standardized by level, as indicated in Table 3.3.

44

RAID
Level

Functionality

Data are stripped across available disk drives, to improve access

times and throughput. There is no redundancy.

1

Two disk drives are mirrored (both store the same data), using a

single disk controller. Data can be read off both drives

simultaneously (either drive can service any request), providing

improved performance for reads (but not for writes), and

redundancy.

2

Data are spanned (stripped, bit-by-bit) across multiple disks, and

additional disks are used to store Hamming codes (to detect and

correct errors or recover from failed drives). Four data disks

would require three additional error detection and correction

disks.

3

Data are stripped (sometimes called interleaved) either bit-by-

bit or (more commonly) byte-by-byte across two or more (four

is apparently best) data disks (for example, first byte to first

disk, second byte to next disk, and so on -written in parallel to

all disks). A parity byte is constructed from the corresponding

bytes on the data disks and is written to one additional disk,

which is dedicated as a parity disk. The contents of a failed disk

can be reconstructed from the other disks. However, the use of a

single parity disk creates a performance bottleneck.

4

Same as RAID 3, but data are stripped (and parity is

constructed) in disk sectors (which is the smallest unit of disk

storage allocation) rather than bits or bytes.

5

Data are stripped sector by sector across two or more disks.

Parity information sectors are stripped along with the data on

each disk, and there is no dedicated parity disk. Since both

parity and data are stripped, simultaneous writes are possible

(depending on where the data has to go).

Table 3.3. RAID Levels.

Windows NT Server provides a software implementation of disk striping at RAID

level and disk mirroring at RAID level 1 . It also provides an implementation of RAID

level 5. Cluster server services in the Windows NT Server Enterprise Edition uses RAID

subsystems exclusively.

45

1. Stripe Set

Stripe sets are composed of stripes of equal size on each disk in the volume. One

can create a stripe set from equal sized, unallocated areas on two to 32 physical disks. For

Windows NT Workstation and Windows NT Server, the size of the stripe is 64K.

Stripe sets do not contain any redundant information. Therefore, the cost per MB

for a stripe set is identical to that of the same amount of storage configured from a

contiguous area on a single disk. Although the data are spread across multiple disks, there

is no fault tolerance. When any disk fails, the whole stripe set fails, and no data can be

recovered. The reliability for the stripe set is no better than the least reliable disk in the

set. [Ref. 7]

A stripe set may be used for performance reasons. Access to the data on a stripe

set is usually faster than access to the same data on a single disk, because the I/O is

spread across more than one disk. Therefore, Windows NT can perform doing seeks on

more than one disk at the same time, and can even have simultaneous reads or writes

occurring. [Ref. 7]

2. Mirror Set

A mirror set provides an identical twin for the selected partition. All data written

to the mirror set are written to both partitions, which results in disk space utilization of

only 50 percent. Creating a mirror set is similar to making a copy of a document by using

a copy machine. The original partition is like the original of the document, and the

shadow partition is the copy. Unlike a copy machine, however, Windows NT continually

updates both the original and shadow partitions when any changes are made to the mirror

46

set. It is not necessary to use identical physical disks or to have the same partitions on

each disk, although identical disks should be used if putting the system partition on a

mirror set. A mirror set requires only sufficient unused space on the second disk to create

the shadow partition. [Ref. 7]

If there is a read failure on one of the disks, the fault-tolerant disk driver reads the

data from the other disk in the mirror set. If there is a write failure on one of the disks in

the mirror set, the fault-tolerant disk driver uses the remaining disk for all accesses.

Because dual-write operations can degrade system performance, many mirror set

implementations use duplexing, where each disk in the mirror set has its own disk

controller. [Ref. 7]

3. Stripe Set With Parity

The parity strip is the exclusive-OR (XOR) of all the data values for the data

strips in the stripe. If no disks in the stripe set with parity have failed, the new parity for a

write can be calculated without having to read the corresponding strips from the other

data disks. Thus, only two disks are involved in a write operation, the target data disk and

the disk that contains the parity strip. Figure 3.1 shows the steps that are involved in

writing data to a stripe set with parity. [Ref. 7]

When implementing a stripe set with parity, there must be at least three disks and

no more than 32 disks in the set. The physical disks do not need to be identical. However,

there must be equal size blocks of unpartitioned space available on each physical disk in

the set. The disks can be on the same or different controllers. As with stripe sets, one

47

cannot add disks to a stripe set with parity if one may need to increase the size of the

volume later. [Ref. 7]

—> Read Data —* Write Data

——*-

+
Application

Write Request
—+ Array Management

Software

Compute
New) Parity

V
— Read Parity Write Parity

Time

Figure 3.1. Steps in Writing Data to a Stripe Set with Parity.

If one of the disks in a stripe set with parity fails, none of the data are lost. When

a read operation requires data from the failed disk, the system reads all of the remaining

good data strips in the stripe and the parity strip. Each data strip is subtracted (with XOR)

from the parity strip. The result is the missing data strip. [Ref. 7]

When the system needs to write a data strip to a disk that has failed, the system

reads the other data strips and the parity strip and then backs them out of the parity strip,

leaving the missing data strip. The modifications needed to the parity strip can now be

calculated and made. Only the parity strip is written upon; the data strip is not written

upon because it is bad.

There is no effect on a read operation when the failed disk contains a parity strip.

(The parity strip is not needed for a read unless there is a failure in a data strip.) When the

failed disk contains a parity strip, the system does not compute or write the parity strip

when there is a change in a data strip. [Ref. 7]

48

G. MICROSOFT CLUSTER SERVER (MSCS)

1. Overview of Server Cluster

Clusters of computer systems have been built and used for over a decade. Pfister

defines a cluster as "a parallel or distributed system that consists of a collection of

interconnected whole computers, that is utilized as a single, unified computing resource."

[Ref. 10] The goal of a cluster is to make it possible to share a computing load over

several systems on a network without either the users or system administrators needing to

know that more than one system is involved.

In a cluster, if a certain resource or set of resources goes down, the system

intelligently chooses where and how to run applications in the network. With clustering,

one of two nodes can also be used to run certain services while the other is used for

maintenance. Later, the maintained node can be returned to the cluster without affecting

services. In short, clustering provides the high availability of a multiple-node network

with the management simplicity of a single address space. [Ref. 12]

There are basically three techniques that clusters use to make disk data available

to more than one server:

• Shared disks: In the shared disk model, software running on any system in

the cluster may access any resource (e.g., a disk) connected to any system in

the cluster. If two systems need to see the same data, the data must either be

read twice from the disk or copied from one system to another. [Ref. 11]

49

• Mirrored disks: A more flexible alternative is to let each server have its own

disks, and to run software that "mirrors" every write from one server to a copy

of the data on at least one other server. This technique can be used for keeping

the data at a disaster recovery site in synch with that of a primary server.

• Shared nothing: In the shared nothing software model, each system within

the cluster owns a subset of the cluster's resources. Only one system may own

and access a particular resource at a time. However, upon failure, another

dynamically determined system may take ownership of the resource of the

failed system. In addition, requests from clients are automatically routed to the

system that owns the resource. For example, if a client request requires access

to resources owned by multiple systems, one system is chosen to host the

request. The host system analyzes the client request and ships subrequests to

the appropriate systems. Each system executes the sub-request and returns

only the required response to the host system. The host system assembles a

final response and sends it to the client. [Ref. 14]

2. MSCS

MSCS, also known as "Wolfpack", is a built-in feature of the Windows NT

Server, Enterprise Edition. It is software that supports the connection of two servers into

a "cluster" for higher availability and easier manageability of data and applications.

MSCS can automatically detect and recover from server or application failures. It can be

used to move server workload to balance utilization and to provide for planned

maintenance without downtime. [Ref. 13]

50

MSCS uses software "heartbeats" to detect failed applications or servers. In the

event of a server failure, it employs a "shared nothing" clustering architecture that

automatically transfers ownership of resources (such as disk drives and IP addresses)

from a failed server to a surviving one. It then restarts the failed server's workload on the

surviving server. If an individual application fails (but the server does not), MSCS will

typically try to restart the application on the same server. If that fails, the MSCS moves

the application's resources and restarts the same application on the other server. The

cluster administrator can use a graphical console to set various recovery policies, such as

dependencies between applications, whether or not to restart an application on the same

server, and whether or not to automatically "failbackV (rebalance) workloads when a

failed server comes back online. Generic MSCS architecture is shown in Figure 3.2.

Client PCs

Server A

Figure 3.2. A Generic MSCS Setup. [After Ref. 12]

51

Figure 3.3 shows an overview of the components and their relationships in a

single system of a Windows NT cluster. Microsoft Cluster Server mainly comprised of

three key components:

• The Cluster Service

• The Resource Monitor

• Resource and Cluster Administrator Extension DLLs

The Cluster Service (which is composed of the Event Processor, the Failover

Manager/Resource Manager, the Global Update Manager, the Communication Manager,

the Checkpoint Manager, and Membership Manager) is the core component of MSCS and

runs as a high-priority system service. The Cluster Service controls cluster activities and

performs such tasks as coordinating event notification, facilitating communication

between cluster components, handling failover operations, and managing the

configuration. Each cluster node runs its own Cluster Service. [Ref. 32]

The Resource Monitor is an interface between the Cluster Service and the cluster

resources, and runs as an independent process. The Cluster Service uses the Resource

Monitor to communicate with the resource DLLs. The DLL handles all communication

with the resource, thus shielding the Cluster Service from resources that misbehave or

stop functioning. Multiple copies of the Resource Monitor can be running on a single

node, thereby providing a means by which unpredictable resources can be isolated from

other resources. [Ref. 32]

The Resource Monitor and resource DLL communicate using the Resource API,

which is a collection of entry points, callback functions, and related structures and

macros used to manage resources. Applications that implement their own resource DLLs

52

to communicate with the Cluster Service and that use the Cluster API to request and

update cluster information are defined as cluster-aware applications. Applications and

services that do not use the Cluster or Resource APIs and cluster control code functions

are unaware of clustering and have no knowledge that MSCS is running. These cluster-

unaware applications are generally managed as generic applications or services. [Ref. 32]

Cluster Service

Cluster API

Resource API

Resource DLLs
(applications, logical, physical, ...)

Cluster-unaware

Application

to other nodes

Figure 3.3. MSCS Components on a Single Windows NT Server. [From Ref. 32]

MSCS can reduce planned and unplanned downtime. However, even with MSCS,

a server could still experience downtime from the following events:

53

• MSCS failover time: If MSCS recovers from a server or application failure, or

if it is used to move applications from one server to another, the application(s)

will be unavailable for a non-zero period of time.

• Failures from which MSCS cannot recover: There are types of failure that

MSCS does not protect against, such as loss of a disk not protected by RAID,

loss of power when a UPS is not used, or loss of a site when there's no fast-

recovery disaster recovery plan. Most of these can be survived with minimal

downtime, however, if precautions are taken in advance.

• Server maintenance that requires downtime: MSCS can keep applications and

data online through many types of server maintenance, but not in all

circumstances. For example, two such circumstances occur when completely

upgrading both servers in a cluster, or installing a new version of an

application which has a new on-disk data format that requires reformatting

preexisting data).

MSCS does not require any special software on client computers, so the user's

experience during failover depends on the nature of the client side of their client-server

application. Client reconnection is often transparent, because MSCS has restarted the

applications, file shares, etc., at exactly the same IP address. [Ref. 13]

If a client is using "state-less" connections such as a standard browser connection,

then client would be unaware of a failover if it occurred between server requests. For

client-side applications that have "state-full" connections to the server, a new logon is

54

typically required following a server failure. In many cases, this approach is required for

security purposes. [Ref. 13]

The servers in an MSCS cluster cannot be located at separate locations for

recovery from site disasters. All of the cluster configurations currently being considered

for validation use SCSI connections to storage resources, which limits the distance

between clustered servers to the distance supported by standard SCSI. This is typically no

more than 25 meters. [Ref. 13] There are three types of server applications that will

benefit from MSCS clusters:

1. "In the box" services of Windows NT Server, Enterprise Edition: File shares, print

queues, Internet/intranet sites managed by the Microsoft Internet Information

Server, Windows NT Server's built-in Web server; Microsoft Message Queue

Server (MSMQ) services, and Microsoft Transaction Server (MTS) services, both

of which are part of Windows NT Server.

2. Generic applications: MSCS includes a point-and-click wizard for setting up any

well-behaved server application for basic error detection, automatic recovery, and

operator-initiated management. A "well behaved" server application is one that

keeps a recoverable state on shared SCSI disk(s), and whose client can gracefully

handle a pause in service of up to a minute as the application is automatically

restarted by MSCS.

3. Cluster-aware applications: Software vendors will test and support their

application products on MSCS. Over time, vendors will provide MSCS-based

enhancements, from simpler setup and faster failover to cluster-enabled scalability

and load balancing.

55

H. WINDOWS NT LOAD BALANCING SERVICE (WLBS)

Microsoft Windows NT Load Balancing Service (WLBS), a feature of Windows

NT Server 4.0, Enterprise Edition, provides scalability and high availability to enterprise-

wide Transmission Control Protocol/Internet Protocol (TCP/IP) services, such as Web,

proxy, Virtual Private Networking (VPN), and streaming media services. WLBS is based

on the Convoy Cluster Software by Valence Research, Inc., a recent Microsoft

acquisition. [Ref. 15]

The two principal goals of Microsoft Windows NT Load Balancing Service

(WLBS) are to provide high availability for Internet server programs and to ensure scale

server performance. It accomplishes these goals by using a cluster of two or more

computers (called hosts) working together, as shown in Figure 3.4. WLBS installs as a

standard Windows NT networking driver and runs on an organization's existing LAN.

All servers within a cluster are placed on a single subnet. Internet clients access the

cluster using a single IP address (or a set of addresses for a multi-homed host). The

clients cannot distinguish the cluster from a single server. [Ref. 17]

mi

Cluster Node Cluster Node

-LAN (Ethernet /FDDI>

Cluster Node Cluster Node

Figure 3.4. An Example Configuration of WLBS. [From Ref. 15]

56

1. WLBS Features

WLBS cluster servers emit a "heartbeat" to other nodes in the cluster, and listens

for the heartbeat of other nodes. When a node fails or goes offline, WLBS automatically

reconfigures the cluster to direct client requests to the remaining computers. In addition,

for load-balanced ports, the load is automatically redistributed among the computers still

operating, and ports with a single server have their traffic redirected to a specific host.

While connections to the failed or offline server are lost, the offline computer can

transparently rejoin the cluster and regain its share of the workload once the necessary

maintenance is completed. In addition, WLBS handles inadvertent subnetting and

rejoining of the cluster network. [Ref. 15]

WLBS load-balances incoming TCP/IP traffic across all the hosts in a cluster to

scale performance. Running a copy of the server program on each load-balanced host

enables the load to be partitioned among them in any manner. WLBS transparently

distributes the client requests among the hosts and lets the clients access the cluster using

one or more "virtual" IP addresses. Up to 32 hosts may operate in each cluster, and hosts

may be added transparently to a cluster to handle increased load. WLBS can also direct

all traffic to a designated single host, called the default host.

Load balancing can be specified for a single IP port or group of ports using port

management rules that tailor the workload for each service. In addition, optional support

for client sessions can be enabled, as well as optional port rules to let all client requests

be directed to a single host to further refine load balancing among different applications.

Undesired network access can also be blocked to certain IP ports. WLBS logs all actions

and cluster changes to the Windows NT event log. [Ref. 15]

57

Administrators can remotely control WLBS actions from any networked

Windows NT-based computer using console commands or scripts. All cluster hosts can

be controlled with one command, or controlled individually. The control program has

fully encrypted password protection to prevent unauthorized access. [Ref. 15]

No special hardware is needed to interconnect cluster hosts; the cluster may

exchange status messages over a single local area network using Ethernet (10, 100, or

gigabit) or FDDI adapter cards. WLBS also lets clients access the cluster with a single

Internet logical name and IP address, while retaining individual names for each computer.

In addition, server applications need not be modified to run in a WLBS cluster, and all

operations, including recovery, require no human intervention. Computers can also be

taken offline for preventive maintenance without disturbing cluster operations. [Ref. 15]

WLBS supports state-full client sessions and Secure Sockets Layer (SSL). If a

server application (such as a Web server) maintains state information about a client

session that spans multiple TCP connections, it is important that all TCP connections for

this client be directed to the same cluster host. Should a server or network failure occur

during a "stateful" client session, a new logon may be required to re-authenticate the

client and re-establish session state. WLBS also allows modification of session support to

direct all client requests from an IP Class C address range to a single cluster host. This

feature ensures that clients who use multiple proxy servers to access the cluster will have

their TCP connections directed to the same cluster host. [Ref. 15]

58

2. WLBS Shortcomings

If one server fails, the WLBS detects the server failures within 10 seconds, but it

doesn't switch a failed servers active connections to other servers. [Ref. 28] Therefore,

active connections to a failed server are lost when the server goes off line; all other

connections are not unaffected. Another drawback of the WLBS is its lack of data

replication mechanism. Since the WLBS works at the network driver level and can't

replicate data, it is only suitable for stateless services such as WEB server farm

environment.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

IV. LOCAL AREA FAULT TOLERANCE FOR SAAM SERVER

Fault tolerance for the SAAM server will be implemented in two phases: locally

and remotely. The first phase, local area fault tolerance for the SAAM server, is focuses

mainly on tolerating component failures of one server such as processor failure, disk

failure and network interface card failure. The second phase, remote area fault tolerance

(disaster recovery) for the SAAM server, backup servers are used to tolerate

environmental faults such as fire, earthquake, and flood that cause unrecoverable server

failures. The function of the second phase is to tolerate the failure of the local area fault

tolerance implementation of the SAAM server. Disaster recovery for the SAAM server

will be discussed in the next chapter.

Local area fault tolerance for the SAAM server will be implemented by one of the

existing third party products. As the Windows NT operating system is more commonly

used in the mission critical applications, many commercial companies are focusing on the

enhancement of fault tolerance features for this operating system. Nowadays there are

dozens of such products. In order to select a product that best meets the SAAM server

fault tolerance requirements, we have examined the five most promising products. The

findings are presented in this chapter.

A. PRODUCTS OVERVIEW

According to recent studies on products providing fault tolerance for Windows

NT, the following five products are the most promising:

• ARCserve Replication 4.0 for Windows NT

61

• CO-StandbyServer 4.2 for Windows NT

• Double-Take 3.0

• Endurance 4000

• Octopus 3.2

1. ARCserve Replication 4.0 for Windows NT

ARCserve Replication is a software product developed by Computer Associates

(www.cai.com) to provide server resilience for the Microsoft Windows NT operating

system. ARCserve Replication allows servers to be loosely coupled using existing

network connections and requires no special-purpose hardware. [Ref. 25] ARCserve

Replication has the following three components:

1. Server component. This component installs the ARCserve Replication Server

service. This enables the computer to act as a primary or secondary server.

The Server component must be installed on each computer that needs to be

protected and on each server that will provide protection.

2. Manager component. This installs ARCserve Replication Manager. This is the

user interface for the ARCserve Replication. It enables the user to set up

server protection, monitor the progress of replication tasks, request a manual

failover, and reinstate a failed server. These tasks can be performed for all

ARCserve Replication servers from any computer running the Manager

component. At least one Manager component must be installed.

3. Alert component. This installs the Alert notification system, and warns user

whenever replication events (such as failovers) occur.

62

In order to provide the secondary server with up-to-date files, a process called

synchronization process has to be performed. During the synchronization process, those

parts of the primary file system that constitute the workload are accurately mirrored on

the secondary server. This initial synchronization process typically requires large

amounts of data to be transferred, which can be time-consuming [Ref. 25]. However,

ARCserve Replication lets the primary and secondary servers continue to operate while

synchronization takes place. Files that are open and in use can also be replicated.

When synchronization is complete, the secondary contains an up-to-date set of

replicated files. When files are added or removed from a backed-up directory on the

primary server, the changes are automatically replicated in nearly real-time on the

secondary server. If a file is altered slightly, only the changes to the file are sent over the

network to conserve bandwidth.

While changes are transmitted automatically between servers, the information is

only committed to disk when a transaction is completed. This prevents database

corruption should failover occur in midtransaction. The replication process takes place in

the background and does not require client systems to close files. All data remains live

and available during synchronization. Both FAT and NTFS are supported and the file

systems on the two servers do not need to be the same replication. ARCserve Replication

runs on existing hardware, provided that there is sufficient disk space for the replicated

data.

To protect files on a server, a replication task must be set. The replication task

defines the data to be protected, the secondary server to hold the replicated data, and the

conditions that trigger a failover. The replication task also defines an alternate

63

identification for the primary server because the secondary server adopts the primary

server identity while it is standing in for the primary. During this set up process, the user

can also specify the level of protection desired (data replication with failover or data

protection only without failover) and the speed of the underlying network (very fast, fast,

slow, or very slow).

When the user sets up a replication task, certain conditions apply for clients if the

primary and secondary servers are not in the same domain. Specifically following a

failover, the clients can only access replicated data on the stand-in server if their accounts

for the primary server also exist on the stand-in server. If the primary and the secondary

servers are in the same domain, then user accounts automatically exist on both servers.

[Ref. 24]

During normal operation, ARCserve Replication continuously monitors the state

of the primary server via TCP/IP or EPX/SPX heartbeat messages over the network,

looking for conditions that can cause it to initiate a failover. These conditions are as

follows:

• Permanent loss of contact with the primary server

• Critically low disk space on the primary server

• On command from the system administrator

Permanent loss of contact with the primary server can have a variety of causes,

including hardware and software crashes, power outage, and network malfunction. The

secondary server monitors a regular "heartbeat" sent out by the primary. If a number of

consecutive heartbeats are missed, ARCserve Replication assumes loss of contact (the

precise period can be configured as it depends, among other things, on the network

64

speed). Optionally, it can then obtain more detail by using an independent serial

connection between the primary and secondary servers, and by "pinging" other

preselected network nodes. In this way, ARCserve Replication obtains sufficient

information to determine whether loss of the heartbeat (as detected by the secondary) is

due to genuine failure of the primary. This information, in conjunction with a policy set

by the system administrator, helps ARCserve Replication to assess the severity of the

failure, and whether or not to fail over. [Ref. 25]

The system administrator can configure the drives to be monitored, and the level

of free space that is to be regarded as critical. ARCserve Replication can also monitor

free disk space levels on the secondary server, and raise an alert and/or suspend the

replication task if critical levels are reached. [Ref. 25]

The feature of failover on command from the system administrator is useful if

planned maintenance or upgrade is required. The primary server can be taken out of

service with little or no disruption. [Ref. 25]

ARCserve Replication offers a set of script files that execute automatically at the

stages during failover. These script files can be used on both the primary server and the

secondary server, before and after failover

During failover, the secondary server inherits the IP address and the NetBIOS

name originally owned by the primary. In addition to this inheritance, the primary is

given a temporary new address and a name to avoid conflicts in the network. The net

effect of the failover is that in most case users and applications continue functioning and

without interruption or requiring a new login. Some older applications that are not

65

designed for resilience may require the user to retry a file operation before continuing.

[Ref. 25]

When the failed primary server has been repaired, the user runs the reinstate

wizard. This wizard is not triggered automatically; the user can run it manually or

schedule it to start at a specific time. The main steps during the reinstating process are as

follows:

1. Optionally issue a warning message to logged-in users.

2. Synchronize the primary file system with the secondary so that changes made

while the secondary was standing in are not lost.

3. Execute pre-reinstatement scripts on both the primary and the secondary

server. These scripts might typically be used for closing down services,

modems, etc.

4. Restore file shares and IP addresses to the primary server.

5. Execute post-reinstatement scripts on both primary and secondary servers,

possibly to start up the services needed for users and applications.

6. Optionally restart the replication task, for continued protection.

2. Co-StandbyServer 4.2 for Widows NT

Co-StandbyServer for Windows NT was originally developed by Vinca

Corporation, which was acquired by Legato Systems (www.legato.com) on August 2,

1999. Co-StandbyS<?rver is a clustering solution for Windows NT servers. Using Co-

StandbyServer, one can couple two Windows NT servers together to form a cluster. As

66

shown in Figure 4.1, in a typical configuration two servers are connected with a separate,

dedicated network segment.

Active-active and active-passive configurations are two possible configuration

types of the Co-StandbvServer. In active-active configuration, each server is active on the

network performing file and print functions and/or acts as an application server.

Conversely, in active-passive environment, the second server does not perform any

service on the network until the primary server's failure.

—

V

Hub

Server 1 Network

Dedicated Link

\A

Server 2

BootDriw / App. Module \ BootDriw
C:/ [Envlronmant] Ctf

' ** —

Mm?red

Drives

Mirroring

[Data]

Mirrored

Drivas

.

.

.... . ,...

Figure 4.1 Typical Co-StandbyServer Configuration.

During normal operation, a continuous bi-directional mirroring process sends

data across the dedicated network segment ensuring that each server is kept up-to-date

with data sets from both servers. Should either server fail, Co-StandbyServer transfers

critical functions from the failed server to the surviving server. This includes LP

addresses, shares, print queues, server names and applications that were running on the

failed server. Data that was mirrored from the failed server is now made available to the

network through the surviving server. At the conclusion of the failover process all critical

67

network functions are now active on the surviving server and users can continue to access

those functions with little or no interruption.

In Co-StandbyServer, only two servers can exist within a cluster. The two servers

do not need to be identical. However, the two servers must have the same role in the

network and must be members of the same domain.

During the installation process, Co-StandbyS<?rver's setup installs five services

and three device drivers.

Services:

1. Disk Service: Exports disk devices, which are redirected to the other server

when a failover occurs.

2. Event Manager. Receives all errors and alerts for all Co-StandbyServer

services, devices, and drivers. These errors and alerts are logged in the

applications Event Log and a text log.

3. Vinca Service: Monitors communication between the servers and controls the

failover and failback process.

4. Transport Service: Provides communication service for the dedicated link

between mirroring engines.

5. Watch Service: Watches changes in the Registry for clustered applications in

order to replicate those changes to the other server.

Device Drivers:

1

.

VincaFT: Mirroring driver.

2. VNCDisk: Imports the disk devices that have been exported by the Co-

StandbyServer Disk Service on the other server.

68

3. VNCHint: Provides transport services, which both the VincaFT and VNCDisk

use to communicate between servers.

Installation of the Co-StandbyServer components requires installing Windows NT

on a separate drive, or logical drive within an array. Additionally, each server must have

three physical drives (or three logical drives configured in a disk array) for an active-

active configuration, or two drives per server for an active-passive configuration

(configuration types will be defined later.)

Each block of data residing on the clustered volume is mirrored to the other disk

device located on the other server forming a mirrored set. A mirrored set consists of two

different partitions (on different disk devices and on different servers) logically combined

to look like a single volume. If the I/O card or disk drives on one server fails, nothing

happens to data access because there is still an active I/O card or disk device inside the

mirrored set. This is the same benefit received if one is mirroring two drives internally on

a server and a drive fails; users can still access data from the remaining drive in the

mirrored set. If one of the disk devices in the mirrored set becomes unavailable for any

reason, a delta file is generated that marks the blocks of data that have been changed

since the drives were unavailable. The process used by the delta file is capable of holding

as much as 2GB of changes in one 64K block. Therefore, it is unnecessary to allocate

additional drive space for buffering changes when mirroring is prevented. [Ref. 21]

For a cluster server to take over the functionality of a server with mission-critical

applications, it must have these application files and their support modules along with the

same registry keys that make up the application. This can be achieved by application

support scripts or can be done manually. To manually stage a registry, the user must

69

install the application to the other machine within the cluster using the same directory

paths that were used when the application was installed on the original server. Command

files can then be created that start the installed application on the other server when

failover is processed. [Ref. 22]

Each server within the cluster maintains its own resources. If any of these

resources are clustered using Co-StandbvServer, they are associated with an alias NetBios

computer name known as a failover group. Failover group is simply a server alias name

container that can move between physical server hosts as needed. The failover group can

be activated on either server within the cluster. Activating a failover group on a server

allows users to see the alias computer name on the network that are pointing to the server

hosting the clustered resources. [Ref. 21]

Co-StandbyServer provides manual and automatic failover capabilities. Manual

failover can be employed for scheduled maintenance or for load balancing purposes. In

automatic failover, Co-StandbvServer sends heartbeat checks across both the client

network and the dedicated link between the servers (when used). Only a failure of both

links causes a failure condition.

When a failure is detected, Co-StandbyServer checks the properties of the

Failover Groups. If there are any Failover Groups currently active on the failed server

and they are configured to automatically failover, Co-StandbyServer takes action on the

surviving server to prepare it to receive the resources of the failed server. The resources

of the failed server are then activated on the surviving server and the failover process is

complete. Automatic failover occurs only in the event of a failure of one of the cluster

servers. By definition, after an automatic failover, the cluster is no longer in a protected

70

state and the surviving server resources are at risk of another server failure. The

automatic failover is in contrast to manually moving a failover group, which does not

alter the availability state of the cluster. [Ref. 22]

When a server failure causes an automatic failover of a Failover Group, the

cluster is considered to be in a failed over state because there is only one host server. This

condition should be repaired as soon as possible in order to return the system to its

original high-availability state. The necessary steps for recovery depend on what caused

the server to fail. If a server hosting a failover group fails and the automatic failover

option is armed, the failover group will be activated on the surviving server. If the

automatic failover option is not armed, the failover group can be moved manually to the

surviving server to activate the resources and make them available to users. In most cases

when the server is repaired and returned to the cluster, it automatically resynchronizes the

cluster volumes and is available for hosting the failover group. [Ref. 22]

3. Double-Take 3.0

NSI Software's (www.nsisw.com) Double-Take is a data replication and failover

software product. The process begins by identifying the mission-critical data to be

protected. The machine that holds the original copy of this data is known as the source

machine. The selected data, known as the replication set, is then copied to another

computer, known as the target machine. The target machine, on a local network or at a

remote site, stores the copy of the critical data from the source machine.

After the target has a copy of the source's data, Double-Take monitors any

changes to the data contained in the replication set and sends the changes to the target

71

machine through a process known as replication. Double-Take replicates only the

changes rather than copying an entire file. [Ref. 18] The replication process does not

require a dedicated link between the source and the target machine.

The failover module resides on the target server, and continually monitors the

source servers. In the event of a server failure, the target server can assume the names and

IP addresses of the failed servers (in addition to its original name), and invokes scripts to

restart applications.

Double-Take components can be classified in two groups: server components and

client components:

Server Components:

1. Double-Take Service: This service controls the core functionality of Double-

Take including mirroring and replicating as well as failover functionality for

the source machine.

2. Server Monitor Service: This service controls the failover monitoring

functionality on the target machine.

3. Logger Service: This service controls the Double-Take logging utility. This

utility logs alerts (notifications, warnings, and errors) that occur during

Double-Take processing.

Client Components:

1. Management Console. This client is a graphical user interface where you can

work with all aspects of Double-Take including failover configuration.

2. Text Client'. This client is a full-screen, text-based client, which uses the

Double-Take Command Language.

72

3. Command Line Client: This client is a line-by-line, text-based client that uses

the Double-Take Command Language.

4. Failover Control Center. This client is a graphical user interface, which can

be used to configure and monitor all aspects of Double-Take failover.

During the mirroring process, the Double-Take transmits the data contained in a

replication set from the source to the target machine so that an identical copy of data

exists on the target machine. All file attributes and permissions are also mirrored to the

target machine. Mirroring must occur initially to generate a baseline copy from the source

to the target. After mirroring has occurred, replication maintains an identical copy of the

data on the target. Figure 4.2 shows the different steps that are completed when a mirror

is performed. Mirroring process includes following steps:

1. Mirroring is initiated by the user, either manually through the one of the

clients or automatically when the connection is created.

2. Double-Take determines which data needs to be sent to the target depending

on the mirroring criteria that was specified through the client. If it is a full

mirror, all of the files are immediately sent to the target. If it is a file

differences mirror, the files contained in the replication set on the source are

compared against the identical copy of the replication set on the target to

determine which files need to be mirrored.

3. Double-Take transmits the mirror data to the target machine.

4. As each packet of mirror data is received on the target, the target returns an

acknowledgment to the source confirming that the mirrored data has been

received.

73

tep ©/
b»

Client Machine

Files Contained In

Replication Set

"TV

step©-

-rv

IP
GODGDDO

step

iUUU

jOOOSGQ

Identical Copy Of
Replication Set

TV
IV

Source Machine Target Machine

Figure 4.2 Double-Take Mirroring. [From Ref. 18]

Double-Take's replication process operates at the file system level and is able to

track file changes independently from the file's related application. Once the source and

target have been connected, Double-Take begins tracking file system changes that affect

the data included in a replication set. During replication, Double-Take immediately

records these file changes and groups them in packets. The packets are placed on a queue

corresponding to each connection. Double-Take accumulates packets on the appropriate

queue until the transmission of the packet to the target has been successful. When the

target receives the packet, it responds with an acknowledgment and the source removes

the acknowledged packet from the queue. Figure 4.3 shows the components that are

involved in the replication process. Replication process includes following steps:

1. The operating system handles all file requests when an application creates,

modifies, or deletes data on the source machine.

74

2. The file requests are intercepted by the Double-Take driver, DblHook.sys, on

a Windows NT source machine or by the Double-Take File System (DTFS)

on a UNIX source machine.

3. DblHook.sys or DTFS forwards all file requests to the file system and to

Double-Take. The file system writes the operation to disk on the source

machine and Double-Take converts the file requests into replication packets.

4. The Double-Take source sends the replication packets to the Double-Take

target where they are applied to the target copy of the data.

IB
D0000OOks

Source Machine

c .,, c . I Double-Tal
F.le System)

"
Serv

.

ce

DTFS or DblHook.sys

Operating System

Double-Takel

Service

7=1

till
:ooo:oo

Target Machine

Figure 4.3 Double-Take Replication Components. [From Ref. 18]

Double-Take monitors the status of machines by tracking network requests and

responses exchanged between monitored source machines and the target machine. The

target sends a monitor request to each monitored IP address at a user-defined interval. A

monitor reply is sent from the source back to the target. When the user-defined number of

missed packets is met, the address is considered "failed." At this time, the failover

process occurs or manual intervention is requested. In the event of a failover on a

Windows NT machine, the target assumes the identity of the failed source including

machine name, IP address, and subnet mask. Failover also send updates to routers and

75

other machines to update the IP to MAC address mapping. Network packets and

applications destined for the failed IP address are routed to the target machine.

Depending on the type of client workstations, the timeout settings, and the

applications in use, the clients may notice only a slight pause while the failover process

occurs. If the failover timeout is set for a duration such as several minutes, clients may

see an Abort or Retry message if they try to communicate with the source before the

timeout has expired and the failover process has completed. For most clients and network

aware applications, reconnection is automatic. By incorporating user-defined failover

scripts into the process, network administrators can automate many network and

application events on the target machine, such as starting applications or system services

or sending network messages to administrators. [Ref. 18]

Double-Take's failover capability can be used on the following types of networks:

• Local Area Network (LAN)

• Wide Area Network (WAN) with Virtual LAN (VLAN)

• WAN with WINS or DNS reconfiguration

• WAN with source servers using secondary IP subnets.

On a LAN, Double-Take can failover servers without any additional network

addressing concerns. During failover, the target server assumes the IP address and

machine name of the failed source server while maintaining its own identity. After the

target server assumes the identity of the source server, it sends out an Address Resolution

Protocol (ARP) reply broadcast so that all machines on the LAN will send packets to the

target server. This reconfiguration can be completely transparent to the clients. [Ref. 19]

76

Failover can also happen on WAN with VLAN. A VLAN is a group of devices

that logically appear as local to each other, but are separated physically. The routers

and/or switches in a WAN hide the true location of devices in a VLAN from each other.

The routers and switches handle ARP requests to ensure all devices on a VLAN can see

each other as local devices, regardless of the actual network distance between the

devices. In a VLAN, the routers and switches allow Double-Take to failover across a

WAN. It allows the source and target servers to be on the same logical IP subnet even

thought they are separate. The Figure 4.4 shows IP addressing in a normal VLAN

environment and the Figure 4.5 shows what happens during failover across VLAN. The

CLIENT, will still see the server SOURCE as local even it is on a physically different

network. [Ref. 19]

SOURCE

10.0.0.1

Switch Using

VLAN1

Router Using

VLAN 2

CLIENT

10.0.0.3

Wi
Netv

ie Area

vork Link
-J

Switch Using

VLAN1

Router Using

VLAN 2TARGET

10.0.0.2

Figure 4.4 Normal VLAN Operations. [From Ref. 19]

In a typical WAN environment, an IP address that is valid on one network

segment will not be valid on another segment. In this case Double-Take needs a way to

change the IP address associated with a server name during the failover process. This

77

allows clients to send packets to the same server name, but to a different IP address.

Changing the IP address associated with a server name can be accomplished with WINS

or DNS scripting. [Ref.19]

Switch Using

VLAN1

Router Using

VLAN2
CLIENT

10.0.0.3

Wide Area

Network LinkH
Switch Using

VLAN1

Router Using

VLAN2TARGET 10.0.0.2

SOURCE 10.0.0.1

Figure 4.5. Failover on a VLAN. [From Ref. 19]

Another method of failover is to failover on WAN with source servers using

secondary IP subnets. Using this method, each source server talks to a router via a unique

secondary address on a router port. When failover occurs, the secondary address is

moved from the router port associated with the source server to the router port associated

with the target server. The routing protocols (i.e. RIP, OSFP, IGRP, EIGRP) in use will

update all routers and let them know that the sub-net is now in a different location. Figure

4.6 shows a sample configuration before failover and Figure 4.7 shows the same

configuration after failover (the sub-net mask used in the entire configuration is

255.255.255.0). [Ref.19]

78

SOURCE

10.1.2.51

Switch Router 1

Ethernet port

10.1.1.1 and

10.1.2.1

WAN port

10.0.1.1

CLIENT

10.1.1.52

;
Frame Relay;

• Network •

Switch Router 2

Ethernet port

10.0.96.1

WAN port

10.0.1.7

TARGET

10.0.96.53

Figure 4.6. WAN Source Server Using Secondary IP (before failover.) [From Ref. 19]

Switch Router 1

Ethernet port

10.1.1.1

WAN port

10.0.1.1

CLIENT

10.1.1.52

TARGET 10.0.96.5-

SOURCE 10.1.2.51

Switch

7
Frame Relay;
Network

jT_

Router 2

Ethernet port

10.0.96.1 and

10.1.2.1

WAN port

10.0.1.7

Figure 4.7. WAN Source Server Using Secondary IP (after failover.) [From Ref. 19]

79

After the problems of the failed server are corrected, the network administrator

manually initiates a process called fallback. The fallback refers to the reinstating the

repaired source server in the network. In order to avoid conflicts, the source machine

should not be reattached to the network until Double-Take has completely removed the

source's identity from the target. Depending on the type of machine and data that

Double-Take is protecting, fallback may need to be scheduled for an inactive period. If

failover is being used in conjunction with Double-Take replication or if a drive on the

source was replaced, the data on the source may not be current. It may be necessary to

restore the most recent data from the target machine to the proper location on the source

before initiating the fallback process and bringing the source back online.

Users may notice an interruption at their workstations during fallback. This delay

will occur between the completion of the fallback process and the time needed to bring

the source machine back online. Like failover, network administrators can incorporate

user-defined fallback scripts into the process to automate many network and application

events on the target machine, such as starting applications or system services/daemons or

sending network messages to administrators. [Ref. 18]

Double-Take can be configured in various forms. As shown in Figure 4.8, sample

configurations for Double-Take are as follows:

• One-to-One, Active/Standby: One target machine, having no production

activity, is dedicated to support one source machine. The source is the only

machine actively replicating data. This configuration is appropriate for offsite

disaster recovery, failover, and critical data backup.

80

• One-to-One, Active/Active: Each machine acts as both a source and target

actively replicating data to each other. This configuration is appropriate for

failover and critical data backup and is more cost-effective than the

Active/Standby configuration because there is no need to buy a dedicated

target machine for each source.

• Many-to-One: Many source machines are protected by one target machine.

This configuration is appropriate for offsite disaster recovery. Many-to-one

configuration is also an excellent choice for providing centralized tape backup

because it spreads the cost of one target machine among many source

machines.

• One-to-Many: One source machine sends data to multiple target machines.

The target machines may or may not be accessible by one another. This

configuration provides offsite disaster recovery, redundant backups, and data

distribution. For instance, this configuration can replicate all data to a local

target machine and separately replicate a subset of the mission-critical data to

an offsite disaster recovery machine.

• Chained: One or more source machines send replicated data to a target

machine that in turn acts as a source machine and sends selected data to a final

target machine which is often offsite. This is a convenient approach for

integrating local high availability with offsite disaster recovery. This

configuration moves the processing burden of WAN communications from

the source machines to the target machines.

81

One-to-One,

Active/Standby

One-to-One,

Active/Active
Many-to-One

^Ijiajii^ ^

B

LLJlJ

mm:

Scute

Dual

Repeated

::::;.:

tfiSs, ^jjl^kI. .:

Rtpiut*

Owl
rn nn-: .i;i!i!

Smme M»thin« Stur» Machin* Sourc* HmKmm

Souce

Dju2

Source Machine Targot Machine

(Active) (Standby)

Source and Target Target and Source

Machine Machine

(Actmo) (Artwe)

One-to-Many

• Source nuenno v/ 1 X

:.!!]. .1.1.

Target Matruno lirod MacNrw T argot MoclWio

Chained

Imm

E9

hoci:: ba d3 fcs
Source Machine Targot and Source Targot Machine

Machine

Figure 4.8. Double-Take Configuration Options.

4. Endurance 4000

The Endurance 4000 is developed by Marathon Technologies Corporation

(www.marathontechnologies.com). It aims at providing 99.999% availability for the

Windows NT server. Instead of the failover-based approach, Endurance 4000 uses

hardware redundancy and duplicates execution and processing on multiple systems at the

same time to make system failure transparent to application users. In Endurance 4000

hardware redundancy is achieved by combining four PCs into a one fault tolerant server

as shown in Figure 4.9. The PCs are grouped into two tuples as shown in Figure 4.10.

82

Each tuple consists of a Compute Element (CE) and an Input/Output Processor (IOP)

connected together. In each tuple one PC does the computation and the other one process

the I/O operations.

tuple tuple

Figure 4.9. Configuration of the Endurance 4000.

Endurance 4000 consists of the following components: Four PCI-based Marathon

Interface Cards (MICs) and interconnect cables, two SplitSite Data Links (SSDLs) and

an Endurance software CD. There are four basic concepts underlying the Endurance

technology that supplies and manages the necessary redundancy:

1. Division of labor: the user's computing tasks are logically and physically

separated from I/O activity.

2. System redundancy: the system is configured redundantly, providing

significant availability and data integrity.

83

3. Marathon software: the system performs tasks such as error checking, fault

isolation, synchronization, and system management.

4. SplitSite capability: a portion of the Endurance system can be placed in a

different geographic location, providing an instant "hot site" should one of the

sites be rendered inoperable due to a disaster.

A Marathon Interface Card (MIC) is used to connect the systems together and to

perform tasks needed to support fault tolerance and disaster tolerance. A network-like

I/O redirector is used to redirect all I/O from the CEs to the IOPs. All operating system

and application I/O calls are redirected to the IOPs for processing.

Both CE and IOP consist of standard Intel-based systems running the Microsoft

Windows NT operating system. The CE is dedicated to running all application and

operating system software, and has no I/O devices such as disks or LAN cards. The IOP

is dedicated to performing all I/O device operations. Because the IOPs accommodate all

of the system's mass storage and I/O, the CEs only need to contain a MIC, a high speed

CPU, and the memory needed to run the operating system and user's applications. The

CE's failure rate is much lower than a fully configured system because the components

that fail most frequently, disk drives and network cards, are not present.

A tuple forms a single logical server, but actually consists of two servers, each

running the Microsoft Windows NT operating system. With its MIC-based interconnect

technology, the Endurance product provides the ability to use a single VGA display,

keyboard, and mouse, which can be switched between the CE and IOP. [Ref. 23]

84

Compute Element

CPU

Applications and
MEMORY MIC Operating System

I/O Processor

MEMORY MIC ,

All I/O
: ...

J vo
ADAPTERSCPU

;

Network

Figure 4.10. Marathon Tuple. [From Ref. 23]

In an Endurance 4000, system redundancy is provided both by the I/O and

compute processing redundancy. I/O redundancy is implemented by using two I/O

Processors, (as shown in Figure 4.11,). I/O to a disk used by the software running on the

CEs occurs simultaneously on two disks, one on each IOP, ensuring that two copies of

the data are always available. This configuration forms a RAID Level- 1 type storage

system without the need for a special RAID controller.

Similarly, there are two network interface cards, one on each IOP, to support

application network I/O for applications running on the CE. This provides the

redundancy required to guarantee network access to the applications running in the CE, in

the presence of a failure of a network card. The 100BaseT interconnect between the two

IOPs providing a path for communications between the IOPs to isolate and manage

85

failures. This path is also used to re-mirror a failed disk or system after repair. Re-

mirroring occurs as a background task and is invisible to the user. [Ref. 23]

Compute Element (CE) Compute Element (CE)

I/O Processor
OOP)

SCSI

SCSI

M IC

1.5 KM 1.5 KM

M IC

Mirrored
Storage

NIC NIC NIC

High Speed

100 Base T

MEMORY

CPU

I/O Processor
(IOP)

NIC NIC NIC

Dual-Raid Network

SCSI

SCSI

Mirrored
Storage

Figure 4.1 1. Endurance 4000 Array. [From Ref. 23]

The Compute Elements run in lockstep so that the failure of one CE is completely

invisible to the end user as the remaining CE continues to compute through the failure.

Also, subsystems can be repaired or upgraded while the system is online.

Marathon software is comprised of the following components: I/O handlers,

monitor, synchronization and Marathon System Manager. The I/O handlers manage all

the data movement between the hardware components of a Marathon system. They

intercept all I/O requests in the CE and forward them to the IOPs, as well as receive the

I/O requests from the CE and send them for processing to Windows NT drivers in the

IOPs. All of these operations are done through the MIC, which also checks and

compares data. [Ref. 23]

86

The Monitor runs in the IOPs. It manages the flow of data through the IOPs as

well as coordinates the activities of the IOPs. It removes a subsystem when faults occur

and, when a subsystem is repaired, the Monitor joins and restores the repaired subsystem

into the Endurance configuration. [Ref. 23]

The fault handling software detects and isolates faults using the following two

techniques. First, the software handles hard failures that can be isolated using timers and

error detectors. Second, the software follows a rule-based system that uses past history

and a set of rules to identify failures that are more difficult to isolate.

Marathon's synchronization software runs in the CEs allowing both CEs to

function in lockstep. If one CE fails, the synchronization software removes the failed CE

from the Endurance system and enables the other CE to maintain complete context and

functionality of the operating system and all applications. After the failed CE is repaired,

the CEs return to lockstep using software synchronization. [Ref. 23] Although any failed

component can be repaired without interrupting the service, software running on the

Compute Elements cannot be upgraded while the server is running. Scheduled down time

is required to enable complete upgrades.

The Marathon System Manager (MSM) is a GUI-based management tool for the

Endurance system. Using MSM, a user can manage, monitor, and configure the system

remotely or from the local Endurance system (i.e., it can run on each CE or IOP and

provide a view of the entire Endurance configuration as seen by each CE and IOP.)

MSM allows visibility to the current status of an Endurance system and allows the system

manager to monitor and correct failures. [Ref. 23]

87

Marathon's SplitSite technology allows Endurance tuples to be placed in different

geographic locations, providing the user with an instant "hot site" should a disaster occur.

As shown in Figure 4.11, the two system tuples can be separated up to 1.5 kilometers

with Marathon's SplitSite link. [Ref. 23]

Marathon's architecture not only provides protection against hardware faults but

also provides protection against transient software faults. It can also detect operating

system failures and automatically restart the system. The I/O Processors (IOPs) run

Marathon's I/O management and the fault handling software, leaving this portion of the

system isolated from the loads placed on the Compute Element (CE) by the user's

applications and operating system.

Further, since the IOPs handle all interrupts, the CE, (where the operating system

and user applications are running,) is not subjected to the usual stream of interrupt

asynchrony. Here, interrupts are managed through a structured process that eliminates a

major source of asynchrony-induced software failures. Although the IOPs are subjected

to these asynchronies, since there are two autonomous IOPs in a full fault tolerant system,

an interrupt-induced software asynchrony will likely only affect one of the IOPs. [Ref.

23]

This isolation and the structured nature of the I/O software environment in both

the CEs and the IOPs masks transient software faults, thus delivering a level of operating

system software fault tolerance unavailable in any other system. Although masking

transient software faults does provide more protection from software faults than has been

previously available, the likelihood that an operating system software bug could cause an

interruption of service is not eliminated. Since transient software faults account for only

88

75% of bugs found in typical commercial operating systems, there are still some bugs,

which may cause the CE operating system to crash, delivering the now famous Windows

NT "blue screen of death" to the user. In this event, the only option is to reboot the

system.

Since the I/O Processors are independent processors that have full visibility of the

activities in the CEs as well as control over them, they can be programmed to reboot the

operating system running on the CE. At the user's option, the Marathon software can be

configured to reboot the operating system automatically, making the system available to

the users until the same software bug shows up again. It should be noted that the

Marathon architecture also offers the IOPs the opportunity to observe the operation of the

applications running on the CEs, and to restart a "hung" application. [Ref. 23]

5. Octopus 3.2

Octopus was originally developed by FullTime Software Corporation, which was

acquired by Legato Systems (www.legato.corn) on April 1, 1999. Octopus is a software-

only solution for Windows NT that provides data mirroring and failover capability. Its

aim is to increase both the availability and the reliability of Windows NT servers.

Octopus operates over both Local Area Network (LAN) and Wide Area Network (WAN)

connections and allows remote administration and installation. Users install Octopus on

each Windows NT machine that will be used as a source and/or target. Octopus runs over

any network interface supported by Windows NT and does not require a dedicated NIC.

However, dedicated NICs can also be used to allow users the option of keeping Octopus-

related traffic off their networks.

89

Octopus provides the following software components:

1. Octopus Client: This is the graphical user interface (GUI) of the product. It is

used to configure Octopus, start Octopus services, and administer the

Octopus. The Client provides capabilities for remote administration of

Octopus.

2. Octopus Service: This component provides capabilities for switch-over and

data mirroring. This component runs as a service in the Windows NT server.

3. Octopus Device: This component works with the Octopus Service to provide

capabilities for data mirroring.

4. Octopus SETUP and UNINSTALL programs: These programs are provided

for installing and removing Octopus on supported Windows NT platforms.

5. SNMP Agent Extension DLL: Extends the standard Windows SNMP service to

allow Octopus to send its messages as Simple Network Management Protocol

(SNMP) events, allowing Octopus to work with systems management

software.

6. Performance Monitor DLL: Extends the Windows NT Performance Monitor

to provide performance statistics on Octopus in the Windows NT Performance

Monitor.

Octopus provides three functions that allow Octopus to mirror protect data

including: (1) Mirroring, which captures changes in data at the source system, (2)

Forwarding, which sends changes in data from the source system to the target system,

and (3) Updating, which applies changes as stored in the receive log on the target system

to the files on the target system.

90

Octopus updates target systems with changes in data as they occur, rather than re-

sending all of the data at once. On each source machine, the user specifies which drives,

directories and/or files they wish to replicate and the target system where the replicated

files will reside. As shown in Figure 4.12, each time a change to a specified file is

committed to disk on the source machine, Octopus mirrors it to the Octopus send log.

Octopus then uses any Windows NT supported protocol to forward the change across the

network to the Octopus receive log on the target machine. Finally, Octopus writes the

change to the appropriate file on the target drive. [Ref. 20]

Octopus can mirror data in one-to-one, one-to-many, many-to-one or many-to-

many configurations. As a result of this configuration options, it can be used as a data

transport mechanism for data distribution and localization systems, in addition to data

protection for applications. Conversely, applications that require collecting data at remote

locations and continuously forwarding it to a centralized site can employ Octopus's

many-to-one replication configuration. [Ref. 20]

SQrver B

UPDATING

Figure 4.12. Data Protection Operation in Octopus. [From Ref. 20]

Octopus offers two kinds of switch-over (failover) capability, Automatic Switch-

over (ASO) and Super Automatic Switch-Over (Super ASO). The difference between

91

ASO and Super ASO is that Super ASO provides three additional capabilities [Ref. 20]:

First, the target system can maintain its original identity while also assuming the identity

of the failed source system, so that any clients using the target do not have their services

interrupted. Second, the target system can simultaneously assume the identity of an

unlimited number of source systems. Third, forwarding can continue after a Super ASO

switch-over; with ASO, forwarding must cease since the original name of the target

system "disappears" from the network.

On the source machine users configure a heartbeat between the source and target

machines. The heartbeat identifies how often the source system sends "I'm alive,"

messages and how long the target system should wait after seeing the last "I'm alive,"

message before initiating the switch-over process. If the target system does not receive an

"I'm alive," message from the source system within the specified time, it checks the

Windows NT registry and service database for the source machine. If Windows NT can

find the source machine on the network, the target machine resumes monitoring the "I'm

alive," messages. If not the target machine initiates the switch-over sequence. In larger

networks it may take longer to search the Windows NT registry and service database for

the source machine.

During the switch-over process, the target machine assumes the machine name

and, if specified by the user, the IP address(es) of the source machine. Users can identify

services and/or applications to stop or start before or after the switch-over process has

completed. After switch-over, the target can maintain its own identity as well as the

identities of failed source machines. Users on the network can continue to work unaware

that their server has failed and that the target machine has taken over. [Ref.20]

92

B. RECOMMENDATIONS

MSCS, WLBS and third-party products presented above all try to tolerate server

failures and provide highly available services to clients within the Windows NT server

environment. In selecting one of these products for the local area fault tolerance of the

SAAM server, our main concern is to find out which one best meets the SAAM server

fault tolerance requirements.

MSCS provides clustering solutions only to applications that are MSCS-aware. In

other words, in order to benefit from MSCS, the application to be protected must be

written using the specific API. Moreover, in an MSCS cluster, the two servers can

typically be no further apart than allowed by the shared SCSI bus. The maximum

distance is about 25 meters, mandating that the location of the standby server be in the

same room. If there is a fire or a power outage, it is likely the whole cluster will be shut

down.

Furthermore, Microsoft claims that MSCS recovers from a server failure in

around one minute. However, the actual time needed for the recovery depends on the

application type. Some users of MSCS complain that the failover process is too long for

some applications, in some cases taking more than 30 minutes. [Ref. 29] Because of these

drawbacks, MSCS does not satisfy the SAAM server fault tolerance requirements.

WLBS is designed for high availability and scalability of TCP/IP-based services

such as Web servers, streaming media, Virtual Private Networking (VPN), and proxy

—

services generally considered to be "stateless." However, the SAAM server provides

statefull services to routers. In other words, the service provided to routers by the SAAM

server totally depends on the data residing on the PIB, which is updated frequently.

93

Therefore WBLS cannot be considered as a solution for the local area fault tolerance for

the SAAM server.

Since the products bundled with the Windows NT Server Enterprise Edition could

not meet the local area fault tolerance requirements of the SAAM server, a solution must

be selected from the third party products. In order to compare and contrast these products,

we classify them into two groups according to their approaches used for tolerating server

failures. Among these third party products, ARCserve Replication, Co-StandbyServer,

Double-Take and Octopus use the failover approach whereas, Endurance 4000 uses the

hardware redundancy approach for tolerating the server failure.

Specifications of the third party products that use the failover approach are

summarized in Table 4.1. Considering the failover times of these products, it is apparent

that the offered failover time is between 30 and 45 seconds, which is too long for the

SAAM server. Consequently none of these products are qualified as a solution for the

local area fault tolerance for the SAAM server.

On the other hand, by using hardware redundancy Endurance 4000 can tolerate

server failures in less than a second. Marathon's Endurance 4000 product allows industry

standard Intel based PC systems to be configured as fault tolerant servers. The Endurance

4000 server runs the standard Microsoft Windows NT operating system and applications.

This means absolutely no modifications, scripts, or APIs are required for SAAM Server

applications.

Using SplitSite technology, the PC systems connected by Endurance 4000 can be

placed at different locations up to 1.5 kilometers apart, while they operate and appear to

94

users as a single fault tolerant server. This provides continuity of service in the face of

localized disasters that are confined to one building.

For these reasons, especially its ability to recover from server failures in

milliseconds, we believe that Endurance 4000 best meets the criteria for the local area

fault tolerance for the SAAM server. The main drawback of the Endurance 4000 is its

price. Endurance 4000 costs $25,000, and the price does not include the four servers and

multiple copies of Windows NT software. Although it is expensive, the price is justified

when compared to the large cost of routers, switches, and networking software, and the

amount of revenue at stake. Consequently, among all products discussed thus far, the

Endurance 4000 is recommended as a solution for the local area fault tolerance for the

SAAM server.

95

ARCserve Replication 4.0 Co-StandbyServer 4.2 Double-Take 3.0 Octopus 3.2

Price
l $2995 $4499 $3750 $2998

Built-in replication Yes Yes Yes Yes

Replication file

updates only
Yes No2 Yes Yes

File/directory level

selection

Yes No Yes Yes

Replication before

write-through to disk
Yes No Yes Yes

Open file mirroring

and replication
Yes Yes Yes Yes

Limitation of

bandwidth usage on

the network

No No Yes Yes

One-to-many

replication

Yes No Yes Yes

One-to-many failover No No Yes Yes

Allows dissimilar

hardware and drive

configurations

Yes No Yes Yes

Allows custom

Scripts or batch files

Yes Yes Yes Yes

System requirements

•Intel x86 or better

•6MB of disk space

•32MB ofRAM

•One NIC per server

• Intel x86 or better

• 30MB of disk space

• 32MB ofRAM

• 3 physical hard disks

(active/active)

• 2 physical hard disk

(active/passive)

• One NIC per server

(two is

recommended)

• Intel x86 or

better

• 40MB of disk

space

• 16MB ofRAM

• One NIC per

server

• Intel x86 or better

• 15MB of disk space

• Additional free disk

space on target

machines equal to

size of replicated

files plus 10%

• 32MB ofRAM

• One or more NICs

per server

Failover time
3 45 seconds [Ref. 30] 30 seconds [Ref.29] 45 seconds [Ref. 30] 30 seconds [Ref. 31]

Suitability for SAAM

(local area ft.

)

No No No No

Table 4.1. Specifications of Products, Implementing Failover Approach.

1 Prices are for two server configuration and bases on [Ref. 30]

2 Entire disk block must be transmitted

3 Failover time is based on the SQL server failover

96

V. REMOTE AREA FAULT TOLERANCE FOR SAAM SERVER

This chapter focuses on the remote are fault tolerance for SAAM server and

consists of three main sections. In the first section, first, the overview of the designed

model is presented. After that, the details of the designed model are discussed according

to the fault tolerance phases explained in Section H.D. In the second section, the

integration of the model with the existing SAAM server source code is explained.

Finally, in the third section, testing of the implementation is discussed. First, the testbed

is explained, and then the test results are presented.

A. MODELING

Remote area fault tolerance of the SAAM server is provided primarily using the

redundancy approach. Specifically, a redundant backup server is used (see Figure 5.1).

Routers are required to send updates to both the primary and the backup servers. The

backup server maintains its own PIB in parallel with the primary server. However, the

backup SAAM server does not respond to router's requests until it detects a failure of the

primary server.

Backup server

SAAM
Region

Figure 5.1. Server Positioning in the SAAM Region.

97

1. Server States

For the proposed primary-and-secondary approach, the states of the SAAM server

and the state transitions are identified and illustrated in Figure 5.2. Both the primary and

the backup servers begin their operation from the initial state. The initial state refers to

the state of the server node* prior to the server software agent installation. The server

software agent is a mobile Java class file sent by the system or network administrator,

and installed on the server node. With the server software agent, the server node can be

initialized either as a primary server or backup server.

Upon installation of the primary server software agent, a server node becomes the

primary server and enters an active running state. In the active running state, the primary

server provides services to routers such as flow routing table entry updates and flow

responses.

Upon installation of the backup server software agent, a server node becomes the

backup server and enters a silent running state. In the silent running state, the backup

server maintains its PEB the same way as the primary server, but does not respond to

routers' requests. Additionally, the backup server continuously monitors the health of the

primary server. The mechanism for such monitoring is described in Section 2. When the

primary server fails, it effectively enters a failed state. When the backup server detects a

failure, it enters the active running state and takes over the functionalities of the primary

server. While the primary server is running, if the backup server fails, then the backup

server enters the failed state.

* Server node is a host on the network that will serve either as a primary or as a backup SAAM server.

98

The failed primary server stays in the failed state until it is corrected. After repair,

the administrator may choose to reinstate the repaired server to the network either as a

primary or as a backup. If the administrator wants to reinstate the repaired server as the

backup, then the repaired server enters the silent running state. However, if the

administrator wants to reinstate the repaired server as the primary, then the repaired

server enters a PIB synchronization state.

Primary Server softwar

agent installs

Backup Server software

agent installs

Sends "primary server id"

message to server

Reinstated as a

Primary Server

Reinstated as a

Backup Server

Figure 5.2. State Transition Diagram of a SAAM Server.

99

In the PIB synchronization state, the repaired server rebuilds its PIB from the link

state advertisement (LSA) messages received from the routers. After the PIB

synchronization is completed, the server sends a "primary server id" message to the

currently active primary server. Then, the repaired server enters the active running state,

while the backup server returns to the silent running state.

There are four major phases in our design for remote are fault tolerance of the

SAAM server: failure detection, damage confinement and assessment, error correction

andfault treatment and continued service.

2. Failure Detection

In most distributed systems, failure of a system component is detected by

implementing a periodical message exchange mechanism among the system components.

This type of message exchange mechanism is called heartbeat protocol. Specifically, a

working component must periodically emit "beat" messages to show that it is operating

properly. If the component fails to emit a beat message within the timeout period, then its

failure is detected. Since heartbeat protocols check timing related constraint of a system,

they can be considered as an example of timing checks, discussed in Chapter II.

Many different uses of heartbeat protocols are reported in the literature. For

example, they are used in process termination in distributed programs (if a process an a

program terminates or fails, then the remaining processes in the program terminate) [Ref.

26], network protocols [Ref. 27], reaching agreement on processor-group membership

[Ref. 33], and mobile computing [Ref. 34]. In the model designed in this thesis, a

heartbeat protocol is also used for the SAAM server failure detection.

100

When designing a heartbeat protocol, the protocol designer should strive to

incorporate the following three ideal characteristics into his design [Ref. 26]:

1

.

The rate at which heartbeat messages are sent in the protocol should be small

in order to reduce protocol overhead.

2. The detection delay (time difference between the detection time and the actual

failure time) should be small, in order to improve protocol responsiveness.

3. The probability of false detection should be small, in order to increase

protocol reliability.

In any heartbeat protocol implementation, it is impossible to incorporate all these

three objectives at the same time, because they are somewhat contradictory. For example,

to reduce both the rate of sending heartbeat messages and the detection delay, the

protocol should allow only a small number of missed heartbeat messages. In this case,

probability of false detection would increase. Therefore, every heartbeat protocol is a

compromise between these contradictory objectives [Ref. 26].

Remote area fault tolerance for the SAAM server is mainly focused on tolerating

environmental faults such as fire, earthquake, and flood, which cause unrecoverable

server failures. Therefore, it is essential to locate the primary and the backup SAAM

servers as much apart as possible in the SAAM region, as shown in Figure 5.1. In

heartbeat protocol implementations, it is usually preferable to use a dedicated link

between the two servers. By using such a dedicated link, the protocol overhead

introduced to the network can be avoided. However, in SAAM, using a dedicated link

between two servers is not practical, because of the long distance between the two

101

SAAM servers. Therefore, the heartbeat protocol to be implemented will use the existing

network links for communications between the two servers.

In order to select the best heartbeat protocol for detecting the SAAM server

failures, two different heartbeat protocols that cover most of design space, constant

heartbeat protocol and accelerated heartbeat protocol, are prototyped and their

performance results are compared. The following sections will discuss these two

heartbeat protocols, their implementations, and their performance results.

a. Constant Heartbeat Protocol (V.O)

The constant heartbeat protocol is the first protocol that we prototyped and

evaluated. Therefore, it was given a version number zero (V.O). Additionally, due to the

constant rate of heartbeat messages generated by this protocol, it is called "constant

heartbeat protocol."

In the constant heartbeat protocol, the primary SAAM server periodically

sends heartbeat messages to the backup SAAM server, indicating that it is in an

operational state. On the other hand, the backup SAAM server listens only to these

heartbeat messages coming from the primary server. If the backup SAAM server misses a

predetermined number of consecutive messages, then it declares the failure of the

primary SAAM server.

Let the time interval for sending heartbeat messages from the primary

SAAM server to the backup SAAM server be t, and the maximum number of

consecutive message misses allowed (allowed-miss) be n . The following equation relates

t , n , and the detection delay denoted by d :

102

(t - n) < d < (t - (n + 1))
(5.1)

Figure 5.3 illustrates this relationship. In this case, n is set to two.

According to the figure, after the first two heartbeat messages, the backup SAAM server

did not receive any heartbeat messages. Since n is equal to two, after three consecutive

misses, the backup SAAM server declares the failure of the primary SAAM server. The

actual failure, if there is one, must have occurred at some time during the second interval.

Therefore, the vertical arrows labeled d
m3ix

and dmD show the possible maximum and

minimum detection delay times, respectively. In other words, detection delay d , should

be less than 3? but greater than 2t

.

Primary SAAM Server Backup SAAM Server

n=2

Heartbeat mess ages . ,

a received

t 1 st interval
V

TKA
t 2nd

A
t 3 rd interval
V
a"

X 4th interval

^ - N/ v__

max min

> received

> not received (allowed #1)

> not received (allowed #2)

. not received (did not allowed)

and failure is detected

Figure 5.3. The Detection Delay in the Constant Heartbeat Protocol.

103

b. Accelerated Heartbeat Protocol (V.l)

The concept of accelerated heartbeat protocol was introduced by Godua

and McGuire in 1998 [Ref. 26]. They use such protocols as a process termination

mechanism in distributed programs to ensure that if a process in a program terminates or

fails, then the remaining processes in the program also terminate. The same concept is

adapted to the SAAM server as failure detection resulting in the development of the

second version (V.l) of SAAM server heartbeat protocol, which we refer to as the

accelerated heartbeat protocol.

In the accelerated heartbeat protocol, the communication between the

primary SAAM server and the backup SAAM server is partitioned into successive time

periods. At the end of each period, the backup SAAM server actively queries the health

of the primary SAAM server by sending a message called heartbeat query message ("Are

you alive?")- After that, the backup SAAM server waits to receive a message from the

primary SAAM server called heartbeat response message ("Yes, I am alive"). The

received heartbeat response message indicates that the primary SAAM server is in an

operational state.

As long as the primary SAAM server stays in an operational state, the

length of the period, denoted by t^ , is constant. However, the length of the next period

can vary depending on the events that has occurred in the current period according to the

following three rules:

1. The backup SAAM server sends a heartbeat query message to the

primary SAAM server and receives a heartbeat response message

104

within the first half of the current period. In this case, the backup

SAAM server makes the length of the next period tmax (irrespective of

the length of the current period.)

2. The backup SAAM server sends a heartbeat query message to the

primary SAAM server, but does not receive a heartbeat response

message within the first half of the current period. In this case, the

backup SAAM server immediately sends another heartbeat query

message, and reduces the length of the next period by half.

3. The length of the next period ever becomes less than a specified value

?min ' which is an upper bound on the round-trip network delay between

the backup SAAM server and the primary SAAM server. In that case,

the backup SAAM server declares the failure of the primary SAAM

server.

If we assume that t
miD

is set to allow three consecutive heartbeat response

misses, then the operation of the accelerated heartbeat protocol would be as shown in

Figure 5.4. After the first heartbeat query message, the backup server has received the

heartbeat response message. Thus, it is certain that the primary server was alive at time

(t + (t
miD

1 2)) . Additionally, since the backup server did not receive a heartbeat response

message for the heartbeat query message sent at ?, , the failure of the primary server must

have happened before the second heartbeat query message. Consequently, the actual

failure of the primary server must have happened at some time between (t + (tmin 1 2))

and r, , which is the shaded area in Figure 5.4.

105

Primary

Server

Backup

Server

72
"{

Heartbeat Response Heartbeat Query

y\

dmm

time

1
st period

gT leartbeat Query

2nd period

l^TK

2^-
3M-

3
rd period

N/

\ / 4th period

'/K

K-l

r„/2

A"

0_Wi6 ^7

tune

Figure 5.4. Detection Delay in the Accelerated Heartbeat Protocol.

After three consecutive heartbeat message misses, the failure of the

primary server is detected (see Figure 5.4) at time t
2

. The maximum detection delay time

and the minimum detection delay time are shown with the arrows marked by d^ and

106

dmn , respectively. Therefore, the relationship between the detection delay, d , and the

heartbeat query message interval, tnax , is given as follows:

t t t tmax , max , max , max

2 4 8 16
< d <

((

max
min ft t t tmax . max , max

4 8 16

^

))

(5.2)

15r.

16
<d <

(3lt . \
max mm

16

(5.3)

c. Prototyping ofthe Heartbeat Protocols

The prototypes explained in this section are implemented with the purpose

of making a quick performance comparison of the two heartbeat protocols without

integrating them with the existing SAAM server source code. Their source code can be

found in Appendix A and B.

(1) Constant heartbeat protocol (V.O) prototype: The constant

heartbeat protocol prototype includes the following Java class files:

• Primary-Server class

• PrimaryServerThread class

• BackupServer class

• TimerHandler class

The PrimaryServer and the PrimaryServerThread

classes are used for implementing the primary server portion of the constant heartbeat

107

protocol. On the other hand, the BackupServer and the TimerHandler classes are

used for implementing the backup server portion of the protocol.

The PrimaryServer class provides a Graphical User Interface

(GUI) to the user (see Figure 5.5). The main components of the GUI are numbered one

through five. Specifications and functionalities of these GUI components are summarized

in Table 5.1.

gj, Constant Heaitbeat Piotocol (V.O) SsEI

PRIMARY SERVER
11

INSTRUCTIONS

1. SELECT THE TIME INTERVAL

2. PRESS START BUTTON

3. WHEN YOU WANT TO STOP SENDINGHEARTBEAT
MESSAGES, PRESS STOP BUTTON

_«J
... . . . A

START STOP

SELECT TIME INTERVAL FOR HEARTBEAT MESSAGES (sec.)

EXIT i

°^ <—CD

Figure 5.5. The Primary Server GUI of the Constant Heartbeat Protocol.

108

Number
Name

(source code)
Java Object Functionality

1 display TextArea
Displays the program instructions and the program

outputs to the user.

2 startButton Button Initiates the heartbeat message sending process.

3 stopButton Button
Stops the heartbeat message sending, in order to

simulate the failure of the primary server.

4 intervalChoice Choice

Selects the interval time (in seconds.) between the

heartbeat messages (Options are 0.5, 1, 1.5, 2, 2.5

and 3)

5 exitButton Button Terminates the program.

Table 5.1. Specifications of the Primary Server GUI Components.

When the user presses the startButton, PrimaryServer

class creates a new thread called PrimaryServerThread, which periodically sends

the heartbeat messages to the backup server. Unless the stopButton is pressed,

PrimaryServerThread always loops inside in its run method. In every loop of the

run method, the PrimaryServerThread first constructs the heartbeat message, then

sends the heartbeat message, and finally sleeps for an interval period. As the heartbeat

messages are transmitted to the backup server, the messages sent and the times of their

departure are displayed in the GUI (see Figure 5.6).

The heartbeat message transmitted by the primary server is

implemented as a text string, and consists of four sub-strings. The first sub-string is the

string representation of the interval value selected by the user using the intervalChoice

menu. The second sub-string is the tilde character ("~") used as a delimiter. The third

sub-string is the "I am alive" string. The fourth sub-string is the text representation of the

109

heartbeat message number. The complete heartbeat messages string are shown in quotes

in Figure5.6.

Constant Heartbeat Protocol (V.01 oma

PRIMARY SERVER
Sending "1.0-1 AM ALIVE #2" at: 951278790040 M
Sending "1.0-1 AM ALIVE #3" at: 951278791080

Sending "1.0-1 AM ALIVE #4" at: 951278792070

Sending "1.0-1 AM ALIVE #5" at: 951278793110

Sending "1.0-1 AM ALIVE #6" at: 951278794430

Sending "1.0-1 AM ALIVE #7" at: 951278795420

Sending "1.0-1 AM ALIVE #8" at: 951278796460

Sending "1.0-1 AM ALIVE #9" at: 951278797450

Sending "1.0-1 AM ALIVE #10" at: 951278798500

Sending "1.0-1 AM ALIVE #11" at: 951278799480

Sending "1.0-1 AM ALIVE #12" at: 951278800640

Sending "1.0-1 AM ALIVE #13" at: 951278801630

Sending "1.0-1 AM ALIVE #14" at: 951278802670

Sending "1.0-1 AM ALIVE #15" at: 951278803660

Sending "1.0-1 AM ALIVE #16
"

at: 951278S04700

Sending "1.0-1 AMALIVE#17" at: 95127S805690

"1.0~I AMALIVE#1S" at: 951278806730

Sending "1.0-1 AM ALIVE #19
"

at: 951278807720

Sending "1.0-1 AM ALIVE #20 '
at: 95127S808770

Sending "1.0-1 AM ALIVE #21" at: 95127S809760 ¥

LJ iT

I START STOP

SELECT TIME INTERVAL FOR HEARTBEAT MESSAGES (sec.)p~~

EXIT

Figure 5.6. The Primary Server GUI while Sending Heartbeat Messages.

The BackupServer class provides a GUI similar to that of the

PrimaryServer class (see Figure 5.7). The main components of the GUI are

numbered one through four. Specifications and functionalities of these GUI components

are summarized in Table 5.2.

110

Constant Heartbeat Protocol (V.O) MS
BACKUP SERVER

Q>

~3

Waiting for "HEARTBEAT" messages from Main Server..

Ll J
STATUS NORMAL

ALLOWED NUMBER OF MISSES BEFORE FAILURE 1 -

EXIT

•0

0
•0

Figure 5.7. The Backup Server GUI of the Constant Heartbeat Protocol.

Number
Name

(source code)
Java Object Functionality

1 display TextArea Displays the program outputs to the user.

2 statusDisplayLabel Label

Shows the primary server's status. If the primary

server is running, then its color is green and

"NORMAL" is written on it. If the primary server

is down, then its color is red and "PRIMARY
SEREVR IS DOWN" is written on it.

3 allowedMissChoice Choice
Selects the allowed-miss value

(Options are 1, 2, 3, and 4)

4 exitfiutton Button Terminates the program.

Table 5.2. Specifications of the Backup Server GUI Components.

Ill

The backup server listens to the heartbeat messages coming from

the primary server via Java ServerSocket. Whenever the primary server makes a

connection with the backup server to send a heartbeat message, the backup server creates

a new Java Socket and retrieves the heartbeat message from the input stream. Since the

interval value between the heartbeat messages is determined on the primary server side,

the backup server is not aware of this value. However, when the backup server receives

the first message, the message is tokenized and the heartbeat interval value is retrieved

from the message string. The backup server will use this interval value when performing

a time check on heartbeat messages.

In order to perform time checks on heartbeat messages, the backup

server has a Timer object called timer. After the first message is received, the timer

is started with the initial delay of ((allowedMiss + l)-intervalValue) seconds. For

example, if the allowed-miss is equal to three, and the time interval between heartbeat

messages is one second, then the initial delay of the timer would be four seconds.

Whenever the backup server receives a new heartbeat message,

then the backup server restarts the timer with its initial delay. Thus, as long as the

primary server continues to send the heartbeat messages, timer never expires. However,

if the primary server fails to send heartbeat messages, eventually timer will expire

indicating the failure of the primary server. When the timer expires, a Java action event

is generated. This action event is heard and handled by the TimerHandler class. The

generated action causes the execution of the actionPerformed () method of the

TimerHandler class. Declaration of the failure of the primary server is performed in

112

this actionPerformed () method by calling the setPrimaryServerStatus (

)

method of the BackupServer class.

After the failure of the primary server is detected, the failure

detection time, the receive time of the last message, and elapsed time (difference between

the receive time of the last message and the failure detection time) are displayed, as

shown in Figure 5.8.

BACKUP SERVER
Received...: '•

1 AM ALIVE Slti" ' Interval

:

as at :9492S2l4324fl ±1
Rpni'jvi-d...: "

1 AM ALIVE**/' ' Interval

:

05 ;tl :94V282I4.-!7VfJ

Received...: " 1AMALIVESIS' * Interval

:

0,5 at ;9492S21442S0

Received...: "1 AM ALIVE#19" Interval

:

05 at :9492S214*7S0

ReeeR-ed...: "1 AM ALIVE »2fl' ' Interval

:

05 at :9ifl2&2li531Q

Rrnc-iwd...: "
1 AM ALIVE #21

"
' Interval

:

05 at :94fl2S2145S2n

Received...; '* IAM ALIVE#22" 1

Interval

;

0.5 at :9492S2I4o370

Received...: "1 AM ALIVE #23* Interval

:

as at :9492S2146S6G

Reri'tvwl...: "
I AM ALIVE »24

•
' Inu'rvut ; 115 at :94y2X214 741U

Received...: "
1 AM ALIVE 325- Interval

;

05 at :P492S2147910

Received...: "1 AM ALIVE #26' Interval

:

0.5 at :94<5:8214S4Q0

Received...: "1 AM ALIVE f?2?- ' Interval

:

05 at :9492S214S950

Rniri'Hfd...: "
1 AM ALIVE#2$

"

' Interval

:

05 at :94g2S2I4944CI

Received..,; " [AM ALIVE#29" Interval

:

0,5 at :9492S2I49990

MAIN SERVER FAILED !!<" AT : !>4925S2152IB0

Failure detected at ; 9492S2L52030

Last message received at : 9i92$2U999£
tilpsrtl ticui' fui itfO-cUnn ix :

' UtU IILiilwiTtlluU w

_J _lT

MAIN SERVER IS DOWN
-.... . «, ,. -., « li ner. I „m ., «..

STATUS

ALLOWED NUMBER OF MISSES 8EI

EXIT

"~3

Figure 5.8. The Backup Server GUI after the Failure of the Primary Server.

113

(2) Accelerated heartbeat protocol (V.l) prototype: The

following Java classes are used in the implementation of the accelerated heartbeat

protocol:

• PrimaryServer class

• PrimaryServerThread class

• BackupServer class

• MessageTimerHandl er class

• AckReceiveThread class

• AckTimerHandl er class

The PrimaryServer and the PrimaryServerThread

classes are used for implementing the primary server portion of the protocol. The

BackupServer, the MessageTimerHandler, the AckReceiveThread, and the

AckTimer'Handler classes are used for implementing the backup server portion of the

protocol.

The PrimaryServer class provides a GUI (see Figure 5.9) to

the user. The main components of the GUI are numbered one through three.

Specifications and functionalities of these GUI components are summarized in Table 5.3.

The main responsibility of the PrimaryServer class is to listen

to the heartbeat query messages coming from the backup server. PrimaryServer class

listens to the heartbeat query messages via Java ServerSocket. Whenever the connection

is made by the backup server to send a heartbeat query message, the primary server

creates a new Java Socket and a new thread called, PrimaryServerThread to

114

handle the connection. The PrimaryServerThread class is responsible for retrieving

the message string from the socket and sending the corresponding heartbeat response

messages. Whenever the PrimaryServerThread receives a heartbeat query

message, it displays the message arrival time on the GUI. After that, the

PrimaryServerThread sends the heartbeat response message. The heartbeat

response message is a string with the text of, "YES, I AM ALIVE". After the heartbeat

response message is sent, PrimaryServerThread displays the time that the message

has sent on the text area (see Figure 5.9).

Acceleiated Heartbeat Protocol (V.1

1

M£

&

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received
Received

Received

Received

Received

Received

Received

Query at

Query at

Query at

Query at:

Query at

Query at

Query at

Query at

Query at

Query at

Query at

Query at:

Query at

Query at

Query at

Query at

Query at

Query at

Query at

Query at

950037811650
950037812700
950037813740
950037814780

950037815830
950037816870
950037817910
950037818960
950037820000
950037821040
950037822090
950037823130
950037824180

950037825220
950037826260
950037827310
950037828350
950037829390
950037829940
950037830220

Sent response at:

Sent response at:

Sent response at:

Sent response at:

Sent response at

Sent response at:

Sent response at:

Sent response at:

Sent response at:

Sent response at:

Sent response at:

Sent response at:

Sent response at:

Sent response at

Sent response at:

Sent response at:

Sent response at:

RESPONSE DID

RESPONSE DID

RESPONSE DID

950037811650
950037812700
950037813740
950037814780
950037815830
950037816870
950037817910
950037818960
950037820000
950037821040
950037822090
950037823130
950037824180
950037825220
950037826260
950037827310
950037828350
NOT SEND
NOT SEND
NOT SEND

Ld

STOP SENDING RESPONSES

1

EXIT -©

Figure 5.9. The Primary Server GUI of the Accelerated Heartbeat Protocol.

115

Number
Name

(source code)
Java Object Functionality

1 display TextArea Displays the program outputs to the user.

2 toggleButton JToggleButton

Stops heartbeat response message transmission

with the first click and restarts the heartbeat

message transmission with the second click.

3 exitButton JButton Terminates the program.

Table 5.3. Specifications of the Primary Server GUI Components.

The BackupServer class provides a GUI for the backup server

portion of the accelerated protocol (see Figure 5.10). The main components of the GUI

are numbered one through six. Specifications and functionalities of these GUI

components are summarized in Table 5.4.

Accelerated Heartbeat 'Protocol (V.1) a
BACKUP SERVER

G>

©-

INSTRUCTIONS

1

.

GET THE ROUND TRIP DELAY

2. SELECT THE Ima*1 VALUE

3. SET THE ROUND TRIP DELAY VALUE ACCORDING TO
OBTAINED VALUE FROM STEP 1

4 PRESS START BUTTON

Id £
GET ROUND TRIP DELAY

SELECT "tmax" VALUE FOR SENDING MESSAGES (sec) [05 ~|

SELECT ROUND TRIP DELAY UPPER BOUND (sec)
[

a05 -

START

Exn <D

Figure 5.10. The Backup Server GUI of the Accelerated Heartbeat Protocol.

116

Number
Name

(source code)
Java Object Functionality

1 display TextArea Displays the program outputs to the user.

2 rtdButton JButton
Calculates the round trip delay between two

servers by sending four heartbeat queries.

3 startButton JButton Starts sending heartbeat query messages

4 tmaxComboBox JComboBox

Selects the tmax value, which is the

maximum interval time between heartbeat

query messages (Options are 0.5, 1, 1.5, 2,

2.5, 3, 3.5 and 4)

5 roundTripDelayComboBox JComboBox
Selects the tmin value, which is the round

trip delay upper bound between two servers

(Options are 0.05, 0.06 , 0.30)

6 exitButton JButton Terminates the program.

Table 5.4. Specifications of the Backup Server GUI Components.

The main responsibility of the BackupServer class is to send

the heartbeat query messages to the primary server, and to implement the accelerated

heartbeat protocol rules explained in Section A.l.b. The heartbeat query messages are

sent from the BackupServer class. However, the heartbeat response messages are

received by the AckReceiveThread class. When the start button is pressed, the

BackupServer class creates two Timer objects called messageSendTimer and

ackReceiveTimer.

The purpose of the messageSendTimer is to provide periodical

heartbeat query message transmission. The messageSendTimer is a repeating timer

and always restarts with its initial delay, which is set to the rmax value. Whenever the

messageSendTimer expires, the actionPerformedO method of the

MessageTimerHandler class is executed. In this actionPerformed () method,

the sendMessage () method of the BackupServer class is called. After that, the

117

backup server sends a new heartbeat query message to the primary server. For example, if

the rmax is equals to two, then every two seconds the backup server sends a new heartbeat

query message.

The purpose of the ackReceiveTimer is to implement time

checks on the heartbeat response messages. The ackReceiveTimer is started when

the first heartbeat query message is sent. Its value is set to half of the current interval. If

the AckReceiveThread receives the heartbeat response message prior to the

expiration of the ackReceiveTimer, then the ackReceiveTimer is stopped before

its expiration. Therefore, as long as the heartbeat response messages arrive regularly

within the first half of the current interval, the ackReceiveTimer never expires.

However, if the backup server does not receive a heartbeat

response message within the first half of the current interval, then the

ackReceiveTimer expires and causes the execution of the actionPerformed (

)

method of the AckTimer-Handler class. In this method, the messageSendTimer is

stopped, a new heartbeat query message is sent, and the current interval value is set to

half of the previous interval value. If the new interval value ever becomes less than the

round trip delay upper bound value, then failure of the primary server is declared (see

Figure 5.1 1). However, if the backup server receives a heartbeat response message before

determining the status of the primary server, then the message send timer is restarted and

the current interval is set back to its original value, ?max .

118

Accelerated Heartbeat Protocol (V.I) ^TnRl

BACKUP SERVER
Sent Query at 949304040660 diff

Sent Query at 949304042690 diff

Sent Query at: 949304044720 diff

Sent Query at 949304046750 diff

Sent Query at 949304048790 diff

Sent Query at 949304050820 diff

Sent Query at: 949304052850 diff

Action performed

Sent Query at 949304053900 diff

Action performed

Sent Query at 949304054440 diff:

Action performed

2030 Received response at

2030 Received response at

2030 Received response at

2030 Received response at

2040 Received response at

2030 Received response at

2030 Did not receive response

-»9493040S3900
1050 Did not receive response

->949304054440

540 Did not receive response...

>949304054720

949304040770
949304042800

949304044830
949304046860

949304048900

949304050930

Last message send at 949304052850
Failure detected at 949304054720

Elapsed Time :1 870

"""""""• •MAIN SERVER IS DOWN

lj

Max of four Roun-Trip-Delay is : 220 ms.

SELECT "tmax" VALUE FOR SENDING MESSAGES (sec)

SELECT ROUND TRIP DELAY UPPER BOUND (sec)

EXIT

Figure 5.11. The Backup Server GUI After Failure.

d. Performance Comparison ofthe Heartbeat Protocols

In this section, the failure detection delays and other performance results

of the two heartbeat protocols are compared. In order to avoid the unexpected network

delay, our tests are performed by running both the primary server and the backup server

programs on the same computer. (The processor of the test computer was a 233 MHz.

Pentium II.)

First, the performance of the constant heartbeat protocol is evaluated. A

set of tests are performed using different interval values between the heartbeat messages.

In this test, the allowed-miss values of one, two, three, and four are tested and the failure

detection delays are calculated while keeping the allowed-misses constant (the results are

119

summarized in Figure 5.12). The failure detection delays are based on the maximum

delay (illustrated with dmax in Figure 5.3), and calculated by subtracting the receive time

of the last heartbeat message from the failure detection time.

Constant Heratbeat Portocol (v.O) Failure Detection Time Graph

With Different Number of Allowed-Misses

(PII 233 MHz CPU)

i£nnn
I DUUU

W 1 Annn -

E

E

I H-yJUKJ

12000 -

10000 -

o s///'-*^' *^A
8000 -

0»

•a
6000 - .^^ J'T^^ _^

o
3

4000 - ^^^^^T* ^^^^ ^^^^^^V

<5 2000 - f"^^S^^*" /*w **

n -

0.5 1 1.5 2 2.5 3 3.5

interval between heartbeat messages (sec)

^^^^ ^IIn\A/^H-micQ — A. ™^5^™£*llr>w£*H-miQQ — ^

—A— allowed-miss = 2 —O— allowed-miss = 1

Figure 5.12. The Constant Heartbeat Protocol Failure Detection Delay Graph.

Second, the performance of the accelerated heartbeat protocol is

evaluated. In order to test certain allowed-misses (similar to the constant heartbeat

protocol), for each interval (t
rjax) value, the round trip delay upper bounds are set to

specific values so that only desired number of heartbeat response message misses are

allowed. A set of tests are performed by using different regular interval values between

120

the heartbeat query messages for the same allowed-miss values. In this test, allowed-

miss values of one, two, three, and four are tested, and failure detection delays are

calculated (the results are summarized in Figure 5.13). The failure detection delays are

based on the maximum delay (illustrated with d
mjtx
m Figure 5.4), and are calculated by

subtracting the receive time of the last message from the failure detection time.

Accelerated Heratbeat Portocol (v.l) Failure Detection Time Graph

With Different Number of Allowed-Misses

(PII 233 MHz CPU)

E 6000

^ 5500
iS 5000
-8 4500

g 4000
~ 3500
$> 3000
•§ 2500
a 2000
= 1500

!£ 1000
500

0.5 1.5 2

fmax(sec)

2.5 3.5

allowed-miss = 4

allowed-miss = 2

allowed-miss = 3

allowed-miss = 1

Figure 5.13. The Accelerated Heartbeat Protocol Detection Delay Graph.

Third, for each tested interval (?max) values, the failure detection delays of

the constant heartbeat protocol and the accelerated heartbeat protocol are compared for

different allowed-misses. Comparisons are made for the interval values of 0.5, 1.0, 1.5,

121

2.0, 2.5, and 3.0, and the results are provided in Figures 5.14, 5.15, 5.16, 5.17, 5.18 and

5.19, respectively.

When the interval between regular heartbeat messages is set to a half-

second, the lowest failure detection delay offered by the constant heartbeat protocol is

1052.5 milliseconds, and only one heartbeat message miss is tolerated (see Figure 5.14).

On the other hand, when only one heartbeat response message miss is allowed, the

accelerated heartbeat protocol can detect the failure in 680 milliseconds. Additionally,

although the constant heartbeat protocol can only allow one message miss to detect the

failure in 1052.5 milliseconds, the accelerated heartbeat protocol can allow three message

misses within almost the same detection delay period (1040 ms.) (see Figure 5.14).

interval / tmax 0.5 sec.

w

3000

2500

>»

JS 2000
u>o
c
o 1500

o
<D+*
<D 1000
T5

o
.2 500
'co

2522 5J$

?r>3s£r^

1540/CT^

1052.5 <T " J~l———
880

990 1040 1100

2 3

allowed-misses

constant heartbeat protocol accelerated heartbeat protocol

Figure 5.14. Comparison of the Protocols When the Interval (?max) is 0.5 Seconds.

When the interval between heartbeat messages is set to one second, the

lowest failure detection delay offered by the constant heartbeat protocol is 2032.5

122

milliseconds, and only one heartbeat message miss is tolerated (see Figure 5.15).

Alternately, when only one heartbeat response message miss is allowed, the accelerated

heartbeat protocol can detect the failure in 1760 milliseconds. Additionally, although the

constant heartbeat protocol can only allow one message miss to detect the failure in

2032.5 milliseconds, the accelerated heartbeat protocol can allow four message misses

within almost the same detection delay period (2040 ms.) (see Figure 5.15).

interval/ tma* 1.0 sec.

6000

| 5000

4000

3000

2000

1000

S©42^

-2032-

1760 1920 1980 2040

2 3

allowed-misses

constant heartbeat protocol accelerated heartbeat protocol

Figure 5.15. Comparison of the Protocols When the Interval (t) is 1 Second.

When the interval between heartbeat messages is set to one and a half

seconds, the lowest failure detection delay offered by the constant heartbeat protocol is

3075 milliseconds, and only one heartbeat message miss is tolerated (see Figure 5.16).

On the other hand, when only one heartbeat response message miss is allowed, the

accelerated heartbeat protocol can detect the failure in 2580 milliseconds. Additionally,

123

although the constant heartbeat protocol can only allow one message miss to detect the

failure in 3075 milliseconds, the accelerated heartbeat protocol can allow four message

misses within almost the same detection delay period (3080 ms.)(See Figure 5.16).

8000 -i

-r 7000
V)

E
>.

o
c
o
'J
o
V
"5

D
O

6000

5000

4000

3000

il 2000

5 1000

4

interval/ t mail 1.5 sec.

3075

2910 3080

2 3

allowed-misses

constant heartbeat protocol accelerated heartbeat protocol

Figure 5.16. Comparison of the Protocols When the Interval (rmax) is 1.5 Seconds.

When the interval between heartbeat messages is set to two seconds, the

lowest failure detection delay offered by the constant heartbeat protocol is 4022.5

milliseconds and only one heartbeat message miss is tolerated (see Figure 5.17). On the

other hand, when only one heartbeat response message miss is allowed, the accelerated

heartbeat protocol can detect the failure in 3630 milliseconds. Additionally, although the

constant heartbeat protocol can only allow one message miss to detect the failure in

4022.5 milliseconds, the accelerated heartbeat protocol can allow four message misses

within almost the same detection delay period (4060 ms.) (see Figure 5.17).

124

interval / 1 max 2.0 sec.

12000 -i

| 10000

£ 8000

c
.2 6000

g 4000

0)

3~ 2000

WOSOa

4022.5

3630 3730 3900 4060

2 3

allowed-misses

constant heartbeat protocol —D—accelerated heartbeat protocol

Figure 5.17. Comparison of the Protocols When the Interval (t
ttax) is 2.0 Seconds.

When the interval between heartbeat messages is set to two and a half-

second, the lowest failure detection delay offered by the constant heartbeat protocol is

5037.5 milliseconds and only one heartbeat message miss is tolerated (see Figure 5.18).

On the other hand, when only one heartbeat response message miss is allowed, the

accelerated heartbeat protocol can detect the failure in 4340 milliseconds. Additionally,

although the constant heartbeat protocol can only allow one message miss to detect the

failure in 5037.5 milliseconds, the accelerated heartbeat protocol can allow four message

misses within even lower detection delay period of 4940 ms. (see Figure 5.18).

125

interval / t max 2.5 sec.

14000

12000

10000

0>
D
C
o

•o

0)
*-

8000

6000

4000

2000

12525^

1 0050 i£r^

7525£r^

5037.5 <^_

4340 4670 4830 4y4U

2 3

allowed-misses

constant heartbeat protocol —H—accelerated heartbeat protocol

Figure 5.18. Comparison of the Protocols When the Interval (?max) is 2.5 Seconds.

When the interval between heartbeat messages is set to three seconds, the

lowest failure detection delay offered by the constant heartbeat protocol is 6040

milliseconds and only one heartbeat message miss is tolerated (see Figure 5.19). On the

other hand, when only one heartbeat response message miss is allowed, the accelerated

heartbeat protocol can detect the failure in 5210 milliseconds. Additionally, although the

constant heartbeat protocol can only allow one message miss to detect the failure in 6040

milliseconds, the accelerated heartbeat protocol can allow four message misses within

even lower detection delay period of 5930 ms. (see Figure 5.19).

126

interval / t max 3.0 sec.

16000

^ 14000

E 12000

(1)

10000

8000

6000

3 4000

2000

-664©-

5210
5600 5820 5930

2 3

allowed-misses

constant heartbeat protocol accelerated heartbeat protocol

Figure 5.19. Comparison of the Protocols When the Interval (fmax) is 3.0 Seconds.

The rate at which heartbeat messages are sent in the protocol should be

small in order to reduce protocol overhead. To compare the protocol overhead of the two

heartbeat protocols, consider the case that the failure detection is required to happen in

two seconds and only three consecutive message misses are allowed. In this case,

constant heartbeat protocol interval value should be set to 0.5 seconds (see Figure 5.12).

Consequently, the constant heartbeat protocol will introduce two messages per second.

Under the same condition, the accelerated heartbeat protocol ?max value should be set to

one second (see Figure 5.13). Consequently, during the normal operation of the primary

server the accelerated heartbeat protocol will also introduce two messages (one query and

one response) per second. When the primary server fails, the accelerated heartbeat

127

protocol will introduce three additional query messages. However, in the long run these

three messages are negligible. As a result, the two protocols introduce almost the same

amount of traffic overhead to the network.

According to the test results explained above, accelerated heartbeat

protocol provides better error detection capability than the constant heartbeat protocol.

Although both protocols introduce almost the same amount of traffic overhead to the

network, the probability of false failure detection in the accelerated heartbeat protocol is

much less than that of the constant heartbeat protocol. For these reasons, the accelerated

heartbeat protocol will be used as the error detection mechanism for the SAAM server.

e. Preventing False Failure Detection

False failure detection refers to a declaration of the failure of the primary

server when the primary server has not actually failed. False failure detection causes both

servers to be simultaneously in the active running state. Consequently, routers receiving

updates simultaneously from both servers wouldn't be able to determine which update to

accept. If the accelerated heartbeat protocol is used as the failure detection mechanism,

false failure detection can only occur when the backup server misses more than n

(typically n is three or four) consecutive heartbeat response messages due to the loss of

either the heartbeat query messages or the heartbeat responses in the network.

Heartbeat messages are communicated in the control channel. Since the

control channel has the highest priority among all network traffic in the SAAM region,

the loss of heartbeat messages, especially the loss of three or four consecutive heartbeat

messages, is unlikely. However, a network failure (i.e., a link failure or a router failure

128

preventing the communication of two servers) may prevent the communications between

the two servers, causing heartbeat message losses.

Failure of a router or a link can have different effects on the failure

detection mechanism according to their locations on the network. To illustrate this point,

consider a sample network topology given in Figure 5.20. In this sample network

topology, the heartbeat messages between the primary and the backup server travel

through routers A3, A5, A4, and A0. Therefore, failure of the routers Al, A2, and A6

does not affect the operation of the accelerated heartbeat protocol. However, a failure of

the routers A3, A5, A4, and A0 will definitely affect the heartbeat message

communication between the two servers. Due to the their positions in the network, a

failure of the routers that directly connect to the servers (in this example, A3 or A0) and a

failure of the routers that are located on the way of the control channel (in this example,

A5 and A4) introduce different effects. Therefore, according to the router locations, the

proposed solutions are discussed separately.

A failure in the routers directly connected to the servers will definitely

result in false failure detection. In the sample topology, when router A3 fails, the backup

server will not receive any heartbeat response messages from the primary server, even

though the primary server is still alive. Therefore, the backup server eventually will

declare the failure of the primary server. Although there are now two actively running

servers, from a router's perspective, as long as the router A3 is not repaired, only the

backup server exists. When router A3 is repaired and reinstated, there will be two servers

running at the same time.

129

In order to avoid this co-existence of two active servers, if a router directly

connected to the primary server fails, then the primary server must enter the repaired

state. The primary server can use the SAAM auto-configuration mechanism to detect the

failure of the router that is directly connected to itself. If the primary server sends a DCM

message and sees no routers, then the primary server enters the failed state. The same

conditions also apply to the backup server. If the backup server sends a DCM message

and sees no routers, then it enters the failed state.

Primary server

©
SAAM
Region

6/^ AO Backup server

Server
' ^ I J

Router

Control channel -

a

Figure 5.20. An Example Network Topology for the SAAM Region.

A failure of one of the routers that are part of the control channel between

the two servers (in this example, A5 and A4) may also result in false failure detection.

However, false failure detection caused by this type of router failures can be avoided. In

order to avoid false failure detection, it is essential that the auto-configuration mechanism

of the SAAM server rebuild the control channel prior to the false failure declaration. By

130

doing so, heartbeat response messages would be able to reach the backup server by using

the newly built control channel, preventing the backup server from making false failure

detection. In order to achieve this, proper relationship between the DCM message

interval, denoted by C , and the heartbeat query message interval, rmax , must be

established.

A router can fail at any time. However, the worst case is when a router

failure occurs right after the completion of the last auto-configuration cycle, but just

before a heartbeat query message departure, (as shown in Figure 5.21). In this case, the

current and subsequent heartbeat query messages would not reach the primary server.

Consequently, the backup server would not receive any response until t
2

. The backup

server would declare the failure of the main server at some time before t
2

.

In order to avoid false failure detection, the control channel auto-

configuration must be performed, at the latest, just before the last heartbeat query

message, as shown in Figure 5.21. By this reasoning, if we assume that the round trip

delay upper bound allows only three heartbeat response message misses, then the relation

between the DCM message interval, C , and the regular heartbeat query interval, /max ,

must satisfy:

t t t \ (5.4)

V

max , max _ max

7 4

r >— (5-5)
max -,

131

Main Server Backup Server

Heartbeat ResPonse V ?
min / 2

Heart teat Query

DCM

DCM
Failure_

detection

fi

c

ll—

i

d

Wora case Router failure;

-after the DCM

-Before Heart bea Query

T

tiax inin

V V

Heat h:3 Query

l<-
Heartbeat Query

1-4-
Heartbeat Query

3«" h,-»tI>--h Quay

T
time

^
-

\/

'm«/2

._

^max/4

\/

/\

L../8

ii52i5

max

y ,

a *i

time

Figure 5.21. Relationship Between DCM and Heartbeat Query Messages.

When the relationship given by Equation 5.5 is provided between the rmax

and the C values, the auto-configuration mechanism would reconstruct the control

channel before false failure detection. Therefore, a false failure detection due to a failure

132

of one of the routers that are part of the control channel between the two servers will be

avoided.

Another preventive measure for false failure detection is to use each DCM

message as an unsolicited heartbeat message. Since the DCM messages are sent more

frequently than the heartbeat query messages, the backup server always performs an

additional check for new DCM messages before declaring the failure of the primary

server. Even though the backup server does not receive heartbeat responses, if the backup

server receives a new DCM message from the primary server during the current period, it

sets the next period to ?max .

/. Preventing Late Failure Detection

According to the accelerated heartbeat protocol rules, if in a period, the

backup SAAM server sends a heartbeat query message to the primary SAAM server and

receives a heartbeat response message within the first half of the current period, then the

backup SAAM server makes the length of the next period rmax (regardless of the length

of the current period). However, if the backup server receives a delayed heartbeat

response message sent prior to the primary server's failure but before the event of failure

detection, then the detection delay will dramatically increase.

To address this late failure detection problem, the heartbeat messages will

be numbered. Specifically, the backup server assigns a different number to each heartbeat

query message and records the last message number. The primary server assigns its

heartbeat response message number to the last received heartbeat query message number.

Finally, the backup server compares the recorded number with the last received heartbeat

133

response message number. If the numbers match, then the backup server accepts the

heartbeat response; otherwise it ignores the heartbeat response message.

Primary SAAM Server

HeartbeatRespon|£

Failure

occurs '4

time

1

Backup SAAM Server

^eartbeatQuery

H-

2<-

3*-

4^-

6<

A

V

A

Ji

Imax I

£

T

)(

±

Detection

Late Detection

Figure 5.22. Benefits of Heartbeat Message Numbering.

In Figure 5.22, a sample scenario is given to illustrate the benefits of

numbering the heartbeat messages. In this example, the primary SAAM server fails at t4 .

After the failure of the primary server, the backup server receives a delayed heartbeat

134

response message just before t
5

. If the numbering mechanism is implemented, when the

backup server receives heartbeat response message number two, then it ignores this

heartbeat response message and detects the failure at t
5

. However, if the numbering

mechanism is not used, then the backup server thinks that the primary server is still alive,

and makes the next period rmax at t
5

. Therefore, the backup server cannot detect the

failure until t
6

.

g. Existence of Two Active Servers at the Same Time

The measures described above dramatically reduce the probability of two

servers being in the active running state at the same time. However, the probability of

two servers being in the active running state is not zero. Therefore, such a case must be

considered and handled by the system. In the event of having two active servers at the

same time, routers may receive messages (e.g., flow response and flow routing table

entry update messages) from both servers and must determine which one to use.

To prevent a situation in which two servers actively run at the same time,

one might implement an explicit server identification scheme. The explicit server

identification scheme refers to sending a special message (e.g., primary server id

message) from the server entering the active running state to both the routers (including

currently active server) to inform them of the identity of the new primary server. Routers

receiving updates from two active servers will only accept the updates stamped with the

right primary server id. An active server, upon receiving a new primary server

identification message shall return to the silent running state.

135

3. Damage Confinement and Assessment

Before starting the error correction process, it is essential to identify the

boundaries of the damage caused by the failure of the primary SAAM server. Although

failure detection happens very quickly, there might still be some losses of messages

between the routers and the primary SAAM server in the failure detection period. This

section discusses the complications introduced by such losses.

The messages communicated among the SAAM components and their

destinations are illustrated in Figure 5.23. The effects of heartbeat query and response

message losses have been covered earlier in the chapter. Therefore they are not discussed

in this section.

BACKUP SERVER

I

, Heartbeat Query

;

'

Heartbeat Response

PRIMARY SERVER
- • •

-''
, „. ... ,)

FiowRespodse
L_ „,,,,„ ,„

.DCM

ROUTER

Parent Notification

l

UCM

Figure 5.23. Messages Communicated in SAAM.

136

Among those messages shown in Figure 5.23, the downward configuration

message (DCM), upward configuration message (UCM), and parent notification message

are used for the SAAM auto-configuration of the control channel. The control channel is

used for SAAM protocol specific communications among SAAM components. With

SAAM's soft state approach for control channel auto-configuration, both the primary and

the backup servers send DCM messages periodically (typically every two seconds) to

handle network configuration changes. At the end of each configuration cycle, both

servers receive aggregated UCM messages from the routers and construct a new control

channel tree. Since the backup server also maintains its control channel by periodically

sending separate DCM messages, loss of any auto-configuration related messages during

the failure detection delay period would not introduce any problem in the SAAM system.

The Link State Advertisement (LSA) messages are sent from routers to both the

primary and the backup servers to inform the servers about the current performance of

each service level pipe of each interface of each router. The LSA messages are not sent to

servers individually. They are piggybacked to UCM messages at each router in every

auto-configuration cycle. Since the backup server always receives the LSA messages in

parallel with the primary server, the loss of LSA messages during the failure detection

delay period would not introduce any problem in the SAAM system.

The last three message types, flow request, flow routing table entry, and flow

response, are used for flow resource reservation in SAAM. Each flow request message is

sent to both the primary and the backup servers by some application requesting a QoS

flow. However, only the primary server responds to this request. If the primary server

determines that the flow request can be supported, then it assigns a flow identifier to the

137

new flow and allocates a path to it. Before responding to the application, the primary

server sends a flow routing table entry to each router in the selected path. Specifically, a

flow routing table entry message contains a flow I.D. and the appropriate next hop and

service level upon which to forward the packets carrying that flow id. After delivering the

flow routing table entry messages, the primary server sends a flow response message to

the requesting application. The flow response message simply indicates to the application

which flow I.D. it should used for its packets.

During the failure detection period, if a flow request message is lost between the

application and the primary server, then there will not be any flow routing table entry

message or flow response message coming out from the primary server for this particular

flow request. However, after detecting the failure of the primary server, if the backup

server enters the active running state before processing the request in its silent running

state, then the backup server would be able to send the flow routing table entry and the

flow response messages. If this is not the case, then the application needs to repeat its

flow request. By the same token, in case of either the flow routing table entry message or

the flow response message loss, the requesting application needs to repeat its flow

request.

As a result, in the designed model, the failure of the primary server does not cause

any major damage to the SAAM architecture; at worst the application will be required to

repeat its flow request.

138

4. Failure Recovery

After a failure of the primary SAAM server is detected and the damage is

assessed, the failure should be recovered. In the remote area fault tolerance model for the

SAAM server, the recovery process is implemented by using a process called error

masking. Error masking is a form of effective error processing and mainly focuses on the

corrections made after an error has taken affect.

In general, to mask an error, the erroneous state of the system must contain

enough redundancy to enable the delivery of an error-free service from the erroneous

internal state. In the SAAM architecture, the redundant backup SAAM server is the one

who is responsible for masking the failure of the primary SAAM server. The quality of

the services provided to the routers by the primary SAAM server primarily depends upon

the accuracy of PIB. Therefore, the backup SAAM server needs to have an up-to-date

PEJB to mask the failure of the primary SAAM server.

In order to provide an up-to-date PEB on the backup SAAM server, two

approaches were considered:

Approach 1. Periodical transfer of PEB contents from the primary SAAM server

to the backup SAAM server.

Approach 2. Duplicating and sending all router originated control messages to

both the primary SAAM server and the backup SAAM server.

The feasibility of Approach 1 depends on largely how big the PEB data record is.

Therefore, in the following sections, the size of the PEB is evaluated and pros and cons of

the two approaches are discussed.

139

a. Size ofPIB Data Records

The PEB is currently implemented by using a Java Class Objects. It is

stored in the volatile memory (main memory) of the server computer. The PIB consists of

three Java objects; nodes, paths and links.

The nodes object is a hash table that uses the assigned node id of each

router as the key (See Figure 5.24). The elements stored in this hash table are references

to other hashtables that maintain interface information. The interface hash table uses the

IPv6 address of each interface as the key. The elements stored in this hashtable are

vectors called sips. An sips vector stores objects that describe the characteristics of a

service level pipe. [Ref. 36]

Hashtable:

nodes

Hashtable:

Keys (int):

node id

Elements (Hashtable):

interfaces

-

- interfaces
Keys (IPv6Address):

address

Elements (Vector):

sips

Vector:

sips

Elements (SLP QoS):

targetDelay

targetLossRate

targetThroughput

observedDelay

observedLossRale

observedUtilization

Figure 5.24. The Nodes Class Object. [From Ref. 36]

The Paths object is a hash table that uses the assigned path id of

each router as the key (See Figure 5.25). The elements stored in this hash table are called

path objects. A path object contains several attributes. Among these are a

140

hashtable maintaining information about flows that are assigned to this path. The flow-

id assigned to a flow is used as the key for the hashtable. The elements stored in the

hashtable are Flow_QoS objects. A Flow_QoS object contains the negotiated and

observed QoS parameters for the flow. Another attribute of the path object is a vector

called SLPSequence. The SLPSequence vector stores an ordered list of the service

level pipes that make up the path. These ServiceLevelPipe objects store the IPv6

address and service level of the service level pipe. [Ref. 36]

Hashtable:

paths
Keys (int):

path_id

Elements (Path):

sourceRouter

de stin ationRouter

effectiveDelay

effective!,ossRate

effectiveThroughputRem aining

flows

SLPSequence

Hashtable:

flows
Keys (int):

flow id

Elements (FlowQoS):

negotiated!) elay

negotiatedLossRate

negotiatedThroughput

observedDelay

observedLossRate

observedThroughput

Vector.

SLPSequence
Elements (ServiceLevelPipe):

address

serviceLevel

Figure 5.25. The Paths Class Object. [From Ref. 36]

141

The links object is a hash table that uses the derived link id of a

network segment as the key (See Figure 5.26). The elements stored in this hash table are

integers that describe the bandwidth of the link. [Ref. 36]

Hashtable:

links

Keys (IPv6Address):

link id

Elements (Integer):

bandwidth

Figure 5.26. The Links Class Object. [From Ref. 36]

In order to determine the entire PIB size, formulas that give the sizes of main PIB

elements (nodes hashtable, paths hashtable, and links hashtable) are derived and

for each of them all sub elements' sizes are calculated. In Table 5.5, sizes of the elements

forming the nodes hashtable are summarized. The size of the nodes hashtable, N
s ,

can be calculated by using the following equation:

N
s
= NH

S
+N

n
(EH

s
+7u{EVs +ns-SLOs))

(5.6)

where N„ is the total number of nodes in PIB, ni the average number of interfaces

residing on one router (typically ni is about three), and ns the number of supported

service levels (right now four service levels are supported). Other notation is explained in

Table 5.5.

142

Nodes
Name Symbol Size (bytes)

Nodes Hastable (empty) NH
S

416

Elements Hashtable (empty) EH
S

35

Elements Vector (empty) EV
S

71

Slp_QoS Object SLO
s

29

Table 5.5. The Nodes Hastable Element Sizes.

In Table 5.6, sizes of the elements forming the paths hashtable are summarized.

The size of the paths hashtable, P
s

, can be calculated by using the following equation:

P
s
= PH

S
+N

p
[P0

S
+ FO

s ^f - l)+SOs
(h -

1))
(5-7)

where N is the total number of paths in PUB, nf the average number of flows using a

path, and h the average number of hops per path. Other notation is explained in Table

5.6.

Paths
Name Symbol Size (bytes)

Paths Hastable (empty) PH, 176

Paths Object PO
s

773

Flow_QoS Object FO
s

40

ServiceLevelPipe Object
i

so
s 41

Table 5.6. The Paths Hastable Element Sizes.

In Table 5.7, sizes of the elements forming the links hashtable are summarized.

The size of the links hashtable, L
s

, can be calculated by using the following equation:

L. =LH +N,R (5.8)

where N
t

is the total number of links in PD3. Other notation is explained in Table 5.7.

143

Links
Name Symbol Size (bytes)

Links Hastable (empty) LH
S

151

One record in Links Hashtable R, 47

Table 5.7. The Links Hastable Element Sizes.

In the typical SAAM region, first, if we assume that number of nodes in the PEB,

N
n , is 70, then the size of the nodes hashtable, N

s
, is calculated as 42,136 bytes by

using Equation 5.6. Second, if we assume that total number of paths in the PIB, N , is

5000, average number of flows using a path, nf , is 100, and average number of hops per

path, h , is 5, then the size of the paths hashtable, P
s

, is calculated as 21,500,773 bytes by

using the Equation 5.7. Third, if we assume that total number of links in the PIB, N
t

, is

100, then the size of the links hashtable, L
s , is calculated as 621 bytes by using the

Equation 5.8. Finally, when the sizes of the nodes hashtable, the paths hashtable, and the

links hashtable are summed up, the size of a typical PIB is calculated as 21,543,530

bytes, which is approximately 20 MB.

b. Selected Approach

To provide the backup SAAM server with an up-to-date PIB, if the

periodical replication of the original PEB from the primary SAAM server to the backup

server approach is used, then the primary SAAM server will be required to send

approximately 20 MB of data in every two or three seconds. This would introduce high

144

overhead on the network, especially on the routers that are directly connected to the

servers.

On the other hand, when the duplicating and sending all router originated

messages to both the primary SAAM server and the backup SAAM server approach is

used, the overhead introduced to the network is negligible and traffic is spread out

evenly. Additionally, since the backup SAAM server receives all the messages in parallel

with the primary SAAM server, the backup server would always have an almost identical

copy of the primary PEB. For these reasons, this approach is selected to provide the

backup SAAM server with an up-to-date PIB.

5. Fault Treatment and Continued Service

The fault treatment and continued service phase is mainly focused on the states of

the SAAM server after the failure has occurred. When the primary SAAM server fails

and the backup SAAM server takes over the responsibility of the primary SAAM server,

the system is no longer fault-tolerant. If the new primary SAAM server fails before the

failed server is repaired and reconnected to the system, then the entire SAAM system will

fail. Therefore, it is essential to repair and to reinstate the repaired server to the network

as soon as possible. This phase can be performed in three subphases: identification phase,

repair phase, and reinstating phase.

In the identification phase, the failed server is identified and is located. To

speed up the identification phase, it is desirable to have an alert system that informs the

administrator about the failed SAAM server. The alert can be in the form of displaying a

message on the screen, a sound alarm, or an e-mail message to the administrator.

145

Once the failed SAAM server is identified, then it has to be repaired very quickly.

In the repair phase, the component of the failed SAAM server containing the fault is

identified. Then, the located faulty component is repaired. Due to the severity of the

environmental disaster, repair might not always possible. In this case, a brand new server

needs to be deployed. The repairing process is performed in the failed state of the SAAM

server (See Figure 5.2). After repair, the SAAM server enters the repaired state and the

reinstating phase starts.

In the reinstating phase, the administrator decides on reinstating the repaired

SAAM server either as a backup to the current primary SAAM server or as a new

primary. If the administrator wants the repaired SAAM server to serve as the backup

server, then the repaired SAAM server enters the silent running state (See Figure 5.2). If

the administrator wants to reinstate the repaired server as a primary server, then the

repaired SAAM server enters the PEB synchronization state (See Figure 5.2) and builds

its PEB from the LSA messages. Once the PEB is built, then the repaired server is ready to

be the new primary SAAM server. Then, the repaired server sends the primary server id

message to all the nodes in the region and enters the active running state. Any other

active server, upon receiving the primary server id message, returns to the silent running

state. Additionally, the routers, upon receiving the primary server id message will know

about the new primary SAAM server.

146

B. INTEGRATION WITH THE EXISTING SOURCE SODE

In this section, the integration of the remote area fault tolerance implementation

with the existing SAAM server source code is explained (see Appendices of Ref. 36 for

the entire source code). The integration covers the failure detection, damage confinement

and assessment, and failure recovery phases. Due to the time constraints, the fault

treatment and continued service phases, and the handling of the simultaneous existence of

two active servers are not implemented in this integration.

1. Packet Formats

In the current SAAM test environment all packets are encapsulated with an Ipv4

header to enable them to be passed on current Ipv4 networks. In the SAAM test

environment two different types of packet formats are used; demo packet and emulation

packet. The demo packets (see Figure 5.27) are used by the demo station* to initialize and

test the routers and the servers of a SAAM region. Specifically, the demo packet contains

a SAAM packet encapsulated within an Ipv4 packet.

IPv4 packet
Physical IP varied

IPv4
TCP
9002

Payload

SAAMPacket
9 varied

Header Payload

Figure 5.27. Demo Packet Structure.

* Demo station is a Java application used by the administrator to build and test a SAAM network remotely.

147

On the other hand, the emulation packet (see Figure 5.28) format is used between

the components of the actual SAAM architecture. Emulation packets are structured to

reflect the layers of the emulated protocol stack (for a description of the emulated stack,

see Ref. 36). Each emulation packet contains an outer IPv4 header followed by a TCP

header for port 9002 to enable the packet to travel on existing networks. The MAC field

corresponds to the link layer of the emulated protocol stack. The emulated NIC strips off

this field. The remaining portion of the IPv4 payload consists of an IPv6 packet, which is

the true protocol data unit for the SAAM network.

IPv4 packet
Physical IP varied

IPv4
TCP
9002

Payload

VIAC
i

Mac

IPv6Packet
40 varied

Header Payload

1UDPHead er
8

Emulated

UDPHdr

SAAMPacket
9 varied

Header Payload

Figure 5.28. Emulation Packet Structure.

148

The nodes in a SAAM network need to pass SAAM protocol specific messages to

each other. These messages are called SAAM packets and consist of a header and a

payload (see Figure 5.29). Each SAAM packet is encapsulated in an emulation packet

(see Figure 5.28). A SAAM packet may contain several SAAM control messages. A

server may send several flow routing table entries to a router at once by encapsulating

those entries within a single SAAM packet. The header of a SAAM packet contains an

eight-byte time-stamp and a one-byte number of messages contained in the payload. The

payload portion could contain either messages or resident agents.

The HeartbeatQuery and the HeartbeatResponse messages exchanged

between the two servers are transferred in the payload portion of a SAAM packet (see

Figure 5.30). The HeartbeatQuery message contains a one-byte type field (the type

value of the HeartbeatQuery message is two) and a two-byte sequence number field.

In comparison, the HeartbeatResponse message contains a one-byte type field (type

number of the HeartbeatResponse message is three), a two-byte sequence number

field, and a four-byte last usedflow ID field.

The last used flow ID field of the HeartbeatResponse message informs the

backup server about the flow ID value assigned by the primary server. The last usedflow

ID filed is required by the backup server because the backup server is not aware of the

currently allocated flow IDs during its silent running state. However, when the backup

server takes over the job of the primary server, it needs to assign the new flows to flow

IDs that are not currently assigned. The last used flow ID is a three-byte number and

whenever a new flow ID is assigned, it is incremented by one. Therefore, after it takes

149

over the primary server's job, the backup server can safely assign new flow IDs starting

from the last used flow ED plus one.

SAAMPacket
9 varied

Header Payload

Header

8 1

TS
of

updates

HeartbeatQuery Message

l 2

Type (2) Sequence Number

HeartbeatResponse Message

1
-i 4

Type (3) Sequence Number Last Used Flow ID

Figure 5.29. Heartbeat Message Structures.

2. Integration of Error Detection Mechanism

For the integration of the designed accelerated heartbeat protocol prototype, four

new Java class files were added to the existing SAAM server source code. In the

following sections, the specifications and the purposes of these Java classes are explained

in detail.

150

a. HeartbeatQuery Class

The HeartbeatQuery class (see Appendix C) is extended from the

Message class (see Appendix D). The HeartbeatQuery class is used by the backup

SAAM server as a heartbeat query message. This class file encapsulates the sequence

number field shown in Figure 5.29. The first type field of the heartbeat query message is

implemented as a data member of the Message class. The HeartbeatQuery class

has three private data members; bytes, sequenceNumber, and counter. The

bytes is a Java byte array object that stores the byte code representation of this class.

The sequenceNumber is a short (primitive data type) that is used for numbering the

heartbeat query messages. The counter is a static short (primitive data type)

used for assigning a value to the sequenceNumber. Whenever a new instance of the

HeartbeatQuery class is created, the counter is incremented by one and its value

is assigned to sequenceNumber.

The HeartbeatQuery class has two constructors. The first constructor

is a parameterless constructor. This constructor is used by the backup server to create an

instance of this class to send to the primary server. The second constructor accepts a byte

array (a byte code representation of this class) as a parameter. This constructor is used by

the primary server to reconstruct the message instance by using the byte array received

from the backup server. The HeartbeatQuery class also has two get methods that

return the data members of sequenceNumber and bytes. Additionally, it has

length and toString methods that return the length of the byte array and the string

representation of this class, respectively.

151

b. HeartbeatResponse Class

The HeartbeatResponse class (see Appendix C) is also extended

from the Message class. The HeartbeatResponse class is used by the primary

SAAM server as a heartbeat response message. This class file encapsulates the sequence

number and the last used flow ID fields shown in Figure 5.29. The

HeartbeatResponse class has three private data members: bytes,

sequenceNumber, and lastUsedFlowID. The bytes is a Java byte array object

that stores the byte code representation of the HeartbeatResponse class. The

sequenceNumber is a short (primitive data type) used for numbering the heartbeat

response messages. The initialization of the sequenceNumber in this class is different

than the HeartbeatQuery class's sequenceNumber data member initialization.

Instead of using a counter value, the sequence number of the last received heartbeat query

message is used.

The HeartbeatResponse class also has two constructors. The first

constructor receives the sequenceNumber (short) and the lastUsedFlowID

(int) as parameters, and initializes the data members of this class. This constructor is

used by the primary server to create an instance of this class to send to the backup server.

The second constructor receives a byte array (a byte code representation of this class) as a

parameter. This constructor is used by the backup server to reconstruct the message

instance by using the byte array representation received from the primary server. The

HeartbeatResponse class also has three get methods that return the data members

of this class (bytes, lastUsedFlowID, and sequenceNumber). This class also

152

has length and toString methods that return the length of the byte array and the

string representation of this class, respectively. Additionally, the HeartbeatResponse class

has two set methods that are used for setting the values of the sequenceNumber and

the lastUsedFlowID.

c. HeartbeatController Class

The HeartbeatController class (see Appendix C) is created by the

Server class. The HeartbeatController class is responsible for periodically

sending the heartbeat query messages and performing a check on the time constraints of

the heartbeat response messages.

In order to periodically send the heartbeat query messages, the

HeartbeatController class uses a Timer called querySendTimer. The initial

delay of the querySendTimer is set to ?max . The querySendTimer is a repeating

timer, and is restarted with its initial delay every time when it expires. Whenever the

querySendTimer expires, the actionPerformed method of the

QuerySendTimerHandler class (inner class of the HeartbeatController

class) is executed. From this actionPerformed method, the

sendHertbeatQuery method of the Server class is called.

In order to perform a check on the time constraints of the heartbeat

response messages, the HeartbeatController class uses another Timer called

responseControlTimer. The responseControlTimers initial delay is set to

the half of the rmax value. Whenever a correct heartbeat response message is received

153

from the primary server, the responseControlTimer is stopped, and whenever a

new heartbeat query message is sent it is restarted with the half of the current interval

time. Therefore, as long as the heartbeat response messages are received properly the

responseControlTimer never expires. If the backup server sends a heartbeat query

message, but does not receive a heartbeat response message within the first half of the

current period, then the responseControlTimer expires. Whenever the

responseControlTimer expires, the actionPerformed method of the

responseControlTimerHandler class, (an inner class of the

Heartbea tControl 1 er class), is executed.

In this actionPerformed method, the sendHertbeatQuery

method of the Server class is called, and the length of the next interval period is

reduced by half. If the length of the next interval period ever becomes less than the tnin ,

then the time of the last received DCM message is checked. If a new DCM is received

within the last ?max period, then a failure declaration is not decleared. If a new DCM is

not received within the last ?max period, then failure declaration of the primary server is

declared by calling the setlsMainDown method of the Server class.

d. BannerFrame Class

The BannerFrame class (see Appendix C) is a GUI component added to

the current GUI of the Server class to display some accelerated heartbeat protocol

information to the user. Specifically, the BanerFrame class is a Java class extended

from the JFrame. It has only one constructor that accepts a string for display.

154

Additionally, the BannerFrame class has three set methods. The setFrameText

method is used to change the currently displayed text. The setBackgroundColor

method is used to change the background color of the frame, and the

setForegroundColor is used to change the color of the displayed text on the frame.

Initially, according to the server type either "THIS IS THE PRIMARY

SERVER" text (see Figure 5.32) or "THIS IS THE BACKUP SERVER" text (see Figure

5.31) is displayed on the bannerFrame. If the backup server fails to receive a heartbeat

response message, then "PRIMARY SERVER MISSED n RESPONSE" text is displayed

in is the number of missed messages). Additionally, if the backup server declares the

failure of the primary server, then "PRIMARY SERVER IS DOWN" (see Figure 5.33)

text is displayed.

3. Modifications Done on the Existing Source Code

In order to integrate the remote area fault tolerance implementation with the

existing source code, some of the existing class files were modified. (The source codes of

all modified files can be found in Appendix D). In the following sections, the

modifications made to these class files are explained.

a. Message Class

In the previous implementation, SAAM Packet supported only two types

of payloads, type-0 and type-1. The type-0 was used for the resident agents and type-1

was used for messages. Previously, messages were identified by using their Java class

names. In the SAAM packet payload, in addition to the message bytecode, the length of

155

the message bytecode, the message's Java class name, and the length of the class name

were required fields. Due to these required fields for each message, the size of the

payload was relatively very large.

In our design implementation, all messages are given different type

numbers and identified by using these type numbers. For example, the heartbeat query

message and the heartbeat response message are given type numbers two and three,

respectively. When the type numbers are used to identify the messages, length of the

message bytecode, the message's Java class name, and the length of the class name fields

are no longer required. Therefore, they are removed from the structure of the message in

the SAAM packet.

b. Server Class

In order to support the implementation of remote area fault tolerance, the

following methods are added to the Server class:

• void ini tHeartbeat (): This method is invoked from the

processConfigutation () method when a configuration message is

received from the demo station. First, ini tHeartbeat () method properly

initializes the BannerFrame according to the server type received from the

configuration message. Second, if the server type is "backup," then this

method creates a HeartbeatController class object, and also initiates the

heartbeat query message sending process.

• void processHeartbeatQuery(HeartbeatQuery hbq): This

method is invoked when a heartbeat query message is received from the

156

backup SAAM server. This method immediately sends the heartbeat response

message upon receiving the heartbeat query message.

• void processHeartbeatResponse (HeartbeatRespon.se hbr):

This method is invoked when a heartbeat response message is received from

the primary SAAM server. In this method, the sequence number of the

received heartbeat response message is controlled. If the sequence number is

the expected one or it exists in the recentMissedSequences vector, then

the heartbeat response message is accepted, otherwise it is ignored. If the

received heartbeat response message is accepted, then the

responseControlTmer in the Hear'tbeatCon.tr'oil class is stopped.

• void sendHeartbeatQueryi): This method is invoked when a

querySendTimer of the HeartbeatController class expires. It

sends a heartbeat query message to the primary SAAM server.

• void setMainDown(): This method is invoked from the

HeartbeatController class when the failure of the primary server is

declared. It sets the isMainDown Boolean data member to "true."

• void addRecentMissedSequences (): This method adds the

sequence number of the missed heartbeat response message to the

recentMissedSequences vector.

• void clearRecentMissedSequences (): This method deletes all of

the elements in the recentMissedSequences vector.

157

• void printRecentMisses (

)

: This method displays the elements of the

recentMissedSequences vector on the server GUI.

• long getLastResponseTime (): This method returns the

lastResponseTime data member.

• void display (String str) : This method displays the passed string

on the server GUI.

c. ServerAgent Class

The ServerAgent class installs itself as a resident agent and registers

with the ControlExecutive to process specific message types. Previously, the

ServerAgent were registered with the ControlExecutive for only Hello,

FlowReguest, and LinkstateAdverti semen t messages. Additionally, it was not

capable of handling the heartbeat query and heartbeat response messages.

In order to make the ServerAgent to receive the heartbeat query and

heartbeat response messages, first it is also registered with the ControlExecutive

for the heartbeat query and the heartbeat response messages. Second, in order to make the

ServerAgent call appropriate methods of the Server class, two new if statements

are added to the processMessage () method for each heartbeat message type.

d. PacketFactory Class

The PacketFactory class is used to build SAAM packets for sending

or receiving SAAM packets and extracting their atomic elements. In the

PacketFactory class, messages are built by the append () method and received by

158

the processPacket () method. Previously, both the append () and the

processPacket () methods were not capable of handling the heartbeat query and the

heartbeat response messages. Therefore, these two methods were modified. Specifically,

in each method, two new cases for the heartbeat query and the heartbeat response

messages were added to the existing swi tch statements.

C. TESTING

This section describes the test environment that is used to test the integration of

the remote area fault tolerance implementation with the existing SAAM source code.

Currently, the SAAM components (routers and servers) are emulated to operate on the

existing IPv4 networks. Because of the emulation overhead, the system time has to be

scaled on a per node basis. Therefore, it is not possible to accurately test time related

constraints of the fault tolerance design. Instead, the focus is on testing the functionality

of the remote area fault tolerance implementation.

1. Testbed

To test the functionality of the implemented remote area fault tolerance features,

the test bed shown in Figure 5.30 was developed. The test topology consisted of five

emulated SAAM routers, two emulated SAAM servers (one primary and one backup),

and one demo station.

159

The demo station, located on "kati3" whose IPv4 address 131.120.8.79, is hard-

coded with all of the information (see Table 5.8) necessary to initialize the server and all

routers (see Appendix D for the source file). During the initialization of the nodes in the

testbed, the demo station uses the demo packets shown in Figure 5.27.

RouterC

Primary Serwr

T5r

D3

Backup Server

DemoStation

Figure 5.30. Test Topology.

NODE NAME NODE IPv6 ADDR. NODE IPv4 ADDR.
EMULATED MAC

ADDR.
INTERFACE IPv6 ADDR.

Primary Server 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1 131.120.8.135 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1

Backup Server 99.99.99.99.8.0.0.0.0.0.0.0.0.0.0.2 131.120.8.132 15 99.99.99.99.8.0.0.0.0.0.0.0.0.0.0.2

Router A 99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1 131.120.8.134

1 99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2

2 99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1

3 99.99.99.99. 1 .0.0.0.0.0.0.0.0.0.0.

1

Router B 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1 131.120.8.139

6 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2

7 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.1

8 99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.1

Router C 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1 131.120.9.76
4 99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2

5 99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1

Router D 99.99.99.99.7.0.0.0.0.0.0.0.0.0.0.1 131.120.9.73

9 99.99.99.99. 1 .0.0.0.0.0.0.0.0.0.0.2

10 99.99.99.99.6.0.0.0.0.0.0.0.0.0.0.2

11 99.99.99.99.7.0.0.0.0.0.0.0.0.0.0.1

Router E 99.99.99.99.8.0.0.0.0.0.0.0.0.0.0.1 131.120.9.71

12 99.99.99.99.8.0.0.0.0.0.0.0.0.0.0.1

13 99.99.99.99.7.0.0.0.0.0.0.0.0.0.0.2

14 99.99.99.99.5.0.0.0.0.0.0.0.0.0.0.2

Table 5.8. Specifications of the Nodes in the Test Topology.

160

Additionally, during the initialization of the nodes, the demo station sends a

special message, called a Configuration message, to both servers. The configuration

message is used to differentiate the primary and the backup server. Actually, the

configuration message is used for the initialization of the auto-configuration metrics, and

is not part of the remote area fault tolerance implementation. Therefore, the details of the

message content will not be explained here. However, the server nodes use the

Server_Type (one byte) field of the configuration message to determine to behave

either as a primary or as a backup. Specifically, if the Server_Type field is zero, then

the server node is initialized as a primary server. On the other hand, if the

Server_Type field is one, then the server node is initialized as a backup server.

2. Tests Performed

In order to evaluate the functionality of the remote area fault tolerance

implementation, five different cases were tested. In the first test case, the failure detection

capability of the implementation was tested. In the second test case, the effect of some

heartbeat response message losses on the failure detection was tested. In the third test

case, the functionality of the message-numbering scheme was tested. In the fourth test

case, the usage of the DCM messages as unsolicited heartbeat messages was tested.

8C
Finally, in the fifth test case, the functionality of the provided rmax

>— relationship

between the / max (time interval between regular heartbeat query messages) and C(time

interval between the DCM messages) was tested.

161

In the first four tests, the desired test conditions were obtained by adding an

additional "fault injecting code" to the Server class file. Specifically, a different

boolean data member was provided (testCasel, testCase2, testCase3 and

testCase4), and for each test case only one of these boolean values was set to "true"

(see Appendix D). These boolean values were used to activate or deactivate the code

sections that created the test conditions to happen. In the fifth test, the desired test

condition was obtained by manually shutting down one the routers that was the part of

the control channel. In the following sections, tests performed and their results are

explained in detail.

a. Failure Detection Test

The failure detection test (testCasel) was performed. in order to test

the basic failure detection capability of the remote area fault tolerance implementation.

After the initialization of the test topology (shown in Figure 5.30), control channels were

established by the auto-configuration mechanism. Then, the backup server started to

monitor the health of the primary server by periodically sending heartbeat query

messages. In this test, the values of the rmax and tBUB
were set to 8.0 seconds and 0.6

seconds, respectively.

During the test, we observed that the heartbeat query and the heartbeat

response messages were exchanged properly between two servers. Specifically, the

backup server was sending the heartbeat query messages every eight seconds as specified

with t value (see Figure 5.31). Additionally, the primary server was immediately

162

sending the heartbeat response messages upon receiving the heartbeat query messages

(see Figure 5.32).

THIS IS THE BACKUP SERVER
Currently displaying: Server

File Protocol Stack Active Tables Open Channels Active Ports

'~rieariBearauKry^s"srnrv«m^e^
—

»>»>»».>»>>>»>>>»>>»»»>»>»»»»»>»»>>>;»>»>>»" Heartbeat Response " Is

Heartbeat Query* is sentwithSeqNum.: 5 at: 9520461 13406 after :8031 milliseconds

>>>>»>»»>*>»>»>>>»»»>»»>»»»»>>»»»> Heartbeat Response " is

" Heartbeat Query"lssentwithSeqNum.:6 at: 9520461 21 437 after :8031 milliseconds

>»»>»»>>>>>»>»»>»»>>>»»>»>»»>>>»»>>" Heartbeat Response "
is

"Heartbeat Query* Is sentwithSeqNum.; 7 at: 952046129484 after :8047 milliseconds

»»»»»»>»»»»>»»»»»>»»»»>»»»>»»»»»»>>»»" Heartbeat Response " Is

" Heartbeat Query" is sentwithSeqNum.: 8 at: 952045137468 after :7984 milliseconds

»>>>»»»>»»>»»>»>»»>>»»»>>»»>»>»>»»»»»>* Heartbeat Response " is

"Heartbeat Query" Is sentwithSeqNum.: 9 at: 952046145484 after :8016 milliseconds

>»»>»»>»»>»»»»>»»»»>»»»»»»»»»" Heartbeat Response * is

Heartbeat Query" is sentwithSeqNum.: 10 at: 9520461 53468 after :7984 milliseconds

»»»>»»>»»»>»)»»»»>»»>»»)»>>»>»»>» Heartbeat Response "
is

"Heartbeat Query" Is sentwithSeqNum.: 11 at: 952046161484 after :801 6 milliseconds

>»>>»>»>»»»»»»»»»»»>>>»>>?»>»:»»»»»>»»»" Heartbeat Response "
is

"Heartbeat Query" is sentwithSeqNum.: 12 at: 9520461 59484 after :8000 milliseconds

>»>>&»»>»»»>»&»»»»>*»>»»»»»»»>»»»»" Heartbeat Response *
is

"Heartbeat Query" is sentwithSeqNum. : 13 at: 9520461 77609 after :81 25 milliseconds

>>»>»»»>»»>»»>»»>»»»>»»>»»>»»>»" Heartbeat Response *
is

Heartbeat Query" is sentwithSeqNum.: 14 at: 952046185484 after :7875 milliseconds

>»>»»>»»»>»»»»>»>»»>»»>»»>»»>»» ,,

Heartbeat Response "
is

"Heartbeat Query" is sentwithSeqNum.: 15 at: 952046193500 after :801 6 milliseconds

»>»»»»»»»»»»»>>»»>»»»»»>»>»»»»»»» Heartbeat Response " is

"Heartbeat Query" is sentwithSeqNum: 16 at: 952046201500 after :8000 milliseconds

>»»»»>»»»>»»»*»»»»»»»>»»»»»»»>»" Heartbeat Response "
is

"Heartbeat Query" Is sentwithSeqNum.: 17 at: 952046209531 after :8031 milliseconds

»»»»»»>»»>»»»>»»»»»>»»»»»>»>»»>>" Heartbeat Response " is

"Heartbeat Query" is sentwithSeqNum.: 18 at: 95204621 751 5 after :7984 milliseconds

»»»»»»»»»»»»»»>»>»»»»»>»»>»»»»>•>»>»•»»»»• Heartbeat Response " is

"Heartbeat Query" is sentwithSeqNum.: 19 at: 952046225515 after :8000 milliseconds

»»»»»»>»»»»»»»>»»»»»»»»>»»»»> Heartbeat Response *
is

"Heartbeat Query* is sentwithSeqNum.: 20 at: 952046233515 after :8000 milliseconds

»>»»>>»»>>»»»»>»>»>»»>»»>»»»»)>»»* Heartbeat Response * is

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

received with SeqNum.

:4 at: 952046106390

:5 at: 952046114531

:6 at: 952046122468

:7 at: 952046130687

:8 at: 952046138421

:9 at: 952046146484

:10 at: 952046154781

.11 at; 952046162390

:12 at: 952046170453

:13 at: 952046178515

:14 at: 952046186500

:15 at: 952046194718

:16 at: 952046202750

:17 at: 952046210265

:18 at: 952046218687

:19 at: 952046226703

:20 at: 952046234734

m

"hMm Server u ulcnT rigth mnr

Figure 5.31. The Backup SAAM Server GUI During the Failure Detection Test.

In order to simulate the failure of the primary server, we manually killed

the server application running on the primary server. Then, we observed that the backup

server successfully detected the failure of the primary server (see Figure 5.33). The

163

failure detection delay was 15473 milliseconds and calculated by subtracting the last

received heartbeat response message time from the failure detection time. During this

failure detection period, the backup server queried the primary server's heath four times.

As a result, both the primary and the backup servers behaved according to the accelerated

heartbeat protocol specifications. Consequently, the implementation successfully passed

the failure detection test.

THIS IS THE PRIMARY SERVER
fes Cuiiently displaying: Server

File Protocol Stack Active Tables Open Channels Active Ports

10

l-inixi

•---'-'-' i.-.i... .i.n i i
Heartbeat Response

"Heartbeat Query' is received. Seq.Num: 12 at: 95201 7837875
•

—

i -- i "-"j- .u.iu.^.i..u..u..ii.h..i.i..i.
Heartbeat Response

Heartbeat Query" is received. Seq.Num: 13 at: 95201 7846000
"""""" x ' 1- Heartbeat Response

Heartbeat Query" is received. Seq.Num: 14 at : 95201 7854093— i„...i....ini. ..i..i.»iu.iu.u.i...i 1..U.-.. Heartbeat Response

"Heartbeat Query" is received. Seq.Num: 15 al : 95201 7862062
.j.uniju.i...u.i.>....iu.i..iiiu.i. 1 jiui.iuuiiui.uiii. Heartbeat Response

Heartbeat Query" is received. Seq.Num : 1 6 al : 95201 7870046
j.i.... 1 .».i.uj <..ii.ii.i.L.ij.ii.i.j-ui.i.j.i.im. 1 . 1 .ni. Heartbeat Response

"Heartbeat Query" is received. Seq.Num: 17 al : 95201 7877734
.*. i ..iii...i.iii>.i.i.ii...i.i..i.n.x.i.i.»..i.i... i iii-».. l .i.ii Heartbeal Response

Heartbeat Query" is received. Seq.Num : 1 8 at : 95201 7885906
L i.i... i.-i.i.i.i— i.i i.i.i i.j..i..i.i.i.... Heartbeat Response

"Heartbeat Query" is received. Seq.Num: 19 at : 95201 7893953
1--1--1.1.1 ..1.1..I...1.I11..1.1.1 i— .' Heartbeat Response

" Heartbeal Query" is received. Seq.Num : 20 at : 95201 7901 906
.i..... .1.1.1..i.i I.U.....IU.J....1.1.1.1....1.I.1...

Heartbeat Response

"Heartbeat Query" Is received. Seq.Num: 21 at: 952017910218
i, U.J...U...U.H i— — i— Heartbeat Response

"Heartbeat Query" Is received. Seq.Num:22 at; 95201 791 801

5

H....1— i.i.i. .i.i. i.i.. ..11..i.miiiiiiiiiiiiiiii" Heartbeat Response

"Heartbeat Query" Is received. Seq.Num: 23 at: 952017926062
l 1 - 1— iiiiiiiuiiiii-iui- i.i-iiiiiiii imi" Heartbeat Response

"Heartbeat Query" Is received. Seq.Num:24 at: 952017934046
i.i.iiii. 1-1..111.111-H1U111111H1 1....1.1.1.1..1 Heartbeat Response

"Heartbeat Query" Is received. Seq.Num: 25 at: 952017941 968
i.i.nu.i.1—i.i.i.i.uii.i.iumu.iiiui.i.i.iuj.m.1.111 Heartbeat Response

"Heartbeat Query" Is received. Seq.Num: 26 at: 952017950453
i.i...n-1-i.i..i.i..i.i ..ni.i.imi. -i.i.ii-i. i...hiij..-i.i.i*i

Heartbeat Response

"Heartbeat Query" is received. Seq.Num: 27 at:95201795829£
i.i.iii.i.i. 1.1.1... .i.i.i— i.i.i i.i i.i Heartbeat Response

"Heartbeat Query" Is received. Seq.Num: 28 at: 95201 7966031
..!.. ..i.....111111.111.1 .i n. .iiiii._i.iiin.i. .Him

Heartbeat Response

is sent Seq.Num

is sent Seq.Num

is S8nt Seq.Num

is sent Seq Num

is sent Seq Num

is sent Seq.Num

Is sent Seq Num

is sent Seq.Num

is sent Seq Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

is sent Seq.Num

:11 at :95201 7830093

: 12 at: 952017838156

: 13 at: 952017846109

: 14 at: 952017854203

: 15 at : 95201 7862234

: 16 at: 95201 7870437

: 17 at: 952017877750

: 18 at: 95201 7886046

: 19 at: 952017893968

: 20 at: 95201 7902000

:21 at: 95201 791 0359

: 22 at: 95201 791 81 56

: 23 at: 95201 7926156

: 24 at: 95201 79341 09

: 25 at: 952017942015

: 26 at .95201 7950468

: 27 at: 95201 7958640

: 28 at: 95201 7966078

Thcprimaiy Stiver it utive ligthiuw

Figure 5.32. The Primary SAAM Server GUI During the Failure Detection Test.

164

Ma

PRIMARY SERVER OWN
uriently displaying: Servei SaS

File Protocol Stack Active Tables Open Channels Active Ports

" Heartbeat Query" is sent with SeqNum. : 29 at: 952046305609 after :801 6 milliseconds

>»»»»»>»»»»»»>»»»»»»»»»»»»»>' Heartbeat Response " is received with SeqNum : 29 at: 952046306640
" Heartbeat Query" Is seniwith SeqNum.: 30 at: 95204631 3593 after :7984 milliseconds

»»»»»»»»»»»»»»»»»»»»>»»»»»»- Heartbeat Response "
Is received with SeqNum. : 30 at: 952046314765

"HeartbeatQuery" is sentwrth SeqNum.: 31 at: 952046321609 after :901 6 milliseconds

>»»»>»»»»»»»»»»»»»>»»»»»»»»' Heartbeat Response " is received with SeqNum. : 31 at: 952046322531

"Heartbeat Query" is sent with SeqNum.: 32 at: 952046329593 aftBr :7934 milliseconds

ResponseControfTlmer »»*»»»»» actionPerformed at: 952046333843

Sequence Nubmer : 32 is added to the "RecentMissedSequences'vector

"RecentMissedSequences" Vector elements:

32

"Heartbeat Query" Is sentwrth SeqNum.: 33 at: 952046333843 after :4250 milliseconds

ResponseContrommer >»»»»»>»»» acSonPerformed at 952046336031

Sequence Nubmer : 33 Is added to the*RecentMlssedSequences"vecfor

"RecentMissedSequences" Vector elements:

32

33

" Heartbeat Query" Is sentwrth SeqNum.: 34 at '.952046336046 after .7203 milliseconds

ResponseControlTimer »»>»»>»»»» actionPerformed at: 95204633721

8

Sequence Nubmer : 34 Is added to the"RecentMlssedSequences"vector

"RecentMissedSequences" Vector elements:

32

33

34

"Heartbeat Query" Is sent with SeqNum. :35 at: 952046337234 after :1 188 milliseconds

ResponseControlTimer >»»»>>»>»» actionPerformed at: 952046337968

Primary Server is down and I became the Primary Server

Failure Detected at: 952046337968

Last Heartbeat Response is received at : 952046322531

Elapsed Time :15437|

The Bulgy Stiver it active right now

Figure 5.33. The Backup Server GUI After the Failure Detection Test.

b. Heartbeat Response Message Loss Test

The heartbeat response message loss test (testCase2) was performed in

order to test the effect of n heartbeat response message losses (n is less than allowed-

miss) on the failure detection process. According to the first rule of the accelerated

protocol, if the backup server sends a heartbeat query message to the primary SAAM

165

server and receives a heartbeat response message within the first half of the current

period, then the backup server makes the length of the next period rmax (irrespective of

the length of the current period). Therefore, if the rmax and the rmin
values are assigned

allowing n heartbeat response message misses, then less than n consecutive heartbeat

response message misses should not result in failure detection.

THIS IS THE PRIMARY SERVER
Currently displaying: Seivei

File Protocol Stack Active Tables Open Channels Active Ports

is

Ema
" Heartbeat Query" is received. Seq.Num : 1 at : 95201 8706343

i-. ii. ..^1. i.i i.i..u.i^u..i>i.i.i.i...ij
Heartbeat Response "

is sent Seq.Num

:

" Heartbeat Query" is received. Seq.Num: 2 at: 952018714390
'" ••••»«•«»••««•••••»«••«•»»«••»<•«.«•«.

"*"•"' Heartbeat Response "issenl Seq.Num:

"Heartbeat Query" is received. Seq.Num:3 at .95201 8722484

TEST CASE #2 " Heartbeat Response " did not send on purpose

Seq.Num : 3

"Heartbeat Query" is received. Seq.Num: 4 at : 95201 8726593

TEST CASE #2J" Heartbeat Response " did not send on purpose

Seq.Num : 4

"Heartbeat Query" is received. Seq.Num: 5 at: 95201 8730734
iiiii.ii-in.unii.iiiin.iiii±ii..-iiiiiniii.i.i.ii..i...j...i......

Heartbeat Response "
is sent Seq.Num

:

"Heartbeat Query" is received. Seq.Num: 6 at: 95201 8739921— J l * J i—i—i—i."
Heartbeat Response " is sent Seq.Num

:

"Heartbeat Query" is received. Seq.Num: 7 at: 95201 8748093
.-1--H i.i """""""" Heartbeat Response *

is senl Seq.Num

:

" Heartbeat Queiy" is received. SeqJMum:8 at: 952018756093
1..J1.1...H..1.1 1...11..1.1.11....1...I.1...1...1.1.1.1.1 Heartbeat Response "

is sent Seq.Num

:

" Heartbeat Query" is received. Seq.Num: 9 at: 95201 8764453
iiuu»niiiuuiii.j.ui..iiL.i.mi>u.i.i-i..n-.uui...i...

Heartbeat Response "
is sent Seq.Num

:

" Heartbeat Query" is received. Seq.Num : 1 at : 95201 8772375
...

Heartbeat Response "issenl Seq.Num:

1 at: 95201 8706421

2 at: 952018714484

" Heartbeat Query" is received Seq.Num : 1 1 at: 95201 8780562
.....,i.i..... Heartbeat Response "is sent Seq.Num

"Heartbeat Query" is received. Seq.Num: 12 at: 95201 8788500
1 - i1 -1 * ..in-i ii--ii--i.--i-ii.iij.i. ii """,u" ui

Heartbeat Response " is sent Seq.Num
" Heartbeat Query" is received. Seq.Num : 1 3 at : 95201 8796609

............i.
Heartbeat Response "is sent Seq.Num

"Heartbeat Query" is received. Seq.Num: 14 at: 952018804453
........................... ""-Heartbeat Response "Issenl Seq.Num

"Heartbeat Query" is received. Seq.Num:15 at: 952018812968
...........I....................................

Heartbeat Response "is sent Seq.Num

"Heartbeat Query" Is received Seq.Num: 16 at: 95201 8820671

Heartbeat Response "is sent Seq.Num

"Heartbeat Query" is received. Seq.Num:17 at: 952018828906

5 at: 95201 8730796

6 at: 95201 8740031

7 at: 952018748125

8 at: 95201 8756359

9 at: 95201 8764593

10 at: 95201 8772390

11at:95201878062S

12 at: 952018788609

13 at: 95201 8796640

14 at: 95201 8804640

15 at: 95201 881 3093

16 at: 95201 8820687

Figure 5.34. The Primary Server GUI in Heartbeat Response Message Loss Test.

166

In this test, the values of the r max and tmin
were 8.0 seconds and 0.6

seconds, respectively. Consequently, only four heartbeat response message misses were

allowed. To perform the test, only the testCase2 was set to "true" among the test case

booleans of the Server class. In the activated code portion, the primary server

performed a check on the sequence numbers of the heartbeat query messages. In order to

simulate the heartbeat response message losses, the primary server intentionally did not

send the heartbeat response messages to the heartbeat query messages with the sequence

numbers three and four (see Figure 5.34).

THIS IS THE BACKUP SERVER
ESCuiiently displaying: Seiver

File Protocol Stack Active Tables Open Channels Active Ports

Heartbeat Query" is sent with SeqNum :1 at : 952047036968 after :99547 milliseconds

>»»»»»»»»»»»>»»»»»»»»»»»»»>• Heartbeat Response " is received with SeqNum. : 1 at: 952047038015

HearlbeatQuery- is sentwtth SeqNum. : 2 at: 952047045140 after 817211111115810005

»>»»»»»»»>»»»»»»»»»»»»»»»»»>»»-HeartDeatResponse " is received with SeqNum. : 2 at: 952047046031

Heartbeat Ouery" is sent wtth SeqNum. : 3 at: 952047053140 after :80QD mUiiseconds

ResponseControlTimer >»>»»»»»» actionPerfbrmed at: 952047057265

Sequence Nubmer : 3 Is added to the "RecentMissedSequence$"vector

RecentMissedSequences" Vector elements:

3

HearlbeatQuery" is sent with SeqNum. :4 at: 952047057281 after :4141 milliseconds

ResponseControlTimer »»»>»»>»»> actionPerfomied at: 952047061 390

Sequence Nubmer: 4 Is added to the "RecentMlssedSequencesrVector

•RecentMissedSequences' Vector elements:

3

4

Heartbeat Ouery" Is sent with SBqNum.: 5 at: 952047061 406 after :4125mMtseconds

>»>»»»>»»>»»»»>»>»>»>»»>»»>»»>»»»>>• Heartbeat Response *
is

wctor is cleared:

"RecentMissedSequences* Vector elements:

"HearlbeatQuery' is sertwith SeqNum.: 6 at : 952047070562 alter :91 56 milliseconds

>»>»»»»»»>»»»>>»»>>»»>»»>>»>i»>>»»>»*HeartbeatResponse ' is

HeartbeatQueiy"issentwithSeqNum.:7 at: 952047078703 after :8141 milliseconds

>»»»>>»»>»»>*»»>>»»>»>»>»»>>»»>»»>' Heartbeat Response "
Is

"Heartbeat Query" is sent with SeqNum.: 8 at: 952047086703 after :8000 milliseconds

»3>»>»>>»»>>»»»>»>»>»>»>»»»>>»»>»»»>~ HeartbeatResponse *
Is

Heartbeat Query" is sent with SeqNum.: 9 at: 952047094828 after 8125 milliseconds

»»>»>»»>»>»>»»»>»»*»>»>»»»»»»»»»" Heartbeat Response "
Is

"HearlbeatQuery" is sen! with SeqNum.: 10 at: 952047102843 alter :801 5 milliseconds

»»>>»»>»»»3»>>>»»>»>»>»»»»»>>>»>>>»»>>>* Heartbeat Response *
is

"HeartbeatQueryissentwittiSeqNum.:ll 31:952047110984 after :81 41 milliseconds

»»»>>»»»>»»»>>»»»>»>»»»»»»»»»»»»>»" Heartbeat Response * Is

"Heartbeat Query" 1S sent with SeqNum.: 12 at : 9520471 1 9000 after :801 6 milliseconds

»>>>»»>»»»>>»»»>»»>>»»»»>»>»»>>»»»>- Heartbeat Response * is

!i*e-Mtteat.QuejjrJ^.eoiw^^

received witn SeqNum.: 5 at: 952047062468

received with SeqNum.

received with SeqNum.

received wtm SeqNum.

received with SeqNum.

received with SeqNum.

received wtth SeqNum.

received with SeqNum.

6 at: 952047071671

7 at: 952047079890

8 at: 952047087859

9 at: 9S204709E234

10 at: 952047104015

11 at: 952047112218

12 at: 952047120187

IE

Figure 5.35. The Backup Server GUI in Heartbeat Response Message Loss Test.

167

The backup server did not receive a heartbeat response message for

heartbeat query message number three (see Figure 5.35). Then, the backup server reduced

the interval value to four seconds and sent heartbeat query message number four.

However, the backup server did not receive a heartbeat response message for the

heartbeat query message number four either. Then, it reduced the interval value to two

seconds and sent the heartbeat query message number five. This time, the backup server

received the heartbeat response message and made the length of the next period again

eight seconds, which was the f value.o max

During the test we observed that two consecutive heartbeat response

message misses did not result in false failure detection. Additionally, the backup server

operated as specified in the rules of the accelerated heartbeat protocol. Consequently, the

implementation successfully passed the heartbeat response message loss test.

c. Message Numbering Scheme Test

The message numbering scheme test (testCase3) was performed in

order to test the functionality of the sequence numbers (see Section A.2.f) used in

heartbeat messages. In order to perform a check on the message sequence numbers, the

backup server utilizes a Java Vector called recentMissedSequences. If the backup

server fails to receive a heartbeat response message, then it stores the sequence number of

the last heartbeat query message's sequence number in the vector. Then, whenever the

backup server receives a heartbeat response message with a different than the expected

one, the backup server searches through the vector to find the sequence number of the

received heartbeat response message. If the backup server finds the sequence number in

168

the vector, then it accepts the heartbeat response message and clears the vector.

Otherwise, it ignores the heartbeat response message. Additionally, if the backup server

receives a heartbeat message with the correct sequence number, and if the vector is not

empty, then the backup server clears the vector.

In this test, the values of the rmax and t
rtuB

were 8.0 seconds and 0.6

seconds, respectively. To perform the test, among the test case booleans of the Server

class only the testCase3 was set to "true". The test was performed in two steps. In the

first step, the primary server did not respond to the heartbeat query message with the

sequence number of 11 (see Figure 5.36). However, the primary server responded to the

12
th

heartbeat query message with the heartbeat response message that had the sequence

number of 11. The backup server found the sequence number three in the

recentMissedSequences vector, and accepted the message and cleared the vector

(see Figure 5.37).

169

THIS IS THE PRIMARY SERVER

Fie Protocol Slack Actrve tables

-IDI"!

Heartbeat Query" is received. SeqNum : 1 at • 95201 9457859
IL " 1IJ " Heartbeat Response * 18 sent

'Heartbeat Query" Is received 9eqNurn;2 at: 952019460765
'

ul J " " ' Heartbeat Response - is sent

"Heartbeat Ouery" is recer»ed SeqNum;3 at:9520i9468750
——*——^*™—*™«—^«——————«——- Heartbeat Response * is sent

Heartbeat Query" Is received. SeqNum: 4 at. 952019476843
" "" " " Heartbeat Response 'Is senl

Heartbeat Query* Is received. SeqNum: 5 at 952019484765
*" Heartbeat Response "IsserrJ

Heartbeat Query* Is referred. SeqNum:6 at -95201 9492734
- 1 -- Heartbeat Response * is sent

Heartbeat Query" is received. SeqNum:7 at: 95201 9600734
1 "'" "'" ' ' Heartbeat Response * Is sent

Heartbeat Ouery' Is received Seq.Num:8 at. 95201 "rSOSfltS

Heartbeat Response "Is sent

Heartbeat Ouery* Is recerved Seq.Num:9 «1. 95201 951 6968
-

- Heartbeat Response Is sent

•Heartbeat Query" IS received. SeqNum:10 al: 952019525031

" Heartbeat Response " Is serrt

Heartbeat Query* isreceivecL SeqNum;il al. 952019532875

TEST CASE #3J" Heartbeat Response ' did not send on purpose

SeoJJum:i1

HearB-ealQuery'ls-ecslvea Seq.Num:12 at: 952019537078

TEST CASE #3 "Heartbeat Response "sertvvrihseauncenvrnber'ir on purpose

"Heartbeat Ouery* Is received. Setj.Num.13 at. 952019546187
" '" '" Heartbe3tRe3ponse * Is sent

"Heartbeat Query" Is received. Seq.Nuro:14 at 952019554250
'" '" Heartbeat Response * Is sent

•HeartbeatOuery" Is received. SeoNum'tS at: 952019562031
" ' Heartbeat Response "Is sent

Heartbeat Query" Is received. SeqNum: IB at: 952019569953
"' ' ' ' Heartbeat Response " ts sent

Heartbeat Query" Is received. Seo.Num:17 at: 952019573031
" '

in Heartbeat Response " 18 sent

SeqNum

SeqNum

SaqNum

Seq.Num

Seq.Num

Seq.Num

Seq.Num

Seq Num

Seq Num

Seq.Num

1at'952O19453078

2 el. 95201 9460875

3 at. 95201 9468828

4 al 952019476906

5 at. 952019464859

8 at '95201 9482750

7 31 95 20: 450 0:164

8 at. 95201 85091 25

9 al 95201 951 7078

10 at: 95201 95251 56

Seq.Num

Seq.Num:

Seq.Num

Seq "Jam

SeqJJum

13 at 952019546312

14 at 95201 9554640

15 at: 952019562093

16 at: 95201 9570000

17et:95201 9578109
!"i**-u^ivorf_Cj»«fclitf»i^.lJi_.a*.

Figure 5.36. The Primary Server GUI in Message Numbering Scheme Test (Step 1).

THIS IS THE BACKUP SERVER
1-laM

me Protocol stack Active Tables Open Channels Active Ports

1-lolxi

»" Heartbeat Response " rsreceivrrfwrrnSeaNurn. :8 al: 952047840718

"Heartbe-rtQuijfy"lssemvyimSftQISurri.:9 at : 952047847437 alter -3000 milliseconds

>>>»,»>.»>».>,>>.,»>»».»»»,».»»»»»»»»>,- Heartbeat Response " Is received vyittiSeoNurn. '3 at: 952047848515

"Heartbeat Query" is seffiwrSi SeqNum. : 10 at : 952047855421 after .7984 rmmaeconds
»»>v»v»v»»i.»»»» J.»w.v»>»>»*»»»*,»»>»*»»»»J.»»' Heartbeal Response * rs recervedwflti SeqNum. : 10 at: 952047856880

"HeartbeatQuery"lssentwrmSeaNum.:11 at '952047963437 alter 80i6mnuseconos

ResponseContrommer »»»*»»*->**-» acnonPerrbrmed at : 952047887593

Sequence Nubmer : 1 1 ts added to the *RecentMlssedSequences*veciDr

"RecenWIssedSequences* Vector elements: .

11

"Heartbeal Query" Is senl with SetfNum :12 aj 952047867593 atter :41 58 milliseconds

Heartbeat Response * rs received with SeqNum.: 11 at: 952047968546

Hmi Received HeartbeatResponce Sequence Number did not matcn

Recstyed sequence was : 11

Expecledsequence was : 12

Sequence Number did not matcn but H exists wtrre recent misses. So ttls accepted.

vector is cleared:

"Re-entBtlssadSequences" Vector elements':

"Heartbeat Ouery* Is sentwrg- SeqNum. :13 at : 857047878640 alter .9047 milliseconds

»»»»»»»»»»»»»»»»»»»»»»»»»».>»»» Heartbeat Response " Is received wWiSr-qNum. :13 at: 952047877859

Heartbeat Ouery" le set-twitti SeqNum '14 at: 852047884656 after .8016 milliseconds

>»»»»»»>*»»»»»>.»»»»»»»>»»»»»»»»»»»>».» Heartbeat Response " rs recervedwrih SeqNum. • 14 at' 96204788o000

HeartbeatOuery*lesei*tv<miSe<iNum.'i6 at: 952047892671 after .6015mHBsecomrs
»»>»».»>>»»>»»»>»»»>»»»>>»»,».»> Heartbeat Response * Is received wan SeqNum. :1S at: 952047883798

•H«aflbeatOuery'lese«wWiSeaNum,'16 at '852047800796 after ;81 25 milliseconds

>»>»»»»»»»>»»»»»»»>»»>»»>»>>.»i.>»»»>»>»»>»»>»*HeartbealResponse " Is receivedwrs- SeqNum -16 at' 352047301750

Heartbeat Query* lesentwfBi SeaNum.: 17 at: 952047808687 after .7891 rremseconds

»»*-*•»*•»»»»»»»»»>»*»»»*•*>*»»»*•>-»»»>*»»>»*»»' Heartbeal Response " rs received with 8eqNum. : 17 at' 952047909796

"Heartbeat Query* Issentwm 8eqNum.: 18 at: 952047918687 a&ei .8000 milliseconds

.»»»»».»»>»»»»»»>»»»»»*»»»»>»»»»»»»»>»»»*.»»>» Heartbeal Response " Is received wrffi SeqNum. : 18 at: 952047917859

Heartbeat Query* ie sent wrm SrjqNum - 19 at: 952047924687 after .8000 milliseconds

.>»»»»»»»»*>»>»>*»»»»»»>»»»»»»»»»»»»»»»» Heartbeat Response " rs received wrtn SeoNum. :19 at: 952047926031

Heartbeat Query* Is sentwriti SeoNum. : 20 at: 952047932671 after :7884 milliseconds

•»>»»>»>>»>-»»>>»»»»>».>»»>»>>»>»»>»i.>»>>>»>»>>i.»>»*' Heartbeal ResnnnsR ' Is rflcnrved wttn SenNiim • "rfl at- 452047

Figure 5.37. The Backup Server GUI in Message Numbering Scheme Test (Step 1).

170

In the second step of the test, the primary server did not respond to the

heartbeat query messages that had the 11
th
and 12

th
sequence numbers (see Figure 5.38).

However, the primary server responded to the 13
th

heartbeat query message with the

heartbeat response message that had sequence number three. In this case, the backup

server could not find the "three" in the recentMissedSequences vector and

ignored the heartbeat response message (see Figure 5.39).

THIS IS THE PRIMARY SERVER
Currently displaying: Seiver

File Protocol Stack Active Tables Open Channels Active Ports

rseiv^wnrs^nirrirsrDCKranerars'e-i^

thread is sleeping now

thread woke up after 20 sees so start sending

Destination ofDCM is 99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1

DCM with SQ is sent 1

DCM has been sent

" Heartbeat Query" is received. Seq.Num : 1 at : 952098303796
ii.nuu.n.<... 1 iiiii.i....i. 1.j....i.mi lun.i.»......iin.. Heartbeat Response "

is sent Seq.Num : 1 at: 952098303859

Heartbeat Query" Is received. Seq.Num: 2 at: 95209831 1671
i...im.. 1iiu.i 1ii.i».iiU1 .i.luiu.mi. 1.mLi.liiui1Uir Heartbeat Response "

is sent Seq.Num : 2 at: 952098311906

"Heartbeat Query" Is received. Seq.Num: 3 at: 95209831 981

2

.i.i..i.i-iiii......i.i.i.xi.i._.h..._. .1.1..1.1...1
Heartbeat Response "

is sent Seq.Num : 3 at : 95209831 9906

•Heartbeat Query" is received. Seq.Num:* at: 952098327921
...........,.. 1i 1 4«....... i ..«. Heart|5ea{ReSp0nse -jsserrt Seq.Num: 4 at: 952098327968
" Heartbeat Query" is received. Seq.Num : 5 at : 952098335796
i.i.iiii..ini..i..i.iii.iiiiiiii.ini»iiiiii»iiiixiiiui.i.i.i.,

Heartbeat Response "
Is sent Seq.Num : 5 at: 952098335843

" Heartbeat Query" Is received. Seq.Num: 6 at: 952098343859
1 x '-'—'-' '-' .—11.1.......... mi Heartbeat Response " is sent Seq.Num : 6 at : 952098343875
" Heartbeat Query" is received. Seq.Num : 7 at: 952098352000
... .111.1.1111.1.1.1...... i.ii.i.. ...I. ..I.in. I.....i.

Heartbeat Response "
is sent Seq.Num : 7 at : 9520983521 09

Heartbeat Query" is received. Seq.Num : 8 at : 8520983601 25
111U1..111.1. ii.in. in.in. .i.i..in.mm.. .,1 Heartbeat Response "

is sent Seq.Num ; 8 at: 952098360171
" Heartbeat Query" Is received. Seq.Num : 9 at : 952098368000
1 -1 i.i—1-.....11.1....— ...i.i.....ii......^

Heartbeat Response "
Is sent Seq.Num : 9 at: 952098368046

" Heartbeat Query" is received. Seq.Num : 1 at : 952098376078
...iiii.il. .1.1...1111.1.11.1111.....1.1.11.1.1..111.11111..111.

Heartbeat Response "
is sent Seq.Num : 1 at : 9520983761 87

" Heartbeat Query" is received. Seq.Num: 11 at: 95209838401

5

TEST CASE #3 " Heartbeat Response " did not send on purpose

Seq.Num: 11

"Heartbeat Query" is received. Seq.Num: 12 at: 95209838821

8

TEST CASE #3 " Heartbeat Response " did not send on purpose

SeqJMum;12

•Heartbeat Query" is received. Seq.Num: 13 at: 952098390375

TEST CASE *3 " Heartbeat Response " sent with sequnce number'3" on purpose

" Heartbeat Query" is received. Seq.Num : 1 4 at : 952098391 890

ig_g

m

t

Figure 5.38. The Primary Server GUI in Message Numbering Scheme Test (Step 2).

171

m ME\

PRIMARY SERVER IS DOWN !

gjjCuirenllji displaying: Seivei nm
File Protocol Slack Active Tables Open Channels Active Pods

"Heartbeat Query" is sent with SeqNum.; 10 at: 952126701890 after :7984 milliseconds

»»»»»»»»»»»»»»»>»»»»»»»»»*»»' Heartbeat Response ' is received with SeqNum. : 1 at: 952126703250

' Heartbeat Query" is ssntwrth SeqNum. : 1 1 at: 9521 26709306 after :801 6 milliseconds

ResponseCorrtroiTimer »»»»»»» actJonPerformed at: 952126714062

Sequence Nubmer .11 Is added to the "RecentMissedSequencesvector

"RecentMlssedSequences* vector elements:

11

Heartbeat Query" is sentwtthSeqNum.: 12 at: 9521 2671 4078 after :4172 milliseconds

ResponseControlTtmer »»»>»»»» adionPertormed3t:9521267t6218

Sequence Nubmer : 1 2 is added to the"RecentMlssedSequences"vector

"RecentMlssedSequences" Vector elements:

11

12

"Heartbeat Query" Is sentwrfh SeqNum.: 13 at: 9521 2671 6234 after 2156 milliseconds

»»»»»»»»»»»»»»»>»»»»»»»»»»- HeartbeatResponse " Is received with SeqNum. ; 3 at: 952126717406

fill!! Received HeartbeatResponce Sequence Number did not match

Received sequence was : 3

Expected sequence was : 13

Sequence Number did not match and it not In toe recent misses. So It is ignored.

"RecentMlssedSequences" Vector elements:

11 . .
..'

.

12

ResponseConirolTimer >»»»»»>»» acrjonPertormed at: 952126717734

Sequence Nubmer : 1 3 is added to the "RecentMissedS€quences"vector

"RecentMlssedSequences" Vector elements:

11

12

13

•Heartbeat Query" is sent with SeqNum.: 14 at: 9521 26717781 after :1 54 7 milliseconds

ResponseControlTimer »»>»»»»»> actkmPerformed at: 952126718609

Primary Server is down and I became toe Primary Server

F allure Detected at : 9521 267 1 8609

Last Heartbeat Response is received at : 952126703250

Elapsed Time -.15359

TT>t Backup Stiver uartfet right i

Figure 5.39. The Backup Server GUI in Message Numbering Scheme Test (Step 2).

172

During the test we observed that the backup server was handling the

message sequence numbers as specified in the implementation design. Additionally, the

backup server was utilizing the recentMissedSequences vector correctly.

Consequently, the implementation successfully passed the message numbering scheme

test.

d. Unsolicited Heartbeat Test

In order to prevent a false failure detection, the backup server always

performs an additional check for new DCM message before declaring the failure of the

primary server. More specifically, even though the backup server does not receive

heartbeat responses, if the backup server receives a new DCM message from the primary

server during the current period, it sets the next period to rmax . The unsolicited heartbeat

test (testCase4) was performed in order to test such usage of the DCM messages in

the failure detection process.

In this test, the values of theC (DCM message interval), the ?max and

t
mia

were 14.0, 16.0, and 1.0 seconds, respectively. To perform the test, only the

testCase4 was set to "true" among the test case booleans of the Server class.

During the test run, the primary server did not respond to the heartbeat query messages

with the sequence numbers of 5, 6, 7, and 8 (see Figure 5.40). After that, the primary

server correctly responded to the heartbeat query messages. However, although the

backup server did not receive four consecutive heartbeat responses from the primary

server, it detected that the DCM messages were still coming. Therefore, instead of

173

declaring the failure of the main server, the backup server made the length of the next

period ? max (see Figure 5.41).

THIS IS THE PRIMARY SERVER
t« Currently displaying: Server

File Protocol Stack Active Tables Open Channels Active Ports

rneanimaiuuery li.-receiveurseq.Nurri. i aivasYiirua'/iSBB

m
....1.1. ,...>......,............. i„.i.,„.i 1.i„.,u.ii.

HeartteatReSp0|)se "is sent Seq.Num:1 at: 9521 00522078

DCM with SQ is sent 3

"Heartbeat Query" is received. Seq.Num:2 at: 952100539734
...i..........ii..iiiiiiii.iiii.ii i i.j. i i.iiii iiixiii.i.i.i.iin l » Heartbeat Response "

Is sent Seq.Num : 2 at : 9521 00539843

DCM with SQ is sent 4

" Heartbeat Query" is received. Seq.Num: 3 at; 9521 00553875
...i.u...i. 1.i....i.....i...H...ui..iu»iU i 1iimii>.uii . 1 .i.

Heartbeat Response "
is sent Seq.Num : 3 at : 9521 00553953

DCM with SQ is sent 5

" Heartbeat Query" is received. Seq.Num: 4 at: 9521 00569203
.i.i.i...M.i.ix.ii. il i 1ii. i iiiiiii.ii i i i ii i . iiiiAiiiiiiiii.iiiiM

Heartbeat Response "
Is sent Seq.Num : 4 at : 9521 00569265

DCM with SQ is sent 6

" Heartbeat Query* is received. Seq.Num: 5 at .9521005851 87

TEST CASE #4 ° Heartbeat Response " did not send on purpose. SeqNum :5

DCM with SQ is sent 7

"Heartbeat Query* is received. Seq.Num:6 at: 9521 00594796

TEST CASE #4 "Heartbeat Response "did not send on purpose. SeqNum :6

" Heartbeat Query" is received. Seq.Num: 7 at: 952100598343

TEST CASE #4 " Heartbeat Response " did not send on purpose. SeqNum :7

Heartbeat Query" is received. Seq.Num : 8 at; 9521 00600796

TEST CASE #4 " Heartbeat Response " did not send on purpose. SeqNum :8

DCM with SQ is sent 8

DCM with SQ is sent 9

Heartbeat Query" is received. Seq.Num:9 at: 9521 006 19078
........... . i.^..... Heartt3eat Response "

is sent Seq.Num : 9 at : 9521 0061 91 87

DCM with SQ is sent 10

" Heartbeat Query" is received. Seq.Num : 1 at : 9521 00633968
.....„...,.,., ,_.ui>........... ''•''-

Heartbeat Response "
is sent Seq.Num : 1 at : 9521 00634000

DCM with SQ is sent 11

" Heartbeat Query" is received. Seq.Num : 1 1 at: 9521 00650203
...

Heartbeat Response "
is sent Seq.Num ; 1 1 at : 9521 00650265

DCM with SQ is sent 12

"Heartbeat Query* is received. Seq.Num: 12 at: 952100667656
..[................. »«k.

Heartbeat Response "is sent Seq.Num: 12 at: 9521 0066771

8

Figure 5.40. The Primary Server GUI in Unsolicited Heartbeat Test.

174

THIS SS THE BACKUP SERVER
MBCuiienlly displaying: Seivei

File Protocol Stack Active Tables Open Channels Active Ports

Heartbeat Query" Is sent with SeqNum.: 4 at: 9521 28892937 after :1 5984 milliseconds

>»»»»»>»>»»>»»»»»»>»»»»»>»>»>»»>>»>»>>»" Heartbeat Response * Is received wtth SeqNum. : 4 at: 952128894625

DCM with SQ is sent 6

" Heartbeat Query" Is sentwith SeqNum. : 5 at: 952128908937 after :1 6000 milliseconds

DCM with SQ Is sent 7

ResponseControfTimer »>»»»>»»»>>» actionPerformed at: 952128917218

Sequence Nubmer: 5 is added to the "RecentMissedSaquences-vector

"RecentMissedSequences" Vector elements:

5

" Heartbeat Query" is sent with SeqNum. : 6 at: 9521 2891 7703 after :8766 milliseconds

ResponseControfTlmer >»>»»»»»> actionPerformed at : 952128921 906

Sequence Nubmer : 6 is added to the "RecentMissedSequences"vector

"RecentMissedSequences" vector elements:

5

6

" Heartbeat Query" is sentwith SeqNum . : 7 at: 952128921921 after :421 8 milliseconds

ResponseControlTimer »»>»»>»>»» actionPerformed at: 952128924171

Sequence Nubmer: 7 is added to the "RecentMissedSequences"vector

"RecentMissedSequences" Vector elements:

5

6

7

" Heartbeat Query" Is sentwith SeqNum. : 8 at : 9521 289241 71 after 2250 milliseconds

ResponseCorrtrofTlmer >»»»»»>»>»» actionPerformed at: 952128925390

Didnt receive hearbeat response message, but DCM is stilt commlng So failure detection will be delayed one more cycle

OCM with SO Is sent 8

DCMwithSQissenl9
" Heartbeat Query" is sent with SeqNum. : 9 at: 9521 28941 546 after :1 7375 milliseconds

»»»»»»»»>»»»»»»»»»»»»»»»»»»>»>»>>- Heartbeat Response " is received with SeqNum. : 9 at: 952128945562

DCM with SQts sent 10
" Heartbeat Query" is sentwith SeqNum. : 10 at : 9521 28957390 after :1 5844 milliseconds

>»>»»»»»»»>>>>»>»>>>»>>»»»»»»>>>>»>>>»»>>- Heartbeat Response " is received with SeqNum. : 10 at: 952128960531

DCM with SQ is sent 11

Figure 5.41. The Backup Server GUI in Unsolicited Heartbeat Test.

e. Control Channel Auto-configuration Test

In order to avoid false failure detection due to the failure of a router that is

part of a control channel, the control channel auto-configuration must be performed

before false failure detection occurs (see Section A.2.e). For this purpose, the relationship

8C
that should be provided between the C and the rmax is given by fmax

>— (see Equation

175

5.5). The control channel auto configuration test was performed to test the functionality

of the aforementioned relationship between the fmax and C

.

In this test, the values of theC, the tmax and the tmD were 70.0, 80.0, and

2.5 seconds, respectively. After the test topology shown in Figure 5.30 was initialized by

the demo station, the control channel for the primary SAAM server was built by the auto

configuration mechanism. The dashed lines in Figure 5.42 show part of the control

channel used for the heartbeat message exchange by the servers. The heartbeat response

messages were reaching the backup server via the routers A, D, and E.

Route rB

Route rC

Route r A Primary Sener

Route r E

i DemoStation

Backup Server

Figure 5.42. The Control Channel Path Used by the Heartbeat Response Messages.

176

To simulate the failure of the router D, the router application on that

machine was manually killed. After the router D had failed, the heartbeat response

messages with the sequence numbers 11, 12, 13, and 14 could not reach the backup

server. However, the heartbeat response message with the sequence number 15 was able

to reach the backup server via the newly constructed control channel (see Figure 5.43)

within the 15
th DCM cycle (see Figure 5.44).

RouterC

Primary Sener

Route rB

ti.

Backup Server

DemoS tation

Figure 5.43. Reconstructed Control Channel Path After Failure of the Router D.

During the test, the control channel auto configuration mechanism of the

SAAM server successfully reconstructed the control channel preventing false failure

detection from happening. The test performed showed that as long as the relationship

177

between the rmax and the C given by Equation 5.5 is provided, failures of routers that are

part of the control channel will not result in false failure detection. Consequently, the

implementation successfully passed the control channel auto-configuration test.

Currently displaying: Server QnEI
Hie Protocol Stack Active Tables Open Channels Active Ports

»»»»»»»»s»»»»»»»»»3.»»»»»»»»»- Heartbeat Response "
is received with SeqNum. : 9 at: 953067627262

DCMwith SQ is sent 12
" Heartbeat Query" is sent with SeqNum. : 10 at: 953067693027 after :801 45 milliseconds

DCM with SQ is sent 13

»»»>»»»»>»»>»»»»»>>»>>>»»»»»»»»»»»•' Heartbeat Response " is received with SeqNum. : 10 at: 953067720477
" Heartbeat Query" is sentwith SeqNum. : 11 at: 953067772421 after :79394 milliseconds

DCMwith SQ is sent 14

ResponseControlTlmer >»»»»»»»> actlonPerformed at: 95306781 3020

Sequence Nubmer : 1 1 1s added to the "RecentMissedSequences"vector

"RecentMissedSequences* Vector elements.

11

"Heartbeat Query "is sent with SeqNum. : 12 at: 953067813060 after :40639 milliseconds

ResponseControlTlmer »»»>»»»»> actlonPerformed at: 953067833830

Sequence Nubmer: 12isaddedtothe"RecentMlssedSequences"vector

"RecentMissedSequences" Vector elements:

11

12
" Heartbeat Query" Is sentwith SeqNum. : 13 at: 953067833960 after :20900 milliseconds

ResponseControlTimer »»»»»»» actionPerformed at: 953067844505

Sequence Nubmer : 1 3 is added to the "RecentMssedSequences"vector

"RecentMissedSequences" Vector elements:

11

12

13
" Heartbeat Query" is sentwith SeqNum. : 14 at: 953067844605 after :1 0645 milliseconds

DCM with SQ is sent 1

5

ResponseControlTimer >»»»»»»» actionPerformed at: 9530678501 23

Sequence Nubmer : 1 4 is added to the "RecentMissedSequences"vector

"RecentMissedSequences" Vector elements:

11

12

13

14

"Heartbeat Query" is sentwith SeqNum.:15 at: 9530678501 63 after :5558 milliseconds

»»»»»»>»»»>»»»»»»»»»»»»»»»»»»»>»»»- Heartbeat Response " is received with SeqNum. : 15 at: 953067903390

DCM with SQ is sent 16
" Heartbeat Query" is sentwith SeqNum. : 16 at .9530679371 38 after :86975 milliseconds

Figure 5.44. The Backup Server GUI During Control Channel Auto-Configuration Test.

178

VI. CONCLUSIONS

A. SYNOPSIS AND CONCLUSION

The main purpose of this thesis is to add fault tolerance features to the SAAM

architecture so that server failures can be tolerated. As a result, a failure of the SAAM

server will not interrupt SAAM services to the routers.

In order to provide a fault tolerance solution for the SAAM server that best meets

the requirements mentioned in Chapter I, fault tolerance for the SAAM servers is

examined in two phases: local and remote. The first phase, local area fault tolerance for

the SAAM server, focuses mainly on tolerating the component failures of one server. The

second phase, remote area fault tolerance (disaster recovery) for the SAAM server,

focuses on tolerating environmental faults that cause unrecoverable server failures.

For local area fault tolerance, a COTS-based solution is proposed after a survey of

the literature and commercial offerings. The proposed solution is based on Endurance

4000, which can recover from server failures in less than a second. Additionally, the

systems connected by Endurance 4000 can be placed at different locations up to 1.5

kilometers apart, providing fault tolerance for the environmental faults to some degree.

For these reasons, especially its ability to recover from server failures in milliseconds, we

believe that Endurance 4000 best meets the criteria for local area fault tolerance for the

SAAM server.

A backup server model is designed and implemented for remote area fault

tolerance. Although the designed model covers all aspects of remote area fault tolerance

for the SAAM server, the implementation only covers the failure detection, damage

179

confinement and assessment, and failure recovery phases. The prototyped model provides

robust error detection and a fast recovery from a failure of the primary SAAM server.

During the design process, two different heartbeat protocols were prototyped and

their performance results were compared to determine the best failure detection

mechanism for the SAAM server.

In the end, the accelerated heartbeat protocol was selected and implemented as the

failure detection mechanism for the remote area fault tolerance. Then, the prototype was

integrated with the existing server source code and the whole system was tested in a live

SAAM testbed.

In order to evaluate the functionality of the remote area fault tolerance

implementation for the SAAM server five different test conditions are tested. At the end

of each test, we observed that the remote area fault tolerance implementation for the

SAAM server behaved in accordance with its specifications. Therefore, the integration of

the prototyped model with the existing server source code was successful.

The remote area fault tolerance approach introduced in this thesis, demonstrated a

robust failure detection capability and a fast recovery from the failure of the primary

SAAM server. With these specifications, the remote area fault tolerance approach

proposed in this thesis applies not only to SAAM server but also to any military

application that requires timely recovery from the environmental faults that might occur.

B. FUTURE WORK

This thesis is only an initial effort to add fault tolerant features to the SAAM

server given the time constraints. As such, only the failure detection, damage

180

confinement and assessment, and failure recovery phases of the remote area fault

tolerance design are implemented. There are numerous open issues. In the following

sections, these issues are outlined.

1. Testing of Recommended COTS-Based Product

In this thesis, for local area fault tolerance, a COTS-based solution (Endurance

4000) is proposed after a survey of the literature and commercial offerings. According to

its specifications, we believe that Endurance 4000 best meets the local area fault

tolerance requirements of the SAAM server. However, the actual performance of this

product should be tested in a live SAAM test bed and the test results should be evaluated.

2. Detection of Backup SAAM Server Failures

In the remote area fault tolerance implementation, this thesis focused only on the

detection of failures the primary SAAM server. The backup SAAM server is assumed to

always be ready to take over in the event of such failures. However, the backup SAAM

server can also fail while in its silent running state. In this case, a failure of the primary

SAAM server can no longer be tolerated. Therefore, the failure of the backup SAAM

server should also be detected and corrected as early as possible. For this purpose, a

failure detection mechanism for the backup SAAM server should be added to the current

remote area fault tolerance implementation.

181

3. Reinstating of a Repaired Server

When the primary SAAM server fails and the backup SAAM server takes over

the job of the primary server, the backup SAAM server is no longer fault tolerant.

Therefore, the failed server should be repaired and reinstated as soon as possible.

Although some details are given in the modeling section, the process of

reinstating the repaired server is not covered in the current remote area fault tolerance

implementation. However, reinstating a repaired server is an essential phase of remote

area fault tolerance and this functionality must be added in the feature.

4. Handling of Two Simultaneously Active Servers

The proposed measures for preventing false failure detection should dramatically

reduce the probability of two servers being in the active running state at the same time.

However, the probability of two servers simultaneously in the active running state is not

zero. Therefore, such a case must be considered and handled by the system. In the

modeling section of the remote area fault tolerance for the SAAM server, some details on

how to handle the existence of two simultaneously active servers are provided. However,

this case is not covered in the current remote area fault tolerance implementation.

5. Field Test

In this thesis, the implementation of remote area fault tolerance is only tested for

its basic functionality. Due to limitations of the emulated environment, real performance

data could not be collected. In our tests, largely scaled rmax and trmn
values are used for

the time interval between the heartbeat query messages and for the round trip delay upper

182

bound between two servers. However, the best values for the rmax and the tmD should be

determined by performing tests on a real (non-emulated) SAAM testbed.

6. Alert Mechanism

In order to speed up the repairing process, the administrator should be

immediately notified when a SAAM server fails. For this purpose, an alert mechanism

should be added to the current implementation. An alert mechanism can be in the form of

a message displayed on the screen, an e-mail/voice message to the administrator, a sound

alarm, or some combination of these alert types.

In the current implementation of remote area fault tolerance for the SAAM server,

the failure of the primary SAAM server is displayed on the backup SAAM server screen.

However, this basic alert mechanism requires an administrative person in front of the

backup SAAM server terminal, which is not practical. Therefore, a robust alert

mechanism should be added to the remote area fault tolerance implementation.

183

THIS PAGE INTENTIONALLY LEFT BLANK

184

APPENDIX A. THE CONSTANT HEARTBEAT PROTOCOL SOURCE FILES

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

PrimaryServer
.
j ava

October 23, 1999
Efraim RATI
Constant Heartbeat Protocol
JDK 1.2.2

(v.o;

package constantheartbeat

;

import j ava . awt .

*

;

import j ava . awt . event .*

;

/'

* This class represents the Primary Server side of the "Constant Heartbeat"
* protocol. In this prototype implementation, Primary Server periodically
* sends "I am alive" messages (Heartbeats) to the Backup Server. This class
* first displays a GUI. User can select the heartbeat message interval
* (in seconds) from the drop-down choice menu. It has a text area to display
* the messages communicated between servers. When the user presses the start
* button, provided in the GUI, this class creates a new thread which sends
* the heartbeat messages periodically
*

* ©author Efraim RATI
*/

public class PrimaryServer extends Frame {

/ * *

* primaryLabel is a Label object. It is used for displaying "PRIMARY
* SERVER" text on the window.
*/

private Label primaryLabel;

* display is a TextArea object. It is used for displaying messages.
*/

private TextArea display;

startButton is a Button object. It starts sending heartbeat messages.
*/

private Button startButton;

/ * *

stopButton is a Button object. It stops sending heartbeat messages
7

185

private Button stopButton;

* intervalChoice is a Choice object. It is used for selecting the
* interval value from drop-down list.
*/

private Choice intervalChoice;

/ * *

* intervalLabel is a Label object. It is used for displaying "SELECT TIME
* INTERVAL FOR HEARTBEAT MESSAGES (sec.)" text on the window.
*/

private Label intervalLabel;

* primaryServerThread is a PrimaryServerThread object
*/

private PrimaryServerThread primaryServerThread;

* exitButton is a Button object. When clicked, exits the program.
*/

private Button exitButton;

* interval is an integer that is used for heartbeat message sending
* interval
*/

private double interval;

* isAlive is a boolean. When it is true, shows that primary server is
* running
*/

private boolean isAlive;

* Constructor for the PrimaryServer class. It initializes and sets the
* specifications of the data members.
*

* @param none
*/

public PrimaryServer () {

try {

186

//initialize the GUI components
jblnit ()

;

//initialize other data members
isAlive = false;
interval = 0.5;

}

catch (Exception e) {

display .append (e. getMessage ())

;

}//end try/catch

}//end PrimaryServer (

)

* This method is the main method of the PrimaryServer class. It creates a
* PrimaryServer object.
*

* ©param args String []

* ©return void
*/

public static void main (String [] args) {

PrimaryServer primaryServer = new PrimaryServer ()

;

} //end main (

)

* Returns the isAlive boolean value.
*

* ©param none
* ©return isAlive
*/

public boolean isAlive(){

return isAlive;

}//end isAlive ()

* This method initializes GUI components of the PrimaryServer class.
*

* ©param none
* ©return void
* ©exception Exception
*/

private void jblnit () throws Exception {

//create GUI components
primaryLabel = new Label ()

;

187

display = new TextArea ()

;

startButton = new Button();
stopButton - new Button();
intervalChoice = new Choice ()

;

intervalLabel = new Label ()

;

exitButton - new Button ();

//initialize primaryLabel
primaryLabel . setBackground (Color . lightGray)

;

primaryLabel . setBounds (new Rectangle (34 , 28, 436,
primaryLabel . setFont (new java.awt . Font ("SansSerif

'

primaryLabel . setForeground (Color .black)

;

primaryLabel . setAlignment (1) ;

primaryLabel . setText (
" PRIMARY SERVER")

;

48!

1, 34)

//initialize display
display. setBackground (Color .white)

;

display. setBounds (new Rectangle (14 , 78, 486, 364));
display . setFont (new Java .awt . Font ("Dialog" , 1, 14));
display . append (

" \n\n INSTRUCTIONSXn")

;

disdav aDDend (
" \ -n **" +
ii *************** n x .

display. append ("\n\n 1. SELECT THE TIME INTERVAL ");

display. append ("\n\n 2. PRESS START BUTTON");
display. append ("\n\n 3. WHEN YOU WANT TO STOP SENDING"+

" HEARTBEATS " +

MESSAGES, PRESS STOP BUTTON");
display . setEditable (false) ;

//initialize startButton
startButton . setBackground (Color . lightGray)

;

startButton. setBounds (new Rectangle (146 , 457, 105, 36));
startButton. setFont (new java.awt . Font ("Dialog" , 1, 20));
startButton. setLabel ("START")

;

startButton. addActionListener (new java.awt .event . ActionListener () {

public void actionPerformed(ActionEvent e) {

startButton_actionPerformed (e)

;

}

}) ;

//initialize stopButton
stopButton. setLabel ("STOP") ;

stopButton. addActionListener (new java.awt .event .ActionListener () {

public void actionPerformed (ActionEvent e) {

stopButton_actionPerformed (e)

;

}

}) ;

stopButton. setFont (new Java . awt . Font ("Dialog" , 1, 20));
stopButton. setBackground (Color. lightGray)

;

stopButton. setBounds (new Rectangle (258 , 457, 105, 36));

//initialize intervalLabel
intervalLabel . setBackground (Color . lightGray)

;

intervalLabel . setBounds (new Rectangle (12, 497, 447, 36));
intervalLabel . setFont (new Java . awt . Font ("Dialog" , 1, 15));

188

intervalLabel . setForeground (Color . black)

;

intervalLabel . setAl ignment (1)

;

intervalLabel. setText ("SELECT TIME INTERVAL FOR HEARTBEAT " +

"MESSAGES (sec.)
"

) ;

//initialize exitButton
exitButton. setBackground (Color . lightGray)

;

exitButton. setBounds (new Rectangle (205 , 553, 104, 35));
exitButton . setFont (new Java . awt . Font ("Dialog" , 1, 20));
exitButton . setForeground (Color .black) ;

exitButton. setLabel ("EXIT")

;

exitButton. addActionListener (new Java .awt . event . ActionListener () {

public void actionPerformed(ActionEvent e) {

exitButton_actionPerformed (e)

;

}

});

//initialize intervalChoice
intervalChoice .addltemListener (new Java .awt . event . I temListener () {

public void itemStateChanged(ItemEvent e) {

intervalChoice_itemStateChanged (e)

;

}

}) ;

intervalChoice. setBounds (new Rectangle (463, 500, 44, 28));
intervalChoice . setFont (new Java .awt . Font ("Dialog" , 1, 15));
intervalChoice . add ("0.5")

;

intervalChoice . add (
"
1

") ;

intervalChoice . add ("1.5")
;

intervalChoice . add (
"
2

") ;

intervalChoice . add ("2.5")
;

intervalChoice . add (
"
3

") ;

//initialize frame properties
this . setBackground (Color . lightGray)

;

this . setEnabled (true) ;

this. setTitle("Constant Heartbeat Protocol (V.0)");
this . addWindowListener (new j ava. awt .event .WindowAdapter () {

public void windowClosing (WindowEvent e) {

this_windowClosing (e)

;

}

});

this . setLayout (null)

;

this .add (display, null);
this .add (intervalLabel, null);
this . add (intervalChoice, null);
this . add (primaryLabel , null);
this .add (stopButton, null);
this .add (startButton, null);
this .add (exitButton, null);
this.setSize(515, 600) ;

this . setVisible (true)

;

(

}//end jblnit ()

* If "X" is clicked on window, terminates the program.

189

* ©param e WindowEvent
* ©return void
*/

private void this_windowClosing (WindowEvent e) {

System. exit (1)

;

}//end this_windowClosing (

)

* When startButton is pressed, clears the text area and starts the
* PrimaryServerThread for sending heartbeat messages
*

* ©param e ActionEvent
* ©return void
*/

private void startButton_actionPerformed (ActionEvent e) {

isAlive = true;
display. setText ("

")

;

PrimaryServerThread = new PrimaryServerThread (display, interval , this)

;

primaryServerThread . start ()

;

intervalChoice . setEnabled (false)

;

} //end startButton_actionPerformed(

)

/ * *

* When stopButton is pressed, stops sending heartbeat messages.
*

* ©param e ActionEvent
* ©return void
*/

private void stopButton_actionPerformed (ActionEvent e) {

display. append ("\n\nPRIMARY SERVER STOPPED SENDING MESSAGES AT :
"

+

System. currentTimeMillis () + "");

isAlive = false;
startButton. setEnabled (false)

;

stopButton. setEnabled (false)

;

} //end stopButton_actionPerformed(

)

/ * *

* If exitButton is clicked, terminates the program.
*

* ©param e ActionEvent
* ©return void
*/

190

private void exitButton_actionPerformed (ActionEvent e) {

System. exit (1)

;

} / /end exitButton_actionPerformed (

)

* When a new value is selected for the intervalChoice, sets the interval
* value

* @param e ItemEvent
* ©return void
*/

private void intervalChoice_itemStateChanged (ItemEvent e) {

interval = Double .parseDouble ((e
.
getltem(). toString ()))

;

} / /end intervalChoice_itemStateChanged (

)

}//end PrimaryServer class

//end file PrimaryServer
.
Java

191

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

PrimaryServerThread. Java
October 23, 1999
Efraim KATI
Constant Heartbeat Protocol (V.O
JDK 1.2.2

package constantheartbeat

;

import j ava . awt .

*

;

import java.net.*;
import java.io.*;
import java .util .

*

;

* This class runs as a separate thread and is created by the PrimaryServer
* class, when the start button is pressed. PrimaryServerThread periodically
* sends "I AM ALIVE" (Heartbeat) messages to the Backup Server.
*

* @author Efraim KATI
*/

public class PrimaryServerThread extends Thread{

* display is a reference to a TextArea object. It is used for displaying
* messages on the GUI

.

*/

private TextArea display;

* primaryServer is a reference to the PrimaryServer object
*/

private PrimaryServer primaryServer;

* count is an integer and used for giving numbers to the heartbeat messages
*/

private int count = ;

* interval is an integer that is used for heartbeat message sending
* interval
*/

private double interval;

* outString is a String used for outgoing message
*/

192

private String outString;

* outString is a String represents the heartbeat message
*/

private String heartbeatMessage;

/ * *

* Constructor for the PrimaryServerThread class. It initializes and sets
* the specifications of the data members.
*

* @param none
*/

public PrimaryServerThread (TextArea inDisplay,
double interval,
PrimaryServer primaryServer) {

this. display = inDisplay;
this . interval - interval;
this .primaryServer = primaryServer;
heartbeatMessage - "I AM ALIVE";

}//end PrimaryServerThread (

)

/ * *

* Run method of this thread. Message sending process is performed in this
* method
*

* @param none
* ©return void
*/

public void run ()

{

//continue to send message, unless the stop button is pressed
while (primaryServer . isAlive ())

{

try{
//create a socket
Socket socket = new Socket (InetAddress

.
getLocalHost () , 8888);

socket . setTcpNoDelay (true)

;

OutputStream out =socket .getOutputStream()

;

StringBuffer ack - new StringBuf fer ()

;

ack. append (Double . toString (interval))

;

ack . append (" ~
")

;

ack. append (heartbeatMessage)

;

ack.append(" #" + count++ + "");

outString=null

;

outString = ack. toString ()

;

display . append (" \nSending : \" " + outString +

" \ " at : ") ;

193

display . append ("
" +System. currentTimeMillis ()

+

//send the message
out .write (outString

.
getBytes ()) ;

socket . close ()

;

//wait for one interval duration
this.sleep((int) (interval*1000))

;

}

catch (Exception e){

display .append (" \n" + e .getMessage ())

;

}//end try/catch

}//end while

} / / end run (

)

}//end PrimaryServerThread class

//end file PrimaryServerThread. Java

194

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

BackupServer
.
Java

October 23, 1999
Efraim KATI
Constant Heartbeat Protocol
JDK 1.2.2

(V.O)

package constantheartbeat

;

import java.net.*;
import java.io.*;
import j ava . awt .

*

;

import j ava . awt . event .

*

;

import Java . util .

*

;

import javax. swing. *

;

/'

* This class represents the Backup Server side of the "Constant Heartbeat"
* protocol. In this prototype implementation, Primary Server periodically
* emits "I am alive" messages (Heartbeats) to the Backup Server. Backup
* Server listens these messages from the Primary Server. If predetermined
* number of messages are missed, then Backup Server declares the failure of
* the Primary Server
*

* Backup Server Class is implemented with GUI. It has a text area to display
* messages. It has also dropdown menu, which gives user option to select the
* the tolerated number of packet misses.
*

* ©author Efraim KATI
*/

public class BackupServer extends Frame {

/ * *

* timer is a swing Timer Class object. Timer is restarted whenever a new
* message is received. When the timer reaches to zero, it means that
* Primary Server failed to send pre-determined number of messages to backup
* server
*/

protected Timer timer;

* display is a TextArea object. It is used for displaying messages.
*/

protected TextArea display;

/**

* CONV_MILLIS is a constant value equals to 1000. It is used for converting
* seconds into milliseconds.
*/

private final int CONV_MILLIS = 1000;

195

* timerHandler is a TimerHandler Class object. It listens the timer. When
* the timer sends an actionPerformed () call , it changes the status boolean
* value to false, which means Primary Server is down.
*/

private TimerHandler timerHandler;

* serverSoc is a ServerSocket Class object. It waits for requests to come
* in the Primary Server
*/

private ServerSocket serverSoc;

* inStream is a DatalnputStream Class object. It reads the messages from
* the PrimaryServer which is written by OutputStream.
*/

private DatalnputStream inStream;

* port is an integer port number which server listens for connection.
*/

private int port = 8888;

/ * *

* allowedMiss is an integer value. It represents allowed number of packets
* to be missed before deciding on Primary Server's failure.
*/

private int allowedMiss;

* primaryServerStatus is a boolean value. If it is true, then it means that
* Primary Server is up and running. If it is false it means that Primary
* Server is down.
*/

private boolean primaryServerStatus;

* backupLabel is a Label object. It is used for displaying "BACKUP SERVER"
* text on the window.
*/

private Label backupLabel

;

/**

* statusLabel is a Label object. It is used for displaying "STATUS" text
* on the window.
*/

private Label statusLabel;

196

* exitButton is a Button object. When clicked, exits the program.
*/

private Button exitButton;

/ * *

* statusDisplayLabel is a Label object. It is used for displaying the
* status of the Primary Server. When the Primary Server is up and running,
* it has a green background color and a text "NORMAL" on it. When the
* Primary Server is down, it has a red background color and a text "PRIMARY
* SERVER IS DOWN" on it.
*/

private Label statusDisplayLabel;

* allowedMissLabel is a Label object. It is used for displaying "ALLOWED
* NUMBER OF MISSES BEFORE FAILURE" text on the window.
*/

private Label allowedMissLabel;

* allowedMissChoice is a Choice object. It is used for selecting the
* allowedMiss value from drop-down list.
*/

private Choice allowedMissChoice;

* intervalValue is a double value that is used for the heartbeat message
* interval time in seconds.
*/

private double intervalValue;

* lastMessageTime is a long value that is used for storing the last
* received heartbeat message time in milliseconds.
*/

private long lastMessageTime;

* inStr is a String that is used for holding the entire received message.
*/

private String inStr;

* mainStr is a String that is used for holding the second part of the
* received message.
*/

197

private String mainString;

/ * *

* initDelay is an integer value used for timer initialization
*/

private int initDelay;

/ * *

* Constructor for the BackupServer class. It initializes and sets the
* specifications of the data members.
*

* @param none
*/

public BackupServer () {

try {

//initialize the GUI components
jblnit ()

;

//set default value for the allowed number of missed messages as 1

allowedMiss = 1;

lastMessageTime = 0;

initDelay = ;

//initially assume that the Primary Server is up
primaryServerStatus = true;
//create the TimerHandler class and send this class as a reference
timerHandler = new TimerHandler (this)

;

try{
//create the server socket which will listen on port 8888
serverSoc = new ServerSocket (port)

;

}

catch (IOException ioe)

{

display .append ("Could not listen on port " + port +"");

display . append (ioe .getMessage ())

;

}//end try/catch

}

catch (Exception e) {

e
.
printStackTrace ()

;

display. append (e
.
getMessage ())

;

}//end try/catch

}//end BackupServer (

)

* This method is the main method of the BackupServer class. It creates a

198

* BackupServer object and calls its start () method.
*

* @param args String []

* ©return void
*/

public static void main (String [] args) {

BackupServer backupServerl = new BackupServer ()

;

backupServerl . start ()

;

} / /end main (

)

/ * *

* This method initializes GUI components of the BackupServer class
*

* @param none
* ©return void
* ©exception Exception
*/

private void jblnit() throws Exception {

//create GUI components
display = new TextArea ()

;

backupLabel = new Label (

)

statusLabel = new Label (

)

exitButton = new Button ()

statusDisplayLabel = new Label ()

;

allowedMissLabel = new Label ()

;

allowedMissChoice = new Choice ()

;

//initialize backupLabel
backupLabel . setBackground (Color . lightGray) ;

backupLabel . setBounds (new Rectangle (16 , 25, 476, 52));
backupLabel . setFont (new Java . awt . Font ("SansSerif" , 1, 34));
backupLabel . setForegroundf Color .black) ;

backupLabel . setAlignment (1) ;

backupLabel . setText ("BACKUP SERVER")

;

//initialize statusLabel
statusLabel . setBackground (Color . lightGray)

;

statusLabel . setBounds (new Rectangle (15, 447, 170, 36));
statusLabel . setFont (new Java . awt .Font ("Dialog" , 1, 20));
statusLabel . setAlignment (1) ;

statusLabel . setText (
" STATUS ")

;

//initialize statusDisplayLabel
statusDisplayLabel . setText ("NORMAL")

;

statusDisplayLabel . setAlignment (1)

;

StatusDisplayLabel . setFont (new Java .awt . Font ("Dialog" , 1, 20));
statusDisplayLabel . setBackground (new Java . awt .Color (88 , 255, 159
statusDisplayLabel .setBounds (new Rectangle (182 , 447, 313, 35));

199

//initialize allowedMissLabel
allowedMissLabel.setText ("ALLOWED NUMBER OF MISSES BEFORE FAILURE")
allowedMissLabel . setAlignment (1) ;

allowedMissLabel . setForeground (Color . black)

;

allowedMissLabel . setFont (new Java . awt . Font ("Dialog" , 1, 15));
allowedMissLabel . setBackground (Color . lightGray)

;

allowedMissLabel . setBounds (new Rectangle (7, 502, 447, 24));

//initialize allowedMissChoice
allowedMissChoice . addltemListener (new Java . awt . event . ItemListener (

)

public void itemStateChanged (ItemEvent e) {

allowedMissChoice_itemStateChanged (e)

;

}

});

allowedMissChoice. setBounds (new Rectangle (453 , 500, 44, 24));
allowedMissChoice . setFont (new Java .awt . Font ("Dialog" , 1, 15));

//add number from "1" through "4" to dropdown menu
allowedMissChoice . add (

"
1

"

)

allowedMissChoice . add (
"
2

"

)

allowedMissChoice . add (

"
3

"

)

allowedMissChoice .add("4"

)

//initialize exitButton
exitButton. setBackground (Color. lightGray)

;

exitButton. setBounds (new Rectangle (217 , 549, 98, 35));
exitButton. setFont (new Java .awt . Font ("Dialog" , 1, 20));
exitButton. setLabel ("EXIT")

;

exitButton. addActionListener (new Java. awt . event . ActionListener () {

public void actionPerformed(ActionEvent e) {

exitButton_actionPerformed(e)

;

}

});

//initialize display (Text Area)
display . setFont (new Java . awt . Font ("Dialog" , 1, 14)),-

display. setBounds (new Rectangle (16, 78, 479, 366));
display . setBackground (Color .white)

;

display . setEditable (false)

;

display .append (" \n\n" +

Waiting for \ "HEARTBEATX " messages from Primary Server.. \n'

//initialize frame properties
this . setLayout (null)

;

this . setBackground (Color. lightGray)

;

this. setTitle("Constant Heartbeat Protocol (V.0)");
this . addWindowListener (new j ava. awt . event .WindowAdapter () {

public void windowClosing (WindowEvent e) {

this_windowClosing (e)

;

}

}) ;

this .add (exitButton, null);
this . add (display, null);
this .add (backupLabel , null);
this . add (allowedMissLabel , null)

;

200

this. add (statusLabel, null);
this . add (statusDisplayLabel , null

]

this . add (allowedMissChoice, null)

,

this.setSize(515, 600)

;

this . setVisible (true)

;

}//end jblnit (

)

/ * *

* This method continuously listens for messages via ServerSocket . Whenever
* a connection is made, it creates a new socket and retrieves the input
* stream. This received stream consists of two parts. The first part has
* the time interval information for the heartbeat messages. The second part
* has heartbeat message. These two parts separated with the "~" delimiter.
* When the first message received BackupServer does not know the heartbeat
* interval . However Backup Server needs to know the heartbeat interval for
* the correct initialization of the timer. Therefore, when message first
* arrives it tokenizes the message and retrieves the heartbeat interval
* value. Then, it creates the Timer class object called timer. Timer is
* initialized to ((allowedMiss+1) *intervalValue) . Whenever a heartbeat
* message is received timer is restarted with the initial delay. Thus, as
* long as the primary server continue to send the heartbeat messages, timer
* never expires. The expiration of the timer indicates the failure of the
* primary server
*

* @param none
* ©return void
*/

private void start ()

{

//this boolean value is for reading only the first message
boolean oneTime = true;

//loop if Primary Server is running
while (primaryServerStatus)

{

//call garbage collector
System. gc ()

;

try{

//when message received create a Socket
Socket inSocket = serverSoc .accept ()

;

//disable drop-down menu
allowedMissChoice . setEnabled (false)

;

//retreive the stream from the socket
inStream = new DataInputStream(inSocket

.
getInputStream())

;

inStr = inStream. readLine ()

;

//tokenize the received inStr and set the intervalValue
//and mainString data member values.

201

tokenizeReceivedString ()

;

//read only the first message received and get the intervalValue
//to be able to set the timer correctly
//this block will be executed only once
if (oneTime)

{

//create the timer and set the initial delay
initDelay= (int) (CONV_MILLIS* (allowedMiss+1) * (intervalValue))

;

timer = new Timer (initDelay, timerHandler)

;

timer . setRepeats (false)

;

//set oneTime boolean as false. So do not enter in this block
//again
oneTime = false;

}//end if

//store the last message reception time
lastMessageTime = System. currentTimeMillis ()

;

//reset the Timer value
timer . setDelay(initDelay)

;

//if timer is not running start it

if (! timer . isRunning ())

{

timer. start ()

;

}//end if

//display message info
display .append (" \nReceived. .. : " + "\" " +mainString+ "

\ "
")

;

display .append (
" Interval : " + intervalValue);

display .append (

" at :" + lastMessageTime + "");

}

catch (Exception ex)

{

ex.printStackTrace ()

;

display . append (
" \n\nException in creating thread\n");

display . append (ex
.
getMessage ())

;

}//end try/catch

}//end while

}//end start (

)

* If exitButton is clicked, terminates the program.
*

* @param e ActionEvent
* ©return void
*/

202

private void exitButton_actionPerformed (ActionEvent e) {

System. exit (1)

;

} / /end exitButton_actionPerformed (

)

* If "X" is clicked on window, terminates the program .

*

* ©param e WindowEvent
* ©return void
*/

private void this_windowClosing (WindowEvent e) {

System. exit (1)

;

}//end this_windowClosing (

)

/ * *

* When a new value is selected for the allowedMiss, sets the allowedMiss
* value
*

* ©param e ItemEvent
* ©return void
*/

private void allowedMissChoice_itemStateChanged (ItemEvent e) {

allowedMiss = Integer .parselnt ((e. getltem(). toString ()))

;

} //end allowedMissChoice_itemStateChanged (

)

* Sets the status boolean to the parameter value. When status is set to
* false displays the failure detection time. It also changes the color and
* the text of the statusDisplayLabel

.

*

* ©param inStatus is a boolean for status
* ©return void
*/

public void setPrimaryServerStatus (boolean inStatus)

{

primaryServerStatus = inStatus;

if (!
primaryServerStatus)

{

display. append (

" \n\nPRIMARY SERVER FAILED !!!! AT :

+ System. currentTimeMillis () + ""
) ;

203

statusDisplayLabel . setBackground (new Java . awt .Color (255 , 0, 0));
statusDisplayLabel.setText ("PRIMARY SERVER IS DOWN");

long detectionTime = System. currentTimeMillis ()

;

display . append (" \n\nFailure detected at : " +

detectionTime + "\n" +

"Last message received at : " +

lastMessageTime + "\n" +

"Elapsed time for detection is : " +

(detectionTime-lastMessageTime) + " milliseconds")
}//end if

}//end setPrimaryServerStatus (

)

/ * *

* This method divides the received string into tokens with the delimiter
* "~" and sets the intervalValue and the mainString data members
*

* @param none
* ©return void
*/

private void tokenizeReceivedString ()

{

//divide the string into tokens with delimiter "~"

StringTokenizer tokens = new StringTokenizer (inStr, "~"
)

;

int tokenNumber = tokens . countTokens ()

;

String [] tokenArray = new String [tokenNumber] ,-

for (int i =0 ; i<tokenNumber ;i++){

tokenArray [i] = tokens .nextToken ()

;

}//end for

//first token has the intervalValue information
intervalValue =Double .parseDouble (tokenArray [0]) ;

//second token has the "I am alive" message
mainString = tokenArray [1]

;

}///end tokenizeReceivedString (

)

}//end class BackupServer

//end file BackupServer . Java

204

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

TimerHandler
.
j ava

October 23, 1999
Efraim KATI
Constant Heartbeat Protocol (V.O!

JDK 1.2.2

package constantheartbeat

;

import j ava . awt . event .

*

;

* This class implements ActionListener and listens the action generated by
* the timer of the BackupServer . When the timer expires, the actionPerformed
* method of this class is called and the failure of the Primary Server is
* declared.
*

* ©author Efraim KATI
*/

public class TimerHandler implements ActionListener {

/ * *

* backupServer is a reference to a BackupServer object
*/

BackupServer backupServer;

/ * *

* Constructor of this class
*/

public TimerHandler (BackupServer inBackupServer) {

backupServer = inBackupServer;

}//end TimerHandler (

)

* When the timer of the BackupServer is expires, this method declares the
* failure of the Primary Server
*/

public void actionPerformed (ActionEvent e) {

backupServer . timer. stop ()

;

backupServer . setPrimaryServerStatus (false)

;

}//end actionPerformed (

)

}//end TimerHandler class

//end file TimerHandler
.
Java

205

THIS PAGE INTENTIONALLY LEFT BLANK

206

APPENDIX B. THE ACCELERATED HEARTBEAT PROTOCOL SOURCE FILES

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

BackupServer
. j ava

October 23, 1999
Efraim RATI
Accelerated Heartbeat Protocol
JDK 1.2.2

[V.l

package acceleratedheartbeat

;

import java.awt.*;
import javax. swing .*

;

import javax. swing .border .*

;

import j ava . awt . event .

*

;

import java.net.*;
import j ava . io .

*

;

/
This class represents the Backup Server side of the "Accelerated
Heartbeat Protocol" . In this prototype implementation, Backup Server
periodically emits "Are you alive?" messages (Heartbeat Queries) to the
Primary Server and listens the responses coming from the Primary Server.
The interval value for sending heartbeat queries is selected by the user
from the GUI. Message sending process is implemented with a repeating
timer. Whenever a timer expires a new Heartbeat Query message is sent.
The algorithm of the Accelerated Heartbeat Protocol is as follows:

1. If in a period, backup server sends a "Are you alive?" message to

the primary server and receives a "I'm alive" message, then
the backup server makes the length of the next period a large value
"tmax" (irrespective on the length of the current period)

.

2. If in a period, the backup server sends a "Are you alive?" message
* to the primary server but does not receive a "I'm alive" message,
* then the backup server makes the length of the next period half of
* the current period.
* 3 . If the length of the next period ever becomes less than a specified
* value "tmin", that is an upper bound on the round trip delay between
* backup server and primary server, than backup server declares the
* failure of the primary server.
*

* @author Efraim RATI
*/

public class BackupServer extends JFrame {

/'

* receiveServerSocket is a ServerSocket object and used for receiving
* messages from the primary server
*/

207

private ServerSocket receiveServerSocket ;

/ * *

* socket is Socket object and used for sending messages to the primary
* server
*/

private Socket socket;

* messageSendTimer is Timer object and used for sending messages
*/

private Timer messageSendTimer;

* ackReceiveTimer is Timer object and used for message receive check
*/

private Timer ackReceiveTimer;

* ackTimerHandler is AckTimerHandler object. It handles the actions
* generated by the ackReceiveTimer
*/

private AckTimerHandler ackTimerHandler;

* messageTimerHandler is MessageTimerHandler object. It handles the actions
* generated by the messageSendTimer
*/

private MessageTimerHandler messageTimerHandler;

* CONVERTER is a constant value used for converting seconds into
* milliseconds
*/

private final double CONVERTER = 1000.0;

* tmax is a double value that is used for the maximum time interval for
* sending Heartbeat Query Messages
*/

private double tmax;

* tmin is a double value that is used for the upper bound of the round trip
* delay between servers
*/

private double tmin;

208

/ * *

* currentMessageSendTime is used for the last message transmit time
*/

public long currentMessageSendTime;

* lastMessageReceiveTime is used for remembering the last message received
* time
*/

private long lastMessageReceiveTime;

* previousTime is used for remembering the previous message
* transmit time
*/

public long previousTime;

/ * *

* rtdMax is used for calculating the maximum round trip delay
*/

private long rtdMax;

* sendPort is the port number "8888" for sending messages
*/

private int sendPort

;

* receivePort is the port number "8889" for receiving messages
*/

private int receivePort;

* lineCount is used for counting the displayed lines on the text area.
* When the lineCount reaches 200, the text area is cleared. (Because
* TextArea has some limitations)
*/

private int lineCount;

/**

* status is a boolean. If it is true then means that primary server
* responding properly. If it is false then means that primary server
* failed to respond
*/

private boolean status;

209

* isPrimaryDown is a boolean. If it is true then means that primary server
* is running. If it is false then means that primary server failed
*/

private boolean isPrimaryDown;

/ * *

* outMessage is the string that is sent to the primary server ("Are you
* alive?")
*/

private String outMessage;

* backupServerLabel is a JLabel object that displays the "BACKUP SERVER"
* text on the GUI window
*/

private JLabel backupServerLabel;

* display is a TextArea object that displays all outputs of the program on
* the GUI window
*/

private TextArea display;

/ * *

* intervalLabel is a JLabel object that displays the ""SELECT "tmax" VALUE
* FOR SENDING MESSAGES (sec) " text on the GUI window
*/

private JLabel intervalLabel;

/ * *

* tmaxComboBox is a JComboBox object that is used for selecting the "tmax"
* value from a drop-down list
*/

private JComboBox tmaxComboBox;

* startButton is a JButton object. When it is pressed, program starts
* sending heartbeat query messages to the primary server
*/

private JButton startButton;

* exitButton is a JButton object. When it is pressed, program is terminated
*/

private JButton exitButton;

210

* intervalLabe2 is a JLabel object that displays the ""SELECT ROUND
* TRIP DELAY UPPER BOUND (sec)" text on the GUI window
*/

private JLabel intervalLabel2

;

/ * *

* roundTripDelayComboBox is a JComboBox object that is used for selecting
* the "tmin" value from a drop-down list
*/

private JComboBox roundTripDelayComboBox

;

* exitButton is a JButton object. When it is pressed, program calculates
* the upper bound of the round trip delay between servers
*/

private JButton rtdButton;

* rtdDisplayLabel is a JLabel object that displays the calculated upper
* bound of the round trip delay between servers
*/

private JLabel rtdDisplayLabel;

/ * *

* Constructor of the BackupServer class and initializes the data members
* of this class
* @param none
*/

public BackupServer () {

try {

jblnit ()

;

messageTimerHandler = new MessageTimerHandler (this)

;

sendPort = 8888;
receivePort = 888 9;

lineCount = 2;

receiveServerSocket = new ServerSocket (receivePort)

;

tmax = 0.5;
tmin = 0.05;
rtdMax = 0;

status = true;
isPrimaryDown=false;
outMessage = "ARE YOU ALIVE?";

}

catch (Exception e) {

211

display .append (" \n" + e
.
getMessage ())

;

}//end try/catch

}//end BackupServer (

)

* This method is the main method of the BackupServer class. It creates a
* BackupServer object and calls its start () method.
*

* ©param args String [

]

* ©return void
*/

public static void main (String [] args) {

BackupServer backupServer21 = new BackupServer () ,-

} //end main (

)

* This method initializes GUI components of the BackupServer class.
*

* ©param none
* ©return void
* ©exception Exception
*/

private void jblnitO throws Exception {

//creation GUI components
backupServerLabel = new JLabel ()

;

display = new TextArea ()

;

intervalLabel = new JLabel ()

;

tmaxComboBox = new JComboBox ()

;

startButton = new JButton ()

;

exitButton = new JButtonf);
intervalLabel2 = new JLabel ()

;

roundTripDelayComboBox = new JComboBox () ,-

rtdButton = new JButton ();

rtdDisplayLabel = new JLabel ()

;

//initialization of the backupServerLabel
backupServerLabel . setFont (new Java . awt . Font ("Dialog" , 1, 40)),-

backupServerLabel . setBorder (BorderFactory . createRaisedBevelBorder ())

;

backupServerLabel . setHorizontalAlignment (SwingConstants .CENTER)

;

backupServerLabel . setText ("BACKUP SERVER")

;

backupServerLabel . setBounds (new Rectangle (18 , 3, 476, 53));

//initialization of the display
display . setBackground(new Java . awt .Color (192 , 231, 255));
display . setBounds (new Rectangle (19 , 61, 475, 315));
display . setEditable (false)

;

display. append ("\n\n INSTRUCTIONS")

;

Hisnl ay anDend (
" \n **"+

212

II **************************** II \ .

display. append ("\n\n 1. GET THE ROUND TRIP DELAY "

display. append ("\n\n 2. SELECT THE \"tmax\" VALUE"
display. append ("\n\n 3. SET THE ROUND TRIP DELAY "•

"VALUE ACCORDING TO ");

display.append("\n OBTAINED VALUE FROM STEP 1"

display.append("\n\n 4. PRESS START BUTTON");

//initialization of the intervalLabel
intervalLabel . setFont (new Java. awt . Font ("Dialog" , 1, 14));
intervalLabel. setText ("SELECT \"tmax\" VALUE FOR SENDING MESSAGES

" (sec)");
intervalLabel . setBounds (new Rectangle (17, 417, 416, 29));

//initialization of the tmaxComboBox
tmaxComboBox. setBounds (new Rectangle (437 , 419, 58, 23));
tmaxComboBox . addltem ("0.5"

tmaxComboBox . addltem ("1.0"

tmaxComboBox . addltem ("1.5"

tmaxComboBox . addl tern ("2.0"

tmaxComboBox . addltem ("2.5"

tmaxComboBox . addltem ("3.0"

tmaxComboBox. addl temListener (new Java . awt . event . ItemListener () {

public void itemStateChanged (ItemEvent e) {

tmaxComboBox_itemStateChanged (e)

;

}

});

//initialization of the startButton
startButton. setFont (new Java . awt . Font ("Dialog" , 1, 12));
startButton . setBorder (BorderFactory . createRaisedBevelBorder ())

;

startButton. setText ("START")

;

startButton. setBounds (new Rectangle (194, 486, 127, 28));
startButton . addActionListener (new Java . awt . event . ActionListener () {

public void actionPerformed(ActionEvent e) {

startButton_actionPerformed (e)

;

}

}) ;

//initialization of the exitButton
exitButton. setFont (new Java. awt . Font ("Dialog" , 1, 12));
exitButton. setBorder (BorderFactory . createRaisedBevelBorder ())

;

exitButton. setText ("EXIT")

;

exitButton. setBounds (new Rectangle (209, 534, 97, 27));
exitButton . addActionListener (new java . awt . event .ActionListener () {

public void actionPerformed (ActionEvent e) {

exitButton_actionPerformed (e)

;

}

}) ;

//initialization of the intervalLabel2
intervalLabel2 .setBounds (new Rectangle (28, 403, 363, 29));
intervalLabel2 .setBounds (new Rectangle (17, 436, 416, 29));
intervalLabel2 .setText ("SELECT ROUND TRIP DELAY UPPER BOUND

(sec)

")

;

213

intervalLabel2 . setFont (new Java . awt . Font ("Dialog" , 1, 14))
intervalLabel2 . setBounds (new Rectangle (28, 403, 363, 29));
intervalLabel2 . setBounds (new Rectangle (17 , 448, 415, 29));

//initialization of the roundTripDelayComboBox
roundTripDelayComboBox . addltemListener (new Java . awt . event . ItemListener ()

{

public void itemStateChanged (ItemEvent e) {

roundTripDelayComboBox_itemStateChanged (e)

;

}

}) ;

roundTripDelayComboBox. setBounds (new Rectangle (435 , 405, 58, 23))
roundTripDelayComboBox. setBounds (new Rectangle (436 , 439, 58, 23))
roundTripDelayComboBox. setBounds (new Rectangle (435 , 405, 58, 23))
roundTripDelayComboBox. setBounds (new Rectangle (438 , 449, 58, 23))
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox. addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox. addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem
roundTripDelayComboBox . addltem

05"
06"

07"

08"

09"

10"
11"

0.12
0.13

14"

15"

16"

17"

18"

19"

20"
21"
22"

0.23
0.24

25"
26"
27"
28"
29"
30"

//initialization of the rtdButton
rtdButton. setFont (new j ava. awt . Font ("Dialog" , 1, 12));
rtdButton. setBorder (BorderFactory . createRaisedBevelBorder ())

;

rtdButton. setText ("GET ROUND TRIP DELAY");
rtdButton. setBounds (new Rectangle (18, 384, 181, 27));
rtdButton .addActionListener (new Java . awt . event . ActionListener () {

public void actionPerformed(ActionEvent e) {

rtdButton_actionPerformed(e) ;

}

}

//initialization of the rtdDisplayLabel
rtdDisplayLabel . setForeground (Color . red)

;

rtdDisplayLabel. setBounds (new Rectangle (208, 385, 287, 26));

214

//initialization of the frame
this . setTitle ("Accelerated Heartbeat Protocol [V.I) ")

;

this
.
getContentPane

(

this
.
getContentPane

(

this
.
getContentPane

(

this
.
getContentPane

(

this .
getContentPane

(

this
.
getContentPane

(

this
.
getContentPane

(

this .
getContentPane

(

this .
getContentPane

(

this
.
getContentPane

(

this
.
getContentPane

(

this.setSize(52 0, 600
this . setVisible (true

. setLayout (null)

;

.add (intervalLabel , null);

. add (tmaxComboBox, null);

. add (roundTripDelayComboBox, null)

;

.add(exitButton, null);

. add (startButton, null);

. add (intervalLabel2 , null);

. add(backupServerLabel, null);

. add(rtdButton, null);

. add(rtdDisplayLabel, null);

.add (display, null)

;

}//end jblnit(

* This method sends messages to the Primary Server. While primary server
* responds properly the ackReceiveTimer is started with the delay of
* (tmax/2) seconds. When the primary server fails to respond,
* ackReceiveTimer is started with the half of the current delay. After the
* message is sent, this messages starts the ackReceiveThread to receive
* the response of the primary server
*

* @param none
* ©return void
*/

public void sendMessage ()

{

if (status)

{

ackReceiveTimer . setlnitialDelay ((int

!

ackReceiveTimer . restart ()

;

(tmax / 2 .) *CONVERTER)

)

}

else{

ackReceiveTimer. setlnitialDelay (ackTimerHandler. getNewDelay ()

)

ackReceiveTimer . restart ()

;

}//end if

try{

socket = new Socket (InetAddress .getLocalHost

(

socket . setTcpNoDelay (true)

;

OutputStream out =socket
.
getOutputStream()

;

StringBuffer outBuffer = new StringBuf fer ()

;

outBuffer. append (outMessage)

;

String outString = outBuf fer . toString ()

;

out .write (outString.getBytes ())

;

sendPort

)

215

out . flush ()

;

currentMessageSendTime = System. currentTimeMil lis ()

;

long displayTime = currentMessageSendTime - previousTime;

if (previousTime == 0){

displayTime = ;

}//end if

show (

" \n Sent Query at: " + currentMessageSendTime +" diff : "+

displayTime + "");

previousTime = currentMessageSendTime;
AckReceiveThread receiveThread = new AckReceiveThread (this,

receiveServerSocket)

;

receiveThread. start ()

;

System. gc ()

;

socket . close ()

;

}

catch (Exception cex){

stopMessageSendTimer ()

;

}//end try/catch block

}//end sendMessage (

)

* This method calculates the upper bound of the round trip delay between
* two servers, by sending four consecutive heartbeat query messages
*

* @param none
* ©return void
*/

private void evaluateRTD ()

{

long [] rtdArray = new long [4]

;

long startTime = 0;

long endTime = ;

try{

for (int i = ; i < 4 ; i++)

{

Socket rtdSocket = new Socket (InetAddress .getLocalHost ()

,

sendPort)

;

rtdSocket . setTcpNoDelay (true)

;

OutputStream rtdOut =rtdSocket . getOutputStream()
,-

StringBuffer outBuffer = new StringBuf fer ()

;

outBuf fer. append ("RTD TEST");
String outString = outBuf fer . toString ()

;

rtdOut .write (outString. getBytes ())

;

rtdOut.flushO ;

216

startTime = System. currentTimeMillis ()

;

display . setText ("
")

;

lineCount = ;

show("\n Testing Round Trip Delay "
) ;

rtdOut . close ()

;

rtdSocket . close ()

;

Socket testSocket = receiveServerSocket . accept ()

;

endTime = System. currentTimeMil lis ()

;

InputStream inStr = testSocket .getlnputstream()

;

DatalnputStream inStream= new DatalnputStream (inStr);
String testString = inStream. readLine ()

;

inStream. close ()

;

testSocket . close ()

;

rtdArray[i] = endTime - startTime;
System. gc ()

;

}//end for

}

catch (Exception ex){

show("\n" + ex.getMessage ())

;

}//end try/catch block

long total =0;

for (int i=0 ; i<4 ; i++)

{

total =+ rtdArray[i];

}//end for

long average = total/ (long) 4 . ;

long tempMaxl = ;

long tempMax2 = ;

if (rtdArray[0] > rtdArray [1])

{

tempMaxl = rtdArray []

;

}

else{
tempMaxl = rtdArray [1]

;

}

if (rtdArray [2] > rtdArray [3])

{

tempMax2 = rtdArray [2]

;

}

else{
tempMax2 = rtdArray [3];

}

if (tempMaxl > tempMax2){
rtdMax = tempMaxl;

}

else{
rtdMax = tempMax2

;

}

show("\n Average Round-Trip-Delay is :
" + average + " ms .

")

;

217

rtdDisplayLabel . setText ("Max of four Round-Trip-Delay is :
" + rtdMax+

" ms .

")

;

}//end evaluateRTD (

)

* When startButton is pressed, disables startButton, tmaxComboBox, and
* rtdButton. Then starts the messageSendTimer . After that creates the
* ackReceiveTimer. Finally clears the text area
*

* @param e ActionEvent
* ©return void
*/

private void startButton_actionPerformed(ActionEvent e) {

startButton . setEnabled (false)

;

tmaxComboBox. setEnabled (false)

;

roundTripDelayComboBox. setEnabled (false)

;

rtdButton. setEnabled (false)

;

messageSendTimer = new Timer ((int) (tmax*CONVERTER)

,

messageTimerHandler) ,-

messageSendTimer . start ()

;

ackTimerHandler = new AckTimerHandler (this)

;

ackReceiveTimer = new Timer ((int) ((tmax/2 .) ^CONVERTER)

,

ackTimerHandler)

;

display . setText ("
")

;

lineCount = ;

} / /end startButton_actionPerformed (

)

* If exitButton is clicked, terminates the program.
*

* @param e ActionEvent
* ©return void
*/

private void exitButton_actionPerformed (ActionEvent e) {

System. exit (1)

;

} //end startButton_actionPerformed (

)

* When a new value is selected from the tmaxComboBox, sets the tmax value
*

* @param e ItemEvent
* ©return void
*/

private void tmaxComboBox_itemStateChanged (ItemEvent e) {

tmax = Double .parseDouble (e .get I tern (). toString ())

;

218

} / /end tmaxComboBox_itemStateChanged (

)

* When a new value is selected from the roundTripDelayComboBox, sets the
* train value
*

* @param e ItemEvent
* ©return void
*/

private void roundTripDelayComboBox_itemStateChanged (ItemEvent e) {

tmin = Double. parseDouble (e.getltem(). toString ())

;

} / /end roundTripDelayComboBox_itemStateChanged (

)

* When a rtdButton is pressed this method is called. Then this method call
* evaluateRTD method.
*

* ©param e ActionEvent
* ©return void
*/

private void rtdButton_actionPerformed (ActionEvent e) {

evaluateRTD ()

;

} / /end rtdButton_actionPerformed (

)

/ * *

* Returns the tmax value
*

* ©param none
* ©return tmax
*/

public double getTmax ()

{

return tmax;

}//end getTmax ()

* Returns the tmin value
*

* ©param none
* ©return tmin
*/

public double getTmin ()

{

return tmin;

219

}//end getTmin (

)

* Displays the passed string on the text area

* @param inString
* ©return void
*/

public void show (String inString)

{

display .append (inString)

;

if (lineCount > 200)

{

lineCount = 0;

display. setText ("
")

;

}//end if

lineCount ++

;

}//end show()

* Returns the status boolean
*

* @param none
* ©return status
*/

public boolean getStatus ()

{

return status

;

}//end getStatus (

)

/ * *

* Sets the status boolean to a passed parameter value
*

* @param inStatus
* ©return void
*/

public void setStatus (boolean inStatus)

{

status = inStatus;

}//end setStatus (

)

* Restarts the messageSendTimer
*

* @param none
* ©return void

220

*/

public void restartMessageSendTimer ()

{

messageSendTimer . restart ()

;

}//end restartMessageSendTimer (

)

/ * *

* Stops the messageSendTimer
*

* @param none
* ©return void
*/

public void stopMessageSendTimer ()

{

messageSendTimer . stop ()

;

}//end stopMessageSendTimer (

)

* Stops the ackReceiveTimer
*

* ©param none
* ©return void
*/

public void stopAckReceiveTimer ()

{

ackReceiveTimer . stop ()

;

}//end stopAckReceiveTimer (

)

/ * *

* Returns the isPrimaryDown boolean
*

* @param none
* ©return isPrimaryDown
*/

public boolean isPrimaryDown ()

{

return isPrimaryDown;

} / / end i s PrimaryDown (

)

/ * *

* Sets the isPrimaryDown boolean to a false value

* ©param none
* ©return void
*/

221

public void setPrimaryDown ()

{

isPrimaryDown = true;

}//end setPrimaryDown (

)

* Sets the lastMessageReceiveTime value to the passed parameter
*

* @param time
* @return void
*/

public void setLastMessageReceiveTime (long time)

{

lastMessageReceiveTime = time;

} / /end setLastMessageReceiveTime (

)

* Returns the lastMessageReceiveTime value
*

* @param none
* ©return lastMessageReceiveTime
*/

public long getLastMessageReceiveTime ()

{

return lastMessageReceiveTime;

} / /end getLastMessageReceiveTime (

)

}//end BackupServer class

//end file BackupServer
.
Java

222

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

AckReceiveThread
.
j ava

October 23, 1999
Efraim RATI
Accelerated Heartbeat Protocol (V.l)

JDK 1.2.2

package acceleratedheartbeat

;

import javax. swing. *

;

import java.net.*;
import java.io.*;
import j ava . awt .

*

;

* This class listens "I AM ALIVE" messages from the Primary Server. When
* a message is received, it restarts the messageSendTimer if previously
* stopped and stops the ackReceiveTimer

.

*

* ©author Efraim RATI
*/

public class AckReceiveThread extends Thread {

* backupServer is a reference to a BackupServer object
*/

private BackupServer backupServer;

/ * *

* receiveSocket is a reference to a ServerSocket object
*/

private ServerSocket receiveSocket;

/ * *

* receivedStr is a String and used for the message received from the
* Primary Server
*/

private String receivedStr;

* inStream is a DatalnputStream object
*/

private DatalnputStream inStream;

I
* *

* receiveTime is a long value used for the receive time of the message
*/

private long receiveTime;

223

/ * *

* socket is a Socket object
*/

private Socket socket;

* Constructor of this class
* @param inBackupServer a BackupServer object
* @param socket a Socket object
*/

public AckReceiveThread (BackupServer inBackupServer , ServerSocket socket)

{

backupServer = inBackupServer;
receiveSocket = socket;

}//end AckReceiveThread (

)

/ * *

* This method receives the message from the Primary Server and stops the
* ackReceiveTimer
*

* @param none
* ©return void
*/

public void run ()

{

if (! backupServer . isPrimaryDown ())

{

try{

socket = receiveSocket . accept ()

;

receiveTime = System. currentTimeMillis ()

;

if (! backupServer .getStatus ())

{

backupServer . restartMessageSendTimer ()

;

backupServer . setStatus (true)

;

}//end if

backupServer . stopAckReceiveTimer ()

;

inStream = new DatalnputStream (socket .
getInputStream())

;

receivedStr = inStream. readLine ()

;

backupServer . show (
" Received response at :

" +

receiveTime + "
") ;

socket .close ()

;

224

catch (IOException ioe){

backupServer . show(" \nCould not listen " + ioe
.
getMessage ()

)

}//end try/catch block

}//end if

} //end run (

)

}//end AckReceiveThread class

//end file AckReceiveThread. Java

225

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

AckTimerHandler
.
j ava

October 23, 1999
Efraim RATI
Accelerated Heartbeat Protocol (V.l)

JDK 1.2.2

package acceleratedheartbeat

;

import j ava . awt . event .

*

;

import j avax . swing .

*

;

* This class listens the actions generated by the ackReceiveTimer . Whenever
* an action is performed it reduces the interval value by half. When the
* interval becomes less than the upper bound of round trip delay (tmin),
* it declares the failure of the Primary Server
*

* ©author Efraim RATI
*/

public class AckTimerHandler implements ActionListener {

* backupServer is a reference to a BackupServer object
*/

private BackupServer backupServer;

* lastMessageTime is a long value, used for holding the last message
* sent-time
*/

private long lastMessageTime;

* newAcklnterval is a double value, used as a delay value for the
* ackReceiveTimer
*/

private double newAcklnterval = ;

* CONVERTER is a constant value, used for converting seconds to
* milliseconds
*/

private final double CONVERTER = 1000.0;

1 -k -X

* Constructor of this class
* @param inBackupServer a BackupServer object

226

*/

public AckTimerHandler (BackupServer inBackupServer) {

backupServer = inBackupServer;

}//end AckTimerHandler (

)

/ * *

* Whenever the ackReceiveTimer expires this method is called.
*

* @param e ActionEvent
* ©return void
*/

public void actionPerformed (ActionEvent e) {

backupServer . show (

" Did not receive response "
)

;

backupServer . show (" \nAction performed
+ System. currentTimeMillis ()+"");

if (backupServer .getStatus ())

{

lastMessageTime = backupServer . currentMessageSendTime;
newAcklnterval = backupServer

.
getTmax (

) *CONVERTER/ 4.0;
backupServer . setStatus (false)

;

}

else{

newAcklnterval = newAcklnterval /2 . ;

}//end if

if ((backupServer. getTmin (

) *CONVERTER) < newAcklnterval){

backupServer . stopMessageSendTimer ()

;

backupServer . sendMessage ()

;

}

else {// failure is detected

long detectionTime = System. currentTimeMillis ()

;

backupServer . setPrimaryDown ()

;

backupServer . show (" \n\nLast message send at :" +

lastMessageTime +"
")

;

backupServer . show (" \nFailure detected at :" +

detectionTime +"
")

;

backupServer . show (" \n\nElapsed Time :" +

(detectionTime - lastMessageTime) +"");

backupServer. show("\n\n*******PRIMARY SERVER IS DOWN ********")

backupServer . stopMessageSendTimer ()

;

backupServer . stopAckReceiveTimer ()

;

227

}//end if

}//end actionPerformedf

)

* Returns an integer value to be set to the ackReceiveTimer delay
*/

public int getNewDelay ()

{

return ((int) newAcklnterval)

;

}//end getNewDelay (

)

}//end AckTimerHandler class

//end file AckTimerHandler
.
Java

228

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

MessageTimerHandler
.
j ava

October 23, 1999
Efraim RATI
Accelerated Heartbeat Protocol (V.l!

JDK 1.2.2

package acceleratedheartbeat

;

import j ava . awt . event .

*

;

import javax. swing .

*

;

import j ava . awt .

*

;

import java.io.*;
import java.net.*;

* This class implements ActionListener and listens the action generated by
* the messageSendTimer of the BackupServer . When the timer expires, the
* actionPerformed method of this class is called and a new "ARE YOU ALIVE?"
* message is sent to the Primary Server
*

* ©author Efraim RATI
*/

public class MessageTimerHandler implements ActionListener

{

* backupServer is a reference to a BackupServer object
*/

private BackupServer backupServer;

* Constructor of this class
* @param inBackupServer a BackupServer object
*/

public MessageTimerHandler (BackupServer inBackupServer) {

backupServer = inBackupServer;

}//end MessageTimerHandler (

)

/ * *

* When the messageSendTimer expires, this method is called. Then this
* method calls the sendMessage method of the BackupServer class
*/

public void actionPerformed (ActionEvent e) {

backupServer . sendMessage ()

;

}//end actionPerformed (

)

229

}//end MessageTimerHandler class

//end file MessageTimerHandler
.
Java

230

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

PrimaryServer
.
j ava

October 23, 1999
Efraim RATI
Accelerated Heartbeat Protocol
JDK 1.2.2

:v.d

package acceleratedheartbeat

;

import java.awt.*;
import javax. swing .*

;

import javax. swing. border .*

;

import j ava . awt . event .

*

;

import java.net.*;
import java.io.*;

/ * *

This class represents the Primary Server side of the "Accelerated
Heartbeat Protocol". In this class primary server listens the heartbeat
query messages from the backup server with a server socket. When a message
is received, a thread called PrimaryServerThread is created to handle the
connection and to send a respond to the backup server

©author Efraim RATI
*/

public class PrimaryServer extends JFrame {

* serverl is a ServerSocket object and used for receiving messages from
* the backup server
*/

private ServerSocket serverl;

/ * *

port is the port number "8888" for receiving messages
7

private int port;

/'

* lineCount is used for counting the displayed lines on the text area. When
* the lineCount reaches 200, the text area is cleared. (Because TextArea
* has some limitations)
*/

private int lineCount;

status is a boolean. If it is true then means that primary server is
running. If it is false then means that primary server failed

7

231

private boolean status;

* send is a boolean. If it is true, then response messages will be send.
* If it is false, then response messages will not be send.
*/

private boolean send;

* allowedMissLabel is a JLabel object. It is used for displaying "PRIMARY
* SERVER" text on the window.
*/

private JLabel primaryServerLabel;

* toggleButton is a JToggleButton object. It is used for either stopping
* or starting the heartbeat response message transmission
*/

private JToggleButton toggleButton;

/ * *

* exitButton is a JButton object. When it is pressed, program is terminated
*/

private JButton exitButton;

* display is a TextArea object that displays all outputs of the program on
* the GUI window
*/

public TextArea display;

/ * *

* Constructor of the PrimaryServer class. It initializes the data members
* of this class
* @param none
*/

public PrimaryServer () {

try {

//initialize GUI components
jblnitO ;

//initialize other data members
status = true;
send = true;
port = 8888;
lineCount = 0;

serverl = new ServerSocket (port)

;

}

232

catch (IOException ioe){

display . append (" \nCould not listen " + ioe .getMessage ())

;

}//end catch
catch (Exception e) {

e .printStackTrace () ;

display. append (e. getMessage ())

;

}//end try/catch block

}//end PrimaryServer (

)

/ * *

* This method is the main method of the PrimaryServer class. It creates a
* PrimaryServer object and calls its start () method.
*

* ©param args String []

* ©return void
*/

public static void main (String [] args) {

PrimaryServer primaryServer = new PrimaryServer ()

;

PrimaryServer . start ()

;

} //end main (

)

* This method initializes GUI components of the PrimaryServer class.
*

* ©param none
* ©return void
* ©exception Exception
*/

private void jblnitf) throws Exception {

//creation GUI components
primaryServerLabel = new JLabel ()

;

toggleButton = new JToggleButton ()

;

exitButton = new JButtonO;
display = new TextArea ()

;

//initialization of the primaryServerLabel
primaryServerLabel . setBackground (new Java .awt .Color (255, 159, 175));
primaryServerLabel . setFont (new Java .awt . Font ("Dialog" , 1, 40));
primaryServerLabel . setBorder (BorderFactory . createRaisedBevelBorder ())

;

primaryServerLabel . setToolTipText ("
")

;

primaryServerLabel . setDisplayedMnemonic (
' '

) ;

primaryServerLabel . setHorizontalAlignment (SwingConstants . CENTER)

;

primaryServerLabel . setText (
" PRIMARY SERVER")

;

primaryServerLabel . setBounds (new Rectangle (15 , 11, 450, 44));

233

//initialization of the toggleButton
toggleButton.setText ("STOP SENDING RESPONSES");
toggleButton. setFont (new Java . awt . Font ("Dialog" , 1, 12));
toggleButton. setBounds (new Rectangle (103 , 407, 277, 36));
toggleButton. addActionListener (new Java. awt .event . ActionListener () {

public void actionPerformed (ActionEvent e) {

toggleButton_actionPerformed (e)

;

}

});

//initialization of the exitButton
exitButton . setBorder (BorderFactory . createRaisedBevelBorder ())

;

exitButton. setText ("EXIT")

;

exitButton . setFont (new Java. awt . Font ("Dialog" , 1, 12));
exitButton. setBounds (new Rectangle (193 , 480, 96, 31));
exitButton. addActionListener (new Java. awt .event .ActionListener () {

public void actionPerformed (ActionEvent e) {

exitButton_actionPerformed (e)

;

}

});

//initialization of the display
display . setBackground (new Java .awt .Color (2 55 , 231, 183)),-

display. setBounds (new Rectangle (16, 67, 449, 327));
display. setText ("WAITING FOR \"ARE YOU ALIVE?\""+

" MESSAGES FROM BACKUP SERVER");
display . setEditable (false) ;

//initialization of the frame
this . getContentPane () . setLayout (null)

,-

this . setDefaultCloseOperation(WindowConstants.DO_NOTHING_ON_CLOSE)

;

this . setEnabled (true)

;

this. setTitle("Accelerated Heartbeat Protocol (V.l)"),-

this . addWindowListener (new Java . awt . event .WindowAdapter () {

public void windowClosing (WindowEvent e) {

this_windowClosing (e)

;

}

}) ;

this .getContentPane () .add (primaryServerLabel , null)

;

this .getContentPane () .add (exitButton, null)

;

this .getContentPane () . add (toggleButton, null)

;

this .getContentPane () .add (display, null)

;

this.setSize(5 00,600)

;

this . setVisible (true)

;

}//end jblnitO

I * *

* This method listens on port 8888 with server socket. When a connection
* is made a new PrimaryServerThread is created.
*

* @param none
* ©return void
*/

234

private void start ()

{

while (status)

{

try{

Socket inSocket = serverl . accept ()

;

inSocket . setTcpNoDelay (true)

;

PrimaryServerThread primaryServerThread = new PrimaryServerThread
this

,

inSocket)

;

primaryServerThread . start () ;

}

catch (Exception ex)

{

status = false;
ex

.
printStackTrace ()

;

display . append (ex. getMessage ())

;

}//end try/catch block

System. gc ()

;

}//end while

}//end start ()

* When the toggleButton is pressed this method is called. If currently
* primary server is sending responses, then it stops message transmission.
* If currently is not sending, then it restarts sending responses
*

* dparam e ActionEvent
* ©return void
*/

private void toggleButton_actionPerformed (ActionEvent e) {

if (send)

{

send = false;
toggleButton. setBackground (Color . white)

;

toggleButton. setText ("SEND RESPONSES AGAIN");

}

else{

send = true;
toggleButton. setBackground (new Java. awt .Color (151 , 167, 247));
toggleButton. setText ("STOP SENDING RESPONSES");

}//end if

} / /end toggleButton_actionPerformed (

)

235

* If exitButton is clicked, terminates the program.
*

* @param e ActionEvent
* ©return void
*/

private void exitButton_actionPerformed (ActionEvent e) {

System. exit ()

;

} //end exitButton_actionPerformed (

)

* If "X" is clicked on window, terminates the program .

*

* ©param e WindowEvent
* ©return void
*/

private void this_windowClosing (WindowEvent e) {

System. exit (1)

;

}//end this_windowClosing(

)

/ * *

* Returns the send boolean
*

* ©param none
* ©return send
*/

public boolean isSend(){

return send;

}//end isSend(

)

* Increments the lineCount value with the passed parameter. When the
* lineCount value exceeds 200, it is set to zero and the text area is
* cleared
*

* ©param increase a value to be added to the lineCount
* ©return void
*/

public void incrementLineCount (int increase)

{

if (lineCount > 200) {

lineCount = ;

display. setText ("
")

;

236

}//end if

lineCount = lineCount + increase;

}//end incrementLineCount (

)

}//end PrimaryServer class

//end file PrimaryServer
.
Java

237

//

// Filename
// Date
/ / Name
// Project
// Compiler
//

PrimaryServerThread
.
j ava

October 23, 1999
Efraim KATI
Accelerated Heartbeat Protocol (V.l
JDK 1.2.2

package acceleratedheartbeat

;

import java.awt.*;
import java.net.*;
import java.io.*;
import java.util.*;

* This class is created by the PrimaryServer class. The purpose of this class
* is to handle the established connection with the Backup Server, by receiving
* the message and sending the response, (if the isSend boolean of the
* PrimaryServer is true)
*

* ©author Efraim KATI
*/

public class PrimaryServerThread extends Thread

{

* display is a reference to the TextArea object of the PrimaryServer
*/

private TextArea display;

* primaryServer is a reference to the PrimaryServer object
*/

private PrimaryServer primaryServer;

/ * *

* socket is a reference to the socket of the PrimaryServer
*/

private Socket socket;

/ * *

* inStr is a String that is used for the received message
*/

private String inStr;

* outStr is a String that is used for the outgoing message
*/

private String outStr;

238

I
* *

* Constructor of the PrimaryServerThread class. It initializes the data
* members of this class
*

* @param none
*/

public PrimaryServerThread (PrimaryServer pServer, Socket inSocket) {

primaryServer = pServer;
display - primaryServer . display

;

socket = inSocket;
inStr = null;
outStr = "YES. I AM ALIVE";

} / / end PrimaryServerThread (

)

* Run method of this thread. When start () is called this method is executed.
* This method receives the incoming message and sends the outgoing message
*

* @param none
* ©return void
*/

public void run ()

{

try{

DatalnputStream inStream= new DataInputStream(
socket

.
getInputStream())

;

inStr = inStream. readLine ()

;

display . append (" \nReceived Query at: "+System. currentTimeMillis ())

;

primaryServer . incrementLineCount (1) ;

if (primaryServer . isSend())

{

try{

Socket sendSocket = new Socket (InetAddress .getLocalHost ()

,

8889)

;

OutputStream outStream = sendSocket
.
getOutputStream()

;

StringBuffer ackBuffer = new StringBuf fer ()

;

ackBuf fer . append (outS tr)

;

String outString = ackBuf fer . toString ()

;

outStream. write (outString
.
getBytes ())

;

outStream. flush ()

;

display . append (

" Sent response at: " +

System. currentTimeMillis () + "");

outStream. close ()

;

socket . close ()

;

239

catch (IOException e)

{

display .append (" \n" + e.getMessage

}//end try/catch
}

else{

display. append (" RESPONSE DID NOT SEND ")

try{

inStream. close ()

;

socket . close ()

;

}

catch (IOException e)

{

display .append (" \n" + e
.
getMessage ()) ;

}//end try/catch

}//end if

}

catch (Exception ex)

{

display .append (" \n" + ex. getMessage ())

;

}//end try/catch

} / / end run (

)

}//end PrimaryServerThread class

//end file PrimaryServerThread. Java

240

APPENDIX C. NEWLY ADDED SOURCE FILES FOR INTEGRATION

//

// Filename
// Date
// Author
// Project
//

HeartbeatQuery
.
Java

December 8, 19 99

Efraim KATI
SAAM

package saam. message;

import saam.util .

*

;

import java.io.*;

/'

* This Class will be used by the backup server to query the main server
* status. HeartbeatQuery message contains a one-byte type field (type
* equals to three), and a two-byte sequence number field.
*

* ©author Efraim KATI
*/

public class HeartbeatQuery extends Message

{

/ * *

* bytes is a byte array object that stores the byte code representation of
* this class.
*/

private byte [] bytes = null;

/ * *

* sequenceNumber is a short value used to determine if the HeartbeatResponse
* is the response for the last sent HeartbeatQuery message.
*/

private short sequenceNumber;

* counter is static short value that is incremented by one everytime this
* object is created and used for assigning the value of the sequenceNumber
*/

private static short counter = 0;

* Parameterless constructor. Constructs a HeartbeatQuery message.
* @param none
*/

public HeartbeatQuery ()

{

241

super (Message .HEARTBEAT_QUERY_TYPE)

;

counter++

;

sequenceNumber = counter;
bytes = Array . concat (bytes,

PrimitiveConversions
.
getBytes (sequenceNumber))

;

}//end HeartbeatQuery (

)

/ * *

* Constructs a HeartbeatQuery message with the byte representation of
* this class.
* @param bytes byte array representation of this class.
*/

public HeartbeatQuery (byte [] bytes) {

super (Message . HEARTBEAT_QUERY_TYPE)

;

this. bytes = null;
this. bytes = bytes;
sequenceNumber = PrimitiveConversions .getShort

(

Array
.
getSubArray (bytes , , bytes . length))

;

}//end HeartbeatQuery (

)

* Returns The byte array representation of this Message.
* @param none
* ©return The byte array representation of this Message.
*/

public byte [] getBytes ()

{

return bytes;

}//end getBytes (

)

* Returns the sequenceNumber.
* @param none
* ©return sequenceNumber
*/

public short getSequenceNumber ()

{

return sequenceNumber;

}//end getSequenceNumber (

)

* Returns the length of this Message.
* @param none
* ©return The length of this Message.
*/

public short length(){

242

try{

return (short) bytes . length

;

}catch (NullPointerException npe)

{

return ;

}//end try-catch block

}//end length ()

* Returns a String representation of this Message.
* ©param none
* ©return The String representation of this Message
*/

public String toString(){

return (" \n\ "HeartbeatQuery MessageV" +

"\nTYPE = " + type +

" \nSequence Number = " + sequenceNumber + "
")

;

}//end toStringO

}//end class HeartbeatQuery

//end file HeartbeatQuery
.
Java

243

//

// Filename
// Date
// Author
// Project
//

HeartbeatResponse
.
Java

December 8, 1999
Efraim RATI
SAAM

package saam. message;

import saam.util .

*

;

import java.io.*;

* This Class is used by Main server as a response to the HeartbeatQuery
* message. HeartbeatQuery message contains a one-byte type field (type equals
* to two) and a two-byte sequence number field.
*

* @author Efraim RATI
*/

public class HeartbeatResponse extends Message

{

/ * *

* bytes is a byte array object that stores the byte code representation of
* this class.
*/

private byte [] bytes;

/ * •

* sequenceNumber is a short value used to determine if the HeartbeatResponse
* is the response for the last sent HeartbeatQuery message.
*/

private short sequenceNumber;

/ * *

* lastUsedFlowID is the value of the last assigned flowID by the main server
*/

private int lastUsedFlowID;

/ * *

* Constructs a HeartbeatResponse message.
* @param lastUsedFlowID integer value for last used flow ID.
* @param sequenceNumber from the HeartbeatQuery Message which will be
* responded.
*/

public HeartbeatResponse (short sequenceNumber, int lastUsedFlowID)

{

super (Message . HEARTBEAT_RESPONSE_TYPE)

;

this . sequenceNumber = sequenceNumber;
this. lastUsedFlowID = lastUsedFlowID;

244

bytes=Array. concat (bytes, PrimitiveConversions .getBytes (sequenceNumber)

)

bytes=Array. concat (bytes, PrimitiveConversions .getBytes (lastUsedFlowID)

)

}//end HeartbeatResponse (

)

* Constructs a HeartbeatResponse message with the byte representation of
* this class
x ©param bytes byte array representation of this class.
*/

public HeartbeatResponse (byte [] bytes) {

super (Message. HEARTBEAT_RESPONSE_TYPE)

;

this. bytes = null;
this. bytes = bytes;
sequenceNumber = PrimitiveConversions

.
getShort (Array

.
getSubArray (bytes,

0,

2)) ;

lastUsedFlowID = PrimitiveConversions
.
getlnt (Array

.
getSubArray (bytes,

2,

6)) ;

}//end HeartbeatResponse (

)

* Returns The byte array representation of this Message.
* ©param none
* ©return The byte array representation of this Message.
*/

public byte [] getBytes ()

{

return bytes;

}//end getBytes (

)

* Returns The last used flow id value.
* ©param none
* ©return The last used flow_id value.
*/

public int getLastUsedFlowID ()

{

return lastUsedFlowID;

}//end getLastUsedFlowID (

)

* Returns The sequenceNumber value.
* ©param none
* ©return The sequenceNumber.
*/

245

public short getSequenceNumber ()

{

return sequenceNumber;

}//end getSequenceNumber (

)

* Returns the length of this Message.
* @param none
* ©return The length of this Message.
*/

public short length(){

try{

return (short) bytes . length;

}catch (NullPointerException npe)

{

return ;

}//end try/catch

}//end length ()

* Sets the lastUsedFlowID value
* ©param lastUsedFlowID The last used flow_ID value
* ©return void
*/

public void setLastUsedFlowID(int lastUsedFlowID)

{

this . lastUsedFlowID = lastUsedFlowID;
bytes = null;
bytes =

Array .concat (bytes, PrimitiveConversions .getBytes (lastUsedFlowID)

)

}//end setLastUsedFlowID(

)

* Sets the sequenceNumber
* @param sequenceNumber The last used flow_ID value
* ©return void
*/

public void setSequenceNumber (short sequenceNumber)!

this . sequenceNumber = sequenceNumber;
bytes = null;
bytes =

Array .concat (bytes, PrimitiveConversions .getBytes (sequenceNumber)

246

bytes =

Array. concat (bytes , PrimitiveConversions
.
getBytes (lastUsedFlowID)

)

}//end setSequenceNumber (

)

* Returns a String representation of this Message.
* @param none
* @return The String representation of this Message.
*/

public String toString(){

return (" \n\ "HeartbeatResponse MessageV" +

" \nTYPE = " + type +

" \nSeguenceNumber = " + seguenceNumber +

"\nLast Used Flow ID = " + lastUsedFlowID + "");

}//end toStringO

}//end class HeartbeatResponse

//end file HeartbeatResponse
.
Java

247

//

// Filename
// Date
// Author
// Project
//

HeartbeatController
.
java

December 8, 1999
Efraim RATI
SAAM

package saam. server;

import j ava . awt . event .

*

;

import javax. swing .*

;

import java.awt.*;
import saam.util .

*

;

* The HeartbeatController class is responsible for periodically sending the
* heartbeat query messages and performing a check on the time constraints of
* the heartbeat response messages.
*

* In order to periodically send the heartbeat query messages, the
* HeartbeatController class uses a Timer called querySendTimer . The initial
* delay of the querySendTimer is set to "tmax". The querySendTimer is a
* repeating timer. Whenever the querySendTimer expires, the actionPerformed
* method of the QuerySendTimerHandler class (inner class of the
* HeartbeatController class) is executed. From this actionPerformed method,
* the sendHertbeatQuery method of the Server class is called.
*

* In order to perform a check on the time constraints of the heartbeat
* response messages, the HeartbeatController class uses another Timer called
* responseControlTimer . The responseControlTimer ' s initial delay is set to the
* half of the value. Whenever a correct heartbeat response message is
* received from the primary server, the responseControlTimer is stopped, and
* whenever a new heartbeat query message is sent it is restarted with the half
* of the current interval time. Therefore, as long as the heartbeat response
* messages are received properly the responseControlTimer never expires. If
* the backup server sends a heartbeat query message, but does not receive a
* heartbeat response message within the first half of the current period, then
* the responseControlTimer expires

.

*

* Whenever the responseControlTimer expires, the actionPerformed method of the
* responseControlTimerHandler class, (an inner class of the
* HeartbeatController class) , is executed. In this actionPerformed method, the
* sendHertbeatQuery method of the Server class is called, and the length of
* the next interval period is reduced by half. If the length of the next
* interval period ever becomes less than the , then the time of the last
* received DCM message is checked. If a new DCM is received within the last
* period, then a failure declaration is not declared. If a new DCM is not
* received within the last period, then failure declaration of the primary
* server is declared by calling the setlsMainDown method of the Server class.
*

* ©author Efraim RATI
*/

public class HeartbeatController {

248

* tmax is a double used for the time interval between the heartbeat query
* messages in normal condition.
*/

private double tmax;

* tmin is a double used for the round-trip delay upper bound between the two
* servers

.

*/

private double tmin;

* querySendTimerHandler is a QuerySendTimerHandler class object used for
* periodically sending the heartbeat query messages.
*/

private QuerySendTimerHandler querySendTimerHandler;

/ * *

* responseControlTimerHandler is a ResponseControlTimerHandler class object
* used to perform a check on the time constraints of the heartbeat
* response messages

.

*/

private ResponseControlTimerHandler responseControlTimerHandler

;

/ * *

* querySendTimer is a Timer class object. The querySendTimer ' s initial delay
* is set to "tmax' value. The querySendTimer is a repeating timer. Whenever
* the querySendTimer expires, the actionPerformed method of the
* QuerySendTimerHandler class is executed.
*/

private Timer querySendTimer;

* responseControlTimer is a Timer class object. The responseControlTimer '

s

* initial delay is set to the half of the "tmax" value. Whenever a correct
* heartbeat response message is received from the primary server, the
* responseControlTimer is stopped, and whenever a new heartbeat query
* message is sent it is restarted with the half of the current interval time
*/

private Timer responseControlTimer;

* server is a reference to a Server class object.
*/

private Server server;

/ * *

* status is a boolean used for the status of the HeartbeatController class.
* If status is true, then it means that the primary server is properly
* responding the heartbeat query messages. If the status is false, then it
* means that primary server is not failed yet but recently the backup server
* is failed to receive one or more heartbeat response messages.
*/

private boolean status;

249

/ * *

* bf is a BannerFrame object used for displaying some heartbeat protocol
* related messages on it.

*/

private BannerFrame bf;

* counter is an integer used for counting the recently missed consecutive
* heartbeat response messages

.

*/

private static int counter = ;

/ * *

* Constructor of the HeartbeatController class. It initializes data members
* of this class
* @param server is a Server class object
* @param tmax is time interval between heartbeat query messages
* @param tmin is the round-trip delay upper bound
* @param bf is a BannerFrame class object
*/

public HeartbeatController (Server server,
double tmax,
double tmin,
BannerFrame bf) {

this. server = server;
this. tmax = tmax;
this. tmin = tmin;
this.bf = bf;
querySendTimerHandler = new QuerySendTimerHandler ()

;

responseControlTimerHandler = new ResponseControlTimerHandler ()

;

querySendTimer = new Timer ((int) (tmax*1000 . Od) , querySendTimerHandler) ;

responseControlTimer = new Timer ((int) ((tmax/2 . Od) *1000 . Od)

,

responseControlTimerHandler)

;

status = true;

}//end HeartbeatController (

)

I * *

* Starts the querySendTimer.
* @param none
* ©return void
*/

public void startSending ()

{

querySendTimer . start ()

;

}//end startSending (

)

* Sets the status boolean
* @param inStaus a boolean to be set to the status boolean
* ©return void

250

*/

public void setStatus (boolean inStatus)

{

status = inStatus;
if (status)

{

bf . setBackgroundColor (Color . cyan)

;

bf . setFrameText ("THIS IS THE BACKUP SERVER");
counter = 0;

}//end if

}//end setStatus (

)

* Returns the status boolean.
* ©param none
* ©return status
*/

public boolean getStatus ()

{

return status;

}//end getStatus (

)

/ * *

* Stops the responseControlTimer
* @param none
* ©return void
*/

public void stopResponseControlTimer ()

{

responseControlTimer . stop ()

;

} / /end stopResponseControlTimer (

)

* Restarts the responseControlTimer
* @param none
* ©return void
*/

public void restartResponseControlTimer ()

{

if (status)

{

responseControlTimer .set InitialDelay ((int) ((tmax/2 . Od) *1000d))

;

responseControlTimer . restart ()

;

}

else{

responseControlTimer . setlnitialDelay

(

(int) responseControlTimerHandler
.
getNewControlInterval (

)

responseControlTimer . restart ()

;

251

}//end if

} / /end restartResponseControlTimer (

)

/ * *

* Restarts the querySendTimer (

)

* @param none
* ©return void
*/

public void restartQuerySendTimer ()

{

querySendTimer . restart ()

;

}//end restartQuerySendTimer (

)

/ * *

* The ResponseControlTimerHandler class is an inner class of the
* HeartbeatController class. This class is used for listening the actions
* generated by the responseControlTimer

.

*

* ©author Efraim RATI
*/

private class ResponseControlTimerHandler implements ActionListener

{

* newControlInterval is a double used for the next period's time
interval

.

*/

private double newControlInterval = O.Od;

* Whenever the responseControlTimer expires, this method is executed.
* In this method, the sendHertbeatQuery method of the Server class is
* called, and the length of the next interval period is reduced by half
* If the length of the next interval period ever becomes less than the
* "tmin", then the time of the last received DCM message is checked.
* If a new DCM is received within the last period, then a failure
* declaration is not declared. If a new DCM is not received within the
* last period, then failure declaration of the primary server is
* declared by calling the setlsMainDown method of the Server class.
*/

public void actionPerformed (ActionEvent e) {

server . display ("ResponseControlTimer >>>>>>>>>>>>>> " +

"actionPerformed at :
" + System. currentTimeMillis ()+"")

;

if (status)

{

newControlInterval = tmax*1000d/4 . Od;

status =false;

}

else{

252

newControlInterval = newControlInterval /2 . Od;

}//end if

if ((newControlInterval* 2 . Od) > tmin*1000d)

{

server . addRecentMissedSequences ()

;

counter++;
//stop sending timer
querySendTimer . stop ()

;

//send query message immediately
server . sendHeartbeatQuery ()

;

bf . setBackgroundColor (Color . orange)

;

bf .set FrameText ("PRIMARY SERVER MISSED " + counter +" RESPONSE");
bf . setVisible (true)

;

ssrvsr disDlav ("***"+
I***" \ .

}

else {

long lastDCM = server .getLastDCMTime ()

;

long current = System. currentTimeMillis ()

;

long diff = current - lastDCM;

if(diff < (tmax*1000.0d))

{

server . display (" \n\nDidn' t receive heartbeat response message "+

"but DCM is still coming. So failure detection will be "+

"delayed one more cycle ");

if (Istatus)

{

restartQuerySendTimer ()

;

status = true;

}//end if

stopResponseControlTimer ()

;

}

else{

querySendTimer . stop ()

;

responseControlTimer . stop ()

;

long lastMessageTime = server
.
getLastResponseTime ()

;

long detectionTime = System. currentTimeMillis ()

;

long elapsedTime = detectionTime - lastMessageTime ;

server . setlsMainDown (true)

;

server . display (" \n\n** ****** Primary Server is down and I "-

"became the Primary Server *******");

server .display (" \n\nFailure Detected at :
" +detectionTime+

server .display (" \n\nLast Heartbeat Response is received at
lastMessageTime + "

")

;

server .display (" \n\nElapsed Time :
" + elapsedTime + "");

253

bf . setBackgroundColor (Color . red) ;

bf . setForegroundColor (Color .yellow)

;

bf . setFrameText ("PRIMARY SERVER IS DOWN !
"

) ;

server
.
gui . setTextField ("The Backup Server is active now")

;

}//end if

}//end if

}//end actionPerformed(

)

* Returns the newControlInterval
* @param none
* ©return newControlInterval
*/

public double getNewControlInterval ()

{

return newControlInterval;

}//end getNewControlInterval (

)

}//end ResponseControlTimerHandler class

* The QuerySendTimerHandler class is an inner class of the
* HeartbeatController class. This class is used for listening the actions
* generated by the querySendTimer

.

*

* ©author Efraim KATI
*/

private class QuerySendTimerHandler implements ActionListener {

/ * *

* Whenever the querySendTimer expires, this method is executed.
* From this actionPerformed method, the sendHertbeatQuery method of the
* Server class is called.
*/

public void actionPerformed (ActionEvent e) {

server . sendHeartbeatQuery ()

;

}//end actionPerformed (

)

}//end QuerySendTimerHandler class

}//end HeartbeatController class

//end file HeartbeatController
.
Java

254

//

// Filename
// Date
// Author
// Project
//

BannerFrame
.
j ava

December 8, 1999
Efraim KATI
SAAM

package saam.util;

import j ava . awt .

*

;

import javax. swing .*

;

* The BannerFrame class is a GUI component added to the current GUI of the
* Server class to display some accelerated heartbeat protocol information to
* the user. Specifically, the BanerFrame class is a Java class extended from
* the JFrame . It has only one constructor that accepts a string for display.
* Additionally, the BannerFrame class has three set methods. The setFrameText
* method is used to change the currently displayed text. The
* setBackgroundColor method is used to change the background color of the
* frame, and the setForegroundColor is used to change the color of the
* displayed text on the frame. Initially, according to the server type either
* "THIS IS THE PRIMARY SERVER" text or "THIS IS THE BACKUP SERVER" text is
* displayed on the bannerFrame . If the backup server fails to receive a
* heartbeat response message, then "PRIMARY SERVER MISSED n RESPONSE" text is
* displayed (n is the number of missed message's) . Additionally, if the backup
* server declares the failure of the primary server, then "PRIMARY SERVER IS
* DOWN" text is displayed.
*

* ©author Efraim Rati
*/

public class BannerFrame extends JFrame {

* jLabell is a JLabel object. It is used for displaying some messages on the
* frame.
*/

JLabel jLabell = new JLabel ()

;

* Constructor for the BannerFrame class. It initializes and sets the
* specifications of the data members of this class.
* ©param text to be displayed
*/

public BannerFrame (String text) {

try {

jblnit ()

;

j Label 1 . setText (text) ;

catch (Exception e) {

e
.
printStackTrace () ;

255

}//end try/catch

} / / end BannerFrame (

)

* This method initializes GUI components of the BannerFrame class.
* @param none
* ©return void
* ©exception Exception
*/

private void jblnit() throws Exception {

jLabell . setBackground (Color .pink)

;

jLabell . setFont (new Java . awt . Font ("Dialog" , 1, 40));
jLabell . setHorizontalAlignment (SwingConstants .CENTER)

;

jLabell . setHorizontalTextPosition (SwingConstants .CENTER)

;

j Label 1. setText ("")

;

this .getContentPane () . setBackground (Color .pink)

;

this
.
getContentPane () . add (jLabell , BorderLayout . CENTER)

;

Dimension dim = Toolkit
.
getDefaultToolkit (). getScreenSize ()

;

float widthFactor = 1.3f;
float heigthFactor = 8.4f;
setSize ((int) (dim. width/ (widthFactor)) , (int) (dim. height/ (heigthFactor)))

;

setLocation ((int) (dim. width/ 2) - (int) (dim. width/ (widthFactor) 12) , 0)

;

}//end jblnitO

* Sets the displayed string.
* ©param str is a string to be displayed
* ©return void
*/

public void setFrameText (String str)

{

jLabell. setText (str)

;

}//end setFrameText (

)

* Sets the background color
* ©param c is a Color to be set
* ©return void
*/

public void setBackgroundColor (Color c)

{

this
.
getContentPane () . setBackground (c)

;

}//end setBackgroundColor (

)

* Sets the color of the displayed text
* ©param c is a Color to be set
* ©return void
*/

256

public void setForegroundColor (Color c){

j Label 1 . setForeground (c)

;

}//end setForeGroundColor (

)

}//end BannerFrame class

//end file BannerFrame
.
Java

257

THIS PAGE INTENTIONALLY LEFT BLANK

258

APPENDIX D. MODIFIED SOURCE FILES FOR INTEGRATION

In the following class files, modified sections are highlighted with light gray.

//

// Filename
// Date
// Author
// Modified by
// Project
//

Message
.
Java

December 8, 1999
John YARGER
Efraim RATI
SAAM

package saam. message;

The Message class provides a convenient way for Objects to communicate
with one another over a SAAM network. The standard JDK does not currently
provide a means to serialize objects over UDP. This class does just that.
Subclasses need to be written as follows to enable this functionality:

1. Provide a constructor that accepts a byte array as its only parameter.
2

.

Override the getBytes method in such a way that it returns a byte array
that contains the values of the variables to be transferred.

3

.

Ensure that the constructor mentioned above is set up to properly
parse the byte array and rebuild the variables as they were originally.

4

.

Ensure that the length method returns the actual length of the byte
array.

public abstract class Message{

//for default type to support old version
public static final byte MESSAGE_DEFAULT_TYPE

//for fault tolerance
public static final byte HEARTBEAT_QUERY_TYPE
public static final byte HEARTBEAT_RESPONSE_TYPE

//for control channel construction

= 1;

2;

3;

public static final byte UCM_TYPE 4;

public static final byte DCM_TYPE 5;

public static final byte PARENT_NOTIFICATION_TYPE= 6;

public static final byte RESERVED1_TYPE 7;

//following types reserved for flow reservation
public static final byte RESERVED2_TYPE
public static final byte RESERVED3_TYPE
public static final byte RESERVED4_TYPE
public static final byte RESERVED5_TYPE

259

= 9;

= 10;
= 11;

public static final byte RESERVED6_TYPE = 12

//following types reserved for probing
public static final byte RESERVED7_TYPE = 13

public static final byte RESERVED8_TYPE = 14
public static final byte RESERVED9_TYPE = 15

//following types reserved for resource management
public static final byte RESERVED10_TYPE = 16
public static final byte RESERVED11_TYPE = 17
public static final byte RESERVED12_TYPE = 18

//following types are reserved for security
public static final byte RESERVED13_TYPE = 19
public static final byte RESERVED14_TYPE =20
public static final byte RESERVED15_TYPE =21
public static final byte RESERVED16_TYPE =22

* type is a byte value to represent different type of messages
*/

protected byte type;

* No-args constructor initializes the type to a default value which is 1

* @param none
*/

public Message(){

type = MESSAGE_DEFAULT_TYPE ;

}//end Message ()

* Constructs a Messagee with the supplied type_id parameter.
* @param type_id byte value representing different types of messages
*/

public Message (byte type_id)

{

this. type = type_id;

} //end Message (

)

/ * *

* Returns the type value.
* @param none
* ©return The type value.
*/

public byte getType ()

{

260

return type;

} //end getType (

)

* Abstract method. Returns the length of this Message.
* ©param none
* ©return The length of this Message.
*/

public abstract short length ()

;

* Abstract method. Returns The byte array representation of this Message.
* ©param none
* ©return The byte array representation of this Message.
*/

public abstract byte [] getBytes ()

;

* Returns a String representation of this Message.
* ©param none
* ©return The String representation of this Message
*/

public String toString ()

{

return "Message";

}//end toString ()

}//end class Message

//end Message. Java

261

fi-

ll Filename
// Date
// Author
// Modified by-

Server . Java
December 8, 1999
John YARGER (August 1999)
Hasan AKKOC (February 2 00)

' Modified Efraim RATI (February 2 000)

// Project : SAAM
//

package saam . server

;

import saam. EmulationTable;
import saam. Translator

;

import saam.*;
import saam.net.*;
import saam. message .*

;

import saam. control .*

;

import saam . event .

*

;

import saam. router .

*

;

import saam.util .

*

;

import java.net.*;
import java.util.*;
import j ava . io .

*

;

import j ava . awt .

*

;

import j avax . swing .

*

;

import Java . awt . event . ActionEvent

/ * *

* The Server is an object within the SAAM architecture that
* maintains a picture of the network for use in assigning flows to paths.
*/

public class Server implements Runnable{

//declare class variables

/** Contains what is known about the network. */

private PathlnformationBase PIB;

/** Enables the Server to receive and send particular types of messages. */

public ControlExecutive controlExec;

/** A maximum number of hops that a search for different paths may take. */

private int Hmax = 4

;

* Used to lookup what flow id should be used to send out control messages
* to specified routers.
*/

private Hashtable flowLookUp = new Hashtable();

/** Used to assign the right number of service level pipes to interfaces in
* this SAAM region. Only used during initialization -- later were assume

262

* SLPs are known to routers
*/

private int numOfServiceLevels = 4;

* The value assigned to flow ids that can not be supported. This should be
* switched over to as soon as routers are converted.
*/

public static int FLOWNOTSUPPORTABLE = 99;

public static int INITIALDELAY = ;

public static int INITIALLOSSRATE = 0;

public static int INITIALTHROUGHPUT = 10000;

public static int RETURNFLOWDELAY = 50;

public static int RETURNFLOWLOSSRATE = 50;

public static int RETURNFLOWTHROUGHPUT = 1000;

public static int ROUTERNOTINPIB = 0;

public static int NOSUPPORTABLEPATHINPIB = 0;

public static int SERVERNODEID = 1;

public static int FLOWTOSERVER = 0;

public static int PSUEDORANDOMSOURCEPORT = 8000;

public static int INITIALPATHID = 0;

public static int INITIALHEIGHTOFSEARCH = 1;

public static int INCREMENTATIONOFSEARCH = 1;

public static int DESTINATIONNODE = 0;

public static int INITIALZERO = 0;

/** Defines with the appropriate IPv6 address of this server. */

//private String serverIPv6 = controlExec .getServerIP () . toString ()

;

private String serverIPv6 = "99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.2";

/** Time when the all possible paths were found. */

private long timeOfLastPIBBuild = System. currentTimeMillis ()

;

/ * *

* The amount of time that we want to have between rebuilding of paths. This
* is not currently implemented.
*/

private long timeBetweenPIBBuilds = 120000; // 2 minutes (or 120 sec)

/** A boolean that will allow the showing of comments. */

private boolean showComments = true;

public SAAMRouterGui gui

;

263

// 2 000 akkoc added
private int sequenceNumber = 1;

private static final int CTS = 0; //SINCE ITS SERVER BY ITSELF
private int hopCount;

private static byte serverType;
private static int flowld;
private static byte metricType;
private static int cycleTime;
private static int globalTime;

//l Feb 2 00 akkoc added
private IPv6Address Serverld;

//(February 2000) the following data members are added by Efraim KATI
private int lastUsedFlow_ID = ;

private short seqNumlnit = ;

private HeartbeatResponse hbr = new HeartbeatResponse (seqNumlnit,
lastUsedFlow_ID)

;

private HeartbeatController hbController;
private boolean isMain;
private boolean isMainDown = false;
private short lastSequenceNumber = 0;

private Vector recentMissedSequences = new Vector ();

private double tmax = 80. 0d;

private double tmin = 2.5d;
private BannerFrame bf = new BannerFrame ("

")

;

private long lastResponseTime = System. currentTimeMill is ()

;

private long lastQueryTime = System. currentTimeMill is ()

;

private long currentTime = System. currentTimeMil lis ()

;

private int firstQueryTime = 80000;
private long lastDCMTime = System. currentTimeMill is ()

;

private String primaryServerIPv6Str = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1";
private String backupServerIPv6Str = " 99 . 99 . 99 . 99 . 8 . 0.0. 0.0. 0.0. 0.0. 0.0. 2

"

;

II THE FOLLOWING TEST CASES ARE NOT PART OF THE CODE. THEY ARE ADDED ONLY FOR
// CREATING SEVERAL TEST CONDITIONS (Efraim KATI)
//**************•******************************•*******

//*******•*****

// TEST CASE #1
// this case tests normal failure detection capability of the implemented
// accelerated heartbeat protocol. For this test case no boolean is necessary
// because the normal operation of the protocol provides the necessary test
// condition.
//

// private boolean testCasel = false; // (not used)

//*****•*•******

// TEST CASE #2

// this case tests the lost heartbeat response
// after the 10th heartbeat query message (if testCase2 is true)

:

// * 3th respone will not be send

264

// * 4th response will not be send
// then responses will be sent correctly-
private boolean testCase2 = false;

//***•*******•***

// TEST CASE #3

// this case tests the sequence number functionality
// after the 10th heartbeat query message (if testCase3 is true)
// * 11th respone will not be send
// * 12th response will be send with sequence # 11

// then responses will be sent correctly
private boolean testCase3 = false;

//*************

// TEST CASE #4

// this case tests the usage of DCM as unsolicited heartbeat
// after the 10th heartbeat query message (if testCase4 is true)
// * 11th respone will not be send
// * 12th response will not be send
// * 13th respone will not be send
// * 14th response will not be send
// * 15th response will not be send
// then responses will be sent correctly
private boolean testCase4 = false;

/ * *

* Constructs a server that will use a specified type of Path Information
* Base. The PIB may be in the form of a database structure (which
* requires an existing ODBC configured local database) or a class
* object structure. The control executive is the interface to the IPv6
* protocol stack, in order for messages to flow to and from the network.
* The final step taken is the deletion of all existing data, which is
* important only in a database structure since a class object structure is
* volatile.
* @param type The type of structure that the PIB is to assume.
* @param controlExec The control executive that will exchange messages
* with this server.
*/

public Server (String type, ControlExecutive controlExec)

{

if (type == "database")
PIB = new DatabaseStructure ()

;

else
PIB = new ClassObjectStructure ()

;

this . controlExec - controlExec;
gui=new SAAMRouterGui ("Server")

;

// lfeb 2 00 akkoc added
Serverld = controlExec

.
getRouterld ()

;

PIB.deleteAllDataO ;

265

public Server (){}/ /temp for time measurement

// These methods handle external network communications from routers

/ * *

* Receives Hello messages from routers and then processes them. It starts
* building a vector of IPv6Addresses from the interfaces included in the
* Hello message. This vector is passed to the PIB's doesRouterExist () which
* determines if a router with any of these interfaces have been identified
* before. If this is a new router, a new unique node id is assigned. <p>
* For each of the interfaces identified in the Hello message, if this
* interface was is not known to the PIB, check to see if the corresponding
* link is known to the PIB. If this link is not known to the PIB, add it.
* Next, add the new interface between the node and link. Also, add each
* service level pipe that is assigned within this SAAM region. <p>
* The next step is to rebuild the paths that are possible across the network
* now considering this new hello message. The frequency of these rebuilds is
* not a major concern in a controlled environment, but will need to be
* addressed later. Finally, a flow request is create and received for
* communicating back to this node. This is only possible if the PIB's
* determineAllPossiblePaths () has been executed after the processing of this
* particular hello message, if this a new router. After all paths to each
* known router are found, we finish this method with a call to
* determineEf fectiveQoSForPaths () . The call to
* determineEf fectiveQoSForPaths () ensures that even if no QoS parameters are
* known about these new parts of the network, that at least some initial
* values will be assigned. This initialization allows the new paths to be
* assigned if needed.
* ©param hello An initialization message from a router.
*/

public void processHello (Hello hello) {

long start, finish;
Vector interfaces;
int node_id = INITIALZERO;
InterfacelD mylnterface;
int bandwidth = INITIALZERO;
IPv6Address address = new IPv6Address ()

;

Vector IPv6Addresses = new Vector (),-

boolean newRouter = true;
FlowRequest myFlowRequest = new FlowRequest ()

;

// capture the start time of processing a hello
start = System. currentTimeMillis ()

;

// produce a vector of IPv6Addresses
interfaces = hello .getlnterfacelDs ()

;

for (int i = INITIALZERO; i < interfaces . size () ; i++){
address =

((InterfacelD) interfaces . elementAt (i))
.
getIPv6 ()

;

266

IPv6Addresses . addElement (address)

;

}

// check if router exists and if so, return it's node id, else return
node_id = PIB. doesRouterExist (xist (IPv6Addresses)

;

// if the router does not exist in PIB
if (node_id == ROUTERNOTINPIB)

{

// assign it a new node id
node_id = PIB. getNewNodeld ()

;

} else {

newRouter = false;

}

// run through all of the LSA interfaces
for (int i = INITIALZERO; i < interfaces . size () ; i++) {

mylnterface = (InterfacelD) interfaces . elementAt (i)

;

address = myInterface.getIPv6 () ;

// if a new interface is not found in the PIB, then . .

.

PIB. doesInterfaceExist (address)) {

bandwidth = mylnterface.getBandwidth ()

;

address = myInterface.getIPv6 ()

;

// if the link is not contained in the PIB, then add it
if (! PIB.doesLinkExist (address)) {

PIB. addLink(address, bandwidth);
}

// now add the interface between the node and the link
PIB.addlnterface (node_id, address)

;

// now add each service level pipe
for (int service_level = 0; service_level < numOfServiceLevels;

service_level++)

{

PIB. addSLP (address, service_level , INITIALDELAY, INITIALLOSSRATE,
INITIALTHROUGHPUT)

;

}

} // end if

} //end interfaces for

// capture the hello processing finish time
finish = System. currentTimeMillis () ;

gui . sendText (" Server : processHello : Time required = "

+ (finish-start) +" milliseconds .

") ;

// time since last PIB build is > 2 min and if node did not exist before
//if ((timeOfLastPIBBuild - System. currentTimeMillis ()

)

>timeBetweenPIBBuilds
// ScSc

newRouter)

{

// rebuild all possible paths
f indAllPossiblePaths ()

;

// determine effective QoS of each path
determineEf fectiveQoSForPaths () ;

// construct a new flow to this router

267

try{
myFlowRequest = new FlowRequest (IPv6Address

.
getByName (serverIPv6)

address, System. currentTimeMillis () , RETURNFLOWDELAY

,

RETURNFLOWLOSSRATE, RETURNFLOWTHROUGHPUT)

;

} catch (UnknownHostException uhe)

{

System. err
.
println ("Server : main: UnknownHostException: " + uhe);

}

processFlowRequest (myFlowRequest)

;

//}

} //end processFlowRequest

* Receives link state advertisement messages from router and processes the
* service level pipe status information that they contain. It begins by
* checking to see if a router with the interface address described by this
* LSA is known to the PIB. If such a router is known to exist, it then
* checks to see if the service level pipe described by this LSA is known to
* the PIB. If the service level pipe is known, then update its status.
* Otherwise, add the SLP with the specified QoS characteristics. Finally,
* update the effective QoS for the paths that pass over this service level
* pipe by calling the determineEf fectiveQoSForPaths ()

.

* @param router A representation of a router as defined by an LSA.
*/

public void processLSA (LinkStateAdvertisement LSA) {

long start, finish;
int node_id = INITIALZERO;
int bandwidth = INITIALZERO;
byte service_level = 0;

int delay = INITIALZERO;
int loss_rate = INITIALZERO;
int utilization = INITIALZERO;
Vector interfaces = new Vector (3 , 1)

;

Vector SLPs = new Vector (3,1);
IPv6Address link_id;
IPv6Address address;
Vector IPv6Addresses = new Vector (1 , 1)

;

// capture the start time of processing an LSA
start = System. currentTimeMillis () ;

// produce a one element vector of IPv6Addresses
address = LSA. getMyIPv6 ()

;

IPv6Addresses .addElement (address)

;

// check if router exists and if so, return it's node id, else return
node_id = PIB. doesRouterExist (IPv6Addresses)

;

// if the router does exist in PIB, then so does the interface...
if (node_id 1= ROUTERNOTINPIB)

{

service_level = LSA.getServiceLevel ()

;

delay = LSA.getDelay ()

;

268

loss_rate = LSA. getLossRate ()

;

utilization = LSA.getUtilization ()

;

if (showComments)

{

gui . sendText ("Server : processLSA: node_id = " + node_id
+ ", address = " + address + ", SL = " +service_level
+", D = " +delay+ ", LR = "+loss_rate
+" , u = " +utilization)

;

}

// if this SLP is defined, then just update its status
if (PIB.doesSLPExist (address, service_level)

)

{

PIB.updateSLP (address, service_level , delay, loss_rate, utilization);
}

// otherwise, insert it

else {

PIB.addSLP (address, service_level , delay, loss_rate, utilization);
} // end else

} // end if
else { //do nothing
}

// capture the LSA processing finish time
finish = System. currentTimeMil lis ()

;

gui . sendText ("Server : processLSA: Time required = "

+ (finish-start) +" milliseconds . "
)

,-

// revise the effective QoS of paths made up of this SLP
determineEf fectiveQoSForPaths (address, service_level)

;

} //end processLSA

* Receives and processes flow requests from applications. It begins
* by finding a source and a destination router. These routers may be where
* the applications are residing themselves, which is our standard situation.
* The application could, however, reside on some host that is not registered
* with the PIB as a router. In this case, the appropriate source or
* destination router would be a router connected to the same link. <p>
* The PIB is checked to ensure that there is the effective QoS available on
* some path to satisfy the request. If a satisfactory path is found, a new
* unique flow id is assigned and this new flow is associated with that path.
* Each router in the path is retrieved and a new flow routing table entry is
* sent to each. If no path can provide the requested level of QoS, then the
* flow is assigned to zero, which will be interpreted by IPv6 as best effort
* traffic. Finally, a flow response is sent back to the application to
* inform it of its assigned flow id. If the flow id that is return is zero,
* it will be the application's responsibility to either lower it QoS request
* or to send its traffic as best effort.
* @param flow_request The message requesting the establishment of a flow.
*/

public void processFlowRequest (FlowRequest flow_request) {

269

/** A vector of slp_sequence information for a path. */

Vector slps_in_path;
SLPSequence currentSLPSeguence, nextSLPSequence = new SLPSequence ()

;

int SLP_source_router , SLP_destination_router, service_level;
IPv6Address link_id = new I Pv6Address ()

;

IPv6Address next_hop;
IPv6Address sourceAddress;
int source_router , destination_router, path_id,

flow_id=FLOWNOTSUPPORTABLE;
long start, finish;

// capture the start time of processing a flow request
start = System. currentTimeMillis () ;

// find a router on the same subnet as the source host
source_router =

PIB. f indARouterOnLink (flow_request
.
getSourcelnterface ())

;

// find a router on the same subnet as the destination host
destination_router =

(PIB. f indARouterOnLink (flow_request
.
getDestinationlnterface ()))

;

path_id = PIB.getPathThatCanSupportFlowRequest (source_router

,

destination_router, flow_request)

;

// if a path can support this request, then...
if(path_id != NOSUPPORTABLEPATHINPIB)

{

// assign a flow id to the request
flow_id = PIB.getNewFlowId(path_id, source_router , destination_router

,

f low_request)

;

lastUsedFlow_ID = flow_id;

// determine each router in path
// transmit Flow Routing Table Entry to it

slps_in_path = PIB. getSLPSequenceOfPath (path_id)

;

// for each router in the path, send a FRTE update
for (int index = INITIALZERO; index < slps_in_path. size () ; index++){

// assign new sip sequence object
current SLPSequence = (SLPSequence) slps_in_path. elementAt (index)

;

// if not the last link..
if (index+1 != slps_in_path. size ())

{

nextSLPSequence = (SLPSequence) slps_in_path. elementAt (index+1)

;

}

// retrieve values from this object
SLP_source_router = currentSLPSequence .getSourceRouter ()

;

link_id = currentSLPSequence .getLinkld ()

;

service_level = currentSLPSequence
.
getServiceLevel ()

;

// if not the last link. .

.

if (index+1 != slps_in_path. size ())

{

SLP_destination_router = nextSLPSequence
.
getSourceRouter ()

;

270

} else {

// else it is the destination node of the flow
SLP_destination_router = destination_router

;

}

// determine destination address for next hop
next_hop = PIB.getlnterfaceAddress (SLP_destination_router, link_id)

;

// determine source address
sourceAddress = PIB. getlnterfaceAddress (SLP_source_router, link_id)

;

// send the flow routing table entry update
sendFRTEUpdate (sourceAddress , flow_id, next_hop, service_level)

;

} // end for

} // end if

//give routers time to finish updating tables
try{
Thread. sleep (2000)

;

} catch (InterruptedException ie)

{

gui . sendText (ie . toString ())

;

}

// if the source of this flow is the server,
if (source_router == SERVERNODEID) {

// then add this new flow to hash table for later lookup
if (showComments)

{

gui . sendText ("Server : processFlowReguest : use flow "+flow_id
+" to send to node " +destination_router)

;

\
j

if (destination_router == SERVERNODEID) {

flow_id = FLOWTOSERVER;
}

flowLookUp .put (new Integer (destination_router) , new Integer (flow_id))

;

}

sendFlowResponse (f low_request , flow_id)

;

// capture the flow request processing finish time
finish = System. currentTimeMillis ()

;

gui . sendText (" Server : processFlowReguest: Time required = "

+ (finish- start) +" milliseconds .

")

;

}

* Receives flow termination from routers and then processes them.
*/

public void receiveFlowTermination () { }

// These methods handle external network communications to routers

/ * *

271

* Sends a flow routing table entry update message to a router. This message
* provides the router the required information to forward packets based on
* its flow id.
* @param sourceAddress The router that will receive the FRTE update.
* ©param flow_id The id assigned to the flow in question.
* @param next_hop The IPv6 address of the next node in the path.
* @param service_level The service level that this flow is assigned to.
*/

public void sendFRTEUpdate (IPv6Address sourceAddress, int flow_id,
IPv6Address next_hop, int service_level) {

if (showComments)

{

gui . sendText (
" Server : sendFRTEUpdate : flowLookUp hashtable :

")

;

gui . sendText ("
" +f lowLookUp)

;

}

FlowRoutingTableEntry myFRTE = new FlowRoutingTableEntry (f low_id,
(byte) service_level, next_hop)

;

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec . listenToRandomPort (this) ;

short destPort = ControlExecutive . SAAM_CONTROL_PORT;
IPv6Address destHost = sourceAddress;
// take steps to determine what flow id to send the packet on
Vector interfaces = new Vector ();

interfaces .addElement (destHost) ;

int destNodeld = PIB.doesRouterExist (interfaces)

;

int f lowIdToSendltOn = ((Integer) f lowLookUp. get
(new Integer (destNodeld))) .intValueO ;

try{
controlExec . send (this , myFRTE, f lowIdToSendltOn, (short) sourcePort

,

destHost, destPort)

;

} catch (FlowException fe)

{

System. err .println (fe . toString ())

;

}

if (showComments)

{

gui .sendText ("Server : sendFRTEUpdate: FRTE for flow " + flow_id
+ " sent to interface "+sourceAddress)

;

gui . sendText (

"

with next hop= "+next_hop
+" on service level "+service_level+" via flow "+flowIdToSendltOn)

;

}

•J

* Sends a flow response to the requesting application to notify it of
* its newly assigned flow id. A flow id of zero is used to indicate that the
* flow cannot be supported. Once a flow response message is instantiated and
* a source and destination port is defined, the control executive's send (

)

* is called to send it to the destination host.
* @param flow_request The flow request message that was received.
* @param flow_id The flow id that is assigned to the flow request.
*/

public void sendFlowResponse (FlowRequest flow_request , int f low_id)

{

if (showComments)

{

gui . sendText (

" Server : sendFlowResponse : f lowLookUp hashtable :

")

;

gui . sendText ("
" +f lowLookUp)

;

272

}

FlowResponse response = new FlowResponse (flow_request
.
getTimeStamp ()

,

flow_id)

;

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec . listenToRandomPort (this) ;

short destPort = ControlExecutive . SAAM_CONTROL_PORT;
IPv6Address destHost = f low_request

.
getSourcelnterface {)

;

// take steps to determine what flow id to send the packet on
Vector interfaces - new Vector ()

;

interfaces . addElement (destHost)

;

int destNodeld = PIB. doesRouterExist (interfaces)

;

int f lowIdToSendltOn =
((Integer) flowLookUp. get

(new Integer (destNodeld))) . intValue ()

;

try{
controlExec . send (this , response, f lowIdToSendltOn, (short) sourcePort

,

destHost, destPort);
} catch (FlowExcept ion fe)

{

System. err .println (fe . toString ())

;

}

if (showComments)

{

gui . sendText (" Server : sendFlowResponse : Flow response "

+ response + " from SourcePort: " +sourcePort+ " to "+destHost
+ " sent via flow " +f lowIdToSendltOn)

;

}

}

//••A**

// These methods handle internal manipulation of data describing network status

* Determines all of the possible paths that exist between any source and
* destination router in the network. This determination is based on the
* physical definition of the network that is provided by the hello messages
* received from the routers and stored within the PIB. The paths that are
* found are then recorded in the PIB for fast assignment of flows later. <p>
* All node ids are first retrieved from the PIB. For each service level, we
* build an array of parents of each node. A parent is node that is directly
* connected. Those directly connected nodes would have service level pipes
* that would need to be passed through to get to the child node in question.
* This parent array is used to populate a path table. Each node id is
* assigned as the final destination of path and all of the different paths
* are then found by working out from this destination. For each of these
* destination nodes, a call is made to processPath () to find all the valid
* paths that go to this destination node. We make the call with a specified
* height of search of 1

.

*/

public void f indAllPossiblePaths () {

long start, finish;
int NumberOfRouters

;

int max_slp_id = INITIALZERO;
/** A count of the highest path id assigned so far. */

int max_path_id = INITIALZERO;
int service_level = INITIALZERO;

273

/** A vector of the routers that are known by the db. */

Vector V = new Vector ()

;

/** A vector of the parent routers for each given destination router. */

Hashtable parent;

// capture the start time of processing a path data
start = System. currentTimeMillis () ,-

// reset the maximum path id assigned so far to zero
max_path_id = INITIALPATHID;

V = PIB.getAllRouterIds()

;

//retrieve COUNT of routers
NumberOfRouters = V.size();

//find all possible paths for each service level
max_slp_id = (new Integer (PIB. findMaxServiceLevel ())). intValue ()

;

for (service_level=INITIALZERO; service_level<=max_slp_id; service_level++)

{

//build parent array of each SLP at this service level
parent = PIB.getParents (V, service_level)

;

//populate path table
for (int index = INITIALZERO; index < NumberOfRouters; index++)

{

int he-ightOfSearch = INITIALHEIGHTOFSEARCH;
int aPath[] = new int[Hmax + INCREMENTATIONOFSEARCH]

;

aPath[DESTINATIONNODE] = ((Integer) V. elementAt (index)) . intValue ()

;

processPath (parent , aPath, heightOfSearch, service_level)

;

}

}

// capture the path data processing finish time
finish = System. currentTimeMillis ()

;

gui . sendText ("Server : findAllPossiblePaths : Time required = "

+ (finish-start) +" milliseconds .

")

;

timeOfLastPIBBuild = finish;

/ * *

* Processes all valid paths that arrive at the destination node within some
* range of hops. For each parent of the node at the distance of
* heightOfSearch from the destination, a check is made to ensure that adding
* this new parent will cause no cycle. If this checks out, then that parent
* can be added and a new path can be assigned. The service level pipes in
* this new path are identified and their sequence numbers in this path are
* recorded to the PIB. Next, a check is made to see if the height of the
* search is less than the server's max search height of Hmax. If it is less,
* the method recursively calls itself with an incremented heightOfSearch
* variable.
* @param parent Contains each router and a list of other

274

* routers that are directly attached to them.
* ©param aPath [] An array contain a path from a source node,
* aPath [heightOfSearch] , to a destination node, aPath[0].
* @param heightOfSearch The number of nodes in the path so far.
* @param service_level The level of service assigned to a flow.
*/

public void processPath (Hashtable parent,
int aPath[], int heightOfSearch, int service_level)

{

IPv6Address link_id;
int justARouter;
int sequence_number

;

int path_id;
Enumeration W = ((Vector) parent .

get

(

new Integer (aPath [heightOfSearch-1]))) . elements ()

;

while (W.hasMoreElements ()) {

justARouter - ((Integer) W.nextElement ()). intValue ()

;

if (causeNoCycle (aPath, heightOfSearch, justARouter)) {

// assign this router as the source in this path
aPath [heightOfSearch] = justARouter;

// record the new path id, etc.
path_id = PIB.getNewPathId(justARouter, aPath[DESTINATIONNODE])

;

// run through the SLP's and record their sequence
for (int index = heightOfSearch; index >DESTINATIONNODE; index--)

{

// determine link_id of this SLP
link_id = PIB.getLinkBetween (aPath [index]

,

aPath[index- INCREMENTATIONOFSEARCH])

;

// assign the SLP its sequence number
sequence_number = heightOfSearch - index;
PIB.assignSLPSequence (service_level, aPath[index]

,

link_id, path_id, sequence_number)

;

}

if (heightOf Search < Hmax) {

processPath (parent, aPath, heightOfSearch+ INCREMENTATIONOFSEARCH,
service_level)

;

}

}

}

if (showComments)

{

gui . sendText ("Server : processPath: paths at depth of "+heightOfSearch
+" from node "+aPath[DESTINATIONNODE] +" is completed.");

1

Checks to ensure that the addition of a specified new node to a specified
path does not result in a cycle being created. This check is completed by
the new node is already a member of the list of nodes in the path already.
@param aPath[] An array contain a path from a source node,
aPath [heightOfSearch] , to a destination node, aPath[0].

275

* ©param heightOfSearch The number of nodes in the path so far.
* ©param justARouter The proposed next node in for a new path.
* ©returns noCycles True if no cycles are created by the addition of
* justARouter.
*/

public boolean causeNoCycle (int aPath[], int heightOfSearch,
int justARouter)

{

boolean noCycles = true;
for (int index = INITIALZERO; index < heightOfSearch; index++){

if (justARouter == aPath [index])

{

if (showComments)

{

gui . sendText (" Server : causeNoCycle: adding "+ justARouter
+" to get to "+aPath[DESTINATIONNODE] +" via "

+aPath [heightOfSearch- INCREMENTATIONOFSEARCH]
+" at a height of "+heightOfSearch+ " caused cycle!");

}

return noCycles = false;

}

}

if (showComments)

{

gui . sendText ("Server : causeNoCycle: adding "+justARouter
+" as hop #"+heightOfSearch+" to get to "+aPath [DESTINATIONNODE]
+" via "+aPath [heightOfSearch- INCREMENTATIONOFSEARCH]
+" does not cause cycle.");

}

return noCycles;
}

* Determines what the effective QoS on each path in the PIB is. For each
* path, the service level pipes that compose it are retrieved. Then, for
* each of these service level pipes, we total up the delay and loss rate.
* The effective throughput remaining is determined by finding the minimum
* difference between the observed throughput and the target throughput of
* each service level pipe.
*/

public void determineEf fectiveQoSForPaths ()

{

long start, finish;
Vector path_ids;
Integer myPathld;
Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,
throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO,
minThroughputRemaining = INITIALZERO;

// capture the start time of processing a path data
start = System. currentTimeMillis ()

;

// for each path
path_ids = PIB.getAllPathlds ()

;

for (int indexl = INITIALZERO; indexl < path_ids . size () ; indexl++)

{

276

// for each path
myPathld = (Integer) path_ids . elementAt (indexl)

;

SLPs = PIB.getSLPsOfPath(myPathId.intValue()) ;

for (int index2 = INITIALZERO; index2 < SLPs . size () ; index2++){

mySLP = (SLP) SLPs .elementAt (index2)

;

// add delay to total delay
totalDelay - totalDelay + mySLP .getDelay ()

;

// add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP

.
getLossRate ()

;

// find min throughput
throughput = mySLP

.
getThroughput ()

;

targetThroughput = mySLP. getTargetThroughput ()

;

throughputRemaining = targetThroughput - throughput;
if (throughputRemaining < minThroughputRemaining

minThroughputRemaining == INITIALZERO)

{

minThroughputRemaining = throughputRemaining;
}

PIB.setEf feet iveQoSOf Path (myPathld. intValue () , totalDelay, totalLossRate,
minThroughputRemaining)

;

totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

}

// capture the path data processing finish time
finish = System. currentTimeMillis ()

;

gui . sendText ("Server : determineEf fectiveQoSForPaths : Time required =

+ (finish-start) +" milliseconds .

")

;

* Determines the effective QoS for just those paths that pass over the
* specified service level pipe. For each path, the service level pipes that
* compose it are retrieved. Then, for each of these service level pipes, we
* total up the delay and loss rate. The effective throughput remaining is
* determined by finding the minimum difference between the observed
* throughput and the target throughput of each service level pipe.
* @param address The address of the interface containing this service level.
* @param service_level The service level of this SLP.
*/

public void determineEf fectiveQoSForPaths (IPv6Address address,
int service_level)

{

277

long start, finish;
Vector path_ids;
Integer myPathld;
Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO, minThroughputRemaining = INITIALZERO;

// capture the start time of processing a path data
start = System. currentTimeMillis ()

;

// for each path
path_ids = PIB.getAllPathldsThatTraverseSLP (address, service_level)

;

for (int indexl = INITIALZERO; indexl < path_ids . size () ; indexl++)

{

// for each link
myPathld = (Integer) path_ids . elementAt (indexl)

;

SLPs = PIB. getSLPsOfPath (myPathld. intValueO) ;

for (int index2 = INITIALZERO; index2 < SLPs . size () ; index2++){

mySLP = (SLP) SLPs. elementAt (index2)

;

// add delay to total delay
totalDelay = totalDelay + mySLP

.
getDelay ()

;

// add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP. getLossRate ()

;

// find min throughput
throughput = mySLP.getThroughput ()

;

targetThroughput = mySLP .getTargetThroughput ()

;

throughputRemaining = targetThroughput - throughput;
if (throughputRemaining < minThroughputRemaining

minThroughputRemaining == INITIALZERO)

{

minThroughputRemaining = throughputRemaining;
}

PIB. setEf feet iveQoSOfPath (myPathld. intValue () , totalDelay, totalLossRate,
minThroughputRemaining

)

totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

}

// capture the path data processing finish time
finish = System. currentTimeMillis ()

;

278

gui . sendText ("Server : determineEf fectiveQoSForPaths : Time required ="

+ (finish-start) +" milliseconds .

")

;

}

* Returns the String representation of this Server.
* ©return The String representation of this Server.
*/

public String toString(){
return "Server";

} //

//methods below are added by akkoc

* Method for receiving required values from demosation for server settings
* Also this method is used for server to place an entry for itself
* in the servertable
* ©return void.
*/

public synchronized void processConf iguration (Configuration con)

{

serverType = con
.
getServerType ()

;

flowld = con.getFlowId()

;

metricType = con .getmetricType ()

;

cycleTime = con.getCycleTime ()

;

globalTime = con .getGlobalTime ()

;

AutoConf igurationExecutive ace=controlExec
.
getAutoConf igurationExecutive (

]

ace . createNewServerlnformation (flowld, controlExec
.
getRouterld ())

;

initHeartbeat (); //added by Efraim KATI (February 2000)

} // end processConf igurtaion

* Creates thread for dcm sending from the server.
* ©return void.
*/

public void autoConfigO {

Thread configThread = new Thread(this, "AutoConf ig")

;

conf igThread. start ()

;

}//end of autoconfig

* Triggers DCM sending, and provides continues resreshment of SAAM region
* with DCM messages.
* ©return void.
*/

public void run ()

{

gui . sendText (" \n Server will send first DCM after 40 sees")

;

try{
gui . sendText (

" thread is sleeping now "
)

;

Thread. sleep(60000)

;

gui . sendText ("thread woke up after 40 sees so start sending ");

}catch (InterruptedException ie) {}

279

while (true) {

try{

Vector tableEntries = controlExec
.
getEmulationTable ()

.
getEmTable ()

;

Enumeration es = tableEntries . elements ()

;

while (es . hasMoreElements ())

{

EmulationTableEntry ent = (EmulationTableEntry) es .nextElement ()

;

//destination adress determined from emulationtable entry
IPv6Address des = new IPv6Address (ent

.
getNextHopIPv6 ()

.
getAddress ()

)

//gui . sendText (
" Destination of DCM is " +des . toString ())

;

byte [] nextHopBytes = des .getAddress ()

;

Vector interfaces - new Vector ();

interfaces = this . controlExec .getlnterfaces ()

;

IPv6Address slnt;
for(int i=0 ; i<interfaces . size () ;i++)

{

Interface thislnterface = (Interface) interfaces
.
get (i)

;

//cycle through all interfaces checking network address
//against nextHop.
int match = 0;

byte [

]

outboundInterfaceBytes=thisInterface.getID () .getIPv6() .getAddress ()

;

int bytesToCheck = 5

;

for (int index=0 ; index<bytesToCheck; index++)

{

if ((nextHopBytes [index] &0xFF) == (outboundlnterfaceBytes [index] &0xFF))

{

match++

;

}//if

} //inner for

if(match== bytesToCheck)

{

slnt = new
IPv6Address (thislnterface. get ID () .getIPv6()

.
getAddress ())

;

sendDown (slnt , des)

;

}//if
}/ /outer for

} // end while
} catch (UnknownHostException e)

{

gui . sendText (e.getMessage ()+" inside catch of DCM start up using em
table")

;

} //try-catch

try{
Thread. sleep (this. cycleTime) ; //from demostation

} catch (InterruptedExcept ion ie)

{

gui . sendText (

" thread sleep problem")

;

}

}//end of while providing continues DCM sending

} / / end run (

)

280

* Retruns flowid of server.
* ©return ind serverflow id.
*/

public int getServerFlowId ()

{

return flowid;

}

* Returns type of server (0-> for Primary, l-> for Backup)

* ©return byte value.
*/

public byte getServerType ()

{

return serverType;
}

* Method to send the DCM message using controlExecutive sendDCM method
* ©return void.
*/

public void sendDown (IPv6Address srclnt , IPv6Address des) {

DCM myDCM = new DCM (flowid, ServerId,metricType, srclnt , CTS ,
globalTime,

getSeguenceNumberForDcmSending (

)

gui . sendText ("DCM with SQ is sent " +this
.
getSeguenceNumberForDcmSending (

)

setSeguenceNumberForDcmSending () ;

short sourcePort = ControlExecutive . SAAM_CONTROL_PORT;
short destPort = ControlExecutive . SAAM_CONTROL_PORT;

try{
controlExec . sendDCM (this, myDCM, getServerFlowId ()

,

sourcePort , des, destPort);
/ /gui . sendText ("DCM has been sent");

} catch (Exception fe)

{

System. err .print In (f e. toString ())

;

}

}//end sendDown ()

/ * *

* Method for setting proper value to put in DCM message for sequence
* number field
* ©return void.
*/

private void setSeguenceNumberForDcmSending ()

{

sequenceNumber++ ,-

if (sequenceNumber == 6553 5) seguenceNumber = 0;

}

* Method for returning current sequence number value
* ©return int value.
*/

281

private int getSeguenceNumberForDcmSending ()

{

return sequenceNumber

;

}

//

// The following methods are added by Efraim KATI (February 2 000)

//

* Receives the heartbeat query message coming from the backup server. After
* that prepares the heartbeat response message with the same sequence number
* and sends it to the backup server
* @param hbq heartbeat query message
* ©return void
*../

public void processHeartbeatQuery (HeartbeatQuery hbq)

{

try{

gui . sendText ('* \ " Heartbeat Query \" is received." + " Seq.Num :
" +

hbq .
getSequenceNumber (

)

+

" at :
" + System. currentTimeMi 11 is ()

+"
");

hbr.setLastUsedFlowID(lastUsedFlow_ID)

;

hbr .setSequenceNumber (hbq. getSequenceNumber (})

;

if(testCase2 &&
(hbq. getSequenceNumber () == 3

|
| hbq. getSequenceNumber () == 4))

{

gui . sendText (" \nTEST CASE #2 " +

"\" Heartbeat Response \" did not send on purpose "+

"\nSeq.Num :
" +

hbr
.
getSequenceNumber ()

+ "
")

;

}

else if (testCase3 &&
(hbq. getSequenceNumber () == 11

hbq. getSequenceNumber () ==12)){

gui . sendText (" \nTEST CASE #3 " +

"\" Heartbeat Response \" did not send on purpose "+

"\nSeq.Num :
" +

hbr .
getSequenceNumber ()

+ "
")

;

}

else if (testCase3 &&
(hbq. getSequenceNumber () ==13)){

gui . sendText (" \nTEST CASE #3 " +
n \" Heartbeat Response \

K sent with sequnce number "+

" \ " 3 \
" on purpose ")

;

hbr . setSequenceNumber ((short) 3)

;

controlExec . send (this

,

282

hbr,
4,

(short) PSUEDORANDOMSOURCEPORT

,

IPv6Address.getByName (backupServerIPv6Str)

,

(short) 8000)

;

}

else if (testCase4 &&
(hbq.getSequenceNumber () > 4) &&
(hbq.getSequenceNumber () < 9)){

gui . sendText (

" \nTEST CASE #4 " +

"\" Heartbeat Response \" did not send on purpose. "+

" SeqNum :" +hbq.getSequenceNumber ()
+"

");

}

//normal case
else{

controlExec . send (this

,

hbr,
4,

(short) PSUEDORANDOMSOURCEPORT,
IPv6Address.getByName(backupServerIPv6Str)

,

(short) 8000)

;

qij-j sendText (" **'**° +

"\" Heartbeat Response \" is sent"+ " Seq.Num :
" +

hbr
.
getSequenceNumber ()

+

" at : " + System. currentTimeMillis ()+" ");

}//end if

}//end try
catch (FlowException fe)

{

gui . sendText (fe . getMessage ())

;

}//end catch
catch (UnknownHostException uhe)

{

gui . sendText (uhe. getMessage ())

;

}//end try/catch

} / /end processHeartbeatQuery (

)

/ * *

* Receives the heartbeat response message coming from the primary server.
* @param hbr heartbeat response message
* ©return void
*/

public void processHeartbeatResponse(HeartbeatResponse hbr)

{

283

short seqNum = hbr . getSequenceNumber () ;

if (! isMainDown)

{

gui . sendText (">»»»»»»»»»»»»»»»»»»»»»»»»>>" +

"\" Heartbeat Response \" is received with"+
" SeqNum. :

" + seqNum +" at : " +

System. currentTimeMillis ()+"");

if (seqNum == lastSequenceNumber)

{

lastResponseTime = System. currentTimeMillis ()

;

if { IhbController.getStatusO) {

hbController . restartQuerySendTimer ()
,-

hbController .setStatus (true)

;

//clear the vector because everything is normal again
clearRecentMissedSequences ()

;

gui. sendText ("vector is cleared:");
printRecentMisses ()

;

}//end if

hbController . stopResponseControlTimer ()

;

}

else if (recentMissedSequences. contains (new Short (seqNum)))

{

lastResponseTime = System. currentTimeMillis ()

;

gui .sendText ("\n! !!!! ! Received HeartbeatResponce Sequence Number "+

" did not match "
)

;

gui . sendText (" Received sequence was : " +

hbr . getSequenceNumber (
) + "

")

;

gui . sendText (
" Expected sequence was : " +

lastSequenceNumber+ "
") ;

gui . sendText (" Sequence Number did not match but it exists in "+

"the recent misses. So it is accepted.");
if j IhbController.getStatusO)

{

hbController . restartQuerySendTimer ()

;

hbController. setStatus (true)

;

//clear the vector because everything is normal again
clearRecentMissedSequences ()

;

gui . sendText ("vector is cleared:");
printRecentMisses ()

;

}//end if

hbController . stopResponseControlTimer ()

;

}

else {

gui. sendText ("\n! !!! ! Received HeartbeatResponce Sequence Number "+

284

" did not match "
)

;

gui . sendText ("Received sequence was : " +

hbr
. getSequenceNumber () + "

")

;

gui .sendText ("Expected sequence was : " +

lastSequenceNumber+ "
")

;

gui . sendText (" Sequence Number did not match and it not in the "+

"recent misses. So it is ignored.");
printRecentMisses ()

;

}//end if

}//end if

} / /end processHeartbeatResponse (

)

I * *

* Returns the value of the lastUsedFlowID data member
* ©param none
* ©return lastUsedFlow_ID
*7

public int getLastUsedFlowID()

{

return lastUsedFlow_ID;

}//end getLastUsedFlowID(

)

* Sends a heartbeat query message to the primary server
* @param none
* ©return void
*/

public void sendHeartbeatQuery () {

HeartbeatQuery hbq = new HeartbeatQuery ()

;

lastSequenceNumber = hbq. getSequenceNumber ()

;

try{
controlExec . send (this

,

hbq,
2,

(Short) PSUEDORANDOMSOURCEPORT,
IPv6Address.getByName (primaryServerIPv6Str)

,

(short) 8000)

;

currentTime = System. currentTimeMill is ()

;

long timeDiff = currentTime - lastQueryTime;
gui . sendText (" \

" Heartbeat Query \" is sent with "+

"SeqNum. :
" + lastSequenceNumber + " at :

" +

currentTime+" after :" + timeDiff + " milliseconds");
lastQueryTime = currentTime;

}//end try
catch (FlowException fe)

{

gui . sendText (fe . getMessage ())

;

285

}//end catch
catch (UnknownHostException uhe)

{

gui . sendText (uhe
.
getMessage ()) ;

}//end try/catch

hbg = null;
System. gc ()

;

hbController . restartResponseControlTimer ()

;

}//end sendHeartbeatQuery {

)

* Sets the value of the isMainDown boolean
* ©param status
* ©return void
*/

public void setlsMainDown (boolean status)

{

isMainDown = status;

if (! isMainDown)

{

bf . setVisible (false) ;

}//end if

}//end setlsMainDown (

)

/ * *

* Adds the seguence number of the last missed heartbeat response message to
* recentMissedSequences Vector
* @param none
* ©return void
*/

public void addRecentMissedSeguences ()

{

recentMissedSequences .addElement (new Short (lastSequenceNumber))

;

gui . sendText ("Seguence Nubmer :
° + lastSequenceNumber +

" is added to the \ "RecentMissedSequences \ "vector")

;

printRecentMisses ()

;

}//end addRecentMissedSequences ()

/ **

* This method deletes all of the elements in the recentMissedSequences
Vector

* ©param none
* ©return void
*/

public void clearRecentMissedSequences ()

{

recentMissedSequences . removeAllElements ()

;

286

} / /end clearRecentMissedSequences (

)

/ * *

* Displays the content of the recentMissedSequences Vector to the screen
* @param none
* ©return void
*/

public void printRecentMisses ()

{

Enumeration e = recentMissedSequences .elements ()

;

gui .sendText (
"
\

" RecentMissedSequences \
" Vector elements: "

)

;

Short a;

while (e.hasMoreElements ())

{

a = (Short) e.nextElement ()

;

gui . sendText ("
" + a . shortValue ()

+ "
")

;

}//end while

}//end printRecentMisses (

)

* Returns the value of the lastResponseTime data member
* Sparam none
* ©return lastResponseTime
*/

public long getLastResponseTime ()

{

return lastResponseTime;

}//end getLastResponseTime (

)

/ * *

* Returns the last DCM reception time
* ©param none
* ©return lastT
*/

public long getLastDCMTime ()

{

long lastT=controlExec
.
getAutoConfigurationExecutive ()

.
getLastDCMTime ()

;

return lastT;

}//end getLastDCMTime (

)

* Display the passed string on the screen
* ©param str string to be displayed
* ©return void
*/

public void display (String str)

{

gui . sendText (str)

;

}//end display ()

287

/ * *

* Initializes the banner frame according to the server type. If this is the
* backup server, then it starts the heartbeat query sending process
* @param none
* @return void
*/

private void initHeartbeat ()

{

if (serverType == (byte)0){

isMain = true;
bf .setFrameTextC'THIS IS THE PRIMARY SERVER");
bf .setVisible(true)

;

gui . setTextField("The primary Server is active rigth now");

}

else{

isMain = false;
bf . setBackgroundColor (Color . cyan)

;

bf .setFrameTextC'THIS IS THE BACKUP SERVER");
bf . setVisible (true)

;

gui . setTextField("The Backup Server is silent rigth now");
hbController = new HeartbeatController (this, tmax, tmin, bf)

;

//waits for to start sending HeartbeatQuery Messages

Timer startHeartbeatQueryTimer = new Timer (firstQueryTime,
(new java.awt .event .ActionListener ()

{

public void actionPerformed (ActionEvent e)

{

hbController .startSending()

;

gui . sendText ("querySendTimer is started at : " +

System. currentTimeMillis () + "
")

;

gui . sendText ("First Heartbeat Query Message will
"be sent after " +

firstQueryTime + " milliseconds");
}

}));

StartHeartbeatQueryTimer. setRepeats (false)

;

StartHeartbeatQueryTimer . start ()

;

}//end if

// server table did not return correct value. Therefore server
IPv^Address

// are hardcoded and this section is commented
//•it**************************

/*

ServerTable serverTable = controlExec
.
getServerTable ()

;

Vector serverTableVector = serverTable. getTable ()

;

ServerTableEntry serverTableEntry = null;
Enumeration e = serverTableVector .elements ()

;

int flowID = 0;

288

IPv6Address addr=null;
while (e.hasMoreElements {))

{

serverTableEntry = (ServerTableEntry) e.nextElement {

)

flowID = serverTableEntry. getFlowId()

;

addr = serverTableEntry. getServerAddress {)

;

if (flowID==l)

{

primaryServerIPv6Str = addr . toString()

;

}//end if

if <flowID==3)

{

backupServerIPv6Str = addr . toString()

;

}//end if

} //end while

gui . sendText ("Primary Server IPv6Address: " +

primaryServerIPv6Str)

;

gui . sendText ("Backup Server IPv6Address: " +

backupServerIPv6Str)

;

*/

}//end initHeartbeat {

)

}//end Server class

//end file Server. Java

289

//

// Filename
// Date
// Author
// Modified by
// Modified by
// Project
//

ServerAgent
.
Java

December 8, 1999
John YARGER (August 1999)
Hasan AKKOC (February 2 00)

Efraim RATI (February 2 00)

SAAM

package saam. residentagent . server;

import saam. control .*

;

import saam. residentagent .*

;

import saam. server .*

;

import saam . event .

*

;

import saam. message .*

;

import saam.util.*;
import saam. event . SaamListener;

public class ServerAgent implements ResidentAgent

,

MessageProcessor,
SaamListener

{

private SAAMRouterGui gui;
private ControlExecutive controlExec;
private Server myServer;

private String [] messageTypes =

{ "saam. message .Hello"

,

"saam. message . FlowReguest "

,

" saam. message . LinkStateAdvertisement "

,

"saam. message . Configuration"

,

"saam. message. HeartbeatQuery"

,

" saam . message . HeartbeatResponse " }

;

public void install (ControlExecutive controlExec)

{

gui=new SAAMRouterGui ("ServerAgent")

;

this . controlExec=controlExec

;

controlExec . registerMessageProcessor (this)

;

myServer = new Server ("classObject" , controlExec);
gui . sendText (

" \nCalling My Server method: autoconf ig (

)

")

;

myServer .autoConfig()

;

}

public void processMessage (Message message)

{

try{
if (message instanceof Hello)

{

gui . sendText ("Received Message: "+
((Hello) message))

;

gui . sendText ("Calling Server method: processHello (

)

"

)

myServer .processHello ((Hello)message)

;

}else if (message instanceof FlowReguest)

{

FlowReguest reguest = (FlowReguest) message;
gui . sendText ("Received Message: "+ request);

290

gui . sendText

(

"Calling Server method: processFlowRequest ()") ;

myServer .processFlowRequest ((FlowReguest) message)

;

}else if (message instanceof LinkStateAdvertisement)

{

gui . sendText ("Received Message: "+

((LinkStateAdvertisement) message))

;

gui . sendText ("Calling Server method: processLSA()

")

;

myServer
.
processLSA

(

(LinkStateAdvertisement) message)

;

}

//below added by akkoc
else if (message instanceof Configuration)!

gui . sendText ("Received Message: "+

((Configuration) message))

;

gui . sendText ("Calling Server method: processConf iguration (

)

")

;

myServer .processConf iguration ((Configuration) message)

;

}

//the foolowing two "else if" cases are added by Efraim KATI
else if (message. getType () == (byte) 2)

{

gui. sendText ("Received Message: "+
((HeartbeatQuery) message))

;

gui .sendText ("Calling Server method: processHeartbeatQuery ()
°) ;

myServer .processHeartbeatQuery ((HeartbeatQuery) message)

;

}

else if (message. getType () == (byte)3){
gui . sendText ("Received Message: "+

((HeartbeatResponse) message)

)

gui .sendText ("Calling Server method: processHeartbeatResponse (

)

"

myServer .processHeartbeatResponse ((HeartbeatResponse) message)

;

}

}catch (Exception e) {message - null;}

}

public String [] getMessageTypes ()

{

gui . sendText (" Server queried my message types");
/ / gui . sendText (

" Sending :
" +messageTypes [])

;

return messageTypes

;

}

public String toStringO {

String it = "ServerAgent listening for: ";

for (int i=0 ; i<messageTypes . length; i++)

{

it += "\n" + messageTypes [i]

;

}

return it;

}//toString()

//the following methods are stubbed out as they are not used,
public void uninstall(){
}

public Message query (Message message)

{

return message;
}

public void transferState (ResidentAgent replacement)

{

}

291

public void receiveState (Message message)

{

}

public void receiveFlowResponse (FlowResponse f lowResponse)

{

}

}//end ServerAgent class

//end file ServerAgent
.
Java

292

//•

II

II

II

II

II

II

II-

Filename
Date
Author
Modified by
Modified by
Project

PacketFactory
.
Java

August 1st, 1999
Dean VRABLE (August 1999)
Hasan AKKOC (February 2 000)
Efraim RATI (February 2 000)

SAAM

package saam. control

;

import java . io . File;
import java . io . FilelnputStream;
import java . io . IOExcept ion;
import java . util . Hashtable;
import java .util . Enumeration;
import java .util .Vector

;

import java .util . TooManyListenersException;
import java .util . StringTokenizer;
import java . lang . reflect . Constructor;

import saam.net.*;
import saam. event .*

;

import saam. mes sage .* ,-

import saam. util .*

;

import saam. residentagent .*

;

/'

* A PacketFactory can be used to build SaamPackets for sending or
* to receive SaamPackets and extract their atomic elements. These
* atomic elements are currently one of two types: A subclass of
* saam. residentagent . ResidentAgent or a subclass of
* saam. message .Message . <p>
* A sender would instantiate a PacketFactory to build
* Saam Packets. The PacketFactory ' s append methods receive
* Message Objects, ResidentAgent Objects, or a String that represents
* the class name of a ResidentAgent as parameters and then dynamically
* construct the appropriate header based on the number of elements
* received and the current time. The getBytes method is used to
* retrieve the byte array that represents the SAAMPacket that has been
* constructed by this PacketFactory . <p>
* The ControlExecutive uses the PacketFactory to receive and parse
* SaamPackets.
*/

public class PacketFactory extends Thread
implements SaamTalker, SaamListener

{

private final boolean guiActive = true;
private SAAMRouterGui gui

;

private ControlExecutive controlExec;
private boolean started = false;
private boolean firstEvent = true;
private boolean bytesRetrieved;
private byte [] packet , DCMpacket, PNpacket, UCMpacket;

293

private byte numberOfMessages;
private Loader loader;
private Class message;
private SaamEvent currentEvent

;

private Thread owner;
//private static int instanceNumber

;

private Object theLock = new Object();

// xie
private FIFOQueue inputQueue = new FIFOQueue (1000)

;

* Use the no-args constructor to begin constructing packets
* on the sending side.
*/

//no-args constructor doesn't come for free when we have
//another constructor
public PacketFactory ()

{

//instanceNumber++

;

//gui = new SAAMRouterGui (toString () + "("+ instanceNumber+ "
)

")

;

gui = new SAAMRouterGui ("Output "+ toString ())

;

gui . setTextField (
" I construct outbound packets");

}

* This constructor is not available to Objects outside the
* saam. control package. The ControlExecutive uses this constructor
* to receive and parse SAAMPackets. The PacketFactory passes the
* atomic elements (either ResidentAgents or Messages) up to the
* ControlExecutive for further processing.
* @param controlExec The ControlExecutive that is to receive
* updates from this PacketFactory.
*/

PacketFactory (ControlExecutive controlExec)

{

//this()

;

gui = new SAAMRouterGui (" Input " + toStringO);
gui . setTextField ("I Listen for inbound packets");
this . controlExec=controlExec

;

loader = new Loader ()

;

//******•***********************

//**Listen to desired Channels**
//******************************

int channel_ID =

ProtocolStackEvent . PACKETFACTORY_CHANNEL

;

try{
controlExec . addListenerToChannel (this , channel_ID)

;

gui . sendText ("Listening to channel: "+channel_ID)

;

} catch (ChannelException ce)

{

gui . sendText (ce . toString ()) ;

} //try-catch

//**Register to talk on desired Channels**
//*****•*************•********************

294

channel_ID = ControlExecutive . SAAM_CONTROL_PORT;
try{

controlExec . addTalkerToChannel (this

,

channel_ID)

;

gui . sendText ("Talking enabled on channel: " + channel_ID)

;

} catch (ChannelException ce)

{

gui . sendText (ce . toString ())

;

}

start ()

;

}

* When instantiated to receive packets, the PacketFactory
* Thread waits until a SAAMPacket arrives, then it calls
* the processPacket method.
*/

public void run ()

{

while (true)

{

gui . sendText (" \n Inside PacketFactory run (

)

")

;

synchronized (theLock){
if (inputQueue . isEmpty ())

{

started = false;
try{

gui . sendText ("Waiting ...");

theLock. wait ()

;

gui . sendText ("Continuing")

;

}

catch (InterruptedException e)

{

gui . sendText ("Interrupted exception catched")

;

}

}// end if

packet = (byte[]> inputQueue .dequeue ()

;

}// end synchronization

processPacket ()

;

} //while (true)

}

* This method is called by the Channels this Object has registered to
* monitor when a talker sends events on those Channels.
* @param se The SaamEvent to be communicated.

public synchronized void receiveEvent (SaamEvent se)

{

public void receiveEvent (SaamEvent se)

{

gui . sendText (" \n Got a packet");
currentEvent = se;
ProtocolStackEvent psec = (ProtocolStackEvent) currentEvent

;

295

byte [] newcomer = psec
.
getPacket ()

;

gui . sendText (

" \n New packet has length = " + newcomer . length)

;

synchronized (theLock)

{

inputQueue . enqueue ((Object) newcomer)

;

if (! started)

{

started = true;
gui . sendText (" \n Waking up the processPacket thread");
theLock . not i fy () ;

}// end if

}

}

* This method is used to extract the individual Class
* Objects that are represented in the packet. These Class
* Objects are either of type (ResidentAgent) or 1 (Message) . <p>
* If a ResidentAgent is received, a Class Object is created
* that represents the agent. That Class Object is then sent to
* the ControlExecutive for screening and agent instantiation . <p>
* If a Message is received, that Message is instantiated and sent
* to the ControlExecutive for further processing.
*/

private void processPacket () {

int channel = currentEvent
.
getChannel_ID ()

;

String eventSource = (String) currentEvent
.
getSource ()

;

//see saam.util for PrimitiveConversions and Array classes
long timeStamp = PrimitiveConversions .getLong

(

Array
.
getSubArray (packet ,0,8));

numberOfMessages=packet [8]

;

gui . sendText ("packet arrived: " +

"\n source: " + eventSource +

"\n channel

:

" + channel +

"\n size

:

" + packet . length +

"\n # of Messages " + numberOfMessages +

"\n timeStamp

:

" + timeStamp)

;

//now we trim the packet by removing the header,
packet = Array .getSubArray (packet , 9 ,

packet . length)

;

//used to track the current position in the array,
int index = 0;

for (int i=l; i<=numberOfMessages; i++)

{

gui . sendText (
" \nProcessing Element [

" +i+ "]
:

")

;

/ / int index = ;

byte type = packet [index++]

;

switch (type)

{

case :

case 1

:

//extract and process each atomic element of the packet
//separately. Here we assume the packet is a properly

296

//formatted SAAMPacket when it arrives, and that the
//length is less than the max allowed.

gui . sendText (
" type: "+type);

//retrieve the number of bytes the class name occupies
byte nameLength = packet [index++]

;

//extract the name of the class file as a byte array
byte [] elementNameArray = Array .getSubArray

(

packet , index, index+nameLength)

;

index+=nameLength;

//convert the name back into a String
String elementName = new String (elementNameArray)

;

gui . sendText (

" Name :
" +elementName)

;

//retrieve the length of the Object
short length = PrimitiveConversions

.
getShort

(

Array .getSubArray (packet , index, index+2))

;

gui . sendText (
" Length: "+length);

index+=2

;

//retrieve the bytecode of the Object
byte [] bytes = Array

.
getSubArray

(

packet, index, index+ length)

;

index+= length;

if (type == 0)

{

gui . sendText ("This is a ResidentAgent ")

;

//Assume this class is of type ResidentAgent
try{

//Attempt to define the class using the current
//class loader.
loader . defClass (elementName, bytes)

;

} catch (LinkageError le)

{

//If the loader already has a definition for the class
//a LinkageError will be thrown. If this happens, we
//need to instantiate a new class loader and use it to
//define the class. A nice little trick we learned from
//page 5 5 of Jason Hunter's "Java Servlet Programming" book.
gui . sendText (le . toString ())

;

gui . sendText ("Class was previously loaded. .

.

")

;

gui . sendText ("Replacing old ClassLoader . . . "
)

,-

Loader newLoader = new Loader ()

;

newLoader .defClass (elementName, bytes)

;

}

try{
//message is of type Class.
message = Class . forName (elementName, true, loader);

}catch (ClassNotFoundException cnfe)

{

gui . sendText (cnfe . toString ())

;

}

gui . sendText (message . toString ())

;

ResidentAgentEvent rae = new Res identAgentEvent

(

eventSource,

297

this,
ControlExecutive . SAAM_CONTROL_PORT,
message)

;

try{
gui . sendText ("Forwarding on channel "+

ControlExecutive . SAAM_CONTROL_PORT)

;

controlExec . talk(rae)

;

} catch (ChannelException tde)

{

gui . sendText (tde . toString ())

;

}

}else {

gui . sendText ("This is a Message");
//Assume this class is of type Message.
try{

//message is of type Class,
message = Class . forName (elementName)

;

} catch (ClassNotFoundException cnfe)

{

System. out .print In ("error is here "
) ;

{ gui . sendText (
" Bytecode for :

" +elementName+
" not found. ")

;

}

}

try{
//Call the constructor from within this Class that
//takes a byte array as its only argument
Constructor cons = message

.
getConstructor

(

new Class [] {byte[] .class})

;

//Create the instance of this Message
Message instance = (Message) cons .newlnstance

(

new Object [] {bytes});
gui . sendText (instance . toString ())

;

MessageEvent me = new MessageEvent (eventSource, this,
ControlExecutive. SAAM_CONTROL_PORT, instance)

;

//send this MessageEvent on the Control port.
try{

gui . sendText ("Forwarding on channel "+

ControlExecutive . SAAM_CONTROL_PORT)

;

controlExec . talk (me)

;

} catch (ChannelException tde)

{

gui . sendText ("problem occured here ");

gui . sendText (tde . toString ())

;

}

} catch (Exception e)

{

//need to notify sender that we have no classfile
//with this name
gui . sendText (e . toString ()) ;

} //try-catch
}

break

;

//THIS CASE PROCESSES THE HEARBEATQUERY MESSAGE
case 2

:

298

//retrieve the bytecode of the Object
bytes = Array .getSubArray (packet , 1, packet . length)

;

gui. sendText ("This is a HeartbeatQuery message");

//Create the instance of this Message
HeartbeatQuery hbq = new HeartbeatQuery (bytes) ,-

gui . sendText (hbq. toString())

;

MessageEvent hbqMe = new MessageEvent (eventSource,
this,
ControlExecutive . SAAM_CONTROL_PORT

,

hbq) ;

//send this MessageEvent on the Control port.
try{

gui . sendText (
" Forwarding on channel "

+

ControlExecutive. SAAM_CONTROL_PORT)

;

controlExec. talk (hbqMe)

;

} catch (ChannelException tde)

{

gui . sendText (tde . toString ()) ;

}

break;

//THIS CASE PROCESSES THE HEARBEATRESPONSE MESSAGE
case 3

:

//retrieve the bytecode of the Object
bytes = Array. getSubArray (packet, 1, packet .length)

;

gui . sendText ("This is a HeartbeatResponse message")

;

//Create the instance of this Message
HeartbeatResponse hbr = new HeartbeatResponse (bytes)

;

gui . sendText (hbr . toString ()) ;

MessageEvent hbrMe = new MessageEvent (eventSource,
this,
ControlExecutive . SAAM_CONTROL_PORT

,

hbr);
//send this MessageEvent on the Control port.
try{
gui . sendText (

" Forwarding on channel "

+

ControlExecutive . SAAM_CONTROL_PORT)

;

controlExec .talk (hbrMe)

;

} catch (ChannelException tde)

{

gui . sendText (tde . toString ())

;

}

break

;

case 4

:

gui . sendText ("This is a DCM Message");

try{
DCM dcm = new DCM (packet)

;

gui . sendText (dcm . toString ())

;

299

MessageEvent me = new MessageEvent (eventSource, this,
ControlExecutive . SAAM_CONTROL_PORT, dcm)

//send this MessageEvent on the Control port.
try{

gui . sendText (

" Forwarding on channel "

+

ControlExecutive. SAAM_CONTROL_PORT)

;

controlExec . talk (me)

;

}catch (ChannelException tde)

{

gui . sendText (tde . toString ())

;

tde .printStackTrace() ;

}

} catch (Exception e)

{

gui . sendText (e . toString ()) ;

e.printStackTrace ()

;

} //try-catch
break;

case 5

:

gui . sendText ("This is a UCM Message");
try{
UCM ucm = new UCM (packet)

;

gui . sendText (

" \n"+ucm. toString ())

;

MessageEvent me = new MessageEvent (eventSource, this,
ControlExecutive. SAAM_CONTROL_PORT, ucm)

;

//send this MessageEvent on the Control port.
try{

gui . sendText ("Forwarding on channel "+ -

ControlExecutive. SAAM_CONTROL_PORT)

;

controlExec . talk (me)

;

} catch (ChannelException tde)

{

gui . sendText (tde . toString ())

;

}

} catch (Exception e)

{

gui . sendText (e . toString ()) ;

} //try-catch
break;

case 6

:

gui . sendText ("This is a ParentNotif ication Message")

;

//Assume this class is of type Message.
try{

ParentNotif ication pn = new ParentNotification (packet)

;

MessageEvent me = new MessageEvent (eventSource,
this,
ControlExecutive . SAAM_CONTROL_PORT,
pn) ;

//send this MessageEvent on the Control port.
try{

gui . sendText ("Forwarding on channel "+

ControlExecutive. SAAM_CONTROL_PORT)

;

controlExec . talk (me)

;

} catch (ChannelException tde)

{

gui . sendText (tde . toString ())

;

}

300

} catch (Exception e)

{

gui . sendText (e . toString ()) ;

} //try-catch
break;

default

:

gui . sendText (" Packet type unrecognized: "+type);
//packet type is unrecognized. Here we could
//extract a channel_ID that could be embedded
//in the packet, and then send the unrecognized
//element on that channel.

}//end switch
}//for

} / /processPacket ()

* This method can be used to append a Message to an outgoing
* SAAMPacket . To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* @param me The Message to be appended.
*/

public void append (Message me)

{

if (bytesRetrieved)

{

packet=null

;

numberOfMessages = ;

bytesRetrieved = false;

}

byte type = me .getType ()

;

byte [] parameters = me .getBytes ()

;

//here we could check the length of the parameter array supplied
//with the length returned from the length () method call.
short paramLength = (short) parameters . length

;

//IN THIS SWITCH STATEMENT CASE 1 IS DESIGNED TO SUPPORT THE
//OLD VERSION MESSAGE TYPE
//

//CASE 1 : FOR OLD MESSAGE TYPE(TYPE=1)
//CASE 2 : FOR THE HEARTBEATQUERY TYPE(TYPE=2)
//CASE 3 : FOR THE HEARTBEATRESPONSE TYPE(TYPE=3)
//

//OTHER CASES WILL BE IMPLEMENTED FOR OTHER MESSAGE TYPES
switch (type)

{

case 1://F0R OLD VERSION MESSAGE TYPE

String name = me . getClass () .getName ()

;

byte nameLength = (byte) name. getBytes (). length;

//now append the Message to the packet byte array
packet = Array .concat (packet , type)

;

packet = Array. concat (packet, nameLength)

;

packet = Array. concat (packet, name. getBytes ())

;

301

packet = Array. concat (packet,
PrimitiveConversions.getBytes (paramLength))

;

packet = Array. concat (packet
,
parameters)

;

gui . sendText ("Appended Message :
" +

"\n Type: " + type +

"\n name: " + name +

" \n param length: " + paramLength +

"\n # of elements: + numberOfMessages +

"\n packet length: " + packet . length+ " \n

"

"\n Type:
"\n name:
"\n param length:
"\n packet length:

break;

case 2: //FOR THE HEARTBEATQUERY MESSAGE

packet = Array. concat (packet, type)

;

packet = Array. concat (packet, parameters)

;

gui . sendText ("Appended Message :

" +

+ type +

+ "HeartbeatQuery" +

+ parameters . length +

+ packet . length+" \n")

;

break

;

case 3: //FOR THE HEARTBEATRESPONSE MESSAGE

packet = Array. concat (packet, type)

;

packet = Array .concat (packet
,
parameters)

;

gui . sendText ("Appended Message :
" +

" \n Type

:

" + type +

"\n name: " + "HeartbeatResponse" +
" \n param length: " + parameters . length +

°\n packet length: " + packet . length+ B \n")

;

gui . sendText (((HeartbeatResponse) (me)) .toStringO

)

break;

default

:

gui . sendText (" Packet type unrecognized: "+type);

}//end switch

//increment the count of messages in this packet
numberOfMessages++

;

} //end of append

* This method can be used to append a DCM message to an outgoing
* SAAMPacket . To later retrieve the entire packet (with header)
* as a byte array, call the getDCMBytes method.
* @param downward The DCM message to be appended.

302

*/

public void appendDCM (DCM downward)

{

DCMpacket = null;
gui . sendText ("Appending a dcm message before sending downward with lengh");
DCMpacket = Array .concat (DCMpacket , downward. getBytes ())

;

gui . sendText ("Appending a dcm message before sending downward with lenght"+
" " + DCMpacket. length)

;

}//end of appendDCm

* This method can be used to append a PN message to an outgoing
* SAAMPacket . To later retrieve the entire packet (with header)
* as a byte array, call the getPNBytes method.
* @param downward The PN message to be appended.
*/

public void appendPN(ParentNotification pn)

{

PNpacket =null;
gui . sendText (

" Appending a PN message before sending downward with lengh");
PNpacket = Array . concat (PNpacket

,
pn. getBytes ()) ;

gui . sendText ("after appending PN is " +PNpacket . length)

;

}//end of appendDCm

* This method can be used to append a PN message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getPNBytes method.
* @param downward The PN message to be appended.
*/

public void appendUCM(UCM upward)

{

UCMpacket =null;
gui . sendText (

" Appending a UCM message before sending upward")

;

UCMpacket = Array . concat (UCMpacket , upward. getBytes ())

;

}//end of appendUCM

* This method can be used to append a ResidentAgent to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* @param ra The ResidentAgent to be appended.
*/

public void append (ResidentAgent ra) throws IOException{
String name = ra

.
getClass () .getName ()

;

append (name) ,-

}

* This method can be used to append a ResidentAgent by name to an
* outgoing SAAMPacket . To later retrieve the entire packet
* (with header) as a byte array, call the getBytes method.
* @param residentAgentClassName The String name of the ResidentAgent
* classfile to be appended.
*/

public void append (String residentAgentClassName)
throws IOException{

303

if (bytesRetrieved)

{

packet=null

;

numberOfMessages=0

;

bytesRetrieved = false;

}

byte type = 0;

String name = residentAgentClassName;
String fileName = "C : Wefraim" +File . separatorChar +

residentAgentClassName . replace (
'

.

' , File. separatorChar)
fileName+=" .class";
gui . sendText ("File name: "+fileName);
FilelnputStream fis = null;
try{

fis = new FileInputStream(fileName)

;

} catch (IOException ioe)

{

throw new IOException(
"Problem reading ResidentAgent : "+fileName);

}

byte nameLength = (byte) name
.
getBytes (). length;

byte[] byteCode = new byte [fis .available ()] ,-

short length = (short) fis . read (byteCode)

;

packet = Array . concat (packet , type)

;

packet = Array . concat (packet , nameLength)

;

packet = Array . concat (packet , name
.
getBytes ())

;

packet = Array . concat (packet

,

PrimitiveConversions
.
getBytes (length))

;

packet = Array . concat (packet , byteCode)

;

numberOfMessages++

;

gui . sendText ("Appended ResidentAgent :

" +

\n Type: 1 + type +

\n name

:

' + name +

\n byteCode length: ' + length +

\n # of elements

:

' + numberOfMessages +

\n packet length: ' + packet . length+" \n")

;

}

/ * *

* Appends a header to the byte array. The header conforms
* to the structure of a SAAMHeader.
*/

private void appendHeader ()

{

byte [] timeStamp = PrimitiveConversions .getBytes

(

System. currentTimeMillis ())

;

packet = Array .concat (numberOfMessages, packet)

;

packet = Array . concat (timeStamp, packet)

;

gui . sendText ("Appended header :
"

+

" \n timeStamp: "+PrimitiveConversions
.
getLong

(

Array .getSubArray (packet, 0,8))

+

" \n # of updates: "+packet[8] +

" \n packet length: " +packet . length+" \n")

;

}

304

* Returns a byte array that conforms to the structure of
* a SAAMPacket

.

* ©return A byte array that conforms to the structure of
* a SAAMPacket

.

*/

public byte[] getBytes ()

{

appendHeader ()

;

bytesRetrieved = true;
return packet;

}

* Returns a byte array that conforms to the structure of a DCMPacket
* ©return A byte array that conforms to the structure of DCMPacket.
*/

public byte[] getDCMBytes ()

{

return DCMpacket;
}

* Returns a byte array that conforms to the structure of a PNPacket

.

* ©return A byte array that conforms to the structure of PNPacket.
*/

public byte[] getPNBytes ()

{

return PNpacket;

}

/
Returns a byte array that conforms to the structure of a UCMPacket
©return A byte array that conforms to the structure of UCMPacket.

*/

public byte [] getUCMBytes
return UCMpacket

;

}

{

* Returns the current length of the packet
* ©return The current length of the packet
*/

public int length(){
try{

return packet . length;
}catch (NullPointerException npe)

{

return ;

}

}

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/

public String toString(){

305

return "Packet Factory";

}

306

LIST OF REFERENCES

1. Pankaj J., Fault Tolerance in Distributed Systems, pp.4-17, Prentice-Hall, 1994.

2. Gray, J., and Siewiorek, D. P., "High-Availability Computer Systems,"

IEEE/Computer, v. 24, no. 9, pp.39-48, September 1991.

3. Laprie, J. C, "Dependable Computing and Fault Tolerance: Concepts, and

Terminology," Proceedings of Twenty-Fifth International Symposium on Fault-

Tolerant Computing, pp. 2-11, June 1995.

4. Pradhan, D. J., Fault-Tolerant Computer System Design, pp.2-58, Prentice-Hall,

1996.

5. Microsoft Corporation, Reliability and Fault Tolerance in Windows NT Server,

[http://www.microsoft.com/NTServer/fileprint/exec/overview/reliability.asp],

September 1999.

6. "Deploying Microsoft Windows NT Server for High Availability", Microsoft

Corporation, [http://microsoft.com/windows/news/notdated/highavailability.asp],

October 1998.

7. Microsoft Corporation, Windows NT 4.0 Resource Kit Documentation.

8. Shnier. M., Computer Dictionary, p.526, Que Corporation, 1998.

9. Microsoft Corporation, Microsoft Windows NT Network Administration, pp.401,

Microsoft Press, 1998.

10. Pfister, G., In Search of Clusters, pp.12, 385, Prentice-Hall, 1995.

11. Microsoft Corporation, Clustering Architecture,

[http://www.rnicrosoft.com/ntserver/ntserverenterprise/techdetails/prodarch/clusta

rchit.asp?RLD=36], April 1999.

12. Microsoft Corporation, Microsoft Windows NT Clusters (White Paper), 1997.

13. Microsoft Corporation, Clustering Overview,

[http://www.microsoft.com/ntserver/ntserverenterprise/exec/overview/Clustering.

asp], July 1999.

307

14. Microsoft Corporation, Cluster Strategy: High Availability and Scalability with

Industry-Standard Hardware,

[http://www.microsoft.com/ntserver/ntserverenterprise/exec/prodstrat/cluster2.asp]

, April 1999.

15. Microsoft Corporation, Microsoft Windows NT Load Balancing Service (WBLS)
Technical Overview,

[http://www.microsoft.com/ntserver/ntserverenterprise/techdetails/prodarch/Wlbs.

asp], April 1999.

16. Patterson, D.A., Chen, P., Gibson, G., and Katz, R.H., "Introduction to redundant

arrays of inexpensive disks (RAID)," Thirty-fourth IEEE Computer Society

International Conference: Intellectual Leverage, pp. 1 12-117, February 1989.

17. Microsoft Corporation, Windows NT Load Balancing Service (WLBS) Features

Overview, [http://www.microsoft.com/ntserver/ntserverenterprise/exec/feature/

WLBS/WlbsFeat.asp], April 1999.

18. NSI Software Corporation, Theory of Operations Double-Take Version 3.0 for

Windows NT and Solaris, [http://www.sunbelt-software.com/evals/dtake/Double-

Take%20Theory%20of%20Operations.pdf], September 1999.

19. NSI Software Corporation, High Availability for TCP/IP Networks,

[http://www. nsisw.eom/pages/dt3napp.htm#wan], September 1999.

20. Legato Systems, Octopus User's Guide Release 3.2,

[http://www.legato.com/support.index.html], 1999.

21. Legato Systems, Co-StandbyServerfor Windows NT (white paper),

[http://kb.vinca.com/libraries/whitepapers/ntco_wp.pdf], 1999.

22. Legato Systems, Co-StandbyServerfor Windows NT User's Guide,

[http://software.vinca.com/software/ntco_man.pdf], 1998.

23. Marathon Technologies Corporation, Assured Availability Systems (white paper),

[http://ginko.longwoodsw.com/svr/intrasrv.isv7mtc/mtcpublic.jfm], November

1998.

24. Computer Associates International, Inc., ARCserve Replication 4.0for Windows

NT User Guide, [http://www.cai.com/products/arcserve_replication/], 1998.

25. Computer Associates International, Inc., High Availability Data Protection with

ARCserve Replication For Windows NT (White Paper),

[http://www.cai.com/products/arcserve_replication/replication_white_paper.htm],

October 1999.

308

26. Gouda, M. G., and McGuire, T. M., "Accelerated Heart Protocols," Proceedings

of 18
n
International Conference on Distributed Computing Systems, pp. 202-209,

May 1998.

27. Barborak, M., Malek, M., and Dahbura, A., "The Consensus Problem in Fault-

Tolerant Computing," ACM Computing Surveys, v. 25, no. 2, pp. 171-220, June

1993.

28. Barry, N., "An end to downtime,"

[http://www.nwfusion.com/revievs/0705rev.html], July 1999.

29. Joseph, M., "Widespread High Availability Use Remains on Standby,"

[http://www.entmag.com/displayarticle.asp?searchresult= 1&JD= 1289871928PM]
, December 1998.

30. Jonathan, C, "Easy-to-use solutions for uninterrupted data access,"

[http://www.winntmag.com/Magazine/Ereprint.cfm?ArticeID=3579], July 1998.

31. Carlos, B., "Mirroring Software to Prevent Disaster,"

[http://www.winntmag.com/Articles/Content/208_01.html?Key=Clustering], June

1997.

32. Microsoft Corporation, Writing Microsoft Cluster Server (MSCS) Resource

Dynamic-Link Libraries (DLLs) (White Paper), 1997'.

33. Cristian, F., "Reaching Agreement on Processor-Group Membership," Distributed

Computing, v. 4, pp. 175- 187, 1991.

34. Pradhan, D. K., "Recoverable Mobile Environment Design and Trade-off

Analysis," Proceedings ofIEEE Annual Symposium on Fault Tolerant

Computing, pp. 16-25, June 1996.

35. Xie, G., Hensgen, D., Kidd, T., and Yarger, J., "SAAM: An Integrated Network

Architecture for Integrated Services," 1998 Sixth International Workshop on

Quality of Service, pp. 117-126, May 1998.

36. Vrable, J. D. and Yarger, W. J., The SAAM Architecture: Enabling Integrated

Services, Master's Thesis, Naval Postgraduate School, Monterey, California,

September 1999.

309

THIS PAGE INTENTIONALLY LEFT BLANK

310

INITIAL DISTRIBUTION LIST

1

.

Defense Technical Information Center 2

725 John J. Kingman Road, Ste 0944

Ft. Belvoir, VA 22060-6218

2. Genelkurmay Baskanligi 1

Personel Baskanligi

Bakanliklar

Ankara, TURKEY

3

.

Kara Kuvvetleri Komutanligi 1

Personel Daire Baskanligi

Bakanliklar

Ankara, TURKEY

4. Kara Kuvvetleri Komutanligi 1

Kutuphanesi

Bakanliklar

Ankara, TURKEY

5

.

Kara Harp Okulu 2

Kutuphanesi

Dikmen
Ankara, TURKEY

6. Dudley Knox Library 2

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

7. Chairman, Code CS 1

Naval Postgraduate School

Monterey, CA 93943-5101

8. Prof.. Geoffrey Xie, Code CS/Xg 1

Naval Postgraduate School

Monterey, CA 93943-5100

311

9. Prof. James Brett Michael, Code CS/Mj

.

Naval Postgraduate School

Monterey, CA 93943-5100

10. 1LT Efraim Kati

Selanik cad. 9 / 22

Kizilay, 06420

Ankara, TURKEY

312

60 -ran
6/02 22527-200 nle

