

Calhoun: The NPS Institutional Archive DSpace Repository

Hypercube solutions for conjugate directions.

Hartman, Jonathan Edward

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/26581

monevily

THESIS

HYPERCUBE SOLUTIONS FOR

CONJUGATE DIRECTIONS by

Jonathan Edward Hartman

December, 1991

Thesis Co-Advisor:
Thesis Co-Advisor:

William B. Gragg
Uno R. Kodres

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS			
SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.			
DECLASSIFICATION/DOWNGRADING SCHEDULE					
PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
NAME OF PERFORMING ORGANIZATION Computer Science Department Naval Postgraduate School	6b. OFFICE SYMBOL (if applicable) CS	7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School			
Monterey, CA 93943		Monterey, CA 93943			
NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (if applicable)	9. PROCUREME	T INSTRUM	ENTIF	MBER
ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO.	$\begin{aligned} & \text { PROJECT } \\ & \text { NO. } \end{aligned}$	TASK NO.	WORK UNIT ACCESSION NO.

TITLE (Include Security Classification)

HYPERCUBE SOLUTIONS FOR CONJUGATE DIRECTIONS

PERSONAL AUTHOR(S)
Hartman, Jonathan Edward

| a. TYPE OF REPORT | | | |
| :---: | :---: | :---: | :---: | :---: |
| Master's Thesis | 13b. TIME COVERED
 FROM $06 / 89$ TO 12/91. | 14. DATE OF REPORT (Year, Month, Day)
 December 1991 | 15. PAGE COUNT |

SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the ficial policy or position of the Department of Defense or the United States Government.

COSATI CODES \quad 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD	GROUP	SUB-GROUP	Conjugate Gradients, Gaussian Elimination, Gauss Factorization, Hyper-
cube, iPSC/2, Matrices, Multiprocessors, Transputers, Communicating			

ABSTRACT (Continue on reverse if necessary and identify by block number)
As computing machines advance, new fields are explored and old ones are expanded. This thesis considers arallel solutions to several well-known problems from numerical linear algebra, including Gauss Factorization id the method of Conjugate Gradients. The Gauss algorithm was implemented on two parallel machines: an tel iPSC/2, and a network of INMOS T-800 transputers. Interprocessor communication-in both cases-was orne by a hypercube interconnection topology.
The results reveal general findings from parallel computing and more specific data and information conrning the systems and algorithms that were employed. Communication is timed and the results are analyzed, owing typical features of a message passing system. System performance is illustrated by results from the auss codes. The use of two different pivoting strategies shows the potential and the limitations of a parallel achine. The iPSC/ 2 and transputer systems both show excellent parallel performance when solving large, ense, unstructured systems. Differences, advantages, and disadvantages of these two systems are examined and spectations for current and future machines are discussed.

DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED \square SAME AS RPT
NAME OF RESPONSIBLE INDIVIDUAL
Uno R. Kodres

DTIC USERS

Approved for public release; distribution is unlimited.

IIYPERCUBE SOLUTIONS
 for
 CONJUGATE DIRECTIONS

by
Jonathan Edward Hartman
Captain. United States Marine Corps
B.S., United States Naval Academy, 1984

Submitted in partial fulfillment of the
requirements for the degrees of
MASTER OF SCIENCE IN COMPUTER SCIENCE MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL

December, 1991

ABSTRACT

As computing machines advance, new fields are explored and old ones are expanded. This thesis considers parallel solutions to several well-known problems from numerical linear algebra, including Gauss Factorization and the method of Conjugate Gradients. The Gauss algorithm was implemented on two parallel machines: an Intel iPSC/2, and a network of INMOS T-800 transputers. Interprocessor communication-in both cases-was borne by a hypercube interconnection topology.

The results reveal general findings from parallel computing and more specific data and information concerning the systems and algorithms that were employed. Communication is timed and the results are analyzed, showing typical features of a message passing system. System performance is illustrated by results from the Gauss codes. The use of two different pivoting strategies shows the potential and the limitations of a parallel machine. The iPSC/2 and transputer systems both show excellent parallel performance when solving large, dense, unstructured systems. Differences, advantages, and disadvantages of these two systems are examined and expectations for current and future machines are discussed.

THESIS DISCLAIMER

The computer programs developed in this research have not been exercised for all cases of interest. Every reasonable effort has been made to eliminate computational and logical errors, but the programs should not be considered fully verified. Any application of these programs without additional verification is at the user's risk. A reasonable effort has been put forth to make the code efficient. Optimization has been suppressed, however, in areas where it would jeopardize the simplicity and clarity of the algorithm without great reward in terms of performance.

IMS, inmos, and occam are trademarks of INMOS Limited, a member of the SGS-THOMSON Microelectronics Group. INTEL, intel, and iPSC are trademarks of Intel Corporation. IBM, PC AT, and PC XT are registered trademarks of International Business Machines Corporation. CIO, LD-ONE, LD-NET, TASM, TCX, TIO, TLIB, and TLNK are trademarks of Logical Systems. MS-DOS is a trademark of Microsoft Corporation. MATLAB is a trademark of The MathWorks, Inc. All other brand and product names are trademarks or registered trademarks of their respective companies.

TABLE OF CONTENTS

I. PREFACE 1
A. A SURVEY OF COMPUTING MACHINERY 1
B. CURRENT APPROACHES 10
C. THE FUTURE 14
D. OVERVIEW 20
II. BACKGROUND 21
A. COMPUTING With REAL NUMBERS 21
B. NUMERICAL ISSUES 24
C. MACHINE METHODS 27
D. CONJUGATE DIRECTIONS 27
E. PARALLEL PROCESSING 28
F. SPEEDUP 29
G. SCALED SPEEDUP 33
H. SUMmaRy 33
III. THEORY 35
A. SCOPE 35
B. APPROACH 36
C. APPLYING THE METHODS 37
D. GAUSSIAN ELIMINATION 39
E. GAUSS FACTORIZATION 47
F. PIVOTING FOR SIZE 61
G. SEQUENTIAL ALGORITHMS 65
H. CONJUGATE GRADIENTS 68
I. SUMmary 70
IV. PARALLEL DESIGN 71
A. INTERPROCESSOR COMMUNICATIONS 72
B. METRICS FOR PARALLEL COMPUTING 77
C. PARALLEL METHODS 83
D. ALGORITHMS 85
V. IMPLEMENTATION 89
A. ENVIRONMENT 89
B. COMMUNICATIONS FUNCTIONS 94
C. CODE DESCRIPTIONS 96
VI. RESULTS 97
A. GAUSS WITH COMPLETE PIVOTING 97
B. GAUSS WITH PARTIAL PIVOTING 107
VII. CONCLUSIONS 117
A. SIGNIFICANCE OF THE RESULTS 117
B. THE TERAFLOP RACE 118
C. FURTHER WORK 119
APPENDIX A. NOTATION AND TERMINOLOGY 121
A. BASICS 121
B. COMPLEX NUMBERS 122
C. VECTORS AND MATRICES 125
D. NORMS 128
E. LINEAR SYSTEMS 130
F. MEASURES OF COMPLEXITY 131
APPENDIX B. EQUIPMENT 134
A. TRANSPUTER MODULES 134
B. THE IMS B012 134
C. SWITCHING METHODS 137
APPENDIX C. INTERCONNECTION TOPOLOGIES 139
A. A FAMILIAR SETTING 139
B. APPEAL TO INTUITION 140
C. TOOLS 141
D. DESCRIBING THE HYPERCUBE 143
E. GREATER DIMENSIONS 144
F. GRAY CODE GENERATION 145
G. GRAPHS OF HYPERCUBES 147
H. SOURCE CODE LISTINGS 151
gray.c 152
APPENDIX D. A SPARSE MATRIX 156
A. LAPLACE AND POISSON 156
B. EQUATIONS 157
C. DISCRETIZATION 164
D. A SYSTEM OF EQUATIONS 166
E. MATRIX REPRESENTATION 172
F. CONCLUSION 176
APPENDIX E. HYPERCUBE COMMUNICATIONS 177
A. SOURCE CODE OVERVIEW 177
B. STRATEGY 178
C. RESULTS 180
D. CONCLUSIONS 193
E. SOURCE CODE LISTINGS 195
commist.mak 196
commtst. h 197
commtst.c 198
commtstn.c 206
APPENDIX F. MATRIX LIBRARY 209
A. MAKEFILES 210
logc.mak 211
matlib.mak 214
B. NETWORK INFORMATION FILES 221
hyprcube.nif 222
C. STANDARD FILES 225
macros.h 226
matrix. h 227
D. SOURCE CODE FILES 230
allocate.h 231
clargs.h 234
comm.h 240
complex.h 256
complex.c 261
epsilon.h 265
generate.h 267
io.h 273
mathx.h 281
num_sys.h 286
ops.h 291
timing.h 300
E. GAUSS FACTORIZATION CODE 303
gfpp.mak 304
gfpp.nif 308
$g f . h$ 311
gfpphost.c 318
gfppnode.c 342
gfpcnode.c 358
LIST OF REFERENCES 361
INITIAL DISTRIBUTION LIST 365

LIST OF TABLES

1.1 WORLD'S FASTEST COMPUTERS 11
6.1 EXECUTION TIMES FOR GF(PC) ON THE iPSC/2 99
6.2 SPEEDUPS FOR GF(PC) ON THE iPSC/2 100
6.3 EFFICIENCIES FOR GF(PC) ON THE iPSC/2 101
6.4 EXECUTION TIMES FOR GF(PC) ON THE TRANSPUTERS 103
6.5 SPEEDUPS FOR GF(PC) ON THE TRANSPUTERS 104
6.6 EFFICIENCIES FOR GF(PC) ON THE TRANSPUTERS 105
6.7 EXECUTION TIMES FOR GF(PP) ON THE iPSC/2 108
6.8 SPEEDUPS FOR GF(PP) ON TIIE iPSC/2 109
6.9 EFFICIENCIES FOR GF(PP) ON THE iPSC/2 110
6.10 EXECUTION TIMES FOR GF(PP) ON THE TRANSPUTERS 113
6.11 SPEEDUPS FOR GF(PP) ON THE TRANSPUTERS 114
6.12 EFFICIENCIES FOR GF(PP) ON THE TRANSPUTERS 115
T.1 PARALLEL MACHINE COMPARISON 119
A. 1 ALGORITHM COMPLEXITY AND MACIIINE SPEED 133
C. 1 GRAY CODE GENERATION 146
C. 2 NODES AND EDGES FOR A HYPERCUBE 150
E. 1 SIIORT MESSAGES WITH TEN REPETITIONS 181
E. 2 SHORT MESSAGES WITH ONE HUNDRED REPETITIONS 184
E. 3 MESSAGES OF MEDIUM LENGTH 188
E. 4 LONG MESSAGES 189

LIST OF FIGURES

1.1 Technologies and Computing Speed 3
2.1 IEEE 754 Representation: Double Precision 24
2.2 Amdahl's Law ($1 \leq P \leq 500$) 31
2.3 Amdahl's Law ($P=1024$) 32
2.4 Scaled Speedup 34
4.1 IMS T9000 Block Diagram 74
5.1 Hypercube Interconnection Topology: Order $n \leq 3$ 90
5.2 Hybrid Hypercube Interconnection Topology 91
6.1 Efficiencies for GF (PC) on the iPSC/2 102
6.2 Efficiencies for GF (PC) on Transputers 106
6.3 Efficiencies for GF (PP) on the iPSC/2 111
6.4 Efficiencies for GF (PP) on Transputers 116
A. 1 The Complex Plane 123
C. 1 The Four Smallest Hypercubes 141
C. 2 Cartesian Coordinates for a 3-Cube 142
C. 3 Hypercube Graphs 148
C. 4 Graph of a 4-Cube 151
D. 1 The Region 163
D. 2 Subdividing the Rectangle 164
D. 3 Numbering the Equations 167
D. 4 Neighbors to the North, South, East, and West 168
E. 1 Speed of Small Host-Node Messages (Ten Repetitions) 182
E. 2 Speed of Small Messages Between Nodes (Ten Repetitions) 183
E. 3 Speed of Small Host-Node Messages (One Hundred Repetitions) 185
E. 4 Speed of Small Messages Between Nodes (One Hundred Repetitions) 186
E. 5 Speed of Large Host-Node Messages 190
E. 6 Speed of Large Messages Between Nodes 191
E. 7 Node-to-Node Transmission Rates for Large Messages 192

TABLE OF SYMBOLS

The Greek Alphabet			
Lower	Case	Upper	
Normal	Variant	Case	Name
α		A	Alpha
β		B	Beta
γ		Γ	Gamma
δ		Δ	Delta
ϵ	ε	E	Epsilon
ζ		Z	Zeta
η		H	Eta
0	ϑ	Θ	Theta
ι		I	Iota
κ		K	Kappa
λ		Λ	Lambda
μ		M	Mu
ν		N	Nu
ξ		三	Xi
-		O	Omicron
π	\approx	Π	Pi
ρ	ϱ	P	Rho
σ	ς	Σ	Sigma
τ		T	Tau
v		Υ	Upsilon
ϕ	φ	Φ	Phi
χ		X	Chi
ψ		Ψ	Psi
ω		Ω	Omega

ACKNOWLEDGMENTS

I would like to express my gratitude to my family for their support. To my wife, Lori; for her faithfulness, encouragement, industrious nature, and peaceful spirit. To my children; for reminding me of the most important issues of life, teaching me some of the things that cannot be gleaned from books, and keeping me from becoming too serious.

It has been my pleasure to spend various parts of the past two years working with Professor Uno Kodres, Professor William Gragg, and Professor John Thornton. I would also like to express my gratitude to Professor Kodres and Professor Weirin their Academic Associate role-and to Commander Hoskins for sound advice and support in academic planning. Jeff Schweiger has assisted me on countless occasions, especially lately, and I am very grateful for his help and friendship. I am indebted to Professor Tim Shimeall for introducing me to TEX and LATEX (and then answering many questions). I have been thankful many times over for these typesetting facilities.

Finally, but certainly not least, I would like to thank members of the staff who helped me often and made so many of the things I did on a daily basis possible: Hank Hankins, Walt Landaker, John Locke, Chuck Lombardo, Rosalie Johnson, Shirley Oliveira, Russ and Sue Whalen, and Al Wong.

I. PREFACE

The need for speed accompanied by reliability has driven many advances in machine design. The history of computing is replete with examples-many from scientific fields-where necessity became the impetus for faster, more reliable machinery. Without exception, history and past designs have played key roles in the invention of new equipment. The maturity of mechanical calculator design was foundational in the construction of electronic computers. Today's multiprocessor computers are extensions of uniprocessor machines and include technology developed by our telephone industry. Many well-worn tools and lessons from the past can be applied. Many new ideas must be put to the test. This thesis is about applying old principles and evaluating new tools and equipment.

A. A SURVEY OF COMPUTING MACHINERY

Nothing is more important than to see the sources of invention, which are, in my opinion, more interesting than the inventions themselves.

- GOTTFRIED W'ILHELM LEIBNIZ (1646-1716)

1. Beginnings

The history of mathematics and computing is as old as civilization. Tools like the abacus have been used to simplify arithmetic problems. Wilhelm Schickhard (1592-1635), Blaise Pascal (1623-1662), and Gottfried Wilhelm Leibniz designed and built mechanical, gear-driven calculators. The latest of these was essentially a fourfunction calculator. By the mid-1800s, Charles Babbage had designed his Difference Engine and proceeded to the more advanced Analytical Engine. These machines were
never completed (at least not to the grand scale that Babbage planned), but the basic design of the Analytical Engine lies at the heart of any modern computer. Consider his motivation.

The following example was frequently cited by Charles Babbage (1792-1871) to justify the construction of his first computing machine, the Difference Engine [Ref. 1]. In 1794 a project was begun by the French government under the direction of Baron Gaspard de Prony (1755-1839) to compute entirely by hand an enormous set of mathematical tables. Among the tables constructed were the logarithms of the natural numbers from 1 to 200,000 calculated to 19 decimal places. Comparable tables were constructed for the natural sines and tangents, their logarithms, and the logarithms of the ratios of the sines and tangents to their arcs. The entire project took about 2 years to complete and employed from 70 to 100 people. The mathematical abilities of most of the people involved were limited to addition and subtraction. A small group of skilled mathematicians provided them with their instructions. To minimize errors, each number was calculated twice by two independent human calculators and the results were compared. The final set of tables occupied 17 large folio volumes (which were never published, however). The table of logarithms of the natural numbers alone was estimated to contain about 8 million digits.

This quote, from Hayes [Ref. 2: p. 1], helps to explain why computers exist and shows some of the incentive for making them better. Computing machinery is designed for speed and reliability. A computer's "performance" should be measured against both of these components. Speed normally receives the most attention. Reliability, by whatever label you choose to give it, rarely receives due (and/or timely) attention. Too often errors and issues of correctness receive careful consideration in reactive-not proactive-situations. Kahan says, "The Fast drives out the Slow even if the Fast is wrong" [Ref. 3: p. 596].

The correctness side of performance is a much tougher game; and reliability can be a fairly subjective matter. Often we pursue solutions that are "good enough" (and this cannot always be defined). Time, on the other hand, has well-defined units and the standards for measuring time enjoy a history as old as the first sunrise. The ease with which the programmer can access the machine's clock makes measurements of this side of performance somewhat easier.

Operations							
per Second							
10^{12}							
10^{11}							
10^{10}	Integrated Semiconductor \bullet						
10^{9}							
10^{8}	Integrated Semiconductor \bullet						
10^{7}							
10^{6}	Discrete Semiconductor \bullet						
10^{5}							
10^{4}							
10^{3}	- Vacuum Tube						
10^{2}							
10^{1}	- Electromechanical						
10^{0}	- Mechanical						Year
	1930	1940	1950	1960	1970	1980	

Figure 1.1: Technologies and Computing Speed
Industry demands fast machines because "time is money" and speed alone can make difficult, time-consuming problems tolerable. Without doubt, the speed of a processor and execution time are important performance considerations. But speed is partly dependent upon technology. Babbage's designs represented quite an advance, but they could not be realized in his day. Technology can determine which designs succeed, and to what extent. Figure 1.1 compares several recent technologies using speed (measured in operations per second) as the yardstick. The data for this
illustration was taken from Hayes [Ref. 2: p. 9]. As the figure indicates, it was nearly a century after Babbage's work when major technological advances came about.

2. Electricity

Significant gains in speed were made possible when electricity could be used in computer engineering. The United States census of 1890 employed punched cards that were read using electricity and light. Herman Hollerith (1860-1929), the designer of these cards, formed a company that would later join others and (in 1924) take on the name International Business Machines Corporation. Punched paper tape was later used by IBM in the Harvard Mark I, a general-purpose electromechanical computer designed by Howard Aiken (1900-1973). In the late 1930s, at Iowa State University, John V. Atanasoff was creating a special-purpose machine to solve systems of linear equations. He is credited with "the first attempt to construct an electronic computer using vacuum tubes" [Ref. 2: p. 16].

In 1943, J. Presper Eckert and John W. Mauchly began work-at the University of Pennsylvania-to direct the creation of "the first widely known generalpurpose electronic computer". The Electronic Numerical Integrator and Calculator (ENIAC) project was funded by the U. S. Army Ordnance Department. The 30-ton machine was completed in 1946 . It held more than 18,000 vacuum tubes. It could perform a ten-digit multiplication in three milliseconds, three orders of magnitude faster than the Harvard Mark I. [Ref. 2: pp. 17-18]

3. First Generation Computers

From Babbage's Analytical Engine to ENIAC, computer architectures held data and programs in separate memories. In 1945, John von Neumann (1903-1957) proposed the stored-program concept (i.e., programs and data could be stored in the same memory unit). The Hungarian-born mathematician's involvement in the

ENIAC project is not remembered by many, but the "von Neumann architecture" has become commonplace. In fact, it "has become synonymous with any computer of conventional design independent of its date of introduction" [Ref. 2: p. 31]. Hennessy and Patterson [Ref. 3: pp. 23-24] object to the widespread use of this term, claiming that Eckert and Mauchly deserved more of the credit.

In 1946, von Neumann (and others) began to design such an architecture at the Institute for Advanced Studies (IAS), Princeton. This machine, now called the IAS computer, is representative of so-called first-generation computers (as Hayes points out: "a somewhat short-sighted view of computer history"). The IAS machine was roughly ten times faster than ENIAC [Ref. 3: p. 24]. During the 1946-1948 timeframe, A. W. Burks, H. H. Goldstine, and John von Neumann wrote a series of reports describing the IAS design and programming. The advances and refinements in computer design that came out of this period were important and lasting. By 1950, von Neumann and his colleagues had formed a foundation of theory and design worthy of advanced technology. [Ref. 2: pp. 19-20]

4. Transistors

The change from vacuum tube to transistor technology marked the beginning of the "sccond-generation" of computers (approximately 1955-1964). Transistor technology provided faster switching elements, but this was not the only change of the decade. Many of the plans of the late forties and early fifties involved memory, so it was fitting that ferrite cores and magnetic drums be used for faster main memories. Changes such as these led Hennessy and Patterson to conclude that "cheaper computers" were the principal new product of the early 1960s [Ref. 3: p. 26].

Additionally, machines began to become more sophisticated. The space and tasks of the central processing unit (CPU) and main memories were decentralized with the advent of special-purpose processors to augment the CPU and special-
purpose memories (e.g., registers) to augment the main memory. Finally, system software was becoming a greater issue. Programming continued moving upward, away from the machine level, and the processing of batch jobs was becoming more automated. [Ref. 2: pp. 31-32]

5. Integrated Circuits

The first integrated circuit (IC) was introduced in 1961 [Ref. $4:$ p. 1], and the use of ICs would be among the most significant advances evident in thirdgeneration computers (starting about 1965). Integrated circuits brought major changes in cost, maintenance, reliability, and the amount of real estate required. Other than these hardware improvements (circuits and memory), third-generation computing was not easy to distinguish from that of the second generation. There was some migration from hardware to software (e.g., microprogramming), more specialized and compartmentalized CPUs (e.g., pipelining), and system software continued to advance (e.g., operating systems that could support multiprogramming through "time-slicing"). [Ref. 2: p. 40]

6. Instruction Set Trade-Offs

A large part of designing computer hardware and software involves analysis of cost-performance ratios. Other than genuine advances in design or technology, almost every aspect of computer architecture involves trade-offs. There is usually a spectrum of options from which the computer architect chooses, and the "best" solutions are not always found near the ends of the spectrum. Performance can rarely be optimized with respect to both space and time, so a balance must be sought. This space-time conflict and others appear when a designer must select a sophisticated instruction set, or a very simple one, or one of the many options along the spectrum between these options.

In the late 1970 s and early 1980 s both hardware and software became progressively more sophisticated. Instructions became longer and more complex. The Complex Instruction Set Computer (CISC) was popular. This design has the advantage of powerful instructions, but the machine must decode each instruction (it is a binary code). The decoding process favors brevity because longer instructions require more levels of decoding circuitry. Nonetheless, if the longer instructions could carry enough meaning, the decoding endeavor would be justified.

IBM researchers uncovered a provocative statistic- 20% of the instruction set was carrying 80% of the burden [Ref. $5:$ p. 5]. The instruction set had become too complex. With some help from several researchers and IBM, the Reduced Instruction Set Computer (RISC) architecture became popular. RISC machines admit a smaller vocabulary, but claim quicker comprehension. In fact, the goal of the RISC architectures is one-cycle execution of the instructions [Ref. 5: pp. 6-7]. Hennessy and Patterson, both key contributors to the RISC movement, give an indication of the current broad acceptance of the RISC architecture [Ref. 3: p. 190]:

Prior to the RISC architecture movement, the major trend had been highly microcoded architectures aimed at reducing the semantic gap. DEC, with the VAX, and Intel, with the iAPX \{32, were among the leaders in this approach. In 1989, DEC and Intel both announced RISC products-the DECstation 3100 (based on the MIPS Computer Systems R2000) and the Intel i860, a new RISC microprocessor. With these announcements, RISC technology has achieved very broad acceptance. In 1990 it is hard to find a computer company without a RISC product either shipping or in active development.

Three major research projects were central to early RISC developments. The firstthe IBM 801-began in the late 1970s, under the direction of John Cocke. In 1980, David Patterson and his colleagues at the University of California at Berkeley began the RISC-I and RISC-II projects for which the architecture is named. Finally, John Hennessy and others at Stanford University "published a description of the MIPS machine" in 1981. [Ref. 3: p. 189]

7. Multiprocessors and Multicomputers

The most recent advances in the design of computing machinery include parallel and concurrent architectures. The terminology associated with these machines has been developing for about twenty-five years, but it is still immature. The terms "multiprocessor" and "multicomputer", for instance, are sometimes used with additional meaning. C. Gordon Bell proposes that an MIMD machine with message passing and no shared memory be called a multicomputer. He calls a shared-memory MIMD machine a multiprocessor [Ref. 6: p. 1092]. This terminology seems to be on the way to acceptance, and it seems useful in giving a general characterization to many systems, but it lacks the sort of precision that may be necessary:

First, the word "computer" usually carries many expectations with it. From a computer, we expect things like input and output facilities, peripheral devices, and so on. These are things that a node on a typical "multicomputer" does not always possess. A "processor" is just the opposite. It might be just about any sort of processor and we are cautious about attaching any expectations to the term. Many processors are special-purpose machines, but (more substantial) central processing units and arithmetic logic units are also numbered among processors. The terms "computer" and "processor" are not precise.

Secondly, by automatically associating Flynn's taxonomy, memory models (e.g., shared, distributed), and other things with a terminology, we reduce their importance and hide them behind the term. By using the term "multicomputer", without careful definition up front, we run the risk of forgetting that we are talking about an MIMD machine that uses message passing and has no shared memory. Additionally, this terminology-packed with expectations-ignores an entire spectrum of very real possibilities. Are we saying that a machine cannot employ a combination
of shared and distributed memory? Using this terminology, how would we say that the memory available to each node of a given system was 30 percent shared and 70 percent local (distributed)?

Nevertheless, the terms have some use, provided we don't expect too much of them. After all, we distinguish cars from trucks in everyday conversation with reasonably little confusion. But-in the same way that it is not prudent to assume that "car" implies a vehicle equipped with a V-8 engine and four doors-we should be careful to guard against packing too many specifics and expectations into the terms "multiprocessor" and "multicomputer." For this reason, the terms multiprocessor and multicomputer are used almost interchangeably in this work. A conscious effort is made to support them with a clear description of the memory paradigm, communications facilities, and so on.

Bell's terminology identifies the systems used in this work (iPSC/2 and transputer networks) as multicomputers. Nevertheless, I often use the term "multiprocessor" to identify a system with more than one processor (such as the ones described in Chapter V and Appendix B). That is, multiprocessor means nothing more than the expected combination of "multi" with "processor." To forestall confusion, the rest of the thesis pertains to distributed memory machines that use message passing to communicate instructions and data between nodes.

8. Uniprocessors and Multiprocessors

At the chip level, multiprocessor systems resemble their single-processor predecessors. Experience (e.g., telephone industry, electronic technology) and a foundation of theory and design (e.g., von Neumann's work, network theory) are distinct benefits in the development of equipment and techniques for distributed and parallel computing. From a system perspective, though, the concurrent use of more than one processor creates a fundamentally different environment.

Uniprocessor systems differ substantially from multiprocessors and multicomputers in their ability to access data without competition. In the presence of more than one processor-regardless of memory model-there is a need to coordinate requests for data. This means that the multicomputer must accommodate interprocessor communications. The nodes of a multiprocessor system must work together efficiently to justify the cost of the resulting system. Some parts of the solution are relatively mature, but a vast territory-algorithms, electronic components, media for communication, and software engineering techniques-begs further exploration.

B. CURRENT APPROACHES

1. Machines

To compare the capabilities of different machines, some method of benchmarking is typically used. By timing the execution of a certain program(s) on a given machine we can determine its performance for the given problem. By comparing the execution times for the same problem(s) on different machines, we arrive at a notion of their relative power. A popular method for sizing up the computing power of a machine is the LINPACK benchmarking program [Ref. 7]. This is essentially a program involving the solution of a dense system of linear equations.

Currently, under this LINPACK test, the fastest machines in the world have surpassed the gigaflop mark (a billion floating-point operations per second). Table 1.1, adapted from Dongarra's report [Ref. 8: p. 21], shows performance data. The leftmost column of this table gives the name of the system and the cycle time (in parentheses). The next column contains p, the number of processors used to obtain the data that is shown in the four remaining columns. For most systems (e.g., the Intel iPSC/860) the size of the system (number of processors used for a given run) can be scaled, so data was reported for several different system sizes.

TABLE 1.1: WORLD'S FASTEST COMPUTERS

Computer (Clock Rate)	p	$r_{\text {max }}$	$n_{\text {max }}$	$n_{1 / 2}$	$r_{\text {peak }}$
Intel Delta (40 MHz)	512	11.9	25000	7000	20
Thinking Machines CM-200 (10 MHz)	2048	9.0	28672	11264	20
Intel Delta (40 MHz)	256	5.9	18000	5000	10
Thinking Machines CM-2 (7 MHz)	2048	5.2	26624	11000	14
Intel Delta (40 MHz)	192	4.0	12000	4000	7.7
Intel Delta (40 MHz)	128	3.0	12500	3500	5
Intel iPSC/860 (40 MHz)	128	1.9	8600	3000	5
nCUBE $2(20 \mathrm{MHz})$	1024	1.9	21376	3193	2.4
Intel Delta (40 MHz)	64	1.5	8000	3000	2.6
nCUBE $2(20 \mathrm{MHz})$	512	. 958	15200	2240	1.2
Intel iPSC/860 (40 MHz)	64	. 928	5750	2500	2.6
Fujitsu AP1000	512	2.251	25600	2500	2.8
Intel iPSC/860 (40 MHz)	32	. 486	4000	1500	1.3
nCUBE $2(20 \mathrm{MHz})$	256	. 482	10784	1504	. 64
MasPar MP-1 (80 ns)	16384	. 44	5504	1180	. 58
Fujitsu AP1000	256	1.162	18000	1600	1.4
Intel iPSC/860 (40 MHz)	16	. 258	3000	1000	. 64
nCUBE $2(20 \mathrm{MHz})$	128	. 242	7776	1050	. 32
Fujitsu AP1000	128	. 566	12800	1100	. 71
Intel iPSC/860 (40 MHz)	8	. 132	2000	600	. 32
nCUBE $2(20 \mathrm{MHz}$)	64	. 121	5472	701	. 15
Fujitsu AP1000	64	. 291	10000	648	. 36
Intel iPSC/860 (40 MHz)	4	. 061	1000	400	. 16
nCUBE $2(20 \mathrm{MHz})$	32	. 0611	3888	486	. 075
Intel iPSC/860 (40 MHz)	2	. 044	1000	400	. 08
nCUBE $2(20 \mathrm{MHz})$	16	. 0320	5580	342	. 038
Intel iPSC/860 (40 MHz)	1	. 024	750		. 04
nCUBE $2(20 \mathrm{MHz})$	8	. 0161	3960	241	. 019
nCUBE $2(20 \mathrm{MHz})$	4	. 0080	2760	143	. 0094
nCUBE $2(20 \mathrm{MHz})$	8	. 0040	1280	94	. 0047
nCUBE $2(20 \mathrm{MHz})$	8	. 0020	1280	51	. 0024

The column labeled $r_{\text {max }}$ gives the performance (in gigaflops) for the largest problem run on the machine. The size of that largest problem is indicated by $n_{\text {max }}$, where n is the dimension of the matrix of coefficients, $A \in \Re^{n \times n}$. The $n_{1 / 2}$ column gives the problem size that yielded a rate of execution that was half of $r_{\text {max }}$. Finally, $r_{\text {peak }}$ denotes the theoretical peak performance (in gigaflops) for the machine.

This data indicates that Intel is the current leader-among companies in the United States-of the teraflop race, so we shall take a closer look at their products. The Intel i860 microprocessor, together with 8 megabytes of memory, forms one of 128 nodes in the hypercube-connected iPSC/860. This machine achieves performances of nearly two gigaflops with LINPACK. iPSC stands for intel Personal SuperComputer, so this entry would not appear to target high-end markets. The most significant project in supercomputing at Intel today is the Touchstone project.

George E. Brown, chairman of the U. S. House Committee on Science, Space, and Technology, cut the ribbon around the Intel Touchstone Delta at the California Institute of Technology on May 31, 1991 [Ref. 9 : p. 96]. The Delta is a mesh of 528 nodes. Each node holds an i 860 processor and 16 megabytes of memory. This machine has reached the 11.9 gigaflop mark with the LINPACK benchmark. The closest competitor in the world would appear to be the CM-200 from Thinking Machines, Inc. This 2,048-node machine benchmarks at 9 gigaflops [Ref. 8: p. 21]. The Touchstone program is not over. Intel plans to follow the Delta with the Touchstone Sigma. Sigma will have at least 2,048 nodes, each consisting of the i860 XP processor (about twice as powerful as the i860). [Ref. 9: p. 96]

The European high-performance computing market favors the transputer, a microprocessor made by INMOS. The New York Times of May 31, 1991 lists one German company, Parsytec, and seven American companies-Bolt, Beranek, and Newman (BBN), Cray Research, IBM, Intel, NCube, Thinking Machines, and Tera Computer-that have entered the teraflop race [Ref. 10]. Parsytec expects their GC
to provide "the necessary 2 to 3 orders of magnitude increase in performance above existing supercomputers to give scientists the tool to attack their Grand Challenges." [Ref. 10: p. 1]

Parsytec envisions a system of up to 16,384 processing elements based upon the INMOS T9000 transputer (see Chapter VII). This would give the Parsytec machine 25-megaflop nodes capable of communications bandwidths near 100 megabytes per second. The Parsytec design begins with a cluster of seventeen T9000 processors (sixteen primary processors and the seventeenth for backup) and four C104 wormhole routing chips. From four clusters, the company will craft a GigaCube (or simply Cube) of 64 processors (not counting redundant elements in the design). The GC1 would represent a one gigaflop system and this would be the building block for greater systems (lesser systems can initially be equipped with 16,32 , or 48 nodes). The processors in a single (Giga) Cube are arranged in a three-dimensional ($4 \times 4 \times 4$) grid. [Ref. 10]

2. Programming Practice

Software engineering for multiprocessor systems is similar to contemporary practices for sequential machines. The programming languages used in this work provide normal C libraries with additional functions to accommodate interprocessor communications. The systems typically provide a loader designed to load executable code onto the (host and) nodes according to the programmer's instructions. Some loaders require that the same code be loaded onto each of the nodes. Other, more flexible, loaders allow the user to specify which program should be loaded onto each node. The Logical Systems C network loader, LD-NET is such a program. It takes a Network Information File (NIF), describing the network's interconnections and loading instructions, as input and performs the loading process.

C. THE FUTURE

1. Crossroads

Parallel and distributed computing is in the early years of a very promising lifetime. We should give careful consideration to the direction that the field should assume. Lacking years of experience, I will lean on the writings and advice of others while trying to peer a little ways into the future of parallel computing. A regrettable side effect of this decision is that this section seems to consist primarily of the observations and opinions of others. Notwithstanding the many quotations, I believe that several important ideas are exposed.

This business is filled with a combination of old, established ideas and proven techniques. It also holds new questions and opportunities. Hamming's advice [Ref. 11: p. 14] seems most fitting in this situation:

Now I see constantly attempts to force new ideas to old molds. That is frequently sensible: How can I make sense of what I'm seeing compared to what I did before? But also one must ask, "Am I seeing something fundamentally new?" That part many people will not try. You cannot afford to make everything brand new and not connect anything together with existing ideas, nor can you try to make everything fit into preconceived categories. Some combination of the two is necessary.

We limped through the transistor revolution and the computer revolution, which are connected with the bandwidth revolution; they are all connected together... You have to abandon old ideas when you get an order of magnitude of change. . .

- RICHARD W. HAMMING

Developments in scientific computing today make Dr. Hamming's thoughts especially timely. The field needs to establish a strategy; a direction that will lead from its present immaturity to a place of fulfilling its potential. Kenneth Wilson proposes Grand Challenges for computational science that may help to establish this strategy [Ref. 12].

2. Grand Challenges

Wilson identifies three modes of scientific activity: theoretical, experimental, and computational. He defines these areas, claiming that-with today's supercomputers-the most recent science (computational) is becoming more significant. So significant, in fact, that "long experience or professional training is required to be successful in computational science at the supercomputer level, making it appropriate to think of computational science as both a separate mode of scientific endeavor and new discipline." [Ref. 12: p. 172]

Wilson is careful to distinguish computational science from computer science. He defines computer science as the business of addressing "generic intellectual challenges of the computer itself" and characterizes computational science as being tailored to specific applications areas (with serious training in the application discipline) [Ref. 12: p. 172]. To advance computational science, Wilson recommends a quantitative approach with clear strategies [Ref. 12: p. 173]:

The major future opportunities for benefits of supencomputers to basic research should be identified without the existing compromises, but presented as challenges to be overcome with the many obstacles to success clearly explained. The compromises and inadequacies of current computations need to be described and the level of advances required to overcome these inadequacies discussed. Furthermore, a feu kєy areas with both extreme difficulties and extraordinary rewards for success should be labelled as the "Grand Challenges of Computational Science". Two examples are electronic structure and turbulence. No easy promises of success in Grand Challenges should be offered. Instead, computational scientists should be building plans to assault the Grand Challenges, pushing for the major advances in algorithms, software, and technology that will be required for true progress to be achieved in these areas. The Grand Challenges should define opportunities to open up vast new domains of scientific research, domains that are inaccessible to traditional experimental or theoretical modes of investigation.

Wilson describes a few examples that demonstrate the limitations of experimental instrumentation and the potential of supercomputers. Weather prediction, astronomy, materials science, molecular biology, aerodynamics, and quantum field
theory are the six areas that Wilson chooses to make his point. He describes these areas in reasonable detail and briefly mentions other topics. [Ref. 12: pp. 175-179]

a. Mathematical Background

Wilson stresses the need for sound design practices and good algorithms. (To see why, consider Table A.1). Additionally, he warns that we should spend less time in awe of today's supercomputing power and admit that it is terribly inadequate. Modeling methods and sound mathematical background also appear in the "needs improvement" category. Wilson [Ref. 12: p. 180] believes that

Mathematical developments that relate to numerical computation are highly important. Theorems about numerical errors or sources of error, exact solutions and expansions, existence and uniqueness proofs and the like, can make a major difference in establishing the credibility of a numerical computation. All too frequently there is too little mathematical understanding backing up numerical simulation.

b. Issues of Quality

Wilson does not consider these to be the only problems facing computational scientists. He believes that quality is endangered, primarily from two directions [Ref. 12: pp. 180-181]:

- A tendency to stay on the safe, easy side; not wandering far from the position: "our calculation agrees with experiment."
- The quality of computational programs, measured against practical criteria, is lacking. The standards include rounding errors (e.g., catastrophic cancellation), overflows, and stability (with respect to input parameters).

c. Languages

Wilson cites a number of reasons for revolutions in computer languages. In particular, he believes that "Fortran is in the long-term the most fundamental barrier to progress" [Ref. 12: p. 182]. His approach is realistic enough to recognize the vast investments of scientific communities in Fortran. The language cannot and should not be eliminated in a day. Nevertheless, it has very serious shortcomings. Some problems could be overcome by a Fortran preprocessor (the same idea as the C preprocessor). Other problems, like lack of support for abstraction and the unnatural exclusion of basic mathematical symbols in the language, are not solved as easily. [Ref. 12: p. 182]

Wilson does not recommend a simple change of language as the solution, but searches for deeper problems. He believes that the entire way that computational scientists and programmers think about and plan programs must change as well. After reading Wilson's analysis of language problems, the basic impression that prevails is that we have an urgent need for general-purpose practices to replace patchwork, hit-or-miss, case-by-case solutions.

3. Generality

David Harel is also an advocate of the need for general purpose techniques. In the preface to his book [Ref. 13: p. viii] he warns:

Curiously, there appears to be very little written material devoted to the science of computing and aimed at the technically oriented general reader as well as the professional. This fact is doubly curious in view of the abundance of precisely this kind of literature in most other scientific areas, such as physics, biology, chemistry and mathematics, not to mention humanities and the arts. There appears to be an acute need for a technically detailed, expository account of the fundamentals of computer science; one that suffers as little as possible from the bit/byte or semicolon syndromes and their derivatives, one that transcends the technological and linguistic whirlpool of specifics, and one that is useful both to a sophisticated
layperson and to a computer expert. It seems that we have all been too busy with the revolution to be bothered with satisfying such a need.

This idea is not unique. One of the other major proponents of generalpurpose parallel computing is David May of INMOS. In an invited lecture at the the Transputing '91 conference [Ref. 14], he highlighted features that general-purpose parallel hardware should deliver. Among the important components of a general approach, May included the following:

- Scaling. Performance must scale with number of processors. Efficiency is partly dependent on problem size, but-with adequate problem size-systems of a thousand processors should be within technological reach. Each processor is expected to achieve $10^{8}-10^{9}$ flops.
- Portability. This is almost synonymous with "general purpose." May emphasizes algorithms based upon features common to many machines, and which remain valid as technology evolves. He stresses that this general purpose parallel architecture will benefit both the computer designer and the programmer. The designer will gain since the market will be somewhat predictable. The programmer's code will work on several machines and hold a strong hope for working into future years.

To achieve these goals, May proposes several guidelines. First, for a message passing system using p processors, the nodes must be capable of concurrent computing and communication. The interconnection topology must provide scalable throughput (linear in p) and bounded delay, probably $\log (p)$. Programs, May believes, should be written at as high a level as possible and make use of many processes. The algorithm should express the maximum possible parallelism. Much of May's theory is based upon the structure of a hypercube interconnection topology (or virtual hypercube).

4. Projections

Kenneth Wilson makes a credible claim that says parallel computing is here to stay. His reasoning is based upon the fact that mass production and heavy competition are proven ingredients in keeping the cost of chips low. Rather than summarize, I will quote his conclusion [Ref. 12: p. 185]:

Today a single processing unit costing millions of dollars can still be costeffective but I don't think this can last very long, over a period of time (I cannot estimate how many years) it seems likely that the maximum price of a cost-effective pracessor will plunge to one hundred thousand dollars, to ten thousand dollars, to ???. I cannot estimate the ultimate equilibrium price at which this plunge will stop.

Meanwhile I can find no prospects that single supercomputer processors speeds will advance at anything like the pace at which processor costs are being reduced, even using Gallium Arsenide or superconducting Josephson junctions.

The result of this is inevitable-overall advances at the supercomputer level have to come through parallelism, namely, big increases in speed have to come from the simultaneous use of many processors in parallel.

David May agrees with Wilson, who states that increasingly complex components and faster clock speeds are not likely avenues of advancement. This makes parallel processing "technically attractive." He also agrees that mass production will make the most effective use of design and production facilities. His conclusion: "A general purpose parallel architecture would allow cheap, standard multiprocessors to become pervasive." [Ref. 14]

May's prediction for 1995 includes processors capable of 100 megaflops. INMOS believes strongly in the idea of balancing computation and communication, and May projects that node throughputs will have reached 500 megabytes per second. In 1995's multiprocessor systems, he envisions teraflop performance. By 2000, May projects "scalable general purpose parallel computers will cover the performance range up to 10^{11} flops. Specialised parallel computers will extend this to 10^{13} flops."

D. OVERVIEW

This chapter has surveyed the (relatively recent) history of computing, considered the state-of-the-art, and made a few guesses as to the future. Additionally, it has introduced numerical and parallel computing. This serves as a backdrop for the remainder of the thesis. Chapter II expands the background on parallel processing and numerical methods. The latter provides a lead-in to the specific algorithms and theory that appear in Chapter III. Chapter IV introduces the parallel design and methods used in the work. A description of the environment, tools, and equipment appears in Chapter V. Results and conclusions appear in Chapters VI and VII.

Appendices are provided to keep the chapters concise and focused. The appendix material operates on both sides of that focus. Some of the material is designed to give sufficient background and the rest-code mostly-is provided for more in-depth study. The background material may be obvious to some readers and new to others. I have assumed that the reader has some knowledge of the background material. I do not presume that the reader will be familiar with the code.

To simplify the discussion we must speak the same language. Appendix A gives the basic terms and notation used in the rest of the thesis. Next, we discuss the machines used to perform the work. While this is the subject of Chapter V, a more detailed account is reserved for Appendix B. Appendix C provides a general background on interconnection topologies. Emphasis is placed upon the hypercube connection scheme. Appendix D describes the process whereby a real-world problem is translated into matrix notation. Appendix E gives some information and results for communications performance in a hypercube. Finally, Appendix F provides listings for most of the code used in the research.

II. BACKGROUND

Mathematics is the door and key to the sciences.

- ROGER BACON

Chapter I provided a backdrop, showing the state of scientific computing, especially parallel and distributed forms, today. In the present chapter, the scope is limited to material and equipment pertaining to this research. The thesis work deals with methods of conjugate directions implemented upon two contemporary MIMD machines. The goal is to introduce the theory, machines, methods, and a few peripheral issues that will be helpful as background information.

A. COMPUTING WITH REAL NUMBERS

As illustrated in Figure 1.1, the speed of computing machinery has risen swiftly since the 1940s. This has often been encouraged by substantial advances in technology. Today's multiprocessor machines seem to be maintaining the fast-paced growth. Additionally-although precision is a less glamorous business than speedthe accuracy of machine solutions has become more standard. This section considers some of the principal issues of computing with finite approximations of real numbers.

We have observed that the history of computing shows close ties to science and mathematics. As the design and construction of computers becomes a more specialized business-mostly performed by electrical and computer engineers-we still find that many of the fundamental requirements are related to scientific problems. These problems typically involve mathematics and a significant amount of scientific computing applies numerical methods that involve real numbers. The trend in com-
puter (hardware and software) design is toward abstraction, but from time to time we absolutely must understand and work with the underlying, concrete principles.

1. Finite-Precision

New problems are generated as the speed of computing machinery improves with each generation of machines. One question to be considered is, how reliable are the machines and the software that runs on them? This is a constant concern in computing. Many scientific problems involve continuous phenomena in the real world. Accordingly, we like to be able to represent the real numbers, \Re, within the machine. But, lacking infinite storage, this is impossible. There have been several more-or-less reasonable ideas and implementations of approximations to the real numbers within the limits of computer storage. Of these, the floating-point concept of storage and arithmetic enjoys the most widespread use.

The Institute of Electrical and Electronics Engineers (IEEE) has established the principal standards for floating-point representations and arithmetic. These standards make machine arithmetic more predictable. Surprisingly, while they exist in much of today's computing hardware, the standards are not widely understood by practitioners. Then, software and applications are sometimes formed in ignorance. The title of David Goldberg's paper [Ref. 15] speaks volumes: "What Every Computer Scientist Should Know About Floating-Point Arithmetic." Goldberg is also responsible for several other contributions describing floating-point arithmetic and the IEEE standards. Appendix A of Hennessy and Patterson's book on architecture [Ref. 3] is such a contribution. He gives a very useful description of the IEEE standards and instruction on how to perform arithmetic operations on machines that adhere to the IEEE standards.

2. IEEE 754

Of the four precisions specified by the IEEE 754-1985 standard, this thesis uses the double precision format most often (to approximate real numbers) so it will receive the most attention. In the C programming language, these numbers correspond to the type double. They are floating-point values stored in eight bytes $(64$ bits). The storage representation is illustrated as three components: one sign bit, s; an 11-bit exponent, e; and a 52-bit fraction, f. Figure 2.1 shows an example. We say that e is a biased exponent. Both negative and positive exponents are stored using a range of positive binary numbers biased about (nearly) the middle. Significand or mantissa is the name given to the number (1.f). The fraction is a packed form of the significand. This means that the leading one of the significand is implicit. This is called a normalized number. [Ref. 16]

All IEEE floating-point numbers are normalized except for the special representations when $e=00000000000=0$ or $e=1111111111=2047$. These are called denormalized (or subnormalized) numbers. Only the fraction, f, of a normalized number is stored [Ref. 3: p. A-14]. Figure 2.1 shows a representation of the floating-point number, $x=7.0$. First, x is shown as it would be defined in a C program. The C address of operator, $\&$, is used to indicate the address of x in memory: That is, somewhere (namely $\& x$) in memory, there are eight contiguous bytes that hold a floating-point representation of x and (for illustration purposes) we can imagine the IEEE 754 double-precision representation of x as Figure 2.1 indicates.

A standard, such as IEEE 754 (and the lesser-known IEEE 854), is not a panacea for the finite-precision problem but it lends tremendous support to those who would scientifically deal with the problems of finite-precision arithmetic. Programs given in the files num_sys.h and num_sys.c (in Appendix F) are of interest to those who would explore further. The programs can demonstrate that the actual

```
double x = 7.0;
&x
    10000000001 1100000000000000000000000000000000000000000000000000
    s e=1025 f=.112
    Interpretation: }\quadx=(-\mp@subsup{1}{}{s})\times1.\mp@subsup{f}{2}{}\times\mp@subsup{2}{}{e-1023
    =(-10})\times1.1\mp@subsup{1}{2}{}\times\mp@subsup{2}{}{1025-1023
    = 1.112 }\times
    = 11112
    = 7
```

Figure 2.1: IEEE 754 Representation: Double Precision
order and location of bits in memory may not match the representation of Figure 2.1. This reflects practicalities concerning storage and transmission of bytes at a very low level in the machine. It is perfectly reasonable (and easier) to use the common abstraction of Figure 2.1 regardless of machine implementation.

B. NUMERICAL ISSUES

1. The Need

Consider the problem of determining the area under a bounded function $f(x)$ over a closed interval $[a, b]$. Numerical quadrature (integration) rules such as the Trapezoidal Rule or Simpson's Rule are used to arrive at an approximating (or Riemann) sum of many smaller areas within the region. Numerical methods are
often used to approximate the solution to a problem. This is no trivial problem. To solve it (numerically) by anything other than accident, one must first understand the theory and analytical approach. Next, the problem can be translated into an algorithm (a plan-usually mathematical in nature-for solving the problem step-by-step) which can, in turn, be translated into the sort of language that a machine understands.

This is a relatively simple approximation problem compared to the problem of finding the solution to a system of 500 equations in 500 unknowns. Consider the (perhaps more realistic) problem of using numerical linear algebra to solve an elliptic partial differential equation like the one presented in Appendix D. Numerical concerns abound in problems such as these. Additionally, many problems in numerical linear algebra have time complexities of $\Theta\left(n^{2}\right)$ or $\Theta\left(n^{3}\right)$ and storage requirements of $\Theta\left(n^{2}\right)$ so speed is essential. (Appendix A reviews the complexity notation such as big-Oh and big-Theta).

2. Errors and Blunders

A clear understanding of the differences between errors and blunders is important since recognition of the source of error is prerequisite to eliminating or reducing them. The terms are introduced in [Ref. 17: p. 1]:

Blunders result from fallibility, errors from finitude. Blunders will not be considered here to any extent. There are fairly obvious ways to guard against them, and their effect, when they occur, can be gross, insignificant, or anywhere in between. Generally the sources of error other than blunders will leave a limited range of uncertainty, and generally this can be reduced, if necessary, by additional labor. It is important to be able to estimate the extent of the range of uncertainty.

> - ALSTON S. HOUSEHOLDER

3. The Issues

To anticipate-or even troubleshoot-error we must know from whence it comes. In [Ref. 17: p. 2], Alston Householder lists the four sources of error that were set forth by John von Neumann and Herman Goldstine:

- Mathematical formulations are seldom exactly descriptive of any real situation, but only of more or less idealized models. Perfect gases and material points do not exist.
- Most mathematical formulations contain parameters, such as lengths, times, masses, temperatures, etc., whose values can be had only from measurement. Such measurements may be accurate to within $1,0.1$, or 0.01 percent, or better, but however small the limit of error, it is not zero.
- Many mathematical equations have solutions that can be constructed only in the sense that an infinite process can be described whose limit is the solution in question. By definition the infinite process cannot be completed. So one must stop with some term in the sequence, accepting this as the adequate approximation to the required solution. This results in a type of error called the truncation error.
- The decimal representation of a number is made by writing a sequence of digits to the left, and one to the right, of an origin which is marked by a decimal point. The digits to the left of the decimal point are finite in number and are understood to represent coefficients of decreasing powers of 10. In digital computation only a finite number of these digits can be taken account of. The error due to dropping the others is called the round-off error. . . .

C. MACHINE METHODS

We would like to somehow characterize the techniques that make a problemsolving method "good". The abilities of machines and people are distinct enough that we should not always expect an algorithm for machine solution to mirror the pencil-and-paper method of an individual. Hestenes and Stiefel make this distinction, defining a hand method as "one in which a desk calculator may be used" and a machine method as "one in which sequence-controlled machines are used." [Ref. 18: p. 409] Further, in the same reference, they list the following characteristics that a good machine method exhibits:
(1) The method should be simple, composed of a repctition of elementary routines requiring a minimum of storage space.
(2) The method should insure rapid convergence if the number of steps required for the solution is infinite. A method which-if no rounding-off errors occur-uill yield the solution in a finite number of steps is to be preferred.
(3) The procedure should be stable with respect to rounding-off errors. If needed, a subroutine should be available to insure this stability. It should be possible to diminish rounding-off errors by a repetition of the same routine, starting with the previous result as the new estimate of the solution.
(4) Each step should give information about the solution and should yield a new and better estimate than the previous one.
(5) As many of the original data as possible should be used during each step of the routine. Special properties of the given linear system-such as having many vanishing coefficients - should be preserved. (For example, in the Gauss elimination special properties of this type may be destroyed.)

D. CONJUGATE DIRECTIONS

Hestenes and Stiefel describe the method of conjugate directions (CD). This is a general approach to solving systems of linear equations that uses direction vectors, p_{0}, p_{1}, \ldots, to determine how the search for a solution should proceed from step-to-step. When the method for determining these vectors is defined, CD becomes a
specific method. There are at least two of these specific methods within CD that are especially suited to computer implementation: Gauss factorization (GF) and the method of conjugate gradients (CG). [Ref. 18: p. 412]

The term conjugate is clearly an important one for these methods. Given a matrix $A \in \Re^{n \times n}$ that is symmetric, we say that two vectors x and y are conjugate if

$$
\begin{equation*}
x^{T} A y=(A x)^{T} y=0 \tag{2.1}
\end{equation*}
$$

There is an alternative term that emphasizes the role of A in this definition. We also say that x and y are A-orthogonal. [Ref. 18: p. 410]

The method of conjugate gradients chooses its direction vectors, p_{i}, to be mutually conjugate ($p_{i}^{T} A p_{j}=0$ whenever $i \neq j$) and in such a manner that p_{i+1} depends upon p_{i}. (A specific formula is given near the end of Chapter III). The Gauss factorization chooses $p_{i}=e_{i}$, the $i^{\text {th }}$ axis vector. [Ref. 18: pp. 412,425-427]

In this research, the Gauss method gets almost all of the attention, but the method of conjugate gradients receives a short overview near the end of Chapter III. The theory of conjugate directions is not at all trivial, and the ties of Gauss and conjugate gradients to conjugate directions are fairly deep. These issues are covered in the work of Hestenes and Stiefel [Ref. 18]. This thesis develops the Gauss method from an implementation standpoint.

E. PARALLEL PROCESSING

The field of parallel and distributed computing is a relatively new one. In one sense, it is quite natural. We perform work in parallel every day. In fact, a manager-worker notion is a very useful means to understand the issues of this field. The programs developed in this research involve a host or manager and nodes or workers. This is often called the workfarm approach.

The principal "problem" in parallel computing is communication. Appendix C relates some of the considerations. Of course, there are other concerns as well: load balancing, problem size (granularity), and so on. These issues, as they apply to the this research, are discussed in Chapter IV.

The bottom line-after all of the design and implementation work-is performance. With multicomputers, as in a workfarm, we are after efficiency so that more computing can be done in a shorter time and for less money. Bell is even more specific. He believes the multicomputer must offer two key facilities to become established [Ref. 6: p. 1097]:

- Power that is not otherwise available.
- Performance for a price that is "at least an order of magnitude cheaper than traditional supercomputers."

In Chapter VI, we consider results obtained upon two contemporary parallel machines. This information helps us to evaluate the potential of MIMD architectures in terms of Bell's criteria.

F. SPEEDUP

The terms speedup and efficiency, defined in Appendix A, capture most of the interest when we talk about the potential of parallel computing. The principal reason for choosing a multicomputer over a single computer is speed. Therefore, we are most interested in knowing what kind of spetd we can obtain from a multiprocessor system. Bell's comments on price are germane as well.

Speedup and efficiency are both machine dependent and problem dependent. Some problems should not be executed on a parallel machine! Suppose, for instance, that part of a problem must be performed sequentially. Amdahl's law is a well-known attempt to characterize this problem. Amdahl stated that speedup on P processors, S, is limited in the following manner:

$$
\begin{equation*}
S \leq \frac{1}{f+(1-f) / P} \tag{2.2}
\end{equation*}
$$

where f is "the fraction of operations in a computation that must be performed sequentially, where $0 \leq f \leq 1$ " [Ref. 19: p. 19]. With speedup, S, defined as in (2.2) we see that

$$
\begin{equation*}
\lim _{P \rightarrow \infty} S=\frac{1}{f} . \tag{2.3}
\end{equation*}
$$

Figure 2.2 shows how this limit begins to take effect as the number of processors, P, is increased from zero to 500 . The figure is based on Amdahl's law (2.2) with sequential percentages, f, of $5 \%, 10 \%$, and 25%.

We can see that Amdahl's law has some very discouraging news for so-called massively parallel computing. The massive part of the term is loosely defined, apparently meaning "many" processors. But Amdahl's law may be based upon a faulty assumption [Ref. 20]. Consider the following reasoning. Let P be the number of processors and consider the following arguments concerning time. Let s be the time required to execute the serial portions of a program on a serial processor and let p be the amount of time required to complete the parallel work on the same serial processor. Using this notation, and normalizing $(s+p=1)$, Amdahl's law can be restated

$$
\begin{equation*}
S=\frac{s+p}{s+(p / P)}=\frac{1}{s+(p / P)} . \tag{2.4}
\end{equation*}
$$

Then, if we consider the case $P=1,024$ with $s \leq 10 \%$, we see in Figure 2.3, that speedup is severely restricted.

Figure 2.2: Amdahl's Law $(1 \leq P \leq 500)$

Figure 2.3: Amdahl's Law $(P=1024)$

G. SCALED SPEEDUP

These problems with the usual notion of speedup led Gustafson, Montry, and Benner to question the validity of Amdahl's assumptions [Ref. 20: p. 3]:

The expression and graph are bascd on the implicit assumption that p is independent of P. However, one does not generally take a fixed size problem and run it on various numbers of processors; in practice, a scientific computing problcm scales with the available processing power. The fixcd quantity is not the problem size but rather the amount of time a user is willing to wait for an answer; when given more computing power, the user expands the problcm (more spatial variables, for example) to use the available hardware resources.

As a first approximation, we have found that it is the parallel part of a program that scales with the problem size. Times for program loading, serial bottlenecks, and I/O that make up the s component of the application do not scale with the problem size. When we double the number of processors, we doublc the number of spatial variables in a physical simulation. As a first approximation, the amount of work that can be done in parallel varies linearly with the number of processors

Based upon this analysis, they present the notion of scaled speedup. They let s^{\prime} and p^{\prime} represent the serial and parallel time spent on a parallel system (inverse of Amdahl's method). So that $s^{\prime}+p^{\prime}=1$ and a uniprocessor requires time $s^{\prime}+p^{\prime} P$ to perform the task. With these definitions, they define scaled speedup, S^{\prime}, to be

$$
\begin{equation*}
S^{\prime}=\frac{s^{\prime}+p^{\prime} P}{s^{\prime}+p^{\prime}}=P+(1-P) s^{\prime} \tag{2.5}
\end{equation*}
$$

If we consider the same range of serial fractions as we did in Figure 2.3, we see that scaled speedup is much better than the usual speedup. Figure 2.4 shows the plot of scaled speedup.

H. SUMMARY

This chapter considers the bachground necessary to develop the algorithms (Chapters III and IV) and implement them (Chapter V). Algorithms are described as sequential plans first (Chapter III). The Gauss factorization algorithm is given

Figure 2.4: Scaled Speedup
in detail (Chapter III), including a discussion on the significance of pivoting. The method of conjugate gradients receives less attention, but a brief introduction is given near the end of Chapter III. The parallel considerations surveyed quickly in this chapter receive more attention in Chapter IV.

III. THEORY

No human investigation can be called real science if it cannot be demonstrated mathematically.

- LEONARDO DA VINCI (1452-1519)

A. SCOPE

The goal of this research is to demonstrate a parallel method for solving a system of linear equations. The implementation targets two contemporary MIMD architectures: the Intel iPSC/2 and networks of INMOS transputers. There are many methods for solving linear systems. This work concentrates primarily upon Gauss factorization (GF), but the method of conjugate gradients (CG) is also introduced. Regrettably, CG is not developed due to time constraints (the derivation is not trivial). This does not imply that Gauss factorization is superior, nor that it possesses greater potential for parallel solution. Indeed, Hestenes and Stiefel preferred CG to GF for a number of very good reasons [Ref. 18: p. 409].

As we shall see, the utility of either method is quite dependent upon the nature of the particular problem. Consider the system of linear equations represented by

$$
\begin{equation*}
A u=b \tag{3.1}
\end{equation*}
$$

Much of the subsequent discussion applies to general, rectangular systems where $A \in \Re^{m \times n}$. For the examples, however, square systems $\left(A \in \Re^{n \times n}\right)$ are used. This restriction greatly simplifies the discussion without losing much of the concept as it applies to general systems. The Gauss process, i.e., the main part of the work, excluding the stopping criteria and interpretation of the result, is the same in all three cases $(m<n, m=n$, and $m>n)$.

To be sure, the three cases ($m<n, m=n$, and $m>n$) correspond to fundamentally different real-world systems, but the algorithms for each case are almost identical. The restriction to a square system will greatly simplify the discussion without blinding us to the general, rectangular case. The extensions to the general case are well known. Golub and Van Loan [Ref. 21: p. 102] give more detail, but the square case is most expedient for now. Square systems also simplify the experimental procedure, data collection and analysis.

The Gauss method follows naturally from a hand method and it holds strong appeal to intuition. Without a pivoting strategy, however, Gauss can attempt division by zero. There is also a more subtle issue of rounding errors within the limits of finite-precision arithmetic. To forestall errors of both kinds, partial and complete pivoting strategies are used. This chapter develops the (sequential) algorithms and explains the concept of pivoting. This is a sensible starting point for Chapter IV, where parallel versions of the algorithms are given.

B. APPROACH

There are many methods that may be applied to determine the solution of a system of linear equations. The methods were designed for different reasons and with different problems in mind, so each exhibits a unique behavior. One method is often preferred over another for a given problem. Ultimately, the criterion is performance, both in reliability and speed. The approach described here and in the remaining chapters seeks to "maximize performance" while retaining a reasonable balance of both efficiency and quality. Speed and numerical accuracy tend to oppose one another so we are left to choose from several options.

A hand method introduces each algorithm. The example is small and concrete. Solving a small problem gives useful insights into the algorithms. Once the hand method is established, it is expressed in an equivalent matrix notation. A high-level
sequential algorithm is built upon this foundation. This algorithm shows how a machine, using a sequence of instructions, solves the problem. It also gives good estimates for the problem's time and storage complexities. The sequential-to-parallel transition involves enough issues to warrant separate coverage. These considerations appear in Chapter IV.

In the sections that follow, Gaussian elimination is presented first. It reveals the background (sort of a first pass) for Gauss factorization. Once the reduction process is understood, we proceed to factorization. A description of the method of conjugate gradients is given at the end of the chapter. This method, due to Hestenes and Stiefel, is based upon relatively deep theory. Thus the derivations and background are not included. Nevertheless, a synopsis of the method is given.

C. APPLYING THE METHODS

A particular method is often tailored to a specific type of system. The method of conjugate gradients, for instance, is usually used when the matrix of coefficients, A, is symmetric and positive definite [Ref. 18: p. 411]. The Gauss factorization algorithm is equally important, but it takes quite another approach to solving this system. Both CG and GF lie within the broad category of methods of conjugate directions (Chapter II). Indeed both work in just about any case. But, the better results are obtained by using the tool that fits the task at hand.

A very rough characterization of the problem can simplify algorithm selection. We will look for two qualities: structure and density. CG, for instance, performs best when applied to highly structured, sparse matrices (i.e., matrices with many zero entries). Systems like the sparse, symmetric, highly-structured result of Appendix D deserve careful solutions that do not destroy the existing zeros. Zeros are not always easy to come by. Gaussian elimination must expend $2 n^{3} / 3$ flops to create them.

Selecting the wrong algorithm can lead to slower execution. More importantly, poor algorithm choice is a blunder (Chaper II). It can produce results that are accidentally perfect, grossly incorrect, or anywhere between. Therefore, no less than three tasks confront us:

- Characterize the problem. In systems like (3.1), attributes of the matrix of coefficients, A, may provide a wealth of information.
- Understand the algorithm(s). Know the types of problem(s) it is designed for (and, more importantly, know why).
- Create or select an algorithm that suits the problem.

The sparse, highly-structured problems are not rare! Anyone who has observed nature knows that many natural phenomena exhibit incredible structure and simplicity. Strategies for solving the corresponding system should always seek to exploit these characteristics. Both sparseness and structure can reduce storage requirements and the number of flops required. If we know the structure in advance, there may be a smart way to avoid some calculations entirely or minimize the work involved. (Recall Hestenes and Stiefel's characterization of a "good" machine method from Chapter II). Other problems, when translated into the form (3.1), exhibit a dense matrix, A, with little or no apparent structure.

These two types of problems should not be handled with the same tools. As with many computational problems, the reasons involve the use of time and space. We shall see that the Gauss algorithm has time complexity $\Theta\left(n^{3}\right)$ and storage requirements $\Theta\left(n^{2}\right)$. (Complexity notation appears in Appendix A). Numbers like these grow rapidly with n and, regardless of how much memory is available, the problem can quickly overpower the computer. A naïve approach to problems of these kinds can be expensive in terms of both storage and time. This is usually
adequate incentive to take advantage of sparseness and structure whenever possible. When it is not possible, Gauss is a good choice.

D. GAUSSIAN ELIMINATION

Suppose that we want to solve a system of linear equations using a systematic, step-by-step method. We assume that the system of linear equations is given, and that the method must preserve the original properties of the system. That is, the method must be restricted to certain operations; namely:

- Multiply an equation by a nonzero constant.
- Interchange equations.
- Add a multiple of one equation to another.

The fact that the first two operations do not change the system's properties is evident. The third operation is legitimate also-maybe not quite so obviously-and computationally, the most significant. Now let us apply some of these operations to a system of four equations in the four unknowns, v_{1}, v_{2}, v_{3}, and v_{4}.

$$
\begin{array}{lr}
2 v_{1}+3 v_{2}+4 v_{3}+5 v_{4}= & 0 \\
4 v_{1}+6 v_{2}+8 v_{3}+5 v_{4}= & -5 \tag{3.2}\\
2 v_{1}+4 v_{2}+7 v_{3}+9 v_{4}= & 13 \\
6 v_{1}+8 v_{2}+8 v_{3}+9 v_{4}= & -17
\end{array}
$$

Let $m(=4)$ be the number of equations, and let $n(=4)$ be the number of unknowns in each equation. Additionally, let i be an equation (or row) index $(1 \leq i \leq m)$ and let j indicate a subscript of v (column index) so that $1 \leq j \leq n$. Finally, let $\alpha_{i j}$ be the coefficient of v_{j} in equation i (e.g., $a_{12}=3$). Suppose that the last equation contains only one nonzero coefficient (say α_{44}) and the third equation has only two nonzero coefficients (α_{33} and α_{34}) and so on. This defines a triangular system (Appendix A). The triangular system is our goal because it is easier to solve (by back substitution) than the current (square, dense) system.

Next, observe that a triangnlar system would result if we could eliminate every coefficient, α_{11}, of v_{1} in all equations but the first $(i>1)$, coefficients, $\alpha_{i 2}$, of v_{2} in the last two equations $(i>2)$, and the coefficient, α_{43}, of v_{3} in the final equation. To do this, we work by stages. At stage k, the coefficient, $\alpha_{k k}$, of v_{k} in the $k^{\text {th }}$ equation is called the pivot. This term has little significance now but is clarified later (and it plays a very important role in the examples presented. In a particular stage, k, the goal is to operate upon all equations i where $i \in\{(k+1),(k+2), \ldots, m\}$ and climinate all coefficients, $\alpha_{i k}$, of v_{k}.

1. A Hand Method

Before attempting to describe an algorithm for a machine solution, we consider an application of Gaussian elimination (GE) by hand. Initially, let $k=1$. In the example system (3.2), the first $(k=1)$ pivot is the coefficient, $\alpha_{11}=2$, of v_{1} in the first equation. Notice that by subtracting twice the first equation from the second, a zero is prodiced under the pivot (eliminating α_{21}). Similarly, by subtracting the first equation from the third, a zero appears as the leading coefficient in the third equation (climinating α_{31}). Finally, three times the first equation subtracted from the fourth equation eliminates the coefficient a_{41}. Following these steps the altered system is:

$$
\begin{align*}
2 v_{1}+3 v_{2}+4 v_{3}+5 v_{4} & =0 \\
-5 v_{4} & =-5 \tag{3.3}\\
v_{2}+3 v_{3}+4 v_{4} & =13 \\
-v_{2}-4 v_{3}-6 v_{4} & =-17
\end{align*}
$$

This is called the notural reduction process [Ref. 22: p. 72]. In the particular case, there are no clanges on the right-hand side becanse the first equation's right-hand side is zero. This makes for trivial arithmetic on the right-hand side, but we should remember to perform the aritlmetic upon whole equations (including the right-hand side) in general. The elimination is even more successful than planned.

The second equation already has zeros where we ultimately wanted them in the fourth equation. That is, the system (3.3) would be closer to upper triangular if we were to alter it by interchanging equations 2 and 4 .

$$
\begin{align*}
2 v_{1}+3 v_{2}+4 v_{3}+5 v_{4} & =0 \\
-v_{2}-4 v_{3}-6 v_{4} & =-17 \\
v_{2}+3 v_{3}+4 v_{4} & =13 \tag{3.4}\\
-5 v_{4} & =-5
\end{align*}
$$

The system (3.4) is called a row permutation of (3.3). The ability to recognize patterns is a great advantage that human problem solvers enjoy. Therefore, taking advantage of our capabilities we use a rather subjective "human" pivoting strategy. But it is not fitting to assume that an efficient algorithm for a machine would involve the same sort of pattern recognition.

The system (3.4) is nearly triangular. The pivot moves to the second equation $(k=2)$, and we focus on the coefficient, $\alpha_{22}=-1$, of $v_{k}=v_{2}$. By adding the second equation to the third, the only nonzero coefficient remaining in the lower triangle (α_{32}) is eliminated. The resulting system becomes

$$
\begin{align*}
2 v_{1}+3 v_{2}+4 v_{3}+5 v_{4} & =0 \\
-v_{2}-4 v_{3}-6 v_{4} & =-17 \tag{3.5}\\
-v_{3}-2 v_{4} & =-4 \\
-5 v_{4} & =-5
\end{align*} .
$$

The system is triangular, and it is easy to solve for the unknown values, v_{i}, by back substitution. By inspection, $v_{4}=1$. Substituting this value into the third equation, we find that $v_{3}=2$. Substituting both values (v_{4} and v_{3}) into the second equation yields $v_{2}=3$. Finally, by substituting the values v_{4}, v_{3}, and v_{2} into the first equation gives $v_{1}=-11$. The solution to the system is then

$$
u=\left[\begin{array}{l}
v_{1} \tag{3.6}\\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
-11 \\
3 \\
2 \\
1
\end{array}\right] .
$$

2. A Machine Method

The foregoing example illustrated the GE process as done on paper. The system was intentionally created for easy solution by hand calculation. I.e., it uses integers and elimination occurs faster than the usual case. Even this simple example requires a few minutes to determine u from the system (3.2) by hand. In Chapter VI, we see that a machine can perform this task in (much) less than a second. For this reason, it is worth examining an equivalent process to solve for such a system by machine.

We reenact the solution from the beginning, this time in a fashion that a sequence-controlled machine could perform. Until now, we have used the term "pivot" but have found no practical use for pivots. In this example, we begin to realize the utility of a pivoting strategy. We start with "no pivoting" and shift to the "partial pivoting" strategy. Additionally, we begin to use a more compact matrix notation. Appendix A describes the notation followed.

By the method described in Appendix A, we give the linear system (3.2) matrix representation that corresponds to (3.1):

$$
A u=\left[\begin{array}{llll}
2 & 3 & 4 & 5 \tag{3.7}\\
4 & 6 & 8 & 5 \\
2 & 4 & 7 & 9 \\
6 & 8 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-5 \\
13 \\
-17
\end{array}\right]=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]=b .
$$

First, we initialize a stage counter, k, so that $k=1$. The pivot in stage k is $\alpha_{k k}$, on the diagonal of $A\left(\alpha_{11}=2\right)$. The immediate goal is to produce zeros beneath the pivot, in $A(2: 4,1)$. A three-step process eliminates these coefficients in row order:

- Divide. Divide every element beneath the pivot by the pivot value.
- Update. Perform arithmetic in the Gauss transform area.
- Eliminate. Set the elements beneath the pivot equal to zero.

The first step is a division. The denominator (pivot) is $\alpha_{k k}=\alpha_{11}=2$ so α_{21} becomes the multiplier $\left(\alpha_{21} / 2\right)=2$. Similarly, let $\alpha_{31}=1$ and let $\alpha_{41}=3$. Now

$$
A=\left[\begin{array}{llll}
2 & 3 & 4 & 5 \tag{3.8}\\
2 & 6 & 8 & 5 \\
1 & 4 & 7 & 9 \\
3 & 8 & 8 & 9
\end{array}\right]
$$

Next, consider everything below and to the right of the pivot. This is the Gauss transform area, $G=A((k+1): m,(k+1): n)=A(2: 4,2: 4)$. For each element in G, replace the current value, $\alpha_{i j}$, with $\alpha_{i j}-\left(\alpha_{i k}\right)\left(\alpha_{k j}\right)$. Do the same thing in the corresponding rows $(i>k)$ of b, replacing β_{i} with $\beta_{i}-\left(\alpha_{i k}\right)\left(\beta_{k}\right)$. We will call this the process of performing arithmetic in (or updating) the Gauss transform area, G.

Finally, when the values beneath the pivot are no longer needed, eliminate them (set them equal to zero). The result is equivalent to the system (3.3):

$$
\left[\begin{array}{rrrr}
2 & 3 & 4 & 5 \tag{3.9}\\
0 & 0 & 0 & -5 \\
0 & 1 & 3 & 4 \\
0 & -1 & -4 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-5 \\
13 \\
-17
\end{array}\right] .
$$

We have finished one stage of GE. We move into the next stage, $k=2$. This time, when we try to update G we run into a very serious problem. The first step is to divide everything underneath the pivot by the pivot value $\alpha_{k k}=\alpha_{22}=0$. This is the divide-by-zero problem of a "no pivoting" strategy.

During the execution of the hand example we simply moved the row to the bottom of the system to avoid this problem. Now, we could instruct the machine to test every element in $A(k: m, k: n)$ and interchange rows so that those with the most leading zeros were placed at the bottom. This is problematic for several reasons. First, it is not dependable (testing for equality of floating-point numbers begs disaster). Secondly-even if we could identify zeros with confidence-it would add a sorting problem to GE! We are not looking for extra work. The solution is partial pivoting.

3. Partial Pivoting

Partial pivoting is an application of row interchanges to eliminate (primarily) the divide-by-zero problem. Consider the system of equations (3.1) with the nonsingular matrix of coefficients, $A \in \Re^{m \times n}$ (i.e., $m=n$ and the system has exactly one solution). Suppose further that storage and arithmetic is performed in infinite precision. (These assumptions-infinite precision and A nonsingular-are essential).

Even in this ideal situation Gauss without pivoting is dangerous because, as we have just seen, it may attempt to divide by zero. Proper row permutations completely eliminate this problem. Partial pivoting will guarantee the existence of n nonzero pivots for A nonsingular. In fact, if we encounter a zero pivot with partial pivoting, it means that A is singular [Ref. 23]. The remainder of this section describes the partial pivoting strategy.

Consider stage k of the GE process with $A \in \Re^{m \times n}$. The goal is to pick the "best" row remaining (i.e., at or below the current pivot) and install it as row k, the pivot row. For reasons that are explained later, "best" shall mean the row whose $k^{\text {th }}$ (pivot column) element is largest. Let s be the row index for the best pivot candidate. Initially, let $s=k$ (i.e., $\alpha_{k k}$ is the first candidate). Next, we move down the pivot column, considering all $\alpha_{i k}$ where $i \geq k$.

To eliminate unnecessary assignments, we replace the current candidate with another only if $\left|\alpha_{i k}\right|>\left|\alpha_{s k}\right|$. When this occurs, we make sure that s is updated by setting it equal to i. After considering all elements, $\alpha_{i k}$, for $k \leq i \leq m, s$ is the index of "best possible" pivot row. To accomplish our goal, we must perform a row interchange. This is easy after the new pivot row has been determined. We simply swap rows k and s (if $k \neq s$). Within the assumptions above, we have completely eliminated the potential for division by zero. Now let us return to the problem at hand.

4. A Machine Method (Resumed)

Applying partial pivoting to the system (3.9), we find that the next pivot is located at $A(3,2)$ so we must interchange rows (equations) two and three. Before performing this step, however, let us create a vector to keep track of the row permutations. Let $q \in \Re^{m}$ be the row permutation vector. We initialize q so that $\psi_{i}=i:$

$$
q=\left[\begin{array}{l}
\psi_{1} \tag{3.10}\\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

and perform row interchanges in q corresponding to those in A so that ψ_{i} is always the original equation number for current equation number i. Thus, after performing the row interchange, we have

$$
\left[\begin{array}{rrrr}
2 & 3 & 4 & 5 \tag{3.11}\\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & -5 \\
0 & -1 & -4 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
13 \\
-5 \\
-17
\end{array}\right] \quad q=\left[\begin{array}{l}
1 \\
3 \\
2 \\
4
\end{array}\right]
$$

Notice that $\psi_{3}=2$ indicates that the third equation in (3.11) was the second equation in the original system (3.7). Now, since $\alpha_{32}=0$, no arithmetic is required in the third row. In row four, the arithmetic will be equivalent to the notion of adding (the current) equation two to equation four. The result is

$$
\left[\begin{array}{rrrr}
2 & 3 & 4 & 5 \tag{3.12}\\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & -5 \\
0 & 0 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
13 \\
-5 \\
-4
\end{array}\right]
$$

When we move the pivot index to the third equation $(k=3)$, we notice that $\alpha_{33}=0$. The divide-by-zero problem has resurfaced. Once again, we pivot, swapping rows three and four. After this, we have

$$
\left[\begin{array}{rrrr}
2 & 3 & 4 & 5 \tag{3.13}\\
0 & 1 & 3 & 4 \\
0 & 0 & -1 & -2 \\
0 & 0 & 0 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
13 \\
-4 \\
-5
\end{array}\right] \quad q=\left[\begin{array}{l}
1 \\
3 \\
4 \\
2
\end{array}\right]
$$

The zero beneath the final pivot obviates the need for further arithmetic. The triangular system (3.13), found by our machine method, does not look like the system (3.5) from the hand method because we did not perform the same row interchanges. If we had maintained a row permutation vector, \tilde{q}, for the hand method we would have noticed that

$$
q=\left[\begin{array}{l}
1 \tag{3.14}\\
3 \\
4 \\
2
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
4 \\
3 \\
2
\end{array}\right]=\tilde{q}
$$

Of course, back substitution for the final (triangular) machine system (3.13) yields the same solution

$$
u=\left[\begin{array}{l}
v_{1} \tag{3.15}\\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{r}
-11 \\
3 \\
2 \\
1
\end{array}\right]
$$

as that of the hand method. Thus, even though we used different permutation schemes, the "pivots" in both cases were always nonzero and the solutions were the same. This is not surprising, since A is nonsingular and row permutation is merely the practice of interchanging equations.

Let us review first the process and then the theory of Gaussian elimination. The GE process performs a systematic elimination of the lower (in our example) triangle of a matrix of coefficients, A. Arithmetic operations are performed upon entire equations at the same time (including the right-hand side, b). In other words, during stage k of the process, arithmetic operations are performed upon (portions of) all rows $i(i>k)$ of A and upon all elements (rows) β_{i} (for $i>k$) of the right-hand sides, b. The process depends upon both A and b and both of them can be changed substantially.

The idea behind Gaussian elimination is that general square systems are difficult to solve, but triangular systems are easy. The goal is to transform a general matrix A into triangular form, performing legitimate arithmetic upon entire equa-
tions (including the right-hand sides). Reduction to triangular form costs $2 n^{3} / 3$ flops. Once A is reduced to triangular form, back substitution yields a solution for the unknown, u, in n^{2} flops. Thus GE solves a general, dense, square system of n equations in n unknowns by the application of $2 n^{3} / 3+n^{2}$ flops. [Ref. 21 : pp. 88, 97]

E. GAUSS FACTORIZATION

Gauss factorization (GF) is a well-known method for solving linear systems like (3.1) that (simultaneously) factors A. GF has strong ties to the GE process. Those ties will become evident as we develop the same example over again, this time using the GF bookkeeping and method. GF holds several major advantages over GE. Among these: A is recoverable (the process does not destroy it) and the process is independent of the right-hand side, b. In fact, b is not used in the factoring process.

1. Complete Pivoting

The complete pivoting strategy will be applied in this example. There is no special significance behind the introduction of complete pivoting with the GF process. Either strategy-the choice of a "no pivoting" strategy is also available, but not generally acceptable for serious problems-can be used with GE or GF. The complete strategy is a straightforward extension of the partial strategy, so introducing partial pivoting first was practical.

With complete pivoting, row interchanges are still allowed, but so are column interchanges. We will continue to use $q \in \Re^{m}$ for row interchange bookkeeping. The vector $p \in \Re^{n}$, similarly, will maintain the column permutation information. We search not just the pivot column, but the entire Gauss transform area, for the next pivot. This takes longer but generally produces better solutions. The numerical differences between partial and complete pivoting involve some difficult error analysis. These issues will be addressed briefly after we complete the examples.

2. Example

Now the GF process is demonstrated. We start with the same system of four equations in four unknowns:

$$
\begin{array}{lr}
2 v_{1}+3 v_{2}+4 v_{3}+5 v_{4}= & 0 \\
4 v_{1}+6 v_{2}+8 v_{3}+5 v_{4}= & -5 \tag{3.16}\\
2 v_{1}+4 v_{2}+7 v_{3}+9 v_{4}= & 13 \\
6 v_{1}+8 v_{2}+8 v_{3}+9 v_{4}= & -17
\end{array}
$$

and proceed immediately to the matrix of coefficients (the factoring part of GF concerns itself with A only).

$$
A=\left[\begin{array}{llll}
2 & 3 & 4 & 5 \tag{3.17}\\
4 & 6 & 8 & 5 \\
2 & 4 & 7 & 9 \\
6 & 8 & 8 & 9
\end{array}\right]
$$

a. Stage Zero

For the initial stage, $k=0$, let the Gauss transform area be $G=A$. Also initialize pivot indices $s=t=1$. The sole purpose of stage zero is to find the first pivot. Initially, we guess that the pivot is α_{11}, located at $A(1,1)$, the upper left-hand corner of G. (This is the position where the new pivot will be installed). Accordingly, we set row and column indices, $s=1$ and $t=1$ to keep track of the best pivot candidate.

Indices s and t are changed only when we find a superior candidate for the pivot. To begin the column-by-column search for the pivot we move down the columns in order from left to right and through each column in a top-to-bottom manner. When we have considered every element in G, we know that the next pivot is currently situated at $A(s, t)$.

For the current example, as we move down the first column of G, the values of s and t are adjusted twice. A better pivot candidate is found, first at $A(2,1)$, and next at $A(4,1)$. The indices are adjusted again in the last row of column two,
where the value, δ, is larger than the value of the current candidate, 6 . Column three has no candidates larger than 8 , so we do not adjust the indices again until we find the 9 at $A(3,4)$. Thus $s=3$ and $t=4$ have located the next pivot according to a complete pivoting strategy. This accomplishes the goal of stage zero. Now we specify the process for each of the remaining stages.

b. Outline of the GF Process

For each stage, k, of GF, we shall perform the following steps:

- Locate the pivot according to a pivoting strategy (none, partial, or complete). If complete pivoting is used, search all of G for the next pivot.
- Increment the pivot index, k.
- Perform any row and/or column permutations that are required to move the pivot into the position $A(k, k)$. Update p and q accordingly.
- Divide every element beneath the pivot by the pivot value.
- Redefine the Gauss transform area so that $G=A((k+1): m,(k+1): n)$.
- Perform the appropriate arithmetic in G.

Let us return to the example and exercise the process.

c. Stage One

Since stage zero has already located the first pivot, the first step of section \boldsymbol{b} is not necessary in this stage. We increment k (to $k=1$) and install the pivot $A(3,4)$ at $A(k, k)=A(1,1)$. This means that rows 1 and 3 must be swapped. Columns 1 and 4 must be swapped in addition. The permutation vectors, p and q, record the interchanges.

After interchanging rows and columns, we have

$$
A=\left[\begin{array}{llll}
9 & 4 & 7 & 2 \tag{3.18}\\
5 & 6 & 8 & 4 \\
5 & 3 & 4 & 2 \\
9 & 8 & 8 & 6
\end{array}\right] \quad p=\left[\begin{array}{l}
4 \\
2 \\
3 \\
1
\end{array}\right] \quad q=\left[\begin{array}{l}
3 \\
2 \\
1 \\
4
\end{array}\right]
$$

Now we perform the division beneath the pivot, producing the multipliers in the lower three rows in the leftmost column of A. When this is done, we perform the arithmetic in $G=A((k+1): m,(k+1): n)=A(2: 4,2: 4)$. For GF, we do not replace the multipliers with zeros. We shall find that the multipliers are very useful in the end. The result is

$$
A=\left[\begin{array}{cccc}
9 & 4 & 7 & 2 \tag{3.19}\\
5 / 9 & 34 / 9 & 37 / 9 & 26 / 9 \\
5 / 9 & 7 / 9 & 1 / 9 & 8 / 9 \\
1 & 4 & 1 & 4
\end{array}\right]
$$

Next, with G being the lower right (3×3) block of A, we search G for the next pivot and find that $A(s, t)=A(2,3)$ holds $(37 / 9)$, the largest second pivot candidate.

d. Stage Two

We increment the stage counter $(k=2)$, so that it points to the new pivot location, $A(2,2)$. Since $s=k$, we know that no row interchange is necessary and q will not change. We must, however, swap columns $k=2$ and $t=3$. The result is:

$$
A=\left[\begin{array}{cccc}
9 & 7 & 4 & 2 \tag{3.20}\\
5 / 9 & 37 / 9 & 34 / 9 & 26 / 9 \\
5 / 9 & 1 / 9 & 7 / 9 & 8 / 9 \\
1 & 1 & 4 & 4
\end{array}\right] \quad p=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right] \quad q=\left[\begin{array}{l}
3 \\
2 \\
1 \\
4
\end{array}\right]
$$

Once again, we divide everything under the pivot by the value of the pivot and update G. This yields

$$
A=\left[\begin{array}{cccc}
9 & 7 & 4 & 2 \tag{3.21}\\
5 / 9 & 37 / 9 & 34 / 9 & 26 / 9 \\
5 / 9 & 1 / 37 & 25 / 37 & 30 / 37 \\
1 & 9 / 37 & 114 / 37 & 122 / 37
\end{array}\right]
$$

e. Stage Three

Now G becomes the (2×2) lower right block of A and the next pivot $(122 / 37)$ is found at $A(s, t)=A(4,4)$. Since $k=3$ we must interchange rows 3 and 4 as well as columns 3 and 4 . The result of the permutation is

$$
A=\left[\begin{array}{cccc}
9 & 7 & 2 & 4 \tag{3.22}\\
5 / 9 & 37 / 9 & 26 / 9 & 34 / 9 \\
1 & 9 / 37 & 122 / 37 & 114 / 37 \\
5 / 9 & 1 / 37 & 30 / 37 & 25 / 37
\end{array}\right] \quad p=\left[\begin{array}{l}
4 \\
3 \\
1 \\
2
\end{array}\right] \quad q=\left[\begin{array}{l}
3 \\
2 \\
4 \\
1
\end{array}\right] .
$$

Then, dividing at the bottom of the pivot column and updating G, we have

$$
A=\left[\begin{array}{cccc}
9 & 7 & 2 & 4 \tag{3.23}\\
5 / 9 & 37 / 9 & 26 / 9 & 34 / 9 \\
1 & 9 / 37 & 122 / 37 & 114 / 37 \\
5 / 9 & 1 / 37 & 15 / 61 & -15 / 183
\end{array}\right]
$$

f. Stage Four

The final stage, where $k=4=\min (m, n)$, is always trivial. We need only to verify that α_{44} is nonzero. This tells us that, indeed, A is nonsingular. There is no arithmetic to perform, so (3.23) is the final, factored, copy of A.

g. Summary

Using the Gauss factorization process we have systematically transformed the matrix $A \in \Re^{4 \times 4}$ into a form that factors the original version of A. At this point the factorization itself has not been discussed, only the process whereby we claim to have factored A. Before we explore the resulting factorization, let us consider-in a general way-what happens in any stage, k, of GF.

3. One Stage of Gauss Factorization

The most important part of GF is the factorization that it produces. The GF process is reversible (pivots and other key information become part of the
factorization). This section-using block matrix notation and induction on the stage number-illustrates the effect of one stage of GF. The proof shows that we can perform an n-step Gauss factorization $A=L R$, with L unit lower triangular and R right (upper) triangular with nonzero diagonal elements. Before the proof, however, let us consider a concrete illustration where $n=15$.

Let \otimes denote those elements that Gauss has fixed in both value and position. The \times symbol marks elements that are subject to permutations but not changes in value. Those elements that are subject to both permutation and changes in value are indicated by the \odot symbol. Elements in the pivot row are marked with the θ symbol and the symbol \oslash denotes elements beneath the pivot. White space indicates zeros, α is the pivot, and any ρ_{i} was a former pivot (in stage i). Let $k=7$. Then the leftmost 7 columns of R_{7} are already fixed in upper triangular form and L_{7} is unit lower triangular with the special form described above. Upon entering stage $(k+1)=8$ of the Gauss factorization process, the matrices L_{7} and R_{7} would appear as shown below:

With this illustration in mind, let us prove the effect of GF.

Proposition: Given $A \in \Re^{n \times n}$. Let $L_{i} \in \Re^{n \times n}$ be the unit lower triangular matrix with I_{n-i}-the $(n-i) \times(n-i)$ identity-as its lower, right-hand block. Let $R_{i} \in \Re^{n \times n}$ be the matrix that is upper right triangular in its leftmost i columns. Initially, let $A=L_{0} R_{0}$ with $L_{0}=I$ and $R_{0}=A$. Let $P(k)$ be the proposition: "Stage k of the Gauss factorization process yields the factorization, $A=L_{k} R_{k}$."

To Show: $P(k) \Rightarrow P(k+1)$ for $0 \leq k \leq(n-1)$.

Assumptions: Pivoting, according to any valid strategy, is performed outside of this factorization procedure and the pivoting strategy yields pivots, $\alpha \neq 0$.

Notation: We can partition A so that

$$
A=\left[\begin{array}{ll}
\alpha & y^{T} \tag{3.26}\\
x & G
\end{array}\right]
$$

where $\alpha \in \Re$ is the initial pivot, $x \in \Re^{n-1}$ holds the values beneath the pivot, $y \in \Re^{n-1}$ holds the values of the elements in the pivot row to the right of the pivot, and $G \in \Re^{(n-1) \times(n-1)}$ is the Gauss transform area.

Basis for Induction: We must show that $P(0) \Rightarrow P(1) . P(0)$ means that $L_{0}=I_{n}$ and $R_{0}=A$. That is, R_{0} has no special structure except (by assumption) we are guaranteed a nonzero pivot α. Consider stage $k=1$ of Gauss factorization. Let us partition A as above and factor

$$
A=\left[\begin{array}{ll}
\alpha & y^{T} \tag{3.27}\\
x & G
\end{array}\right]=\left[\begin{array}{ll}
1 & 0^{T} \\
\ell & I
\end{array}\right]\left[\begin{array}{cc}
\rho & r^{T} \\
0 & B
\end{array}\right]=L_{1} R_{1}
$$

where B, ℓ, r, and ρ (with the obvious sizes) are defined as

$$
\begin{gather*}
\rho=\alpha \tag{3.28}\\
r=y \tag{3.29}\\
\ell=\left(\frac{1}{\rho}\right) x \tag{3.30}\\
B=G-\ell r^{T} \tag{3.31}
\end{gather*}
$$

Thus, given $A=L_{0} R_{0}$, Gauss factors $A=L_{1} R_{1}$ and $P(0) \Rightarrow P(1)$.
Inductive Step: Consider the matrices L_{k} and R_{k} that are submitted to stage $(k+1)$ of a Gauss factorization procedure. We make the inductive step to show that $P(k) \Rightarrow P(k+1)$. For $0 \leq k \leq n, A=L_{k} R_{k}$ may be partitioned so that

$$
A=\left[\begin{array}{lll}
L & 0 & 0 \tag{3.32}\\
m^{T} & 1 & 0 \\
N & 0 & I
\end{array}\right]\left[\begin{array}{lll}
R & s & T \\
0^{T} & \alpha & y^{T} \\
0 & x & G
\end{array}\right]=L_{k} R_{k}
$$

where $L \in \Re^{k \times k}$ is a unit lower triangular matrix and $R \in \Re^{k \times k}$ is a right (upper) triangular matrix with nonzero diagonal elements.

The Gauss process forms ρ as in (3.28), r as in (3.29), multipliers, ℓ as in (3.30), and B as in (3.31). Then, for $0 \leq k \leq(n-1)$, GF forms

$$
A=\left[\begin{array}{lll}
L & 0 & 0 \tag{3.33}\\
m^{T} & 1 & 0 \\
N & \ell & I
\end{array}\right]\left[\begin{array}{lll}
R & s & T \\
0^{T} & \rho & r^{T} \\
0 & 0 & G
\end{array}\right]=L_{k+1} R_{k+1}
$$

Thus, for $0 \leq k \leq n, P(k) \Rightarrow P(k+1)$. [Ref. 24]

Conclusion: The nonsingular matrix $A \in \Re^{n \times n}$ can be factored, in n steps of the Gauss factorization process, so that $A=L R$ with L being unit lower triangular and R being upper triangular with nonzero diagonal elements.

The proof has demonstrated the effect of GF. For simplicity, it excluded the pivoting strategy (simply assuming that, at every stage, a pivot $\alpha \neq 0$ would be available). It also held A square. In this sense the proof is somewhat specific. There is a more general conclusion to be made. This conclusion holds for GF with pivoting and $0 \neq A \in \Re^{m \times n}$ and it is absolutely essential to understanding the factorization.

4. The LR Theorem

With the GF process complete, and the vast majority of the work done, we show how to form a solution from our factorization. Various methods of pivoting (resulting in permutation vectors) and the method whereby A is factored have been discussed. To solve the system, we must put all of this information together. The key is the LR Theorem [Ref. 24]:

Theorem 3.1 (LR Theorem) Let $0 \neq A \in \Re^{m \times n}$. Then there are permutation matrices $P \in \Re^{n \times n}$ and $Q \in \Re^{m \times m}$, an integer $r \geq 1$, a lower trapezoidal matrix $L \in \Re^{m \times r}$ and an upper (right) trapezoidal matrix $R \in \Re^{r \times n}$ so that $Q^{T} A P=L R$. The diagonal elements of L satisfy $\lambda_{i, i}=1$ with $i=1,2, \ldots, r$ and the diagonal elements of R satisfy $\rho_{i, i} \neq 0$ for $i=1,2, \ldots, r$.

5. Filling in the Blanks

a. The Main Factors

GF used the space of A to hold the two principal matrices, L and R, in the factorization of A. To see them, we will extract the lower triangular matrix, L, and upper (right) triangular matrix, R, from the final copy of A (3.23). Initially, let $L=R=0$. We form L by placing ones on its diagonal and filling the elements below the diagonal from the corresponding locations in A.

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3.34}\\
5 / 9 & 1 & 0 & 0 \\
1 & 9 / 37 & 1 & 0 \\
5 / 9 & 1 / 37 & 15 / 61 & 1
\end{array}\right]
$$

R is formed with the diagonal elements (i.e., pivots) and upper triangle of A.

$$
R=\left[\begin{array}{cccc}
9 & 7 & 2 & 4 \tag{3.35}\\
0 & 37 / 9 & 26 / 9 & 34 / 9 \\
0 & 0 & 122 / 37 & 114 / 37 \\
0 & 0 & 0 & -15 / 183
\end{array}\right]
$$

b. Permutation Matrices

The bookkeeping allows us to construct P and Q very quickly. To form $P \in \Re^{n \times n}$, we set every column, j, in P equal to the axis vector implied by π_{j}, the $j^{\text {th }}$ element of p. This yields the permutation matrix, P, that will satisfy the $L R$ Theorem, namely

$$
p=\left[\begin{array}{l}
\pi_{1} \tag{3.36}\\
\pi_{2} \\
\pi_{3} \\
\pi_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
1 \\
2
\end{array}\right] \quad \Longrightarrow \quad P=\left[\begin{array}{llll}
e_{4} & e_{3} & e_{1} & e_{2}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Similarly, every column, j, in $Q \in \Re^{m \times m}$ is set equal to the axis vector implied by ψ_{j}, the $j^{\text {th }}$ element of q. For our example, we have

$$
q=\left[\begin{array}{l}
\psi_{1} \tag{3.37}\\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
4 \\
1
\end{array}\right] \quad \Longrightarrow \quad Q=\left[\begin{array}{llll}
e_{3} & e_{2} & e_{4} & e_{1}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

c. Check

Now we check to make sure that our solution satisfies the LR Theorem.
First, consider the product $L R$:

$$
\begin{align*}
L R= & {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
5 / 9 & 1 & 0 & 0 \\
1 & 9 / 37 & 1 & 0 \\
5 / 9 & 1 / 37 & 15 / 61 & 1
\end{array}\right]\left[\begin{array}{cccc}
9 & 7 & 2 & 4 \\
0 & 37 / 9 & 26 / 9 & 34 / 9 \\
0 & 0 & 122 / 37 & 114 / 37 \\
0 & 0 & 0 & -15 / 183
\end{array}\right] } \tag{3.38}\\
& =\left[\begin{array}{llll}
9 & 7 & 2 & 4 \\
5 & 8 & 4 & 6 \\
9 & 8 & 6 & 8 \\
5 & 4 & 2 & 3
\end{array}\right] \tag{3.39}
\end{align*}
$$

And

$$
\begin{gather*}
Q^{T} A P=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
2 & 3 & 4 & 5 \\
4 & 6 & 8 & 5 \\
2 & 4 & 7 & 9 \\
6 & 8 & 8 & 9
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \tag{3.40}\\
=\left(Q^{T} A\right) P=\left[\begin{array}{llll}
2 & 4 & 7 & 9 \\
4 & 6 & 8 & 5 \\
6 & 8 & 8 & 9 \\
2 & 3 & 4 & 5
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \tag{3.41}\\ \tag{3.42}
\end{gather*}
$$

Our factorization satisfies $Q^{T} A P=L R$.

d. Solution

Now we solve the system. Recall that Gaussian elimination operated on the matrix, A, and the right-hand side, b, at the same time. The end result of GE is that A is reduced to upper triangular form by successive elimination of the lower triangle so that we could solve for u with a relatively easy back substitution.

The strategy of Gauss factorization is different. First, b is not part of the factorization process. Secondly, even though we are changing A, we know that
we can get it back at the end (if we want to), so there is no need to save the original A. Now, using the $L R$ Theorem, we complete the solution. Recall that the original system was

$$
\begin{equation*}
A u=b . \tag{3.43}
\end{equation*}
$$

The factorization process constructs permutation matrices P and Q and transforms the original matrix A into a combined version of L and R. Further (by the $L R$ Theorem) we know that these matrices satisfy

$$
\begin{equation*}
Q^{T} A P=L R \tag{3.44}
\end{equation*}
$$

Now, by multiplying (3.44) through by Q from the left and P^{T} on the right, we see that

$$
\begin{equation*}
Q Q^{T} A P P^{T}=Q L R P^{T} \tag{3.45}
\end{equation*}
$$

Performing the cancellations on the left-hand side, we have

$$
\begin{equation*}
A=Q L R P^{T} \tag{3.46}
\end{equation*}
$$

This is the factorization of A. Substituting this into (3.43) yields

$$
\begin{equation*}
Q L R P^{T} u=b \tag{3.47}
\end{equation*}
$$

or

$$
\begin{equation*}
L R P^{T} u=Q^{T} b \tag{3.48}
\end{equation*}
$$

Now let $\tilde{b}=Q^{T} b$ and let $\tilde{u}=P^{T} u$. Then

$$
\begin{equation*}
L R \tilde{u}=\tilde{b} \tag{3.49}
\end{equation*}
$$

Further, let $R \tilde{u}=c$ for some unknown vector, c. We have

$$
\begin{equation*}
L c=\tilde{b} \tag{3.50}
\end{equation*}
$$

Since we know L and b, we may solve for c by a simple forward substitution. Then, using c and knowing that $R \tilde{u}=c$, we perform a simple back substitution and determine \tilde{u}. Finally, by definition, $\tilde{u}=P^{T} u$ (i.e., \tilde{u} is a mere permutation of u) so we can swap elements in \tilde{u} to arrive at u using $P \tilde{u}=u$.

Let us summarize this lengthy process into the main steps. The GF process factors $A=Q L R P^{T}$, changing the general matrix into a product where the most significant factors are both triangular. This reduces the hard problem to two easy ones. It is designed so that we can solve for u in two steps:

- Solve, by forward substitution, the system $L c=\tilde{b}$ for a vector, c, of unknowns.
- Solve. by back substitution, the system $R \tilde{u}=c$ for (a permutation of) the original unknowns, u.

So, for our example, the first step is to solve

$$
L c=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3.51}\\
5 / 9 & 1 & 0 & 0 \\
1 & 9 / 37 & 1 & 0 \\
5 / 9 & 1 / 37 & 15 / 61 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=Q^{T} b=\left[\begin{array}{r}
13 \\
-5 \\
-17 \\
0
\end{array}\right]=\left[\begin{array}{c}
\tilde{\beta}_{1} \\
\tilde{\beta}_{2} \\
\tilde{\beta}_{3} \\
\tilde{\beta}_{4}
\end{array}\right]=\tilde{b}
$$

Forward substitution, applied to this system, yields

$$
c=\left[\begin{array}{l}
c_{1} \tag{3.52}\\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{c}
13 \\
-110 / 9 \\
-1000 / 37 \\
-15 / 61
\end{array}\right]
$$

Now we know c, so we can solve the second triangular system, $R \tilde{u}=c$ for \tilde{u} by back substitution

$$
R \tilde{u}=\left[\begin{array}{cccc}
9 & 7 & 2 & 4 \tag{3.53}\\
0 & 37 / 9 & 26 / 9 & 34 / 9 \\
0 & 0 & 122 / 37 & 114 / 37 \\
0 & 0 & 0 & -15 / 183
\end{array}\right]\left[\begin{array}{c}
\tilde{v_{1}} \\
\tilde{v_{2}} \\
\tilde{v_{3}} \\
\tilde{v_{4}}
\end{array}\right]=\left[\begin{array}{c}
13 \\
-110 / 9 \\
-1000 / 37 \\
-15 / 61
\end{array}\right]=c
$$

which yields

$$
\tilde{u}=\left[\begin{array}{l}
\tilde{v_{1}} \tag{3.54}\\
\tilde{v_{2}} \\
\tilde{v_{3}} \\
\tilde{v_{4}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-11 \\
3
\end{array}\right]
$$

Now it is easy to recover u. Since we have defined $\tilde{u}=P^{T} u$, we know that $P \tilde{u}=u$ (a simple rearrangement of the elements that we have already found). We apply P to \tilde{u} and find that

$$
P \tilde{u}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \tag{3.55}\\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\tilde{v_{1}} \\
\tilde{v_{2}} \\
\tilde{v_{3}} \\
\tilde{v_{4}}
\end{array}\right]=\left[\begin{array}{c}
\tilde{v_{3}} \\
\tilde{v_{4}} \\
\tilde{v_{2}} \\
\tilde{v_{1}}
\end{array}\right]=\left[\begin{array}{c}
-11 \\
3 \\
2 \\
1
\end{array}\right]
$$

Comparing this to earlier solutions, we find that GF has arrived at the same solution. In these examples, the notion of elimination was developed first. The GE process performs successive eliminations beneath its pivots and reduces A to triangular form, and then the solution is available in only n^{2} flops. GF spends an almost identical amount of work in the reduction process, but the result is a factorization with L and R being the significant factors. (They are the only ones that are more than a permutation of the identity). In the examples, we used pivoting because it was practical. Now let us take a closer look at the justifications for pivoting.

F. PIVOTING FOR SIZE

The issue of pivoting is a very interesting and important one. We concluded that we must pivot or face the possibility of attempting to divide by zero, an unacceptable option. To solve this problem, we may pick any nonzero element in $A(k: m, k: n)$ and perform the column and row interchanges required to install it as the new pivot (k is the pivot index). There are many strategies that we could adopt.

The logical question would be something like: "Given that we must pivot, what is the best means available?" But the answer is not so easy, and there are many trade-offs to be considered. We are faced with choosing along a spectrum, where speed lies at one end and accuracy lies at the other. For instance, we could begin a search and pick the first nonzero element in this area. Or, we could search for the row with the most nonzero elements (that had a nonzero element in the $k^{\text {th }}$ column).

The two most common strategies for pivoting are the partial and complete methods, which we have discussed. We determined that partial pivoting would work perfectly (with no error) if A was nonsingular and the storage and arithmetic could be handled with infinite precision. If infinite precision were available, we could stop right here. There would be no need to try to refine the method. In a finite-precision machine, however, we must deal with the issue of errors.

To deal with errors, the problem must be stated more precisely. The errors that concern us would arise due to growth of the elements of L and/or R as we step through the stages of Gauss. In the end, partial pivoting guarantees that all of the elements of L will be, at most, unity. This is easy to see. The pivoting strategy chooses each pivot to be the largest element (in absolute value) in column k at or below row k. This value is installed at $A(k, k)$ and everything below the pivot is divided by the pivot.

Unfortunately, partial pivoting cannot make the same guarantee for the elements of R. It helps: the multipliers are less than or equal to one in absolute value. The elements of R are bounded by $2^{n-1} a$, where a is the largest absolute value of the elements in A. This bound is not normally attained "in practice". [Ref. 23]

Growth is an indicator of trouble in this process. If we cannot control it completely, we should, at a minimum, monitor it. The growth factor, $g(n)$, of a Gauss factorization process for $A \in \Re^{n \times n}$ is defined as follows. Let a be the largest absolute value in the original matrix, A. Let b be the largest absolute value that occurs in any Gauss transform, G, including the first one, $G=A$. Then $g(n)=b / a$ gives a growth factor normalized by a (i.e., $g(n) \geq 1$).

A great deal of analysis has been done on this subject. Wilkinson showed that, with complete pivoting and real matrices, $g(n)$ grows much more slowly than 2^{n}. He conjectured that $g(n) \leq n$. The latter has recently been disproved, with a counterexample by Nicholas Young. [Ref. 23]

As a practical matter, when one seeks to monitor growth one uses complete pivoting. To consider performance, one uses the partial pivoting strategy. The growth factor, $g(n)$, is easy to monitor with a complete pivoting strategy since we are moving through the entire Gauss transform area at each stage anyway. For clarity, the pivoting algorithms and the Update algorithm are listed separately in this chapter. In real code (e.g., Appendix F), however, the pivot for stage $(k+1)$ should be located during the update of G in stage k (to avoid unnecessary passes through the matrix). This would mean extra work in the partial pivoting algorithm. Since the primary reason for using partial pivoting is performance, it is counterproductive to monitor $g(n)$ while using partial pivoting. A description of both pivoting policies, in algorithm form, follows.

Algorithm 3.1 (Partial Column Pivoting for Size) Given the matrix of coefficients, $A \in \Re^{m \times n} ;$ a permutation vector, $q \in \Re^{m}$; and an index, k, indicating the pivot column, this algorithm performs partial pivoting. First, the pivot element is located at $A(s, k)$ with $s \geq k$. Once the pivot has been located, rows s and k are swapped to install the new pivot. Additionally, elements in q, indexed by s and k, are swapped to record the row interchanges.

begin PP

$s=k ;$
for $i=(k+1): m$
if $(|A(i, k)|>|A(s, k)|)$

$$
s=i
$$

end if
end for
if $(s \neq k)$
for $j=1: n$
$x=A(k, j) ;$

$$
A(k, j)=A(s, j)
$$

$$
A(s, j)=x
$$

end for

$$
\begin{aligned}
& i=q(k) \\
& q(k)=q(s) \\
& q(s)=i
\end{aligned}
$$

end if
end PP

Algorithm 3.2 (Complete Pivoting for Size) Given the matrix of coefficients, $A \in \Re^{m \times n}$; permutation vectors, $p \in \Re^{n}$ and $q \in \Re^{m}$; and an index, k, indicating the pivot row and column, this algorithm performs complete pivoting. First, the pivot element is located at $A(s, t)$. Once the pivot has been located, rows s and k and columns t and k are swapped to install the new pivot. The permutation vectors are updated accordingly.

begin PC

$$
\begin{aligned}
& s=k \\
& t=k
\end{aligned}
$$

$$
\text { for } i=k: m
$$

$$
\text { for } j=k: n
$$

$$
\text { if }(|A(i, j)|>|A(s, t)|)
$$

$$
s=i
$$

$$
t=j
$$

end if
end for
end for
if $(s \neq k)$
for $j=1: n$

$$
x=A(k, j) ; \quad A(k, j)=A(s, j) ; \quad A(s, j)=x
$$

end for
$i=q(k): \quad q(k)=q(s) ; \quad q(s)=i ;$
end if
if $(t \neq k)$
for $i=1: m$

$$
x=A(i, k) ; \quad A(i, k)=A(i, t) ; \quad A(i, t)=x
$$

end for

$$
i=p(k) ; \quad p(k)=p(t) ; \quad p(t)=i
$$

end if
end PC

G. SEQUENTIAL ALGORITHMS

The examples considered have described the Gauss process. We first considered elimination (GE) and then a factorization method (GF). Both methods require work of the same order, so the latter, yielding a factorization of A is much preferred. Algorithms for the GF process are described below. The arithmetic in the Gauss transform area, G, is performed the same (regardless of pivoting strategy) so a separate algorithm is given for updating G. The algorithms GFPP (pivoting, partial) and GFPC (pivoting, complete) are given following the updating algorithm. These algorithms are adapted from Gragg [Ref. 23].

Algorithm 3.3 (Update Gauss Transform Area) Given the matrix of coefflcients, $A \in \Re^{m \times n}$; and k, the pivot column, this algorithm performs the appropriate arithmetic throughout the pivot column and Gauss transform area, G, of A.

begin Update

$$
\begin{array}{ll}
x=A(k, k) ; & (x \text { is the pivot value) } \\
\text { for } i=(k+1): m & \text { (pivot column division) } \\
& A(i, k)=A(i, k) / x ;
\end{array}
$$

end for

$$
\text { for } i=(k+1): m
$$

$$
x=A(i, k) ; \quad \text { (now } x \text { is the multiplier) }
$$

$$
\text { for } j=1: n
$$

$$
A(i, j)=A(i, j)-x \times A(k, j)
$$

end for
end for
end Update

Algorithm 3.4 (Gauss Factorization with Partial Pivoting) Given the matrix of coefficients, $A \in \Re^{n \times n}$, this algorithm modifies (overwrites) A with a unit lower triangular matrix (with an implicit diagonal), $L \in \Re^{n \times n}$, and an upper (right) triangular matrix, $R \in \Re^{n \times n}$ having nonzero diagonal elements (the pivots). The process also forms the row permutation vector, q, and the corresponding permutation matrix, $Q \in \Re^{n \times n}$, that results from partial column pivoting for size. The algorithm gives the factorization: $Q^{T} A=L R$.
begin GFPP

$$
\begin{aligned}
& n=\operatorname{order}(A) \\
& Q=\operatorname{zeros}(n, n) \\
& \text { for } j=1: n \\
& \quad q(j)=j
\end{aligned}
$$

end for

$$
\text { for } r=1: n
$$

$$
\begin{aligned}
& \text { if }(A(k, k)=0) \\
& \text { print " } A \text { is singular!" } \\
& \text { exit }
\end{aligned}
$$

end if

$$
\text { Update }(A, k)
$$

end for
for $j=1: n$

$$
Q(q(j), j)=1.0
$$

end for
end GFPP

Algorithm 3.5 (Gauss Factorization with Complete Pivoting) Given a matrix of coefficients, $A \in \Re^{m \times n}$, the following algorithm modifies (overwrites) A with a unit lower trapezoidal matrix (with implicit diagonal), $L \in \Re^{m \times n}$, and an upper (right) trapezoidal matrix, $R \in \Re^{m \times n}$. The diagonal elements of R are nonzero (pivots). The process forms permutation matrices, $P \in \Re^{n \times n}$ and $Q \in \Re^{m \times m}$, to reflect the complete pivoting for size. These matrices are formed to satisfy the $L R$ Theorem: $Q^{T} A P=L R$.

begin GFPC

```
\(m=\operatorname{rows}(A) ; \quad n=\operatorname{cols}(A) ;\)
\(P=\operatorname{zeros}(n, n) ; \quad Q=\operatorname{zeros}(m, m) ;\)
for \(j=1: n\)
    \(p(j)=j ;\)
```

end for
for $i=1: m$
$q(i)=i ;$
end for
for $r=1: n$
$\mathbf{P C}(A, q, k)$
if $(A(k, k)=0)$
print " A is singular!"
exit
end if
Update (A, k)
end for
for $j=1: n$

$$
P(p(j), j)=1.0 ;
$$

end for
for $j=1: m$

$$
Q(q(j), j)=1.0
$$

end for

end GFPC

H. CONJUGATE GRADIENTS

Time permits only a brief synopsis of the method of conjugate gradients (CG). This method was described by Magnus R. Hestenes and Eduard Stiefel [Ref. 18]. CG possesses some very nice characteristics and it is quite different from the Gauss method. Once again, we begin with a system of linear equations

$$
\begin{equation*}
A u=b \tag{3.56}
\end{equation*}
$$

The algorithm given by Hestenes and Stiefel is designed for $A \in \Re^{n \times n}$ symmetric and positive definite (Appendix A). Let $s \in \Re^{n}$ be the vector that would solve (3.56) exactly, so that $A s=b$. Let $u_{i} \in \Re^{n}$ be the estimate of the solution, s, produced in the $i^{\text {th }}$ iteration. The original estimate, u_{0}, is merely a guess (it may be a good guess). For instance, in the absence of better information, we could choose u_{0} to be the vector of all zeros or all ones.

The CG process takes our initial guess and develops a (guaranteed) better estimate for the next stage. To measure the progress, we could use the residual vector

$$
\begin{equation*}
r_{i}=b-A u_{i} \tag{3.57}
\end{equation*}
$$

but Hestenes and Stiefel warn that its Euclidean norm, $\left\|r_{i}\right\|_{2}$, may actually increase in every step but the last! A more reliable measure, called the error vector

$$
\begin{equation*}
e_{i}=s-u_{i} \tag{3.58}
\end{equation*}
$$

has monotonically decreasing length. After n iterations of the CG process, we are guaranteed to have a very good estimate u_{n} of s. In fact, if no rounding errors occur, we have $u_{n}=s$. In practice, CG can find a very good estimate, u_{m}, of s in m iterations, with $m \ll n$. The process "terminates in at most n steps if no rounding-off errors are encountered." [Ref. 18: p. 410]

The algorithm below is adopted from Hestenes and Stiefel [Ref. 18]. Before considering the algorithm, however, we should define the key term, conjugate. For A symmetric, two vectors $x \in \Re^{n}$ and $y \in \Re^{n}$ are said to be A-orthogonal (or conjugate) if the relation $x^{T} A y=(A x)^{T} y=0$ holds [Ref. 18: p. 410]. This is an extension of vector orthogonality, $x^{T} y=0$. The algorithm given below is very simple. The iteration blindly proceeds from $i=0$ to $i=n$. A more sophisticated (finite precision) scheme would set a tolerance (notion of "good enough") and stop (exit the loop) when this criterion was satisfied.

Algorithm 3.6 (The Method of Conjugate Gradients) Given the symmetric, positive definite matrix of coefficients, $A \in \Re^{n \times n}$; and an initial guess, u_{0}; for the solution, s; of the system $A u=b$, this algorithm (in the absence of rounding-off errors) finds $u_{i}=s$ in i iterations ($i \leq n$). The algorithm keeps track of a residual $v e c t o r, r_{i}$, and direction vectors, p_{i}. The residuals, r_{i}, are mutually orthogonal and the direction vectors, p_{i} are mutually conjugate (A-orthogonal).

begin CG

$$
\begin{array}{lr}
u_{0}=z e r o s(n) & \text { (arbitrary initial guess) } \\
p_{0}=r_{0}=b-A u_{0} & \\
\text { for } i=0: n & \\
\delta=p_{i}^{T} A p_{i} & \text { (denominator used below) } \\
\alpha_{i}=\left(p_{i}^{T} r_{i}\right) / \delta & \text { (scalar multiplier used below) } \\
u_{i+1}=u_{i}+\alpha_{i} p_{i} & \text { (estimate of solution) } \\
r_{i+1}=r_{i}-\alpha_{i} A p_{i} & \text { (residual vector) } \\
\beta_{i}=\left(r_{i+1}^{T} r_{i}\right) / \delta & \\
p_{i+1}=r_{i+1}+\beta_{i} p_{i} & \text { (direction vector) }
\end{array}
$$

end for
end CG

I. SUMMARY

This chapter develops the Gaussian elimination process, the Gauss factorization process, pivoting strategies, and (briefly) the method of conjugate gradients. Each of the corresponding algorithms possesses potential for parallel solution. A parallel implementation of GF appears in the following chapter. Both partial and complete pivoting are pursued, with further discussion on their implications in a parallel environment.

IV. PARALLEL DESIGN

Nature is pleased with simplicity, and affects not the pomp of superfluous causes.

- SIR ISAAC NEWTON (1642-1727)

Sequential algorithms for Gauss factorization (GF) and the method of conjugate gradients (CG) are established in Chapter III. The goal of this chapter is to show parallel algorithms for Gauss factorization. The C programs that implement these algorithms are discussed in Chapter V and listed in Appendix F.

Parallel algorithm design is a process that includes many considerations. The question of how to achieve parallelism is largely an art and is not discussed here. The method used in this research is often called a workfarm approach because the algorithm farms out work to processors. Equivalently, it may be called a managerworker model. When we distribute the problem across many processors in a workfarm style, there are quite a number of issues that warrant careful consideration. The concerns associated with programming a parallel machine-even with a relatively simple model such as this-could occupy volumes.

Communications, load balancing, granularity, and other considerations abound. Metrics like speedup and efficiency should be used to lend credibility to the parallel nature of the algorithm. Additionally, we should consider the usual issues of maintainability, readability, portability, and other traits commonly associated with good (sequential) programming practice. Parallel codes must be clear combinations of sequential codes that are joined together in a logical manner. Simplicity should hold a place of great esteem in a parallel algorithm. The rest of this chapter introduces the issues of parallel design, particularly as they pertain to Gauss factorization.

A. INTERPROCESSOR COMMUNICATIONS

Interprocessor communication is one of the most fundamental issues in parallel processing and, quite possibly, the most involved. Without a means of communicating (in a message-passing environment), the multiprocessor system is meaningless. The implications of any communications scheme are many and the interactions can be quite complex. Exhaustive coverage of this issue is out of the question, so we will consider a few of the most essential ideas.

1. The Network

A network is the part of a multiprocessor system's hardware that bears the interprocessor communications burden. It is a combination of nodes and links that connect those nodes, and it is the foundation upon which all communications must build. We will also refer to the nodes of a multiprocessor-using somewhat loose terminology-as processors. The term node is a more general term. Nodes are typically more sophisticated than a simple central processing unit (CPU) or, for that matter, any other sort of processor. The link is a wire that connects two nodes. An interconnection topology describes the pattern of links used to connect the nodes of a network. The network can be drawn or illustrated so that we can see how its nodes are connected. Appendix C discusses interconnection topologies and it gives a description (and illustrations) of the particular scheme used in this research: the hypercube.

Intel combines an 80386 CPU with an 80387 math coprocessor and communications facilities to form a "CX" node for the iPSC/2 that was used in this research. INMOS provides the same general capabilities but packages it all on a (very sophisticated) single chip, called a transputer. Figure 4.1, from INMOS' T9000 Transputer Products Overview Manual [Ref. 25: p. 31], shows a high-level block diagram of the
components of a T9000 transputer. Thus, any node of a message-passing multiprocessor system can be thought of as a combination of computing and communications facilities. It may possess other capabilities as well.

2. Message Routing

The machines used in this research exhibit different message transmission schemes. The transputer system employs high-speed (20 megabits per second) point-to-point serial communications and store-and-forward message passing. That is, for multi-hop communications, each node along the way must receive the message, store it in local memory temporarily, and then pass it to the next node in the route.

The Intel iPSC/2 uses another technique, called circuit switching or directconnect communications. This approach is much like our telephone system. First, the originator of the message sends a small message containing information about the message (e.g., destination node number, length of message) to the destination via the nodes in-between. As this small header packet makes its way to the destination the nodes along the way flip switches, closing a circuit from the sender to the receiver. Once this circuit is established, the message proceeds from the sender to the destination without interruption.

Each method has its advantages and disadvantages. The circuit switching approach allows for fewer interruptions along the way, but it ties up the entire path for the duration of the communication. The store-and-forward method imposes delays for storing the message into, and then retrieving it from, the memory of every node along the way. (A more complete description of these two techniques, together with experimental results, is given in Appendix B). For the algorithms employed in this research, almost all communications were "nearest neighbor" in the hypercube. In this case, the two approaches to message routing are insignificant and the nearest neighbor performance becomes more important.

Figure 4.1: IMS T9000 Block Diagram

3. Concurrent Computing and Communicating

The nodes of a multiprocessor machine should be able to both compute and communicate efficiently and concurrently. This is no small undertaking. The computing side must access memory to accomplish its mission, but the messagepassing begins by drawing data out of memory and ends by storing data into memory. Therefore, at a minimum, we have competition related to memory accesses. Furthermore, the computing and communication must be synchronized to some extent. The algorithms used in this research used blocking communications-described in Appendix E-which enforces synchronization.

There are overheads associated with communications and this synchronization problem. Bryant showed how transputers perform under various communication loads [Ref. 26] and this is mentioned in Appendix E. The issue of overheads is one that Charles Seitz considered for the "Cosmic Cube." Much, but not all, of the overhead is communication-related. Seitz listed three of the major problems [Ref. 27: p. 28]:
(1) the idle time that results from imperfect load balancing, (2) the waiting time caused by communications latencies in the channels and in the message forwarding, and (3) the processor time dedicated to processing and forwarding messages, a consideration that can be effectively eliminated by architectural improvements in the nodes.

Included in these costs, we should also recognize that some amount of time is required for the processor to perform "context switching" (changing jobs) and/or coordination with a special-purpose processor that we might call the communications manager.

Although the issue of concurrent communication and computing is a very complex one, we may consider significant issues that are related to the efficiency of communications and the effect upon the processor. Geoffrey Fox presents the notion of comparing communications ability to processing ability [Ref. 28: pp. 50-51]. Let $t_{\text {calc }}$ be "the typical time required to perform a generic calculation. For scientific
problems, this can be taken as a floating-point calculation $a=b \times c$ or $a=b+c$." Furthermore, let $t_{\text {comm }}$ be "the typical time taken to communicate a single word between two nodes connected in the hardware topology." Then the ratio

$$
\frac{t_{\text {com }}}{t_{\text {calc }}}
$$

is a general characteristic of a particular system that can be quite useful in comparing machines. Fox uses this ratio in much of the rest of his work.

A parallel machine must necessarily possess a capable communications subsystem, but this is not enough. The program should also make prudent use of the communications facilities. This means that the programmer and/or compiler must exhibit a good understanding the machine's communications abilities and weaknesses. Some characteristics are nearly universal. Most machines, for instance, reward the use of long messages because there is an overhead-nearly independent of message length in many cases-to sending any message. Other characteristics are very much machine-dependent. This means that the programmer should be relatively familiar with the communications abilities and characteristics of the target machine.

4. Accessing the Clock

The ability to accurately measure the time required by communications and computations, preferably at the host and every node in the system, is absolutely essential in a multiprocessor environment. Profiling, in a sequential program, allows us to compare the time required by various parts of a program. Timing in a parallel environment allows us profile the code. Thus we can determine the time required for instructions, loops, functions, or communications.

Profiling is an even more important practice for parallel coding than it is in the sequential case. The only way for a parallel program to be useful is if it can be
can be implemented efficiently upon an acceptable number of processors. That is, in general, the only object in choosing a multiprocessor system over a sequential machine is the speed with which computation can be performed. One of the best tools available to the parallel programmer is the ability to see where and how much time is being spent.

At a minimum, we need the ability to sample a clock with reasonable precision. Both machines and compilers used in this research provide this capability (see timing.h in Appendix F for details). The transputers offer a choice of frequencies: the clock associated with low priority processes has a period of 64 microseconds and the high priority clock offers one microsecond ticks. The iPSC/2 mclock() function gives time in milliseconds.

B. METRICS FOR PARALLEL COMPUTING
 1. Complexity

Perhaps the most obvious measures for a parallel algorithm are simply those that we use for sequential algorithms. We want to keep time and storage requirements to a minimum. Perhaps the major difference in complexity analysis for a parallel algorithm is that we are primarily interested in a per-processor notion of complexity. If the problem has been farmed out in a fair manner, complexity analysis for the parallel case is merely an extension of the sequential case.

Consider the matrix $A \in \Re^{n \times n}$. Suppose that its elements are 8 -byte, double-precision, floating-point values (type double in C). Let M_{p} denote the total memory (in bytes) required to store A on p processors and let T_{p} denote the time required for p processors to solve the system characterized by A. Then $M_{1}=8 n^{2}$ bytes of storage, but (ideally) $M_{8}=n^{2}$. When the problem is distributed across p processors simultaneously, the processors can share the storage burden.

Exceptions abound. For certain problems, it may actually be convenient (faster or more reliable) to store the entire matrix at each processor. Nevertheless, in most cases we would like to minimize local memory requirements. The Gauss factorization algorithm considered near the end of this chapter is no exception. Indeed, the transputers used in this work had only 32 kilobytes of storage each and the results of Chapter VI for transputers show how this can dictate the size of the problem that can be executed. The concepts of time and storage complexity have been developed in detail for sequential algorithms and they seem to hold a place in parallel algorithm assessment as well. We consider other measures that have been developed for parallel computing in the following section.

2. Contemporary Measures

The concepts of speedup and efficiency (Appendix A) are two of the most common performance measures currently associated with parallel computing, with the ideal case (100% efficiency) yielding $t_{P}=t_{1} / P$ on a P-processor system. Selim Akl proposes the following criteria for analyzing algorithms [Ref. 29: pp. 21-28]:

- Running Time: Running time $t(n)$ is the time required to execute an algorithm for a problem of input size n. Akl lists three ways to express this notion. First, we may count the steps in an algorithm. Akl distinguishes between computational steps (i.e., something like flops) and routing steps that are associated with interprocessor communication. Second, we have lower and upper bounds (e.g., the complexity notation presented in Appendix A). Finally, we have speedup. Akl gives the usual definition of speedup but clarifies it somewhat (details below).
- Number of Processors: Second in importance, Akl considers the number of processors required by an algorithm. He uses $p(n)$ to denote the number of processors required for a problem of size n.
- Cost: Akl defines the cost, $c(n)$ for a parallel algorithm as the product of the first two factors. That is, $c(n)=t(n) \times p(n)$.
- Other Measures: In this category, we have no less than three other qualities of a parallel system that deserve consideration. The area (i.e., chip real estate) required by the processors is significant. The length of the links, as well as any patterns figures in (regularity and modularity). And finally, the period between processing different elements of an input is important.

Apparently metrics for parallel computing are still developing. There are several very useful concepts such as speedup and efficiency. The definition of speedup, at a first glance, is rather standard. It doesn't take much probing, however, to find that different authors make different assumptions. Akl defines speedup S in the usual manner.

$$
\begin{equation*}
S=\frac{t_{1}}{t_{P}} \tag{4.1}
\end{equation*}
$$

except that he is somewhat more specific about the times. He defines t_{1} as the "worst-case running time of fastest known sequential algorithm for problem" and t_{P} as "worst-case running time of parallel algorithm." [Ref. 29: p. 24] He has been more specific than most authors, but it seems likely that the algorithms, method of obtaining times t_{1} and t_{P}, and systems should also be specified. Speedup is defined loosely in most cases. A parameterization to accompany speedup would be tedious, but useful. Until speedup becomes a standard term with accepted meaning, we shall have to specify exactly what it means. We should be more careful with this term.

3. Other Ideas

Akl has appropriately distinguished between computational steps and routing steps. The term floating-point operations (flops) has become quite popular (along with benchmarks) and this is a useful means of expressing the computational ability of a machine (for floating-point applications). The notion of routing, however, is somewhat vague. Nevertheless, this idea must be addressed. It should probably become more specific as we talk about similar machines.

The machines used for this research were MIMD message-passing systems. We can get much more specific about "routing steps" for such a machine. First, using the clock as a stopwatch, we can profile any segment of code (including calculations and/or communications). An implementation specific version of Fox's $t_{\text {comm }} / t_{\text {calc }}$ ratio can be instructive. It is important to apply this ratio to the hardware as Fox defines it, but it is equally important to recognize the role of the software (algorithm). That is, for some specific implementation, we should be interested in finding some measure of how much time is spent communicating and how much time is spent computing. More specifically, a careful profile could be made of a program in the following manner.

The ratio of cumulative (i.e., over the execution of the entire program) time spent communicating to time spent computing should be considered as a first cut, especially if performance (efficiency) is weak. Algorithms such as Gauss factorization are executed in stages, within a loop of some sort. In this case, the $t_{\text {comm }} / t_{\text {calc }}$ ratio per iteration is an interesting figure (and-if the loop represents most of the program's execution time-this should be approximately equal to the cumulative figure).

When possible, the analysis of communications complexities should be analyzed carefully. For instance, in the Gauss factorization code that is presented in

Appendix F, a C structure is used to relay the owner (node id) of a pivot and the pivot's row, column, and value. This structure is 20 -bytes of data and we know the pattern with which these structures are moved about during the course of the program. It is important to quantify communication like this when possible. The vague notation should lose significance in the presence of such concrete information.

There are other important and related ideas. The frequency and volume of communications traffic is easy to determine with a high degree of accuracy for algorithms such as Gauss factorization. Once again, in the presence of this kind of information, we should dispense with vague concepts. It is useful to consider something like a pie chart showing the various amounts of time spent on each portion of the major loop in a program. Indeed, this was a part of the development of the Gauss code given in this thesis. Tools such as these are important in refining parallel algorithms and streamlining code.

The parallel program designer must consider many other issues regarding communications. Graph theory notation is a natural tool. A link-by-link analysis of the communications over the course of a program is not out of the question (especially if the communication is merely a repetition of very simple messages). Efficient use of the topology is important. We should consider the percentage of links used, balancing of the communications load, frequency of traffic for each link (often the communication comes in bursts and often between iterations of the basic algorithm), flow rate (in bytes per second) for each link during the bursts or over longer periods of time, timelines showing dependencies, and other specific characteristics of communications. Analysis should be done on a per-stage basis for algorithms that exhibit iteration (loops).

Perhaps most importantly, a plan for interprocessor communication should begin well in advance, before the code is ever written. A reactive approach is necessary, like debugging code. But a proactive, strong design effort can simplify matters.

The notion of communicating sequential processes (CSP) deserves attention. This model is due to C. A. R. Hoare [Ref. 30], and it is never far away in the world of transputers. There is a very close relationship between transputers, occam (their native language), and CSP. CSP is a useful paradigm for this sort of (message-passing) machine. When possible, a problem should be logically separated into processes. The division of the problem should be natural, so that every process represents a logical group of tasks. The processes are allowed channels to communicate, and these channels are implemented as either links in hardware or buffers in memory if, for instance, two processes on the same processor wanted to communicate.

If a problem is designed correctly, we should have substantial amounts of work within a process and minimal interprocess communication. If the processes and channels are represented as the nodes and edges of a directed graph, we can make use of some nice tools and theorems from graph theory. For instance, we should like to maximize computation and minimize communications. One natural method is to begin with atomic processes and start to build.

Suppose that we have many such processes (at least as many as processors) and we represent them as the nodes of a directed graph. We can assign the processes (nodes) a weight that reflects some form of computational difficulty. This should be a fairly concrete number, assuming that the task (process) is well-defined. It might be the number of flops per iteration, for example. Next, the channels should be clearly indicated as weighted, directed edges. The weight should usually be a very concrete number as well, like the number of bytes that passes along that channel between each stage of a computation.

This model gives the problem the sort of order that is necessary to keep the parallel design simple, logical, and formal (i.e., friendly for proof of program correctness). Once the problem has been expressed in such a manner, there are many options. For example, we could consider minimum cuts of the flow rates to
decide how to efficiently apportion processes to processors. This mapping alone could greatly enhance the performance of code.

It seems that much of the work in this area is rather imprecise and generally unacceptable. Granted, parallel design methodology is a relatively recent problem but it can be improved substantially. Good parallel designs that consider these kinds of issues and express them clearly will likely be in high demand as parallel computing machinery develops.

C. PARALLEL METHODS

The wide-ranging capabilities of contemporary computing machinery are evident. An exhaustive list would demand pages, but most readers could readily name several applications that bear little resemblance to each other. For a single, very specific machine there is almost no limit to the combinations of sequential instructions that it may carry out. Put another way, a particular machine can be designed and built in a few months or years depending upon the level of sophistication involved. But the different types and purposes of software that may be created to run on that single machine are nearly limitless. Consider Householder's comments on the art of computation [Ref. 17: p. 1]:

If a computation requires more than a very few operations, there are usually many different possible routines for achieving the same end result. Even so simple a computation as $a b / c$ can be done $(a b) / c,(a / c) b$, or $a(b / c)$, not to mention the possibility of reversing the order of the factors in the multiplication. Mathematically these are all equivalent; computationally they are not (cf. §1.2 and §1.4). Various, and sometimes conflicting, criteria must be applied in the final selection of a particular routine. If the routine must be given to someone else, or to a computing machine, it is desirable to have a routine in which the steps are easily laid out, and this is a serious and important consideration in the use of sequenced computing machines. Naturally one would like the routine to be as short as possible, to be self-checking as far as possible, to give results that are at least as accurate as may be required. And with reference to the last point, one would like the routine to be such that it is possible to assert with confidence (better yet, with certainty) and in advance that the results will be as accurate as may be desired, or if an advance
assessment is out of the question, as it often is, one would hope that it can be made at least upon completion of the computation.

- AISTON S. HOUSEHOLDER

Parallel algorithms are combinations of sequential ones, so their complexity can grow quickly. In general, the hardware issues surrounding parallel problems are mature and straightforward. Software, on the other hand, is developing and generally difficult to use.

In addition to the familiar design considerations for a straightforward sequential algorithm, the design of a parallel solution must specify:

- An awareness of the interaction between processing and communication. Frequency and duration (message length) of communications should be known, if possible. Additionally, we should know how this compares to the frequency and duration (flops) of computing work.
- A plan for interprocessor communication; including hardware and software.
- A scheme for memory usage.
- The granularity of the problem (i.e., should the processors be given larger or smaller "chunks" of work at a time).
- Load balancing among several processors.
- A method for accessing input/output resources.

This is a very high level look at the problem. The issue of communications alone, can be more than half of the problem. The simplicity of this short list does not do the problem justice. Correct execution, as in the sequential case, is very important. But parallel algorithms are subject to the added scrutiny of performance data (e.g., efficiency).

The methodology for constructing parallel algorithms is a very creative process, and there are many questions that can be asked. Is a highly efficient parallel solution possible, or is the problem bound by dependencies and sequential work? What is the ratio of time spent communicating to time spent computing? How nearly does a given algorithm approach the optimal solution? What would happen on some other number of processors? Are there any bottlenecks that can be eliminated? Nevertheless, the current performance of parallel machines and the promise of future architectures is more than adequate motivation to continue developing these products.

D. ALGORITHMS

With the preceding concerns in mind, let us consider the algorithm for Gauss factorization that was used in this work. The algorithm is given at a very high level because detail can be gleaned from Chapter V and from the actual code in Appendix F. The first consideration for GF was "How should the work be distributed?" There are many options. The matrix could be distributed by rows, or columns, or blocks. The method chosen in this case was a distribution of the columns of A across the nodes of the machine. The columns were distributed so that column j went to processor number $j(\bmod P)$ in a P-processor network.

Such a distribution scheme seems natural for several reasons. First, the work associated with the Gauss process moves toward the lower right-hand corner of the matrix $A \in \Re^{n \times n}$. By using a modulus assignment, and assuming that $n \gg P$, we have a situation where the load on the processors is nearly balanced for most of the process. Second, a column-oriented assignment places the pivot column on a single node at each stage. This makes division by the pivot value a simple task. It is interesting to note that a similar distribution of A by rows would have merit as well.

Once the matrix has been distributed, the code simply moves, in a synchronized fashion, from stage to stage of Gauss. At each stage, we must pivot according to some strategy. The complete pivoting showed especially poor performance since it involved a great deal of communication and synchronization between stages. The partial pivoting method allows us to determine which node will have the pivot and much less communication is required when this node simply broadcasts the pivot and pivot column. After the pivot node divides every element under the pivot by the pivot value, it broadcasts the entire pivot column to every other processor. When the processors obtain the pivot column, they use the multipliers to perform arithmetic in the Gauss transform area, and then proceed to the next stage.

The following algorithms give an overview of the programs that appear in Appendix F .

Algorithm 4.1 (Parallel GF: Host) At this level, the host code is essentially the same for both partial pivoting and complete pivoting. The program is very simple: distribute the columns, and then accept them back one-by-one. Let $A \in \Re^{m \times n}$ be the matrix of coefficients, and let P be the number of processors. This algorithm forms the modified copy of A by overwriting the original copy. After the $n^{\text {th }}$ column is returned from the nodes, we have the factored version of A that can be separated into L and R in the usual manner.

begin GF (Host)

for $j=0:(n-1)$
send $A(:, j)$ to node $(j \bmod P)$
end for
for $r=0:(n-1)$
receive $A(:, r)$ from node $(r \bmod P)$
end for
end GF (Host)

Algorithm 4.2 (Parallel GFPP: Nodes) Let $A \in \Re^{m \times n}$ be the entire matrix (held at the host). This algorithm is executed on each node in a P-processor network. Let the node number be N and let $A_{N} \in \Re^{m_{N} \times n}$ be the local copy of select columns of the matrix A (where $m_{N} \approx m / P$ is the number of columns held locally). Let G_{N} be that part of the Gauss transform area, G, that is held locally. This node receives every column, j, of A where $(j \bmod P)=N$.

begin GFPP (Nodes)

for $j=0:\left(m_{N}-1\right)$
receive column and place in $A_{N}(:, j)$
end for
for $r=0:(n-1)$
if $(r \bmod P)=N$
(pivot is held locally)
perform partial pivoting
broadcast pivot row index, s, to all nodes
perform pivot column arithmetic
broadcast pivot column to all nodes
else
receive pivot row index, s, and perform row interchanges receive broadcast of pivot column end if if $N=0$
send pivot column to host
end if
perform arithmetic in G_{N}
end for
end GFPP (Nodes)

Algorithm 4.3 (Parallel GFPC: Nodes) Let $A \in \Re^{m \times n}$ be the entire matrix (held at the host). This algorithm is exccuted on each node in a P-processor network. Let the node number be N and let $A_{N} \in \Re^{m_{N} \times n}$ be the local copy of select columns of the matrix A (where $m_{N} \approx m / P$ is the number of columns held locally). Let G_{N} be that part of the Gauss transform area, G, that is held locally. This node receives every column, j, of A where $(j \bmod P)=N$.

begin GFPC (Nodes)

```
for \(j=0:\left(m_{N}-1\right)\)
receive column and place in \(A_{N}(:, j)\)
end for
for \(r=0:(n-1)\)
```

locate best (local) pivot candidate
elect pivot (let node N_{P} hold the winner of the pivot election)
if $\left(N_{P}=N\right)$
broadcast pivot indexes, (s, t), to all nodes
perform pivot column arithmetic
broadcast pivot column to all nodes
else
receive pivot indexes, (s, t)
perform permutations
receive broadcast of pivot column
end if
if $N=0$
send pivot column to host
end if
perform arithmetic in G_{N}
end for
end GFPC (Nodes)

V. IMPLEMENTATION

A. ENVIRONMENT

Chapter IV introduces parallel algorithms for Gauss factorization (GF). The GF algorithms are produced for partial and complete pivoting strategies. All of the programs associated with this research are written in parallel versions of the C language and executed on two types of machines at the U. S. Naval Postgraduate School. The Math Department's iPSC/2 afforded eight of Intel's CX type processors arranged in a hypercube topology. The Parallel Command and Decision Systems (PARCDS) Laboratory in the Computer Science Department has more than seventy transputers available for the experiments. The discussion below gives a more exact description of the material and equipment used in the work.

1. Hardware

This section describes the machines upon which the work was carried out. A general knowledge is assumed, including familiarity with the Intel 80386 microprocessor, 80387 math coprocessor, and INMOS transputers. Some of this information is provided in Appendix B.

The hardware used in this research represents the state-of-the-art for the mid-to-late 1980s. These machines are quickly becoming outdated-fitting the history of computing-but both INMOS and Intel have more recent, competitive products in today's market and fine prospects for future machines. So, while they are a bit dated, the products used in this research represent important contemporary parallel architectures.

Figure 5.1: Hypercube Interconnection Topology: Order $n \leq 3$

a. Networks of Transputers

The majority of the research was performed upon hypercubes of order $n \in\{0,1,2,3\}$. These are the usual hypercubes (see Appendix C) and each is imbedded in the 3 -cube. Figure 5.1 shows this topology. Some of the transputer work for this thesis was performed by a network of sixteen IMS T800-20 transputers connected in nearly hypercube fashion (Figure 5.2). This is not identical to the 4cube, so it will be called the hybrid cube (it is used as a root with two subtrees that happen to be 3 -cubes). The subtrees of the hybrid cube can be distinguished by the first bit. One of the 3 -cubes has labels like $0 x x x$; the other is labeled $1 x x x$.

Figure 5.2: Hybrid Hypercube Interconnection Topology

The rationate behind building the hybrid cube is purely practical. The transputers have only four links. Assuming that we define nodes of the hypercube to be a single transputer, a pure hypercube of order four would be a closed interconnection scheme with no opportunity for input or output to or from the system. Here, the root node has been inserted between nodes zero (0000) and eight (1000). While this deals a horrible blow to the elegance of hypercube algorithms-particularly communications-it can be used effectively.

The hardware for the hybrid hypercube is configured with code by Mike Esposito [Ref. 31]. This gives us sort of an unlabeled version of the structure that appears in Figure 5.2. To make use of this configuration, the nodes must be labeled in a logical fashion. The Gray code (Appendix C) is a reasonable choice for labeling the nodes. The actual labeling is accomplished by a Network Information File (NIF) when the transputers are loaded by the Logical Systems C Network Loader, LDNET. A more detailed description of this process is contained in the file named hyprcube.nif in Appendix F.

Networks of transputers use point-to-point communications across bidirectional links. The links for this work operate at 20 megabits per second (bidirectionally). That is, ten megabits per second is a peak unidirectional transmission rate. Current transputer implementations employ a store-and-forward approach to message passing (see Appendix B) for multi-hop transmissions.

b. Intel iPSC/2

The iPSC/2 used for this research contained eight processors of the "CX" type (80386/803S7 combination). The host is an 80386-based IBM-compatible personal computer running AT\&T UNIX System V (version 3.2). The nodes run a local subset of UNIX called NX. The host is capable of supporting many users at once, but each node only supports a single-user.

Users can request p nodes, where $p=2^{n}$ for $n \in\{0,1,2,3\}$. If another user does not already have the requested portion of the cube, the request is granted. As long as nodes remain, another user can access them. For instance, one user could be working on two nodes and-at the same time-another user could access up to four others. While the first two users still possessed these six nodes, a third user could get one or both of the remaining two nodes.

Unlike the transputers, Intel uses a direct-connect circuit switching (see Appendix B) approach to multi-hop communications. There is an overhead associated with setting up the path for communication, but this cost is nearly the same regardless of how many hops the message cross. Once the circuit is established, the message can proceed directly from the origin to the destination with negligible interference from intermediate nodes.

c. Host and Root

The notion of host is similar on both machines, but there is a slight difference. The Intel hypercube is directly connected to the host. The transputer network, however, uses a substantially different protocol than the typical personal computer. Transputers employ point-to-point serial communications, using an 11bit link protocol with byte-by-byte acknowledgment. The acknowledge is a two-bit packet with dual meaning. The receiving transputer has begun to receive the byte and it has storage space for another.

In the transputer case, host means the PC. We use the term root transputer to identify the transputer within the host PC that acts something like a host to the attached network of transputers. Figure 5.1 illustrates this configuration. An IMS B004 extension board in the host PC holds a T414 root transputer. The B004 is plugged into the PC's bus and a parallel-serial converter lies between the PC and the T414. In Figure 5.1 the "host" is a PC and the "root" transputer is the T414.

The iPSC/ 2 host is simplified, and could almost be thought of as a combination of the host and root for the transputer case. Since the entire thesis uses the same programs for both machines, the root and host terminology can become confusing. As it is not always convenient to express this difference in painstaking detail, I will use the terms somewhat loosely. An understanding of the differences between the machines should serve to eliminate confusion in every case. When only one of the terms (host or root) is needed, I have used the correct term. When both of the terms apply, I have used them almost interchangeably and they should be interpreted according to the machine under consideration.

2. Software

The software for this research was written in the C language. The Logical Systems C product (version 89.1 of 15 January 1990) was used for the transputer implementation. For the iPSC/2 work, the C compiler supplied by Intel was used.

B. COMMUNICATIONS FUNCTIONS

Prior to implementing the Gauss algorithms, a substantial communications package was constructed. Most of the code for communications appears in the files comm.h and comm.c (see Appendix F). As expected, the header file provides definitions for manifest constants and specifications (declarations) for the functions. An overview of the functions provided in this file is is useful before we discuss the Gauss code that called these functions.

The cubecast() function supports broadcasts from the host to all the nodes of a hypercube. Given a hypercube of order $n \in\{0,1,2,3\}$ with $p=2^{n}$ processors, this communication is completed in n, or $\log _{2}(p)$, stages. This has some utility in a 3 -cube, but imagine the impact in a 10 -cube. All 1,024 processors in the hypercube would have the message after 10 stages of communication. This function
is especially useful at the beginning of a problem, when data must be shipped to each of the workers in the network.

Often we need to gather information in the reverse direction, from the workers back to the root. The coalesce() function is one way to accomplish this task. If no modification was necessary at intermediate nodes, this operation could be completed without interference. In the algorithms that I used, however, there was occasion to modify the information along the way back to the root. For this reason, the gathering is accomplished using two function calls. First, information is coalesced to a given node. Upon return from coalesce(), the data exists locally and may be operated upon. When the data is ready for submission, the submit() function is used to pass it one step closer to the root.

A modification of the cubecast() function that was useful for the Gauss problem was cubecast_from(). This function does not assume that the host is the originator of the broadcast. Instead, the source is specified as the first argument to this function. The function still performs the broadcast in $\log _{2}(p)$ stages, but it uses the concept of a direction to accomplish this.

The concept of directions in the hypercube turns out to be a fairly useful one. For concreteness, consider the 3 -cube shown in Figure C.2. Starting at any given node, we can specify a direction using one of the three combinations $d \in\{001,010,100\}$. Suppose that the node's label is ℓ and let \oplus denote the exclusive OR operation. Then for some direction, d, the number $(\ell \oplus d)$ is the label of the node in the direction d from the node ℓ.

This concept can be applied in general in a hypercube of order n using n-bit labels for the nodes and some direction d. The possible directions are all the n combinations of $(n-1)$ zeros and a single one in an n-bit number. Accordingly, the code uses directions $d \in\left\{1,2,4, \ldots 2^{n-1}\right\}$. In most cases, when a direction-bydirection approach is desired for all possible directions, we start with one and use
the C left shift operator (\ll) to produce the other directions incrementally.
These functions and several others are described in detail in the code of Appendix F, but these basic ideas give us a reasonably good introduction at a level that is adequate for understanding the algorithms.

C. CODE DESCRIPTIONS

A detailed description of the source code used to implement the algorithms of Chapter IV is given in the header file gf.h. This header file, located in Appendix F, is used by both the partial pivoting and complete pivoting codes. The code for GF with partial pivoting can be found in gfpphost.c, the host program, and gfppnode.c, the node program. The code for the complete pivoting algorithm is similar except for the election of pivots, so most of it has been omitted in the interest of saving space. Only the elect_next_pivot() function remains because it is the significant difference between the partial and complete pivoting codes. This function appears in gfpenode.c.

VI. RESULTS

A. GAUSS WITH COMPLETE PIVOTING

The host code, gfpchost.c, and the node program, gfpenode.c, are written to provide a parallel implementation of Gauss Factorization with complete pivoting. Since the columns of A are distributed among the nodes of the multiprocessor system, the selection of each pivot requires communication. The selection process, in this case, begins with each node selecting its own best candidate for pivot. Once each of the nodes has made this choice, an election is held to select the best candidate among all of the nodes.

Implementation details for the election process are described in the source code, so a detailed description is not given here. Nevertheless, these results show how communication-like the election process-can withstand efficient parallel programming. This program shows how parallel performance can suffer from the effects of communications. (Recall Fox's $t_{\text {comm }} / t_{\text {calc }}$ and Seitz's three components of overhead from Chapter IV).

The complete pivoting strategy inserts inefficient communications between each stage of the process. The communications themselves are bound to be inefficient since the election process finds all nodes of an n-cube participating in an n-stage exchange of a 20 -byte structure (pivot candidates). In addition to the use of small messages, the election imposes an added measure of synchronization upon the problem. This allows the processors less independence and forces them to transition between "useful" program execution and communication more frequently. This transition can become burdensome and the processor can eventually find little time to perform calculations.

In addition to the election process, there is a one-to-all broadcast from the node holding the pivot to inform the others of the pivot column values. With an $m \times m$ matrix A, this message is essentially a column of m double precision floatingpoint values. Doubles for this implementation were eight bytes each, so this is a unidirectional broadcast of $8 m$ bytes with exponential fanout.

The election process-as simple as it appears-will prove to be an obstacle that opposes efficiency. Both the iPSC/2 and transputer systems reward, in terms of transmission rates, the sender of long messages. Short messages are essentially penalized by the overhead involved in setting up the transmission line and manager. Let us consider the results of this complete pivoting strategy. The results from the iPSC/2 appear first followed by the transputer results. The largest dimension, n, that is recorded is $n=176$. The iPSC/2 machine would handle larger problems, but this seemed pointless since the performance appears to approach maximum efficiency early.

1. Data for the iPSC/2 System

Table 6.1 shows the timing data for execution of Gauss Factorization with complete pivoting on the Intel $\mathrm{iPSC} / 2$ system.

TABLE 6.1: EXECUTION TIMES FOR GF(PC) ON THE iPSC/2

Dimension (n)	Time (seconds) on a Hypercube of Order			
	0	1		
8	0.126	0.097	0.092	0.155
16	0.716	0.674	0.608	0.744
24	2.208	1.751	1.616	1.568
32	4.627	3.705	3.239	3.149
40	9.246	6.888	5.895	5.250
48	14.888	11.479	9.770	9.109
56	23.686	17.883	15.206	13.796
64	36.123	26.424	22.326	19.957
72	49.227	38.178	31.421	28.460
80	70.546	50.754	42.087	37.810
88	89.210	69.257	56.803	51.148
96	115.473	86.760	72.346	63.954
104	150.915	110.247	91.966	82.680
112	182.475	138.880	114.486	102.266
120	224.458	168.056	139.587	123.683
128	282.491	206.222	170.650	153.379
136	339.076	248.422	208.745	186.205
144	385.623	295.217	241.564	217.099
152	468.763	345.049	281.972	254.538
160	527.953	404.235	331.653	292.352
168	636.004	457.089	381.597	338.464
176	723.596	532.597	449.745	395.008

TABLE 6.2: SPEEDUPS FOR GF(PC) ON THE iPSC/2

Dimension (n)	Speedup on a Hypercube of Order		
	1	2	3
8	1.299	1.373	0.813
24	1.063	1.178	0.962
32	1.261	1.367	1.408
40	1.249	1.429	1.470
48	1.342	1.569	1.761
56	1.324	1.524	1.635
64	1.367	1.558	1.717
72	1.289	1.618	1.867
80	1.390	1.676	1.730
88	1.288	1.571	1.866
96	1.331	1.596	1.844
104	1.369	1.641	1.825
112	1.314	1.594	1.784
120	1.336	1.608	1.815
128	1.370	1.655	1.842
136	1.365	1.624	1.821
144	1.306	1.596	1.776
152	1.359	1.662	1.842
160	1.306	1.592	1.806
168	1.391	1.667	1.879
176	1.359	1.609	1.832

The speedup data that is shown in Table 6.2 is derived from these execution times.
Speedup was calculated using the usual formula (see Appendix A for details)

$$
S_{p}=\frac{T_{1}}{T_{p}}
$$

for speedup on p processors.

TABLE 6.3: EFFICIENCIES FOR GF(PC) ON THE iPSC/2

Dimension (n)	Efficiency (percent) on a Hypercube of Order		
	1	2	3
8	64.948	34.332	10.161
16	53.155	29.441	12.024
24	63.068	34.169	17.603
32	62.451	35.716	18.370
40	67.122	39.215	22.015
48	64.852	38.098	20.431
56	66.225	38.943	21.462
64	68.354	40.450	22.625
72	64.470	39.168	21.621
80	69.498	41.905	23.323
88	64.405	39.263	21.802
96	66.548	39.903	22.570
104	68.444	41.025	22.816
112	65.695	39.847	22.304
120	66.781	40.200	22.685
128	68.492	41.385	23.022
136	68.246	40.609	22.762
144	65.312	39.909	22.203
152	67.927	41.561	23.020
160	65.303	39.797	22.574
168	69.571	41.667	23.489
176	67.931	40.223	22.898

Given the execution times and speedups presented in Tables 6.1 and 6.2 , and using the formula

$$
E_{p}=\frac{S_{p}}{p}
$$

(as defined in Appendix A), we can determine the efficiency of p processors applied to the Gauss problem. This efficiency data is shown in Table 6.3.

Figure 6.1: Efficiencies for GF (PC) on the iPSC/2

Many different graphical displays of this data would be interesting, but the efficiency data may be the most interesting since it sort of captures the success or failure of a parallel program (i.e., poor efficiencies should lead us to question the parallel nature of the algorithm). Figure 6.1 shows a scatterplot of the data from Table 6.3.

TABLE 6.4: EXECUTION TIMES FOR GF(PC) ON THE TRANSPUTERS

Dimension (n)	Time (seconds) on a Hypercube of Order				
	0	1	2	3	4
8	0.0083	0.0075	0.0077	0.0088	0.0925
16	0.0481	0.0392	0.0373	0.0372	0.1236
24	0.1494	0.1173	0.1063	0.1001	0.1855
32	0.3417	0.2580	0.2220	0.2132	0.2947
40	0.6538	0.4922	0.4135	0.3798	0.4587
48	1.1158	0.8202	0.6934	0.6397	0.7041
56		1.2950	1.0716	0.9696	1.0239
64		1.8940	1.5688	1.4046	1.4407
72			2.2116	1.9817	1.9808
80			2.9560	2.6529	2.6248
88			3.9127	3.4812	3.4090
96				4.4808	4.3812
104				5.6442	5.4519
112				7.0388	6.7087
120				8.5430	8.1252
128				10.3300	9.7532
136					11.6930
144					13.6538
152					16.1029
160				18.5476	
168				21.4437	
176					
$n_{\text {max }}$	48	67	92	128	176

2. Data for the Transputer System

Using the same methods, the timing (Table 6.4), speedup (Table 6.5), and efficiency (Table 6.6) data for the transputer system is determined. Unfortunately, the memory limitations of the transputers used for this work prevented comparisons for large problem size. Empty portions of Table 6.4 signify inavailability of data (i.e., execution failure due to inappropriate or excessive problem size). The maximum problem size that executed successfully for each configuration is listed on the last line of the Table. Figure 6.2 shows a scatterplot of the data from Table 6.6.

TABLE 6.5: SPEEDUPS FOR GF(PC) ON THE TRANSPUTERS

Dimension (n)	Speedup on a Hypercube of Order			
	1	2	3	4
8	1.111	1.074	0.942	0.090
24	1.227	1.288	1.290	0.389
32	1.274	1.405	1.493	0.805
40	1.324	1.539	1.602	1.159
48	1.328	1.581	1.721	1.425
56	1.360	1.609	1.744	1.585
64	1.363	1.648	1.821	1.724
72		1.677	1.872	1.826
80		1.691	1.887	1.888
88		1.734	1.932	1.953
96		1.743	1.959	2.001
104			1.975	2.020
112			1.993	2.064
120			1.996	2.094
128			2.022	2.126
136			2.030	2.150
144				2.150
152				2.186
160			2.180	
168			2.207	
176			2.210	

TABLE 6.6: EFFICIENCIES FOR GF(PC) ON THE TRANSPUTERS

Dimension (n)	Efficiency (percent) on a Hypercube of Order			
	1	2		4
8	55.556	26.860	11.775	1.125
16	61.356	32.204	16.130	2.431
24	63.693	35.133	18.662	5.034
32	66.224	38.477	20.029	7.246
40	66.409	39.526	21.514	8.908
48	68.017	40.230	21.803	9.905
56	68.167	41.190	22.760	10.776
64	69.431	41.913	23.406	11.410
72		42.279	23.592	11.801
80		43.358	24.155	12.207
88		43.575	24.488	12.504
96			24.691	12.626
104			24.916	12.897
112			24.948	13.088
120			25.279	13.289
128			25.369	13.435
136				13.440
144				13.662
152				13.623
160				13.795
168				13.812
176				13.917

Figure 6.2: Efficiencies for GF (PC) on Transputers

B. GAUSS WITH PARTIAL PIVOTING

1. Data for the iPSC/2 System

Table 6.7 shows the timing data for execution of the Gauss Factorization (partial pivoting) codes (gfpphost.c and gfppnode.c) on the Intel iPSC/2 system. The speedup data that is shown in Table 6.8 is derived from these execution times. Speedup was calculated using the usual formula (see Appendix A for details)

$$
S_{p}=\frac{T_{1}}{T_{p}}
$$

for speedup on p processors. Given the execution times and speedups presented in Tables 6.7 and 6.8 , and using the formula

$$
E_{p}=\frac{S_{p}}{p}
$$

(as defined in Appendix A), we can determine the effectiveness (efficiency) of p processors applied to the Gauss problem. This efficiency data is shown in Table 6.9.

TABLE 6.7: EXECUTION TIMES FOR GF(PP) ON THE iPSC/2

Dimension (n)	Time (seconds) on a Hypercube of Order			
	0	1		
8	0.109	0.130	0.127	0.155
16	0.371	0.359	0.394	0.493
24	0.508	0.489	0.519	0.624
32	0.752	0.673	0.675	0.782
40	1.055	0.880	0.834	0.911
48	1.499	1.144	1.024	1.067
56	2.019	1.473	1.248	1.228
64	2.733	1.878	1.491	1.402
72	3.646	2.412	1.872	1.721
80	4.743	3.040	2.256	1.989
88	6.053	3.719	2.644	2.237
96	7.567	4.547	3.125	2.560
104	9.431	5.477	3.698	2.912
112	11.468	6.561	4.252	3.237
120	13.847	7.859	4.933	3.646
128	16.552	9.211	5.661	4.070
136	19.619	10.873	6.590	4.633
144	23.071	12.632	7.532	5.170
152	26.982	14.681	8.940	5.866
160	31.204	16.869	9.866	6.539
168	35.865	19.318	11.143	7.284
176	41.064	21.990	12.605	8.084
200	59.453	31.437	17.598	10.910
225	83.962	44.076	24.329	14.701
250	114.319	59.515	32.410	19.118
275	151.443	78.652	42.336	24.512
300	195.822	102.589	54.138	30.927
325	248.153	127.840	68.082	38.418
350	309.241	158.859	84.072	46.978
375	379.538	194.599	101.984	56.280
400	459.740	235.259	122.946	67.366
425	550.536	281.312	147.058	80.439
450	653.070	333.180	173.748	94.656
475	767.616	391.136	203.513	110.243
500	894.705	455.308	236.483	127.631

TABLE 6.8: SPEEDUPS FOR GF(PP) ON THE iPSC/2

Dimension (n)	Speedup on a Hypercube of Order		
	1	2	3
8	0.842	0.860	0.704
16	1.035	0.941	0.753
24	1.039	0.979	0.814
32	1.118	1.114	0.961
40	1.199	1.265	1.158
48	1.311	1.465	1.405
56	1.371	1.618	1.645
64	1.455	1.833	1.949
72	1.512	1.948	2.119
80	1.560	2.102	2.384
88	1.628	2.289	2.706
96	1.664	2.422	2.956
104	1.722	2.550	3.239
112	1.748	2.697	3.543
120	1.762	2.807	3.798
128	1.797	2.924	4.067
136	1.804	2.977	4.235
144	1.826	3.063	4.462
152	1.838	3.018	4.600
160	1.850	3.163	4.772
168	1.857	3.219	4.924
176	1.867	3.258	5.080
200	1.891	3.378	5.449
225	1.905	3.451	5.711
250	1.921	3.527	5.980
275	1.925	3.577	6.178
300	1.909	3.617	6.332
325	1.941	3.645	6.459
350	1.947	3.678	6.583
375	1.950	3.722	6.744
400	1.954	3.739	6.825
425	1.957	3.744	6.844
450	1.960	3.759	6.899
475	1.963	3.772	6.963
500	1.965	3.783	7.010

TABLE 6.9: EFFICIENCIES FOR GF(PP) ON THE iPSC/2

Dimension (n)	Efficiency (percent) on a Hypercube of Order		
	1	2	3
8	42.085	21.499	8.803
16	51.743	23.526	9.416
24	51.943	24.470	10.174
32	55.911	27.842	12.019
40	59.943	31.615	14.472
48	65.544	36.615	17.563
56	68.557	40.453	20.560
64	72.764	45.825	24.365
72	75.580	48.698	26.482
80	78.023	52.554	29.804
88	81.390	57.228	33.821
96	83.218	60.541	36.955
104	86.104	63.762	40.482
112	87.402	67.427	44.287
120	88.096	70.175	47.475
128	89.849	73.097	50.832
136	90.219	74.430	52.934
144	91.323	76.577	55.781
152	91.897	75.451	57.497
160	92.492	79.072	59.651
168	92.830	80.469	61.544
176	93.372	81.442	63.498
200	94.559	84.462	68.115
225	95.247	86.278	71.393
250	96.042	88.181	74.744
275	96.274	89.430	77.230
300	95.440	90.427	79.147
325	97.056	91.123	80.742
350	97.332	91.958	82.283
375	97.518	93.039	84.297
400	97.709	93.484	85.307
425	97.851	93.591	85.552
450	98.006	93.968	86.243
475	98.127	94.296	87.037
500	98.253	94.584	87.626

Figure 6.3: Efficiencies for GF (PP) on the iPSC/2
Here, again, only the efficiency is plotted. Figure 6.3 shows a scatterplot of the data from Table 6.9.

2. Data for the Transputer System

Using the same methods; the timing (Table 6.10), speedup (Table 6.11), and efficiency (Table 6.12) data for the transputer system is determined. Unfortunately, the memory limitations of the transputers (32 kilobytes per node) used for this work prevented comparisons for large (interesting) problem size. Empty portions of Table 6.10 signify inavailability of data (i.e., execution failure due to inappropriate or excessive problem size). The maximum problem size that executed successfully for each configuration is listed on the last line of Table 6.10. The minimum problem size for the hybrid cube on 16 processors was one where the dimension of A was $n=16$.

TABLE 6.10: EXECUTION TIMES FOR GF(PP) ON THE TRANSPUTERS

$\begin{gathered} \hline \text { Dimension } \\ (n) \\ \hline \end{gathered}$	Time (seconds) on a Hypercube of Order				
	0	1	2	3	4
8	0.0906	0.0904	0.0906	0.0909	
16	0.1126	0.1101	0.1102	0.1107	0.1092
24	0.1582	0.1480	0.1462	0.1461	0.1439
32	0.2312	0.2038	0.1965	0.1952	0.1889
40	0.3360	0.2765	0.2568	0.2520	0.2446
48		0.3782	0.3402	0.3297	0.3149
56		0.5124	0.4463	0.4258	0.4064
64		0.6911	0.5863	0.5505	0.5196
72			0.7277	0.6715	0.6308
80			0.8976	0.8147	0.7560
88			1.0675	0.9482	0.8732
96				1.1584	1.0581
104				1.3657	1.2430
112				1.6129	1.4551
120				1.8388	1.6490
128					1.8585
136					2.1306
144					2.3606
152					2.6717
160					2.9846
168					3.2910
176					3.6606
$n_{\text {max }}$	47	66	92	127	176

TABLE 6.11: SPEEDUPS FOR GF(PP) ON THE TRANSPUTERS

Dimension (n)	Speedup on a Hypercube of Order			
	1	2	3	4
8	1.002	1.000	0.997	
16	1.023	1.022	1.017	1.031
24	1.069	1.082	1.083	1.099
32	1.134	1.177	1.184	1.224
40	1.215	1.308	1.333	1.374
48	1.302	1.447	1.493	1.563
56	1.387	1.592	1.669	1.748
64	1.448	1.707	1.818	1.926
72		1.888	2.046	2.178
80		2.049	2.258	2.433
88		2.256	2.539	2.758
96			2.667	2.920
104			2.853	3.134
112			2.998	3.323
120			3.219	3.590
128				3.852
136				4.019
144				4.296
152				4.456
160				4.846
168			5.031	
176				

TABLE 6.12: EFFICIENCIES FOR GF(PP) ON THE TRANSPUTERS

Dimension (n)	Efficiency (percent) on a Hypercube of Order			
	1	2	3	4
16	50.111	25.000	12.459	
24	51.135	25.544	12.715	6.445
32	53.446	27.052	13.535	6.871
40	56.722	29.415	14.805	7.650
48	60.759	32.710	16.667	8.585
56	65.090	36.180	18.666	9.772
64	69.334	39.801	20.859	10.927
72	72.412	42.678	22.727	12.039
80		47.193	25.571	13.611
88		51.228	28.220	15.206
96		56.392	31.744	17.235
104			33.343	18.252
112			35.657	19.589
120			37.475	20.770
128			40.241	22.436
136			24.073	
144			25.116	
152			26.849	
160			27.850	
168			29.036	
176			30.447	

Figure 6.4: Efficiencies for GF (PP) on Transputers

Figure 6.4 shows a scatterplot of the data from Table 6.12.

VII. CONCLUSIONS

I value the discovery of a single even insignificant truth more highly than all the argumentation on the highest questions which fails to reach a truth.

- GALILEO (1564-1642)

A. SIGNIFICANCE OF THE RESULTS
 1. Communications and Computation

Perhaps one of the most obvious effects that can be noticed in the results of Chapter VI is the abysmal performance of the complete pivoting code when compared to the partial pivoting implementation. The relatively small amount of extra communications required for the complete pivoting algorithm seems to force synchronization delay's, thus reducing the system's performance. This demonstrates the criticality of balancing communications with calculation in parallel processing. The conclusion, for this problem, is that parallel designs must minimize the frequency of synchronizing events and minimize the communications volume on occasions when communication is necessary. The greater the amount of uninterrupted work that a processor can accomplish, the better. While control, i.e., blocking communications, synchronization, loop-by-loop data distribution, is necessary it will have adverse impacts on performance. The individual processors of a multiprocessor system should be granted the maximum degree of independence that the mission will allow.

While there is undoubtedly some room for improvement in the complete pivoting code, it would appear that maximum efficiencies of approximately 22%, 40%, and 70% for hypercubes of order three, two, and one, respectively, are likely on the iPSC/2. The same code seems to be headed for somewhat better performance
on the transputers, but with the shortage of memory, it is difficult to extrapolate and determine the direction of the plots. The higher order cubes appear to flatten at about the same efficiency that the iPSC/2 showed as a terminal efficiency.

The partial pivoting code, on the other hand, exhibits the kind of characteristics that we like to see in parallel code. Both systems show efficiencies rising sharply (again, the size limit for the transputers is unfortunate) and the iPSC/2 shows some very nice results as the dimension of the matrix exceeds about 250 .

B. THE TERAFLOP RACE

One of the biggest challenges to parallel computing today can be found in the "teraflop race". There are at least three competitors with teraflop initiatives: the United States, Europe, and Japan. The United States effort centers around Intel with projects like Touchstone (Chapter I). The European effort relies on the T9000 transputer. Considering the three to five year old technology used for this research, together with the numbers that the various parallel computer designers boast today, it seems that we might see teraflop performance by the mid-1990s. C. Gordon Bell claims that the teraflop is conceivable [Ref. 6: p. 1099]

Two relatively simple and sure paths exist for building a system that could deliver on the order of 1 teraflop by 1995. They are: (1) A $4 K$ node multicomputer with 800 gigaflops peak or a 32 K node multicomputer with 1.5 teraflops. (2) A Connection Machine with more than one teraflop and several million processing elements.

Current products suggest that INMOS and Intel will be among the most likely competitors. Table 7.1, adapted from Jack Dongarra's report [Ref. 8: p. 20], shows how transputer-based systems compare to Intel products. This Table summarizes a test involving the solution for a 1000×1000 system of linear equations. The processors used for my thesis show floating-point capabilities of 0.37 Mflops (T800-20) and 0.16 Mflops (Compaq 386/20 with 80387) in Dongarra's report [Ref. 8: pp. 14, 16].

TABLE 7.1: PARALLEL MACHINE COMPARISON

Computer	t_{1}	p	t_{p}	Speedup	Ef ficiency
Parsytec FT-400	1075	400	4.90	219.0	.55
Parsytec FT-400	1075	256	6.59	163.0	.64
Parsytec FT-400	1075	100	13.20	81.4	.81
Parsytec FT-400	1075	64	19.10	56.3	.88
Parsytec FT-400	1075	16	69.20	15.5	.97
Intel iPSC/860	59	32	5.30	11.0	.34
Intel iPSC/860	59	16	6.80	8.7	.54
Intel iPSC/860	59	8	10.60	5.6	.70

The iPSC/860 illustrates the most recent technology and shows excellent uniprocessor performance (6.5 Mflops) [Ref. 8: p. 9]. The T800 transputer that Parsytec used is somewhat dated and will soon be replaced by the T9000. Nevertheless, the transputer-based system shows good parallel performance. The times of execution in the experiments of this thesis also indicate that the T800 is faster for floating-point calculations than the $386 / 387$ combination in the iPSC/2.

C. FURTHER WORK

My research suggests many areas for further investigation. The method of conjugate gradients shows a great deal of promise as a candidate for parallelization. Indeed, it was the original aim of this thesis, but the development of other portions of the code required a great deal of time. The parallel CG algorithm should be relatively simple to code and holds great potential with respect to performance. Additionally, it possesses a nontrivial derivation and the theory behind the algorithm would be interesting to develop.

There are many other variations on Gauss factorization that could be coded and tested. While the programs presented in this thesis are designed in an effort to produce efficient performance, there is undoubtedly much that might be done to enhance this code. Among the options: at a very basic level, we could begin with
other distributions of the matrix A. A block method or row method may actually yield better performance. As the LINPACK benchmarks seem to use blocks, this is probably worth pursuing.

General purpose parallel computing, the ability to rely on parallel architectures for general purpose computation without a need for investigation to be more concerned with the architecture than the problem being computed, still requires much work. The ability to use parallel architectures as a computational tool to solve problems will mark an increasing maturity in this field.

Applying object-oriented design and programming paradigms to the parallel world may hold a great deal of promise. In particular, the $\mathrm{C}++$ language seems to be a prudent choice for parallel programming.

In addition to the more practical options, the study of parallel theory and algorithms seems interesting and shows a great need for development. In particular, this field seems to need a more-or-less general (at least for MIMD machines) approach to classifying parallel algorithms and specifying their performance. As noted in Chapter IV, a mixture of this field with graph theory may hold a great deal of promise.

On an initial glance, the use of the Ada programming language with its inbuilt tasking constructs might seem optimum for the type of computing investigated in this thesis. Ada, in this regard, however, is optimized for use with shared memory multiprocessors. The use of Ada on transputers still requires much experimentation and better tools. Presently only one, rather expensive, Ada compiler is available for transputer use. Its required use of occam harnesses makes using Ada on transputers awkward at best. Further research is needed to create a better environment for Ada programming on transputers. Given the significance of Ada to the DoD establishment, this should become a priority. The inclusion of a standard math package and the advent of Ada 9X may hold some promise in this regard.

APPENDIX A NOTATION AND TERMINOLOGY

This appendix explains the shorthand used in the rest of the thesis. Conventions, by definition, are generally accepted rules of the business. This would seem to obviate the need for further discussion of conventions, but there are several good reasons for discussing notation and terminology. First, the notation may not be conventional. In the absence of convention (or when the foundation that it provides is inadequate) a more substantial agreement is required. Second, even for conventional notation, the audience may be diverse enough to warrant familiarization. The following discussion provides this familiarity and gives the terms of an agreement to establish the meaning of the words and symbols used in the rest of the work. On occasion, neither convention nor this agreement will suffice. These situations will be handled case-by-case with the philosophy that clarity should never be sacrificed for brevity.

A. BASICS

Most of the work deals with the integers, \mathbb{Z} (from the German word for numbers, Zahlen), the set of real numbers, \mathbb{R}, and the complex numbers, \mathbb{C}. Often, the German \Re is used to represent the reals. A complex number is a number, $x+i y=$ $z \in \mathbb{C}$, that has a real part $(x \in \Re)$ and an imaginary part $(y \in \Re)$, with the complex unit $i=\sqrt{-1}$. Sometimes the real part is denoted $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ is used to represent the imaginary part.

A scalar is simply a real number, and is usually denoted by a lower-case Greek letter. ${ }^{1}$ A vector is an ordered set of scalars. Lower-case Latin letters like b, x, and y are used to denote vectors. Sometimes an arrow is placed above the name of a vector-like \vec{x}-to emphasize the fact that it is a vector.

[^0]Matrices are two dimensional and usually contain real or complex elements. Capital letters (Greek or Latin) are used to represent matrices. Common examples include A, P, Q, R, Λ, and Σ.

The number systems introduced above cannot be represented in a finite space. There are two basic problems. First, we should consider the size (or cardinality) of the sets. The integers are countable or denumerable since there exists a one-to-one mapping between \mathbb{Z} and the natural numbers, \mathbb{N}. This is an advantage in finite storage since it means that we can choose a finite range of the integers and be quite certain that every integer in that range is represented (exactly). Even though \mathbb{Z} is denumerable, it is a set with infinite cardinality.

The real numbers present a more difficult situation for finite storage. The real number line is dense in comparison to the integers. \Re is not only an infinite set, it is not countable (i.e., \Re is uncountable). It is said to have the power of the continuum. To represent a real number, x, we use the floating-point approximation, $\mathrm{f}(\mathrm{x})$, to x. This is a number that may be described by three parts: the $\operatorname{sign} s$, the exponent e, and the mantissa d. An illustration of such a number is provided in Chapter II.

B. COMPLEX NUMBERS

1. Notation

The previous section introduced one notation for complex numbers; namely, $z=x+i y$. There are several other representations, each of which makes its own contribution in practical use. Electrical engineers usually replace the i with j since i is used to represent electrical current. Since the complex number can be represented by an ordered pair of real numbers, the graphical notation of Figure A. 1 is natural. In this plane, the real and imaginary axes are used to represent the components of a complex number.

Figure A.1: The Complex Plane
The vector sum of these two parts, $\vec{z}=\vec{x}+\vec{y}$, is an equivalent and useful way to model complex numbers. There is yet another way to describe z. Let r be the magnitude of the vector z and let θ be the angle measured from the positive real axis counter-clockwise to z. Using this notation, we could use trigonometry to describe the complex number as $z=r(\cos \theta+i \sin \theta)$. The Euler formula [Ref. 32: p. 74],

$$
\begin{equation*}
e^{z}=e^{x+i y}=\epsilon^{x} \epsilon^{i y}=e^{x}(\cos y+i \sin y) \tag{A.1}
\end{equation*}
$$

can be used to convert a complex number to yet another form: $z=r e^{i \theta}$.

2. Operations

a. Addition and Subtraction

Addition and subtraction of complex numbers is performed in the same manner that vectors are added or subtracted. For instance, let $z_{1}=a+i b$ and let $z_{2}=c-i d$. Then the sum, $z_{1}+z_{2}$, is the same as the sum of the corresponding vectors:

$$
z_{1}+z_{2}=\left[\begin{array}{l}
a \tag{A.2}\\
b
\end{array}\right]+\left[\begin{array}{c}
c \\
-d
\end{array}\right]=\left[\begin{array}{l}
a+c \\
b-d
\end{array}\right]
$$

so the sum is $z_{1}+z_{2}=(a+c)+i(b-d)$. Differences are handled in the obvious way, as vector differences.

b. Multiplication

Multiplication is performed by applying high school algebra. For the same complex numbers z_{1} and z_{2} :

$$
\begin{equation*}
z_{1} \times z_{2}=(a+i b)(c-i d)=a c-(a)(i d)+(i b)(c)-(i b)(i d) \tag{A.3}
\end{equation*}
$$

and using the definition of the complex unit, $i=\sqrt{-1}$, we may combine the middle terms and move the $i^{2}=-1$ outside the last term to find the (complex) product:

$$
\begin{equation*}
z_{1} \times z_{2}=a c-i(a d-b c)+b d=(a c+b d)-i(a d-b c) \tag{A.4}
\end{equation*}
$$

c. Conjugation

The complex conjugate of a complex number $z=x+i y$ is defined as $\bar{z}=x-i y$. This simple operation finds practical application in complex division.

d. Division

Consider the quotient $\left(z_{1} / z_{2}\right)$ of the same complex numbers that were used in equations A.2, A.3, and A.4. If we multiply both the numerator and the
denominator by the complex conjugate of the denominator, $\overline{z_{2}}$, we have:

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{a+i b}{c-i d}=\frac{(a+i b)(c+i d)}{(c-i d)(c+i d)}=\frac{a c+i(a d)+i(b c)+i^{2}(b d)}{c^{2}-i^{2} d^{2}} \tag{A.5}
\end{equation*}
$$

and then, by applying $i^{2}=-1$, we conclude:

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{a c-b d+i(b c+a d)}{c^{2}+d^{2}}=\frac{(a c-b d)}{\left(c^{2}+d^{2}\right)}+i \frac{(b c+a d)}{\left(c^{2}+d^{2}\right)} \tag{A.6}
\end{equation*}
$$

As a practical matter, this is not the way we would compute a complex quotient. The code given in Appendix F (function $\operatorname{cdiv}()$ in complex.h) provides a method that is better suited to the finite precision environment.

C. VECTORS AND MATRICES

1. Columns and Rows

Vectors are ordered collections of scalars represented as columns. Let $\alpha, \beta, \gamma \in \mathbb{C}$ with $\alpha=1.0+i 4.0, \beta=2.0-i 5.0$, and $\gamma=3.0+i 6.0$. Then:

$$
x=\left[\begin{array}{l}
a \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{l}
1.0+i 4.0 \\
2.0-i 5.0 \\
3.0+i 6.0
\end{array}\right]
$$

If row-orientation is intended the transpose is used:

$$
x^{T}=[\alpha \beta \gamma]=[(1.0+i 4.0)(2.0-i 5.0)(3.0+i 6.0)]
$$

Matrices may be formed as ordered combinations of elements, vectors, or blocks. Suppose that $\mu=3.0$ and $\nu=7.0$. Then, with x as given above, the following matrices are equivalent:

$$
A=\left[\begin{array}{lll}
x & \mu x & \nu x
\end{array}\right]=\left[\begin{array}{ccc}
1.0+i 4.0 & 3.0+i 12.0 & 7.0+i 28.0 \tag{A.7}\\
2.0-i 5.0 & 6.0-i 15.0 & 14.0-i 35.0 \\
3.0+i 6.0 & 9.0+i 18.0 & 21.0+i 42.0
\end{array}\right]
$$

An element within a matrix is usually denoted $A(i, j)$, where i is the row index and j is the column index. For instance, $A(1,3)=7.0+i 28.0$ in (A.7).

A block of the matrix A is a rectangular matrix B within A. MATLAB notation is useful. For instance, $B=A(i: j, k: l)$ means that B is the block of A 's rows i through j and columns k through l. The row or column ' $:$ ' means all rows or all columns. For instance:

$$
B=A(:, 1: 2)=\left[\begin{array}{ll}
1.0+i 4.0 & 3.0+i 12.0 \tag{A.8}\\
2.0-i 5.0 & 6.0-i 15.0 \\
3.0+i 6.0 & 9.0+i 18.0
\end{array}\right]
$$

As a sidenote, a number with a decimal point should usually be taken as a real number. Mathematically speaking, $1=1.0$. But many compilers treat 1 as an integer and use the decimal point to recognize 1.0 as a floating-point value. Therefore, all of the code associated with this work and most of the examples use the decimal point as a clue that the number is a real number or its floating-point approximation.

2. Conjugation and Transposition

The conjugate of a vector or matrix is simply a vector or matrix whose entries are the conjugates of the original entries. A superscript C is used to denote the conjugate of a vector or matrix. For instance, with A as given A.7,

$$
A^{C}=\left[\begin{array}{ccc}
1.0-i 4.0 & 3.0-i 12.0 & 7.0-i 28.0 \tag{A.9}\\
2.0+i 5.0 & 6.0+i 15.0 & 14.0+i 35.0 \\
3.0-i 6.0 & 9.0-i 18.0 & 21.0-i 42.0
\end{array}\right]
$$

The transpose of a vector or matrix, denoted with a superscript T, refers to a transposition of its rows and columns. With $A \in \mathbb{C}^{m \times n}$, the effect of transposition is that $A(i, j)=A^{T}(j, i)$ for all i such that $1 \leq i \leq m$, and all j so that $1 \leq j \leq n$. For example, consider the transposition of the matrix A that is found in equation A.7.

$$
A^{T}=\left[\begin{array}{c}
x^{T} \tag{A.10}\\
\mu x^{T} \\
\nu x^{T}
\end{array}\right]=\left[\begin{array}{ccc}
1.0+i 4.0 & 2.0-i 5.0 & 3.0+i 6.0 \\
3.0+i 12.0 & 6.0-i 15.0 & 9.0+i 18.0 \\
7.0+i 28.0 & 14.0-i 35.0 & 21.0+i 42.0
\end{array}\right]
$$

In this example we see that the columns of a matrix become the rows of its transpose. This example also demonstrates that when we first transpose, and then stack the columns of a matrix, we arrive at the transpose of the matrix. In the event that $A=A^{T}$, we say that A is symmetric.

The conjugate (or Hermitian) transpose of A is A^{H}. This matrix is the result of combining the conjugation and transposition operations on A. The following example shows the Hermitian transpose of A :

$$
A^{H}=\left[\begin{array}{ccc}
1.0-i 4.0 & 2.0+i 5.0 & 3.0-i 6.0 \tag{A.11}\\
3.0-i 12.0 & 6.0+i 15.0 & 9.0-i 18.0 \\
7.0-i 28.0 & 14.0+i 35.0 & 21.0-i 42.0
\end{array}\right]
$$

If $A=A^{H}$, we say that " A is Hermitian." We should never confuse " A is Hermitian" with " A Hermitian" (the conjugate transpose, A^{H}, of A). [Ref. 33: p. 294]

3. Zeros

It could be argued that zero is the most important number. In addition to its use as a number, zero is also used to represent a vector or matrix in which every element is equal to zero. In the (extremely rare) event that the context does not clearly indicate the size of a " 0 -vector" or " 0 -matrix", its size will be given explicitly. In the absence of implied or specified size, 0 should be interpreted as the number zero. Additionally, blank space within a matrix usually means that all elements in that region are zero.

4. Special Forms

a. Axis Vectors

An aris vector, e_{i}, is simply the $i^{\text {th }}$ column (or row) of the identity matrix.

b. Lower Triangular

A lower triangular matrix, usually denoted L, has the form

$$
L=\left[\begin{array}{ccc}
\times & & \tag{A.12}\\
\times & \times & \\
\times & \times & \times
\end{array}\right]
$$

If L has ones on the diagonal, it is called unit lower triangular. Similarly, the upper triangular matrix U has the form

$$
U=\left[\begin{array}{ccc}
\times & \times & \times \tag{A.13}\\
& \times & \times \\
& & \times
\end{array}\right]
$$

U is called unit upper triangular if the diagonal elements are all ones. Sometimes (e.g., Chapter III) such a matrix is called right triangular and denoted R. When the matrix is not square, the lower and upper triangular ideas are translated to lower and upper trapezoidal, with the unit trapezoidal matrices having ones on the diagonal. The following matrices illustrate the different kinds of trapezoidal matrices. The matrices may be tall and skinny as

$$
U=\left[\begin{array}{ccc}
\times & \times & \times \tag{A.14}\\
& \times & \times \\
& & \times \\
& &
\end{array}\right] \quad L=\left[\begin{array}{ccc}
\times & & \\
\times & \times & \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right]
$$

or short and fat

$$
U=\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \tag{A.15}\\
& \times & \times & \times & \times \\
& & \times & \times & \times
\end{array}\right] \quad L=\left[\begin{array}{ccc}
\times & & \\
\times & \times & \\
\times & \times & \times
\end{array}\right] .
$$

D. NORMS

The information below was taken from [Ref. 21: pp. 53-60], so it seems fitting to begin with a few of Golub and Van Loan's comments on norms.

Norms serve the same purpose on vector spaces that absolute value does on the real line: they furnish a measure of distance. More precisely, \Re^{n} together with a norm on \Re^{n} defines a metric space. Thenefore, we have the familiar notions of neighborhood, open sets, convergence, and continuity when working with vectors and vector-valued functions.

1. Vector Norms

a. Definition

A vector norm on \Re^{n} is a function $f: \Re^{n} \rightarrow \Re$ that satisfies the following properties [Ref. 21: p. 53]:

$$
\begin{gather*}
f(x) \geq 0 \quad x \in \Re^{n}, \quad(f(x)=0 \text { iff } x=0) \tag{A.16}\\
f(x+y) \leq f(x)+f(y) \quad x, y \in \Re^{n} \tag{A.17}\\
f(\alpha x)=|\alpha| f(x) \quad \alpha \in \Re, x \in \Re^{n} \tag{A.18}
\end{gather*}
$$

We denote such a function with a double bar notation: $f(x)=\|x\|$.

b. The p-Norm

Subscripts on the double bar are used to distinguish between various norms. The most popular example of this is the p-norm, $\|\cdot\|_{p}$. This norm is defined by [Ref. 21 : p. 53]

$$
\begin{equation*}
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \quad p \geq 1 \tag{A.19}
\end{equation*}
$$

The 2 -norm is the one used most frequently in this work, but the 1 - and ∞-norms find frequent application in other work. A natural representation of the 2 -norm is the square root of an inner product

$$
\begin{equation*}
\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}=\sqrt{x^{T} x} \tag{A.20}
\end{equation*}
$$

The 2 -norm of x is the Euclidean length of the vector x.

2. Matrix Norms

a. Definition

A matrix norm on $\Re^{m \times n}$ is a function $f: \Re^{m \times n} \rightarrow \Re$ that satisfies properties similar to those presented in the vector case [Ref. 21: p. 56]:

$$
\begin{array}{rc}
f(A) \geq 0 & A \in \Re^{m \times n}, \quad(f(A)=0 \text { iff } A=0) \\
f(A+B) \leq f(A)+f(B) & A, B \in \Re^{m \times n} \\
f(\circ A)=|\alpha| f(A) & \alpha \in \Re, A \in \Re^{m \times n} \tag{A.23}
\end{array}
$$

Matrix noms also use the double bar notation: $f(A)=\|A\|$. The Frobenius norm and the p - norm are the most common matrix morms

b. Frobenius

The Frobenius norm is defined as

$$
\begin{equation*}
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}} \tag{A.24}
\end{equation*}
$$

c. p-Norms

The p - norm of a matrix, A, is defined by

$$
\begin{equation*}
\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} . \tag{A.25}
\end{equation*}
$$

E. LINEAR SYSTEMS

One of the fundamental tasks of linear algebra is to form a matrix representation of a system of linear equations. Consider the system of linear equations:

$$
\begin{align*}
& 2 u_{1}+3 u_{2}-4 u_{3}=7 \\
& 3 u_{1}-5 u_{2}+7 u_{3}=3 \tag{A.26}\\
& 4 u_{1}+6 u_{2}-2 u_{3}=1
\end{align*} .
$$

This system of equations can be expressed using the matrix notation $A u=b$

$$
A u=\left[\begin{array}{rrr}
2 & 3 & -4 \tag{A.27}\\
3 & -5 & 7 \\
4 & 6 & -2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right]=b
$$

F. MEASURES OF COMPLEXITY

The first, and most rudimentary requirement for an algorithm is that it produce the correct answer. This seems utterly obvious, but it must never be lost in the algorithm designer's pursuit of the next most important elements-efficiency in using time and space. For the moment, we shall assume that the algorithm arrives at an acceptable answer. Then the algorithm's use of time and space becomes a very serious subject. Knuth provides the notation in [Ref. 34].

The time complexity of an algorithm, also known as running time, describes how the program works under a stopwatch. Space complexity is the amount of temporary storage required to carry out the algorithm. For example, suppose a person stood at a chalkboard, ready to solve a problem. We would not regard the input or output storage space, but only the required space on the chalkboard, in the space complexity of the problem. Usually we like to link the idea of complexity to the input size of the problem, n. The following discussion of time complexity outlines a few tools that are standard in the study of algorithms. The same tools and ideas apply for space complexity analysis. [Ref. 35: pp. 42-43]

The most common method for describing the time complexity of an algorithm is the "big-Oh" notation [Ref. 35: p. 39]. ${ }^{2}$ A function $g(n)$ is $O(f(n))$ if there exist constants c and N so that, for all $n \geq N, g(n) \leq c f(n)$.

$$
\begin{equation*}
g(n)=O(f(n)) \Longleftrightarrow g(n) \leq c f(n), \quad n \geq N \tag{A.28}
\end{equation*}
$$

[^1]This means that for a large enough problem size n, the time to execute $g(n)$ is a constant multiple of some function, $f(n)$. Big-Oh notation does not mean a least upper bound, only an upper bound for n sufficiently large. Practically, $O(f(n))$ must be augmented so that we may determine how tightly $c f(n)$ bounds $g(n)$.

By adding a lower bound to big-Oh, we may arrive at a more informative statement concerning an algorithm's complexity. This is achieved through the use of "big Omega". $T(n)=\Omega(g(n))$ means that there exist constants c and N such that, for all $n \geq N$, the number of steps $T(n)$ required to solve the problem for input size n is at least $\operatorname{cg}(n)$.

$$
\begin{equation*}
T(n)=\Omega(g(n)) \Longleftrightarrow T(n) \geq c g(n), \quad n \geq N \tag{A.29}
\end{equation*}
$$

This is essentially a lower bound on time complexity. If a function, $f(n)$ satisfies both $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$-not necessarily using the same constants c and N for both O and Ω-then we say that $f(n)=\Theta(g(n))$. [Ref. 35: p. 41]

$$
\begin{equation*}
f(n)=O(g(n))=\Omega(g(n)) \Longleftrightarrow f(n)=\Theta(g(n)), \quad n \geq N \tag{A.30}
\end{equation*}
$$

Now and then, notation similar to O and Ω is required except that a strict inequality is desired. In this case, we use "little oh" and "little omega". The definitions are:

$$
\begin{equation*}
f(n)=o(g(n)) \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \Longleftrightarrow g(n)=\omega(f(n)) \tag{A.31}
\end{equation*}
$$

We have seen that O, Ω, Θ, o, and ω are roughly equivalent to the inequalities $\leq, \geq,=,<$, and $>$, respectively. Is this notation meaningful? Does it have utility in problem solving? The answer is a guarded "yes." We must understand the purpose of the notation. It cannot substitute for timing data taken from the actual execution of an algorithm. It is intended as a good first estimate. There are too many variables involved in modern tools and machinery to expect accurate analysis from other than actual execution.

TABLE A.1: ALGORITHM COMPLEXITY AND MACHINE SPEED

Algorithm	Execution Time (in Seconds) for Machine Speed			
	1000 steps/sec	2000 steps/sec	4000 steps/sec	8000 steps/sec
$\log _{2} n$	0.01	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$n \log _{2} n$	10	5	2.5	1.25
$n^{1.5}$	32	8	4	
n^{2}	1,000	500	250	125
n^{3}	$1,00,000$	500,000	250,000	125,000
1.1^{n}	10^{39}	10^{39}	10^{38}	10^{38}

Nevertheless, a rough estimate of how a problem grows is important to the problem solving process. Indeed, experimental results and complexity analysis should not usually be considered independently, but compared and used as complementary instruments. The time complexity of an algorithm is, in a sense, more important than the speed of the machine upon which it is executed. Consider the data in Table A. 1 (adapted from [Ref. 35: p. 41]). This is based upon a problem of size $n=1000$ and demonstrates the ability of an algorithn to dominate a machine. For this reason, and with these conditions clearly established, we will find many occasions to use time- and space-complexity notation.

Finally, the two most common performance measures for parallel computing are specdup and efficiency. Suppose that T_{n} is the time of execution for a particular algorithm, A, on n processors. Consider the best uniprocessor time T_{1} for a sequential version of A compared to the execution of an equivalent (not necessarily the same) parallel program on P processors that executes in time T_{P}. Then speedup, S_{P}, is defined as

$$
S_{P}=\frac{T_{1}}{T_{P}}
$$

and the efficiency, E_{P}, is defined to be

$$
E_{P}=\frac{S_{P}}{P}
$$

APPENDIX B

EQUIPMENT

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to another transputer.

The transputer architecture defines a family of programmable VLSI components. The definition of the architecture falls naturally into the logical aspects which define how a system of interconnected transputers is designed and programmed, and the physical aspects which define how transputers, as VLSI components, are interconnected and controlled.

A typical member of the transputer product family is a single chip containing processor, memory, and communication links which provide point to point connection between transputers. In addition, each transputer product contains special circuitry and interfaces adapting it to a particular use. For example, a peripheral control transputer, such as a graphics or disk controller, has interfaces tailored to the requirements of a specific device.

A transputer can be used in a single processor system or in networks to build high performance concurrent systems. A network of transputers and peripheral controllers is easily constructed using point-to-point communication.

- INMOS

This introduction is provided by the transputer's maker in [Ref. 36: p. 7].

A. TRANSPUTER MODULES

INMOS makes a wide variety of microprocessors to suit differing needs. To provide a simple, modular interface they have developed the notion of a transputer module (TRAM). The TRAM is a small board containing the microprocessor, RAM, other circuitry, and a standard sixteen signal interface.

B. THE IMS B012

Most of the later experiments were carried out on an IMS B012 board. This board accommodates sixteen transputers; each of which is installed on its own IMS

B401 TRAM. In our case the TRAM holds 32 kilobytes of memory (in addition to the four kilobytes onboard the T800-20 transputer).

d. INMOS Transputers

The INMOS transputer gives the system designer a tremendous amount of latitudc. With these processors-perhaps more than with any other parallel architecture-one should give careful thought to the size, component processors, and interconnection topology as the first elements in designing a solution to a problem. This cannot be overemphasized. When the hardware is not "gencral purpose" in nature, it must receive thoughtful consideration along the path to solving the problem. Some of the largest applications for parallel machines-especially for transputersare embedded systems.

An embedded computer system is defined as "one that forms a part of a larger system whose purpose is not primarily computational." [Ref. 37: pp. 15-16] To automatically accept or assume a particular machine configuration is to relinquish control of one of the tools available in system design.

Transputer is the name given to the members of a family of microprocessors. While INMOS is the largest producer of these processors, they have not chosen to protect the name transputer with any sort of trademark. The name comes from a combination of "transistor computer" and each transputer is essentially a computer on a chip. The chip possesses an arithmetic logic unit (ALU), memory, and a communication system that supports bidirectional serial communication links. Most of the transputers used for this research also include a 64 -bit (IEEE 754 standard) floating-point unit (FPU).

The transputer module (TRAM) is the most common package for transputers. The capabilities of these modules are quite diverse, but they hold to a standard interface design. This makes the TRAM easy to use. Systems designed
around TRAMS enjoy simple replacement of components, ease of modification, and great scalability. Indeed, the laboratory environment in which these TRAMs were exercised is a very dynamic one.

The PARCDS laboratory has six 80286-based IBM-compatible personal computers, each of which contains a transputer interface board. Five hold IMS B004 boards and one holds a Transtech TMB08 board. The B004 boards each have two megabytes of memory and an IMS T414 transputer in addition to the requisite serial-to-parallel converter and interface circuits. The TMB08 holds four megabytes of memory and an IMS T800-20 transputer. These "host" machines can each be connected to an arbitrarily large network of transputers.

For this purpose, we have two INMOS Transputer Evaluation Module (ITEM) boxes. These boxes can hold at least ten boards of the Double Eurocard size (approximately $22 \mathrm{~cm} \times 23.5 \mathrm{~cm}$). Of primary interest for this thesis was the IMS B012 board; a motherboard capable of supporting sixteen TRAMs. For this research, all sixteen slots were filled with a TRAM that held an IMS T800-20 transputer and 32 kilobytes of TRAM memory (in addition to the transputer's four kilobytes). The shortage of memory is probably the greatest deficiency and indicator of the outdated nature of these processors. TRAMs with four and eight megabytes of memory and IMS T805-25 transputers are currently available for less than $\$ 900.00$ and $\$ 1,300.00$ respectively.

e. Intel iPSC/2

The iPSC/2 used for this research contained eight node processors of the "CX" type ($80386 / 80387$ combination). Like the transputers, this machine is somewhat dated. Today's i860 chips have exceedingly more capacity.

C. SWITCHING METHODS

The iPSC/2 and transputer hardware use of different switching methods. Intel uses a circuit switching approach, whereas the INMOS approach is store-and-forward switching. Each approach has advantages and disadvantages. The circuit switching approach is "almost universally used for telephone networks." [Ref. 38: p. 12] The idea is to first define a path (close a circuit) from the source to the destination and then use it as a dedicated line.

This requires a start-up overhead that depends entirely upon the current load being handled by the system. If any part of the medium (links or switches) between the source and destination is busy, the message will wait at the source until the entire path is clear. The path is determined (in the iPSC/2 case) in a deterministic fashion, so that a message from node i to node j will always insist on a particular path, even if some other communication is blocking that path. As the path becomes clear, switches between the source and destination are set so that a dedicated line will exist from source to destination.

After the overhead of establishing (closing) the circuit has been paid, communication proceeds at a rapid rate. The intermediate nodes along the path do not store the message. Instead, their switches have been set so that the message flows through. Intuitively, this approach should be quite effective in a network with a very structured interconnection topology and a relatively small number of nodes. The hypercube gives us this structure. Hypercubes of order three or four are probably small enough to avoid difficulties that might arise as many nodes contend for the same medium.

The store-and-forward approach does not require the availability of the entire path between source and destination nodes. Instead, each node along the path accepts the entire message in turn and then forwards it to the next node in the path.

This requires the use of no more than one link at a time. For a many-node environment (particularly if there is little structure or the potential of dynamic routing), this approach would seem to offer some advantages over the circuit switching approach.

The routing criteria is separate from the type of switching used. Either of the two general approaches described above can support many forms of routing. Deterministic approaches alone include many methods. For the hypercube topology with Gray-coded node labels, it is probably useful to combine the Gray code with the notion of Hamming distance to arrive at a shortest path route. Even with this approach, there are as many optimum paths between two nodes i and j as the Hamming distance, $H(i, j)$, between them. [Ref. 39: p. 7]. If a dynamic scheme is used to determine the path, there are even more combinations of potential paths from i to j. Usually a dynamic approach considers media utilization, "hot spot" avoidance, and so on.

APPENDIX C INTERCONNECTION TOPOLOGIES

Multiprocessor computing brings with it a fundamental concern: interprocessor communication. Communication is-to any designer of computing machinery or software-a burden and hindrance. An interconnection topology describes the network that handles this load. The hypercube is one of the many topologies used in multiprocessor computing. It has been the subject of both hype and criticism. Nevertheless, this particular scheme possesses the qualities that quickly draw the attention of mathematicians and parallel programmers. The hypercube's structure and simplicity make it dependable and predictable. The same properties that enable the hypercube to endure the rigor of mathematical proof lead to practical solutions in parallel programming. This discussion describes the hypercube topology and explores some of the the qualities that make it a practical choice for multiprocessor computing.

A. A FAMILIAR SETTING

Organizing processors into a suitable topology is analogous to the familiar problem of organizing personnel into groups. An independent worker has limited capacity, so we often set more hands (or machinery) to the task for productivity's sake. Groups of people are often less efficient. Efficiency is a ratio of time spent doing useful work to the total time spent. Other metrics might work, but time is universally recognized as the standard against which productivity is measured. Dependence upon others requires communication and consumes time. The loss may be minimized, but not avoided. Any group working toward a common goal must deal with this problem. To be efficient, an organization must possess structure and media for communication.

People spend time on meetings, paperwork, and peripheral pursuits-all for the sake of an organization that hopes to outperform the individual. Organizations typically perform tasks that are simply impossible for an individual. To be sure, an
individual often possesses the independence and efficiency that makes him the proper choice. There are tasks that seem to fit one or the other and-while there is some crossover in ability-we aren't likely to get rid of either organizations or individual workers soon! This is worth considerable attention. Individuals and organizations are chosen for different tasks.

These ideas apply in the world of parallel processing. First, there are many tasks. Some fit nicely onto a single processor. Others beg a parallel solution. Finally, some have natural solutions by either method. Even when one of these options is selected, there are many ways to solve the problem. If a multiprocessor is used to solve the problem, the issue of communications will be unavoidable.

An interconnection topology must carry the burden of interprocessor communications. There are many schemes for handling this mission. This discussion focuses on one design that fulfills that mission: the hypercube. To forestall confusion: the subject is an interconnection topology, not a particular vendor's product.

B. APPEAL TO INTUITION

Productivity can suffer when the members of an organization communicate excessively. A lack of communication can also reduce efficiency. In a network of processors, lines of communication (links) are literal. The system will not be flexible if there is a shortage of links, but with too many links a message could get delayed or lost in the confusion. The hypercube attempts to strike a balance.

Hypercubes come in different sizes. In fact, scalability is a key characteristic of the hypercube. It allows the designer to tailor a network to a problem. There are several ways to express the cube's size: order is one measure. The term "hypercube of order $n "$ (usually called an n-cube) is filled with meaning. A more detailed description is given later, but pictures provide the most direct introduction. Figure C. 1 shows hypercubes of order n where $n \in\{0,1,2,3\}$.

Figure C.1: The Four Smallest Hypercubes

This illustration is important. The hypercube shows geometry, structure, and symmetry. A few observations nearly jump out of the pictures. One can see several terms of a geometric series developing. There is also a recurrence relation at work in the building of hypercubes. Intuition suggests the use of well-oiled mathematical tools to analyze the hypercube.

C. TOOLS

Many benefits may be derived from a few definitions, conventions, and tools (that suit the hypercube's structure). Figure C. 2 demonstrates the utility of Cartesian coordinates in n-dimensional space.

The picture is deceptively simple, but worth careful study. Figure C. 2 shows a unit cube in three dimensions. The vertex labels express ($x y z$) position in the coor-

Figure C.2: Cartesian Coordinates for a 3-Cube
dinate system. The labels also form a binary (Gray) code that is somehow equivalent to coordinate labeling of a cube in n-dimensional space. The issue of communications invoked this discussion, so distance must be addressed. A comparison of the binary labels of any two nodes reveals that the distance between the nodes is equal to the number of bits that differ in the labels. This measure, called Hamming distance, and the Gray code are presented in more detail later.

This brief introduction is just enough to embark upon a more precise description of the hypercube. The ideas of a coordinate system, node labeling, and distance are fundamental. Graph theory also finds application in topology design. In the hypercube these four tools complement each other nicely. Despite their simplicity they can be explored in almost endless detail, even within the constraints of hypercube structure.

D. DESCRIBING THE HYPERCUBE

The hypercube interconnection topology cannot be captured in a one-sentence definition. A definition is often inappropriate for material objects. A description given from several perspectives may be more useful. This is the case with topologies. Each tool introduced above has its own utility. In a sense, each takes up a particular perspective. A meaningful characterization of the hypercube can be achieved by combining these perspectives.

The geometric view is most useful for visualizing the cubes. Despite its tendency to break down (with three-dimensional limitations), geometry's intuitive appeal is indispensable. Geometry and pictures lay the foundation for the setting of an undirected graph. Figures C. 1 and C. 2 take advantage of geometry, but threedimensional sketches begin to lose their appeal as order increases. Nevertheless, geometry and visual models hold an important place in describing the hypercube. They furnish us with (a) examples for comparison, and (b) expectations that are useful in the transition to a more general description of the topology.

A hypercube of order n may be described as a set of 2^{n} points (vertices, nodes, or processors) connected by a set of edges. The points are each given an n-bit binary label, $b_{n} \ldots b_{3} b_{2} b_{1}$. Thus the hypercube's node labels exhaust all possible n bit binary combinations. Furthermore, the labeling convention used in Figure C. 2 describes the point's n-dimensional Cartesian coordinates.

The hypercube edge set (communication links) includes an edge between every pair of points p_{i} and p_{j} whose binary labels differ in exactly one bit position, say b_{k}. That is, adjacent nodes have a Hamming distance of one. This measure of distance proves especially convenient in the hypercube, and it can be thought of in several equivalent ways. A first definition of Hamming distance is the number of bits that differ in the two labels. Equivalently, it is the number of l's in a bitwise exclusive
or (XOR) of the numbers. Figure C. 2 contains an example. Let p_{i} be the point labeled 100 and p_{j} be 110. The binary labels differ in exactly one bit position, namely b_{2} (the second bit). The points are neighbors (one hop from each other in communications terms). [Ref. 40]

Despite the appeal of the geometric approach, it holds limited value in a general n-dimensional space. Consider $n=4$ in three dimensions. Typical illustrations show the sixteen-node cube as a cube inside a cube with connections between corresponding nodes of the inner and outer cubes. An equivalent diagram would display two 3 -cubes side-by-side with connections to corresponding nodes. Nevertheless, it seems that an n-dimensional coordinate system is the most convenient environment for sketching the hypercube of order n.

E. GREATER DIMENSIONS

Three-dimensional sketches become difficult to manage. The time comes for a change of method. Some of the finest tools available for spanning such a gap are recurrence relations and the principle of mathematical induction. The approach is not extremely formal, but those so inclined will not find it hard to add the formalities.

Induction can be used to generate a Gray code suitable for labeling the nodes of a hypercube. This code and the Hamming distance can be used to determine the cube. The first topic is a procedural description of how to build hypercubes. A Gray code construction procedure will follow. If the two topics appear similar, it is because they are completely equivalent (assuming that the Gray code is combined with the concept of Hamming distance).

Constructing a hypercube of order zero is trivial. This is not important except that it leads to greater things (i.e., it is the basis for induction). Second, suppose that this hypothesis for induction is true: "we know how to construct any hypercube of order k where $0 \leq k<n^{\prime \prime}$. Induction forms a hypercube of order n using this
base case and hypothesis. This can be done in three steps:

- Replicate the Hypercube of Order $(n-1)$ so that there are two identical copies. For concreteness, one will be copy number 0 and the other will be copy number 1. The hypercubes have $2^{(n-1)}$ nodes each.
- Prepend the copy number to the existing node labels. That is, place a leading 0 in front of the labels for each node of copy $\mathbf{0}$ and place a $\mathbf{1}$ in front of every node label in copy 1. Now every node in one copy has a corresponding node in the other copy. These corresponding nodes are separated by a Hamming distance of one. That is, the last $(n-1)$ bits are the same for corresponding nodes and they differ only in the prepended copy number.
- Connect all nodes whose labels differ only in the prepended copy number. This adds $2^{(n-1)}$ edges between the two copies.

F. GRAY CODE GENERATION

The procedure above generates hypercubes. By focusing on the vertex labels, Gray code generation can be discussed. A Gray code is a cyclic list of all of the n-bit numbers which changes in only one bit from one number to the next [Ref. 40]. Since the code is binary, there are 2^{n} numbers in the list. The starting point is arbitrary (it is cyclic) but I have started with zero. Perhaps the best explanation of Gray codes comes in the construction of one. As in the construction of hypercubes, a base case is required to begin generation.

- Start with 0 . This is a one-bit number $(n=1)$ so the one-bit Gray code must have a total of $2^{1}=2$ numbers. The other is 1 . Next, the hypercube building steps established above are applied with slight modification.
- Given the one-bit case, it is easy to generate the $n=2$ code. Write down the previous code and draw a line below it. Next, form a copy by reflecting the code

TABLE C.I: GRAY CODE GENERATION

0	00	000	0000
1	01	001	0001
	11	011	0011
	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1110
			1010
			1011
			1001
			1000

downward across the line. Place a zero in front of each number in the previous code (above the line), and a one in front of each number in the new copy (below the line).

- This is a Gray code for $n=2$. Table C. 1 extends the idea. The list is cyclic, each number consists of n bits, and the list contains all 2^{n} possible numbers. To construct the code for larger n, the process may be applied repetitively. Copy by reflecting the $(n-1)$-bit code downward across a line, prepend a zero to everything above the (most recent) line, and prepend a one to those below that line.

The Gray code is probably the most useful node labeling to attach to the hypercube. This code often appears in implementation. The program listing that begins on page 152 shows one way to generate the code. It can be used, for instance, as the
backbone of a routing function in a network. Labels with a Hamming distance of one mark neighbors in the hypercube. What about the labels of two nodes that differ in exactly k bits (i.e., have a Hamming distance of k)? It turns out that k is the distance (number of edges) between these nodes. For all communications between these nodes, the shortest path will involve k hops.

This also indicates that, for an n-cube, there is no pair of nodes that have a Hamming distance of more than n (e.g., communication between nodes 0000010 and 1111101 in a 7 -cube can be achieved in seven hops). The greatest distance across the n-cube is n hops. In fact, for each node in a hypercube, there is a unique corresponding node at a Hamming distance of n. Also, there are n nodes at a Hamming distance of one from each of the hypercube's nodes.

Two approaches have been considered so far: sketching cubes in n-dimensional Cartesian coordinates and studying the labels associated with the cubes. Though the approaches are fundamentally different, they arrived at many of the same conclusions. Careful application of the Gray code and Hamming distance could produce a nearly endless string of results, but it is more convenient to introduce some material from the study of graphs at this point. Graph theory combines the two approaches: it looks at the pictures and studies the numbers as well. The small hypercubes described with earlier methods are given graph representation in the illustration of Figure C.3.

G. GRAPHS OF HYPERCUBES

Graph theory is, of course, much more sophisticated than the small subset used here. Buckley and Harary provide a valuable source [Ref. 41]. This discussion exposes a few salient features of the hypercube from the perspective of graphs.

A graph, H, consists of a vertex set, $V(H)$, and an edge set, $E(H)$. The vertices, or nodes, in the multiprocessor network model are the processors. The edges are the

Vigure (:3: Ilypercube Graphs
limks that commet the processors. I will avoid nsing the term order in its graph theory sense (i.e., number of nodes) so that it camot be confused with the order of the hyperentre. Consider the graph, H_{n}, of a heperoube of order n. The graph has Hesse characteristocs:

- 'There are 2 " modes. 'This means that the mmber of nodes (i.e., processors) grows very quickly with order.
- Every vertex, \quad, in H_{n} has eccentricity e $(r)=n$. Eccentricity is the distance to a node farthest from 1 . Additionally, each node in a hypercube has exactly one eccentric (farthest) node. This property means that hypercubes are unique eccentric node (nee.m.) graphs.
- The radius of a graph is the minimum eccentricity of the nodes and diameter is the maximum eccentricity. The hypercube is self-centered, meaning its radius and diameter are the same: $r\left(H_{n}\right)=d\left(H_{n}\right)=n$. This is significant because it says that worst-case communications distances only grow like the order of the hypercube.
- Connectivity is a measure of reliability or fault tolerance in multiprocessor networks. The connectivity of a hypercube is equal to the order of the cube, n. The edge connectivity is also n (each node has n incident edges).

Counting the number of nodes in a hypercube is easy. The hypercube construction process also points to a recurrence relation that reveals the number of edges in a hypercube. The initial case, of course, is the hypercube of order zero with no edges. After this, the number of edges can be expressed in terms of the size of the previous cube. Suppose a hypercube of order n has q edges. Then the hypercube of order $(n+1)$ will have $2 q+2^{n}$ edges. This is because the construction procedure calls for two copies and 2^{n} edges between them.

Figure C. 4 provides an example. This is the graph, H_{4}, of the hypercube of order four. All of the characteristics given above are evident. Additionally, a Gray code labeling of the nodes is given. The recurrence relation above is useful, but it retains a dependence upon q. A more convenient formula would depend on n alone.

In fact, there is a simple formula for the number of edges in the graph of a hypercube, but it requires a closer look at the recurrence relation. In more formal terms: let $q(n)$ represent the number of edges in a hypercube of order n. Then:

$$
q(n)= \begin{cases}0 & \text { if } n=0 \\ 2 q(n-1)+2^{(n-1)} & \text { if } n \geq 1\end{cases}
$$

This can be expanded and shown equivalent to: $q(n)=n\left(2^{(n-1)}\right)$. Table C. 2 provides an example.

TABLE C.2: NODES AND EDGES FOR A HYPERCUBE

Order	Number of Nodes	Number of Edges
0	1	0
1	$2^{1}=2$	$2(0)+2^{0}=1$
2	$2^{2}=4$	$2(1)+2^{1}=4$
3	$2^{3}=8$	$2(4)+2^{2}=12$
4	$2^{4}=16$	$2(12)+2^{3}=32$
5	$2^{5}=32$	$2(32)+2^{4}=80$
6	$2^{6}=64$	$2(80)+2^{5}=192$
7	$2^{7}=128$	$2(192)+2^{6}=448$
!	:	\vdots
$(n-1)$	$2^{(n-1)}$	q
n	2^{n}	$2 q+2^{(n-1)}$

Figure C.4: Graph of a 4-Cube

H. SOURCE CODE LISTINGS

A listing of the Gray code generation program gray.c follows.

```
/* -------------=========== PROGRAM INFORMATION
*
* SOURCE : gray.c
* VERSION : 1.2
* DATE : 01 August 1991
* AUTHOR : Jon Hartman, U. S. Naval Postgraduate School
* USAGE : gray
* REFERENCES :
*
*
*
*
*
*
*
*
*
*/
/*
*
    * Consider a b-bit Gray code beginning at zero. Let j be an integral index
* such that 0<= j<b. Consider two b-vectors, mod_counter[] and bin[].
* Each element, mod_counter[j], holds a count mod (2-(j+1)). Initially we
* shall set mod_counter[j] = (2-j). Furthermore, let the elements of bin[]
* represent a binary number in the natural way. That is, each element,
* bin[j] will be either 0 or 1, and bin[] will be formed so that the sum,
* (2-0 * bin[0] + 2-1 * bin[1] + 2-2 * bin[2] + ... ), represents the
* 'value' of bin[]. We have elected to start the code at zero, so let
* bin[] be set to zeros initially. Next perform this algorithm:
*
* for (i = 0; i < (2^b); i++) {
*
* Print the "binary number" represented by bin [.
*
* for (j = 0; j< b; j++) {
                Let mod_counter[j] = (mod_counter [j] + 1) mod (2-}(j+1)
                If mod_counter[j] == 0, then toggle the bit in bin[j]
* If mod_counter[j]== 0, then toggl
*
* } end for(j)
*
* } end for(i)
* *
* *
    [1] Hamming, Richard W. "Coding and Information Theory", 2nd edition,
        edition, Englewood Cliffs, N.J.: Prentice-Hall, 1986, pp. 97-99.
------------============== DESCRIPTION ===============------------
This program generates and displays the Gray code described in [1].
-_-----------=================================================-------------
    -------------=============== ALGORITHM
```

*ifndef EXIT_FAILURE
\#define EXIT_FAILURE 1
*endif
60
61
*ifndef SUCCESS
*define SUCCESS O
\#endif
65
66
67
68
73 main() \{
74

```
        int patience = 5; /* there's a limit to my patience!
        long b = 0, /* as in b-bit Gray code */
        *bin, /* as described above */
            i, /* generic integral values */
            j,
            1, /* length of Gray code (2`b) */
            *mod_counter; /* as described above */
        printf("\n\n\n\n\n\n----==== ");
        printf("This program generates the binary numbers of a Gray code. ");
        printf("====----\n\n\n");
        printf(" Successive numbers in a Gray code differ in exactly ");
        printf("one bit position.\n");
        printf(" The list generated by this program qill be complete. ");
        printf("That is, if you\n");
        printf(" request the code of numbers that are b-bits long, ");
        printf("you will get a list\n");
        printf(" of (2-b) binary numbers, starting with zero.\n\n\n");
```

```
/* The sole purpose of this while() loop is to get the value of b */
while (b <= 0) {
    printf(" Please enter desired length (binary digits): ");
    scanf("%/d", b);
    flush(stdin);
    printf("\n\n");
    if (b > 0) { /* else ask again (patience permitting) */
        1 = POW2(b);
        if (l <= 0) { /* guard against too many left shifts! */
            printf(" The acceptable range is ");
            printf("1..%d. ", (sizeof(long)*8-2));
            printf("Please try again.\n\n\n");
            b}=-1
        }
    }
        if (--patience <= 0) {
        printf(" Ran out of patience!\n");
        exit(EXIT_FAILURE);
    }
} /* end while (b <= 0) */
/* Allocate storage for the arrays, test to see if it morked */
bin = (long*) calloc (b, sizeof(long));
mod_counter = (long*) calloc (b, sizeof(long));
if ((!bin) || (!mod_counter)) {
    printf("main(): Allocation failure bin[] or mod_counter[].\n");
    exit(EXIT_FAILURE);
}
/* Initialize mod_counter[] */
for (i = 0; i < b; i++) mod_counter[i] = POW2(i);
printf(" Gray code for %ld bits vill generate ", b);
printf("%ld numbers.\n\n\n", l);
printf(" Press RETURN to continue....");
fflush(stdin);
i = getc(stdin);
printf("\n\n\n");
```

170 return(SUCCESS);
179 \}
100 /*
for (i $=0$; $i<1 ; i++$) \{
printf("\t");
printf("\n");
* reaches zero.
*/
\}
\} /* end for (i) */
free(bin);
free(mod_counter);
/* Do the for() loop spoken of in the "ALGORITHM" section above */
/* Print the binary representation held in bin[] */
for (j $=(b-1) ; j>=0 ; j--)\{\operatorname{printf}(" \% 1 d ", b i n[j]) ;\}$
/* Adjust the counters using addition mod $\left(2^{\sim}(j+1)\right)$ and toggle the
* corresponding bit in bin[] whenever an element of mod_counter[]
for ($j=0 ; j<b ; j++$) \{
mod_counter[j]++;
if $((\bmod$ _counter $[j] \%=\operatorname{POW} 2(j+1))==0) \operatorname{bin}[j]=1$;
180 * -------------============= EOF gray.c

APPENDIX D

A SPARSE MATRIX

Partial differential equations can be used to characterize many physical problems. Explicit solutions to these problems are often quite complicated, so alternative approaches warrant our attention. Simple matrices exist as legitimate representatives of complex problems. A system of linear equations can be constructed to give a discrete approximation to the problem. The structure of the physical setting guarantees that the corresponding matrix of coefficients will be sparse and symmetric. Why does this happen? When do we have the right to expect such a simple matrix? Where does the matrix come from and what does it mean?

This discussion explains how to construct the matrix of coefficients and vectors that describe the numerical approximation to an elliptic partial differential equation. Poisson's equation in two dimensions is used to demonstrate the process. The first step uses a finite difference approximation to produce a system of equations. The system is fine-tuned and the matrix of coefficients is extracted. The process reveals the origins of structure and shows why the matrix is sparse and symmetric.

A. LAPLACE AND POISSON

To most engineers, mathematicians, and scientists, Laplace and Poisson are familiar French names. Pierre-Simon de Laplace (1749-1827) and Siméon Denis Poisson (1781-1840) made sizeable contributions to several fields. In a moment, the discussion turns to partial differential equations named in honor of these gentlemen.

If the material seems a bit difficult, the following quote from [Ref. 42: p. 10] may provide some encouragement. The ideas are not so obvious to everyone as they may have been to Laplace.

Nathaniel Bowditch (1773-1838), an American astronomer and mathematician, while translating Laplace's Mécanique céleste in the early 1800s, stated, "I never come across one of Laplace's 'Thus it plainly appears' without feeling sure that I have hours of hard work before me to fill up the chasm and find out and show how it plainly appears."

The next several pages are dedicated to showing how the matrix representation of a partial differential equation plainly appears! The objective is to describe a particular physical problem, then convert it to the equivalent matrix representation using a deliberate, step-by-step approach.

B. EQUATIONS

Laplace and Poisson worked with partial differential equations that can be observed in nature. What kinds of natural phenomena can be described with partial differential equations? This section gives a brief answer to this question. The discussion includes the natural setting, the equations, and a quick look at the variables and constants involved. The link between the equations and their physical meaning is critical, so this aspect must be developed. The heat equation has one of the most intuitive physical interpretations available, so it is used as a starting point. After developing a general perspective, the field can be narrowed to a particular examplePoisson's equation. Such a limited survey of partial differential equations can only hope to succeed by appealling to the reader's experience and intuition.

1. Heat

Before looking at a partial differential equation, let us recall some plane geometry. The intersection of a plane and a cone(s) provides many interesting shapes and equations. Consider the equation that describes all points equidistant from a point (focus) and a line (directrix):

$$
\begin{equation*}
y=\left(\frac{1}{4 c}\right) x^{2}+k . \tag{D.1}
\end{equation*}
$$

This is a parabola whose focus and vertex both lie on the y-axis (the axis of the parabola is the y-axis). The focal length is c and the vertex is located at $(0, k)$.

Partial differential equations are classified using conic sections much like equations in the $x y$-plane. Introductions to partial differential equations often begin with the heat equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}+Q(x, t) . \tag{D.2}
\end{equation*}
$$

This is an example of a parabolic partial differential equation. Note the similarity of equations (D.1) and (D.2).

a. Definitions and Notation

The heat equation describes the temperature, $u(x, t)$, in a "thin rod" (the single dimension x appears in the equation). The presence of t indicates dependence upon time. If there is a heat source (or sink) present, it is represented by Q. We can see that Q may be a function of x or t or both. When mass density (ρ), specific heat (s), and thermal conductivity (K^{\prime}) are known; the thermal diffusivity, κ, can be determined using the following relation:

$$
\begin{equation*}
\kappa=\frac{K}{s p} \tag{D.3}
\end{equation*}
$$

b. Houses and Heat

From our youth, we have observed several important properties of heat flow. The lessons are simple, few in number, and can be observed from the comfort of our home. First, heat energy only flows when there is a difference in temperature. If the temperature outside is the same as the indoor temperature, no heat energy will cross the threshhold (even with the door open). A temperature difference represents an instability and heat will flow to counter this situation.

When heat does flow, it goes from hotter to colder regions. The loss of heat energy from the warmer region reduces the temperature there, and the temperature in the colder region rises as it gains heat energy. The transfer of heat
has a stabilizing effect (the environment will not be at rest as long as temperature differences exist). We do not find the changes in temperature surprising, but our conversation indicates confusion concerning the direction of the flow. Most of us have heard someone say: "Close the door, you're letting cold air in!". We understand that this statement is not correct, but it seems to persist from one generation to the next.

In addition to the idea that heat flows in the presence of temperature differences (gradients), we clearly understand that larger differences are related to greater heat flow. On a very cold Winter day, the parent notices more quickly that the child left the door open (and displays more urgency in shutting it). In other words, the effect of heat flow is to balance differences in temperature and it somehow "works harder" when there is a greater difference to balance. In mathematical terms, we would suspect (correctly) that heat flow is proportional to temperature difference.

Finally, we recognize an ability to restrict heat's ever-present balancing efforts. Sometimes we want an imbalance in temperature, and we often use insulation to maintain this imbalance. When we shut the door, we expect that it will slow the transfer of thermal energy through the doorway and enable us to maintain an acceptable imbalance in temperature. For the same reason we use special materials in the construction of refrigerators to keep heat out, and in ovens to keep heat energy inside. This means that the effectiveness of heat transfer is subject to properties of the medium (air, glass windows, fiberglass insulation, wood doors, steel, styrofoam, and so on) through which it flows.

c. Heat Flux

The right-hand side of the heat equation looks a bit complex, but it merely captures this idea of heat flow. Before tackling the second partial derivative of u with respect to x, think about the first partial derivative. The first partial derivative of u with respect to x (scaled by the thermal conductivity, K) describes
movement of thermal energy. This flow of heat is usually called heat flux, denoted ϕ, and can be calculated using Fourier's law of heat conduction:

$$
\begin{equation*}
\phi=-K \frac{\partial u}{\partial x} \tag{D.4}
\end{equation*}
$$

Heat flux is a measure of how much thermal energy per unit time is moving to the right per unit surface area (by convention, flow to the left is assigned a negative value and flow to the right is positive) [Ref. 43: p. 3]. The second partial derivative measures changes in flux with respect to position. In other words, it represents increasing or decreasing flux.

d. Heat Equation Summary

Let us carefully reassemble the pieces of the heat equation (D.2) to see if the theory agrees with experience. Temperature has spatial and temporal dependencies. The left-hand side describes changes in temperature over time. Changes in heat flux are captured in the second partial of u that appears on the right-hand side. Flux, heat energy in motion, acts to equalize temperature. The thermal diffusivity, κ, measures the material's resistance to heat flux. That is, a temperature difference activates the flow of heat but the speed and effectiveness of this flow is moderated by material properties. Considering everything, then, the heat equation can be stated in one (long) sentence: Changes in temperature over time are caused by (equal to, due to, related to) changes in heat flow (moderated or accelerated by properties of the material) and thermal source(s).

2. Notation

With two or more dimensions, the same equations that looked simple in one dimension can begin to look complex. The linear operator, Δ, is used to simplify the notation. For example, Δu, substituted into the right-hand side of (D.2), gives
the heat equation a new look:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\kappa \Delta u+Q(x, t) \tag{D.5}
\end{equation*}
$$

This is a more general equation since the linear operator Δu can be applied in any number of dimensions. For instance (in three dimensions),

$$
\begin{equation*}
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \tag{D.6}
\end{equation*}
$$

Sometimes this operator is called the Laplacian of u and some authors use the del operator, ∇, in these equations ($\nabla^{2} u \equiv \Delta u$).

3. Diffusion

The behavior of thermal energy is actually a special instance of diffusion, so (D.5) is often referred to as the diffusion equation. With an appropriate substitution for κ, the equation might describe the spreading of dye through ocean water. In an agricultural application, it could characterize water or chemical penetration in soil. We shall continue to use the term "heat equation", though. for the sake of consistent terminology and notation.

4. Laplace's Equation

Consider the effect of a few restrictions on the heat equation. Suppose that there is no source of thermal energy ($Q=0$) and the physical properties of the material do not vary (κ is constant). Finally, what happens if the time-dependency is removed?

The left-hand side of the equation goes away. This is not so unrealistic. Systems may reach a steady (equilibrium) state after a time (especially in the absence of sources). We can divide through by κ (assuming $\kappa \neq 0$) and the equation becomes:

$$
\begin{equation*}
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{D.7}
\end{equation*}
$$

This is Laplace's equation in the two dimensions x and y. Sometimes it is called the potential equation since it also describes the cases in which u stands for gravity or voltage. It can also describe "steady-state heat flow...hydrodynamics, gravitational attraction, elasticity, and certain motions of incompressible fluids". [Ref. 44: pp. 660-661]

5. Ellipses

Although Laplace's equation seems like a steady-state heat equation, it is fundamentally different. It falls in the elliptic class of partial differential equations. Consider an ellipse centered at the origin with foci (on the x-axis at a distance of c from the origin) located at $(-c, 0)$ and $(c, 0)$. Suppose that the foci are labeled F_{1} and F_{2}. The major axis passes through the center and through the foci, connecting two vertices positioned at $(-a, 0)$ and $(a, 0)$. The minor axis passes through the center perpendicular to the major axis and connects the vertices at $(0,-b)$ and $(0, b)$. The major axis deserves its name since $a>b$ (in the case of equality the ellipse degenerates and we get a special case-the circle).

For any arbitrary point, p, let the distance d_{1} be the distance from p to F_{1} and let d_{2} be the distance from p to F_{2}. Furthermore, let $d=d_{1}+d_{2}$. The ellipse is described by all points satisfying $d=2 a$, where a is the constant length of the ellipse's semi-major axis as described above. The standard form for the equation of this ellipse is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{D.8}
\end{equation*}
$$

Using the distances from this ellipse, a right triangle can be formed with sides of length b and c and hypotenuse of length a. This means a, b, and c are related by the Pythagorean Theorem.

Figure D.1: The Region

6. Poisson's Equation

We have discussed several partial differential equations and observed the impact of changing a few parameters. Laplace's equation showed what happens in the steady-state case when sources are removed and the thermal diffusivity is nonzero. Now we return to the more general problem that can be represented in the presence of a source, sometimes called a driving (or forcing) function, say $f(x, y)$.

The result is Poisson's equation (shown here in two dimensions):

$$
\begin{equation*}
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y) \tag{D.9}
\end{equation*}
$$

Again, $u(x, y)$ typically represents temperature or voltage. Laplace's equation (D.7) is just the special case of Poisson's equation (D.9) where $f(x, y)=0$. The rest of the discussion will focus on Poisson's equation within the rectangular region (shown in Figure D.1): $0 \leq x \leq L, 0 \leq y \leq H$.

Figure D.2: Subdividing the Rectangle

7. Final Assumptions

We shall assume that the conditions along the boundaries are known and are given by $u=g(x, y)$. The problem is solved in the presence of a forcing function f. The goal is to produce something that a computing machine can "solve". To reach this position, several steps are required. First, the domain is divided into many smaller regions. Using this subdivision scheme, a system of equations is developed. The information that is known (f and g) can be moved to the right-hand side of the system. The system can then be represented in typical $A x=b$ fashion.

C. DISCRETIZATION

Before attempting a numerical solution, the domain must be subdivided into a finite (but probably large) number of elements. Figure D. 2 provides an illustration of what this mesh looks like. We should not forget that actual applications may involve 100 (or more) divisions in each direction. Nevertheless, (artificially) small
examples are quite sufficient for conveying notation and measures within the region.

1. Notation

A clear understanding of the problem domain, conventions, and notation is prerequisite to developing the system of equations. Consider Figure D.2. This domain will serve as a reference for the upcoming discussion on conventions and notation.

The rectangular region has length $L=9$ and height $H=5$. It has been subdivided into 45 smaller elements by a mesh made of four horizontal lines and eight vertical lines. The integers m and n are used to keep track of how many horizontal and vertical dividing lines are used (here $m=4$ and $n=8$). Each element has length h (in the x-direction) and height k (in the y-direction). In this particular example, the elements are (conveniently) square with $h=k=1$. In general, the individual elements within the region are rectangular (it is not necessarily true that $h=k$).

The elements within the region are uniformly spaced (each has the same size). L, H, h, and k do not need to be integers-they can be any convenient units. To guarantee uniform spacing, of course, L and H must be integer multiples of h and k, respectively. That is:

$$
\begin{aligned}
L=(n+1) h, & n \in\{0,1,2,3, \ldots\} \\
H & =(m+1) k,
\end{aligned} \quad m \in\{0,1,2,3, \ldots\}
$$

2. Internal Mesh Points

Our goal is a system of equations, and ultimately a problem stated in terms of a matrix and vectors. We will eventually see that there are $m n$ equations in $m n$ unknowns, one for each internal mesh point (where the lines cross). Imagine elements of size $h \times k$ (as before) that are centered on these points, such as the cross-hatched
element at $(7,3)$. Each equation in the system will correspond to one of these linecrossings and represent one of these elements. It is useful to label the lines for reference purposes. To accomplish this, we use the (integer) counters i and j.

These counters are used to reference particular vertical and horizontal dividing lines. The i counter refers to a vertical line $(1 \leq i \leq n)$ and the horizontal lines are indexed by $j(1 \leq j \leq m)$. Figure D. 2 may be deceptively simple due to the element dimensions $h=k=1$. Because of this, $i=7$ indicates an x -coordinate of 7 and $j=3$ means $y=3$. But the counters i and j are not generally equivalent to x - and y-position in the coordinate system. Given h, k, i, and j the corresponding coordinates are $(x, y)=(i h, j k)$.

D. A SYSTEM OF EQUATIONS

The next step is to build a system of $m n$ equations that describes the problem. First, we need to agree upon a referencing scheme for the internal mesh points. The numbering will be based upon i and j as defined above. This numbering scheme begins at the bottom left (i.e., $i=j=1$), proceeds up the first column and then moves, column-by-column, to the right. Specifically, the points will be assigned a label

$$
\begin{equation*}
\ell=m(i-1)+j \tag{D.10}
\end{equation*}
$$

Given the values i and j for any internal point, now we can assign it a label $(1 \leq \ell \leq m n)$. Figure D. 3 shows values of i along the x-axis, values of j along the y-axis, and labeling of internal mesh points according to (D.10).

1. Finite Differences

The approach calls for analyzing each internal mesh point. Figure D. 4 shows the point referenced by i and j and its neighbors to the North, South, East,

Figure D.3: Numbering the Equations
and West. We use a centered finite difference method to approximate the partial derivatives in (D.9) and arrive at the equations for these points. The finite difference approximations for the partial derivatives are:

$$
\begin{align*}
& {\frac{\partial^{2} u}{\partial x^{2}}{ }_{(i, j)}}^{\approx} \frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}} \tag{D.11}\\
& {\frac{\partial^{2} u}{\partial y^{2}}}_{(i, j)} \approx \frac{u_{i, j-1}-2 u_{i, j}+u_{i, j+1}}{k^{2}} \tag{D.12}
\end{align*}
$$

The approximation for the partial derivative in the x-direction (D.11) considers the neighbor to the West, the point itself, and the neighbor to the East. Similarly, the approximation in the y-direction (D.12) recognizes neighbors to the South and North in addition to the point. Both finite difference approximations favor the center point (i, j), giving it twice the weight of its neighbors.

Substituting these into Poisson's equation (D.9) yields:

$$
\begin{equation*}
-\left(\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}}\right)-\left(\frac{u_{i, j-1}-2 u_{i, j}+u_{i, j+1}}{k^{2}}\right) \approx-\Delta u_{i, j}=-f_{i, j} \tag{D.13}
\end{equation*}
$$

Figure D.4: Neighbors to the North, South, East, and West

The forcing function, $f_{i, j}$, is known so (D.13) begins to look like one of many equations in a linear system. There is such an equation for every internal mesh point. To make sure that we consider all of the internal mesh points in an orderly fashion, we may number them as in Figure D. 3 and consider them one at a time.

2. More Equations

At this point, we know the general form (D.13) for each of the equations that must be considered. The matrix of coefficients may not be completely clear yet, so let us consider each of the equations in the order of their labels. For now, we will leave the i, j subscripts on everything:

$$
\begin{aligned}
& -\left(\frac{u_{0,1}-2 u_{1,1}+u_{2,1}}{h^{2}}\right)-\left(\frac{u_{1,0}-2 u_{1,1}+u_{1,2}}{k^{2}}\right) \approx-f_{1,1} \\
& -\left(\frac{u_{0,2}-2 u_{1,2}+u_{2,2}}{h^{2}}\right)-\left(\frac{u_{1,1}-2 u_{1,2}+u_{1,3}}{k^{2}}\right) \approx-f_{1,2}
\end{aligned}
$$

$$
\begin{gathered}
-\left(\frac{u_{0, m-1}-2 u_{1, m-1}+u_{2, m-1}}{h^{2}}\right)-\left(\frac{u_{1, m-2}-2 u_{1, m-1}+u_{1, m}}{k^{2}}\right) \approx-f_{1, m-1} \\
-\left(\frac{u_{0, m}-2 u_{1, m}+u_{2, m}}{h^{2}}\right)-\left(\frac{u_{1, m-1}-2 u_{1, m}+u_{1, m+1}}{k^{2}}\right) \approx-f_{1, m} \\
-\left(\frac{u_{1,1}-2 u_{2,1}+u_{3,1}}{h^{2}}\right)-\left(\frac{u_{2,0}-2 u_{2,1}+u_{2,2}}{k^{2}}\right) \approx-f_{2,1} \\
-\left(\frac{u_{1,2}-2 u_{2,2}+u_{3,2}}{h^{2}}\right)-\left(\frac{u_{2,1}-2 u_{2,2}+u_{2,3}}{k^{2}}\right) \approx-f_{2,2}
\end{gathered}
$$

$$
-\left(\frac{u_{1, m-1}-2 u_{2, m-1}+u_{3, m-1}}{h^{2}}\right)-\left(\frac{u_{2, m-2}-2 u_{2, m-1}+u_{2, m}}{k^{2}}\right) \approx-f_{2, m-1}
$$

$$
-\left(\frac{u_{1, m}-2 u_{2, m}+u_{3, m}}{h^{2}}\right)-\left(\frac{u_{2, m-1}-2 u_{2, m}+u_{2, m+1}}{k^{2}}\right) \approx-f_{2, m}
$$

$$
\begin{aligned}
& -\left(\frac{u_{n-2,1}-2 u_{n-1,1}+u_{n, 1}}{h^{2}}\right)-\left(\frac{u_{n-1,0}-2 u_{n-1,1}+u_{n-1,2}}{k^{2}}\right) \approx-f_{n-1,1} \\
& -\left(\frac{u_{n-2,2}-2 u_{n-1,2}+u_{n, 2}}{h^{2}}\right)-\left(\frac{u_{n-1,1}-2 u_{n-1,2}+u_{n-1,3}}{k^{2}}\right) \approx-f_{n-1,2}
\end{aligned}
$$

$$
-\left(\frac{u_{n-2, m-1}-2 u_{n-1, m-1}+u_{n, m-1}}{h^{2}}\right)-\left(\frac{u_{n-1, m-2}-2 u_{n-1, m-1}+u_{n-1, m}}{k^{2}}\right) \approx-f_{n-1, m-1}
$$

$$
\begin{aligned}
& -\left(\frac{u_{n-2, m}-2 u_{n-1, m}+u_{n, m}}{h^{2}}\right)-\left(\frac{u_{n-1, m-1}-2 u_{n-1, m}+u_{n-1, m+1}}{k^{2}}\right) \approx-f_{n-1, m} \\
& -\left(\frac{u_{n-1,1}-2 u_{n, 1}+u_{n+1,1}}{h^{2}}\right)-\left(\frac{u_{n, 0}-2 u_{n, 1}+u_{n, 2}}{k^{2}}\right) \approx-f_{n, 1} \\
& -\left(\frac{u_{n-1,2}-2 u_{n, 2}+u_{n+1,2}}{h^{2}}\right)-\left(\frac{u_{n, 1}-2 u_{n, 2}+u_{n, 3}}{k^{2}}\right) \approx-f_{n, 2} \\
& \\
& \vdots \\
& -\left(\frac{u_{n-1, m-1}-2 u_{n, m-1}+u_{n+1, m-1}}{h^{2}}\right)-\left(\frac{u_{n, m-2}-2 u_{n, m-1}+u_{n, m}}{k^{2}}\right) \approx-f_{n, m-1} \\
& -\left(\frac{u_{n-1, m}-2 u_{n, m}+u_{n+1, m}}{h^{2}}\right)-\left(\frac{u_{n, m-1}-2 u_{n, m}+u_{n, m+1}}{k^{2}}\right) \approx-f_{n, m}
\end{aligned}
$$

3. Modification

The goal is to determine $u_{i, j}$ for all internal points (i, j). Having completed several foundational steps, we can see a developing system of $m n$ equations. Let's clean it up a bit. To do this, we need to make better use of one more piece of the given information-the boundary values. For those points just inside the boundaries (a horizontal distance of h from the sides and/or a vertical distance of k from the top or bottom) we already know part of the left side of (D.13). In particular, any subscript $i=0, j=0, i=n+1$, and/or $j=m+1$ signifies a (known) boundary point.

Multiplying through by $(h k)^{2}$ and moving the known information to the right-hand side of the equations, we again start with the left-most column $(i=1)$ and work in the order of the labels. Now the system of equations looks like this:

$$
\begin{aligned}
& k^{2}\left(2 u_{1,1}-u_{2,1}\right)+h^{2}\left(2 u_{1,1}-u_{1,2}\right) \approx-(h k)^{2} f_{1,1}+k^{2} u_{0,1}+h^{2} u_{1,0} \\
& k^{2}\left(2 u_{1,2}-u_{2,2}\right)+h^{2}\left(-u_{1,1}+2 u_{1,2}-u_{1,3}\right) \approx-(h k)^{2} f_{1,2}+k^{2} u_{0,2}
\end{aligned}
$$

$$
k^{2}\left(2 u_{1, m-1}-u_{2, m-1}\right)+h^{2}\left(-u_{1, m-2}+2 u_{1, m-1}-u_{1, m}\right) \approx-(h k)^{2} f_{1, m-1}+k^{2} u_{0, m-1}
$$

$$
k^{2}\left(2 u_{1, m}-u_{2, m}\right)+h^{2}\left(-u_{1, m-1}+2 u_{1, m}\right) \approx-(h k)^{2} f_{1, m}+k^{2} u_{0, m}+h^{2} u_{1, m+1}
$$

$$
k^{2}\left(-u_{1,1}+2 u_{2,1}-u_{3,1}\right)+h^{2}\left(2 u_{2,1}-u_{2,2}\right) \approx-(h k)^{2} f_{2,1}+h^{2} u_{2,0}
$$

$$
k^{2}\left(-u_{1,2}+2 u_{2,2}-u_{3,2}\right)+h^{2}\left(-u_{2,1}+2 u_{2,2}-u_{2,3}\right) \approx-(h k)^{2} f_{2,2}
$$

$$
k^{2}\left(-u_{1, m-1}+2 u_{2, m-1}-u_{3, m-1}\right)+h^{2}\left(-u_{2, m-2}+2 u_{2, m-1}-u_{2, m}\right) \approx-(h k)^{2} f_{2, m-1}
$$

$$
k^{2}\left(-u_{1, m}+2 u_{2, m}-u_{3, m}\right)+h^{2}\left(-u_{2, m-1}+2 u_{2, m}\right) \approx-(h k)^{2} f_{2, m}+h^{2} u_{2, m+1}
$$

$$
\begin{aligned}
& k^{2}\left(-u_{n-2,1}+2 u_{n-1,1}-u_{n, 1}\right)+h^{2}\left(2 u_{n-1,1}-u_{n-1,2}\right) \approx-(h k)^{2} f_{n-1,1}+h^{2} u_{n-1,0} \\
& k^{2}\left(-u_{n-2,2}+2 u_{n-1,2}-u_{n, 2}\right)+h^{2}\left(-u_{n-1,1}+2 u_{n-1,2}-u_{n-1,3}\right) \approx-(h k)^{2} f_{n-1,2}
\end{aligned}
$$

$$
\begin{gathered}
k^{2}\left(-u_{n-2, m-1}+2 u_{n-1, m-1}-u_{n, m-1}\right)+h^{2}\left(-u_{n-1, m-2}+2 u_{n-1, m-1}-u_{n-1, m}\right) \approx-(h k)^{2} f_{n-1, m-1} \\
k^{2}\left(-u_{n-2, m}+2 u_{n-1, m}-u_{n, m}\right)+h^{2}\left(-u_{n-1, m-1}+2 u_{n-1, m}\right) \approx-(h k)^{2} f_{n-1, m}+h^{2} u_{n-1, m+1} \\
k^{2}\left(-u_{n-1,1}+2 u_{n, 1}\right)+h^{2}\left(2 u_{n, 1}-u_{n, 2}\right) \approx-(h k)^{2} f_{n, 1}+k^{2} u_{n+1,1}+h^{2} u_{n, 0} \\
k^{2}\left(-u_{n-1,2}+2 u_{n, 2}\right)+h^{2}\left(-u_{n, 1}+2 u_{n, 2}-u_{n, 3}\right) \approx-(h k)^{2} f_{n, 2}+k^{2} u_{n+1,2} \\
\vdots \\
k^{2}\left(-u_{n-1, m-1}+2 u_{n, m-1}\right)+h^{2}\left(-u_{n, m-2}+2 u_{n, m-1}-u_{n, m}\right) \approx-(h k)^{2} f_{n, m-1}+k^{2} u_{n+1, m-1} \\
\\
k^{2}\left(-u_{n-1, m}+2 u_{n, m}\right)+h^{2}\left(-u_{n, m-1}+2 u_{n, m}\right) \approx-(h k)^{2} f_{n, m}+k^{2} u_{n+1, m}+h^{2} u_{n, m+1}
\end{gathered}
$$

Now the equations are very close to what we want. There are some unfortunate side effects to such a deliberate approach. The list of equations is tedious, the subscripts are a bit involved, and it takes some concentration to match things up. There are some benefits, though, for those who can endure! It will take very little effort to see how the coefficients are collected.

E. MATRIX REPRESENTATION

It is not hard to translate the preceding equations into the familiar representation $A x=b$. Notation is quite important. We will start with the obvious, exchanging u for x so that (event ually) the system will look like $A u=b$. Dimensions are important too. The goal is a large, sparse, symmetrix matrix $A \in \Re^{m n \times m n}$. The vectors u and b have the obvious dimensions and are assumed to contain real numbers as well.

1. Unknowns

Since there is a great deal of structure in this problem, it is useful to partition the vector of unknowns, u. Let $u_{i, j}$ have the same meaning as it did in equation (D.13) and consider the m-vector:

$$
u_{i}=\left[\begin{array}{c}
u_{i, 1} \\
u_{i, 2} \\
\vdots \\
u_{i, m-1} \\
u_{i, m}
\end{array}\right]
$$

This vector captures all of the unknowns for a given column, i, of the original region. Now we can stack the columns, n in number, forming the entire vector u of unknowns:

$$
u=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]
$$

This process has clearly formed $u \in \Re^{m n}$. Now we turn to the matrix of coefficients.

2. Coefficients

The matrix A is formed by combining two smaller matrices, T and D. First we shall consider the tridiagonal matrix $T \in \Re^{m \times m}$. For aesthetic purposes only, let the diagonal elements of T be $d=2\left(h^{2}+k^{2}\right)$.

$$
T=\left[\begin{array}{ccccccc}
d & -h^{2} & & & & & \\
-h^{2} & d & -h^{2} & & & & \\
& -h^{2} & d & -h^{2} & & & \\
& & & \ddots & & & \\
& & & -h^{2} & d & -h^{2} & \\
& & & & -h^{2} & d & -h^{2} \\
& & & & & -h^{2} & d
\end{array}\right]
$$

Next, consider the diagonal matrix $D \in \Re^{m \times m}$:

$$
D=\left[\begin{array}{lllll}
-k^{2} & & & & \\
& -k^{2} & & & \\
& & \ddots & & \\
& & & -k^{2} & \\
& & & & -k^{2}
\end{array}\right]
$$

Forming the matrix A requires n identical copies of T and $2(n-1)$ identical copies of D. The matrices in A below are assigned subscripts for counting purposes. The matrix subscripts, by the way, denote a value of i corresponding to the partition u_{i} which the matrix will multiply. A is the block-tridiagonal matrix

$$
A=\left[\begin{array}{ccccccc}
T_{1} & D_{2} & & & & & \\
D_{1} & T_{2} & D_{3} & & & & \\
& D_{2} & T_{3} & D_{4} & & & \\
& & & \ddots & & & \\
& & & D_{n-3} & T_{n-2} & D_{n-1} & \\
& & & & D_{n-2} & T_{n-1} & D_{n} \\
& & & & & D_{n-1} & T_{n}
\end{array}\right]
$$

3. Knowns

We could proceed immediately to the solution vector, $b \in \Re^{m n}$, using the equations provided in the previous section. Again, though, the result can be cleaned up a bit if we form b as the sum of three vectors f, v, w.

The vector $f \in \Re^{m n}$ represents the forcing function. The equations clearly indicate where the scalar multiplier comes from.

$$
f=-(h k)^{2}\left[\begin{array}{c}
f_{1,1} \\
f_{1,2} \\
\vdots \\
f_{1, m-1} \\
f_{1, m} \\
f_{2,1} \\
f_{2,2} \\
\vdots \\
f_{n, m-1} \\
f_{n, m}
\end{array}\right]
$$

Next, the vector $v \in \Re^{m n}$ is used to represent the information that is known due to the boundary values on the East and West sides of the region.

$$
v=k^{2}\left[\begin{array}{c}
u_{0,1} \\
u_{0,2} \\
\vdots \\
u_{0, m-1} \\
u_{0, m} \\
0 \\
\vdots \\
0 \\
u_{n+1,1} \\
u_{n+1,2} \\
\vdots \\
u_{n+1, m-1} \\
u_{n+1, m}
\end{array}\right]
$$

Finally, the vector $w \in \Re^{m n}$ is used to represent the information that is known due to the boundary values on the North and South sides of the region.

$$
w=h^{2}\left[\begin{array}{c}
u_{1,0} \\
0 \\
\vdots \\
0 \\
u_{1, m+1} \\
u_{2,0} \\
0 \\
\vdots \\
0 \\
u_{2, m+1} \\
u_{3,0} \\
\vdots \\
u_{n, m+1}
\end{array}\right]
$$

Now b is a simple sum of these vectors: $b=f+v+w$.

F. CONCLUSION

This process has shown a few examples of partial differential equations that appear frequently in nature. Poisson's equation in two dimensions was selected as an example. After the finite difference approximation is selected, determining the system of equations is a tedious (but not too complicated) process. Once the system of equations is written down, the matrix representation is easy to come by.

APPENDIX E

HYPERCUBE COMMUNICATIONS

This report displays the results of point-to-point communications tests that were performed on the Intel iPSC/2 hypercube. The emphasis of the experiment was to evaluate several aspects of communications time. The exercise showed that communication on this machine is virtually independent of the Hamming distance between communicating nodes. There is clear evidence that transmission rates are related to message length (the transmission system favors longer messages) due-at least in part-to an overhead charged to begin the communication. Communications between the host and a node never achieve the rate that can be realized with node-to-node transmissions.

The communications test code described in this appendix was only executed on the $\operatorname{PPSC} / 2$. Time did not permit modification of the code and testing on the transputer networks. A thorough test of communications and computational abilities of the T414 and T800 transputers has already been performed by Gregory Bryant. His masters thesis [Ref. 26] contains the documentation of this work. A short summary of Bryant's findings is included in the conclusions to this appendix.

A. SOURCE CODE OVERVIEW

The host program (commtst.c) and a node program (commtstn.c) contain most of the code for this experiment. There is also a header file, commtst.h, shared by these codes,. Finally (but perhaps most important for any high-level survey of the code), the makefile commtst.mak shows dependencies and compilation procedures.

In the discussion that follows, bold-faced type is used to indicate function and object names that actually appear in the code.

B. STRATEGY

The program must define the valid arguments. The function interpret_args() takes care of checking for occurrences of these arguments in the command line. When the arguments have been interpreted, we know how to set variables like reps (repetitions), bytes (length of the message to be passed), and verbose (to control how much data is spewed out). Once these values are known, the host instructs each node to either RECEIVE or SEND. A special Tasking packet (structure) carries instructions to each node independently. Only one node is designated to SEND at any one time; the rest RECEIVE. Receivers simply crecv() the given number of bytes and return the message to the originator by calling csend(). Since this involves a round-trip, the issue of timing requires attention.

We can divide the time measurement by two (to account for the round-trip), provided we aren't deceived by the outcome. That is, passing two b-byte messages is not the same as passing a single message of length $2 b$ bytes. To make the timing data credible, however, the round-trip method is essential. The precision of the mclock() function is an additional issue. At best, mclock() is accurate to the millisecond (and ten milliseconds may be a more reasonable expectation). Very short messages can produce questionable results in terms of the precision of the timing data.

For this reason, tests of short messages should be repeated a number of times within the block surrounded by time checks. This, of course, revives the same issue (multiple repetitions of a message are not equivalent to a single, longer message). We may proceed, however, provided we establish a common understanding of the problem domain and terminology. I have used the term effective time to capture this subtlety.

Wherever this term appears, it should be interpreted according to the following definition:

$$
t_{e}=\frac{t}{2 \rho}
$$

where t_{e} is the effective time, t is the actual time measurement for the message, and ρ is the number of repetitions. The factor of two is included to account for the roundtrip. For instance, suppose that the user asks for three repetitions of a message. The implementation carries this out in a for loop. Time is sampled before and after the loop. The inside of the loop is the simple $\operatorname{csend}()$ and $\boldsymbol{\operatorname { c r e c v }}()$ sequence described earlier. The effective time in this example would be $t_{e}=t / 6$.

In summary, there is no convenient (and credible) method for timing one-way communications. If we time one-way communications, the results could be misleading in that we could not be certain that the clock was starting just before the beginning of the csend() and stopped immediately after the receiving node accumulated the final byte of the message. We must also consider the issue of blocking communication. ${ }^{1}$ Thus, the (round-trip) method is not so easily misled by the fact that csend() is not actually blocking. The transmission duties are quickly handed over to a communication manager and processing continues directly. The $\operatorname{crecv}()$ enforces blocking communications and execution stops at this function until the last byte has been acquired. Thus the round-trip method seems to be quite reliable, particularly in the case of node-to-node communications (if the host is involved, the results are less consistent).

Since receiver nodes have nothing else to do but receive and retransmit the message, the performance loss due to the round-trip method should be (almost entirely) accounted for by two factors (loosely) placed into "software" and "hardware"

[^2]categories:

- Software overheads like establishing and freeing the activation stack for functions (e.g., the $\operatorname{csend}()$ and $\operatorname{crecv}()$ functions).
- Hardware overheads associated with establishing the communication path and performing switching. The take-down time for this task is probably negligible.

Hence, if this method of analyzing communications performance errs, it does so on the conservative side. That is, the timing used in this method is liberal (if anything), so that communication rates will be estimated conservatively.

C. RESULTS

Considering the nature of the implementation, communications will be considered bidirectional. In particular, the term "host-to-node" communications does not imply that the host is the originator of directed communication, but that a bidirectional exchange takes place between some node and the host. The host does send directed, one-way instructions to the nodes, but all timed communication originates at a node and returns to that node (even if it goes to the host). There are essentially three groups of results; each of which captures data for node-to-node communications and host-to-node communications.

1. Small Messages Repeated Ten Times

The first test involved messages of length $\ell \leq 1,024$ bytes. Since the shortest of these would not generate trustworthy timing data, the repetition count, ρ, was set at ten. This gave $t_{e}=t / 20$. Table E. 1 shows the results.

TABLE E.1: SHORT MESSAGES WITH TEN REPETITIONS

Message Length (Bytes)	Node-to-Node			Host-to-Node		
	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kbytes/sec) } \end{gathered}$	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kbytes/sec) } \end{gathered}$
1	7.10	0.36	2.75	71.40	3.57	0.27
2	7.00	0.35	5.58	79.40	3.97	0.49
4	7.00	0.35	11.16	78.90	3.95	0.99
8	7.00	0.35	22.32	75.80	3.79	2.06
16	7.20	0.36	43.40	78.10	3.91	4.00
32	7.30	0.37	85.62	79.40	3.97	7.87
64	7.70	0.39	162.34	87.10	4.36	14.35
128	13.90	0.70	179.86	132.10	6.61	18.93
192	14.30	0.72	262.24	134.60	6.73	27.86
256	14.70	0.74	340.14	137.50	6.88	36.36
320	15.30	0.77	408.50	139.60	6.98	44.77
384	15.80	0.79	474.68	142.40	7.12	52.67
448	16.20	0.81	540.12	147.40	7.37	59.36
512	16.70	0.84	598.80	180.30	9.02	55.46
576	17.10	0.86	657.89	201.50	10.08	55.83
640	17.60	0.88	710.23	207.00	10.35	60.39
704	18.10	0.91	759.67	208.80	10.44	65.85
768	18.50	0.93	810.81	204.50	10.23	73.35
832	19.00	0.95	855.26	180.00	9.00	90.28
896	19.40	0.97	902.06	152.30	7.62	114.90
960	19.90	0.99	942.21	147.80	7.39	126.86
1024	20.40	1.02	980.39	148.90	7.45	134.32

Figure E.1: Speed of Small Host-Node Messages (Ten Repetitions)

a. Host-io-Node Performance

The communication rates for small host-node messages with a repetition count of ten are illustrated in Figure E.1. Communications involving the host produce very irregular results (in the sense that the relationship between length and performance is not straightforward). The experiment was executed when only one user was logged in at the host and the results followed the same general pattern on repeated tests.

Figure E.2: Speed of Small Messages Between Nodes (Ten Repetitions)
b. Node-to-Node Performance

In the absence of contention for the communication medium, node-to-node communications within the cube are quite predictable. Figure E. 2 shows transmission rates for small messages (up to one kilobyte) repeated ten times.

TABLE E.2: SHORT MESSAGES WITH ONE HUNDRED REPETITIONS

Message Length (Bytes)	Node-to-Node			Host-to-Node		
	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kbytes/sec) } \end{gathered}$	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	Rate (kbytes/sec)
1	68.60	0.34	2.85	837.40	4.19	0.23
2	68.60	0.34	5.69	818.30	4.09	0.48
4	68.70	0.34	11.37	795.00	3.98	0.98
8	69.40	0.35	22.51	774.50	3.87	2.02
16	70.30	0.35	44.45	758.30	3.79	4.12
32	71.70	0.36	87.17	737.10	3.69	8.48
64	75.30	0.38	166.00	721.30	3.61	17.33
128	137.60	0.69	181.69	1020.10	5.10	24.51
192	142.30	0.71	263.53	1007.10	5.04	37.24
256	146.80	0.73	340.60	1007.00	5.04	49.65
320	152.00	0.76	411.18	1004.50	5.02	62.22
384	156.20	0.78	480.15	1013.40	5.07	74.01
448	161.00	0.81	543.48	1043.80	5.22	83.83
512	165.30	0.83	604.96	1152.90	5.76	86.74
576	169.80	0.85	662.54	1335.40	6.68	84.24
640	174.50	0.87	716.33	1419.50	7.10	88.06
704	179.30	0.90	766.87	1688.50	8.44	81.43
768	183.20	0.92	818.78	1869.90	9.35	80.22
832	188.20	0.94	863.44	1520.00	7.60	106.91
896	192.90	0.96	907.21	1070.30	5.35	163.51
960	197.70	0.99	948.41	1061.60	5.31	176.62
1024	202.40	1.01	988.14	1048.80	5.24	190.69

2. Small Messages Repeated One Hundred Times

For the next experiment data was collected from runs using the same message lengths, but the repetition count, ρ, was raised to one hundred. This gives $t_{e}=t / 200$, as shown in Table E.2.

a. Host-to-Node Performance

Figure E. 3 gives the transmission rates corresponding to this data.

Figure E.3: Speed of Small Host-Node Messages (One Hundred Repetitions)

Figure E.4: Speed of Small Messages Between Nodes (One Hundred Repetitions)

b. Node-to-Node Performance

Figure E. 4 shows the transmission rates for the node-to-node messages. This data may have important implications. Consider the transmission of a matrix row-by-row within a loop (where one row is transmitted each time through the loop). The expected communications performance is related to the number of bytes in a single row of the matrix, not the size of the entire matrix.

3. Larger Messages

The final test considered longer messages $(1,024 \leq \ell \leq 262,144)$ that were not repeated. This gives $t_{e}=t / 2$. Since the experiment was performed over a rather large set of message lengths, the data is divided at an arbitrary point. Messages of 64 K bytes and less are designated "medium" length messages and placed into Table E.3. Messages of length 128 K bytes and greater are designated "long" messages and placed into Table E.4. There is no hidden significance to this separation, it just made for tables of reasonable length.

The figures that follow are based upon the combined data of both of these Tables. The host terminates execution at the $\operatorname{crecv}()$ if we ask for more than 262,144 bytes in a single message. Chapter 2-iPSC/2 C Library Calls—of [Ref. 45: pp. 216, 2-19] explain: "messages to or from a host process are limited to a maximum of 256 K bytes. There is no limit on message length between nodes." This explains why the data stops at that message size.

TABLE E.3: MESSAGES OF MEDIUM LENGTH

Message Length (Bytes)	Node-to-Node			Host-to-Node		
	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ \text { (msec) } \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kbytes/sec) } \end{gathered}$	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kyytes/sec) } \end{gathered}$
1024	2.20	1.10	909.09	9.00	4.50	222.22
2048	2.80	1.40	1428.57	10.40	5.20	384.62
3072	3.70	1.85	1621.62	11.90	5.95	504.20
4096	4.40	2.20	1818.18	13.40	6.70	597.01
5120	5.10	2.55	1960.78	14.50	7.25	689.66
6144	5.80	2.90	2068.97	14.50	7.25	827.59
7168	6.50	3.25	2153.85	15.50	7.75	903.23
8192	7.40	3.70	2162.16	16.50	8.25	969.70
9216	8.10	4.05	2222.22	19.50	9.75	923.08
10240	8.80	4.40	2272.73	18.00	9.00	1111.11
11264	9.50	4.75	2315.79	18.90	9.45	1164.02
12288	10.30	5.15	2330.10	19.00	9.50	1263.16
13312	10.90	5.45	2385.32	19.60	9.80	1326.53
14336	11.80	5.90	2372.88	20.30	10.15	1379.31
15360	12.50	6.25	2400.00	21.90	10.95	1369.86
16384	13.20	6.60	2424.24	22.40	11.20	1428.57
17408	13.90	6.95	2446.04	23.30	11.65	1459.23
18432	14.60	7.30	2465.75	24.90	12.45	1445.78
19456	15.40	7.70	2467.53	24.30	12.15	1563.79
20480	16.10	8.05	2484.47	27.30	13.65	1465.20
21504	16.80	8.40	2500.00	27.10	13.55	1549.82
22528	17.60	8.80	2500.00	27.00	13.50	1629.63
23552	18.40	9.20	2500.00	27.80	13.90	1654.68
24576	19.10	9.55	2513.09	29.30	14.65	1638.23
25600	19.80	9.90	2525.25	29.40	14.70	1700.68
26624	20.50	10.25	2536.59	30.60	15.30	1699.35
27648	21.30	10.65	2535.21	30.90	15.45	1747.57
28672	22.10	11.05	2533.94	33.50	16.75	1671.64
29696	22.70	11.35	2555.07	38.50	19.25	1506.49
30720	23.50	11.75	2553.19	37.90	18.95	1583.11
31744	24.20	12.10	2561.98	37.90	18.95	1635.88
32768	24.90	12.45	2570.28	38.10	19.05	1679.79
65536	48.50	24.25	2639.18	59.90	29.95	2136.89

TABLE E.4: LONG MESSAGES

Message Length (Bytes)	Node-to-Node			Host-to-Node		
	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kbytes/sec) } \end{gathered}$	$\begin{gathered} t \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} t_{e} \\ (\mathrm{msec}) \end{gathered}$	$\begin{gathered} \text { Rate } \\ \text { (kbytes/sec) } \end{gathered}$
131072	95.60	47.80	2677.82	109.40	54.70	2340.04
150528	109.60	54.80	2682.48	123.60	61.80	2378.64
161792	117.70	58.85	2684.79	131.60	65.80	2401.22
162816	118.40	59.20	2685.81	132.90	66.45	2392.78
163840	119.10	59.55	2686.82	133.60	66.80	2395.21
164864	119.90	59.95	2685.57	135.00	67.50	2385.19
165888	120.60	60.30	2686.57	136.30	68.15	2377.11
172032	125.00	62.50	2688.00	140.80	70.40	2386.36
182272	132.40	66.20	2688.82	148.10	74.05	2403.78
192512	139.70	69.85	2691.48	155.60	77.80	2416.45
202752	147.10	73.55	2692.05	164.60	82.30	2405.83
223232	161.80	80.90	2694.68	181.10	90.55	2407.51
243712	176.50	88.25	2696.88	194.80	97.40	2443.53
253952	183.80	91.90	2698.59	202.80	101.40	2445.76
259072	187.60	93.80	2697.23	205.50	102.75	2462.29
262144	189.70	94.85	2699.00	210.50	105.25	2432.30

Figure E.5: Speed of Large Host-Node Messages

a. Host-to-Node Performance

The host-to-node communication rates (for large messages) are illustrated in Figure E.5.

Figure E.6: Speed of Large Messages Between Nodes

b. Node-to-Node Performance

Figure E. 6 shows the transmission rates for the same long messages when passed among nodes of the hypercube. To move the plot of Figure E. 6 out into the open, a plot of transmission rate versus $\log _{10} \ell$ is shown in Figure E. 7 .

Figure E.7: Node-to-Node Transmission Rates for Large Messages

D. CONCLUSIONS

One of the obstacles that this experiment carefully avoided was competition for the links. Contention for communications resources may be inherent in certain paralleł programs. Potential causes and effects of contention should always be given due consideration in the crafting of a parallel application. All of the algorithms that were tested in this research work involved very structured, regular communications schemes. An application with very random communication patterns should be expected to behave very differently. Additionally, the communication scheme for every program in this work was designed to use the shortest possible path.

The circuit switching approach has the disadvantage that a single message must control the entire path from origin to destination. Under a less controlled, random pattern of communications the performance of the communications subsystem might reasonably be expected to exhibit degraded performance. Other portions of this thesis show that a communication-bound algorithm can experience severe performance degradation as well. There is no specific claim that the results obtained in this experiment represent an upper bound for node-to-node communications within the hypercube, but they are probably good estimates for an upper bound.

Host-node communication is slower than node-to-node communication. This is not surprising (consider the physical distances and materials). In the absence of competition for the links, node-to-node transmission rates are essentially predictable for a given message length. There is a tremendous rise in transmission rate as message length goes from one byte to the vicinity of twenty kilobytes. Thereafter, smaller (apparently asymptotic) performance gains are achieved by increasing the message size. A similar phenomenon occurs with host-node communications but it takes much longer messages to break, say the two megabytes-per-second transmission rate.

These performance measures are quite appealing for long messages, but consider transmissions of shorter (and possibly repetitious) messages. The data shows that short messages are penalized, even if they are part of a loop that involves a good deal of communication. Each instance of csend() or $\operatorname{crecv}()$ is distinct and incurs its own start-up cost. This is an important note for anyone considering transmission of the rows (or columns) of a matrix within a loop structure. The potential of (pre-transmission) storage of matrices (two-dimensional arrays) into one-dimensional arrays might be investigated as a means of increasing the communications rate (provided the cost of copying the array is not prohibitive).

Communications in a transputer network was not developed in this work, but Bryant [Ref. 26] gives a very thorough analysis of communications and calculations in a network of transputers. On pages 31-34, Bryant gives a good summary of unidirectional and bidirectional data transfer rates. He discusses link interaction (i.e., how communications performance varies as one, two, or all four of the transputer's links are engaged in communication) on pages 34-38 and concludes that the effects of link interaction are minimal.

Bryant also discusses the effects of varied communication loads on processor performance. On pages $38-44$, he finds that bombarding a transputer with many small messages while it is trying to perform calculations can severely degrade the processor's performance. His Figures 3.8 and 3.9 show that-with only one link active-messages of size 100 bytes and larger cause negligible performance degradation. With all four links active, messages of size greater than one kilobyte should be used to free the processor from most of the communications overhead.

Pages 36 and 37 of Bryant's thesis show the effects of message length on the communication rate. Bryant's Figures 3.4 and 3.5 are quite similar to Figure E. 6 above, but the transputers are much more responsive (i.e., there seems to be less overhead involved, so the peak communications rate is achieved much earlier). In
fact, the transputers are near their peak transmission rate with messages of 100 bytes and messages of one kilobyte and greater always travel at peak rates.

Comparing a transputer system to an iPSC/2 system-in terms of communications performance-is essentially a lesson in the differences between store-andforward switching versus circuit switching for multi-hop communications. Bryant shows [Ref. 26: pp. 83-85] that the store-and-forward transmission rates suffer as the number of hops grows. The direct-connect (circuit switching) approach recovers its overhead on multi-hop communications, but it ties up the entire path to do so (making it unavailable to other potential users). The key difference is that communications performance with the direct-connect method is very nearly independent of the number of hops.

The transputer system seems to enforce true blocking communications on both the sending and receiving ends (byte-by-byte acknowledgment is part of the protocol). The iPSC/2 csend() is not blocking, but the crecv() function is blocking. Proper handling of these issues can become important when implementing an algorithm. Each method has advantages and disadvantages, but-at least for the current systems-transputers seem better suited for applications involving short messages over short distance and the iPSC/2 seems to handle long messages over long distances better.

E. SOURCE CODE LISTINGS

The source code listings for the programs used for these tests are supplied on the pages that follow. The makefile commtst.mak appears first and describes the dependencies among the files and compilation procedures. Next, commtst.h is the header file associated with these programs. Finally, the actual code is given in a host program called commtst.c and the node program commtstn.c.

commtst.mak

```
# Author: Jonathan E. Hartman, U. S. Maval Postgraduate School
* Purpose: Kakefile for Eypercube Communications Test Programs
# Date: 07 August 1991
all: hostcode nodecode
help:
chelp
#
hostcode: commtst.o clargs.o
cc clargs.o commtst.o -host -0 commtst
clargs.o: clargs.h clargs.c
commtst.o: commtst.h commtst.c
# -----------------------------------------------------------------------------------
nodecode: commtstn.o
cc commtstn.o -node -o commtstn
commtstn.0: commtstn.c commtst.h
* Execute it!
run: all
commtst -d 3-b 1024 -r 2
# Delete object files, executables
clean:
Im *.O
rm commtst
Im commtstn
# EOF commtst.mak
```

9
0
36
37

```
/*------------========== PROGRAM INFORMATION
    *
    * SOURCE : commtst.h
    * VERSION : 1.2
    * DATE : 07 August 1991
    * AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
*-------------============== DESCRIPTIO&
* This header file gives common information for use across the host program
* commtst.c and the node program commtstn.c. A more complete description
* can be found in commtst.c.
*
*/
#ifndef EXIT_FAILURE
#define EXIT_FAILURE -1
#endif
#define MAX_CUBESIZE 16
#define ROOT -1
#define RECEIVE 0
#define SEND 1
#define FALSE 0
#define TRUE 1
/* -----------============= TYPE DEFIMITION =============--------------
    * The following structure is the framework that the root processor (host)
    * uses to pass instructions to the worker nodes in the cube.
    */
typedef struct {
    int task; /* choose RECEIVE or SEND as above */
    long bytes; /* length of message */
    long reps; /* number of repetitions */
    int destination[MAX_CUBESIZE]; /* for senders: identifies addressees */
} Tasking;
/*------------============= EOF commtst.h ==============---------------*/
```

```
* -------------=========== PROGRAM IMFORMATION
*
* SOURCE : commtst.c
* VERSION : 1.2
* DATE : 07 August 1991
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
*
* USAGE : commtst [-d dimension] [-b bytes] [-r repetitions] [-v]
*
* EXAMPLE : If you type 'commtst -d 3-v -b 1024-r 10', it means to
*
*
*
*
* REFERENCES : [1] iPSC/2 Programmer's Reference Manual
*
*
*
*
*
* This program runs on the host. It orchestrates various point-to-point
* communication tasks betreen nodes of a hypercube. The time of round-trip
* communications is gathered and printed out. The output includes the time
* required and rate of communication (taking into account repetitions and
* round-trips). The 'verbose' mode gives a more detailed node-by-node
* accounting of the run.
*
*/
char *version = "Hypercube Communcations Test, Version 1.2";
```


*

* The root (host) processor determines who will communicate vith whom, and
* when. No node operates independently. The host identifies a sender and
* receiver (s). The host also gives the length of the message that should
* be passed and the number of times that the message is to be repeated
* (multiple repetitions may be required qhen the message is short since
* mclock() returns milliseconds). The 'Tasking' structure holds instruc-
* Irom the manager (i.e., SEND or RECEIVE, the length of the message, num-
* ber of repetitions, and addressees). When this structure is received at
* a node, it performs the task and awaits further instructions from the
* manager processor. If the processor is a sender, it returns timing data
* to the host upon completion.
*
* /

```
#include <stdio.h>
#include "commtst.h"
#include "ipsc.h"
#include "macros.h"
*include "clargs.h"
#define ASCII_CONVERSION 48 /* for char -> int conversion of 0...3 */
*define CT_SIZE 4 /* for cubetype[] size */
*define NUM_ARGS 4 /* -d -b -r -v */
*define DIM 0 /* index values into optv[] */
*define BYTES 1
*define REPS 2
*define VERBOSE 3
    int count = 1,
        valid = FALSE;
        Opt_Struct *optv[NUM_ARGS];
            /* The first step is to make a table of all of the valid arguments. The
        * structure is defined more carefully in clargs.h, but the basic idea is
        * that we have an array of pointers to type Opt_Struct (option structure)
        * ...in this case, there are MUM_ARGS valid arguments and the next few
        * steps take care of allocation and definition of them. When this is
        * done, it is time to call interpret_args() to see what the user entered.
        */
```

65
66
67
68

101
102

```
optv[DIM] = (Opt_Struct *) calloc( 1, sizeof(Opt_Struct) );
optv[BYTES] = (Opt_Struct *) calloc( 1, sizeof(Opt_Struct) );
optv[REPS] = (Opt_Struct *) calloc( 1, sizeof(Opt_Struct));
optv[VERBOSE] = (Opt_Struct *) calloc( 1, sizeof(Opt_Struct));
optv[DIM]->lanswer = (long *) calloc( 1, sizeof(long));
optv[BYTES]->lansver = (long *) calloc( 1, sizeof(long));
optv[REPS]->lanswer = (long*) calloc( 1, sizeof(long));
/* The intel compiler didn't like ...->argname = "-d"; etc. */
optv[DIM]->argname[0] = '-';
optv[DIM]->argname[1] = 'd';
optv[DIM]->subargc = 1;
optv[DIM]->subargi = MEXT_LOMG;
optv[BYTES]->argname[0] = '-';
optv[BYTES]->argname[1] = 'b';
optv[BYTES]->subargc = 1;
optv[BYTES]->subargi = MEXT_LONG;
optv[REPS]->argname[0] = '-';
optv[REPS]->argname[1] = 'r';
optv[REPS]->subargc = 1;
optv[REPS]->subargi = MEXT_LONG;
optv[VERBOSE]->argname[0] = '-';
optv[VERBOSE]->argname[1] = 'v';
optv[VERBOSE]->subargc = 0;
*dim = -1;
interpret_args(argc, argv, NUM_ARGS, optv);
if (optv[DIM]->found) *dim = (int) optv[DIM]->lansver[0];
suitch (*dim) {
        case 0 : case 1 : case 2 : case 3 : break;
        default:
        while (!valid) {
            printf("Enter desired cube dimension (in {0, 1, 2, 3}): ");
            scanf("%d", dim);
            fflush(stdin);
            svitch(*dim){
                case 0 : case 1 : case 2 : case 3 : valid = TRUE; break;
            }
        }
} /* end suitch() */
```

```
    if (optv[BYTES]->found) *bytes = optv[BYTES]->lansver[0];
    valid = FALSE;
    if (*bytes < 1) {
        日hile (!valid) {
            printf("Enter message length (bytes): ");
            scanf("%ld", bytes);
            fflush(stdin);
                if (*bytes > 0){ valid = TRUE; }
                else { printf("Message length must be positive.\n"); }
        }
    }
    if (optv[REPS]->found) { *reps = optv[REPS]->lansver[0]; }
    else {
        printf("Non-existing (or invalid) repetition count, ");
        printf("using one repetition.\n\n");
        *reps = 1;
    }
    (optv[VERBOSE]->found) ? *verbose = TRUE: *verbose = FALSE;
    cubetype[0] = 'd'; /* for dimension (to follor) */
    cubetype[1] = (char)(*dim + ASCII_CONVERSION);
    cubetype[2] = 'f'; /* means nodes are 386/387 combo */
    cubetype[3] = 0;
    printf("Initialization complete...Cube Dimension: %d\n", *dim);
    printf(" Message Length: %ld\n", *bytes);
    printf(" Repetitions: %ld\n\n", *reps);
    if (*verbose) printf(" Verbose Mode: ON");
    }
    /* End init() -----------------------------------------------------------------------------
89 #ifdef PROTOTYPE
193 #else
186
187
188
190
194
195
196
```

201 { /* begin main() */
char *cubename = "Hypercube",
cubetype[CT_SIZE],
*msg,
*nodecode = "commtstn";
float avg,
avg_hostrate,
avg_hosttime,
avg_rate,
avg_time,
bytes,
reps;
int cubesize,
dim,
i,
j,
verbose;
unsigned long **timing_data;
Tasking task_packet;
printf("\n%s\n\n", version);
init(argc, argv, cubetype, \&dim, (task_packet.bytes),
\&(task_packet.reps), \&verbose);
bytes = (float) task_packet.bytes;
reps = (float) task_packet.reps;
bytes *= (2.0 * reps); /* account for two-may communications, reps */
cubesize = POW2(dim);
timing_data = (unsigned long **) calloc(cubesize, sizeof(unsigned long*));
for (i = 0; i < cubesize; i++) {
timing_data[i]=(unsigned long*)calloc(cubesize,sizeof(unsigned long));
}
if (!(msg = (char \#) calloc(task_packet.bytes, sizeof(char)))) {
printf("main(): Allocation failure for msg.\n");
exit(EXIT_FAILURE);
}

```
```

/* Get the cube and load the node code */
getcube(cubename, cubetype, NULL, 0);
attachcube(cubename);
setpid(0);
load(nodecode, ALL_NODES, MODE_PID);
/* Perform the tasking, receive the message, return it, receive and print
* timing data...repeat for all players. The outer loop index, i, will
* represent the sender node. The j index runs the other (RECEIVE)
* players.
*/
for (i = 0; i < cubesize; i++) {
/* Get the receivers ready first */
task_packet.task = RECEIVE;
task_packet.destination[0] = i;
task_packet.destination[1] = cubesize; /* impossible flags end */
for (j = 0; j < i; j++) {
csend(0, \&task_packet, sizeof(Tasking), j, MODE_PID);
}
for (j = (i+1); j < cubesize; j++) {
csend(O, \&task_packet, sizeof(Tasking), j, NODE_PID);
}
/* Then prepare the sender ==> he can start */
task_packet.task = SEND;
for (j = 0; j < i; j++) task_packet.destination[j] = j;
task_packet.destination[i] = ROOT;
for (j = (i+1); j < cubesize; j++) task_packet.destination[j] = j;
csend(0, \&task_packet, sizeof(Tasking), i, MODE_PID);
/* Receive from the sender and return his message */
for (j = 0; j < task_packet.reps; j++) {
crecv(ANY_TYPE, msg, task_packet.bytes);
csend(0, msg, task_packet.bytes, i, MODE_PID);
}
/* Receive the timing data from this run and print it */
crecv(ANY_TYPE, timing_data[i], (cubesize * sizeof(unsigned long)));
} /* end for (i) */

```
```

for (i = 0; i < cubesize; i++) {
if (verbose) {
printf("Source Dest. Time (msec) Rate (kilobytes/second)\n");
printf("====== ===== ============ =========================\n");
printf("%4d HOST %10lu ", i, timing_data[i][i]);
printf(" %10.2f\n", (bytes / ((float) timing_data[i][i])));
}
avg = 0.0;
for (j = 0; j < cubesize; j++) {
if (i != j) {
avg += (float) timing_data[i][j];
if (verbose) {
printf(" %4d", j);
printf(" %10lu ", timing_data[i][j]);
printf("%10.2f\n", (bytes / ((float) timing_data[i][j])));
}
}
if (j == (cubesize - 1)) {
avg /= (float) cubesize - 1;
if (verbose) {
printf("==");
printf("===========\n");
printf("Averages..........%9.1f msec ", avg);
printf(" %7.2f", bytes/avg);
printf(" kbytes/sec\n\n\n");
}
}
} /* end for(j) */
} /* end for(i) */
for (i = 0; i < cubesize; i++) {
for (j = 0; j < cubesize; j++) {
(i == j) ? avg_hosttime += timing_data[i][j] :
avg_time += timing_data[i][j] ;
}
}

```

\section*{commist.c}
avg_hosttime /= cubesize;
avg_hostrate \(=\) bytes/avg_hosttime;
avg_time \(\quad /=((c u b e s i z e-1)\) * cubesize);
avg_rate \(\quad=\quad\) bytes/avg_time;
printf("If we average all of the times and rates.... \({ }^{\prime} \backslash \mathbf{n} \backslash \mathrm{n}\) ");
printf(" Average Time: \(\% 9.1 f\) milliseconds \(\backslash n^{\prime \prime}\), avg_time);
printf(" Average Rate: \(\% 10.21\) kilobytes/second \(\backslash n \backslash n \backslash n^{\prime \prime}\), avg_rate);
printf("NOTE: Average and Rate values are for the nodes ONLY. \(\mathrm{In}^{\prime \prime}\) ); printf(" They do not include the host timing data. \(\backslash n \backslash n \backslash n ")\);
printf("The averages for the node \(<-->\) host communications vere: \(\backslash n \backslash n\) ");
printf(" Average Time: \(\% 9.1 f\) milliseconds \(\backslash n "\), avg_hosttime);
printf(" Average Rate: \(\% 10.2 f\) kilobytes/second \(\backslash n \backslash n \backslash n^{\prime \prime}\), avg_hostrate);
367
368 \}

```

/*. ------------========== PROGRAM IMFORMATION
*

* SOURCE : commtstn.c
* VERSION : 1.2
* DATE : 07 August 1991
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
*
*
*
* This program is loaded by commtst.c (mhich runs on the host). This code
* (commtstn.c) runs on the nodes of a hypercube created by the host program.
* For more information, see commtst.c.
*

*/
\#include <stdio.h>
\#include "commtst.h"
\#include "ipsc.h"
\#define SUCCESS 0
\#ifdef PROTOTYPE
main(int argc, char *argv[])
\#else
main(argc, argv)
int argc;
char *argv[];
\#endif
{
char *msg;
int cubesize = numnodes(),
i,
j,
return_addr;
long rep;
unsigned long start, *timing_data;
Tasking task_packet;

```
```

timing_data = (unsigned long*) calloc(cubesize, sizeol(unsigned long));
for (i = 0; i < cubesize; i++) {
crecv(ANY_TYPE, task_packet, sizeof(Tasking));
mgg = (char *) calloc(task_packet.bytes, aizeof(char));
suitch (task_packet.task) {
case RECEIVE :
return_addr = task_packet.destination[0]:
for (rep = 0; rep < task_packet.reps; rep++) {
crecv(ANY_TYPE, msg, task_packet.bytes);
csend(O, msg, task_packet.bytes, return_addr, MODE_PID);
}
break;
case SEND :
j = 0;
while ((j<cubesize)tk(task_packet.destination[j]<cubesize)) {
start = mclock();
for (rep = 0; rep < task_packet.reps; rep++) {
(j == mynode()) ?
csend(0,meg,task_packet.bytes,myhost(), HODE_PID):
csend(0, msg, task_packet.bytes, j, HODE_PID);
crecv(AKY_TYPE, meg, task_packet.bytes):
}
timing_data[j] = melock() - start;
j++;
}
/* Return the timing data */
csend(0, timing_data, (cubesize * sizool(unsigned long)).
myhost(), rODE_PID);
break:

```

\section*{commtstn.c}
```

1 0 1
102
103
104
105
106
107
108
109
110
111
112 } /* end for() */
113
114 Ieturn(SUCCESS);
115
116}

```


\section*{APPENDIX F}

\section*{MATRIX LIBRARY}

This appendix contains part of the matrix library, matlib that is often used and referenced in other sections and code. It could be argued that "matrix library" is a misnomer since much of the code has little to do with matrices. This criticism is true, but I will defend the name since the entire reason for the creating such a library was to handle matrices in a more reasonable way. The last section of this appendix contains all of the source code for Gauss factorization with partial pivoting, and a short excerpt from the complete pivoting code.

The specifications and a portion of the source code for the library are given on the pages to follow. The original intent was to include the source code in its entirety, but this would require more than double the current number of pages so the source has been omitted. The files are divided into three logical groups:
1. Makefiles that simplify maintenance of the library, show dependencies among the files, and describe the compilation procedures that are used to generate the loadable (executable) code.
2. Standard files (mostly C header files) that make definitions available (for consistency) across a wide range of files. The range is implied by the content of the file. These files include manifest constants that are installed using the C Preprocessor \#define directive, type definitions that are intended for use across several files, and macro definitions that are expanded by the C Preprocessor.
3. Source code files that appear in pairs, like filename.h and filename.c or (mostly) as a header file alone. The header file gives remarks, definitions of manifest con-
stants, type definitions, and function dectarations (specifications) that pertain to the associated somme code (i.e., the code within filename.c). Again, the latter has beed omitted in most cases.
4. The Ghuss factorization code. All of the source code for the partial pivoting version is given, and an except of the pivot election function from the complete pivoling, code is atso provided.

\section*{A. MAKEFILES}
loge.mak 'This makefile is a standard template for prograns compiled with the Logical Systems (: (remsion 89.1) product.
matlib.mak This maliedile is nsed to translate mattib into a useable form. With Iogical Systems (: it emates a library sumbabe for instalation and use as any other nomal C litnany The portion of the makefile used on the hatel iPSC/2 simply work in the cmrent directory to transtate the source into ohject code so that other programs can reforence it.
```


 AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
 PURPOSE : Makefile for Bypercube Communications Test Programs (LogC)
 DATE : 10 August 1991

*

ROOTCODE=filename
NODECODE=filename
*IF_FILE=1ilename
OPTIONS AND DEFINITIONS
The folloving section establishes various options and definitions. We
start vith PP, the Logical Systems C Preprocessor. The '-dX' option
(with no macro_expression) is like '\#define X 1'. Next ve set up the
compilation options for Logical Systems' TCX Transputer C Compiler. The
'-c' means compress the output file. The options beginning with '-p'
tell TCX to generate code for the appropriate processor:

$-p 2$	T212 or T222	
- p25	T225	
- p4	T414	
- p45	T400 or	T425
- p8	T800	
$-p 85$	T801 or	T805

 Logical Systems' TASM Transputer Assembler is next. The '-c' means
 compress the output file (it can cut it in half)! The '-t' is used
 because the input to TASM vill be from a language translator (TCX's
 output) and not from assembly source code.

The final list tells TLNK øhich libraries to look at during linking.

It also establishes an entry point. You should alvays use _main for

* the root node; otherwise use _ns_main (for other nodes).
PPOPT2=-dPROTOTYPE -dTRANSPUTER -dT212
PPOPT4=-dPROTOTYPE -dTRANSPUTER -dT414
PPOPT8=-dPROTOTYPE -dTRANSPUTER -dT800
TCXOPT2=-cp2
TCXOPT4=-cp4
TCXOPT8=-cp8
TASMOPT=-ct
T2LIB=t2lib.tll
T4LIB=matlib4.tll t4cube.tll t4lib.tll
T8LIB=matlib8.tll t8cube.tll t8lib.tll
RERTRY=_main
MERTRY=_ns_main

```

51
52
53
```

\#
all: $\$$ (ROOTCODE).tld $\$$ (MODECODE).tld

----------------------- DEFAULT ===> MAKE ALL

------------------------------- ROOT CODE

\$(ROOTCODE): \$(ROOTCODE).tld
\$(ROOTCODE).tld: \$(ROOTCODE).trl
echo FLAG c > \$(ROOTCODE).lnk
echo LIST \$(ROOTCODE).map >> \$(ROOTCODE).lnk
echo INPUT \$(ROOTCODE).trl >> \$(ROOTCODE).lnk
echo ENTRY \$(RENTRY) >> \$(ROOTCODE).lnk
echo LIBRARY \$(T4LIB) >> \$(ROOTCODE).lnk
tlnk \$(ROOTCODE).lnk
\$(ROOTCODE).trl: \$(ROOTCODE).c
pp \$(ROOTCODE).c \$(PPOPT4)
tcx \$(ROOTCODE).pp \$(TCXOPT4)
tasm \$(ROOTCODE).tal \$(TASMOPT)

```
\# ------------------------------- NODE CODE
\$(MODECODE): \$(NODECODE).tld
\$(MODECODE).tld: \$(NODECODE).trl
    echo FLAG c > (NODECODE).1nk
    echo LIST \$(HODECODE).map >> (NODECODE).lnk
    echo INPUT \(\$(\) MODECODE).trl \(\gg\) (MODECODE). 1 nk
    echo ERTRY \$(EEATRY) >> (MODECODE). lnk
    echo LIBRARY \$(T8LIB) >> (MODECODE).lnk
    tlnk \$(MODECODE).1nk
\$(MODECODE).trl: (MODECODE).c
    pp \$(NODECODE).c \$(PPOPT8)
    tcx \$(NODECODE).pp \$(TCXOPT8)
    tasm \$(NODECODE).tal \$(TASMOPT)
```

1 0 1
102 ------------------------------- EXECUTIO
103*
1 0 4
105 run: \$(ROOTCODE).tld \$(MODECODE).tld \$(\&IF_FILE).nif
106 ld-net \$(MIF_FILE)
107
108
109 \# ------------------------------ CLEAN UP
110
1 1 1
112 clean:
113 del \$(ROOTCODE).lnk
114 del \$(HODECODE).lnk
115 del \$(ROOTCODE).map
116 del \$(NODECODE).map
117 del \$(ROOTCODE).tal
118 del \$(MODECODE).tal
119 del \$(ROOTCODE).pp
120 del \$(NODECODE).pp
121 del \$(ROOTCODE).trl
122 del \$(NODECODE).trl
123
124
125 \# EOF logc.mak

```
```


----------=========== MAKEFILE FOR MATRIX LIBRARY

 SOURCE : matlib.mak
 DATE : }17\mathrm{ August 1991
 AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School

PURPOSE : Make the matrix library 'matlib'.

REMARKS : This makefile works with Logical Systems C, version 89.1,

and the Intel iPSC/2 compiler. The LogC portions of this

* makefile actually construct libraries of the functions available in the

source files indicated. There are two libraries generated--matlib4.tll

* (matlib8.tll---since the code is compiled for T414 or T800 processors.

For the Intel compiler, I have not created a library; but have used the

* object code as needed. There are a few sections that pertain to both

compilers. The sections that only pertain to a particular compiler are

clearly marked 'Intel iPSC/2' or 'Logical Systems C'.

| --------===---------

```

```

2
\#---------=========== 1.) DEFINITIONS AND OPTIONS ===========-----------

The following options and definitions are required. A more thorough

explanation can be found in 'logc.mak' or in the Logical Systems C

Transputer Toolset manual.

\#--------===---------
THISMAKEFILE=matlib.mak
\#---------=============== 1.1) Intel iPSC/2

MATLIBDIR is the directory that contains the matlib files

MATLIBDIR = /usr/hartman/matlib
OBJECTS = clargs.o comm.o hcube.o generate.o mat_ops.o matrixio.o memory.o math.o
ep.o timing.o vec_ops.o
46 \#---------============ 1.2) Logical Systems C =============-------------

T414LIBNAME=matlib4

```
23
24
42
43
44
45
```

50 T800LIBNAME=matlib8
51
5 2 ~ T R L 4 F I L E S = c l a r g s . t r l 4 ~ c o m m . t r l 4 ~ c o m p l e x . t r l 4 ~ g e n e r a t e . t r l 4 ~ m a c h i n e . t r l 4 ~ m a t ; o p s . t r l 4 ~
math.trl4 matrixio.trl4 memory.trl4 num_sys.trl4 sep.trl4 timing.trl4 vec_ops.trl4
5 3 ~ T R L 8 F I L E S = c l a r g s . t r l 8 ~ c o m m . t r l 8 ~ c o m p l e x . t r l 8 ~ g e n e r a t e . t r l 8 ~ m a c h i n e . t r l 8 ~ m a t _ o p s . t r l 8 ~
math.trl8 matrixio.trl8 memory.trl8 num_sys.trl8 sep.trl8 timing.trl8 vec_ops.trl8
54
55 TLIB4FILES=clargs comm complex generate machine nat_ops math matrixio memory num_sys
sep timing vec_ops
56 TLIB8FILES=clargs comm complex generate machine mat_ops math matrixio memory num_sys
sep timing vec_ops
57
58 PPOPT2=-dPROTOTYPE -dTRAHSPUTER -dT212
59 PPOPT4=-dPROTOTYPE -dTRANSPUTER -dT414
60 PPOPT8=-dPROTOTYPE -dTRANSPUTER -dT800
6 2 ~ T C X O P T 2 = - c p 2 ~
TCXOPT4=-cp4
TCXOPT8=-cp8
TASMOPT=-ct
T2LIB=t2lib.tll
T4LIB=matlib4.tll t4cube.tll t4lib.tll
T8LIB=matlib8.tll t8cube.tll t8lib.tll
RENTRY=_main
YERTRY=_ns_main

---------=======

2.) IhSTRUCTIONS FOR DEFAULT make
=======----------

The following sections give the default (since they appear first in the

makefile) options for this makefile. By commenting one or the other

* out, one can get to the defaults easily.
*
* -------==----------
87 ipsc: imatlib
clean: iclean
* tptr: tmatlib

clean: tclean

3 ----------============== 2.1) Intel iPSC/2 ===============-------------
*
95
6 1
*

```
```

imatlib: \$(OBJECTS)
\#---------============= 2.2) Logical Systems C

Make everything and install in the library directory designated by the

* environment variable TLIB.
tmatlib:
make -1 \$(THISMAKEFILE) \$(T414LIBNAME).tll
make -1 \$(THISMAKEFILE) install4
make -1 \$(THISMAKEFILE) tclean
make -1 \$(THISMAKEFILE) \$(T800LIBHAME).tll
make - \$ \$(THISMAKEFILE) install8
make - \$ \$(THISMAKEFILE) tclean
make -1 \$(THISMAKEFILE) install_headers
* --------------- CREATE T414 VERSION OF TEE LIBRARY
$(T414LIBNAME).tIl:$(TRL4FILES)
tlib \$(T414LIBNAME) -b \$(TLIB4FILES)
clargs.trl4 : clargs.h clargs.c
pp clargs.c \$(PPOPT4)
tcx clargs.pp \$(TCXOPT4)
tasm clargs.tal \$(TASMOPT)
comm.trl4 : comm.h comm.c
pp comm.c \$(PPOPT4)
tcx comm.pp \$(TCXOPT4)
tasm comm.tal \$(TASMOPT)
complex.trl4 : complex.h complex.c
pp complex.c \$(PPOPT4)
tcx complex.pp \$(TCXOPT4)
tasm complex.tal \$(TASMOPT)
generate.trl4 : generate.h generate.c matrix.h memory.trl4
pp generate.c \$(PPOPT4)
tcx generate.pp \$(TCXOPT4)
tasm generate.tal \$(TASMOPT)
142 hcube.trl4 : hcube.h hcube.c
1 4 3 \mathrm { pp } \mathrm { hcube.c } \mathrm { \$ (PPOPT4) }
144 tcx hcube.pp \$(TCXOPT4)
145 tasm hcube.tal \$(TASMOPT)

```
141
```

146
147 machine.trl4 : machine.h machine.c
148 pp machine.c \$(PPOPT4)
149 tcx machine.pp \$(TCXOPT4)
150 tasm machine.tal \$(TASMOPT)
1 5 1
mat_ops.trl4 : mat_ops.h mat_ops.c matrix.h
pp mat_ops.c \$(PPOPT4)
tcx mat_ops.pp \$(TCXOPT4)
tasmmat_ops.tal \$(TASMOPT)
156
57 math.trl4 : math.h math.c
158 pp math.c \$(PPOPT4)
159 tcx math.pp \$(TCXOPT4)
160 tasm math.tal \$(TASMOPT)
1 6 1
162 matrixio.trl4 : matrixio.h matrixio.c ascii.h matrix.h memory.trl4
163 pp matrixio.c \$(PPOPT4)
164 tcx matrixio.pp \$(TCXOPT4)
165 tasm matrixio.tal \$(TASMOPT)
166
167 memory.trl4 : memory.h memory.c matrix.h
1 6 8 ~ p p ~ m e m o r y . c ~ \$ (P P O P T 4)
169 tcx memory.pp \$(TCXOPT4)
170 tasm memory.tal \$(TASMOPT)
1 7 1
172 num_sys.trl4 : num_sys.h num_sys.c matrix.h
173 pp num_sys.c \$(PPOPT4)
174 tcx num_8y8.pp \$(TCXOPT4)
175 tasm num_sys.tal \$(TASMOPT)
176
177 sep.trl4 : sep.h sep.c
178 pp sep.c \$(PPOPT4)
179 tcx sep.pp \$(TCXOPT4)
180 tasm sep.tal \$(TASMOPT)
1 8 1
182 timing.trl4 : timing.h timing.c
183 pp timing.c \$(PPOPT4)
184 tcx timing.pp \$(TCXOPT4)
185 tasm timing.tal \$(TASMOPT)
1 8 6
187 vec_ops.trl4 : vec_ops.h vec_ops.c
188 pp vec_ops.c \$(PPOPT4)
189 tcx vec_ops.pp \$(TCXOPT4)
190 tasm vec_ops.tal \$(TASMOPT)
1 9 1
192
193 ---------------- CREATE T800 VERSION OF THE LIBRARY
194
195

```
```

 $(T800LIBNAME).tll : $(TRL8FILES)
 tlib $(T800LIBNAME) -b $(TLIB8FILES)
 clargs.trl8 : clargs.h clargs.c
 pp clargs.c $(PPOPT8)
 tcx clargs.pp $(TCXOPT8)
 tasm clargs.tal $(TASMOPT)
 comm.trl8 : comm.h comm.c
 pp comm.c $(PPOPT8)
 tcx comm.pp $(TCXOPT8)
 tasm comm.tal $(TASMOPT)
 complex.trl8 : complex.h complex.c
 pp complex.c $(PPOPT8)
 tcx complex.pp $(TCXOPT8)
 tasm complex.tal $(TASMOPT)
 generate.trl8 : generate.h generate.c matrix.h memory.trl8
 pp generate.c $(PPOPT8)
 tcx generate.pp $(TCXOPT8)
 tasm generate.tal $(TASMOPT)
 hcube.trl8 : hcube.h hcube.c
 pp hcube.c $(PPOPT8)
 tcx hcube.pp $(TCXOPT8)
 tasm hcube.tal $(TASMOPT)
 machine.trl8 : machine.h machine.c
 pp machine.c $(PPOPT8)
 tcx machine.pp $(TCXOPT8)
 tasmmachine.tal $(TASMOPT)
 mat_ops.trl8 : mat_ops.h mat_ops.c matrix.h
 pp mat_ops.c $(PPOPT8)
 tcx mat_ops.pp $(TCXOPT8)
 tasm mat_ops.tal $(TASMOPT)
 math.trl8 : math.h math.c
 pp math.c $(PPOPT8)
 tcx math.pp $(TCXOPT8)
 tasm math.tal $(TASMOPT)
 matrixio.trl8 : matrixio.h matrixio.c ascii.h matrix.h memory.trl8
 pp matrixio.c $(PPOPT8)
 tcx matrixio.pp $(TCXOPT8)
 tasmmatrixio.tal $(TASMOPT)
 memory.trl8 : memory.h memory.c matrix.h
 pp memory.c $(PPOPT8)
    ```
```

246 tcx memory.pp \$(TCXOPT8)
247 tasm memory.tal \$(TASMOPT)
248
249 num_sys.trl8 : num_sys.h num_sys.c matrix.h
250 pp num_sys.c \$(PPOPT8)
251 tcx num_sys.pp \$(TCXOPT8)
252 tasm num_sys.tal \$(TASMOPT)
2 5 3
254 sep.trl8 : sep.h sep.c
255 pp sep.c \$(PPOPT8)
256 tcx sep.pp \$(TCXOPT8)
257 tasm sep.tal \$(TASMOPT)
258
259 timing.trl8 : timing.h timing.c
260 pp timing.c \$(PPOPT8)
261 tcx timing.pp \$(TCXOPT8)
262 tasm timing.tal \$(TASMOPT)
263
264 vec_ops.trl8 : vec_ops.c vec_ops.h
265 pp vec_ops.c \$(PPOPT8)
266 tcx vec_ops.pp \$(TCXOPT8)
267 tasm voc_ops.tal \$(TASMOPT)
268
269
270 \# ---------------- COPY LIBRARIES TO TLIB DIRECTORY
271
272 install4:
copy \$(T414LIBNAME).tll \$(TLIB)
install8:
copy \$(T800LIBNAME).tIl \$(TLIB)
277
278

* --------- COPY HEADER FILES TO STANDARD INCLUDE DIRECTORY
280
281 install_headers:
282 copy ascii.h \$(TLIB)\..\include
283 copy macros.h \$(TLIB)\..\include
284 copy matrix.h \$(TLIB)\..\include
285 copy clargs.h \$(TLIB)\..\include
286 copy comm.h \$(TLIB)\..\include
287 copy complex.h \$(TLIB)\..\include
288 copy generate.h \$(TLIB)\..\include
289 copy hcube.h \$(TLIB)\..\include
290 copy machine.h \$(TLIB)\..\include
291 copy mat_ops.h \$(TLIB)\..\include
292 copy math.h \$(TLIB)\..\include
293 copy matrixio.h \$(TLIB)\..\include
294 copy memory.h \$(TLIB)\..\include
295
copy num_sys.h \$(TLIB)\..\include

```

\section*{matlib.mak}
```

copy sep.h \$(TLIB)\..\include
copy timing.h \$(TLIB)\..\include
copy vec_ops.h \$(TLIB)\..\include
304 \#----------======== 3.) FILE MANAGEMENT \& UTILITIES
306 \# This section makes short mork of a fer useful/routine tasks.

314 iclean:
rm \$(OBJECTS)
321 \# ----------============ 3.2) Logical Systems C

324 tclean:
del *.pp
del *.tal
del *.trl
EOF matlib.mak --

```
299
300
301
302
303
305
307
308
309
310
311
313
316
317
318
319
320
323
328
329
330

\section*{B. NETWORK INFORMATION FILES}
hyprcube.nif This Network Information File gives a fairly complete description of the hardware configuration used to perform the transputer work.

SOURCE : hyprcube.nif
VERSION : 1.1
DATE : 09 September 1991
AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
USAGE : ld-net hyprcube
EDITING : replace 'rootcode' with the code to run on the root replace 'nodecode' with appropriate code(s) for the nodes

\section*{REFERENCES}
[1] Inmos. IMS B012 User Guide and Reference Manual. Inmos Limited, 1988, Fig. 26, p. 28.

DESCRIPTION

Network Information File (NIF) used by Logical Systems C (version 89.1) LD-NET Network Loader. This file prescribes the loading action to take place when the 'ld-net' command is given as in USAGE above.

\section*{harduare prerequisites}

NDTE: There are three node numbering systems: the one created by Inmos' CHECK program, the Gray code labeling, and the NIF labeling. Since all three will be used on occasion, I vill prefix node numbers vith a \(C, G\), or \(⿴\) to identify which system I am using!

The IMS B004 and IMS B012 must be configured correctly. The B004's T414 has link \(O\) connected to the host \(P C\) via a serial-to-parallel converter, link 1 connected to the IMS B012 PipeHead, link 2 connected to the T212 [communications manager (not used here)] on the B012, and link 3 connected to the IMS B012 PipeTail (see [1]). By the way, link 2 from the B004 goes to the the ConfigUp slot just under the PipeHead slot (this connects it to the T212). Finally, the B004's Down link must run to the B012's Up link.

SETTING THE COO4 CROSSBAR SWITCHES

Once you have connected the hardware in the fashion mentioned above, the system is ready to be transformed to a hypercube. Three codes by Mike Esposito are used here: t2.nif, root.tld, and seitch.tld. I have a batch file called 'makecube.bat' that performs a 'ld-net t2' also.

Mike's code passes instructions to the \(T 212\) on the B012; which, in-turn ; tells the C004's hou to connect their switches. After the code has
executed, the (very specific) configuration that pe are looking for
``` will exist. Specifically, the following (output from CHECK /R) is what this process gives us:
check 1.21
\begin{tabular}{rllllrrrr}
\# Part rate Mb Bt [\\
0 & T414b-15 & 0.09 & 0 & {\([\)} & Link0 & Link1 & Link2 & Link3] \\
1 & T800c-20 & 0.80 & 1 & {\([\)} & \(4: 3\) & \(1: 1\) & \(2: 1\) & \(3: 2]\) \\
2 & T2 -17 & 0.49 & 1 & {\([\)} & \(\operatorname{co04}\) & \(0: 2\) & \(\ldots: 1\) & \(6: 0\) \\
3 & T800c-20 & 0.80 & 2 & {\([\)} & \(7: 3\) & \(8: 2\) & \(0: 3\) & \(9: 0]\) \\
4 & T800c-20 & 0.76 & 3 & {\([\)} & \(9: 3\) & \(10: 2\) & \(11: 1\) & \(1: 0]\) \\
5 & T800d-20 & 0.90 & 1 & {\([\)} & \(8: 3\) & \(1: 2\) & \(10: 1\) & \(12: 0]\) \\
6 & T800d-20 & 0.76 & 0 & {\([\)} & \(1: 3\) & \(12: 2\) & \(7: 1\) & \(11: 0]\) \\
7 & T800d-20 & 0.76 & 3 & {\([\)} & \(13: 3\) & \(6: 2\) & \(14: 1\) & \(3: 0]\) \\
8 & T800d-20 & 0.90 & 2 & {\([\)} & \(14: 3\) & \(15: 2\) & \(3: 1\) & \(5: 0]\) \\
9 & T800c-20 & 0.77 & 0 & {\([\)} & \(3: 3\) & \(13: 2\) & \(15: 1\) & \(4: 0]\) \\
10 & T800d-20 & 0.90 & 2 & {\([\)} & \(16: 3\) & \(5: 2\) & \(4: 1\) & \(15: 0]\) \\
11 & T800d-20 & 0.90 & 1 & {\([\)} & \(6: 3\) & \(4: 2\) & \(16: 1\) & \(13: 0]\) \\
12 & T800d-20 & 0.77 & 0 & {\([\)} & \(5: 3\) & \(16: 2\) & \(6: 1\) & \(14: 0]\) \\
13 & T800d-20 & 0.77 & 3 & {\([\)} & \(11: 3\) & \(17: 2\) & \(9: 1\) & \(7: 0]\) \\
14 & T800c-20 & 0.90 & 1 & {\([\)} & \(12: 3\) & \(7: 2\) & \(17: 1\) & \(8: 0]\) \\
15 & T800c-20 & 0.90 & 2 & {\([\)} & \(10: 3\) & \(9: 2\) & \(8: 1\) & \(17: 0]\) \\
16 & T800c-20 & 0.76 & 3 & {\([\)} & \(17: 3\) & \(11: 2\) & \(12: 1\) & \(10: 0]\) \\
17 & T800d-20 & 0.88 & 2 & {\([\)} & \(15: 3\) & \(14: 2\) & \(13: 1\) & \(16: 0]\)
\end{tabular}

Here node CO is the root transputer (on the IMS B004) and node C2 is the T212 (on the IMS B012). The other sixteen nodes are the T800's that are used for the work. A logical interconnection topology is described below.

The physical interconnection scheme described above is an actual 4-cube aith one exception. The root node (CO) is situated BETWEEN nodes C1 and C3 (\(\mathrm{ah} i \mathrm{ch}\) would be connected directly in the usual 4-cube). This gives us tpo 3-cubes: one those node labeling is GOxxx and the other,⿴hose node labeling is Gixxx (there the xxx represents all permutations of 3-bits). These are the usual three cubes, and they rill exist if ve deline the node numbering/labeling correctly.

\section*{STRATEGY}

The node labeling established by the IIF is available via the variable _node_number (see <conc.h>) in source code. Therefore, ve vould like a smart labeling scheme in the MIF file so that programing is easier. This, of course, is subject to the restriction that MIF labels begin rith \(\mathbb{M} 1\) and so on.

\section*{C. STANDARD FILES}
macros.h This header file gives several C macros that are used in other programs. matrix.h This header file establishes the standard definition of a matrix.
```

/* -------------========== PROGRAM INFORMATION ===========----------------
*

* SOURCE : macros.h
* VERSION : 1.3
* DATE : 14 September 1991
* AUTHOR : Jonathan E. Bartman, U. S. Maval Postgraduate School
* 

*/
\#define MaX(x,y)
(((x) > (y)) ?(x) :(y))
\#define MIN(x,y)
(((x) > (y)) ?(y) : (x))
\#define POW2(n)
((1) << (n))

```

PROGRAM INFORMATION \(\qquad\)
*
* SOURCE : mactos.h
* VERSION : 1.3
* DATE : 14 September 1991
* AUTHOR : Jonathan E. Bartman, U. S. Maval Postgraduate School
*
*/
\#define \(\operatorname{MAX}(x, y)\)
\((((x)>(y)) ?(x):(y))\)
\#define MIN \((x, y)\)
\(((x)>(y)) ?(y):(x))\)
\#define POW2(n)
\(((1) \ll(n))\)


```

/*-------------===ニ======= TYPE DEFINITIONS
*/
typeder struct {
char *name;
int rows.
cols;
double **matrix;
} Matrix_Type; /* default/standard is type double */
typedef struct {
char *name;
int rows,
cols;
Complex_Type **matrix;
} Complex_Matrix_Type; /* type Complex_Type is in complex.h */
typedef struct {
char *name;
int rows,
cols;
double **matrix;
} Double_Matrix_Type;
typedef struct {
char *name;
int rows,
col8;
float **matrix;
} Float_Matrix_Type;

```
```

typedef struct {

```
typedef struct {
 char *name;
```

    char *name;
    ```
```

101 int rows,
102 cols;
103 int **matrix;
104
105 } Int_Matrix_Type;
1 0 6
1 0 7
108 /* ------------============ EOF matrix.h =============------------------*/

```

\section*{D. SOURCE CODE FILES}

There is one header file and one (.c) source code file for each remaining member of the library, so the filename is given without the suffix.
allocate Memory allocation and management functions.
clargs For processing command-line arguments.
comm Communications functions for the hypercubes.
complex Complex numbers and operations.
epsilon Machine precision functions.
generate Matrix generation functions.
io Input/output (IO) functions.
mathx A small extension to the C math library.
num_sys Various number systems (binary, decimal, hexadecimal).
ops Matrix and vector operations.
timing Functions for timing.

Again, however, most of the source code has been omitted and only the header files remain. The singular exception is complex.c because this source contains an algorithm referenced earlier in the thesis.
```

* -------------=========== PROGRAM IMFORMATION
*
    * SOURCE : allocate.h
    * VERSION : 2.0
    * DATE : 0% September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
* 
* 
* ------------============== DESCRIPTIOM =============----------------
* Declarations of functions associated vith memory allocation.
* 
* ------------=========== LIST OF FUNCTIONS =============----------------
cmatalloc()
intvecalloc()
matalloc()
* 

\#/

```

* PURPOSE: This function performs the memory allocation for a matrix
 structure (of the Complex_Matrix_Type) using the C function
 calloc(). Additionally, it fills the "rows" and "cols"
 fields of the matrix structure returned with the parameters
 passed to the function. If a structure is returned (see
 "RETURNS"), then its "rows" and "cols" fields will be
 filled with the correct values. The structure type is
 defined in "matrix.h".
 IMCLUDE: "allocate.h"
 CALLS: calloc()
 CALLED BY:
 PARAMETERS: int rows the number of rows in the desired matrix
 int cols the number of columns in the desired matrix
* RETURNS: A pointer to the structure if successful; MULL othervise.
 The NULL case includes non-positive rows or cols in addi-
 tion to the obvious allocation failure.
```

```
 * EXAMPLE: Complex_Matrix_Type *A;
 *
* A = cmatalloc(7, 7);
*
*/
#ifdef PROTOTYPE
 Complex_Matrix_Type *cmatalloc(int rous, int cols);
#else
 Complex_Matrix_Type *cmatalloc();
#endif
/* -------------=========== FUXCTION DECLARATION
*
* PURPOSE: This function performs the memory allocation for a vector,
* v, of num_elements integer elements.
* INCLUDE: "allocate.h"
*
* CalLS: calloc()
*
* Called by:
* Parameters: See Purpose.
*
* RETURNS: A pointer to the array if successful and NULL othervise.
*
* EXAMPLE: int desired_size_of_v = 7,
* *v;
*
* v = intvecalloc(desired_size_of_v);
*
*/
#ifdef PROTOTYPE
 int *intvecalloc(int num_elements);
#else
```



```
* -------------========= PROGRAM IMFORMATION
 * SOURCE : clargs.h
 * VERSION : 1.5
 * DATE : 09 September 1991
 * AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
 *
 #
 * ------------=============== DESCRIPTIOM
 *
 * This header file gives the declarations to accompany clargs.c. These
 * files provide a standard (if somerhat limited) way of handling command-
 * line arguments. The objective is to handle:
 *
 * 1.) Simple boolean arguments like "if -v exists, set verbose = TRUE".
 * We vill call such an argument a 'simple' argument type. This
 * type of argument can be recognized by the fact that it has no
 #
 #
 #
 #
 *
 *
 *
 #
 #
 #
 #
 #
 #
 *
 *
 #
 #
 *
 #
 * Here is the strategy. The user makes a list of valid command-line
 * arguments by creating an array of pointers to structures of type
 * Arg_Struct. We vill call this the option list, (Arg_Struct *) optv[].
 * The code assumes that you can do something like this at the top of your
 * source:
 *
 * #define MAX_NUMBER_OF_ARGS 3
 *
 * static Arg_Struct *optv[MAX_MUMBER_OF_ARGS];
 *
 * Let (int) optc, be the option count (number of options). Every element
 * in (pointed to by) the option list is a structure of type Arg_Struct
 * defined belov. By using the standard C argc and argv; and by creating
 * and passing optc and optv around, be can manipulate command-line
```

```
* arguments just about hovever ve want. The next step is to understand
* the structure.
*
*
*------------============ LIST OF FUNCTIONS
============----------------
* install_complex_arg()
* install_simple_arg()
* interpret_args()
*
* -------------===----------------
*/
/*-----------=========== MANIFEST CONSTANTS ===========-------------**/
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef NULL
#define NULL O
#endif
#ifndef SUCCESS
#define SUCCESS 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
/*
* The maximum number of characters in an argument name, MAX_ARGLEA is a
* relatively arbitrary thing....make it qhatever you vant. The DOUBLE
* and LONG manifest constants are assumed to be used for values of
* subargi (see the structure belor).
 */
#define MAX_ARGLEN 7
*define DOUBLE O
#define LONG 1
```



* -------------=========== FUNCTION DECLARATION
PURPOSE: To install a valid complex argument in the option list,
optv[].
* IMCLUDE: "clargs.h"
* CALLS: strcpy()
* 
* Called BY:
* parameters: int index;
* Arg_Struct *optv[];
const char *argname;
int *interpret,
subargc;
* The first three parameters are exactly like the corresponding ones for
* install_simple_arg(). Additionally, for complex arguments, ve need to
* pass in instructions concerning hov many sub-arguments there are (i.e.,
* subargc) and hov to interpret each. The array interpret[] should be
* filled vith subargc elements vhen you call this function. The elements
* should only be valid ones (e.g., DOUBLE, LONG).
* 

*/
\#ifdef PROTOTYPE
void install_complex_arg(int index, Arg_Struct *optv[],
const char *argname, int *interpret,
int subargc);
\#else
void install_complex_arg();
\#endif
* -------------========== FUNCTION DECLARATION
===========---------------
* PURPOSE: To install a valid simple argument in the option list,
* optv[].
* INCLUDE: "clargs.h"

```
```

* 
* CallS: strcpy()
* 
* CALLED BY:
* Parameters: int index;
* Arg_Struct *optv[];
* const char *argname;
* The 'index' gives the location of the option in the option list,
* optv[]. The function uses this index to install the argname at the
* proper location in optv[]. For instance, set this variable to zero for
* the first option in the list. lormal C indexing convention applies;
* namely, O <= index < MAX_MUMBER_OF_ARGS. The 'argname' is the string
* that you want recognized as a valid argument. For instance, suppose
* that you want a timing argument to be recognized \nablahenever "-t" appears
* on the command line. Then you would supply "-t" in this place.
* 

*/
\#ifdef PROTOTYPE
void install_simple_arg(int index, Arg_Struct *optv[],
const char *argname);
\#else
void install_simple_arg();
\#endif
/*------------=========== FUNCTION DECLARATION
===========---------------
*

* PURPOSE: Once the user has defined an appropriate option list,
* optv[], \nablaith optc options, this function parses the
* command-line arguments (as given by argc and argv) and fills the
* *optv[] structures appropriately. For instance every valid (exists in
* optv ==> valid) argument that appears on the command line vill result
* in the corresponding optv structure's 'found' field being set to TRUE.
* The function also interprets sub-arguments and fills dsa[] and/or lsa[]
* accordingly. It assumes that the caller has established the desired
* argname's, subargc's, and subargi's.
* 
* IHCLUDE: "clargs.h"
* 
* CalLS: printf()

```
clargs.h
```

251 * strcmp()
252 * strtod()
253 * strtol()
254 *
255 * CALLED BY:
256 *
257 * PARAMETERS: As described in PURPOSE.
258 *
259 *
260 */
261
262
263 \#ifdef PROTOTYPE
264
265 void interpret_args(int argc, char **argv, int optc, Arg_Struct **optv);
266
267 \#else
268%
269 void interpret_args();
2 7 0
271 \#endif
272
273
274 /* -------------============= EOF clargs.h ===============----------------*/

```
```

    *
    * SOURCE : comm.h
    * VERSION : 2.5
    * DATE : 14 September 1991
    * AUTHOR : Jonathan E. Hartman, U. S. Iaval Postgraduate School
    #
    #
    *
    *
    * This header file gives manifest constants and function specifications
    * for comm.c. These files contain communication (and related) functions
    * for a normal hypercube topology and a hybrid topology. Unfortunately
    * the code is a bit busy vith *ifdef's, but the purpose of these files is
    * to make hypercubes a little more transparent. This makes the comm.h
    * and comm.c files a bit hard to read, but you should be able to recoup
    * this loss ■hen it comes time to urite a particular application.
    *
    *
    *
    *
    * The functions specified belon have been designed to work on three very
    * different machines. First, the Intel iPSC/2 vith a normal hypercube of
    * order 0, 1, 2, or 3 is handled. A normal hypercube of transputers is
    * next on the list (also order 0, 1, 2, or 3). Finally, there is a
    * hybrid topology of transputers that is handled. The normal hypercubes
    * need almost no introduction. We have a host or root processor/program
    * together vith programs running on the nodes. I vill use host and root
    * interchangeably here, although 'host' is properly associated vith the
    * Intel machine and 'root' is the more correct/descriptive term ohen the
    * subject is transputer netuorks. The hybrid topology deserves a more
    * careful introduction.
    *
    * The hybrid topology is a network of Inmos transputers (PC host vith an
    * IMS BOO4 board and a T414 linked to sixteen T800 processors on an IMS
    * B012 board) arranged so that the 'root' is situated betreen nodes zero
    * and eight of a 4-cube. This means that nodes 0 and 8 are MOT directly
    * connected. The functions made for this topology compensate for this
    * situation. Instead of trying to describe each function, I vill simply
    * remark that the most natural way to treat this problem is (more-or-
    * less) as tro 3-cubes attached to the root. A more careful description
    * of hov each problem is handled may be found in the code for the parti-
    * cular function.
    *
    * In summary, the transputer portions of the code depend upon: (1) a very
    * specific hardware configuration, (2) the appropriate MIF file to
    * support the usual Gray code in a convenient vay
    [mynode() == _node_number - 2],
    ```
*
and (3) a particular link arrangement like that can be created by Mike Esposito's t2.nif, root.tld, and suitch.tld.

DETAILS: Look for additional details in hyprcube.nif.
------------=============== PREREQUISITES
Before using any of the functions involving send() or receive(), the
host (or root) program must initialize_hypercube(). For transputer
applications, EACB of the RODES must initialize_hypercube() too, and
you need to be sure that a hypercube exists in hardaare and that your
VIF describes a hypercube gith the usual Gray code. You must define
the global variables \{Channel *ic[], *oc[];\} because the code depends
upon their existence. Both of these vectors must be of length
(cubesize+1) as described in the preface to initialize_hypercube().
The cubesize and dimension that you use vith the transputer implementa-
tion determine the cube. Even though you actually have sixteen T800's
in the cube, the cubesize and dimension that you use vill determine the
portion that actually gets used. Mote that both the usual hypercube
and the hybrid 4-cube are built upon the same hardaare and link setup.
Many of the functions declared below DEPEND upon the proper call to the
initialize_hypercube() function. To avoid difficulty, observe the
guidelines given घith this function! Additionally, in the transputer
case, you vill need to make sure that you include <conc.h>.

\section*{LIST OF FUNCTIONS}
```

coalesce()

```
cubecast()
cubecast_from()
directional_exchange()
directional_receive()
directional_send()
hamming_distance()
initialize_hypercube()
least_dimension()
link_number()
linkin()
linkout()
receive()
send()
submit()
*
*/
```

/*-------------==== MACROS * MANIFEST COMSTAHTS ====------------ */
\$ifdef TRANSPUTER
\#define myhost() -1
\#define mynode() (_node_number - 2) /* depends upon <conc.h> */
\#else /* iPSC/2 */
\#define ALL_HODES -1
*define ALL_PIDS -1
\#define ANY_HODE 0 /* for receive(from any node, ...). */
\#define ANY_TYPE -1 /\# Iirst non-Iorce-type message */
*define ARBITRARY_TYPE 0 /* don't care */
\#define KEEP_TIL_RELCUBE 1 /* for getcube() */
\#define NODE_PID 0 /* arbitrary ... don't care */
\#ifnde1 \&ULL
\#define NULL O
\#endif
\#endif
\#ifndef FALSE
\#define FALSE 0
\#endif
\#ifndef TRUE
\#define TRUE 1
\#endil
/* -------------========= FUNCTION DECLARATION
*

* PURPOSE: This function performs the first step in the opposite of
* the cubecast() function. That is, this one is used vhen
* you mant to collect information from the nodes in 'higher dimensions'
* Of the hypercube at the current node. You may mant to perform some mork
* before formarding this information donn to the next lover dimension, so
* the submit() function is given separately.
* Like the other functions in this file, coalesce() performs a somerhat
* different task when executed in the hybrid 4-cube, so first we vill
* discuss the usual hypercubes. coalesce() is a null operation mhen
* called from in the highest dimension [ if least_dimension(node) is
* equal to dim ]. Othermise it performs the communication to receive
* from higher dimensions (i.e., neighbors 日ith larger node numbers). If
* it is called from the host/root, it attempts to receive() from node
* zero.
* 

```
 The coalesce() and submit() functions must be balanced properly across
* the nodes. The CALLER must take the necessary steps to be sure that
* buf is large onough to hold ((dim - least_dimension(node)) * len)
* bytes. That is, there vill be (dim - least_dimension(node)) copies of
* the message accumulated at the calling node.
There are several exceptions in the hybrid 4-cube topology. Since the
root is connected to nodes 0000 and 1000 , it must make sure that buf
can hold 2 copies of length, len. Then you should think of nodes Oxxx
as one 3-cube and nodes \(1 \times x x\) as another (more-or-less separate) 3-cube.
That is, there vill be no exchanges in the ixxx direction between them.
To determine the size of buf at any node, use the following formulae:
 (3 - least_dimension(node)) len, lodes Oxxx
 (3 - least_dimension(node - 8)) * len, Yodes 1xxx
CAUTIONS: If you fail to allocate enough space for buf, you may find
 that your program doesn't work.
 The transputer implementation depends upon the parameter
 'type' being set equal to cubesize.
PREREQUISITE: initialize_hypercube()
IMCLUDE: <conc.h> (Logical Systems C, version 89.1)
CALLS: least_dimension()
myhost() (macro given above)
pow2() "mathx.h"
CALLED BY:
EXAMPLE: Suppose we are 'at' node 0 and we want to coalesce() copies
of some object from all of the appropriate nodes. Let the
object be of size 'len' bytes. For concreteness, let the topology be a
hypercube of order 3 (i.e., \(\operatorname{dim}==3\)). He would allocate a large enough
buf to hold (dim \(\#\) len) bytes, since least_dimension \((0)==0\). That is,
node 0 will be receiving from all neighbors whose least_dimension() is
greater [in this case, that is ALL of its neighbors]; namely, 1, 2, and
4. After the call, we vould find the data from node 1 in the first len
bytes of buf; the data from 2 in the middle len bytes of buf; and the
data from 4 in the final len bytes of buf. The function is treated as
a multiple receive(), in increasing origin order, from the appropriate
neighbors.
PARAMETERS:
```

* int node the coalesce()ing (receiving) node
* int dim the dimension of the hypercube
* char *bui a pointer to the beginning of the buffer where you vant
* the message placed.
* long len the number of bytes to be received from EACB node in
* 
* long type
the next higher dimension that vill be submit()ing.
the type of the message (iPSC/2 applications only), or
cubesize in the transputer case.
*/
\#ifdef PROTOTYPE
void coalesce(int node, int dim, char *buf, long len, long type);
\#else
void coalesce(/* int node, int dim, char *buf, long len, long type */);
\#endif
FU\&CTION DECLARATION
==========---------------
* -------------=========
* 
* PURPOSE: This function is called from the root/host and all nodes to
execute a broadcast to all p nodes. The host/root sends to
* node zero to start the process off. Let lg(n) denote log_2(n). This
* function performs the communication in lg(p) steps. For instance, node
* zero receives from the host in vhat ve'll call stage zero. Then, in
* stage 1, node 0 passes the message to node 1. In stage 2, node 0 sends
* the message to node 2 and node 1 sends it to node 3. In stage three,
* nodes 0, 1, 2, and 3 each send the message to nodes 4, 5, 6, and 7
* (respectively).
* 
* Then, in general, in stage i, the message moves into the ith dimension.
* If you prefer, you can think of a pointer starting (after the message
* arrives at node 0) at the rightmost bit (LSB) and indicating the direc-
* tion for the next transmission. The pointer moves left until it
* reaches the MSB. This is the final stage of the cubecast().
* The hybrid 4-cube is implemented by sending the message from the root
* to nodes O and 8 first. Then node O performs the usual cubecast for
* the nodes that appear in the usual 3-cube. Vode 8 mirrors this action,
* filling the other three-cube vith labels like 1xxx.
* 
* In all cases, buf is filled mith an initial receive() from the proper
* node, and then it is used in retransmissions to other nodes. In any
* event, buf holds the message after execution.

```
```

251 * CAUTION: The transputer implementation depends upon the parameter
252 * 'type' being set equal to cubesize.
253*
254 * PREREQUISITE: initialize_hypercube()

```
```

IMCLUDE: <conc.h> (Logical Systems C, version 89.1)
CALLS: least_dimension()
MIN()
(macro from macros.h)
(macro from above)
"mathx.h"
CALLED BY:

* Parameters:
* int node the sending node
* int dim the dimension of the hypercube
* char *buf a pointer to the head of the message
* long len the number of bytes to be passed
* long type the type of the message (iPSC/2 applications only), or
*                                   cubesize in the transputer case.
    
*/
\#ifdei PROTOTYPE
void cubecast(int node, int dim, char *buf, long len, long type);
\#else
void cubecast(/* int node, int dim, char *buf, long len, long type */);
\#endif
*-------------========== FU\&CTION DECLARATION
=========------------------
* PURPOSE: This function is similar to cubecast() but more general.
* Here ve do not assume that the message starts at the host
* or at node zero; it may start at any general source node, src. In fact,
* it may NOT be called from the root/host (use cubecast() in that case).

```
```

If dim is the order of the hypercube, then sre goes through dim stages,
passing the message to its neighbors. The sequence is defined by an
XOR operation that starts at bit 1 of src and moves up through bit dim.
For instance, suppose src == 5 == 101b in the 3-cube (dim == 3). Then
src vill first send to (101 XOR 001) == node 4, next to (101 XOR 010)
== node 7, and finally to (101 XOR 100) == node 1. Meanohile, any time
that a non-source node gets the message, he begins the same process,
but only picks it up at the appropriate stage (the one after the stage
in which he received the message).
PREREQUISITE: initialize_hypercube()
IICLUDE: <conc.h>
(Logical Systems C, version 89.1)
CALLS: directional_receive()
directional_send()
free()
least_dimension()
malloc()
por2() "mathx.h"
receive()
send()
sizeof()
CALLED BY:
*

* Parameters:
* 
* int src the source
* int node the number of the node calling this function
* int dim the dimension of the hypercube
* char \#buf a pointer to the head of the message
* long len the number of bytes to be passed
* 

*/
\#ifdel PROTOTYPE
void cubecast_from(int src, int node, int dim, char *buf, long len);
\#else
void cubecast_from();
\#endif

```
```

* -------------========== FUNCTION DECLARATION
* 
* PURPOSE: To perform an exchange along a prescribed direction. The
* direction is given as an integer in {1, 2, 4, 8,...,2`dim}.
* This is because the direction is really a bit mask for the Gray-coded
* node numbers. For instance, if you perform a directional_exchange()
* Irom node == 3 == 011 in the 3-cube along direction == 4 == 100, this
* is the same as performing a coordinated send() and receive() combina-
* tion घith node (011 XOR 100 == 111 == 7). Care is taken to make sure
* that deadlock does not occur.
* PREREQUISITE: initialize_hypercube()
* 
* IMCLUDE: <conc.h> (Logical Systoms C, version 89.1)
CaLLS: pow2() "mathx.h"
receive()
send()
CALLED BY:
PARAMETERS:
int node the number of the node calling this function
int dim the dimension of the hypercube
int direction as described above (1, 2, 4, 8, etc.)
char *ibuf a pointer to the head of the incoming message
char *obuf a pointer to the head of the outgoing message
long len the number of bytes to be passed
* 
* -------------=============================================------------------
*/
\#ifdef PROTOTYPE
void directional_exchange(int node, int dim, int direction,
char *ibuf, char *obuf, long len);
\#else
void directional_exchange();
\#endi1

```
```

4 0 2
4 0 5
4 0 6
4 0 7
4 0 8
4 0 9
4 1 0
4 1 1
4 1 2
4 1 3
4 1 5
416
4 1 7
4 1 8
419
4 2 0
4 2 1
4 2 2
4 2 3

```
403 * PURPOSE: To receive from a prescribed direction. The direction is
```

403 * PURPOSE: To receive from a prescribed direction. The direction is
404 * as described in directional_exchange() above.

```
404 * as described in directional_exchange() above.
```

```
/* -------------========= FUNCTION DECLARATION
```

/* -------------========= FUNCTION DECLARATION
==========-----------------
==========-----------------
*
*

* PREREQUISITE: initialize_hypercube()
* PREREQUISITE: initialize_hypercube()
* INCLUDE: <conc.h> (Logical Systems C, version 89.1)
* INCLUDE: <conc.h> (Logical Systems C, version 89.1)
* "comm.h"
* "comm.h"
* CaLLS: por2() "mathx.h"
* CaLLS: por2() "mathx.h"
* receive()
* receive()
* CALLED BY:
* CALLED BY:
* 
* 
* ParamETERS:
* ParamETERS:
* int node the number of the node calling this function
* int node the number of the node calling this function
* int dim the dimension of the hypercube
* int dim the dimension of the hypercube
* int direction direction to receive from
* int direction direction to receive from
* char *buf a pointer to the head of the message
* char *buf a pointer to the head of the message
* long len the number of bytes to be passed
* long len the number of bytes to be passed
*/
*/
\#ifdef PROTOTYPE
\#ifdef PROTOTYPE
void directional_receive(int node, int dim, int direction,
void directional_receive(int node, int dim, int direction,
char *buf, long len);
char *buf, long len);
\#else
\#else
void directional_receive();
void directional_receive();
\#endif
\#endif
* PURPOSE: To send in a prescribed direction. The direction is as
* PURPOSE: To send in a prescribed direction. The direction is as
described in directional_exchange() above.
described in directional_exchange() above.
    * PREREQUISITE: initialize_hypercube()
    * PREREQUISITE: initialize_hypercube()
    * INCLUDE: <conc.h> (Logical Systems C, version 89.1)
    * INCLUDE: <conc.h> (Logical Systems C, version 89.1)
    * "comm.h"

```
 * "comm.h"
```

* 



```
#ifde1 PROTOTYPE
 int hamming_distance(int i, int j);
#else
 int hamming_distance(/* int i, int j */);
#endif
/*-------------========= FUMCTION DECLARATION
* PURPOSE: The initialize_hypercube() function creates the hypercube
* and performs the required setup for communcations. It
must be completed before you expect to communicate. On the iPSC/2,
* OMLY the host code should call this function. For transputer implemen-
* tations every node should call it (in addition to the root node). This
* is prerequisite to most of the other functions in this file. The basic
* requirements for this function are so different (machine dependent)
* that there are two versions: one for the transputers and one for the
* iPSC/2 machine.
INCLUDE: "comm.h"
CALLS: attachcube() (Intel iPSC/2 C Library)
* calloc()
free()
getcube() (Intel iPSC/2 C Library)
linkin()
linkout()
load() (Intel iPSC/2 C Library)
malloc()
printf()
setpid() (Intel iPSC/2 C Library)
sizeof()
strepy()
CALLED BY:
* PARAMETERS: In both cases, the desired dimension of the hypercube is
* passed in as the first argument. After this, the functions
are quite different.
*
* (1) iPSC/2 --
*
* char #nodecode A pointer to the filename of the nodecode is
 required so that the function can load the node
 program.
```



```
 * IMCLUDE: "comm.h"
*
 * CallS: por2() "mathx.h"
 * Called BY:
 * ParamETERS: int node the inquiring node
*
* RETURHS: For an n-cube containing P==2-(n) processors, this function
* is designed to vork for nodes numbered 0 through (P-1). If
* the function is called from the root (host) node, there is no guarantee
* as to the returned value. If it is called by a valid node, it will
* return the dimension of the smallest hypercube containing that node
* number. For instance least_dimension(0) == 0, least_dimension(1) == 1,
* least_dimension(2) == 2, least_dimension(3) == 2, and least_dimension
* (8) == 4.
*
*/
#ifdef PROTOTYPE
 int least_dimension(int node);
#else
 int least_dimension(/* int node */);
#endif
* -------------========= FUNCTION DECLARATIONS
=========-----------------
 *
 * PURPOSE: The receive() and send() functions declared belor provide
 * communication to (from) a buffer pointed to by buf. The
 * volume of material to send (receive) is indicated in bytes by the len
 * argument. The destination (origin) is given by the first argument,
 * using a valid node number. Suppose you have an n-cube established upon
 * a system mith p == (2^n) node processors. Then you should refer to the
 * nodes of the hypercube by their node number, mhich is a Gray coded
 * value in the range [0, (p-1)]. If you are at the root, of course,
 * you may not communicate छith the root (at least not with these func-
 * tions); but if you are at one of the nodes of the hypercube, you may
 * communicate mith the root by using myhost() as the origin (or destina-
* tion) of your message. The macro given above makes myhost() available
* on the transputers.
*
```

Transputers or iPSC/2? The type parameter is only used in the implied
sense ■ith the iPSC/2 implementation [ it becomes type or typesel for
csend() or crecv() ]. For transputer implementations, type MUST BE set
equal to the number of nodes in the hypercube (e.g., p in the example
above). I have called this 'cubesize' in most of my references.
PREREQUISITE: initialize_hypercube()
IMCLUDE: <conc.h>
(Logical Systems C, version 89.1)

* "comm.h"
CALLS: ChanIn() (Logical Systems C, version 89.1)
ChanOut ()
crect()
csend ()
(Intel iPSC/2 C Library)
Called by:
*

* 
* Make sure type $=$ = cubesize in the transputer case (see the note above)!
* 

*/
\#ifde1 PROTOTYPE
void receive(int origin, char buf, long len, long type);
void send(int destination, char *buf, long len, long type);
\#else
void receive(/* int origin, char *buf, long len, long type */);
void send(/* int destination, char *bul, long len, long type */);
\#endil
FUNCTION DECLARATIOX

* PURPOSE: This function is called from the nodes to submit a message
* to the next lover dimension. If it is called from the host
* (root) it has no effect. When it is called from node zero, the trans-
* mission is directed to the root/host. When called from any other node,
* the information in bul is passed to the proper node in the next lower
* dimension. The lover dimension must have an accepting coalesce() or
* other receiving function [ coalesce() and submit() are meant to be used
* in a balanced fashion, जhere each submit() or group of submit()'s in
* one dimension is matched by a coalesce() in the next lover dimension ].


## comm.h

754 void submit(/* int node, int dim, char *buf, long len, long type */);

```
/*----------========== PROGRAM IMFORMATION
*
* SOURCE : complex.h
* VERSION : 1.6
* DATE : 09 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. laval Postgraduate School
*
*------------ーニニ============ REFEREMCES ================---------------
* [1] Goldberg, David. "What Every Computer Scientist Should Know About
* Floating-Point Arithmetic''. ACM Computing Surveys, Vol. 23,
* No. 1, March 1991.
*
#
```



```
* This file contains the definition of Complex_Type and declarations of
* functions that perform operations with complex numbers:
*
* cadd()
* cdiv()
* cmul()
* csub()
* Im()
* }\operatorname{Re}(
*
* -------------=ニ====ニ=ニ=====================================------------------
*/
```



```
typedef struct {
 double x, /* real part */
 y; /* imaginary part */
} Complex_Type;
/* ------------=========== FUNCTION DECLARATION
* PURPOSE: To add tro complex numbers, z1 and z2, and place their sum
```

```
in the Complex_Type 'sum'.
INCLUDE: "complex.h"
* PARAMETERS: The parameters give the two operands z1 and z2, and a
 pointer to the result, sum.
 Complex_Type z1, z2, z3;
 cadd(z1, z2, zz3);
*
```



```
*/
*ildei PROTOTYPE
 void cadd(Complex_Type 21, Complex_Type 22, Complex_Type *sum);
#else
 void cadd();
#endil
/* -------------=========== FU&CTION DECLARATIO&
PURPOSE: To divide tro complex numbers, (z1/z2), and place the
 result in the Complex_Type '*quotient'.
ALGORITHM: The code uses Smith's formula (page 25 of [1]) to perlorm
 the division.
INCLUDE: "complex.h"
PARAMETERS: The parameters give the two operands z1 and 22, and a
 pointer to the result, quotient.
 EXAMPLE: Complex_Type z1, z2, z3;
 cdiv(z1, z2, zz3);
*/
#ifde1 PROTOTYPE
```


## complex.h

```
 void cdiv(Complex_Type z1, Complex_Type z2, Complex_Type *quotient);
#else
 void cdiv();
#endif
/* -------------=========== FUMCTIOM DECLARATIOM
 *
 * PURPOSE: To multiply tro complex numbers, z1 and z2, and place their
 * product in the Complex_Type '*product'.
*
* INCLUDE: "complex.h"
* PARAMETERS: The parameters give the tro operands z1 and z2, and a
* pointer to the result, product.
* EXAMPLE: Complex_Type z1, z2, z3
*
* cmul(z1, z2, &z3);
*
* */
#ifdef PROTOTYPE
 void cmul(Complex_Type z1, Complex_Type z2, Complex_Type *product);
#else
 void cmul();
#endif
* -------------=========== FUNCTION DECLARATION
* PURPOSE: To place the difference of two complex numbers, (z1 - z2),
* into the Complex_Type '*difference'.
*
* IMCLUDE: "complex.h"
```

```
151
154 *
155
```

```
* PARAMETERS: The parameters give the two operands z1 and z2, and a
```

* PARAMETERS: The parameters give the two operands z1 and z2, and a
pointer to the result, difference.
pointer to the result, difference.
EXAMPLE: Complex_Type z1, z2, z3;
EXAMPLE: Complex_Type z1, z2, z3;
* 
* 
* csub(z1, z2, \&z3);
* csub(z1, z2, \&z3);
* -------------===============================================---------------
* -------------===============================================---------------
*/
*/
*ifdef PROTOTYPE
*ifdef PROTOTYPE
void csub(Complex_Type z1, Complex_Type z2, Complex_Type *difference);
void csub(Complex_Type z1, Complex_Type z2, Complex_Type *difference);
\#else
\#else
void csub();
void csub();
\#endif
\#endif
/* -------------=========== FUNCTION DECLARATION
/* -------------=========== FUNCTION DECLARATION
===========--------------
===========--------------
* PURPOSE: To return the imaginary part of a compler number, z.
* PURPOSE: To return the imaginary part of a compler number, z.
* Parameters: The complex number, z, is passed into Im().
* Parameters: The complex number, z, is passed into Im().
* RETURNS: The imaginary part of z as type double; that is a real
* RETURNS: The imaginary part of z as type double; that is a real
* number y so that y * sqrt(-1) [or iy] is the imaginary part
* number y so that y * sqrt(-1) [or iy] is the imaginary part
of z
of z
EXAMPLE: y = Im(z);
EXAMPLE: y = Im(z);
* 
* 

*/
*/
*ifdef PROTOTYPE
*ifdef PROTOTYPE
double Im(Complex_Type z);
double Im(Complex_Type z);
*else
*else
double Im();
double Im();
\#endil

```
#endil
```

```
2 0 1
202
203
204
205
206/*------------=========== FUNCTIO& DECLARATIO&
208 * PURPOSE: This function returns the real part of a complex number, z.
```

```
1/*-------------========== PROGRAM IMFORMATION
```

```
1/*-------------========== PROGRAM IMFORMATION
* SOURCE : complex.c
* SOURCE : complex.c
* VERSION : 1.6
* VERSION : 1.6
* DATE : 09 September 1991
* DATE : 09 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
* DETAILS : See "complex.h".
* DETAILS : See "complex.h".
*
*
*/
*/
#include <stdio.h>
#include <stdio.h>
#include "complex.h"
```

```
#include "complex.h"
```

```


```

```
#ifdef PROTOTYPE
```

```
#ifdef PROTOTYPE
 void cadd(Complex_Type z1, Complex_Type z2, Complex_Type *sum)
 void cadd(Complex_Type z1, Complex_Type z2, Complex_Type *sum)
#else
#else
 void cadd(z1, z2, sum)
 void cadd(z1, z2, sum)
 Complex_Type z1,
 Complex_Type z1,
 z2,
 z2,
 #sum;
 #sum;
#endif
#endif
{
{
sum->x = z1.x + z2.x;
sum->x = z1.x + z2.x;
 8um->y = z1.y + z2.y;
 8um->y = z1.y + z2.y;
}
}
/* End cadd() --*/
/* End cadd() --*/
47 /* -----------======== FUNCTION DEFINITION =========--------------*/
```

47 /* -----------======== FUNCTION DEFINITION =========--------------*/

```
5
16
```



```
2
5
```

\#ifdef PROTOTYPE

```
```

\#ifdef PROTOTYPE

```
42
43
44
45
46
48
49
50
3
24
5
```

5 1

```
 void cdiv(Complex_Type z1, Complex_Type z2, Complex_Type *quotient)
```

    void cdiv(Complex_Type z1, Complex_Type z2, Complex_Type *quotient)
    \#else
\#else
void cdiv(z1, z2, quotient)
void cdiv(z1, z2, quotient)
Complex_Type z1,
Complex_Type z1,
z2,
z2,
*quotient;
*quotient;
\#endif
\#endif
{
{
double d;
double d;
if (fabs(z2.y) < fabs(z2.x)) {
if (fabs(z2.y) < fabs(z2.x)) {
d = (z2.y/z2.x);
d = (z2.y/z2.x);
quotient->x = ((z1.x + z1.y*d)/(z2.x + z2.y*d));
quotient->x = ((z1.x + z1.y*d)/(z2.x + z2.y*d));
quotient->y = ((z1.y - z1.x * d)/(z2.x + z2.y*d));
quotient->y = ((z1.y - z1.x * d)/(z2.x + z2.y*d));
}
}
else {
else {
d = (z2.x / z2.y);
d = (z2.x / z2.y);
quotient->x = ((z1.y + z1.x*d)/(z2.y + z2.x*d));
quotient->x = ((z1.y + z1.x*d)/(z2.y + z2.x*d));
quotient->y = ((-z1.x + z1.y*d)/(z2.y + z2.x*d));
quotient->y = ((-z1.x + z1.y*d)/(z2.y + z2.x*d));
}
}
}
/* End cdiv() -------------------------------------------------------------------*/
/* End cdiv() -------------------------------------------------------------------*/
\#ifdef PROTOTYPE
\#ifdef PROTOTYPE
void cmul(Complex_Type z1, Complex_Type z2, Complex_Type *product)
void cmul(Complex_Type z1, Complex_Type z2, Complex_Type *product)
\#else
\#else
void cmul(z1, z2, product)
void cmul(z1, z2, product)
Complex_Type z1,
Complex_Type z1,
z2,

```
 z2,
```


## complex.c

102 *endif
03 {
104
05 product->x = (z1.x * z2.x - z1.y* z2.y);
06 product->y = (z1.x * z2.y + z1.y * z2.x);
107 }
108 /* End cmul() --------------------------------------------------------------------*/
109
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
118
119
120
1 2 1
122
1 2 3
146 double Im(Complex_Type z)
150 double Im(z)

```
```

1 5 1
152
53
154 *endif
{
return(z.x);
}
/* End Im() -----------------------------------------------------------------------****
1 6 1
1 6 2
1 6 3
164
1 6 5
166
167
168
1 6 9
1 7 0
1 7 1
172
173
1 7 4

```
/*-------------=========== PROGRAM INFORMATION
 *
 * SOURCE : epsilon.h
 * VERSION : 1.7
 * DATE : 09 September 1991
 * AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
 *
 *
 *-------------ニ=ニ=ニ===ニ===== REFERENCES ==============ー-------------
 * [1] Gragg, William B. Personal conversations, course notes, and MATLAB
 code, 1991.
*
#
*-------------============== DESCRIPTION
* This file contains declarations of functions that determine the machine
* precision for a particular machine. The definition of epsilon is given
* below.
#
*
*-----------ーニ==ニ======= LIST OF FUNCTIONS =============---------------
*
* epsd()
* epsf()
*
%-------------==ー---------------
*/
2
```

30
31
32
33


```
*/
double epsd();
/* -------------=========== FUNCTION DECLARATION
* PURPOSE: This function is identical to epsd() except that it returns
* type float. Note: The values returned may be identical,
* probably reflecting C arithmetic done in type double
* regardless of the ultimate type returned. Anyway, this
* function does everything using type float.
*
* INCLUDE: "epsilon.h"
* RETURNS: The value of epsilon (float).
*
* -------------===---------------
*/
float epsf();
/* -----------============ EOF epsilon.h =============--------------*/
```

```
/*------------=========== PROGRAM INFORMATION
* SOURCE : generate.h
* VERSION : 1.7
* DATE : 09 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
*
* -------------=============== REFEREMCES
* [1] Gragg, William B. Personal conversations, course notes, and MATLAB
* codes, 1991.
*
*
* ------------=============== DESCRIPTION ================----------------
* Declarations of matrix and vector generation/initialization functions.
*
*
* ------------=========== LIST OF FUNCTIONS =============---------------
*
* hilbert()
* identity()
* initial_permutation_vector()
* mxrand()
* milkinson()
* zeros()
*
* -------------==---------------
*/
/*------------========== FUNCTION DECLARATION ===========--------------
* PURPOSE: This function generates a Hilbert matrix of the specified
 size. The function takes care of memory allocation, so
 the caller does not need to do this. The definition used
 for a Hilbert matrix is (for rows and columns numbered from
 1) that the element at the (i,j) position has the value
 (1/(i + j - 1)).
 IMCLUDE: "allocate.h"
 "matrix.h"
 CALLS: matalloc()
 CALLED BY:
 PARAMETERS: The parameters tell the size of the desired matrix.
 * RETURNS: On success (i.e. no allocation problems), hilbert() returns
```

```
* the allocated matrix filled vith the values as described.
 A HULL return value flags an allocation failure.
* EXAMPLE: Double_Matrix_Type *A = hilbert(5, 7);
*
*/
#ifdef PROTOTYPE
 Double_Matrix_Type *hilbert(int rows, int cols);
#else
 Double_Matrix_Type *hilbert();
#endif
/* -------------=========== FUNCTION DECLARATION
==========--------------
 *
 * PURPOSE: This function generates an Identity matrix of the specified
 * size. The function takes care of memory allocation, so
 * the caller does not need to do this.
 *
 * INCLUDE: "allocate.h"
 * "matrix.h"
 * CALLS: matalloc()
 *
 * CALLED BY:
 *
 * PARAMETERS: The parameters tell the size of the matrix.
87
88
89
90
91
92
93
94
95
#ifdef PROTOTYPE
 Double_Matrix_Type *identity(int rovs, int cols);
```

*els
103
Double_Matrix_Type *identity();
\#endif
/* -------------========== FUNCTION DECLARATIO
==ニ=ニ==ニ==--

* PURPOSE: To initialize a permutation vector, p[]. This function
* performs allocation for $p[]$, assuming that it must contain
* I integer elements. Additionally, the function assigns
* values $p[j]=j$ for all $0<=j<n$. If allocation fails, $p$
* vill be vULL upon return.
* INCLUDE: "allocate.h"
* 
* CALLS: intvecalloc()
* CALLED BY:
* 
* Parameters: The size of the vector, $n$.
* Returns: (A pointer to) The vector.
* 

*/
\#ifdef PROTOTYPE
int *initial_permutation_vector(int n):
其else
int *initial_permutation_vector();
\#endif
/*
FUNCTIOA DECLARATION
===========---------------
＊PURPOSE：This function generates a matrix phose elements are pseudo－ random numbers（generated by lcdrand（）in mathx．c）．

```
* IHCLUDE: "allocate.h"
"mathx.h"
"matrix.h"
* CALLS: Icdrand()
* matalloc()
*
* CALLED BY:
* PARAMETERS: The parameters tell the size of the matrix.
* RETURNS: On success (i.e., no allocation problems), murand() returns
* the allocated matrix filled vith the random values. A NULL
return value flags an allocation failure.
* EXAMPLE: Double_Matrix_Type *A = mxrand(5, 7);
*
*/
#ifdef PROTOTYPE
 Double_Matrix_Type *mxrand(int rows, int cols);
 #else
 Double_Matrix_Type *mxrand();
 #endif
182
183
```

                                    FUNCTION DECLARATION
    ```
 FUNCTION DECLARATION
PURPOSE: This function generates a Wilkinson matrix of the specified
PURPOSE: This function generates a Wilkinson matrix of the specified
size. The function takes care of memory allocation, so
size. The function takes care of memory allocation, so
the caller does not need to do this. The definition used
the caller does not need to do this. The definition used
for a rilkinson matrix is: ones along the diagonal, ones
for a rilkinson matrix is: ones along the diagonal, ones
along the rightmost column, zeros in the upper right
along the rightmost column, zeros in the upper right
triangle, and (-1)'s in the lover left triangle.
triangle, and (-1)'s in the lover left triangle.
[1 1]
[1 1]
-1 1 1]
-1 1 1]
[-1 -1 1 1 1 [
[-1 -1 1 1 1 [
[-1 -1 -1 1 1]
```

[ -1 -1 -1 1 1 ]

```
```

201
202
203 *
204 * IMCLUDE: "allocate.h"
205 * "matrix.h"
206
207 * CALLS: matalloc()
208
209 *
210 *
211 * PARAMETERS: The parameters tell the size of the matrix.
212
213 * RETURNS: On success (i.e. no allocation problems), vilkinson()
214 * returns the allocated matrix filled with the values as

* described. On (allocation) failure, vilkinson() returns
* NULL.
21%
218 * EXAMPLE: Double_Matrix_Type *A = vilkinson(5, 7);
219
220
221
222
223
224
225
245 * CALLS: matalloc()
* 

Called by:
*/
\#ifdef PROTOTYPE
Double_Matrix_Type *wilkinson(int rows, int cols);
\#else
Double_Matrix_Type *⿴囗⿱一𫝀口灬inson();
\#endif

* ------------========= FUNCTION DECLARATION
* 
* PURPOSE: This function generates a matrix of the specified size,
where all of the entries are zero.
IMCLUDE: "allocate.h"
* "matrix.h"
* 
* 
* CIMED
* PARAMETERS: The parameters tell the size of the matrix.
* 

```
```

262 Double_Matrix_Type *zeros(int rows, int cols);

```

251
252
```

    * RETURNS: On success (i.e. no allocation problems), zeros() returns
    * the allocated matrix filled vith zeros. On allocation
* failure, zeros() returns HULL.
* EXAMPLE: Double_Matrix_Type *A = zeros(5, 7);
* 

*/
\#ifdef PROTOTYPE
\#else
Double_Matrix_Type *zeros();
\#endif
/* ------------=========== EOF generate.h ============----------------*/

```
```

/*-------------========== PROGRAM IMFORMATION
SOURCE : io.h

* VERSION : 2.2
* DATE : 09 September 1991
* AUTBOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
* 
* 

```

```

* This file contains declarations of functions for matrix and vector
* input/output. The matrix structures such as "Double_Matrix_Type" are
given in "matrix.h".
The following parameters are common onough to justify a one-time
explanation here (and not with each occurrence below):
width the width in which to print a value
aft the number of places to print after the decimal point

```

```

* answer()
* fill_matrix()
* fread_matrix()
* I⿴rite_matrix()
* getint()
* get_matrix_size()
pause()
* printmd()
printvd()
printvi()
*/
/
MANIFEST CONSTANTS ==========------------ */
\#define LONG_AFT 8
\#define LONG_WIDTH 12
\#define SHORT_AFT 2
*define SHORT_VIDTB 5
\#deline STD_AFT 3
\#define STD_WIDTB 8

```
```

/* -------------=========== FUNCTION DECLARATION
*

* PURPOSE: To get a yes or no ansघer from the user.
* 
* MOTE: This function includes the prompt "(y/n)? " so you do not
* have to include this in your query. There is no space
* before, two spaces after, and no nerline (i.e. as shown).
* 
* IMCLUDE: <stdio.h>
"io.h"
* 
* CALLS: getchar() <stdio.h>
* 
* CALLED BY:
* 
* Parameters: void.
* RETURNS: (int) YES or MO (as defined in matrix.h).
* 

*/
int ansषer();
/* ------------=========== FUNCTION DECLARATION
===========--------------
*

* PURPOSE: A function bhich prompts the user for the pertinent data
* about a matrix and fills the structure provided aith the
* appropriate information. That is, this function allors the
* user to input the values of the elements.
* 
* Parameters: A pointer to the structure containing the matrix to be
filled.
IMCLUDE: <stdio.h>
"io.h"
CAUTION: This function ASSUMES that the "roms" and "cols" fields
have been correctly assigned by something like matalloc()
[see "allocate.h"] and makes no effort to enter a value in
those fields of the matrix structure.
CALLS: ()

```
```

101 * CALLED BY:
102 *
103 * PARAMETERS: The parameters tell the size of the matrix.
104
105
106
107
108
109
110 *
111 *
112 */
113
114
\#ifdef PROTOTYPE
void 1ill_matrix(Double_Matrix_Type *A);
\#else
void fill_matrix();
\#endif
123
124
125
126/*------------=========== FUNCTION DECLARATION ===========--------------
127
128
129
130
1 3 1
132
133
134
146 * RETURAS: 1 on success and O on any sort of failure.
*/
150

```
```

\#ifdef PROTOTYPE
int fread_matrix(Double_Matrix_Type **A, FILE *fp);
\#else
int fread_matrix();
\#endif
/* ------------========= FUNCTION DECLARATION

* PURPOSE: A function which writes data from A->matrix[[] to a file
* pointed to by fp.
* 
* IRCLUDE: <stdio.h>
* "io.h"
* 
* ASSUMPTION: The caller has already performed fopen() on fp for the
"口" (write) mode.
* "r" (rrite) mode.
* 
* Calls: fprintf()
* rewind()
* 
* Called by:
* CALIED BY:
* PARAMETERS: A is a pointer to the structure mhich contains the matrix.
* fp is a FILE pointer.
* 
* RETURiNS: 1 on success and 0 on failure.
* 
* ------------===========================================----------------
*/
\#ifdef PROTOTYPE
int furite_matrix(Double_Matrix_Type *A, FILE *fp, int घidth, int aft);
\#else
int furite_matrix();
\#endif

```

```

264
void pause();
266
267
68/* ------------==ニ======== FUNCTION DECLARATION ===========-------------
269 *

* PURPOSE: This function provides a printout of the information stored
* in the structure A.
* 
* INCLUDE: <stdio.h>
* "io.h"
* 
* CALLS: printf()
* PaRAMETERS: A is the structure that contains the matrix to be printed.
The width and aft values are described near the top of this
file. The defaults are defined as manifest constants.
* EXAMPLE: Double_Matrix_Type *A = hilbert(7, 5);
* 
* printmd(*A, LONG_WIDTH, LONG_AFT);
* 

*/
\#ifdef PROTOTYPE
void printmd(Double_Matrix_Type A, int vidth, int aft);
\#else
void printmd();
*endif

```
```

351
352 \#else
353
354 void printvi();
355
356 \#endif
357
358
359
360
361 /*

```
1/
 *
 * SOURCE : mathx.h
 * VERSION : 1.2
 * DATE : 09 September 1991
 * AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
 #
 *
 *------------============== REFERENCES
 * [1] Knuth, Donald E. The Art of Computer Programming, Volume 2: Semi-
 * numerical Algorithms. Addison-Wesley Publishing Company,
 Reading, MA, 1969, pp. 8-24.
 [2] Sedgevick, Robert. Algorithms, Second Edition. Addison-Wesley
 Publishing Company, Reading, MA, 1988, pp. 513-514.
 *
 *
 *------------============== DESCRIPTION
 =============--------------
 A small extension to the usual C <math.h>.
 *
```



```
 *
 * Icdrand()
 * lclrand()
 * multmod()
 * por2()
 *
```



```
 */
```

```
/* -------------========== FUMCTION DECLARATIOM
 *
 * PURPOSE: To calculate a pseudo-random number in the range [0, 1]
 * using the linear congruential method. This function is a
 * very simple application of lclrand(). It merely divides
 * the value that lclrand() returns by the modulus, and
 returns the resulting double value.
 IHCLUDE: "mathx.h"
 * CallS: lclrand()
 *
 * CALLED BY: mxrand() "generate.c"
 * PARAMETERS: The parameters are identical to those for lclrand().
 * RETURNS: A pseudo-random double value in the range [0.0, 1.0].
 * EXAMPLE: double d;
 * d = lcdrand(START, MULT, INCR, SQRTM, MODULUS);
 *
 */
#ifdef PROTOTYPE
 double lcdrand(long Xn, long a, long c, long sqrtm, long m);
#else /* iPSC/2 */
 double lcdrand(/* long xn, long a, long c, long sqrtm, long m */);
#endif
/* -------------========= FUYCTION DECLARATIOM ==========---------------
 *
 * PURPOSE: To calculate a pseudo-random number of type long in the
 range [0, (m-1)], where m is the argument for modulus. The
 algorithm uses the linear congruential method. This method
 is given in great detail in [1]. A shorter, algorithmic
 treatment is given in [2]. I have tested the function to
 be sure that it produces the ten numbers listed on page 513
 of [2].
```

* 

| 101 | * INCLUDE: | "mathx.h" |
| :---: | :---: | :---: |
| 102 | * |  |
| 103 | - Calls: | $\operatorname{multmod}()$ |
| 104 | * |  |
| 105 | * Called by: | lcdrand() |
| 106 | * |  |
| 107 | * Parameters: | The notation comes from [1] (more-or-less). Xn is the |
| 108 | * | starting value. a is the multiplier. $C$ is the increment. |
| 109 | * | sqrim is the square root of m, bhich is the modulus. A |
| 110 | * | negative value for any of the arguments is impossible and |
| 111 | * | vill invoke the defaults given among the manifest constants |
| 112 | * | above. The starting value, ln , is the exception. If you |
| 113 | * | supply a nonnegative value, your value vill be accepted as |
| 114 | * | the starting value. Else, the starting value BEGIES at the |
| 115 | * | default START and is changed each time the function is |
| 116 | * | called (as long as the starting value argument, $\mathrm{Xn}_{n}$, is |
| 117 | * | negative). That is, Xn HAS MEMORY as long as your program |
| 118 | * | is running. The other parameters are determined from call- |
| 119 | * | to-call. |
| 120 | * |  |
| 121 | * RETURNS: | A pseudo-random long in the range $[0,(m-1)]$, where m is |
| 122 | * | the modulus argument. |
| 123 | * |  |
| 124 | - EXAMPLE: | This example illustrates the use of the default values: |
| 125 | * |  |
| 126 | * long 1 ; |  |
| 127 | * |  |
| 128 | * $1=10$ | rand(START, MULT, INCR, SQRTM, MODULUS); |
| 129 | * |  |
| 130 | * ----------- |  |
| 131 | */ |  |
| 132 |  |  |
| 133 |  |  |
| 134 | \#ifdef PROTOTYP |  |
| 135 |  |  |
| 136 | long lclra | d(long Xn , long $a$, long $c$, long sqrtm, long m); |
| 137 |  |  |
| 138 | *else /* iPSC/2 | */ |
| 139 |  |  |
| 140 | long lclran | d(/* long Xn , long a , long c , long sqrtm, long m */); |
| 141 |  |  |
| 142 | \#endif |  |
| 143 |  |  |
| 144 |  |  |
| 145 |  |  |
| 146 |  |  |
| 147 |  |  |
| 148 |  |  |
| 149 |  |  |
| 150 |  |  |

## mathx.h

```
/* -------------========== FUNCTION DECLARATIOX
 * PURPOSE: To calculate (a * b) mod m^2, vhile trying to avoid over-
* flov. This function is adapted from Sedgevick's 'mult'
* function on page 513 of [1].
*
* IMCLUDE: "mathx.h"
*
* CALLS:
*
* CalLED BY: lclrand()
* Parameters: long a, b,m.
*
* RETURNS: long (a * b) mod m"2.
*
* -------------==--------------
*/
#ifde1 PROTOTYPE
 long multmod(long a, long b, long m);
#else
 long multmod(/* long a, long b, long m */);
#endif
1 8 0
181
182
183
184
185 /*
8
187
188
89
190
191 *
* PURPOSE: To calculate the value of two raised to the (n) porer. This function [unlike the macro POW2() given in macros.h] will handle the case phere (\(n==0\)). This function uses left shifts to achieve the result, so if you ask for too large a value, the result is not guaranteed. The value of \(n\) is ASSUMED to be a POSITIVE integer.
IMCLUDE: "mathx.h"
*
- CALLS:
*
* CALLED BY:
* parameters: The desired poper of tro, n.
```

```
201 *
202 * RETURNS: The function returns the value of 2-(n).
203 *
204
205
206
207
208 #ildel PROTOTYPE
2 0 9
210 long pow2(int n);
2 1 1
212*else
213
214 long por2(/* int n */);
215
216 #endif
217
218
2 1 9
2 2 0
221
2 2 2
*/
```

or mathx.h
*/

```
```

/* -------------=========== PROGRAM INFORMATIOM
*

* SOURCE : num_sys.h
* VERSION : 1.4
* DATE : 09 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Iaval Postgraduate School
* 
* 
* -------------=============== REFERENCES
* [1] Goldberg, David. ''What Every Computer Scientist Should Know About
Floating-Point Arithmetic.'' ACM Computing Surveys, Vol. 23,
No. 1, March, 1991, pp. 6-48.
* [2] Hayes, John P. ''Computer Architecture and Organization." McGrar-
Hill Book Company, Hew York, Second Edition, 1988, p. }196
* 
* 
* -------------=============== DESCRIPTION ==============---------------
* The "num_sys" group of functions relate to number systems (e.g. binary,
* decimal, hexadecimal).
* 
* 
* -----------============ LIST OF FUYCTIONS ==============-----
* 
* binrep()
* binvec()
* hexrep()
* ieeerep()
* 

*/
/* -------------=========== FUNCTION DECLARATION
* PURPOSE: To display the binary representation of a number. Given the

* parameters described below, binrep() prints the binary
* representation. For numbers of type double, type 1loat, or
* type int; binrep() reverses the order of the bytes from the
* machine storage. This makes them more readily recognizable
* as [ SIGN ][ EXPONENT ][ MASTISSA ] for the floating-point
* types and orders the bytes in order of decreasing signifi-
* cance for the integers.
* IMCLUDE: "num_sys.h"
* CALLS:
* 

```
```

                    CALLED BY:
                    PARAMETERS: The function needs to know what type of number you are
                    sending in, so use the types given in matrix.h. The
                    function understands TYPE_CEAR, TYPE_DOUBLE, TYPE_FLOAT,
                    and TYPE_INT). It also needs a pointer to the_number.
                    EXAMPLE: float f;
                        binrep(TYPE_FLOAT, &f);
    */
\#ifde1 PROTOTYPE
void binrep(int number_type, void *the_number);
\#else
void binrep();
\#endif
FUNCTION DECLARATION
PURPOSE: To expand the bits of the input into an array of integers.
The array only holds zeros and ones, vith each element
representing a bit of the input number.
INCLUDE: "num_sys.h"
CALLS:
CALLED BY:
CAUTION: This function returns the bits AS THEY ARE IN THE MACHINE!
Many machines store type double, type float, and type int
so that their bytes are in an order that is the reverse of
what you might expect. Of course, the bits vithin a byte
are in the expected (msb.....lsb) order.
ParameterS: The function needs to knov vhat type of number you are
sending in, so use the types given in matrix.h. The
function recognizes TYPE_CHAR, TYPE_DOUBLE, TYPE_FLOAT, and
TYPE_INT. It also asks for a pointer to the number.
A pointer to int. The function will take care of allocation

```

101 102 103
```

                    for this pointer, and it vill fill the array with the bits
    ```
 for this pointer, and it vill fill the array with the bits
 of the number. For indexing purposes, you vill probably
 of the number. For indexing purposes, you vill probably
 need to know how big this vector is. Multiply the
 need to know how big this vector is. Multiply the
 [sizeof(type you are sending in)] by 8 (bits/byte). That's
 [sizeof(type you are sending in)] by 8 (bits/byte). That's
 hov many elements vill be in the returned vector of integer
 hov many elements vill be in the returned vector of integer
 (bits). This pointer vill be MULL if there vas an alloca-
 (bits). This pointer vill be MULL if there vas an alloca-
 tion problem.
 tion problem.
 EXAMPLE:
 EXAMPLE:
 float f; Assume that this takes 4 bytes * 8 bits
 float f; Assume that this takes 4 bytes * 8 bits
* int *v; To hold the bit vector of f (32 elements)
* int *v; To hold the bit vector of f (32 elements)
* v = binvec(TYPE_FLOAT, &f);
* v = binvec(TYPE_FLOAT, &f);
*
*
*/
*/
#ifdef PROTOTYPE
#ifdef PROTOTYPE
 int *binvec(int number_type, void *the_number);
 int *binvec(int number_type, void *the_number);
#else
#else
 int *binvec();
 int *binvec();
#endif
#endif
 FUNCTION DECLARATIOK
 FUNCTION DECLARATIOK
 * PURPOSE: To display the hexadecimal representation of a number.
 * PURPOSE: To display the hexadecimal representation of a number.
 * INCLUDE: "num_sys.h"
 * INCLUDE: "num_sys.h"
 * CALLS:
 * CALLS:
 * Called by:
 * Called by:
 * PARAMETERS: The function needs to knov that type of number you are
 * PARAMETERS: The function needs to knov that type of number you are
 * sending in, so use the types given in matrix.h. The
 * sending in, so use the types given in matrix.h. The
* function recognizes TYPE_CHAR, TYPE_DOUBLE, TYPE_FLOAT, and
* function recognizes TYPE_CHAR, TYPE_DOUBLE, TYPE_FLOAT, and
 TYPE_INT. It also needs a pointer to the number.
 TYPE_INT. It also needs a pointer to the number.
 EXAMPLE: float f;
 EXAMPLE: float f;
 printf("The hexadecimal representation of %f is: ", f);
 printf("The hexadecimal representation of %f is: ", f);
 hexrep(TYPE_FLOAT, &f);
 hexrep(TYPE_FLOAT, &f);
*
```

* 

```
```

152 */
153
154 \#ifdef PROTOTYPE
155
156 void hexrep(int number_type, void *the_number);
157
158
159
160
1 6 1
162
1 6 3
1 6 4
165
166
167
168
169
170
171 *
172
1 7 3
void ieeerep();
*
\#else
void hexrep();
\#endif
/* -------------========== FUNCTION DECLARATION ===========----------------
*

* PURPOSE: To display binary and IEEE representation of a number. This
is nearly a tutorial function! It displays a binary repre-
sentation of the number, and then breaks out the sign,
exponent, and mantissa (or significand). Some terse trans-
lation tips are also provided.
INCLUDE: "num_sys.h"
CALLS:
CALLED BY:
PARAMETERS: The function needs to know what type of number you are
sending in, so use the types given in matrix.h. This
function ONLY recognizes the floating-point types (i.e.,
TYPE_DOUBLE and TYPE_FLOAT). It also needs a pointer to
the number.
EXAMPLE: float i;
printf("The IEEE 754 representation of %f is: ", 1);
ieeerep(TYPE_FLOAT, \&f);
*/
\#ifdef PROTOTYPE
void ieeerep(int number_type, void *the_number);
\#else

```
num_sys.h

201 *endif
202
203
204 /*
EOF num_sys.h
*/
```

/* -------------========= PROGRAM INFORMATION
*

* SOURCE : ops.h
* VERSION : 1.7
* DATE : 09 September 1991
* AUTBOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
* 
* 
* ------------================= REFERENCES ===============---------------
* [1] Golub, Gene B., and Charles F. VanLoan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, 1989.
3*
4 *
*------------=============== DESCRIPTION ==============----------------
* The functions declared below perform matrix and vector operations. For
* the sake of brevity, I will often use simple (MatLab-style) notation in
* comments. For instance, x' means x transpose (i.e. a rov). Do not
* confuse the comment shorthand with what is really happening in the
* code. My goal is to get function specifications across clearly and
* succinctly without excessive concern for implementation. Here are a
* feb notes.
* 
* An operation preceded by a "." means "elementrise". For instance,
* x . * y means the elementwise vector multiplication of x by y. That is,
* the result would be some vector z like:
z'}=[x[1]*y[1], x[2]*y[2], ...., x[n]*y[n] ]
* 
* If the operation appears mithout the preceding ".", it means the vector
* operation.
* 
* 
* -------------===========
LIST OF FUNCTIONS
* cols()
* dot_product()
* matrix_product()
* max_element()
* normp()
* outer_product()
* rows()
* swap_cols()
* swap_rows()
* vec_init()
* 
* -------------================================================--------------
*/

```
```

/*
*

* PURPOSE: To return the number of columns in the matrix A.
* IMCLUDE: "ops.h"
* 

*/
\#ifdef PROTOTYPE
int cols(Double_Matrix_Type *A);
\#else
int cols(/* Double_Matrix_Type *A */);
\#endif
/* ------------======== FUNCTION DECLARATION
PURPOSE: Computes the dot product of the input vectors }x\mathrm{ and }y\mathrm{ vhich
is defined in [1] (page 4). The dot product of }x\mathrm{ and }y\mathrm{ is
x' * y.
PARAMETERS: The vectors }x\mathrm{ and y should be arrays of type double, each
having "size" elements.
INCLUDE: "ops.h"
CALLS: N/a
CALLED BY: matrix_product() [see below]
RETURNS: A double (scalar) value equal to the dot product x' * y.
EXAMPLE: The following example would conclude with answer == 10.0.
double answer;
static double x[] = { 1.0, 2.0, 3.0 },
y[] ={3.0, 2.0, 1.0};
int size = 3;
answer = dot_product(x, y, size);
*

* ------------============================================---------------
*/

```
```

102
\#ifde1 PROTOTYPE
104
105 double dot_product(double *x, double *y, int size);
106
\#%else
108
109
110

```
#ifdef PROTOTYPE
 int matrix_product(Double_Matrix_Type *A,
 Double_Matrix_Type *B,
 Double_Matrix_Type *C);
#else
 int matrix_product();
#endif
/* -------------=========== FUMCTION DECLARATION
* PURPOSE: To search the elements belor and to the right of A(k,k) for
* the element that is maximum in absolute value.
*
* IMCLUDE: <math.h> [link using -lm if necessary]
* "ops.h"
*
* CALLS: fabs()
*
* Called by:
*
* PARAMETERS: A is the matrix (structure). k is the index for a position
* on the main diagonal, A(k,k). The search vill be conducted
* for the area of the matrix that lies belov k and to its
* right:
*
*
*
*
*
*
*
* Parameters must also include s, the address of an integer
* that vill contain the ror number for the maximum element
* upon return; and t, an address of an integer to store the
* column number for the maximum element.
*
* sOTE: To search the WHOLE MATRIX, the parameter k should be (-1).
* The values of k, s, and t should be interpreted as the C
* versions of indexes (i.e. beginning vith 0).
* RETURNS: The function returns the maximum (in absolute value)
* element found in A (type double). Additionally, the index
* values for this element are placed in the variables pointed
* to by s (rov) and t (col).
```

```
2 0 1
* EXAMPLE:
202
203 * Double_Matrix_Type *A;
204
205 * double u;
206 *
207 * int k,
208 * s,
209 * t;
210
211 * u = max_element(A, k, &s, &t);
212
213
214 */
215
216 #ifdef PROTOTYPE
2 1 7
218 double max_element(Double_Matrix_Type *A, int k, int *s, int *t);
219
220 #else
2 2 1
222 double max_element();
223
224 #endif
225
226
227
228 /* -------------========== FUNCTION DECLARATION ==========---------------
229
230
231
232
233
234
235
236
CALLS: fabs()
237
238
239
240
241
PURPOSE: Computes the p-norm of the input vector x defined in [1]
* (page 53).
INCLUDE: <math.h>
* "ops.h"
*
* CALLED BY:
PARAMETERS: x is the vector. It must contain "size" elements of type
 double. The p argument is the p of p-norm.
RETURNS: A double (scalar) value equal to the p-norm of x
EXAMPLE:
*
static double }x[]={1.0,2.0,3.0}
double Euclidean_norm_of_x;
```

255
257
258
259
*0 \#else
261
262
263
264
265
266
67
268
269
2 7 0
271

```
```

    * Euclidean_norm_of_x = normp(x, 2, 3);
    ```
```

    * Euclidean_norm_of_x = normp(x, 2, 3);
    * 
* 

*/
*/
256 \#ifdef PROTOTYPE
256 \#ifdef PROTOTYPE

```
 double normp(double *x, int p, int size);
```

        double normp(double *x, int p, int size);
            double normp();
            double normp();
    \#endif
\#endif
/* -----------========== FUNCTION DECLARATION
/* -----------========== FUNCTION DECLARATION

* PURPOSE: To place the outer product of }x\mathrm{ and }y\mathrm{ in C.
* PURPOSE: To place the outer product of }x\mathrm{ and }y\mathrm{ in C.
* 
* 
* INCLUDE: "ops.h"
* INCLUDE: "ops.h"
* 
* 
* CALLS: N/A
* CALLS: N/A
* 
* 
* Called by: w/a
* Called by: w/a
* ASSUMPTION: The matrix associated vith C is already allocated to the
* ASSUMPTION: The matrix associated vith C is already allocated to the
proper size.
proper size.
* 
* 
* ParameterS: Tro vectors, x and y, of sizes x_size and y_size; and the
* ParameterS: Tro vectors, x and y, of sizes x_size and y_size; and the
* matrix associated vith C to accept the outer product.
* matrix associated vith C to accept the outer product.
* 
* 
* RETURNS: The matrix associated vith C is filled vith the proper
* RETURNS: The matrix associated vith C is filled vith the proper
* 
* 
* 
* 

*/
*/
\#ifdef PROTOTYPE
\#ifdef PROTOTYPE
void outer_product(double *x, int x_size, double *y, int y_size,
void outer_product(double *x, int x_size, double *y, int y_size,
double **C);
double **C);
\#else
\#else
void outer_product();
void outer_product();
\#endif

```
#endif
```

```
301
302
303
304
305
306
307
308
309
310
311
312 int rous(Double_Matrix_Type *A);
313
#endif
```

/* -------------========== FUNCTION DECLARATION
*

* PURPOSE: To swap rows p and q in the matrix contained within A.
* 
* INCLUDE: "ops.h"
* CallS: M/a
* 
* CALLED BY:
* 
* PARAMETERS: A is the structure holding the matrix. The integers }P\mathrm{ and
* q are the rom numbers to be smapped. Indexes are numbered
according to the C convention (beginning at zero).
* RETURNS: Upon return, the rows have been smapped in A.
* 

*/
\#ifdef PROTOTYPE
void swap_rows(Double_Matrix_Type *A, int p, int q);
\#else
void swap_rows();
\#endif
/*-------------========== FUNCTION DECLARATION

* PURPOSE: To initialize the vector v of n integers mith the values
* 1, 2, 3, ..., n.
* 
* IMCLUDE: "ops.h"
* CallS:
* 
* Called BY:
* \triangleSSUMPTION: The vector, v, has already been successfully allocated as
an array of n integers.
* 
* PARAMETERS: The vector, v, to be initialized; and its size, n.
* 
* RETURNS: The vector's elements are set to the nem values and these
* values are in v[] upon return.

```
ops.h
```

401 *
402 * -------------==================================================---------------
403 */
4 0 4
4 0 5
406 *ifdef PROTOTYPE
4 0 7
408
4 0 9
410 *else
4 1 1
4 1 2
4 1 3
414 \#endif
4 1 5
4 1 6
417/*------------=============== EOF ops.h ================----------------*/

```
```

/* ------------========= PROGRAM INFORMATION
*
* SOURCE : timing.h
* VERSION : 1.2
* DATE : 09 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School
*

* ------------============= REFEREMCES ==============---------------
* 
* References :
* 
* [1] Inmos. The Transputer Databook, Second Edition, 1989.
* [2] Intel. iPSC/2 Programmer's Reference Manual.
* 
* 
* ------------============= DESCRIPTION =============---------------
* 
* This file contains definitions of manifest constants, type definitions,
* and function declarations for time-related tasks on the Intel iPSC/2 or
* a network of Inmos transputers.
* 
* 
* ------------========== LIST OF FUNCTIOUS ============---------------
* 
* clock()
* delay()
* 

*/
*/
/* ------------==========
mamifest COMSTa\&TS*/
\#ifdef TRANSPUTER
\#define LO PERIOD
64.0e-6 /* period of lop priority clock */
*define HI_PERIOD 1.0e-6 /* period of high priority clock */
\#define LO_FREQ 15625.0 /* frequency of lor priority clock */
\#define EI_FREQ 1.0e6 /* frequency of high priority clock */
\#else /* iPSC/2 */
\#define M_PERIOD 1.0e-3 /* period of Intel's mclock() */
\#define M_FREQ 1.0e-3 /* frequency for Intel's mclock() */
\#endif

```
```

*ifdef PROTOTYPE

```
ticks clock(void);
*else
 ticks clock(/* void */);
*endif
/*--ー-ー-ー-ー-ーーニニニニ===== FUMCTION DECLARATION
PURPOSE: To force a delay of at least a given amount (in seconds) in
program execution.
IHCLUDE: <conc.h> (Logical Systems C, version 89.1)
"timing. \({ }^{\prime \prime}\) "
CALLS: ProcGetPriority () (Logical Systems C, version 89.1)
Time() (Logical Systems C, version 89.1)
mclock () (Intel iPSC/2 C)
* CALLED BY:
*
* PARAMETERS: The (float) argument tells the function the minimum time
 (in seconds) to delay.
EXAMPLE: delay(1.25);
*
*/
\#ifdef PROTOTYPE
 void delay(float seconds);
 *else
 void delay (/ \# float seconds \(\# /\));
*endif
146
147

\section*{E. GAUSS FACTORIZATION CODE}

The Gauss factorization code appears on the pages that follow. First, the code for partial pivoting is given. Since the complete pivoting case was very similar, most of it has been omitted to save space. The pivot election function, however, is shown in a fragment of gfpenode.c, the node code for GF with Pivoting (Complete).
```


# ------------------------------------------------------------------------------

* 


# PURPOSE : Makefile for Hypercube Gauss Factorization (GF) Program

# AUTHOR : Jonathan E. Hartman, U. S. Maval Postgraduate School

# DATE : 26 August 1991

# 

# ----------------------------------------------------------------------------

ROOTCODE=gfpphost
MODECODE=gfppnode
HEADER=g1
MIF_FILE=gfpp
OPTIONS AND DEFIHITIONS

# iPSC/2 Section (MDIR == MatLib directory)

MDIR=/usr/hartman/matlib/

# Transputer Section

# 

# The folloving section establishes options and definitions, starting

# With PP, the Logical Systems C Preprocessor. The '-dX' option (with no

# macro_expression) is like '\#define X 1'. Mext the compilation options

# for Logical Systems' TCX Transputer C Compiler are given. The '-c'

# means compress the output file. The options beginning vith '-p' tell

# TCX to generate code for the appropriate processor:

# 

# -p2 T212 or T222

# -p25 T225

# -p4 T414

# -p45 T400 or T425

# -p8 T800

# -p85 T801 or T805

PPOPT4=-dPROTOTYPE -dTRANSPUTER -dT414
PPOPT8=-dPROTOTYPE -dTRANSPUTER -dT800
TCXOPT2=-cp2

```
37
38
39
40
41
42
43
44
45
46
47
```

TCXOPT4=-cp4
TCXOPT8=-cp8
TASMOPT=-ct
T2LIB=t2lib.tll
T4LIB=matlib4.tll t41ib.tll
T8LIB=matlib8.tll t8lib.tll
RENTRY=_main
MENTRY=_ns_main

# ------------------------- DEFAULT ===> MAKE ALL

# Comment out one or the other....

    all: ipsc
    run: irun
    clean: iclean
    all: transputer
run: trun
clean: tclean
5 \#------------------------------- ROOT CODE

# 

# iPSC/2 Section

ipsc: \$(ROOTCODE) \$(NODECODE)
\$(ROOTCODE): \$(ROOTCODE).o
cc \$(ROOTCODE).o \$(MDIR)allocate.o \$(MDIR)clargs.o \$(MDIR)commhost.o \$(MDIR)generate.o
(MDIR)epsilon.o \$(MDIR)io.o \$(MDIR)mathx.o \$(MDIR)ops.o \$(MDIR)timing.o -lm -host
\$(ROOTCODE)
\$(ROOTCODE).o: \$(ROOTCODE).c \$(HEADER).h

# Transputer Section

transputer: \$(ROOTCODE).tld \$(NODECODE).tld
\$(ROOTCODE).tld: \$(ROOTCODE).trl
echo FLAG c > \$(ROOTCODE).Ink
echo LIST \$(ROOTCODE).map >> \$(ROOTCODE).1nk
echo INPUT \$(ROOTCODE).trl >> \$(ROOTCODE).lnk
echo EMTRY \$(RENTRY) >> \$(ROOTCODE).lnk
echo LIBRARY \$(T4LIB) >> \$(ROOTCODE).lnk
tlnk \$(ROOTCODE).lnk

```
59
60
71
72
73
74
```

gfpp.mak

```
```

\$(ROOTCODE).trl: \$(ROOTCODE).tal
tasm \$(ROOTCODE).tal \$(TASMOPT)
\$(ROOTCODE).tal: \$(ROOTCODE).pp
tcx \$(ROOTCODE).pp \$(TCXOPT4)
\$(ROOTCODE).pp: \$(ROOTCODE).c
pp \$(ROOTCODE).c \$(PPOPT4)
112 * ----------------------------- IODE CODE
113 \#
115 \# iPSC/2 Section
117 \$(HODECODE): \$(NODECODE).o
118 cc \$(MODECODE).o \$(MDIR)allocate.o \$(MDIR)commnode.o \$(MDIR)generate.o \$(MDIR)io.o
\$(MDIR)mathx.o \$(MDIR)ops.o \$(MDIR)timing.o -node -lm -o \$(NODECODE)

```
107
108
109
110
111
114
116
119
120 (HODECODE). 0 : \$(NODECODE).c \$(HEADER).h
121
122
123
124
125

8 echo IMPUT \$(HODECODE).trl >> (HODECODE).1nk
echo EMTRY ((EENTRY) >> \$(rODECODE).1nk
echo LIBRARY \$(T8LIB) >> \$(MODECODE).lnk
tlnk \$(MODECODE).lnk
\$(HODECODE).trl: \$(HODECODE).tal
tasm \$(HODECODE).tal \$(TASMOPT)
\$(HODECODE).tal: \$(MODECODE).pp
tcx \$(MODECODE).pp \$(TCXOPT8)
\$(MODECODE).pp: \$(YODECODE).c
Pp \$(MODECODE).C \$(PPOPT8)
141
146 \# ------------------------------ EXECUTION
\# Transputer Section
\$(HODECODE).tld: \$(NODECODE).trl
echo FLAG \(c\) > (NODECODE).1nk
132
133
134
135
136
137
138
139
```

148
149 irun: \$(ROOTCODE) \$(NODECODE)
150 \$(ROOTCODE)
1 5 1
152 trun: \$(ROOTCODE).tld \$(NODECODE).tld \$(NIF_FILE).nif
153 echo makecube first
154 ld-net \$(MIF_FILE) -t -v
155
156
157 ------------------------------ CLEAN UP
158
1 5 9
160 iclean:
161 rn \$(MODECODE).o
162 rm \$(ROOTCODE).o
163 rm \$(MODECODE)
164 rm \$(ROOTCODE)
1 6 5
166 tclean:
167 del \$(ROOTCODE).lnk
168 del \$(MODECODE).lnk
169 del \$(ROOTCODE).map
170 del \$(IODECODE).map
171 del \$(ROOTCODE).tal
172 del \$(NODECODE).tal
173 del \$(ROOTCODE).pp
174 del \$(MODECODE).pp
175 del \$(ROOTCODE).trl
176 del \$(MODECODE).trl
177
178
179
EOF gipp.mak

```
```

HETWORK INFORMATION FILE
SOURCE : glpp.nif
VERSION : 1.0
DATE : 14 September 1991
AUTHOR : Jonathan E. Hartman, U. S. Haval Postgraduate School
USAGE : ld-net gfpp
REFEREYCES
[1] Inmos. IMS BO12 User Guide and Reference Manual. Inmos Limited,
1988, Fig. 26, p. 28.
DESCRIPTION
Metwork Information File (HIF) used by Logical Systems C (version 89.1)
LD-NET Netvork Loader. This file prescribes the loading action to take
place when the 'ld-net' command is given as in USAGE above.

```

\section*{GARDWARE PREREQUISITES}
```

MOTE: There are three node numbering systems: the one created by Inmos' CBECK program, the Gray code labeling, and the NIF labeling. Since all three vill be used on occasion, I vill prefix node numbers vith a $C, G$, or $N$ to identify which system $I$ am using!
The IMS B004 and IMS B012 must be configured correctly. The B004's T414 has link 0 connected to the host PC via a serial-to-parallel converter, link 1 connected to the IMS B012 PipeHead, link 2 connected to the T212 [communications manager (not used here)] on the B012, and link 3 connected to the IMS B012 PipeTail (see [1]). By the way, link 2 from the B004 goes to the the ConfigUp slot just under the Pipellead slot (this connects it to the T212). Finally, the B004's Doun link must run to the B012's Up link.
SETTING TEE COO4 CROSSBAR SUITCHES
Once you have connected the hardware in the fashion mentioned above, the system is ready to be transformed to a hypercube. Three codes by Mike Esposito are used here: t2.nif, root.tld, and svitch.tld. I have a batch file called 'makecube.bat' that performs a 'ld-net t2' also.
Mike's code passes instructions to the T212 on the B012; which, inturn tells the COO4's how to connect their suitches. After the code has executed, the (very specific) configuration that ve are looking for will exist. Specifically, the following (output from CBECK $/ R$ ) is what

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline check & 1.21 & & & & & & \\
\hline \# & Part rate & Mb Bt & [& Linko & Link1 & Link2 & Link3] \\
\hline 0 & T414b-15 & 0.090 & [& HOST & 1:1 & 2:1 & 3:2] \\
\hline 1 & T800c-20 & 0.801 & [& 4:3 & 0:1 & 5:1 & 6:0] \\
\hline 2 & T2 -17 & 0.491 & [& C004 & 0:2 & & C004] \\
\hline 3 & T800c-20 & 0.802 & [& 7:3 & 8:2 & 0:3 & 9:0] \\
\hline 4 & T800c-20 0 & 0.763 & [& 9:3 & 10:2 & 11:1 & 1:0] \\
\hline 5 & T800d-20 & 0.901 & [& 8:3 & 1:2 & 10:1 & 12:0] \\
\hline 6 & T800d-20 & 0.760 & [& 1:3 & 12:2 & 7:1 & 11:0] \\
\hline 7 & T800d-20 & 0.763 & [& 13:3 & 6:2 & 14:1 & 3:0] \\
\hline 8 & T800d-20 & 0.902 & [& 14:3 & 15:2 & 3:1 & 5:0] \\
\hline 9 & T800c-20 & 0.770 & [& 3:3 & 13:2 & 15:1 & 4:0] \\
\hline 10 & T800d-20 & 0.902 & [& 16:3 & 5:2 & 4:1 & 15:0] \\
\hline 11 & T800d-20 & 0.901 & [& 6:3 & 4:2 & 16:1 & 13:0] \\
\hline 12 & T800d-20 & 0.770 & [& 5:3 & 16:2 & 6:1 & 14:0] \\
\hline 13 & T800d-20 & 0.773 & [& 11:3 & 17:2 & 9:1 & 7:0] \\
\hline 14 & T800c-20 & 0.901 & [& 12:3 & 7:2 & 17:1 & 8:0] \\
\hline 15 & T800c-20 & 0.902 & [& 10:3 & 9:2 & 8:1 & 17:0] \\
\hline 16 & T800c-20 & 0.763 & [& 17:3 & 11:2 & 12:1 & 10:0] \\
\hline 17 & T800d-20 & 0.882 & [& 15:3 & 14:2 & 13:1 & 16:0] \\
\hline
\end{tabular}

Here node CO is the root transputer (on the IMS BOO4) and node C2 is the T212 (on the IMS B012). The other sixteen nodes are the T800's that are used for the vork. A logical interconnection topology is described belop.

\section*{TOPOLOGY}

The physical interconnection scheme described above is an actual 4-cube with one exception. The root node (CO) is situated BETVEEN nodes C1 and C3 (which would be connected directly in the usual 4-cube). This gives us too 3-cubes: one bhose node labeling is GOxxx and the other, ahose node labeling is G1xxx (ahere the xxx represents all permutations of 3-bits). These are the usual three cubes, and they aill exist if \(\begin{aligned} & \text { e }\end{aligned}\) define the node numbering/labeling correctly.

\section*{STRATEGY}

The node labeling established by the \(\mathbb{I} I F\) is available via the variable _node_number (see <conc.h>) in source code. Therefore, ve vould like a smart labeling scheme in the HIF file so that programming is easier. This, of course, is subject to the restriction that MIF labels begin with \(\mathbb{1}\) and so on.

One such method pould be to define a MIF labeling so that the Gray code label for a node vould be (_node_number - 2). In fact, this is

This header file is shared by several programs (listed above). Each of these codes has something to do with a parallel implementation of Gauss * Factorization (GF). Several pivoting strategies are supported. Files * like gfpc*.* represent a COMPLETE pivoting strategy, and the files like * gfpp*.* give the corresponding code for the PARTIAL pivoting scheme.
* The basic algorithm is from [1]. Parallelism is sought by distributing * the columns of \(A\) across the nodes of a multiprocessor system (using the
* hypercube interconnection topology). The program is designed for the
* Intel iPSC/2 or a netpork of Inmos transputers.
* The algorithm factors \(Q\) 'AP \(=L U\) 日ith \(P\) and \(Q\) permutation matrices, \(L\)
* unit lover trapezoidal (\(r\) columns) and \(U\) upper trapezoidal \(\begin{aligned} & \text { ith nonzero }\end{aligned}\)
* diagonal elements (r rous). The program is designed for a general
* matrix, A. It does not assume A square or sparse. There is no effort
* to optimize for this, or any other, special structure. There is one
* caveat: I designed the code to gather data for square matrices of full
* rank. Therefore, I have tested the square case of random matrices very
* carefully. While the code should \(\begin{gathered}\text { ork for any general matrix, it has }\end{gathered}\)
* not been carefully tested in other cases. Additionally, since I sought
* timing data for matrices of full rank, I have MOT addressed the problem
* of gathering columns (back to the host) to the right of the final pivot
* for rank-deficient matrices. This mould not be a difficult task, but I
* did not make this effort since it has no bearing on my goal.
* In the partial pivoting code, the search for pivots is carried out only
* in the pivot column, so \(P\) is the identity (i.e., there are no column
* interchanges). Many of the remaining comments pertain to the complete
* pivoting case, since it is the most challenging. The changes for the * partial pivoting case should be evident in most cases. At times, when * the changes are not necessarily evident, clarifying remarks address the
* partial pivoting scheme. This header file contains the majority of the
* background and algorithm information, but if you're after a careful
* study of the differences, compare the source codes. The algorithm below
* gives a road map through the code.
*
+
*/
* 1.) Preliminaries. Consider A (m \(x\) n), a matrix of real numbers. The
* permutation vectors, \(p\) and \(q\), characterize column and row permutations
* (respectively). The scalar, (g/a), is the growth factor. The integer,
* r, is a fairly reasonable determination of the 'numerical rank' of A.
* The C language convention is followed, numbering rows and columns from
* zero; and storing dynamic, two-dimensional arrays (matrices) in row-
* major-order. The 'pivot' vill be that element located at \(A(k, k)\). The
* area (in \(A\)) below and to the right of the pivot [all \(A(i, j)\) where \(i>k\)
* and \(j>k\)] is called the 'Gauss transform area'.
*
* 2.) Communications and Coordination. Let \(\mathbf{y}\) be the number of processors
* (\(\quad\) orkers) in the hypercube. These nodes are labeled vith a Gray code
* \{ O .. (N - 1) \}. The root (host) node distributes the columns of \(A\) to
* the nodes. This is done cyclically, using the \(C\) modulus operator (\%).
* That is, column \(j\) will be sent to processor (j mod \(\mathbf{H}\)). Once the nodes
* have their columns, they begin work. Communication (for the complete
* pivoting case) involves an election process for the next pivot, where
* each of the nodes finds its best candidate and then the election finds
* the best candidate in the global picture. This is done in \(\lg (\mathbb{M})\) steps
* using the cubecast_from() function.
*
* The partial pivoting case does not require the election process that
* complete pivoting needs, but both methods look similar (in terms of
* commication) after the elections are complete. The node holding the
* pivot column must perform the pivot column arithmetic and distribute
* the resulting pivot column (also in \(\lg (\mathrm{H})\) steps) to the other nodes.
* Communications functions are not explained much in this code, but
* details can be found in the files comm.h come.c.
*
* 3.) Pivoting Strategy. The complete pivoting strategy's election
* process (at each stage), determines the element in (the entire Gauss
* transform area of) A that is largest in absolute value. This element
* wins the election and is 'moved' to \(A(k, k)\) for the upcoming stage. It
* isn't really moved...but \(p\) and \(q\) are updated so that ve can keep track
* of permutations. During the search for the new pivot, candidates are
denoted \(A(s, t)=u\) ．The largest of the candidates is installed as the next pivot．There seems to be too much overhead associated vith this fancy indexing off of \(p[]\) and \(q[]\) ．For the partial pivoting code，I chose to ACTUALIY SWAP rows（if necessary）at each stage．This makes the＇Pp＇code a bit easier to read．

4．）Stopping．The GF process is repeated until one of tro criteria is satisfied．First，of course，■e may run out of matrix．Secondly，ve
＊may find a pivot \(\quad\) hose absolute value is less than our tolerance（tol）．
＊In the latter case，\(\quad\) e have a rank－deficient A．Currently，the codes
＊recognize rank－deficiency and bail out of the iteration loop；but they
＊do not gather（to the host）all of the remaining columns to the right
of the last pivot．This is discussed above． searches the（proper part of the）pivot column for the next pivot and then informs the other processors．

1．）Status．Every node knors the position and value of the next pivot， namely \(u=A(s, t)\) ；and vhere it should be installed，\(A(k, k)\) ．The grovth rate is adjusted：\(g=\max [g, a b s(u)]\) ．If（ \(u<t o l)\) ，then \(A\) is rank－ deficient and we exit the loop（using the C＇break＇statement）．

2．）Permutations．We account for the interchange of rows \(s\) and \(k\) and columns \(t\) and \(k\) by spapping the elements of \(p \square\) that are indexed by \(k\) and \(t\) and seapping the elements in \(q \square\) indexed by \(k\) and \(s\) ．This （effectively）establishes the nev pivot at \(\mathbb{A}(k, k)\) ．The column permu－ tation vector has no significance in the partial pivoting case since it vould never be changed．The matrix，\(P\) ，in this case，is simply the identity．

3．）Adjust the Gauss Transform Area．
（a）In the（single）node that holds the ner pivot＇s column（k）， divide every element belor the pivot by the pivot value．Broadcast this column to every other node．Mode 0 updates the manager，who uses this information to append to his copy of the resulting （factored）A．
（b）How every \(\quad\) orker has the updated column \(k\) ．At every node，do the following：For every element \(A(i, j)\)［ Where \(i>k\) and \(j>k\) ］
```

let $A(i, j)=A(i, j)-(A(i, k) \neq A(k, j))$.

```
4.) Pivot Search. In the Gauss transform area, \(G\), suarch for the
element that is largest in absolute value. Its position is \(A(s, t)\) and
* its value is u. The candidates are chosen at the local (processor)
* level, then an election is held at the global level to determine the
* best candidate in the same manner that vas described in step 0.
* Increment k. Repeat the process (go back to step 1). The obvious
* exceptions apply to the partial pivoting case.
\(\neq\)
\#

\#
* Currently the code does not give full support for rank-deficiency. It
* DOES break out of the loop, but everything to the right of the final
* pivot column will be garbage. It mould be relatively easy to add the
* necessary post-iteration rank-deficiency check and coalesce each of the
* remaining columns back to the manager, but this code was created to
* test the full-rank cases and take performance data.
*
* Secondly, there is the issue of whether it is better for the manager to
* receive each pivot column as it becomes available, or if all colums
* should be sent in at the end. I'm not yet sure mhich method is better,
* but the current code keeps the root node up-to-date at each stage. This
* is probably the best solution to the problem above and would probably
* enhance performance during the iterations! It REALLY SHOULD BE TESTED!
There are many other questions that pertain to optimization that remain
unanspered (especially in the complete pivoting case).
*
/*
ALGORITHM: COMCLUSIOA
 * 1.) Rank. Set \(r\), the rank of A, equal to the number of iterations that
 were executed. This is automatic in the manager (host) code since
 * the integer, \(r\), is used as the loop index. The \(\quad\) orker nodes use \(k\) for
 * a loop index variable.
 * 2.) Interchanges. Rov and column interchanges are not actually done in
 * the complete pivoting code. Instead, me maintain permutation vectors,
 * \(p[]\) and \(q[]\). You may note that while both vectors are used heavily
 * during the GF process \(q[]\), in particular, comes in handy at the end to
 * set \(A\) in order. The partial pivoting code performs the actuar inter-
 * changes of rovs. At first, we would be inclined to believe that the
```

251
*endif
253
254
255
*
*/
\#define START_TIME 1 /* t(0) ==> starting time for the node */
\#define SETUP 2 /* from t(O) until starting to receive cols */
\#define DISTRIB_COLS 3 /* time to distribute columns */
\#define FIRST_PIVOT 4 /* from receipt of last col to start iter */
/* The next two only apply to nodes zero and eight */
\#define PCOLS_TO_HOST 5 /* time spent passing pivot cols to host */
\#define PIVOTS_TO_HOST 6 /* time spent passing pivots to host */
/* The next five kind of represent the big picture */
\#define PIVOT_ELECTION 7 /* time spent on pivot elections */
\#define UPDATING_PQ \& /* time spent updating permutations p and q */
\#define PCOL_ARITEMETIC 9 /* time spent on pivot column arithmetic */
\#define PCOL_DISTRIB 10 /* time spent distributing pivot columns */
\#define UPDATIMG_G 11 /* time spent updating the Gauss transform */
/* The next four are times from vithin update_G() */
\#define PRLTIME 12 /* pivot rov location time */
\#define LCTIME 13 /* time to determine if a column is local */
\#define G_ARITHMETIC 14 /* time spent on arithmetic vithin G */
\#define LOOPTIME 15 /* time for both for() loops in update_G() */
/* The last tro are back at the big picture level again */
\#define ITERATION 16 /* time checked before and after iteration */
\#define STOP 17 /* the last time sampled by the node */

```
*define AFT
*define VIDTH
*
*/
typedef struct \{
 int id;
 double u;
 int \(s\),
 \(t\);
\} Pivot_Type;
```

/* --------------------------------------------------------------------------------
Section 4: General
*
*/
\#define UIDTH
6 /* number of characters (including decimal) */

```

* Section 5: A special flag used for the id field of a pivot. When it
* appears, it indicates that the sending node's part of \(A\) has
* no elements as big as the tolerance, tol; and therefore this node's
* candidate for pivot should not be considered.
\#define RANK_DEFICIENT -1
/*-----------=========== TYPE DEFINITIONS
===========------------ */

```

/* ------------========== PROGRAM INFORMATIOM
*

* SOURCE : gfpphost.c
* VERSION : 2.0
* DATE : 21 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Haval Postgraduate School
* 
* ------------=============== DESCRIPTIOM ==============---------------
* Gauss Factorization (GF) vith Partial Pivoting: Parallel Version.
* This is the manager portion of the code. See [gf.h] for details.
* 

*/
\#include <stdio.h>
\#include <string.h>
\#ifdef TRANSPUTER
\#include <conc.h>
\#include <stdlib.h> /* addfree(), _heapend */
\#include <matrix.h>
\#include <macros.h>
\#include <allocate.h>
\#include <clargs.h>
\#include <comm.h>
\#include <epsilon.h>
\#include <generate.h>
\#include <io.h>
\#include <ops.h>
\#include <timing.h>
\#else /* iPSC/2 */
\#include "/usr/hartman/matlib/matrix.h"
\#include "/usr/hartman/matlib/macros.h"
\#include "/usr/hartman/matlib/allocate.h"
\#include "/usr/hartman/matlib/clargs.h"
\#include "/usr/hartman/matlib/comm.h"
\#include "/usr/hartman/matlib/epsilon.h"
\#include "/usr/hartman/matlib/generate.h"
\#include "/usr/hartman/matlib/io.h"
\#include "/usr/hartman/matlib/ops.h"
\#include "/usr/hartman/matlib/timing.h"
\#endif
\#include "gf.h"

```

51
52
(* ------------=========== MANIFEST CONSTANTS
* The folloving manifest constants are used to determine the size of the
* option list, optv[]; indexing associated pith valid command line
* arguments; and selection constants for the user's choice of matrix type
* [used in generate()].
*/
define HUMBER_OF_ARGS 3 / -d -t -v */
define DIM \(0 \quad\) / index into optv[] */
\#define TIMING 1 /* " "
\#deíine VERBOSE 2 /* " " 1
\#define SELECT_QUIT 0 /* menu / matrix selection */
\#define SELECT_IDENTITY 1
\#define SELECT_HILBERT 2
\#define SELECT_RANDOM 3
\#define SELECT_WILKINSON 4

static char version[] = "Parallel GF 日ith Partial Pivoting, Version 2.0";
\#ifdef TRANSPUTER
Channel *ic[(CUBESIZE + 1)],
 *oc[(CUBESIZE + 1)];
\#else /* iPSC/2 */
static char * cubename;
static char \(*\) nodecode \(=\) "gfppnode";
endif / TRAMSPUTER */
static Arg_Struct *optv[\&UMBER_OF_ARGS];
```

/* End define_valid_args() ------------------------------------------------------------*/

```
/* ------------============ FUNCTION DEFIMITIOM
 * The structure is defined more carefully in clargs.h, but the basic idea
* is that ve have an array of pointers to type Arg_Struct...in this case,
* there are MUMBER_OF_ARGS valid arguments and the next fex steps take
* care of allocation and definition of them. The -d argument allous the
* user to enter the desired dimension of the hypercube, -t sets timing on
* and -v is used to set verbose on.
*/
void define_valid_args() \{
 static int interpret[] = \{ LONG \};
 install_complex_arg(DIM, optv, "-d", interpret, 1);
 install_simple_arg(IIMIMG, optv, "-t");
 install_simple_arg(VERBOSE, optv, "-v");
\}
/*------------============ FUNCTION DEFINITION
 * A simple function to display the results....
 */
\#ifdef PROTOTYPE
 void display_timing_data(Double_Matrix_Type *A,
 int dim,
 double \(a\),
 double eps,
 double \(g\),
 double tol,
 int \(r\),
 double **t)
\#else
 void display_timing_data(A, dim, a, eps, g, tol, r, t)
gfpphost.c
```

                    Double_Matrix_Type *A;
            int dim;
            double a,
                        eps,
                    g
                            tol;
            int r;
            double **t;
    *endif
{
int aft,
cubesize = por2(dim),
i,
m = A->rovs,
n = A->cols,
vidth;
\#ifdef TRANSPUTER /* is measured in 64 microsecond ticks ==> 4-5 places */
aft = 5;
\nablaidth = 15;
\#else /* iPSC/2 is measured in milliseconds ==> three places*/
aft = 3;
vidth = 13;
\#endif
printf("--------------========== TIMING DATA ==========------"");
printf("--------\n\n");
printf(" Hypercube of order %d ", dim);
(dim == 0) ? (printf("(1 processor)\n\n")) :
(printf("(%d processors)\n\n", cubesize));
printf("Problem size ==> size(A) = (%dx %d).\n", m, n);
printf("Machine precision: eps = %e\n", eps);
printf("Tolerance: tol = %e\n", tol);
printf("Grovth factor: g/a = %e\n", (g/a));
printf("Rank: rank(A) =%3d\n", r );
printf("Units for timing data: = seconds\n");
for (i = 0; i < cubesize; i++) {
printf("\n\ode %2d Data ------------------------------------", i);
printf("------------------------------------n\n\n');

```
```

            printf("Setup and initialization: ");
            printf("%*.*lf", vidth, aft, t[i][SETUP]);
            printf("\nInitial column distribution:
                                    '');
                    printf("%*.*lf", घidth, aft, t[i][DISTRIB_COLS]);
                    if (i == 0) {
            printf("\nTransmission of pivot columns to the host: ");
            printf("%*.*lf", 口idth, aft, t[i][PCOLS_TO_HOST]);
                    printf("\nTransmission of pivots to the host: ");
                    printf("%*.*lf", 『idth, aft, t[i][PIVOTS_TO_HOST]);
                    }
                    printf("\nPerformance of pivot column arithmetic: ");
                    printf("%*.*lf", vidth, aft, t[i][PCOL_ARITHMETIC]);
                    printf("\nDistribution of pivot columns:
                            ");
    printf("%*.*lf", घidth, aft, t[i][PCOL_DISTRIB]);
printf("\nPerformance of updates and arithmetic in G: ");
printf("%*.*lf", ロidth, aft, t[i][UPDATI\&G_G]);
printf("\nUpdate_G(): loop time including arithmetic: ");
printf("%*.*lf", घidth, aft, t[i][LOOPTIME]);
printf("\n\nTime for all vork inside main iteration loop: ");
printf("%*.*lf", vidth, aft, t[i][ITERATION]);
printf("\nTotal time from start to stop: ");
printf('%%**lf\n\n", width, aft, (t[i][STOP]-t[i][START_TIME]));
}
}
/* End display_timing_data() ------------------------------------------------------
/* ------------============ FUNCTION DEFIMITION ============---------------

* This function distributes the columns of A to the nodes of the hyper-
* cube. The loop variable, j, designates each column of A in turn. The
* column buffer, cbuf[], copies from A the column to be transmitted.
* After cbuf[] is filled, [i = (j mod cubesize)] means that node i vill
get column j and the modulus operation seems to be a reasonable and
* efficient scheme of distribution. Finally, the call to send() ships
* the column out to the appropriate node.
* 

*/
\#ifdef PROTOTYPE

```
```

    void distribute_columns(Double_Matrix_Type *A, int dim, double *cbuf)
    55 void distribute_columns(A, dim, cbuf)
257 Double_Matrix_Type *A
261 \#endif
printf(".");
int i,
j,
pos = 42, /* position of print head */
rm = LINE_LENGTE - 10; /* right margin (see matrix.h) */
long cubesize = por2(dim),
sizeof_col = (long) (A->rows * sizeof(double));
printf("Distributing the columns of A to the nodes");
for (j = 0; j < A->cols; j++) {
for (i = 0; i < A->rows; i++) { cbuf[i] = A->matrix[i][j]; }
i = j % cubesize; /* column --> node i */
\#ifdef TRANSPUTER /* node O has to sort 'em out */
if (i < 8) {
send(0, (char *) cbuf, sizeof_col, cubesize);
}
else {
send(8, (char *) cbuf, sizeof_col, cubesize);
}
\#else /* iPSC/2 */
send(i, (char*) cbuf, sizeof_col, COL_TYPE);
\#endif /* TRARSPUTER */

```
252
53
254
258
259
260
262 \{
263
 if (post+ > rm) \{
 pos \(=0\);
 printf("\n");
 \}
 \}
 printf("\nColumn distribution complete. \(\backslash n \backslash n ")\);*/
/*------------=========== FUNCTION DEFINITION
* This function prompts the user for matrix size and type, then generates
* the matrix with a call to a function from generate.c.
*
\#ifdef PROTOTYPE
 Double_Matrix_Type *generate(int *m, int *n)
\#else
 Double_Matrix_Type *generate(m, n)
 int *m,
\#endif
\{
Double_Matrix_Type *A;
int matrix_type,
 valid = FALSE;
printf("Please enter the number of rows in \(A:\) ");
scanf("\%d", m);
f1lush(stdin);
 printf("\n......and the number of columns in \(A:\) ");
 scanf(\(1 \%\) d", \(n\));
 fflush(stdin);
```

printf("\n\nSelect from the folloving list of matrices:");
while (!valid) {
printf("\n\n");
printf(" %d.) QUIT \n", SELECT_QUIT );
printf(" %d.) Identity \n", SELECT_IDEMTITY );
printf(" %d.) Hilbert \n", SELECT_HILBERT );
printf(" %d.) Random \n", SELECT_RAMDOM );
printf(" %d.) Uilkinson \n", SELECT_WILKIASON);
printf("\n>");
scanf("%d", kmatrix_type);
fflush(stdin);
8vitch(matrix_type) {
case SELECT_IDENTITY
case SELECT_HILBERT
case SELECT_RASDOM :
case SELECT_WILKINSON : valid = TRUE; break;
case SELECT_QUIT : exit(EXIT_SUCCESS);
}
} /* end while() */
suitch(matrix_type) {
case SELECT_IDENTITY:
printf("\n\nGenerating A = identity(%d, %d).\n\n", *m, *n);
A = identity(*m, *n);
break;
case SELECT_HILBERT:
printf("\n\nGenerating A = hilbert(%d, %d).\n\n", *m, *n);
A = hilbert(*m,*n);
break;
case SELECT_RANDOM:
printf("\n\nGenerating A = mxrand(%d, %d).\n\n", *m, *n);
A = mxrand(*m, *n);
break;

```
gfpphost．c
```

                case SELECT_WILKIMSON:
                    printf("\n\nGenerating A = ⿴囗⿱一一\\Minson(%d, %d).\n\n", *m, *n);
                    A = milkinson(*m, *n);
                    break;
    }
    if (!A) {
        printf("generate(): Allocation failure for the matrix A.\n");
        exit(EXIT_FAILURE);
    }
        return(A);
    }
/* End generate() -----------------------------------------------------------*/
4 4 1 ~ i n t ~ c u b e s i z e ;
445 double **dt; /* (double) version of t[] [] */
4 4 7 ~ i n t ~ i ,
450 long tlen
/* length of one node's data */

```
420
421
422
423
424
425
426
427
442
443
444 \{
446
448
449
```

ticks **t; /* raw timing data from nodes */
/*
* Perform allocation for the timing dt t[][]. The tro-dimensional
* array is indexed by node number for the rows and by event for the
* columns. For instance, t[i][j] means the time required for event
* j at node i. Actually, there is an extra ron reserved at the end
* Of t[][] for totals: t[cubesize][j] gives the total time for event
* j across all nodes.
*/
if (!(dt = (double **) malloc((cubesize+1) * sizeof(double*)))){
printf("receive_timing_data(): Allocation failure for dt[] [].\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < (cubesize + 1); i++) {
if (!(dt[i] = (double *)calloc(MAX_EVENTS,sizeof(double)))){
printf("Host: Allocation failure for dt[%d].\n", i);
exit(EXIT_FAILURE);
}
}
if (!(t = (ticks **) malloc((cubesize+1) * sizeof(ticks*)))) {
printf("receive_timing_data(): Allocation failure for t[][].\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < (cubesize + 1); i++) {
if (!(t[i] = (ticks *) calloc(MAX_EVENTS, sizeof(ticks)))) {
printf("Bost: Allocation failure for t[%d].\n", i);
exit(EXIT_FAILURE);
}
}
printf("Receiving timing data from the nodes");
tlen = (long) (MAX_EVENTS * sizeof(ticks));
for (i = 0; i < cubesize; i++) {
printf(".");

```

501
```

*ifdef TRANSPUTER

```
 if (i < 8) receive(0, (char *) t[i], tlen, cubesize);
else receive(8, (char *) t[i], tlen, cubesize);
\#else /* iPSC/2 */
receive(i, (char *) t[i], tlen, (i + MODE_OFFSET));
endif / TRANSPUTER */
 \(\}\)
 printf("\n\n");
 /* Calculate totals, averages; place totals in t[cubesize] first....
 * then copy to \(d t[][]\) and record averages in dt[cubesize].
 */
 for (\(i=0 ; i<c u b e s i z e ; i++\)) \{
 for (\(\mathrm{j}=0\); j < MAX_EVENTS; \(\mathrm{j}++\)) t[cubesize][j] += t[i][j];
 \}
 /* Fill dt[][] with double values (in seconds). The conversion
 * factors are borrowed from timing.h.
 */
 for (i \(=0\); \(i<=\) cubesize; i++) \{
 \(d t[i]\left[D A T A _S O U R C E\right]=(d o u b l e) t[i]\left[D A T A _S O U R C E\right] ;\)
 for (\(j=\) START_TIME; \(j<\) MAX_EVENTS; \(j++\)) \{
\#ifdef TRANSPUTER
 \(\mathrm{dt}[\mathrm{i}][\mathrm{j}]=((\mathrm{double}) \mathrm{t}[\mathrm{i}][\mathrm{j}])\) (LO_PERIOD;
\#else
 \(d t[i][j]=((d o u b l e) t[i][j]) * M_{-} P E R I O D ;\)
\#endif
 \}
 \}
 /* Convert totals to averages in dt[cubesize]
 */
 for (\(j=\) START_TIME; \(j<\) MAX_EVENTS; \(j++\)) \{
```

    }
    ```

592 int maxdim \(=3\),
593 valid = FALSE;
596 interpret_args(argc, argv, NUMBER_OF_ARGS, optv); /* see clargs.h */
600 *dim \(=\) DIMENSION;
```

02 \#else /* iPSC/2 */
04 if (optv[DIM]->found) *dim = (int) optv[DIM]->lsa[0];
suitch (*dim) {
case 0: case 1: case 2: case 3: break;
default: 口hile (!valid) {
printf("Enter desired cube dimension (0...%d): ", maxdim);
scanf("%d", dim);
fflush(stdin);
sritch(*dim) {
case 0: case 1: case 2: case 3:
valid = TRUE;
break;
}
}
} /* end suitch() */
\#endif /* TRANSPUTER */
(optv[TIMING]->found) ? (*timing = TRUE):(*timing = FALSE);
(optv[VERBOSE]->found) ? (*verbose = TRUE) : (*verbose = FALSE);
printf("Argument resolution complete...\n\n");
printf(" Cube Dimension: %d\n", *dim);
if (*timing) printf(" Timing: ON\n");
(*verbose) ? (printf(" Verbose Mode: ON\n\n")) :
(printf("\n"));
}
/* End resolve_args() -----------------------------------------------------------*/
/*-----------============= FUNCTION DEFIMITION
*/
\#ifdef PROTOTYPE

```
gfpphost.c
```

    void show_resulting_matrices(Double_Matrix_Type *A,
                                Double_Matrix_Type *AO, int *q)
    \#else
void show_resulting_matrices(A, AO, q)
Double_Matrix_Type *A,
*AO;
int *q;
\#endif
{
Double_Matrix_Type *D,
*L,
*LU,
*P,
*QT,
*QTA,
*QTAP,
*U;
int i,
j,
m = A->rous,
n = A->cols;
printf("Gauss Factorization Complete...\n\n");
strcpy(A->name, "A (after GF operations)");
/* Allocate and form Q' and P ------------------------------------------*/
if (!(QT = matalloc(m,m))) {
printf("Allocation failure for QT.\n");
exit(EXIT_FAILURE);
}
strcpy(QT->name, "Q Transpose");
for (i = 0; i < m; i++) { QT->matrix[i][q[i]] = 1.0; }
697 if (!(P = identity(n, n))) {
printf("Allocation failure for P.\n");
exit(EXIT_FAILURE);

```
695
696
698
699
700
```

}
strcpy(P->name, "P [ Partial (column) Pivoting ==> P == Identity ]");
/* Bere, we slouly form Q'AP, keeping in mind that the A we are
* talking about is the original A....and ve have labeled that one
* AO. Therefore, ve first form QTA (Q'A) as Q' * AO. After we
* have QTA, we can multiply it (on the right) by P to get Q'AP,
* or QTAP as it is called here.
*/
if (!(QTA = matalloc(m,n))) {
printf("Allocation failure for QTA.\n");
exit(EXIT_FAILURE);
}
strcpy(QTA->name, "Q' * (original) A");
if (matrix_product(QT, AO, QTA) == FAILURE) {
printf("matrix_product(QTA) Failure.\n");
exit(EXIT_FAILURE);
}
if (!(QTAP = matalloc(m,n))) {
printf("Allocation failure for QTAP.\n");
exit(EXIT_FAILURE);
}
strcpy(OTAP->name, "Q' * A * P");
if (matrix_product(QTA, P, QTAP) == FAILURE) {
printf("matrix_product(QTAP) Failure.\n");
exit(EXIT_FAILURE);
}
/* Next, we form L and U so that we can compare Q'AP ?=? LU.
L = zeros(m, n); L->name = "L ";
U = zeros(m,n); U->name = "U ";
for (i = 0; i < A->rovs; i++) {
for (j = 0; j < A->cols; j++) {

```
799
800
```

    }
                if (i < j) { U->matrix[i][j] = A->matrix[i][j]; }
                if (i == j) {
                    L->matrix[i][j] = 1.0;
                    U->matrix[i][j] = A->matrix[i][j];
            }
                if (i > j) { L->matrix[i][j] = A->matrix[i][j]; }
        }
    }
    if (!(LU = matalloc(m,n))) {
        printf("Allocation failure for LU.\n");
        exit(EXIT_FAILURE);
    }
    strcpy(LU->name, "L * U");
    if (matrix_product(L, U, LU) == FAILURE) {
        printf("matrix_product(LU) Failure.\n");
        exit(EXIT_FAILURE);
    }
    /* Finally, we create a matrix of differences between the elements
    * found in QTAP (Q'AP) and LU. If everything proceeded according
    * to the plan, this will be a matrix of zeros.
    */
    if (!(D = matalloc(m,n))) {
        printf("Allocation failure for D.\n");
        exit(EXIT_FAILURE);
    }
    strcpy(D->name, "Q'AP - LU");
    for (i = 0; i < m; i++) {
        for (j = 0; j<n; j++) {
            D->matrix[i][j] = (QTAP->matrix[i][j] - LU->matrix[i][j]);
        }
    printmd(*A, WIDTB, AFT);
    ```
```

    printf("\n\n");
    printmd(*L, WIDTB, AFT);
    printf("\n\n");
    printmd(*U, UIDTH, AFT):
    printf("\n\n");
    printmd(*QT, UIDTH, AFT);
    printf("\n\n");
    printmd(*P, UIDTA, AFT);
    printf("\n\n");
    printmd(*QTA, WIDTB, AFT);
    printf("\n\n");
    printmd(*QTAP, UIDTH, AFT);
    printI("\n\n");
    printmd(*LU, UIDTB, AFT);
    printf("\n\n");
    printmd(*D, UIDTH, AFT);
    printf("\n\n");
    }
/* End show_resulting_matrices()
double tmp;
850 int j:

```
822
823
824
825
826
827 /
828
849

\section*{gfpphost.c}
\#ifdef PROTOTYPE
876
877 void update_permutation(int \(v[]\), int size, int \(k\), int pivot_index)
881 void update_permutation(v, size, \(k\), pivot_index)
890 int i;
891
892
\(893 \quad i=v[k] ; \quad v[k]=v\left[p i v o t _i n d e x\right] ; \quad v\left[p i v o t _i n d e x\right]=i ;\)
894 \}

896
897
```

\#ifdef PROTOTYPE /* ==================================================== */
main(int argc, char *argr[])
\#else
main(argc, argv)
int argc;
char *argv[];
\#endif
{
/* ----------=========== VARIABLE DEFINITIONS ===========------------*/
double a, /* denominator of growth factor (g/a) */
*cbuf, /* col buffer holds one col at a time */
**dtime, /* doubles corresponding to ticks **t */
eps = epsd(), /* machine precision (see machine.h) */
g = 0.0, /* the growth factor */
root_time, /* time measured at root for iterations */
tol;
/* tolerance
*/
Double_Matrix_Type *A, /* This A gets operated upon/changed */
*AO; /* The original copy of A */
int cubesize, /* number of processors in the cube */
dim,
i,
j,
m, /* number of rovs in A */
me, /* root processor's id */
n, /* number of cols in A */
*q, /* rov permutation vector */
r, /* numerical rank estimate */
timing,
verbose;
/* Boolean
*/
/* Boolean */
/* sizes, in bytes */
sizeof_int,
sizeof_pivot;
ticks root_start,
t_root, /* time measured at root transputer */
*\#t; /* time data: row => node, col => event */
Pivot_Type pivot; /* pivot */

```
gfpphost.c
```

me = myhost();

```
me = myhost();
 if (verbose) {
 if (!(10 = matalloc(m,n))) {
 printf("Allocation failure for 10.\n");
 exit(EXIT_FAILURE);
 }
 printf("\n%s\n\n", version);
 de1ine_valid_args();
 resolve_args(argc, argv, &dim, &timing, &verbose);
 A = generate(&m, kn);
 sizeof_col = (long) (A->rors * sizeof(double));
 sizeol_int = (long) sizeol(int);
 sizeof_pivot = (long) sizeof(Pivot_Type);
 if (!(cbuf = (double *) malloc(sizeof_col))) {
 printf("main(): Allocation failure for cbuf[].\n");
 exit(EXIT_FAILURE);
 }
 cubesize = POW2(dim);
#ifdef TRANSPUTER
 initialize_hypercube(dim);
#else
 cubename = initialize_hypercube(dim, nodecode);
#endil
```

```
 strcpy(AO->name, "Original A");
 1or (i = 0; i < A->rous; i++) {
 for (j = 0; j < A->cols; j++) {
 A0->matrix[i][j] = A->matrix[i][j];
 }
 }
 printf("\n\nA has been allocated and generated.\n\n");
 printmd(*A, HIDTH, AFT);
 printf("\n\nSending size(A) to the nodes.\n\n");
}
#ifde1 TRANSPUTER
 cubecast(me, dim, (char *) mm, sizeof_int, cubesize);
 cubecast(me, dim, (char *) &n, sizeof_int, cubesize);
 cubecast(me, dim, (char *) &timing, sizeof_int, cubesize);
#else /* iPSC/2 */
 cubecast(me, dim, (char *) &m, sizeof_int, ROW_SIZE_TYPE);
 cubecast(me, dim, (char *) mn, sizeof_int, COL_SIZE_TYPE);
 cubecast(me, dim, (char *) &timing, sizeof_int, ARG_TYPE);
 #endif
 if (verbose) printf("\nSent size(A) to nodes.\n");
 distribute_columns(A, dim, cbuf);
 q = initial_permutation_vector(m);
 /* FINAL PREPARATIONS BEFORE STARTING THE ITERATION
 *
 * Get the first pivot from node 0. Initialize the grouth factor
 * variables, g and a, so that me can compute grovth factor (g/a) as
 * ve go. Set a reasonable tolerance.
 *
 * ---
 */
 #ifdef TRAMSPUTER
 receive(0, (char *) tpivot, sizeof_pivot, cubesize);
 #else /* iPSC/2 */
```

```
 receive(0, (char *) &pivot, sizeof_pivot, PIVOT_TYPE);
 g = MAX(g, fabs(pivot.u));
 if (pivot.s != r) swap_rows_left_of_pivot(A, r, pivot.s);
```

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
\#ifdef TRANSPUTER
\#else /* iPSC/2 */
\#endif /* TRANSPUTER */
\}
\} /* end for(r)
\#ifdef TRANSPUTER
if (timing) \{
\}
\#endif
*/

```
for (i = O; i < A->rows; i++) { A->matrix[i][r] = cbuf[i]; }
if (verbose) {
 printf("Host: Stage %d, Pivot value = %e. ", r, pivot.u);
printf("Gropth factor = %e.\n", (g/a));
printf("q = "); printvi(q, A->rovs, UIDTH);
printf("\n");
}
if (r< ((MIX(m,n)) - 1)) {
```

receive(0, (char *) \&pivot, sizeof_pivot, cubesize);
receive(0, (char *) \&pivot, sizeof_pivot, PIVOT_TYPE);
*/
$t_{\text {_root }}=\left(c l o c k()-r o o t \_s t a r t\right) ;$
root_time $=\left((\right.$ double $) t_{\_}$root) $*$ LO_PERIOD;
printf("\n\nRoot transputer: ");
printf("Time for iterations: \%8.4lf seconds $\left.\backslash n \backslash n ", ~ r o o t \_t i m e\right) ; ~$
/* I have selected the easy way out and assumed $A$ has full rank. If
* you did not make this assumption, you vould need to collect the
* remaining columns at this point.

```
1151
1152 if (timing) dtime = receive_timing_data(cubesize);
1153
1154
1155
1 1 5 6
1157 *ifndef TRARSPUTER
1158 printf("\n\nmain(): Killing and releasing cube.\n\n");
1159 killcube(ALL_NODES, ALL_PIDS);
1160 relcube(cubename);
1161 #endif
1162
1163 if (verbose) { /* Create and show Q', AO, P, L, U ------------*/
1164
1165 show_resulting_matrices(A, 10, q);
1166
1167 }
1168
1 1 6 9
1 1 7 0
 if (timing) display_timing_data(A, dim, a, eps, g, tol, r, dtime);
1171
1172}
1173 /* ------------============ EOF gfpphost.c =============---------------*/
```

```
/* ------------========== PROGRAM INFORMATIOM
 *
 * SOURCE : gfppnode.c
 * VERSION : 2.0
 * DATE : 21 September 1991
 * AUTHOR : Jonathan E. Hartman, U. S. Iaval Postgraduate School
 * remarkS : See gf.h.
 *
 */
#include <math.h>
#ifdef TRANSPUTER
#include <conc.h>
#include <matrix.h>
#include <macros.h>
#include <allocate.h>
#include <comm.h>
#include <generate.h>
#include <mathx.h>
#include <ops.h>
#include <timing.h>
#else
#include "/usr/hartman/matlib/matrix.h"
#include "/usr/hartman/matlib/macros.h"
#include "/usr/hartman/matlib/allocate.h"
#include "/usr/hartman/matlib/comm.h"
#include "/usr/hartman/matlib/generate.h"
#include "/usr/hartman/matlib/mathx.h"
#include "/usr/hartman/matlib/ops.h"
#include "/usr/hartman/matlib/timing.h"
#endif
#include "gf.h"
#ifdef TRANSPUTER
Channel *ic[(CUBESIZE + 1)].
 *oc[(CUBESIZE + 1)];
#endif
ticks t[MAX_EVENTS];
```

```
/* End global_column() --
```



* This function maps a column number in the global A (the full-sized A
* held at the root processor/host) to the corresponding local column num-
* ber. If the global_column is not one that is held at this node, a
* negative value (-1) is returned.
*/
\#ifdef PROTOTYPE
int local_column(int global_column, int me, int cubesize)
\#else
int local_column(global_column, me, cubesize)


## gfppnode.c

```
 int global_column,
 me,
 cubesize;
#endif
{
 if ((global_column % cubesize) != me) return(-1);
 return((int) global_colum / cubesize);
}
/* End local_column() --*/
/* -----------============ FUNCTION DEFINITION
 *
 */
 #ifdef PROTOTYPE
 void do_pivot_column_arithmetic(Double_Matrix_Type *A, double *cbuf,
 int k, int me, int cubesize)
 #else
 void do_pivot_column_arithmetic(A, cbuf, k, me, cubesize)
 Double_Matrix_Type *A;
 double *cbuf;
 int k,
 me,
 cubesize;
#endif
{
 double pivot_value;
 int i,
 pivot_column;
 pivot_column = local_column(k, me, cubesize);
 pivot_value = A->matrix[k][pivot_column];
 /* Divide everything under the pivot by the pivot value
 */
 for (i = (k+1); i < A->rors; i++) {
```

```
 A->matrix[i][pivot_column] /= pivot_value;
 }
 /* This is somewhat redundant, and not optimal with respect to
 * efficiency, but it vorks and reads clearly, right?
 */
 for (i = 0; i < A->rovs; i+t) cbul[i] = A->matrix[i][pivot_column];
}
/* End do_pivot_column_arithmetic() --
/*-----------============ FUNCTION DEFINITION ============--------------
* This function accepts the matrix, the global column number for this
* stage (where the pivot vill be taken from), and a pivot structure to be
* filled....among other things....and 'returns' the rov, s, and value, u,
* of the nev pivot in global column r (local column lc).
*/
#ifdef PROTOTYPE
 void locate_pivot(int me, int cubesize, Double_Matrix_Type *A, int r,
 Pivot_Type *pivot)
#else
 void locate_pivot(me, cubesize, A, r, pivot)
 int me,
 cubesize;
 Double_Matrix_Type *A;
 int r;
 Pivot_Type *pivot;
#endif
{
 int i,
 pivot_column;
 pivot_column = local_column(r, me, cubesize);
 /* Initialize pivot rov and value
 */
 pivot->s = r;
```

\}

```
 pivot->u = A->matrix[r][pivot_column];
 for (i = (r+1); i < A->rows; i+t) {
 if (fabs(A->matrix[i][pivot_column]) > fabs(pivot->u)) {
 pivot->s = i;
 pivot->u = A->matrix[i][pivot_column];
 }
 }
/* End locate_pivot() --*/
```

*------------============ FUNCTION DEFINITION

* Receive this node's columns from the root/host processor (manager),
* place them into the column buffer, then transfer them into A bhile
* the other processors are communicating with the root.
* 
* The transputer scheme is a bit more involved. Here nodes 0000 and 1000
* are connected to the root and they must receive for everyone. They (0
* and 8) are not directly connected to everyone, so the columns must be
* passed out in cycles. For instance, suppose re used the hybrid 4-cube.
* Then nodes 0 and 8 bould receive bursts of 8 columns at a time. They
* bould keep the first one (re'll call it column 0 in some sort of rela-
* tive numbering scheme that abides by the $C$ numbering convention), send
* the next one (col 1) in the 0x1 direction, the next to the 0x2 direc-
* tion, column 3 in the 0x1 direction, column 4 in the 0x4 direction,
* column 5 in the $0 \times 1$ direction, column 6 in the $0 \times 2$ direction, and
* lastly, column 7 in the $0 \times 1$ direction. This makes cycle $==8$ for nodes
* 0000 and 1000. Similarly, nodes $x 001$ have a cycle of four there they
* keep the first column to arrive and then send the next three to direc-
* tions $0 \times 2,0 \times 4$, and $0 \times 2$ in turn. This distribution pattern is main-
* tained until all of the columns have been distributed.
*/
\#ifdef PROTOTYPE

| void receive_columns (int | dim, |
| :---: | :--- |
| int | node, |
|  | Double_Matrix_Type *A, |
| int | n, |
| double | *cbuf, |
| int | my_cols, |
| int | colsize) |

251

```
 void receive_columns(dim, node, A, n, cbuf, my_cols, colsize)
```

                int dim,
                node;
                Double_Matrix_Type *A;
                int \(n\);
                double *cbuf;
                int my_cols,
                    colsize;
    *endif
\{
int cubesize $=$ pow2(dim),
cycle, $/ *$ length of typical col burst */
dimeff $=\operatorname{MIN}(3, \operatorname{dim})$ /* effective dimension */
from, /* node that I receive from */
gc ,
i,
idx, /* index into to[] */
lc $=0$, /* local column index */
ldeff, /* effective least_dimension() */
nodeff $=($ node $\%$ ) $/$ ) effective node number */
others, $/ *$ no. of nodes in other 3-cube */
step, /* for destination of cols rec'd*/
thehost $=$ myhost(),
to[8]; $\quad / *=\Rightarrow$ direction to send to */
\#ifdef TRANSPUTER
Ideff = least_dimension(nodeff);
if (nodeff $==0$ ) from $=$ myhost ();
else from = node - por2(ldeff - 1);
/* cycle describes the length of a cycle that starts with me (node)...
* then I receive several columns for others....then start over with
* me. The nodes in the highest dimension have cycle ==1 $=\Rightarrow$ self
* only. We also fill to[] with the directions that we will be
* sending to within a given cycle. Not all nodes use all 8 elements
* of to[]. They only use the first cycle elements. The step is the
* difference between the column numbers received at this node during
* a given burst of length cycle.
* When we use the hybrid 4-cube, we are treating it as two 3-cubes,
* so the variable others is set to 8 . This is because there are 8
* other columns between every burst that comes to the 3-cube that

```
 * node is in.
 */
 cycle = por2(dimeff - ldeff);
 (dim == 4) ? (others = 8) : (others = 0);
 step = por2(ldef1);
 to[0] = 0;
 to[1] = to[3] = to[5] = to[7] = por2(lde11);
 to[2] = to[6] = pow2(ldeff + 1);
 to[4] = pow2(ldeff + 2);
 for (gc = node; gc < n; gc += (others + step)) {
 receive(from, (char *) cbuf, colsize, cubesize);
 for (i = 0; i < A->rons; i++) A->matrix[i][lc] = cbuf[i];
 lc++;
 for (idx = 1; idx < cycle; idx++) {
 gc += step;
 if (gc< n) {
 receive(from, (char *) cbuf, colsize, cubesize);
 directional_send(node, dim, to[idx], (char*) cbuf, colsize);
 }
 }
 } /* end for(gc) */
#else /* iPSC/2 */
 for (lc = O; lc < my_cols; lct+) {
 Ieceive(thehost, (char *) cbuf, colsize, COL_TYPE);
 for (i = 0; i < A->rows; i++) { A->matrix[i][lc] = cbuf[i]; }
 }
#endif /* TRAMSPUTER */
}
/* End receive_columns() --
```

* This function sends in the timing data that is held in $t[]$.
*/
*ifdef PROTOTYPE
void submit_timing_data(int node, int dim)
*else
void submit_timing_data(node, dim)
int node,
dim;
\#endif
\{
int dimeff $=\operatorname{MIN}(\operatorname{dim}, 3)$,
dir,
i,
ld $\quad=$ least_dimension(node $\%$ 8),
nodefi $=$ (node $\%$ 8),
root $=$ myhost ();
long cubesize $=$ por2(dim),
tlen;
tlen $=$ (long) (MAX_EVENTS * sizeof(ticks));
\#ifdef TRANSPUTER
submit(node, dim, (char *) t, tlen, cubesize);
if (dimeff == ld) return;
if $(($ nodeff $==2)$ || (nodeff $==3))\{$
if (dimeff > 2) \{
directional_receive(node, dim, 0x4, (char *) t, tlen);
submit (node, dim, (char *) t, tlen, cubesize);
\}
return;
$\}$

```
if (nodeff == 1) {
 if (dimeff > 1) {
 directional_receive(node, dim, 0x2, (char #) t, tlen);
 gubmit(node, dim, (char *) t, tlen, cubesize);
 }
 if (dimeff > 2) {
 directional_receive(node, dim, 0x4, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
 directional_receive(node, dim, 0x2, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
 }
 return;
}
if (nodeff == 0) {
if (dimeff > 0) {
 /* retrans from 1 or 9 ---------------------------------------*/
 directional_receive(node, dim, 0x1, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
}
if (dimeff > 1) {
 /* retrans from 2 or 10 ---------------------------------------*/
 directional_receive(node, dim, 0x2, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
 /* retrans from 3 or 11 ---*/
 directional_receive(node, dim, 0x1, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
}
if (dimeff > 2) {
 /* retrans from 4 or 12 --------------------------------------*/
 directional_receive(node, dim, 0x4, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
 /* retrans from 5 or 13 ---*/
 directional_receive(node, dim, 0x1, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
 /* retrans from 6 or 14 --------------------------------------*/
 directional_receive(node, dim, 0x2, (char *) t, tlen);
 submit(node, dim, (char *) t, tlen, cubesize);
```

```
 /* retrans from 7 or 15 --*/
 directional_receive(node, dim, Ox1, (char *) t, tlen);
 submit(node, dim, (char *) t, tlon, cubesize);
 }
 }
/* End submit_timing_data() --*/
484 #else
496 #endil
498 int i,
 j,
gc = 0, /* global column number */
```

56
457
458
459
460
461
462
463
464
465
466 \}
468
469
470
471
472
473
474
475
476
477
470
479
480
481
482
483
485
486
487
488
489
490
491
492
493
494
495
497 \{
499
500

```
 lc = 0; /* local column number to start */
 ticks start;
 While ((gc = global_column(lc, me, cubesize)) <= k) lc++;
 /* The pivot row is k and we know that lc is the first local column to
 * the right of k. How we must move through the Gauss Transform area,
 * all A(i,j) where i > k and j > k, and perform the operation:
 * A(i,j) = A(i,j) - A(i,k) * A(k,j) <=| (i,j) -= cbuf[i]*A(k,j)
 */
 start = clock();
 for (i = k+1; i < A->rows; i++) {
 for (j = lc; j < A->cols; j++) {
 A->matrix[i][j] == (cbuf[i] * A ->matrix[k][j]);
 } /* end for(j) */
 } /* end for(i) */
 t[LOOPTIME] += (clock() - start);
}
/* End update_G() ---*/
335/* ======================こ=== */
main(){
double *cbuf; /* column buffer holds one col of A */
Double_Matrix_Type *A; /* this node's portion of the matrix A */
int cubesize, /* number of processors in the cube */
 dim, /* dimension of the hypercube */
 gc, /* global column number */
 i, /* generic integer and rov ctr */
 j, /* generic integer and col ctr */
 k, /* inder to pivot */
 m, /* number of rows in A (same local/all) */
 me,
 /* id of this processor
 */
```

532
533
534

```
 my_cols = 0,
 n,
 root,
 timing;
 long sizeof_col,
 sizeof_int,
 sizeol_pivot;
 ticks start,
 starti; /* another start */
 Pivot_Type pivot;
 /*-----------========= INITIALIZATION WORK
 =========------------- */
10r (i = 0; i < MAX_EVENTS; i++) t[i] = 0;
start = t[START_TIME] = clock();
#ifde1 TRANSPUTER
cubesize = CUBESIZE;
dim = DIMENSION;
initialize_hypercube(dim);
#else
 cubesize = (int) numnodes();
 dim = (int) nodedim();
#endif
 t[DATA_SOURCE] = me = (int) mynode();
 root = (int) myhost();
 sizeof_int = (long) sizeof(int);
 sizeof_pivot = (long) sizeof(Pivot_Type);
 /* BROADCAST THE SIZE(A)
 * All node processors need to know the number of rows and columns in
 * the matrix A [i.e., size(A)]. A broadcast to the entire cube,
 * cubecast(), is used to achieve this. The nodes also need to know
 * mhether or not to set timing on, so this value is passed too.
```

600

```
*/
#else /* iPSC/2 */
cubecast(me, dim, (char *) dm, sizeof_int, ROW_SIZE_TYPE);
cubecast(me, dim, (char *) &n, sizeof_int, COL_SIZE_TYPE);
cubecast(me, dim, (char *) &timing, sizeof_int, ARG_TYPE);
#endif /* TRANSPUTER */
sizeof_col = (long) (m * sizeof(double));
```

```
#ifdef TRANSPUTER
```

\#ifdef TRANSPUTER
cubecast(me, dim, (char *) \&m, sizeof_int, cubesize);
cubecast(me, dim, (char *) \&n, sizeof_int, cubesize);
cubecast(me, dim, (char *) \&timing, sizeof_int, cubesize);

```
602
03
604
05
606
607
608
/* COLUMN BUFFER AND COUHTER
*
* The column buffer, cbuf[], will be used to hold one column of \(A\) at
* a time. We \(\begin{gathered}\text { ill } \\ \text { *ee } \\ \text { cbuf }[] ~ u s e d ~ o n ~ a ~ v a r i e t y ~ o f ~ o c c a s i o n s ~ w h e n ~ w e ~\end{gathered}\)
* must \(\quad\) ork \(\quad\) ith a column of A. Allocate cbuf [] and determine the
* number of columns that \(\quad\) ill be stored locally (my_cols).
*
*/
cbuf \(=\) (double *) malloc(sizeof_col);
for (\(i=0 ; i<n ; i++)\{i f((i \%\) cubesize) \(==m e)\) my_colst+; \}

*
* Allocate storage space for this node's part of \(A\) (it is called \(A\)
 * even though it is only part of A).
*/
\(A=\) matalloc (m, my_cols);
t [SETUP] \(=\) clock() - start;
start \(=\) clock();
receive_columns(dim, me, A, n, cbuf, my_cols, sizeof_col);
t [DISTRIB_COLS] \(=\operatorname{clock}()-s t a r t ;\)
/* BEGIN ITERATION

651
691 \#else /*iPSC/2 */
 *
 */
start \(=\) clock();
 pivot.t \(=k\);
 if (me == 0) \{
\#ifdef TRANSPUTER
\#endif /* TRaNSPUTER */
 \(\}\)
 * 1.) At the top of the for () loop we have just completed update_G(),
 * so the local candidate for the next pivot is situated in np[0].
 * The function elect_next_pivot() performs a series of directional_
 * exchange()s so that all local candidates compete in an election
 * process. The vinner is np[0].
 * 2.) If all vent well, np[0] contains the next pivot. This informa-
 * 3.) If this node has the pivot column [if (\(p[k]==g c\))], it must
 * divide everything under the pivot by the value of the pivot and
 * distribute the column to all other nodes (node zero sends to host).
 * 4.) Finally, this node must perform the computations across the
 * Gauss Transform area for the local portion of \(A\). The
 * update_G() function also locates the next pivot without special
 * expense. Then it is time to go back to the top of the loop.
for \((k=0 ; k<(\operatorname{MIN}(m, n)) ; k++)\{\)
 pivot.id \(=\mathbf{k} \%\) cubesize;
 /* know id; \(k=\Rightarrow t\); need \(s, u \quad * /\)
 if (pivot.id \(==\) me) locate_pivot(me, cubesize, A, \(k\), epivot):
 cubecast_from(pivot.id, me, dim, (char *) \&pivot, sizeof_pivot);
 starti \(=\) clock();
 send(root, (char *) \&pivot, sizeof_pivot, cubesize);
 send(root, (char *) \&pivot, sizeof_pivot, PIVOT_TYPE);
 t[PIVOTS_TO_HOST] \(+=(c l o c k()-s t a r t i) ;\)
 stap_rows(A, k, pivot.s);

701
```

    starti = clock();
    if (pivot.id == me) {
        do_pivot_column_arithmetic(A, cbuf, k, me, cubesize);
    }
    t[PCOL_ARITBMETIC] += (clock() - starti);
    8tarti = clock();
    cubecast_from(pivot.id, me, dim, (char *) cbuf, sizeof_col);
    t[PCOL_DISTRIB] += (clock() - starti);
        if (me == 0) {
            starti = clock();
    \#ifdef TRANSPUTER
submit(me, dim, (char *) cbuf, sizeof_col, cubesize);
\#else /* iPSC/2 */
submit(me, dim, (char *) cbuf, sizeof_col, PCOL_TYPE);
\#endif /* TRANSPUTER */
t[PCOLS_TO_HOST] += (clock() - starti);
}
starti = clock();
update_G(A, cbuf, cubesize, k, me, n, \&pivot);
t[UPDATING_G] += (clock() - starti);
}
/* END ITERATION [for(k...)] -------------------------------------------- */
t[ITERATION] = clock() - start;
free(cbuf);
t[STOP] = clock();
if (timing) submit_timing_data(me, dim);

```
gfppnode.c

751 return(SUCCESS);
\(752\}\)
\(753 / \neq-\sim-\sim-\sim-===========\) EOF gippnode.c
```

/* -------------========= PROGRAM IMFORMATION
*
* SOURCE : gfpcnode.c
* VERSION : 2.3
* Date : 17 September 1991
* AUTHOR : Jonathan E. Hartman, U. S. Haval Postgraduate School
* Remarks : See gf.h.
*
*/
\#include <math.h>
\#ifdef TRANSPUTER
\#include <conc.h>
\#include <matrix.h>
\#include <macros.h>
\#include <allocate.h>
\#include <comm.h>
\#include <generate.h>
\#include <mathx.h>
\#include <ops.h>
\#include <timing.h>
\#else
\#include "/usr/hartman/matlib/matrix.h"
\#include "/usr/hartman/matlib/macros.h"
\#include "/usr/hartman/matlib/allocate.h"
\#include "/usr/hartman/matlib/comm.h"
\#include "/usr/hartman/matlib/generate.h"
\#include "/usr/hartman/matlib/mathx.h"
\#include "/usr/hartman/matlib/ops.h"
\#include "/usr/hartman/matlib/timing.h"
\#endif
\#include "gf.h"
\#ilde1 TRANSPUTER
Channel *ic[(CUBESIZE + 1)],
*OC[(CUBESIZE + 1)];
\#endif
ticks t[MAX_EVENTS];

```
```

|
5
*
4
5
6
7
8
59
6 0
6 1
6 2
6 3
64
65
6% \#else
7
6 8
6 977

```

```

/* -----------============ FUNCTION DEFINITIOM

```
/* -----------============ FUNCTION DEFINITIOM
 * After this node finds its candidate for next pivot, there must be a
 * After this node finds its candidate for next pivot, there must be a
 * comparison mith all other nodes. The local candidate starts in np[0].
 * comparison mith all other nodes. The local candidate starts in np[0].
 * Direction-by-direction, candidates are exchanged and the vinner is
 * Direction-by-direction, candidates are exchanged and the vinner is
 * positioned in np[0]. If there is a tie, the candidate from the smaller
 * positioned in np[0]. If there is a tie, the candidate from the smaller
 * node number vins. A RANK_DEFICIENT opponent is ignored (the local
 * node number vins. A RANK_DEFICIENT opponent is ignored (the local
 * candidate must be at least as good). In the end, all processors have
 * candidate must be at least as good). In the end, all processors have
 * identical entries in np[0].
 * identical entries in np[0].
 */
 */
#ifdef PROTOTYPE
#ifdef PROTOTYPE
 void elect_next_pivot(int me, int dim, Pivot_Type *np)
 void elect_next_pivot(int me, int dim, Pivot_Type *np)
 void elect_next_pivot(me, dim, np)
 void elect_next_pivot(me, dim, np)
 int me,
 int me,
 dim;
 dim;
 Pivot_Type *np;
 Pivot_Type *np;
 #endif
 #endif
 {
 {
 int dir;
 int dir;
 long cubesize = por2(dim),
 long cubesize = por2(dim),
 len = sizeof(Pivot_Type);
 len = sizeof(Pivot_Type);
 for (dir = 1; dir < (int) cubesize; dir <<= 1) {
 for (dir = 1; dir < (int) cubesize; dir <<= 1) {
 if (dir != 8) {
 if (dir != 8) {
 directional_exchange(me, dim, dir, (char *) &(np[1]),
 directional_exchange(me, dim, dir, (char *) &(np[1]),
 (char *) &(np[0]), len);
 (char *) &(np[0]), len);
 }
 }
 else {
 else {
 if ((me % 8) != 0) { /* ve don't vant 0 <-> 8 comm */
 if ((me % 8) != 0) { /* ve don't vant 0 <-> 8 comm */
 directional_exchange(me, dim, dir, (char *) &(np[1]),
 directional_exchange(me, dim, dir, (char *) &(np[1]),
 (char *) &(np[0]), len);
 (char *) &(np[0]), len);
 }
 }
 }
```

        }
    ```
```

            if (np[1].id != RANK_DEFICIENT) {
                if (fabs(np[1].u) > fabs(np[0].u)) {
            np[0].id = np[1].id; np[0].u = np[1].u;
            np[0].s = np[1].s; np[0].t = np[1].t;
            }
            else {
            if (fabs(np[1].u) == fabs(np[0].u)) {
                if (np[1].id < np[0].id) {/* smallest breaks tie */
                np[0].id = np[1].id; np[0].u = np[1].u;
                np[0].s = np[1].s; np[0].t = np[1].t;
            }
            }
                }
            } /* end if(np[1].id....) */
            } /* end for(dir) #/
            /* Since there is no direct connection between nodes 0 and 8, we once
            * again destroy the beauty and generality of the hypercube so that we
            * can be sure that 0 and 8 have the best candidate for pivot.
            */
            if (dim == 4) {
            if ((me % 8) == 0) { /% Nodes 0000 and 1000 */
            directional_receive(me, dim, 0x1, (char *) np, len);
            }
            if ((me % 8) == 1) { /* Modes 0001 and 1001 */
            directional_send(me, dim, Ox1, (char *) np, len);
            }
    }
    }
/* End elect_next_pivot() ------------------------------------------------------*/
146 /* This is only the first part of this file. The rest vould be similar to
147 * gfppnode.c
149 * -----------============ EOF gfpcnode.c ============---------------*/

```
144
145
148 *

\section*{LIST OF REFERENCES}
[1] P. Morrison and E. Morrison, editors. Charles Babbage and His Calculating Engines. Dover Publications, Inc., New York, 1961.
[2] John P. Hayes. Computer Architecture and Organization. McGraw-Hill Book Company, New York, Second edition, 1988.
[3] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.
[4] Michael Slater. Microprocessor-Based Design: A Comprehensive Guide to Effective Hardware Design. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.
[5] INMOS Limited, Bristol, U.K. Transputer Handbook, 1989.
[6] C. Gordon Bell. The Future of High Performance Computers in Science and Engineering. Communications of the Association for Computing Machinery, 32(9):1091-1101, September 1959.
[7] J. J. Dongarra, James R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users Guide. Society for Industrial and Applied Mathematics, Philadelphia, 1978.
[8] Jack J. Dongarra. Performance of Various Computers Using Standard Linear Equations Software. Technical Report CS-89-85, University of Tennessee and Oak Ridge National Laboratory, Author's electronic mail address: dongarra@cs.utk.edu., September 1991.
[9] Ware Myers. Caltech Dedicates World's Most Powerful Supercomputer. IEEE Computer, 24(7):96-97, July 1991.
[10] Parsytec. Parsytec News, Summer 1991.
[11] David Gilbert. Interview: Richard Hamming. IEEE Computing Futures, pages 10-17, Spring 1991.
[12] Kenneth G. Wilson. Grand Challenges to Computational Science. NorthHolland Future Generation Computer Systems, 5:171-189, 1989.
[13] David Harel. Algorithmics: The Spirit of Computing. Addison-Wesley Publishing Company, Wokingham, England, 1987.
[14] David May. Towards General Purpose Parallel Computers. Invited lecture at Transputing '91, Sunnyvale, California, 25 April 1991.
[15] David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing Surveys, 23(1):5-48, March 1991.
[16] Uno R. Kodres. Unpublished discussions, lectures, and course notes in computer science. Given at the U. S. Naval Postgraduate School, Monterey, California, 1991.
[17] Alston S. Householder. Principles of Numerical Analysis. McGraw-Hill Book Company, New York, 1953.
[18] Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards, 49(6):409-436, December 1952. Research Paper 2379.
[19] Michael J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill Series in Supercomputing and Artificial Intelligence. McGrawHill Book Company, New York, 1987.
[20] John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of Parallel Methods for a 1024-Processor Hypercube. SIAM Journal on Scientific and Statistical Computing, 9(4):609-638, 1988.
[21] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, Second edition, 1989.
[22] Philip E. Gill, Walter Murray, and Margaret H. Wright. Numerical Linear Algebra and Optimization. Addison-Wesley Publishing Company, Redwood City, CA, 1991.
[23] William B. Gragg. Unpublished discussions, lectures, and notes in numerical linear algebra and scientific computing. Given at the U. S. Naval Postgraduate School, Monterey, California, 1991.
[24] William B. Gragg and John A. Trangenstein. Linear Algebra Lecture Notes. Department of Mathematics, University of California, San Diego, 1978.
[25] INMOS Limited, Bristol, U.K. The T9000 Transputer Products Overview Manual, 1991. Prentice-Hall, Inc., Englewood Cliffs, NJ.
[26] Gregory R. Bryant. Design, Implementation and Evaluation of an Abstract Programming and Communications Interface for a Network of Transputers. Master's thesis. U. S. Naval Postgraduate School, Monterey, CA, June 1988.
[27] Charles L. Seitz. The Cosmic Cube. Communications of the Association for Computing Machinery, 28(1):22-33, January 1985.
[28] Geoffrey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K. Salmon, and David W. Walker. Solving Problems on Concurnent Processors, Volume I: General Techniques and Regular Problems. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1988.
[29] Selim G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.
[30] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985.
[31) Michael B. Esposito. Comparative Study of the Performance of Hypercube versus Dỳnamically Configurable Topologies in a Transputer Network. Master's thesis, U. S. Naral Postgraduate School, Monterey, CA, TBD 1991. To be published.
[32] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions. Dover Publications, Inc., New York, 1972.
[33] Gilbert Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Publishers, San Diego, CA, Third edition, 1988.
[34] Donald E. Knuth. Big Omicron and Big Omega and Big Theta. SIGACT Neus, pages 18-24, April-June 1976.
[35] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley Publishing Company, Reading, MA, 1989.
[36] INMOS Limited, Bristol, U.K. The Transputer Databook, Second edition, 1989.
[37] Grady Booch. Software Engincering with Ada. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, Second edition, 1987.
[38] Dimitri P. Bertsekas and Robert G. Gallager. Data Networks. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.
[39] Youcef Saad and Martin H. Schultz. Topological Properties of Hypercubes. (Research Report YALEU/DCS/RR-389):1-17, June 1985.
[40] Richard W. Hamming. Coding and Information Theory. Prentice-Hall, Inc., Englewood Cliffs, NJ, Second edition, 1986.
[41] Fred Buckley and Frank Harary. Distance in Graphs. Addison-Wesley Publishing Company, Redwood City, CA, 1990.
[42] William E. Boyce and Richard C. DiPrima. Elementary Differential Equations and Boundary Value Problems. John Wiley \& Sons, Inc., New York, Fourth edition, 1986.
[43] Richard Haberman. Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. Prentice-Hall, Inc., Englewood Cliffs, NJ, Second edition, 1987.
[44] Frank R. Giordano and Maurice D. Weir. Differential Equations: A Modeling Approach. Addison-Wesley Publishing Company, Reading, MA, 1991.
[45] Intel Corporation. iPSC/2 Programmer's Reference Manual.

\section*{INITIAL DISTRIBUTION LIST}
1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145
2. Commandant of the Marine Corps 2
Code TE-06
Headquarters, U. S. Marine Corps
Washington, DC 20380-0001
3. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002
4. Chairman. Computer Science Department 2
Code CS
Naval Postgraduate School
Monterey, CA 93943
5. Chairman, Department of Mathematics 2
Code MA
Naval Postgraduate School
Monterey, CA 93943
6. Dr. Uno R. Kodres 3
Code CS/Kr
Naval Postgraduate School
Monterey, CA 93943
7. Dr. William B. Gragg 1
Code MA/Gr
Naval Postgraduate School
Monterey, CA 93943
8. Dr. John R. Thornton 1
Code MA/Th
Naval Postgraduate School
Monterey, CA 93943

Thesis
H29624 Hartman
c. 1 Hypercube solutions for conjugate directions.

Thesis
H29624 Hartman
c. 1 Hypercube solutions for conjugate directions.

แiviinilivili```

[^0]: ${ }^{1}$ The Greek alphabet is shown in the Table of Symbols.

[^1]: ${ }^{2} O(f(n))$ is read "order $f(n) . "$

[^2]: ${ }^{1}$ By definition, blocking means that the invoking process (send or receive) causes execution of the program to stop (be blocked from the CPU) until the communications requirement has been satisfied.

