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ABSTRACT 

Wireless sensors can be worn on soldiers or installed on vehicles to form 

distributed sensor networks to locate the source of sniper fire. A two-step source 

localization process is proposed for this sniper detection task. The time difference of 

arrival (TDOA) for the acoustic signals received by the sensors is first estimated using 

the generalized cross correlation (GCC) method.  The estimated TDOA values are then 

used by the hybrid spherical interpolation/maximum likelihood (SI/ML) estimation 

method to estimate the shooter location. A simulation model has been developed in 

MATLAB to study the performance of the hybrid SI/ML estimation method. A wireless 

sensor network is simulated in NS-2 to study the network throughput, delay and jitter. 

Simulation results indicate that the estimation accuracy can be increased by increasing 

the number of sensors or the inter-sensor spacing. The constraint of small inter-sensor 

spacing on wearable sensors is found to degrade the estimation accuracy, but vehicular 

configuration providing larger inter-sensor spacing can help improve the estimation 

accuracy.  The sensor topology should be well represented in all three dimensions to 

obtain desired estimation accuracy. The estimation accuracy is not adversely affected by 

sensor node failures or location perturbations. The NS-2 simulation results indicate that 

the wireless sensor network has low delay and can support fast information exchange 

needed in counter-sniper applications. 
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EXECUTIVE SUMMARY 

In urban warfare, sensor networks can be effectively used to detect, track, and 

monitor targets of interest. Sniper localization through the collaborative effort of multiple 

wireless acoustic sensors is of interest in this study. Wireless sensors worn on soldiers or 

installed on vehicles can be deployed to form a distributed sensor array to locate the 

source of sniper fire. A two-step source localization process is proposed in this work for 

counter-sniper applications: the time difference of arrival (TDOA) values are first 

determined using the generalized cross correlation (GCC) method and then the TDOA 

values are used by a hybrid spherical interpolation/maximum likelihood (SI/ML) 

estimation method to determine the shooter location. A simulation model has been 

developed in MATLAB to study the performance of the hybrid SI/ML estimation 

method. A wireless sensor network is simulated in NS-2 to study the network throughput, 

delay and jitter of IEEE WPAN and WLAN networks. 

The effects of number of sensor nodes, inter-sensor spacing, topology, noise, 

source-sensor distance, sensor node failure, location perturbation on the location 

estimation performance have been studied through MATLAB simulation. Simulation 

results show that the error variance can be reduced by increasing the number of sensor 

nodes or the inter-sensor spacing. To increase the location estimation accuracy, the 

number of sensors as well as the inter-sensor spacing should be increased.  

For the case of wearable sensors, the constraint of small inter-sensor spacing on 

the body degrades the estimation performance. On the other hand, vehicular 

configuration providing larger vertical and horizontal inter-sensor spacing can help 

improve the location estimation accuracy.  The sensor node topology should be well 

represented in all three dimensions to obtain desired location estimation performance.  

The source location estimation accuracy is not adversely affected by sensor node 

failures or location perturbations. Results show that sensor node failures lead to a gradual 

degradation of accuracy and not a sudden total system failure. This demonstrates the 

advantage of using distributed wireless sensor networks to provide greater system 



 xviii 

robustness. It is also observed that location perturbations do not adversely affect the 

location estimation. This illustrates the flexibility of the network configuration and 

demonstrates the suitability for potential field deployment.  

Network simulation results based on the NS-2 package show that the wireless 

sensor network can support a throughput between 20 kbps and 100 kbps, a low average 

delay of less than 10 ms and a low average jitter in the range of 5 ms to 10 ms.  These are 

suitable for fast response network-based sniper detection applications that require low 

delay and fast data exchange. 
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I. INTRODUCTION 

Low-cost, low-power, multi-functional wireless sensor networks are becoming 

readily available. The sensor nodes are small in size and are able to sense, process data, 

and communicate with each other wirelessly.  

Wireless sensor networks have several potential applications, especially in the 

area of military operations [1][2].  In urban warfare, sensors can be deployed in buildings 

that have been cleared to prevent reoccupation. Sensors can be used to detect physical 

phenomena, such as motion, acceleration, acoustic and light, and the collected and 

processed sensor data can be transmitted through wireless links and displayed on mobile 

devices carried by soldiers.  

In urban warfare, sensor networks can be effectively used to detect, track, and 

monitor targets of interest. Sniper localization through the collaborative effort of multiple 

wireless acoustic sensors is of interest in this study. An array of acoustic sensors, 

microphones or piezoelectric pressure sensors, are deployed to detect and process 

supersonic shockwaves and muzzle blast produced by the gun shot [3]. The measured 

acoustic data are further processed using source localization techniques in order to 

estimate the location of the shooter.  

 

A. THESIS OBJECTIVE 

This thesis focused on source localization using wireless sensor networks. 

Wireless sensors worn on soldiers or installed on vehicles can be deployed to form a 

distributed sensor array to locate the source of sniper fire. To improve the accuracy of the 

source localization, a large number of sensors can be deployed to cover a large area of 

interest [4]. As illustrated in Figure 1, a distributed wireless sensor network, forming a 

large array of acoustic sensors, is used to detect and locate sniper fire.  

A two-step source localization process is proposed in this work for counter-sniper 

applications: the time difference of arrival (TDOA) values are first determined using the 

generalized cross correlation (GCC) method and then the TDOA values are used by a 

hybrid spherical interpolation/maximum likelihood (SI/ML) estimation method to 



2 

determine the shooter location. A simulation model is developed in MATLAB to study 

the performance of the hybrid SI/ML estimation method. A wireless sensor network is 

simulated in NS-2 to study the network throughput, delay and jitter of IEEE WPAN and 

WLAN networks.  

 
Figure 1.   Sniper detection and localization using a distributed wireless sensor 

network. 
 

 

B. RELATED WORK 

Several physical phenomena can be used for sniper detection purposes. Pauli et al. 

have built the VIPER system that utilizes an infrared camera to detect the muzzle flash of 

the weapon [5]. It is augmented with a microphone to detect the muzzle blast for range 

estimation. Both sensors require direct line of sight.  

Commercial acoustic sniper detection systems, such as BBN’s Bullet Ears and 

Metravib’s PILAR, are also based on measurement of the time of arrival (TOA) of 

muzzle blasts and shockwaves produced by the gun shot. BBN’s Bullet Ears system 

utilizes one or two small arrays of microphones, providing estimates of range to the 

shooter and the caliber, speed and trajectory of the projectile [6].  

Simon et al. have developed an experimental network-based counter-sniper 

system called PinPtr [4]. The system utilizes an ad hoc wireless sensor network built 

from inexpensive sensor nodes. After deployment, the sensor nodes synchronize their 

clocks, perform self-localization and wait for acoustic events. The sensors can detect 

distributed 
wireless sensor 
network 

bullet 
(projectile) 

 

Sniper 
location 
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muzzle blasts and acoustic shockwaves and measure their time of arrival (TOA). 

Utilizing a message routing service, the TOA measurements are delivered to a laptop 

computer, where the sensor signal processing algorithm calculates the shooter location 

estimate. The proposed solution utilizes time of arrival data of the measured shockwaves 

and muzzle blasts. From the measurements and the sensor positions a four-dimensional 

consistency function is formed. A quick search algorithm finds the maximum of this 

function. The location corresponding to the maximum is the shooter position estimate. 

 

C. THESIS OUTLINE 

The organization of the thesis is as follows: chapter II introduces the wireless 

sensor network as well as the various source localization techniques and sniper detection 

approaches.  Chapter III describes the concept of source localization using wireless 

sensor networks. The two-step source localization technique proposed for counter-sniper 

applications will be discussed. Chapter IV presents the simulation model of the two-step 

source localization process, followed by the simulation results of the hybrid SI/ML 

estimation method using the MATLAB package simulating a sniper detection scenario. 

The throughput, delay and jitter of the wireless sensor network are simulated using the 

NS-2 network simulator. Chapter V concludes the thesis and highlights future work for 

further investigation. Appendix includes the MATLAB source codes used in the 

simulation studies. 
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II. INTRODUCTION TO WIRELESS SENSOR NETWORK, 
SOURCE LOCALIZATION AND SNIPER DETECTION  

This chapter discusses the various aspects of distributed wireless sensor networks, 

acoustic source localization and current sniper detection systems. We will introduce the 

concept of using wireless sensor networks to perform source localization for the purpose 

of sniper detection. 

 

A. DISTRIBUTED WIRELESS SENSOR NETWORKS  

Low-cost, low-power, multi-functional wireless sensor networks are becoming 

readily available. The wireless sensor nodes are small in size and are able to 

communicate with each other wirelessly by forming an ad hoc network.  

Wireless sensor networks are self-organizing networks with short-range 

communication and multi-hop routing. Their topologies frequently change due to 

mobility, fading and node failures.  There are usually limitations on transmit power, 

memory, and computational capability in a sensor node [1]. 

The performance of a wireless sensor network generally depends on the following 

factors [1]: energy efficiency, latency, accuracy, fault tolerance, scalability, 

synchronization and localization, and throughput. Due to the interdependence of energy 

consumption, delay, and throughput, all these performance issues and metrics are tightly 

coupled.  

For this thesis research, the emphasis is not on any of the above performance 

metrics.  Instead, we will focus on the issue of distributed array processing for 

determining the location of a signal source of interest.  

 
1. Architecture 

Wireless sensor networks can be organized in two architectures: flat or tiered. In a 

flat architecture, all sensor nodes are peers and are homogeneous in form and function. 

However, in a tiered architecture [7], as shown in Figure 2, sensor nodes form a hierarchy 

in which a sensor node at a given level performs a specific set of tasks on behalf of a 

subset of sensor nodes in the level below. 
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Figure 2.   Tiered Architecture in Low Rate Wireless Personal Area Networks (LR-

WPAN) (from [7]). 
 

In practice, very few sensor networks are entirely flat. Typically, a sensor network 

will connect to an internet via gateway nodes. In addition, sensor networks are often not 

physically homogeneous. For example, a network may become heterogeneous due to 

uneven battery drain across nodes. Tiered architectures are usually employed to take 

advantage of unevenly distributed resources by assigning resource-intensive roles to 

resource-rich nodes. 

 

2. Standards 

Efforts are under way to standardize the various layers of wireless sensor network 

communication protocols. IEEE 802.15.4 is the standard defined for Low Rate Wireless 

Personal Area Networks (LR-WPAN) [8], with the ZigBee Alliance [9] as its marketing 

and compliance certification organization. 

A LR-WPAN is a simple, low-cost communication network that allows wireless 

connectivity in applications with limited power and relaxed throughput requirements. The 

main objectives of a LR-WPAN are ease of installation, reliable data transfer, short-range 

operation, low cost, and a reasonable battery life, while maintaining a simple and flexible 

protocol suite.  

Tier 1 

Tier 2 

Tier 3 

Tier N 
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a. LR-WPAN Architecture 

The LR-WPAN architecture is specified in terms of a number of layers 

based on the open systems interconnection (OSI) seven-layer model, as shown in Figure 

3. Each layer is responsible for one part of the standard and offers services to higher 

layers.  

 
Figure 3.   IEEE 802.15.4 LR-WPAN device architecture (from [8]). 
 

The IEEE 802.15.4 standard defines the physical layer (PHY) and the 

medium access layer (MAC). An IEEE 802.2 Type 1 logical link control (LLC) can 

access the MAC layer through the service specific convergence sub-layer (SSCS). The 

PHY layer specifies an operating frequency of 2.4 GHz with a basic bit rate of 250 kbps. 

There are alternate PHY specifications for 915 MHz and 868 MHz that operate at lower 

data rates of 40 kbps and 20 kbps, respectively. Details of the LR-WPAN modulation and 

spreading formats are summarized in Table 1.   

Upper Layers 

MAC Layer 

PHY Layer 

802.2 LLC 

SSCS 
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Spreading parameters Data parameters PHY(MHz) Frequency 
band 

(MHz) 
Chip rate 
(kchips/s) 

Modulation Bit rate 
(kb/s) 

Symbol 
rate 

(ksym/s) 

Symbols 

868 868-868.6 300 BPSK 20 20 Binary 
915 902-928 600 BPSK 40 40 Binary 

2450 2400-
2483.5 

2000 O-QPSK 250 62.5 16-ary 
Orthogonal 

Table 1. IEEE 802.15.4 LR-WPAN frequency bands and data rates (from [8]). 
 
 

b. LR-WPAN Network Topologies 

Depending on the application requirements, the LR-WPAN may operate in 

one of the two topologies shown in Figure 4: Star Topology or Peer-to-Peer Topology. In 

the Star Topology, the communication is established between devices and a single central 

controller, called the Personal Area Network (PAN) coordinator. Peer-to-Peer Topology 

also has a PAN coordinator; however, it differs from the star topology in that any device 

can communicate with any other device as long as they are within range of one another.  

Peer-to-Peer Topology allows more complex network formations to be 

implemented, such as mesh networking. A peer-to-peer network can be ad hoc, self-

organizing and self-healing. It may also allow multiple hops to route messages from any 

device to any other device on the network.  
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Figure 4.   Star and Peer-to-Peer topologies for a IEEE 802.15.4 LR-WPAN (from 

[8]). 
 

To form a larger network, supporting hundreds and thousands of sensor 

nodes, a single sensor cluster can reorganize and form a mesh of multiple neighboring 

clusters. Once predetermined application or network requirements are met, the PAN 

coordinator may instruct a device to become the cluster head of a new cluster adjacent to 

the first one. Other devices gradually connect and form a multi-cluster network structure, 

such as the one seen in Figure 5. The advantage of a multi-cluster structure is increased 

coverage area; the disadvantage is an increase in message latency. 

 

 
Figure 5.   IEEE 802.15.4 LR-WPAN cluster tree network (from [8]). 

Cluster Head 

PAN 
Coordinator 

Device 

Cluster Head 

PAN 
Coordinator 

PAN 
Coordinator 

Star Topology Peer-to-Peer Topology 

Full 
Function 
Device 

Reduced 
Function Device 

Reduced 
Function Device 

Full 
Function 
Device 
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B. ACOUSTIC SOURCE LOCALIZATION 

Sound localization can be accomplished by using observed differences in the 

sound signals received at different observation points, such as angle of arrival (AOA), 

time of arrival (TOA), time difference of arrival (TDOA), received signal strength (RSS) 

or steered response power (SRP), to estimate the direction and actual location of the 

sound source. Several methods, usually based on SRP and TDOA, have been developed 

for estimating an acoustical source location. 

Algorithms, like Steered Response Power-Phase Transform (SRP-PHAT) [10], 

are robust in the presence of reverberation. However, SRP-PHAT can be quite complex 

requiring the calculation of a large number of test points in the region of possible source 

locations. The location is chosen to be the point that produces the highest steered 

response power. 

Alternatively, the problem can be implemented as a two-step localization process 

[11]. In a two-step localization approach, the time difference of arrival (TDOA) is first 

determined by performing cross-correlation on the received signals [12]. The TDOA 

values are then used to estimate the location.  

There are generally three classes of TDOA estimators [12], including the general 

cross-correlation (GCC) approach, the maximum likelihood (ML) approach, and the 

phase transform (PHAT) approach. All these approaches attempt to calculate the cross-

correlation in an optimal or suboptimal manner, and then select the time index of the peak 

of the result to be the TDOA estimate. 

The two-step localization algorithms are quite fast, but they lack robustness [12]. 

Frequently, errors do occur in the time delay estimates due to reflections of the sound 

source, which are sometimes greater in energy than the direct signal. The direct path can 

be obstructed or attenuated because of source and microphone directivity. Erroneous time 

delay estimates cause large errors in location estimation.  

For the counter-sniper application studied in this thesis, we propose the use of the 

two-step localization process due to its speed and the limited computational capabilities 

of the sensors. 
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C. SNIPER DETECTION 

A gun shot produces several detectable phenomena, such as muzzle blast and 

shockwaves [3] [6].  

Muzzle blast is the acoustic signature associated with the ejection of the bullet 

from the sniper’s rifle. The muzzle blast is a loud, characteristic noise originating from 

the end of the muzzle and propagating spherically away at the speed of sound. The 

muzzle blast can be detected with acoustic sensors at ranges from several hundred meters 

out to more than a kilometer. 

Typical rifles fire projectiles at supersonic velocities, thereby producing acoustic 

shocks along their trajectory. Shockwaves can be detected acoustically at ranges from 

hundreds of meters out to more than a kilometer and can be used to accurately determine 

projectile trajectories. The shock waveform is distinctive and cannot be produced by any 

other natural phenomenon. 

As illustrated in Figure 6, the muzzle blast and shockwaves can be detected and 

processed by distributed wireless sensor networks equipped with acoustic sensors. 

 

 
Figure 6.   Shock wave front and muzzle wave detection by a group of distributed 

wireless sensors (after [4]).  

 

distributed 
wireless sensor 
network 

Muzzle 
wave 

Shock 
wave front 

bullet 
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As illustrated in Figure 7, wireless sensors may be mounted on vehicles for easy 

and fast deployment. The wireless sensors can also be worn on soldiers or integrated into 

their helmets. 

�

Figure 7.   Wireless network-based counter-sniper system consisting of vehicular and 
wearable sensors. 

 

We have introduced the basics of wireless sensor networks, described the concept 

of source localization for acoustic signal sources and proposed the concept of using 

wireless sensor networks to detect sniper fire.  In the next chapter, we will discuss in 

greater detail the various source localization techniques. We will discuss the two-step 

source localization technique proposed for counter-sniper applications. 
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III. SOURCE LOCALIZATION USING WIRELESS SENSOR 
NETWORKS 

This chapter presents the details of source localization using distributed sensor 

networks.  We will discuss the two-step source localization technique proposed for 

counter-sniper applications.  

Source localization is the process of determining the spatial location of a source 

based on multiple observations of the emitted signal source.  The primary goal of source 

localization is accuracy. The accuracy of location estimates depends on a number of 

factors, including quantity and quality of sensors used, sensor placement relative to each 

other and the signal sources to be analyzed, ambient noise and reverberation, and number 

of active sources and their spectral content.  The performance of localization techniques 

generally improves with the number of sensors in the array, especially when adverse 

environmental conditions are present. 

 

A. TWO-STEP LOCALIZATION PROCESS  

Figure 8 shows the schematic diagram of the two-step source localization 

technique considered in this thesis. The generalized cross correlation (GCC) technique is 

used to estimate the time difference of arrival 12τ̂ for a pair of received signals 1( )m t and 

2 ( )m t .   

The 12τ̂ values are then converted into range difference of arrival 12d̂ values using 

the relationship  

12 12
ˆ ˆd τ υ=  

where 345υ = m/s is the speed of sound [12]. Figure 9 shows the range difference of 

arrival at two acoustic sensors. The 12d̂ values along with the knowledge of the sensor 

positions are then used to generate hyperbolic curves which are then intersected to obtain 

a source location estimate. 

 



14 

 
Figure 8.   Two-step source localization model using GCC and hybrid SI/ML 

methods. Step 1 performs the TDOA estimation using GCC; Step 2 performs the 
location estimation in two stages: estimate determined by SI method in stage 1 is 

used as initial values for ML method in stage 2.  
 

 

 
Figure 9.   Range difference of arrival at two acoustic sensors. 

 

Location estimation can be performed using either a closed-form least-

squares (LS) [13] or a maximum likelihood (ML) method [14].    The LS method is fast, 

and a closed-form solution can be obtained in a single iteration. The spherical 

interpolation (SI) method [13] is a widely used LS implementation in location estimation 

problems. In contrast, the ML method requires iterative gradient-descent search, and a 

good initial guess close to the solution is required in order to avoid divergence.  

However, the ML estimator is asymptotically unbiased and provides a more accurate 

estimate at low noise levels. 

Acoustic waves 
traveling at speed υ  m/s 

time 1t  

time 2t  

sensor 1 

sensor 2 

Range difference 
of arrival  

12 12d τ υ=  

Time difference of 
arrival 12 2 1t tτ = −  

( )1m t  

( )2m t

GCC SI ML 12 12
ˆˆ  or dτ  1( )m t

ˆSIs ˆMLs

TDOA estimation location estimation 

2( )m t

Step 1 Step 2 
Stage 1 Stage 2 
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In this work, we propose the use of a hybrid SI/ML algorithm [14] for 

location estimation using the two-stage process, as illustrated in Figure 8:  First, we 

calculate the source location ˆSIs using spherical interpolation (SI) method.  The estimate 

of the source location ˆSIs  is then used as initial value for the calculation of source 

location ˆMLs using the maximum likelihood (ML) method. A hybrid SI/ML algorithm has 

been proposed by Ajdler et al. [14] to perform acoustic source localization in a small 

room of size 3 m ×5 m ×  3 m. In this thesis, a similar hybrid SI/ML algorithm is applied 

for acoustic source localization in an outdoor environment instead to detect sniper fire.    

At low noise levels, the SI method provides a rough estimate quickly. The 

ML method is computationally demanding and requires the use of an iterative technique, 

such as Gauss-Newton and Levenberg-Marquardt [15]. The convergence speed of the ML 

method can be increased by using the rough estimate from the SI method as initial 

estimate. Additionally, in situations where the ML method fails to converge, especially at 

high noise levels, the SI method can still provide a reasonable estimate.    

Other closed-form estimation methods like spherical intersection (SX) 

[13], planar intersection (PX) [13], and clustering-based techniques [16] can also be used 

to produce the initial guess of the source location.  However, the SI method has greater 

noise immunity than the SX method and the SI method has lower error variance but 

slightly higher bias than the PX method. Clustering-based techniques are computationally 

less demanding than the SI method but are only applicable to sources that are very far 

away. 

Alternatively, the ML optimization problem can be solved by using 

alternating projection method [17] to avoid exhaustive multi-dimensional search. 

However, this is computationally more intensive than the closed-form methods and there 

is still no guarantee that the convergence to a global minimum can be obtained. 
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1. Time Difference of Arrival Estimation 

Let 1( )m t  and 2 ( )m t represent the time-delayed signals of a source signal received 

at two sensors as shown in Figure 9.  If ( )1M ω  and ( )2M ω represent the Fourier 

transforms of received signals 1( )m t  and 2 ( )m t , respectively, the TDOA τ̂ can be 

estimated using the GCC given as [12] 

( ) ( ) ( )*
1 2ˆ arg max jW M M e dωβ

β
τ ω ω ω ω

∞

−∞
= �  

where τ̂  is an estimate of the delay between original source signal and the two sensors, 

and ( )W ω is the GCC weighting function. 

Common GCC weighting functions include maximum likelihood (ML) and phase 

transform (PHAT) [12]: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
2 2 2 2

1 2 2 1

*
1 2

1

ML

PHAT

M M
W

N M N M

W
M M

ω ω
ω

ω ω ω ω

ω
ω ω

=
+

=

 

where N1(�) and N2(�) are the estimated noise spectral density for the first and second 

sensors, respectively.  

Phase transform (PHAT) uses only the phase information derived from their 

respective signal power spectral density [12].  This phase-only procedure has the 

whitening effect on the signals and emphasizes primarily the channel effect.  The PHAT 

has a peak at the relative time delay of the two signals and is used to estimate the TDOA 

information.   

The ML weights require knowledge about the spectrum of the sensor-dependent 

noises. The PHAT weights do not require this knowledge, and hence has been employed 

more often due to its simplicity. We choose the GCC-PHAT method due to its ability to 

reduce the degradation due to reverberation [10]. 
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2. Least-squares Spherical Interpolation (SI) Method 

The Spherical Interpolation method [13] is chosen for the closed-form least-

squares (LS) source location estimation based on the measured range difference of arrival 

(RDOA) values.   Figure 10 shows the notations used in SI method for a single source 

and two sensors i and the reference sensor 1. 

Let N denote the number of sensors. The vector of the spatial coordinates for the 

i -th sensor is denoted by [ ]T
i i i ix x y z= and the estimated position of the source is 

denoted by [ ]ˆ T
s s ss x y z= . Sensor 1 is arbitrary selected as the reference node and 

thus the position of sensor 1 is set as the origin of the coordinate system (i.e., 1 0x = )    

The distance between the source and sensor i  is denoted by the Euclidean norm 

( ) ( ) ( )2 2 2ˆi i i s i s i sD x s x x y y z z= − = − + − + −   

and the distance from the origin to the point xi is denoted by i iR x= . Similarly, the 

estimated distance from the origin to the source is denoted by ˆ ˆsR s= . The measured 

RDOA between sensor i and sensor 1 is denoted by  

1 1
ˆ ˆ

i i i sd D D D R= − = −   

for 2,  ... ,  i N= . 
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Figure 10.   Notations used in Spherical Interpolation (SI) method for a single source, 
sensor i and the reference sensor 1 (from [13]). 

 

Assuming that sensor 1 is selected as the reference node (i.e., 1 0x = ), it can be 

shown [13] that the source location estimate is given as 

( ) 1
1
2ˆ T T T

d d d ds S P WP S S P WP δ
−⊥ ⊥ ⊥ ⊥= . 

where the projection matrix
T

d T

dd
P I

d d
⊥ = − , 

2 2
2 21
2 2
3 31

2 2
1N N

R d

R d

R d

δ

� �−
� �−� �=
� �
� �

−� �� �

�
, 

the range difference of arrival vector,

21

31

1N

d

d
d

d

� �
� �
� �=
� �
� �
� �

�
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z 
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1
ˆ

sD R=

ˆ
sR

ŝ

1
ˆ

id
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(reference) 
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the sensor location matrix,

2 2 2

3 3 3

N N N

x y z

x y z
S

x y z

� �
� �
� �=
� �
� �
� �

� � �
, 

 

and the weight matrix, 

11 12 1

21 22 2

1 2

N

N

N N NN

w w w

w w w
W

w w w

� �
� �
� �=
� �
� �
� �

�

�

� � � �

�

. 

 

The range estimate is given as the Euclidean norm from the origin at sensor 1 to 

the source 

2 2 2ˆ ˆs s s sR s x y z= = + +   

and the bearing estimate ˆcos sΩ  is defined as the direction cosines from the origin at 

sensor 1 to the source 

ˆ ˆˆcos ˆ ˆs
s

s s
sR

Ω = = . 

The bearing estimate ˆcos sΩ is equivalent to the unit vector of the source location 

estimate ŝ , as shown in Figure 11.  

 
Figure 11.   Range and bearing estimate of source location.  

 

( )0,0,0  

source

ˆ ˆsR s=  

ˆcos Ω (unit vector) 

( ), ,s s sx y z  

ŝ  



20 

3. Maximum Likelihood Estimator 

The errors η  in the measurement of the range difference of arrival (RDOA) ijd  

are assumed to be zero mean Gaussian and independent for each sensor. We define Σ as 

the covariance matrix of the noise vector, ∆ as the vector of all the exactly measured 

RDOAs, and Γ as the vector containing the noisy measurements:   

ηΓ = ∆ + . 

Assuming that sensor 1 is chosen as the reference node, it can be shown [14] that 

the likelihood function of Γ given the source location s is 

( ) ( )
11

2
11
22

( ) ( )1
,

2

T

N

h s h sf s e
π

−

−

− ΣΓ =
Σ

      (1.1) 

where the RDOA error vector ( )h s is represented by 

( )

2 1 12

3 1 13

1 1

ˆ

ˆ

ˆ
N N

s x s x d

s x s x d
h s

s x s x d

� �− − − −
� �

− − − −� �
= � �
� �
� �− − − −� �

�
,      (1.2) 

the noise covariance matrix is represented by 

 

1 1
2 2

1 1
2 22

1 1
2 2

1
1

1

Nσ

� �
� �
� �Σ =
� �
� �
� �

�

�

� � � �

�

,       (1.3) 

and the ML cost function is the exponent 

( ) ( ) ( )1T
MLJ s h s h s−= Σ .       (1.4) 

 

From Equation (1.1) and Equation (1.4), it can be seen that maximizing the 

likelihood function ( ),f sΓ is equivalent to minimizing the ML cost function ( )MLJ s . 

Hence, the source location estimate M̂Ls is obtained by minimizing the ML cost function  
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( )ˆ arg minML MLs
s J s= . 

The cost function ( )MLJ s  can be minimized using standard numerical 

optimization methods. The Levenberg-Marquardt method [15] provided by MATLAB is 

used to solve the minimization problem.  

 

4. Cramer Rao Lower Bound 

The minimum mean-squared error for any estimate of a non-random parameter is 

given by the Cramer Rao Bound [18]. The Cramer Rao Bound (CRB) gives a lower 

bound on the error variance of any unbiased estimate. The variance of any unbiased 

estimator of s is bounded by 

( )( ) ( )1ˆ ˆ T
E s s s s F s−� �− − ≥
� �

      (1.5) 

where ( )F s  is the Fischer information matrix, expressed as 

( ) ( ) ( )log , log ,
T

f s f s
F s E

s s

� 	� �� �∂ Γ ∂ Γ
 
= � �� �� �∂ ∂� �� �
 

 �

    (1.6) 

where Γ is the vector containing the noisy RDOA measurements and ( ),f sΓ  is the 

likelihood function of Γ given the source location s . 

From Equation (1.1) and Equation (1.6), it can be shown that [14]  

 ( ) ( ) ( ) ( ) ( )1 1

T
Th s h s

F s s s
s s

− −� � � �∂ ∂
= Σ = Σ� � � �∂ ∂� � � �

J J      (1.7) 

where ( )sJ  is the Jacobian matrix 

 ( )

( ) ( )

( ) ( )

2 1

2 1

1

1

T T

T T
N

N

s x s x

s x s x

s

s x s x

s x s x

� �− −
−� �

− −� �
� �= � �
� �− −
� �−

− −� �� �

J � . 
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From Equation (1.5) and Equation (1.7), it can be shown that the minimum 

variance of the estimates of the source position is equal to the trace of the inverse of the 

Fischer information matrix [14] 

 ( )( ) ( )( )1ˆ ˆmin
T

E s s s s tr F s−� �− − =
� �

.     (1.8) 

Each diagonal element of the inverse Fischer information matrix corresponds to 

the minimal variance of one coordinate of the source position. The total variance on the 

estimation of the source position is the trace of the inverse Fischer information matrix. It 

can be shown [14] that the bound on the variance of the source location estimate is 

directly proportional to the noise variance. 

This chapter discussed the two-step source localization technique proposed for 

our counter-sniper applications. The generalized cross correlation scheme used to 

determine the time difference of arrival was briefly discussed and the least-squares 

spherical interpolation (SI) and maximum likelihood (ML) techniques have been 

summarized. In the next chapter, we will present the simulation results of the hybrid 

SI/ML estimation method as well as study the network throughput, delay and jitters of the 

wireless networks. 
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IV. SIMULATION RESULTS AND ANALYSIS 

In this study, the two-step source localization process, as discussed in Chapter III, 

is used to estimate the sniper location through the use of wireless sensor nodes forming a 

distributed sensor network to detect sniper fire.  The generalized cross correlation (GCC) 

technique, as shown in Figure 8, is first used to estimate the time difference of arrival 

(TDOA) of the received acoustic signals at the sensors. The TDOA values, as shown in 

Figure 9, are then converted into range difference of arrival (RDOA) values to be used in 

the hybrid SI/ML estimation method to estimate the source location. 

This chapter presents the simulation model of the two-step source localization 

process, followed by the simulation results of the hybrid SI/ML estimation method using 

the MATLAB package simulating a sniper detection scenario.  The MATLAB code used 

for the simulation is provided in Appendix. The throughput, delay and jitter of the 

wireless sensor network are simulated using the NS-2 network simulator.   

 

A.  SIMULATION MODEL 

A simulation model is developed in MATLAB to study the two-step localization 

process.  Figure 12 shows the simulation block diagram for the study of the two-step 

localization process. The study of the TDOA estimation using the GCC technique is 

carried out by examining the received signals at the sensors. The study of the hybrid 

SI/ML estimation is carried out separately by representing TDOA values as RDOA and 

modeling RDOA estimation errors as Gaussian noise [14]. The acoustic source is not 

explicitly simulated in this work. 

 
Figure 12.   Simulation block diagram for the study of the two-step localization 

process (based on Figure 8 in Chapter III). 

GCC SI ML TDOA 12τ̂   
converted 
to RDOA 12d̂  

ˆSIs

ˆMLs

TDOA estimation Hybrid SI/ML location 
estimation 
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acoustic
source 
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1. Time Difference of Arrival Estimation  

In the simulation model, based on the known positions of the source and sensors, 

time-delayed copies of a source signal are generated for each sensor. We now consider 

the scenario of two sensors (see Figure 9). Figure 13 shows the simulated received 

signals at sensors 1 and 2. The received signal at sensor 2 is the same as the signal 

received at sensor 1 but is time delayed by 12τ = 40 ms.  

The TDOA between the two sensors is determined using the GCC method as has 

been discussed in Chapter III. By applying the GCC technique on the two received 

signals, the TDOA estimate 12τ̂  is determined to be 40.6 ms, which is close to the actual 

value of 12 40τ =  ms.  

  
Figure 13.   Received signals at two sensors. The received signal at sensor 2 is same as 

the signal received at sensor 1 but is time delayed by 12τ = 40 ms. 

 

2. Hybrid SI/ML Location Estimation 

To study the hybrid SI/ML location estimation method proposed in the two-step 

localization process for counter-sniper applications, the TDOA information îjτ  

determined using the GCC technique is now converted into RDOA values ˆ
ijd  using the 

relationship ˆ ˆij ijd τ υ=  where 345υ = m/s is the speed of sound [12].  In the simulation 

received signal at 
sensor 1 

 

received signal at 
sensor 2 

 

TDOA 12τ = 40.0 ms 
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study, however, the GCC method is not used.  Instead, we have chosen to generate the 

measured RDOA values using an additive white Gaussian model as described below. 

The true RDOA dij values can be determined using the known source and sensor 

positions that are defined in the simulation scenario. Figure 14 shows the range difference 

of arrival for a single source and two sensors; sensor 1 is chosen to be the reference 

sensor.  The locations of the source, sensor 2, and sensor 1 are ( ), ,s s sx y z , ( )2 2 2, ,x y z and 

( )0,0,0 , respectively. The distances 1D and 2D  are the Euclidean norms between the 

source and sensor 1 and the source and sensor 2, respectively. The RDOA 12d between 

sensor 1 and sensor 2 is given by 

12 1 2 12d D D τ υ= − =  

where 12 1 2t tτ = − is the magnitude of the difference between the time of arrival 1t  at 

sensor 1 and the time of arrival 2t at sensor 2. 

  

Figure 14.   Range difference of arrival 12d for a single source, sensor 2 and reference 

sensor 1 located at ( ), ,s s sx y z , ( )2 2 2, ,x y z and ( )0,0,0 , respectively. 

 

The measured RDOA values ˆ
ijd  are modeled as  

ˆ
ij ijd d n= +  

where n  is a white Gaussian noise with zero mean and variance 2
nσ . Figure 15 illustrates 

the additive white Gaussian noise model used to generate the measured RDOA values 
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ˆ
ijd .  The true RDOA values ijd are determined using the known sensor and source 

positions as illustrated in Figure 14. 

 

  
Figure 15.   Modeling of range difference of arrival (RDOA). 

 

The ˆ
ijd  values are then used in the hybrid SI/ML estimation method to estimate 

the source location. As discussed in Chapter III, the hybrid SI/ML estimation method 

consists of two stages. As shown in Figure 12, the first stage of the hybrid SI/ML method 

produces the location estimate using the SI method. The SI estimate is then used to 

provide initial values for the iterative ML method used in the second stage. In the 

simulation study, location estimation performance of both SI and ML are studied using 

the performance metrics described below.   

Monte Carlo simulation runs are carried out and the estimated source location 

coordinates îs  are compared with the actual source location coordinates s  to obtain the 

performance metrics of error mean  
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and root mean square (RMS) error given by square root of the second moment 

2 2γ µ σ= +   

where M is the number of simulation runs.  

Figure 16 shows location estimates of 100 Monte Carlo simulation runs of the SI 

and ML methods in a scenario with the source at 100 m from the origin; the sensors are 

spaced 10 m apart. Table 2 shows the error mean µ , error variance 2σ and RMS error γ  

for 24 and 72 sensor nodes for the SI and ML methods. The notations Xs_SI, Ys_SI, 

Zs_SI, Rs_SI and Bearing_SI refer to the individual X, Y, Z range and bearing readings, 

respectively, for the SI method used in the first stage of the hybrid SI/ML method.  

Similarly, the notations Xs_ML, Ys_ML, Zs_ML, Rs_ML and Bearing_ML refer to the 

individual X, Y, Z range and bearing readings, respectively, for the ML method used in 

the second stage.  From Figure 16, the estimated locations do not coincide with the actual 

source location at (0,100,0) . For the case of 24 sensor nodes, the error variance 2σ  is 

large and the position estimates are widely scattered.  For the case of 72 sensor nodes, 

however, the ML method produces estimation with a low RMS error of less than 3 m, and 

the position estimates are closer to the source at (0,100,0) . 
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(a) 

 

(b) 

Figure 16.   Simulation output of the location estimation using the SI and ML methods 
in a scenario with the source at 100 m from the origin and the sensors spaced 10 

m apart: (a) 24 sensor nodes and (b) 72 sensor nodes. The number of Monte Carlo 
runs is 100. 

SI estimates 

ML estimates 

actual source location ( )0,100,0  

SI estimates 

ML estimates 

actual source location ( )0,100,0  
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Number of Nodes Performance Metrics  

24 72 
Xs_SI -1.021 -7.6879 
Ys_SI -2.0383 20.688 
Zs_SI -1.3407 -0.7423 
Rs_SI -1.8955 20.992 

Error Mean 
SIµ  in meters 

Bearing_SI 2.8112 3.7754 
Xs_ML 0.007947 -0.76399 
Ys_ML -0.37713 1.6088 
Zs_ML -0.01764 -0.17491 
Rs_ML -0.32973 1.6182 

Error mean 
MLµ  in meters 

Bearing_ML 1.535 0.54189 
Xs_SI 11.914 11.224 
Ys_SI 359.54 10.753 
Zs_SI 7.5425 4.1336 
Rs_SI 353.59 12.112 

Error variance 
2
SIσ  in square 

meters 

Bearing_SI 11.599 1.9837 
Xs_ML 5.4121 1.2701 
Ys_ML 196.71 5.7233 
Zs_ML 2.828 0.11484 
Rs_ML 195.4 5.7962 

Error variance 
2
MLσ   in square 

meters 

Bearing_ML 1.4399 0.29564 
Xs_SI 3.5996 8.3862 
Ys_SI 19.071 20.946 
Zs_SI 3.0561 2.1644 
Rs_SI 18.899 21.279 

RMS error 
SIγ  in meters 

Bearing_SI 4.4161 4.0296 
Xs_ML 2.3264 1.3615 
Ys_ML 14.03 2.883 
Zs_ML 1.6818 0.38136 
Rs_ML 13.983 2.9008 

RMS error 
MLγ  in meters 

Bearing_ML 1.9484 0.76765 
Table 2. Mean µ , variance 2σ , and RMS value γ  of the position errors for the SI and ML 

methods in a scenario with the source at 100 m from the origin and the sensors 
spaced 10 m apart. The number of Monte Carlo runs is 100.  
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B. HYBRID SI/ML ESTIMATION METHOD SIMULATION 

The effects of the number of sensor nodes, inter-sensor spacing, topology, noise, 

source-sensor distance, sensor node failure, and location perturbation on the estimation 

performance of the hybrid implementation of the closed-form least-squares spherical 

interpolation (SI) method and the iterative maximum likelihood (ML) method are studied.  

The main objective of this portion of the simulation is to study suitable wearable and 

vehicular sensor node configurations for the counter-sniper application as well as to 

determine the required number of sensors and the inter-sensor spacing to accurately 

estimate a source of sniper fire located a few hundred meters away. 

Figure 17 shows the schematic of a sensor node topology using the three-

dimensional XYZ Cartesian coordinate system. By setting different source and sensor 

positions, different simulation scenarios can be constructed.  Note that for the sensor 

node topology with regular inter-sensor spacing, a simplified notation of K L M× ×  is 

used to describe a topology that has ,  and K L M sensor nodes along the 

,  and X Y Z plane, respectively. 

 

 

Figure 17.   Schematic of the sensor topology using the three-dimensional XYZ 
Cartesian coordinate system. White and grey circles represent sensors that are 

placed in the two-dimensional XY and the three-dimensional XYZ planes, 
respectively.   
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1. Effect of Number of Sensor Nodes 

The effect of the number of sensor nodes on the location estimation performance 

is studied using the scenario of a source located 100 m from the origin; the sensors are 

spaced 10 m apart. Several topologies are formed using 9 (i.e., 3×1×3), 12 (i.e., 2×2×3), 

24 (i.e., 4×2×3), 36 (i.e., 6×2×3), 48 (i.e., 8×2×3), 60 (i.e., 10×2×3) and 72 (i.e., 

12×2×3) sensor nodes. A 3×1×3 topology represents a single row of three sensor 

columns with three sensors each; a 12×2×3 topology represents two rows of twelve 

sensor columns with three sensors each. 

Figure 18 and Table 3 show the error mean µ , error variance 2σ and RMS error 

γ for different sensor node topologies. For the cases of less than 12 sensor nodes, the 

errors of the ML were very large and are not shown in the plots in Figure 18.  

It can be seen that as the number of sensor nodes is increased, the error variance 
2σ  decreases for both SI and ML methods used in the two stages of the hybrid SI/ML 

algorithm. For example, when the number of sensors increases from 24 to 48, the error 

variance 2σ for the Rs values in the SI stage decreases quickly from 354 m2 to 36 m2 

(approximately).  The error variance 2σ of the ML stage is lower than the first SI stage 

and decreases from 195 m2 to 7 m2 (approximately).  It is observed that when the error 

variance 2σ of the SI method in the first stage is high (i.e., for the case of 9 and 12 sensor 

nodes), it led to highly inaccurate results for the ML method in the second stage.   

The effect of the bias introduced by the SI method is clearly seen when the 

number of sensors is very high (i.e., 48 sensors or more). However, the ML method in the 

second stage is tolerant to the bias introduced by the SI stage. For example, the error 

mean µ for Rs values using the SI method increased from 9 m to 21 m (approximately) 

when the number of sensors increased from 48 to 72; however, the RMS error γ  for Rs 

values for the ML method remained below 3.1 m. 
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Mean Error vs Number of Sensors
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Variance Error vs Number of Sensors
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RMS Error vs Number of Sensors
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(c) 

 
Figure 18.   Effect of number of sensor nodes on the location estimation performance 

of the hybrid SI/ML method: (a) error mean µ , (b) error variance 2σ , and (c) 
RMS error γ . The readings for 9 and 12 sensors are not shown due to highly 

erroneous results. Results are based on 100 Monte Carlo runs.  
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Number 
of Nodes 9 12 24 36 48 60 72 
Xs_SI -0.99945 -0.04349 -1.021 -1.9582 -2.8292 -4.7036 -7.6879 
Ys_SI -26.868 -30.456 -2.0383 5.0957 8.7197 13.989 20.688 
Zs_SI 1.4638 1.8704 -1.3407 -1.6174 -1.3639 -1.1141 -0.7423 
Rs_SI -23.144 -26.308 -1.8955 5.2157 8.8395 14.155 20.992 

Error 
mean SIµ  
in meters 

Bearing
_SI 21.487 22.94 2.8112 2.3622 2.2773 2.7098 3.7754 
Xs_ML -3.49E+08 1.28E+09 0.007947 -0.77733 -0.52786 -0.5967 -0.76399 
Ys_ML 1.60E+08 5.49E+08 -0.37713 2.9459 1.5521 1.4334 1.6088 
Zs_ML -1.91E+08 7.18E+08 -0.01764 -0.34894 -0.18401 -0.1626 -0.17491 
Rs_ML 4.37E+08 1.57E+09 -0.32973 2.9664 1.5599 1.4398 1.6182 

Error 
mean MLµ  
in meters 

Bearing
_ML 10.497 23.621 1.535 0.97759 0.54588 0.46911 0.54189 
Xs_SI 10.163 7.3159 11.914 12.586 12.01 11.316 11.224 
Ys_SI 2088.6 2156.9 359.54 75.292 34.693 18.157 10.753 
Zs_SI 22.946 23.819 7.5425 6.8466 5.3038 4.4692 4.1336 
Rs_SI 1560.7 1591.6 353.59 75.748 35.639 19.304 12.112 

Error 
variance 

2
SIσ  in 

square 
meters Bearing

_SI 1970.4 2098.1 11.599 1.8786 1.8306 1.9483 1.9837 
Xs_ML 1.52E+18 4.12E+16 5.4121 2.6975 1.0198 0.80249 1.2701 
Ys_ML 2.76E+17 7.71E+17 196.71 32.131 6.962 4.2166 5.7233 
Zs_ML 4.79E+17 7.32E+17 2.828 0.90724 0.30799 0.15477 0.11484 
Rs_ML 2.26E+18 1.54E+18 195.4 32.201 6.9973 4.2598 5.7962 

Error 
variance 

2
MLσ   in 

square 
meters Bearing

_ML 447.78 233.55 1.4399 0.34273 0.20057 0.17955 0.29564 
Xs_SI 3.341 2.7051 3.5996 4.0523 4.4737 5.7827 8.3862 
Ys_SI 53.014 55.538 19.071 10.063 10.523 14.624 20.946 
Zs_SI 5.0089 5.2266 3.0561 3.0761 2.6766 2.3897 2.1644 
Rs_SI 45.786 47.788 18.899 10.146 10.667 14.821 21.279 

RMS error 
SIγ  in 

meters 

Bearing
_SI 49.316 51.228 4.4161 2.7311 2.6489 3.0482 4.0296 
Xs_ML 1.28E+09 2.12E+08 2.3264 1.8171 1.1395 1.0764 1.3615 
Ys_ML 5.49E+08 9.20E+08 14.03 6.3883 3.0612 2.5043 2.883 
Zs_ML 7.18E+08 8.98E+08 1.6818 1.0144 0.58468 0.42569 0.38136 
Rs_ML 1.57E+09 1.30E+09 13.983 6.4032 3.0709 2.5165 2.9008 

RMS error 
MLγ  in 

meters 

Bearing
_ML 23.621 17.475 1.9484 1.1395 0.70609 0.63215 0.76765 

Table 3. Effect of number of sensor nodes on the location estimation performance of the 
hybrid SI/ML method:  error mean µ , error variance 2σ , and RMS error γ . The 

number of Monte Carlo runs is 100. 

 



35 

Another scenario is simulated to represent a number of soldiers wearing two 

sensors spaced 1 m apart.  The sensors on the soldier are assumed to be mounted one 

each on the foot and the helmet. Each soldier is stationed 10 m apart and the source is at 

100 m from the origin.  This leads to a 3-D sensor node arrangement, and the scenario 

considered the sensor node arrangements in the range from 4×2×2 to 12×2×2. A 

4×2×2 indicates a total eight soldiers wearing two sensors each in two rows of four 

soldiers each.  

Figure 19 shows the error mean, error variance and RMS error for the different 

number of soldiers. It can be seen that the estimation accuracy in the Z direction is poorer 

than in the X and Y directions. For example, for the case of 5×2×2, the RMS errors for 

the Xs, Ys, and Zs readings at the ML stage are 3 m, 10 m and 14 m, respectively.  The 

poorer accuracy in the Z direction is due to the constraint that the wearable sensors are 

only 1 m apart in the Z direction.  

It is observed that by deploying more sensor nodes, the accuracy of the estimation 

can be improved. For example, twelve soldiers with two sensors each (i.e., 6×2×2) can 

detect a sniper 100 m away with an RMS error γ  of 3 m, 8 m and 15 m for the Xs, Ys, 

and Zs readings, respectively, at the ML stage.  However, when the number of soldiers is 

greater than eighteen, the larger bias introduced by the SI method in the first stage may 

lead to less accurate estimates for the ML stage, especially for the Zs values. For 

example, forty-eight soldiers (12×2×2) can detect a sniper 100 m away with an RMS 

error γ  of 3 m, 4 m and 17 m for the Xs, Ys, and Zs readings, respectively, using the ML 

method. 
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Mean Error vs Number of Nodes
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RMS Error vs Number of Nodes
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(c) 

Figure 19.   Performance of the hybrid SI/ML method for simulated wearable 
configuration (two sensors per soldier) with different number of soldiers: (a) error 
mean µ , (b) error variance 2σ , and (c) RMS error γ . Results are based on 100 

Monte Carlo runs. 

 

2. Effect of Inter-Sensor Spacing 

To study the effect of inter-sensor spacing on the location estimation 

performance, a scenario consisting of 24 sensor nodes (6×2×2) is simulated.  The source 

is situated 100 m from the origin and the inter-sensor spacing is varied from 10 m to 50 

m.  Figure 20 and Table 4 show the error mean µ , error variance 2σ  and RMS error γ  

for different inter-sensor spacing. 

It is observed that when the inter-sensor spacing increases, the estimation 

accuracy increases. The error variance 2σ  decreases rapidly when the inter-sensor 

spacing is increased. For example, at the inter-sensor spacing of 10 m, the error variance 
2σ  of the Rs values obtained at the ML stage was 195 m2; at the inter-sensor spacing of 

20 m, the error variance 2σ quickly decreased to 7.6 m2.  
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Mean Error vs Inter-node Spacing
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(c) 
Figure 20.   Effect of inter-sensor spacing on location estimation performance of the 

hybrid SI/ML method : (a) error mean µ , (b) error variance 2σ , and (c) RMS 
error γ . Results are based on 100 Monte Carlo runs. 

 
µ

 in
 m

et
er

s 

 

γ
in

 m
et

er
s 

 

 
2

σ
in

 s
qu

ar
e 

m
et

er
s 



39 

 

 

Inter-
sensor 

Spacing 1 m 5 m 10 m 20 m 30 m 40 m 50 m 
Xs_SI 1.4874 3.8611 -1.021 -3.9662 -5.0268 -6.0904 -7.0891
Ys_SI -96.052 -56.341 -2.0383 6.8829 5.3421 4.125 2.4439
Zs_SI 1.014 2.3276 -1.3407 -3.667 -5.3771 -7.7525 -10.657
Rs_SI -92.607 -49.787 -1.8955 7.0553 5.6146 4.5986 3.2445

Mean 
error SIµ  
in meters 

Bearing_ 
SI 75.399 42.603 2.8112 2.8987 3.9867 5.4073 7.1224
Xs_ML -6.54E+07 4.01E+07 0.00795 -1.0804 -0.6564 -0.30166 -0.04878
Ys_ML 1.11E+08 2.03E+08 -0.37713 3.4316 1.5148 0.55075 0.055739
Zs_ML -2.82E+07 3.03E+06 -0.01764 -0.75852 -0.50311 -0.24626 -0.04254
Rs_ML 1.35E+08 2.46E+08 -0.32973 3.4495 1.5218 0.55344 0.056847

Mean 
error 

MLµ  in 
meters 

Bearing_
ML 26.764 10.791 1.535 0.91882 0.57074 0.34763 0.2187
Xs_SI 0.054935 1.19E+01 11.914 5.0661 2.1157 0.99307 0.451
Ys_SI 244.13 1.97E+03 359.54 14.286 1.6202 0.1256 0.014497
Zs_SI 0.024743 5.78E+00 7.5425 3.6117 1.5424 0.7841 0.41151
Rs_SI 208.03 1.38E+03 353.59 15.188 1.9432 0.22131 0.002205

Error 
variance 

2
SIσ  in 

square 
meters Bearing_ 

SI 3060.8 3297.6 11.599 1.9415 0.96781 0.4869 0.25618
Xs_ML 1.64E+16 7.94E+16 5.4121 1.2418 0.44208 0.21931 0.11579
Ys_ML 4.77E+16 2.39E+17 196.71 7.6353 0.97013 0.20748 0.032234
Zs_ML 4.07E+15 1.57E+16 2.828 0.81316 0.32197 0.17749 0.10389
Rs_ML 6.74E+16 3.16E+17 195.4 7.7062 0.98182 0.2098 0.032316

Error 
variance 

2
MLσ   in 

square 
meters Bearing_

ML 709.58 174.95 1.4399 0.27527 0.12701 0.055 0.025056
Xs_SI 1.64E+16 5.18E+00 3.5996 4.5604 5.233 6.1714 7.1209
Ys_SI 4.77E+16 7.17E+01 19.071 7.8524 5.4917 4.1402 2.4469
Zs_SI 4.07E+15 3.35E+00 3.0561 4.1302 5.5186 7.8029 10.676
Rs_SI 6.74E+16 6.21E+01 18.899 8.0601 5.7851 4.6226 3.2449

RMS 
error SIγ  
in meters 

Bearing_ 
SI 709.58 71.503 4.4161 3.2162 4.1063 5.4522 7.1404
Xs_ML 1.44E+08 2.85E+08 2.3264 1.5521 0.93432 0.55705 0.34377
Ys_ML 2.45E+08 5.29E+08 14.03 4.4058 1.8069 0.71471 0.18799
Zs_ML 6.98E+07 1.25E+08 1.6818 1.1783 0.75834 0.48799 0.32511
Rs_ML 2.93E+08 6.14E+08 13.983 4.4278 1.816 0.7184 0.18854

RMS 
error 

MLγ  in 
meters 

Bearing_
ML 37.761 17.07 1.9484 1.0581 0.67287 0.41934 0.26998

 
Table 4. Effect of inter-sensor spacing on location estimation performance of the hybrid 

SI/ML method: error mean µ , error variance 2σ , and RMS error γ . Results are 
based on 100 Monte Carlo runs. 
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Additional simulations are carried out to take into account the limited vertical 

inter-sensor spacing when the sensors are worn on soldiers or installed on vehicles.  It is 

assumed that there is limited height of less than 2 m for the soldiers and less than 7 m for 

vehicles with elevated masts. 

 

a. Wearable Configuration 

To study the wearable configuration for the soldiers, another scenario is 

simulated to represent twelve soldiers (6×2×2) with two sensors per soldier for different 

Z-spacing values of 1.0 m, 1.25 m, 1.5 m, 1.75 m and 2 m.  Figure 21 shows the RMS 

error γ  for the different Z-spacing values. 

It can be seen that the RMS error decreases when the Z-spacing is 

increased.  For example, the RMS errors for Zs readings at the ML stage decreased from 

15 m to 8 m when the Z-spacing was increased from 1 m to 2 m; however, the RMS 

errors for Xs and Ys readings decreased slightly from 3 m and 8 m to 2 m and 7 m, 

respectively. Hence, it is recommended that the two sensors worn on the soldiers should 

be separated as far apart as practically possible; however, considering the constraint of 

the average height of a person ranging from 1.5 m to 2 m, the assumption of 1 m for the 

Z-spacing separation, say between the head to the waist level, is a reasonable assumption 

for a wearable configuration.   
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RMS error vs z-spacing
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Figure 21.   RMS error γ for different values of Z-spacing for 6×2×2 sensor nodes, 

representing a wearable configuration.  Results are obtained by averaging output 
from 100 Monte Carlo simulations. 

 
b. Vehicular Configuration 

A vehicular configuration can provide a larger vertical inter-sensor 

spacing compared to the wearable configuration.  The second sensor can be mounted on 

an elevated mast to provide a larger sensor spacing in the Z direction and will improve 

the estimation accuracy.   

To study the vehicular configuration, the scenario representing eight 

vehicles (4×2×2) with two sensors installed vertically on each vehicle is simulated.  The 

vehicles are spaced 10 m apart and the source is situated 100 m from the origin. The Z-

spacing values are varied from 1 m to 7 m. Figure 22 shows the RMS error for different 

Z-spacing values.  

When the Z-spacing is increased, the estimation accuracy increases.  For 

example, with a Z-spacing of 3 m, the RMS error γ  at the ML stage was 3 m, 14 m and 4 

m for Xs, Ys, and Zs readings, respectively; with a Z-spacing of 7 m, the RMS errors  

decreased to 2 m, 12 m and 2 m for Xs, Ys, and Zs readings, respectively.  

 

Z-spacing in meters 

 
γ

in
 m

et
er

s 



42 

RMS vs z spacing
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Figure 22.   RMS error γ  for different values of Z-spacing, from 1 m to 7 m, 

representing a vehicular configuration. Results are obtained by averaging output 
from 100 Monte Carlo simulations. 

 

A similar scenario consisting of eight vehicles is repeated, but the 

simulation is carried out with different values of inter-vehicle spacing, from 10 m to 40 

m. Figure 23 shows the RMS error for different vehicular spacing values.   

It can be seen that the estimation accuracy can be improved by increasing 

the inter-vehicle spacing beyond 10 m.  For example, for an inter-vehicle spacing of 10 

m, the RMS error at the ML stage was 15 m for the Rs readings; for an inter-vehicle 

spacing of 40 m, the RMS error was significantly reduced to 4 m for the same reading. 

In this scenario, however, wireless links that can cover a longer physical 

range will be needed. For instance, the IEEE 802.11 WLAN network with an effective 

range of up to 100 m can be used instead of the IEEE 802.15.4 WPAN that has an 

effective range of up to only 10 m.  

 

 
γ

in
 m

et
er

s 



43 

RMS Error vs Inter-vehicular Spacing
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Figure 23.   RMS error γ for different values of inter-vehicular spacing of 10 m, 20 m, 

30 m, and 40 m, representing a vehicular configuration. Results are obtained by 
averaging output from 100 Monte Carlo simulations. 

 

3. Effect of Topology 

After studying the effect of the number of sensor nodes and the inter-sensor 

spacing, further simulations are carried out to find out a suitable sensor topology for the 

counter-sniper applications and the required number of sensors to be worn on soldiers. To 

study the effect of topology on the location estimation performance, different two-

dimensional (4×2×1 and 8×2×1) and three-dimensional topologies (4×2×2 and 

4×2×3) are simulated.  Figure 24 shows four different simulated topologies used in the 

study. The 4×2×1 and 8×2×1 topologies refer to the layout of eight and sixteen sensors 

on the XY plane, respectively. The 4×2×2 and 4×2×3 topologies refer to the layout of 

eight sensor columns with two sensors and three sensors, respectively, along the Z axis.  

Each sensor is separated by a distance of 10 m. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 24.   Different sensor topologies: (a) 4×2×1, (b) 8×2×1, (c) 4×2×2 and (d) 
4×2×3. White and grey circles represent sensors that are placed in the two-

dimensional XY and three-dimensional XYZ planes, respectively. 
 

Figure 25 shows the RMS errors for the four sensor topologies considered. 

Simulation results indicate that although the estimation errors are low in the X direction 

for the case of eight sensors lying on the XY plane (i.e., 4×2×1 topology), the estimation  
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errors in the Y and Z directions are relatively large. For example, RMS error of the Xs, Ys 

and Zs values at the ML stage for the 4×2×1 topology was 10 m, 40 m and 30 m, 

respectively. 

 

RMS error vs Sensor Topology
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Figure 25.   RMS error γ  for different two-dimensional (4×2×1 and 8×2×1) and 
three-dimensional topologies (4×2×2 and 4×2×3). Results are obtained by 

averaging output from 100 Monte Carlo simulations. 
 

The same observation of large estimation errors in the Y and Z directions can be 

seen when the number of sensors lying on the XY plane is increased from eight to sixteen 

(i.e., 8×2×1 topology). For example, the RMS error for the Xs, Ys and Zs values at the 

ML stage for the 8×2×1 topology was 15 m, 35 m and 30 m, respectively. However, it is 

observed that when the number of sensor nodes in the Z direction is increased (i.e., 

4×2×2 and 4×2×3 topologies), there is significant improvement in the estimation 

accuracy in the all three directions. For example, the 4×2×1 and 8×2×1 topologies 

produce the largest error of 30 m in the Zs readings at the ML stage while the 4×2×2 and 

4×2×3 topologies produce the smallest error of 3 m in the Zs readings. Hence, it is 

recommended that the sensor topology should be well represented in all three directions 

to obtain good estimation accuracy in all three dimensions. 

Another scenario is carried out to represent topologies for sensors worn on 

soldiers. For wearable sensors, it is assumed that there is a limited height of less than 2 m 
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where the sensors can be worn on the soldier’s foot and helmet. The simulation is carried 

out by having one topology of two wearable sensors spaced 1 m to 1.5 m apart and 

another topology of three wearable sensors spaced 0.5 m to 0.75 m apart. 

Figure 26 shows the RMS error γ for different number of vertical sensors per 

soldier: two wearable sensors spaced 1 m to 1.5 m apart (6×2×2) and three wearable 

sensors spaced 0.5 m to 0.75 m apart (6×2×3).  It can be seen that the estimation 

accuracy is comparable for the two-sensor (6×2×2) and three-sensor wearable 

configurations (6×2×3). For example, the topologies of 6×2×2 (Z-spacing = 1 m) and 

6×2×3 (Z-spacing = 0.5 m) produced similar RMS errors of 3 m, 8 m and 15 m for Xs, 

Ys and Zs readings, respectively, at the ML stage. Similarly, the topologies of 6×2×2 (Z-

spacing = 1.5 m) and 6×2×3 (Z-spacing = 0.75 m) produced similar RMS errors of 3 m, 

7 m and 11 m for Xs, Ys and Zs readings, respectively. Thus, it is recommended that two 

sensors per soldier will be sufficient. 

RMS Error vs Number of Nodes per Soldier
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Figure 26.   RMS error γ for two-sensor (6×2×2 with Z-spacing of 1 m and 1.5 m) 

and three-sensor (6×2×3 with Z-spacing of 0.5 m and 0.75 m) topologies, 
representing wearable configuration. Results are obtained by averaging output 

from 100 Monte Carlo simulations. 
 
4. Effect of Noise 

Measurement noise is expected to have a significant effect on the estimation 

accuracy [14]. The variance in acoustic travel time 2
tσ along a ray path from source to 

receiver is proportional to the propagation distance sR  as given by [3] 
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where L represents the correlation length of atmospheric turbulence, υ  is the speed of 

sound and 2χ is the mean-squared sound-speed fluctuations near the ground.  However, 

the proportionality property is valid only for short distances of less than 60 m.  A higher 

order approximation is required to provide a more realistic estimation. In this study, the 

RDOA noise variance is modeled as a second-order approximation 

2 2
n saRσ =  

where a  is a constant that is set to 0.01 for the study.  

To study the effect of noise on the location estimation performance, a scenario 

consisting of 24 sensor nodes (6×2×2), as shown in Figure 27, with a 10-m spacing 

between adjacent sensors is simulated. The source is placed 100 m from the origin.   

 
Figure 27.   Simulated scenario of 24 sensor nodes (6×2×2) with a 10-m spacing 

between adjacent sensors is simulated. The source is placed 100 m from the 
origin. 

 

Figure 28 and Table 5 show the error mean µ , error variance 2σ , and RMS error 

γ  for different noise levels. 
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Mean Error vs Noise
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Variance Error vs Noise
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(b) 

RMS Error vs Noise
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(c) 

Figure 28.   Effect of noise on location estimation performance of the hybrid SI/ML 
method with different noise variance 2

nσ for: (a) error mean µ , (b) error variance 
2σ , and (c) RMS error γ , representing a 6×2×2 topology. Results are based on 

100 Monte Carlo runs. 
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Noise 
variance 2

nσ  
0.001 0.01 0.1 1 

Xs_SI -2.5658 -2.5682 -2.5822 -1.021 
Ys_SI 11.133 11.141 11.115 -2.0383 
Zs_SI -2.1288 -2.1309 -2.1485 -1.3407 
Rs_SI 11.183 11.191 11.168 -1.8955 

Error mean 
SIµ  in meters 

Bearing_SI 1.7183 1.7198 1.7261 2.8112 
Xs_ML -2.1565 -1.4044 -1.4486 0.007947 
Ys_ML 10.818 9.0713 9.2698 -0.37713 
Zs_ML -1.6793 -0.95559 -0.97037 -0.01764 
Rs_ML 10.854 9.0848 9.2844 -0.32973 

Error mean 
MLµ  in meters 

Bearing_ML 1.4118 0.89127 0.91088 1.535 
Xs_SI 2.57E-05 0.002569 0.25342 11.914 
Ys_SI 0.000386 0.038694 3.8292 359.54 
Zs_SI 1.84E-05 0.001845 0.18198 7.5425 
Rs_SI 0.000394 0.039445 3.9012 353.59 

Error variance 
2
SIσ  in square 

meters 

Bearing_SI 9.72E-06 0.000973 0.09733 11.599 
Xs_ML 2.66E-01 0.04107 0.1096 5.4121 
Ys_ML 1.837 1.1165 3.4264 196.71 
Zs_ML 2.88E-01 0.02666 0.063778 2.828 
Rs_ML 1.8589 1.1228 3.4485 195.4 

Error variance 
2
MLσ   in 

square meters 

Bearing_ML 1.39E-01 0.017059 0.041712 1.4399 
Xs_SI 2.5658 2.5687 2.6308 3.5996 
Ys_SI 11.133 11.143 11.286 19.071 
Zs_SI 2.1288 2.1313 2.1905 3.0561 
Rs_SI 11.183 11.193 11.341 18.899 

RMS error 
SIγ  in meters 

Bearing_SI 1.7183 1.7201 1.7541 4.4161 
Xs_ML 2.2173 1.419 1.4859 2.3264 
Ys_ML 10.902 9.1327 9.4528 14.03 
Zs_ML 1.7629 0.96944 1.0027 1.6818 
Rs_ML 10.939 9.1464 9.4683 13.983 

RMS error 
MLγ  in meters 

Bearing_ML 1.4603 0.90079 0.9335 1.9484 
Table 5. Effect of noise on the location estimation performance of the hybrid SI/ML 

method with different noise variance 2
nσ  for: error mean µ , error variance 2σ , 

and RMS error γ , representing a 6×2×2 topology. Results are obtained by 
averaging output from 100 Monte Carlo simulations. 

 

It can be seen that as the noise variance 2
nσ  increases, the error variance 2σ  

increases. For example, the error variance 2σ  for the Rs value at the ML stage increased 

from 1.1 m2 to 3.4 m2 when the noise variance 2
nσ  increased from 0.1 to 1.   
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Although it is expected that a noisier environment will lead to greater estimation 

errors, it is interesting to note that at high noise levels (i.e., 2 1nσ = ), ML actually produces 

an error mean that is better than for low noise levels (i.e., 2
nσ = 0.001, 0.01 or 0.1). For 

example, the error mean for the Rs values for the ML stage are 11 m and -2 m for 2
nσ  

values of 0.1 and 1, respectively. This anomaly is likely due to the inaccurate SI value 

that is used as the initial value for the ML stage.  At low noise levels, the SI stage 

introduces large bias of approximately 11 m and leads to similarly large errors of 

approximately 10 m for the ML stage. The smaller bias of 2 m introduced by SI at high 

noise levels actually leads to better estimation accuracy in the ML stage. 

 

5. Effect of Source-Sensor Distance  

To study the effect of the source-sensor distance on the location estimation 

performance, a scenario consisting of 24 sensor nodes (6×2×2) is simulated. The 

distance between the source and the sensor is varied from 10 m to 200 m. Figure 29 and 

Table 6 show the error mean µ , error variance 2σ , and RMS error γ  for the various 

source-sensor distances in this range.  

As the source-sensor distance increases, the error variance 2σ  increases. It is seen 

that the error variance of the SI method in the first stage increases much rapidly than that 

in the ML stage.  For example, at the first SI stage, the error variance of Rs value 

increases from 4 m2 to 354 m2 when the source-sensor distance is increased from 50 m to 

100 m; the error variance at the ML stage increases from 2 m2 to 195 m2, 

correspondingly.   

However, when the source-sensor distance increases from 150 m and beyond, the 

ML method produces very divergent results due to the erroneous estimates provided by 

the SI method and are not shown in Figure 28. 
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Mean Error vs Source-Sensor Spacing
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(a) 

Variance Error vs Source-Sensor Spacing
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(b) 

RMS Error vs Source-Sensor Spacing
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(c) 
 

Figure 29.   Effect of source-sensor distance on location estimation performance of the 
hybrid SI/ML method: (a) error mean µ , (b) error variance 2σ , and (c) RMS 
error γ , representing a 6×2×2 topology. Results are obtained by averaging 

output from 100 Monte Carlo simulations. Readings for 150 m and beyond are not 
shown due to erroneous results.  
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Source-
sensor 
distance 

10 m 50 m 100 m 150 m 200 m 

Xs_SI 0.55436 -1.9831 -1.021 3.6574 7.7222 
Ys_SI -2.3537 3.4415 -2.0383 -48.569 -112.68 
Zs_SI -1.6988 -1.8335 -1.3407 1.7466 4.6552 
Rs_SI -2.1474 3.5276 -1.8955 -45.186 -99.574 

Error mean 
SIµ  in meters 

Bearing_
SI 

13.165 2.8987 2.8112 16.813 42.603 

Xs_ML -0.01412 -0.54358 0.007947 1.21E+08 2.76E+07 
Ys_ML 0.005905 1.7556 -0.37713 3.36E+08 4.72E+08 
Zs_ML -0.0134 -0.38831 -0.01764 -7.11E+07 -1.56E+08 
Rs_ML 0.005981 1.7648 -0.32973 4.27E+08 5.73E+08 

Error mean 
MLµ  in meters 

Bearing_
ML 

0.15755 0.93126 1.535 5.4505 10.156 

Xs_SI 0.004201 1.2665 11.914 36.192 47.508 
Ys_SI 0.005741 3.5715 359.54 3341.5 7866.5 
Zs_SI 0.001391 0.90292 7.5425 18.249 23.135 
Rs_SI 0.005977 3.7969 353.59 2707.9 5533.6 

Error variance 
2
SIσ  in square 

meters 

Bearing_
SI 

0.000324 1.9415 11.599 1240 3297.6 

Xs_ML 0.000607 0.32603 5.4121 2.18E+18 5.71E+17 
Ys_ML 0.000151 2.001 196.71 3.46E+18 1.32E+18 
Zs_ML 0.000558 0.21051 2.828 1.70E+17 1.96E+17 
Rs_ML 0.000149 2.0198 195.4 5.75E+18 2.00E+18 

Error variance 
2
MLσ   in 

square meters 

Bearing_
ML 

0.025758 0.28883 1.4399 86.278 144.19 

Xs_SI 0.55813 2.2802 3.5996 7.0404 10.351 
Ys_SI 2.3549 3.9262 19.071 75.501 143.4 
Zs_SI 1.6992 2.0651 3.0561 4.6151 6.6938 
Rs_SI 2.1487 4.03 18.899 68.918 124.29 

RMS error 
SIγ  in meters 

Bearing_
SI 

13.165 3.2162 4.4161 39.021 71.503 

Xs_ML 0.0284 0.78836 2.3264 1.48E+09 7.56E+08 
Ys_ML 0.013616 2.2546 14.03 1.89E+09 1.24E+09 
Zs_ML 0.027152 0.60108 1.6818 4.18E+08 4.70E+08 
Rs_ML 0.013599 2.2659 13.983 2.44E+09 1.53E+09 

RMS error 
MLγ  in meters 

Bearing_
ML 

0.2249 1.0752 1.9484 10.77 15.727 

Table 6. Effect of source-sensor distance on location estimation performance of the hybrid 
SI/ML method: error mean µ , error variance 2σ , and RMS error γ , representing 

a 6×2×2 topology. Results are obtained by averaging output from 100 Monte 
Carlo simulations. 
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Another scenario is carried out to simulate the effect of source-sensor distance on 

the location estimation performance for a group of soldiers equipped with two sensors 

each. A scenario consisting of 24 sensors (6×2×2) is simulated to represent twelve 

soldiers who are individually equipped with two sensors that are spaced 1 m apart on 

their body.  Each soldier is stationed 10 m apart, and the source is situated 50 m to 200 m 

from the origin.  Figure 30 shows the RMS error γ  for the 6×2×2 soldier configuration 

with different source-sensor distances: 50 m, 100 m, 150 m and 200 m. 

It is seen that when the source-sensor distance increases, the RMS error γ  

increases.  For example, at a source-sensor distance of 100 m, the RMS error γ for Xs, Ys 

and Zs readings at the ML stage is 3 m, 8 m and 15 m, respectively; at a source-sensor 

distance of 200 m, the RMS error γ for Xs, Ys and Zs readings at the ML stage is 8 m, 45 

m and 32 m, respectively.  
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Figure 30.   RMS error γ for different values of source-sensor distances: 50 m, 100 m, 
150 m and 200 m, representing a 6×2×2 wearable configuration. Results are 

obtained by averaging output from 100 Monte Carlo simulations. 

 

6.  Effect of Node Failures 

Node failures can occur when a sensor’s battery runs out or the sensor may be 

asleep when the source is detected.  The scenario representing twelve soldiers with two  
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sensors each (6×2×2) is studied. Each soldier is stationed 10 m apart, and the source is 

100 m from the origin.  Figure 31 shows the RMS error as a function of the number of 

sensor node failures. 

The RMS error γ steadily increases as the number of sensor node failures 

increases from two to twelve.  For example, the RMS error for the Rs value increases 

gradually from 10 m to 20 m when the number of sensor node failures increases from 

zero to ten. This demonstrates the advantage of having distributed wireless sensor 

networks where sensor node failures lead to a graceful degradation of performance and 

not a sudden system failure.  Note that drastic increase in the RMS error γ  at the SI stage 

is observed only when there are twelve or more sensor node failures (i.e., 50 % sensor 

node failure).  At such a high failure rate, the SI method used in the first stage of the 

hybrid SI/ML method gives a large RMS error of 50 m for the Rs value, but the ML 

method in the second stage is able to tolerate the errors and produced RMS errors for the 

Rs value of less than 10 m.  

 
 

RMS error vs Number of Node Failures
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Figure 31.   RMS error γ  as the function of the number of sensor node failures, 
representing a 6×2×2 wearable configuration. Results are obtained by averaging 

output from 100 Monte Carlo simulations. 
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7. Effect of Location Perturbations 

In field deployment, it is expected that there will be some perturbation (or slight 

deviation) in the sensor locations as perfectly straight line troop formation or exact 

symmetry is usually not possible.  This perturbation effect on location estimation 

performance is studied by introducing some degree of randomness to the sensor 

positions. The standard deviation of the random distance between soldiers is varied from 

0.01 to 1; the standard deviation of the two sensor locations on a soldier is set to 0.01.  

Figure 32 shows the RMS error γ for different values of standard deviations of location 

perturbations.  

It is seen that RMS error γ is similar for low and high standard deviations of 

location perturbation.  For example, the RMS error for the Rs value is between 7 m to 9 

m for the ML method at the second stage of the hybrid SI/ML algorithm for the various 

levels of location perturbation standard deviations. This shows that location perturbation 

has limited effect on the estimation accuracy. This clearly illustrates the flexibility of the 

network configuration and demonstrates the suitability for potential field deployment. 
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Figure 32.   RMS error γ for different values of standard deviations of location 

perturbations, representing a 6×2×2 wearable configuration 
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C. WIRELESS NETWORK SIMULATION 

The wireless network simulation is carried out using NS-2 simulator, a discrete 

event simulator suitable for networking research. The wireless extension and the 802.15.4 

extension [19] are used to conduct the studies on scenarios using an IEEE 802.11-based 

wireless local area network (WLAN) and an IEEE 802.15.4-based wireless personal area 

network (WPAN). Figure 33 shows the protocol architecture of the NS-2 wireless 

extension to support WPAN simulation. 

 
Figure 33.   The protocol architecture of the IEEE 802.15.4 WPAN extension in NS-2 

(from [8]). 

 

A scenario of a wireless sensor network consisting of 26 sensor nodes situated 

over a 50 m×50 m area is simulated using NS-2.  Figure 34 shows the layout of the 

sensors defined for the scenario used for the simulation.  The traffic scenario of twelve 

sensor nodes (#1 to #12) sending Constant Bit Rate (CBR) traffic to a central node (#19) 

at the same time is simulated. The Adhoc On-demand Distance Vector (AODV) routing 
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protocol [20] is run on top of the 802.15.4 MAC and PHY layers to study the 

performance of WPAN networks. Similarly, the AODV routing protocol is run on top of 

802.11 MAC and PHY layer to study the performance of WLAN networks.   

 
 

Figure 34.   NS-2 WPAN and WLAN Simulation Scenario: 26 sensor nodes in a 50 
×50 m2 area. The Time Interval Length (TIL) used in the simulation is equal to 

one second. 
 
 
1. Sending/Receiving Throughput 

Figure 35 shows the sending and receiving throughput for WPAN and WLAN 

networks. The Time Interval Length (TIL) used in the simulation is equal to one second. 

The average sending throughput refers to the average throughput of nodes 1 to 12 that are 

sending CBR traffic to central node 19; the average receiving throughput refers to the 

average throughout received by node 19.  

For WPAN networks, the average sending throughput is approximately 100 kbps 

and the receiving throughput is approximately 20 kbps. It is observed that the WLAN  
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network has better throughput than WPAN network. For WLAN networks, the average 

sending throughput is approximately 300 kbps and the receiving throughput is 

approximately 200 kbps. 

 

(a) 

  

(b) 

Figure 35.   Sending and Receiving Throughput of: (a) WPAN and (b) WLAN. The 
Time Interval Length (TIL) used in the simulation is equal to one second. NS-2 

simulation of a 26-node network operating over an area of 50 ×  50 m2. 
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2. End-to-End Delay 

Figure 36 shows the histograms and the summary statistics for the end-to-end 

delay for the WPAN and WLAN networks. For WPAN networks, approximately 90 % of 

the traffic has end-to-end delay of less than 10 ms. The average WPAN end-to-end delay 

is 6.4 ms. The minimum WPAN delay is 0.35 ms and the maximum delay is 115 ms.   

It is observed that the end-to-end delay in the WLAN network is slightly higher 

than that in the WPAN network. For WLAN networks, approximately 97 % of the traffic 

has end-to-end delay of less than 50 ms. The average WLAN end-to-end delay is 17 ms. 

The minimum WLAN delay is 0.2 ms and the maximum delay is 564 ms.  This 

observation of lower end-to-end delay in the WPAN networks compared to the WLAN 

networks is consistent with the results of the WPAN performance study performed by 

Zheng [19].   

 

 
(a) 
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(b) 

 
Figure 36.   End-to-End delay for: (a) WPAN and (b) WLAN. NS-2 simulation of a 

26-node network operating over an area of 50 ×  50 m2. 

 

3. Packet Size 

Figure 37 shows the simulation summary statistics for WPAN and WLAN 

networks. The average WPAN packet size is 51.37 bytes with a minimum packet size of 

5 bytes and a maximum packet size of 111 bytes. The WLAN networks have a similar 

packet size as WPAN networks. The average WLAN packet size is 57.51 bytes with a 

minimum packet size of 28 bytes and a maximum packet size of 142 bytes. 
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(a) 

 

(b) 

Figure 37.   Simulation summary statistics for: (a) WPAN and (b) WLAN networks. 
NS-2 simulation of a 26-node network operating over an area of 50 ×  50 m2. 

 

4. Jitter 

Figure 38 shows the jitter plots of transmitted and received traffic for WPAN and 

WLAN networks. It is observed that the packet jitter is low for both WLAN and WPAN 

networks. 

For the WPAN, the maximum jitter of sending packets is 200 ms and the 

maximum jitter of receiving packets is 320 ms.  The average jitter of sending and 

receiving packets is approximately 8 ms.  For WLAN, the maximum jitter of sending 

packets is 200 ms and the maximum jitter of receiving packets is also 200 ms.  The 

average jitter of sending and receiving packets is approximately 5 ms.   
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(a) 

 
(b) 
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(c) 

 

(d) 

Figure 38.   Jitter plot of:  (a) all sent WPAN packets, (b) all received WPAN packets 
(c) all sent WLAN packets, (d) all received WLAN packets. NS-2 simulation of a 

26-node network operating over an area of 50 ×  50 m2. 

 

The simulation results show that the wireless sensor network has a throughput 

between 20 kbps and 100 kbps, a low average delay of less than 10 ms and a low average 

jitter in the range of 5 ms to 10 ms. Assuming that the payload sent by each sensor to a 
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server for processing is 1 kByte, as has been implemented by Duckworth et al. [6], the 

required transmission time is approximately between 0.08 s and 0.4 s. After considering 

the processing time and other delays, the total delay can be approximated to be less than 

one second. This indicates that the wireless sensor network is suitable for implementation 

in fast-response counter-sniper applications.  

This chapter has presented the simulation results of the hybrid SI/ML estimation 

method used in the two-step localization process for counter-sniper applications.  

Simulation results indicate that the proposed two-step localization method is suitable for 

counter-sniper applications. For example, twelve soldiers with two sensors each (6×2×2) 

can detect a sniper 100 m away with an RMS error of 3 m, 8 m and 15 m for the Xs, Ys 

and Zs values, respectively. Better accuracy can be obtained by increasing the number of 

sensors or by increasing the inter-sensor spacing.  The NS-2 based simulation results 

indicate that both WPAN and WLAN networks are suitable for implementation in fast-

response counter-sniper applications due to their high throughput, low delay and low 

jitter. The next chapter will conclude the thesis by summarizing the significant results and 

proposing possible future work. 
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V. CONCLUSION 

This thesis focused on source localization using wireless sensor networks. 

Wireless sensor nodes worn on soldiers or installed on vehicles can be deployed to form a 

distributed sensor array to locate the source of sniper fire. A two-step source localization 

process is proposed for counter-sniper applications: the time difference of arrival 

(TDOA) values are first determined using the generalized cross correlation (GCC) 

method and then the TDOA values are used by a hybrid spherical interpolation/maximum 

likelihood (SI/ML) estimation method to determine the shooter location. A simulation 

model has been developed in MATLAB to study the performance of the hybrid SI/ML 

estimation method. A wireless sensor network is simulated in NS-2 to study the network 

throughput, delay and jitter of the IEEE WPAN and WLAN networks.   

 

A. SIGNIFICANT RESULTS 

The effects of number of sensor nodes, inter-sensor spacing, topology, noise, 

source-sensor distance, sensor node failure, and location perturbation on the location 

estimation performance of the hybrid SI/ML method have been studied through 

MATLAB simulation.  

Simulation results show that the error variance can be reduced by increasing the 

number of sensor nodes or the inter-sensor spacing. To increase the estimation accuracy, 

the number of sensors as well as the inter-sensor spacing should be increased.  

For the case of wearable sensors, the constraint of small inter-sensor spacing on 

the human body degrades the estimation accuracy. On the other hand, vehicular 

configuration providing larger vertical and horizontal inter-sensor spacing can help 

improve the estimation accuracy.  We see that the configuration of a group of twelve 

soldiers or vehicles, with two wireless sensors per soldier or vehicle, is sufficient to 

accurately detect a sniper situated 100 m away with an RMS error of 3 m, 8 m and 15 m 

for the Xs, Ys and Zs values, respectively. By using a longer range wireless network such 

as WLAN, the inter-sensor spacing can be increased and provides better estimate 



66 

accuracy to detect a sniper located farther. Simulation results also indicate that the sensor 

topology should be well represented in all three dimensions to obtain desirable resolution.  

The source estimation accuracy is not adversely affected when encountering node 

failures or location perturbations. Results show that sensor node failures lead to a gradual 

degradation of accuracy and not a sudden total system failure. This demonstrates the 

advantage of using distributed wireless sensor networks to provide greater system 

robustness. It is observed that location perturbations do not adversely affect the location 

estimation. This illustrates the flexibility of the network configuration and demonstrates 

the suitability for potential field deployment.  

Network simulation results based on the NS-2 package show that the wireless 

sensor network can support a throughput of between 20 kbps and 100 kbps, a low average 

delay of less than 10 ms, and a low average jitter in the range of 5 ms to 10 ms.  These 

are suitable for fast response network-based sniper detection applications that require low 

delay and fast data exchange. 

 

B. FUTURE WORK 

This thesis dealt with a single source scenario. In a future effort, the work 

reported here can be extended to multiple sources.  Since the SI method is only applicable 

to a single source case, a different estimation method should be considered. Other source 

types, such as RF and seismic signals, can also be included in the simulation model.  

We have seen that the SI method provided good initial values for the ML method. 

However, the SI method can introduce bias at low noise levels and affect the estimation 

accuracy of the ML method. Alternative estimation methods, such as linear interpolation 

(LI) [21] and cluster-based schemes [16], can be studied to replace the SI method in the 

two-step process. We also observed that the ML method failed to converge when the SI 

method produced noisy location estimates. Further study is required to analyze this 

behavior.  

To improve the estimation accuracy of a nearby source, beamforming techniques 

can be applied as they generally provide a more accurate and robust performance in the 

near-field [17][22][23]. As discussed in this thesis, the proposed two-step process is 
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suitable for far-field applications. A combination of beamforming and the two-step 

process can be studied in a future effort to cover both near-field and far-field sources. 

In this work, the two-step source localization process was simulated in MATLAB. 

This work can be extended by implementing the scheme in hardware using Crossbow 

motes and conducting field experiments. The measured results can be used to validate the 

simulated results provided in this thesis.  
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APPENDIX:  MATLAB SOURCE CODE 

This appendix lists the MATLAB source code used to study the performance of 

the Spherical Interpolation (SI) and Maximum Likelihood (ML) source localization 

estimation method. 

% ------------------------------------------------------------------------- 
% Calculate Source Location based on Range Difference of Arrival (RDOA)  
% (1) Least Square Estimation - Spherical Interpolation (SI) Method 
% (2) Maximum Likelihood (ML) Method 
% 
% N sensors, 1 source  
% Using sensor 1 as reference i.e (x1=0, y1=0, z1=0)  
%  
% ------------------------------------------------------------------------- 
clear; 
% ----------------------------------------------------- 
% Definition 
% ----------------------------------------------------- 
nRun=100;           % number of Monte Carlo runs 
 
% uncomment one of them 
% bML=0;               % turn off ML calculation  
bML=1;               % turn on ML calculation 
 
% uncomment one of them 
perturb=0;               % turn off location perturbation  
% perturb=1;               % turn on location perturbation  
 
% ---------------------------------------------------------------- 
% Actual source location (m) in Cartesian coordinates x, y and z 
% Note: For simplicity, we only varies y for our simulation  
% ---------------------------------------------------------------- 
xs_src_actual=[0]; 
 
% Varies the Y position (Choose 1) 
%------------------------------------ 
ys_src_actual=[100]; %100 m 
zs_src_actual=[0]; 
 
Rs_actual=sqrt(xs_src_actual.^2 + ys_src_actual.^2 + zs_src_actual.^2);  
% calculate corresponding range Rs 
bearing_actual=[xs_src_actual; ys_src_actual; xs_src_actual]/Rs_actual;  
% calculate corresponding bearing 
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% ---------------------------------------------------------------- 
% Actual sensor location (m) in Cartesian coordinates x, y and z 
% Note: For simplicity, we only use integers and then multiply with 
% a scaling factor to produce the actual coordinates. 
% e.g. [5 10 15] = [1 2 3] * 5 ;  
% ---------------------------------------------------------------- 
 
% Scale wrt to 1m (Choose 1) 
%------------------------------ 
scale_dist = 10 % 10 m 
 
% (Choose 1 of the following sensor configuration for study) 
%------------------------------------------------------------- 
% 12x2 sensors arranged 2 rows  
% xi=[0 0 1 1 2 2 3 3 4 4 5 5  0 0 1 1 2 2 3 3 4 4 5 5 ].*scale_dist; 
% yi=[0 1 0 1 0 1 0 1 0 1 0 1  0 1 0 1 0 1 0 1 0 1 0 1].*scale_dist; 
% zi=[0 0 0 0 0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 1 1 1 1 1].*1.0;  
% Soldier configuration (each with 2 sensors). z= 1m apart vertically 
 
temp=size(xi); 
nSen=temp(1,2);                % number of sensor (>4) 
 
noisestd=1; 
if (perturb==1) 
    randn('state',0); 
    tmp1=randn(3, nSen); 
    for i=1:2:nSen 
        xi(i)= xi(i) + noisestd*tmp1(1,i); 
        xi(i+1)= xi(i+1)+(noisestd+0.01)*tmp1(1,i); % less variance on the body  
        yi(i)= yi(i) + noisestd*tmp1(2,i); 
        yi(i+1)= yi(i+1)+(noisestd+0.01)*tmp1(2,i); % less variance on the body  
    end 
    zi=zi+0.01*tmp1(3,:); % less variance on the body 
end 
 
% RD noise (Choose 1) 
% ----------------------------------------------------- 
Noise_Factor=0.001; % noise std = Std_Norm * (source distance). %  
we expect bigger noise variance for larger distance. 
Noise_Var=(Noise_Factor*Rs_actual)^2; 
  
% ----------------------------------------------------- 
% Functions 
% ----------------------------------------------------- 
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% Random Process 
% AWGN 
    randn('state',0); 
    noise = sqrt(Noise_Var)*randn(nRun, 1);   
    %noise_mean = mean(noise, 2); % average along row 
 
for k=1:nRun, % Monte Carlo Simulation 
   
Xi=[xi' yi' zi']; 
Di= sqrt ((xi-xs_src_actual).^2 + (yi-ys_src_actual).^2 + (zi-zs_src_actual).^2);    
Ri= sqrt ((xi).^2 + (yi).^2 + (zi).^2);    
 
locSen=[xi' yi' zi']; 
 
% using N sensors 
for i=1:nSen-1 
    %d21=Di(2)-Di(1); 
    %d31=Di(3)-Di(1);.. 
    %dn1=Di(n)-Di(1); 
    %d=[d21;d31;...;dn1]; 
    d(i,1)=Di(i+1)-Di(1)+noise(k); %add noise to RD estimates 
 
    % delta2=Ri(2)^2-d(1)^2; 
    % delta3=Ri(3)^2-d(1)^2;... 
    % deltan=Ri(n)^2-d(1)^2; 
    % delta=[delta2;delta3;...deltan]; 
    delta(i,1)=Ri(i+1)^2-d(1)^2; 
     
    % s2= [xi(2) yi(2) zi(2)]; 
    % s3= [xi(3) yi(3) zi(3)];... 
    % sn= [xi(n) yi(n) zi(n)]; 
    % s=[s2;s3;...sn]; 
    s(i,:)=[xi(i+1) yi(i+1) zi(i+1)]; 
     
end 
 
% define weight (positive definite, i.e., diagonal positive and symmetrical) 
  w=eye(nSen-1); % set to identity matrix for unweighted case 
 
Sw=(s'*w*s)^(-1)*s'*w; 
Ps=s*Sw; 
Ps_ortho=eye(nSen-1)-Ps; 
 
%------------------------------------------------ 
%SI method 
%------------------------------------------------ 
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Rs_SI_cal=0.5*(d'*Ps_ortho*w*Ps_ortho*delta)/(d'*Ps_ortho*w*Ps_ortho*d);  
 
% Calculate Xs for SI method 
Xs_row_SI = 0.5*Sw*(delta-2*Rs_SI_cal*d); 
Xs_SI(k,:)=Xs_row_SI' ; 
Rs_SI(k,:)=sqrt(Xs_SI(k,1)^2 + Xs_SI(k,2)^2 + Xs_SI(k,3)^2); 
 
 
bearing_SI(k,:)=Xs_SI(k,:)/Rs_SI(k,:); 
% error_row= delta - 2*Rs_SI*d - 2*s*Xs_row_SI; %error 
% error(k,:)=error_row'; 
 
% %------------------------------------------------------ 
% % Maximum Likelihood Method 
% % Objective function is contained in mlobjfun.m  
% %---------------------------------------------------------- 
if (bML==1) 
    x0 = Xs_SI(k,:);    % As value obtained from SI as starting guess 
    % x0 = [0 ys_src_actual 0];    % Starting guess 
    options = optimset('LargeScale','off'); 
 
    % % LevenbergMarquardt 
    options=optimset(options,'LevenbergMarquardt','on'); % LM 
    % options=optimset(options, 'LevenbergMarquardt','off'); % Gauss Newton 
    [x,resnorm,residual,exitflag,output]= 

 lsqnonlin(@mlobjfun,x0,[],[],options,locSen,Noise_Var,d); 
    Xs_ML(k,:)=x; 
    Rs_ML(k,:)=sqrt(Xs_ML(k,1)^2+Xs_ML(k,2)^2+Xs_ML(k,3)^2); 
    bearing_ML(k,:)=Xs_ML(k,:)/Rs_ML(k,:); 
end 
 
 
% --------------------------------------------------------------------- 
% Calculate bias (i.e., errors) for source location, range and bearing 
% estimates 
% --------------------------------------------------------------------- 
 
% Calculate mean 
% ----------------------------------------------------- 
% SI 
bias_Xs_SI(k,1)=Xs_SI(k,1)-xs_src_actual; 
bias_Xs_SI(k,2)=Xs_SI(k,2)-ys_src_actual; 
bias_Xs_SI(k,3)=Xs_SI(k,3)-zs_src_actual; 
 
% ML 
if (bML==1) 
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    bias_Xs_ML(k,1)=Xs_ML(k,1)-xs_src_actual; 
    bias_Xs_ML(k,2)=Xs_ML(k,2)-ys_src_actual; 
    bias_Xs_ML(k,3)=Xs_ML(k,3)-zs_src_actual; 
end 
end 
 
bias_Rs_SI = Rs_SI-Rs_actual; 
bias_bearing_SI = 180/pi*acos(bearing_SI*bearing_actual);  
 
if (bML==1) 
bias_Rs_ML=Rs_ML-Rs_actual; 
bias_bearing_ML = 180/pi*acos(bearing_ML*bearing_actual);  
end 
 
meanxs_SI=mean(bias_Xs_SI(:,1)); 
meanys_SI=mean(bias_Xs_SI(:,2)); 
meanzs_SI=mean(bias_Xs_SI(:,3)); 
meanrs_SI=mean(bias_Rs_SI); 
meanbear_SI=mean(bias_bearing_SI); 
 
vect_mean_SI=[meanxs_SI;meanys_SI;meanzs_SI;meanrs_SI;meanbear_SI]; 
 
%ML 
if (bML==1) 
meanxs_ML=mean(bias_Xs_ML(:,1)); 
meanys_ML=mean(bias_Xs_ML(:,2)); 
meanzs_ML=mean(bias_Xs_ML(:,3)); 
meanrs_ML=mean(bias_Rs_ML); 
meanbear_ML=mean(bias_bearing_ML); 
vect_mean_ML=[meanxs_ML;meanys_ML;meanzs_ML;meanrs_ML; 

meanbear_  ML]; 
end 
 
 
% Calculate Variance = E[(a - mean)^2] 
% ----------------------------------------------------- 
varxs_SI=var(bias_Xs_SI(:,1)); 
varys_SI=var(bias_Xs_SI(:,2)); 
varzs_SI=var(bias_Xs_SI(:,3)); 
varrs_SI=var(bias_Rs_SI); 
varbear_SI=var(bias_bearing_SI); 
 
vect_var_SI=[varxs_SI;varys_SI;varzs_SI;varrs_SI;varbear_SI]; 
 
%ML 
if (bML==1) 
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varxs_ML=var(bias_Xs_ML(:,1)); 
varys_ML=var(bias_Xs_ML(:,2)); 
varzs_ML=var(bias_Xs_ML(:,3)); 
varrs_ML=var(bias_Rs_ML); 
varbear_ML=var(bias_bearing_ML); 
 
vect_var_ML=[varxs_ML;varys_ML;varzs_ML;varrs_ML;varbear_ML]; 
end 
 
% Calculate second moment (RMS)= sqrt {E[a^2]} = sqrt {mean^2 + variance} 
% ----------------------------------------------------- 
rmsxs_SI=sqrt(mean(bias_Xs_SI(:,1)).^2+varxs_SI); 
rmsys_SI=sqrt(mean(bias_Xs_SI(:,2)).^2+varys_SI); 
rmszs_SI=sqrt(mean(bias_Xs_SI(:,3)).^2+varzs_SI); 
rmsrs_SI=sqrt(mean(bias_Rs_SI).^2+varrs_SI); 
rmsbear_SI=sqrt(mean(bias_bearing_SI).^2+varbear_SI); 
 
vect_rms_SI=[rmsxs_SI;rmsys_SI;rmszs_SI;rmsrs_SI;rmsbear_SI]; 
 
%ML 
if (bML==1) 
rmsxs_ML=sqrt(mean(bias_Xs_ML(:,1)).^2+varxs_ML); 
rmsys_ML=sqrt(mean(bias_Xs_ML(:,2)).^2+varys_ML); 
rmszs_ML=sqrt(mean(bias_Xs_ML(:,3)).^2+varzs_ML); 
rmsrs_ML=sqrt(mean(bias_Rs_ML).^2+varrs_ML); 
rmsbear_ML=sqrt(mean(bias_bearing_ML).^2+varbear_ML); 
 
vect_rms_ML=[rmsxs_ML;rmsys_ML;rmszs_ML;rmsrs_ML;rmsbear_ML]; 
 
end 
 
% Calculate Cramer Rao Bound 
%  
 
 
cov_mat=Noise_Var.*(0.5*ones(length(d))+0.5*eye(length(d))); 
 
for i=1:length(d) 
    a1=[xs_src_actual-locSen(i+1,1) ys_src_actual-locSen(i+1,2) 

 zs_src_actual-locSen(i+1,3)]; 
 
    a2=sqrt((xs_src_actual-locSen(i+1,1))^2+(ys_src_actual-locSen(i+1,2))^2 

+(zs_src_actual-locSen(i+1,3))^2); 
    b1=[xs_src_actual-locSen(1,1)  ys_src_actual-locSen(1,2)  

zs_src_actual-locSen(1,3)]; 
    b2=sqrt((xs_src_actual-locSen(1,1))^2+(ys_src_actual-locSen(1,2))^2 
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+(zs_src_actual-locSen(1,3))^2); 
    jacobian(i,:)= (a1/a2)-(b1/b2); 
end 
 
fisher=jacobian'*inv(cov_mat)*jacobian; 
 
crlb= trace(fisher^-1); % compare with MSE of Rs 
 
% ----------------------------------------------------- 
% Generate Plots 
% ----------------------------------------------------- 
 
% hfig1=figure; 
if (bML==1) 
plot(xi, yi,'kv', xs_src_actual, ys_src_actual, 'k^', Xs_SI(:,1), Xs_SI(:,2),  
 'ko',Xs_ML(:,1), Xs_ML(:,2), 'kd'); % plot both SI and ML 
else 
plot(xi, yi,'kv', xs_src_actual, ys_src_actual, 'k^', Xs_SI(:,1), Xs_SI(:,2), 'ko');  
% plot just SI only 
end 
 
title('Sensor and Source Location'); 
str1=sprintf('[Xs, Ys, Zs, Rs, Bearing], Noise Std = %s*Rs',Noise_Factor); 
str2=sprintf('SI Method'); 
str3=sprintf('RMS = [%s, %s, %s, %s, %s]', rmsxs_SI, rmsys_SI, rmszs_SI, 
 rmsrs_SI, rmsbear_SI); 
str4=sprintf('Mean = [%s, %s, %s, %s, %s]', meanxs_SI, meanys_SI, meanzs_SI, 
 meanrs_SI, meanbear_SI); 
str5=sprintf('Variance = [%s, %s, %s, %s, %s]', varxs_SI, varys_SI, varzs_SI, 
 varrs_SI, varbear_SI); 
if (bML==1) 
str6=sprintf('ML Method'); 
str7=sprintf('RMS = [%s, %s, %s, %s, %s]', rmsxs_ML, rmsys_ML, rmszs_ML, 
 rmsrs_ML, rmsbear_ML); 
str8=sprintf('Mean = [%s, %s, %s, %s, %s]', meanxs_ML, meanys_ML, 
 meanzs_ML, meanrs_ML, meanbear_ML); 
str9=sprintf('Variance = [%s, %s, %s, %s, %s]', varxs_ML, varys_ML, 
 varzs_ML, varrs_ML, varbear_ML); 
str=sprintf('%s \n%s \n%s \n%s \n%s \n%s \n%s \n%s \n%s', str1, str2, str3, str4, 
 str5, str6, str7, str8, str9); 
legend('sensor location', 'actual source location ', 'calculated source location 
 (SI)','calculated source location (ML)'); 
else 
str=sprintf('%s \n%s \n%s \n%s \n%s \n%s \n%s \n%s \n%s', str1, str2, str3, str4, 
 str5);     
legend('sensor location', 'actual source location', 'calculated source location (SI)'); 
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end 
 
text(scale_dist/10,ys_src_actual,str); 
xlabel('Distance (metres) in X direction'); 
ylabel('Distance (metres) in Y direction'); 
 
% generate results output files 
fid = fopen('results.txt','w'); 
 
for k=1:nRun, 
    fprintf(fid,'%e\t%e\t%e\t%e\t%e\n',bias_Xs_SI(k,1),bias_Xs_SI(k,2), 

bias_Xs_SI(k,3), bias_Rs_SI(k), bias_bearing_SI(k)); 
end 
fprintf(fid,'\n%e\t %e\t %e\t %e\t %e\n', meanxs_SI, meanys_SI, meanzs_SI, 
 meanrs_SI, meanbear_SI); 
fprintf(fid,'%e\t %e\t %e\t %e\t %e\n', varxs_SI, varys_SI, varzs_SI, varrs_SI, 
 varbear_SI); 
fprintf(fid,'%e\t %e\t %e\t %e\t %e\n', rmsxs_SI, rmsys_SI, rmszs_SI, rmsrs_SI, 
 rmsbear_SI); 
 
fclose(fid); 

 

 

 

 

 



77 

LIST OF REFERENCES 

[1] M. Haenggi, “Opportunities and Challenges in Wireless Sensor Networks,” 
Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, Ch. 1, 
CRC Press, 2005. 

 
[2] W. Su, E. Cayirci and Ö. Akan, “Overview of Communication Protocols for Sensor 
Networks,” Handbook of Sensor Networks: Compact Wireless and Wired Sensing 
Systems, Ch. 16, CRC Press, 2005 

 
[3] R. Stoughton, “Measurements of Small Caliber Ballistic Shock Waves in Air,” JASA 
102 (2), Pt. 1, pp. 781-787, August 1997. 

 
[4] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai and 
K. Frampton, “Sensor Network-based Countersniper System,” ACM Second 
International Conference on Embedded Networked Sensor Systems (SenSys 04), pp. 1-
12, November 2004. 

 
[5] M. Pauli, M. C. Ertem and E. Heidhausen , “Quick Response Airborne Deployment of 
Viper Muzzle Flash Detection and Location System During DC Sniper Attacks,”  
Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop (AIPR’03), pp. 
221-228, October 2003. 

 
[6] G. L. Duckworth, J. E. Barger, S. H. Carlson, D. C. Gilbert, M. L. Knack, J. Korn and 
R. J. Mullen, “Fixed and wearable acoustic counter-sniper systems for law enforcement,” 
Proceedings of SPIE Vol. 3577, Sensors, C3I, Information, and Training Technologies 
for Law Enforcement, pp. 210-230, November 1998. 
 
[7] M. Yarvis and W. Ye, “Tiered Architectures in Sensor Networks,” Handbook of 
Sensor Networks: Compact Wireless and Wired Sensing Systems, Ch. 13, CRC Press, 
2005. 

 
[8] IEEE Standard 802.15.4-2003, “Specific requirements Part 15.4: Wireless Medium 
Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless 
Personal Area Networks (LR-WPANs),” IEEE, 2003. 
 
[9] Zigbee Alliance, http://www.zigbee.org.  Last accessed 20 Apr 2006.  
 
[10] J. DiBiase, H. Silverman and M. Brandstein, “Robust localization in reverberant 
rooms,” Microphone Arrays: Signal Processing Techniques and Applications, Ch. 8, pp. 
157-180, Springer, 2001. 

 
[11] J. M. Peterson and C. Kyriakakis, “Hybrid Algorithm for Robust, Real-time Source 
Localization in Reverberant Environments,” International Conference on Acoustics, 
Speech and Signal Processing, Vol. 4, pp. 1053-1056, March 2005. 



78 

[12] C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of 
time delay,” IEEE Transaction on Acoustics, Speech, and Signal Processing, Vol. ASSP-
24, No. 4, pp. 320-327, August 1976. 
 
[13] J. O. Smith and J. S. Abel, “Closed-Form Least-Squares Source Location Estimation 
from Range-Difference Measurements,” IEEE Transaction on Acoustics, Speech, and 
Signal Processing, Vol. ASSP-35, No. 12, pp. 1661-1669, December 1987. 
 
[14] T. Ajdler,  I. Kozintsev, R. Lienhart and M. Vetterli, “Acoustic source localization in 
distributed sensor networks,” Proceedings of the Thirty-Eighth Asilomar Conference on 
Signals, Systems and Computers, Vol. 2, pp. 1328-1332, November 2004. 

 
[15] D. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear 
Parameters," SIAM J. Appl. Math. Vol. 11, No. 2, pp. 431-441, June 1963.  

 
[16]  K. Dogancay, “Emitter Localization using Clustering-Based Bearing Association,” 
IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 2, pp. 525-536, 
April 2005. 
 
[17] J. C. Chen, K. Yao, and R. E. Hudson, “Source Localization and Beamforming,” 
IEEE Signal Processing Magazine, pp. 30-39, March 2002. 
 
[18] D. Johnson and D. Dudgeon, “Array Signal Processing: Concepts and Techniques,” 
Prentice Hall, 1993. 

 
[19] J. Zheng and M. J. Lee, “A Comprehensive Performance Study of IEEE 802.15.4,” 
IEEE Press Book, 2004. 
 
[20] E. M. Royer and C. E. Perkins. "An Implementation Study of the AODV Routing 
Protocol," Proceedings of the IEEE Wireless Communications and Networking 
Conference, Chicago, IL, Vol. 3, pp. 1003-1008, September 2000. 
 
[21] M. Branstein, J. Adcock and H. Silverman, “A Closed-Form Location Estimator for 
Use with Room Environment Microphone Arrays,” IEEE Transaction on Speech and 
Audio Processing, Vol. 5, No. 1, pp. 45-50, January 1997. 
  
[22] B. Mungamuru and P. Aarabi,” Enhanced Sound Localization,” IEEE Transactions 
on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol. 34, No. 3, pp. 1526-1540, 
June 2004. 
 
[23] B. D. Van Veen and K. M. Buckley. “Beamforming: A Versatile Approach to 
Spatial Filtering,” IEEE Acoustics, Speech, and Signal Processing Magazine, pp. 4-24, 
April 1988. 



79 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor Jeffrey Knorr, Chairman, Code EC 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

4. Professor Murali Tummala 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

5. Professor John C. McEachen 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

6. Stephen Tan Kok Sin 
Defence Science & Technology Agency 
Singapore 

 
7. USSOCOM 

MacDill AFB, Florida 


