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ABSTRACT

Subspace methods of solving spectral estimation and direction of arrival (DOA)

problems involve finding the eigenvalues and eigenvectors of correlation matrices. Using

the Lanczos algorithm some of the extreme eigenvalues and eigenvectors can be ap-

proximated without requiring the entire matrix decomposition theoretically saving many

computations.

This thesis develops a model and a form of the Lanczos algorithm to solve the DOA
problem. The relationship of the number of eigenvectors used to the accuracy of the

results in a low signal to noise ratio example are examined.
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I. INTRODUCTION

Recently, a number of signal processing techniques have been developed that in-

volve resolving a received signal into so-called signal and noise subspaces. The ability

to perform spectral estimation or direction of arrival from the determination of the noise

subspace has been shown in the works of Pisarenko, Schmidt, Kay, Kailath, and others.

The methods van' in the manner in which the subspace is reached and how the resulting

eigenvectors are calculated. [References 1,2, and 3].

To achieve better results (detection at lower signal-to-noise ratios, better resolution,

finer accuracy, less bias), more samples are required. This leads to larger, more complex

matrices that better describe the signal and noise subspaces. Determination of the sub-

spaces requires an eigendecomposition of an estimated correlation matrix. The general

eigendecomposition of a matrix requires computations 0(n2
), thus the larger matrices

require many more operations. Once the matrix is decomposed into its eigenvalues and

eigenvectors the proper set of eigenvectors must be used to find the resulting spectrum.

Hence, estimation is required to split the eigenvalues into signal and noise subsets.

The difficulties in the procedures can be stated with two questions.

• Where is the threshold between signal and noise eigenvalues (and thus which, or

how many eigenvectors are used)?

• What method should be used to find those eigenvectors in a timely fashion?

Proposed here is a method which will accurately estimate some of the eigenvalues

and eigenvectors of a matrix without performing the entire decomposition. Computa-

tional savings are realized when only a partial decomposition is required. The

eigenvectors used correspond to the minimum eigenvalues of the matrix. With an

over-specified matrix (dimension much larger than the number of signals present), these

minimum eigenvalues will all correspond to the noise subspace. Each noise eigenvector

contains all the information to find the actual spectrum, although spurious results will

also be apparent (because the matrix is over specified). Several methods of handling

these spurious peaks are illustrated, including eigenvector averaging, spectral averaging

and using the spectral product.

This thesis is organized in five chapters. Chapter II, Direction of Arrival, discusses

classical spectral estimation theory and how it applies to the linear array problem

(beamforming). Subspace methods starting with Pisarenko Harmonic Decomposition



and proceeding to MUSIC and ESPRIT are discussed in detail. Chapter III, The

Lanczos Algorithm, includes all the basic theory required to describe this

eigendecomposition method. There we also compare several methods to negate the

spurious peaks with the proposed spectral product giving the best results. Results of the

algorithm for numerous cases are given in Chapter IV. The last chapter summarizes the

results and advantages of this Lanczos subspace method. This chapter also includes

some recommendations for future work and lists some possible applications.



II. DIRECTION OF ARRIVAL

Direction of arrival is a form of spectral analysis, performing frequency detection

and resolution in the spatial domain vice the conventionally considered time domain.

The signals incident on an array are analyzed, and, if the presumptions of the analysis

are valid, the correct bearings to the sources are determined. Formerly it was only pos-

sible to analyze the output of an array by conventional Fourier techniques. More re-

cently numerous methods have been developed which enhance the ability to accurately

determine the spectral and angular resolution.

This chapter summarizes some of the salient points of spectral estimation before

discussing classical direction of arrival array processing (Bartlett beamforming).

Projection-type superresolution subspace methods are then discussed, starting with

Pisarenkos Harmonic Decomposition. MUSIC and ESPRIT are discussed in detail and

several other subspace methods are mentioned.

A. SPECTRAL ESTIMATION

Spectral estimation is the term used to describe efforts to find the frequency com-

ponents of a signal sampled in time. Two conditions that are required for the remainder

of this thesis are that the processes considered are wide sense stationary (WSS) and

ergodic. The assumption of WSS means that the process has finite mean and that the

autocorrelation is a function of the distance, or lag, between two samples and not of the

position of the samples themselves. Ergodicity allows time averages to be used to de-

termine ensemble averages.

The autocorrelation function of the signal x(t) is

Rxx(m) = <x(n + m),x(n)> = ^l 2N\ { / x(n + m)x{n)l (1)

where x(n) are the individual samples of the signal. When only a finite number of sam-

ples, M, are taken, the above definition must be modified. The sample autocorrelation

function is defined as



««(*)

M-l-k

+ k)x{n), for 0<*<(A/-1) (2)

It is easily shown that [Ref. 4: pp. 56-58]

R^k) =^ -A), for - (M - 1) < k <

and

*«(<>) > *«(*). for all k

The sample autocorrelation matrix R„ is

R^O) Rxx{-\)

*«(1) 4x(0)

K^O K^Af-1)

Rxx(-M+\)

««(0)

(3)

(4)

The power spectral density (PSD) is a measure of power per unit frequency. A plot

of PSD versus frequency will show the relative power at all the frequencies present. It

also describes the properties of the noise in the signal, i.e., white noise will have a flat

PSD showing that all frequencies are equally represented [Ref. 1: pp. 53]. The PSD is

given by

SJJ) -+2 Rxx(m)e
-

where T is the sampling period.

The periodogram method of estimating the true PSD is one of the earliest and most

widely used [Ref. 5: pp. 5-8]. The periodogram is defined as the z-transform of the

sample autocorrelation matrix evaluated on the unit circle [Ref. 4: pp. 52-53]



*=-(Af-l)

A/-1

-z (6)

It may also be found by directly z-transforming the original data sequence x(n)

Sxx(z) = -jj X(z)X(z-
]

) where X(z)

The periodogram spectrum is found by substituting z = ei2nfr
,

M

(7)

Lif) = jr\X(f)\
2
= 7- I x(n)e •

(8)

Data is often run through a computationally efficient Fast Fourier Transform (FFT) to

find the periodogram spectrum.

The measures of effectiveness of a spectral estimator are based on comparisons of

"resolution, detectability, bias and variance. Resolution relates to the ability of the esti-

mator to separate two separate spectral lines that are closely spaced in frequency. The

capacity to locate a low energy signal is measured in detectibility. Bias is the tendency

of the observed peak to be shifted off the true spectral line. Variance is a measure of the

propensity to keep the true spectral shape, or how quickly the PSD falls of! away from

the true peak. Different spectral estimators are sometimes compared in terms of

robustness, or ability to function well with various types of signals and noise.

If individual signals are narrowband the resolution criterion is said to be achieved

when direct observation of the spectrum leads to the correct determination of the num-

ber of signals. Separate peaks are not required to determine that two signals are present

[Ref. 6]. Resolution is inversely proportional to the length of the data samples. With/

as the sampling rate and T the sample period, or time between samples, T = ~, the fre-

quency resolution is given by
/,'



V - 17 - iff (9 »

Thus, with the periodogram, better resolution can only be achieved with longer record

lengths.

The above description is based on no windowing (or rectangular windowing) of the

data samples. The windowing in the time domain is seen as convolution in the frequency

domain. The rectangular windows, for example, transform into sine functions in the

frequency domain resulting in high sidelobe distortion known as leakage in the frequency

domain. High sidelobes result in many false peaks, making it difficult to discern the true

spectral peaks, so detectibility suffers.

Nonrectangular windows are used to taper the data to minimize the discontinuities

that cause the high sidelobes. Common windows include the Bartlett and Hamming.

The lower sidelobes come at a cost of resolution, so two or more signals close to each

other in frequency may merge into one. Resolution may be boosted by lengthening the

sample time, but the increased record length may violate the requirement for

stationarity. More can be found on the subject of windows in References 7 and 8.

Because of the difficulty in meeting the requirements for both detectibility and re-

solution, parametric methods have been developed that produce increased resolution

with short data lengths. The parametric methods are based on determining an appro-

priate model for the process that produced the data. If the process can be effectively

modeled, then more reasonable assumptions may be made about the data's behavior

outside of the window (i.e., these data points do not have to be set to zero). Once the

appropriate model is chosen to represent the process, the parameters are estimated from

the available data, inserted into the model, and the power spectral density expression for

the respective model is determined. A few common parametric methods are summarized

below. [Ref 1: pp. 106-10S, Rcf5: pp. 172-174]

Many random processes that are encountered in practice may be represented by the

linear difference equation

p <?

• \ a(k)x(n - k) + yx(n) = - > a(k)x(n-k) + > b(k)u{n - k) (10)



where u{n) is the input driving sequence and x{ri) is the output sequence. The a(k) pa-

rameters are the autoregressive coefficients and the b(k) are the moving average coeffi-

cients. Equation 10 is thus known as the autoregressive-moving average (ARMA) model

or AKM.A rp,q) process and is the most general model with a rational transfer function.

The power spectral density that results from the ARMA model exhibits both sharp

peaks and deep nulls. If the autoregressive parameters of equation 10 are all set to zero

except a(0) = 1, the resultant model is the moving average (MA) process of order q. The

MA spectrum will have deep nulls, but relatively broad peaks. With the b(k) coeffi-

cients of equation 10 set to zero except b(0) = /, the autoregressive (AR) process of order

p results. The AR spectrum will exhibit sharp peaks but will have broad nulls. [Ref 5:

pp. 174-1 SI] Each of the models will exhibit greater accuracy and flexibility as the order

is increased. With a high enough order the AR method can approximate an ARMA or

MA process, and, likewise, a very high order MA model can be used to approximate an

ARMA or AR process. But if the model order is too high for the actual process, esti-

mation errors will lead to nonzero coefficients and spurious peaks will result. Thus

proper estimation of model order is important [Ref 1: pp. 112-113, pp. 19S-207].

The parameters o[ these three models may be estimated by using the Yule-Walker

equations utilizing the autocorrelation matrix of the available data stream [Ref 1: pp.

115-118]

R XAa = -r (11)

While the true autocorrelation function is impossible to determine, the maximum

likelihood estimator (ML) is one means to find good approximations of the parameters

for the AR model. The ML method uses a suitable estimate of the autocorrelation or

covariance matrix and then solves [Ref 1: pp. 1S5-190J

Ca = -c (12)

for the parameters a where C is the symmetric covariance matrix and c is an

autocorrelated vector.

The Burg method (maximum entropy) estimates reflection coefficients from the

process and then uses the Levinson recursion to find the estimated parameters [Ref 1:

pp. 228-231].

Generally, the various AR spectral estimators except the autocorrelation method are

unbiased and have similar variance. The covariance and Burg methods are restricted to



ranges that keep the summation within the available data and do not assume zero pads

outside of the samples, thus taking advantage of the basis which led to the creation of

the parametric methods in the first place. [Ref 1: pp. 240-252]

B. BEAMFORMING
A conventional approach to the direction of arrival (DOA) problem is through the

classical beamforming (Bartlett) technique. Basically, this is a measure of coherency of

the signals arriving at an array of sensors. The characteristics of an array are described

in terms of array gain, directivity, resolution, beamwidth, and sidelobes. These are based

on array size (number of sensors), sensor sensitivity, intersensor spacing, and post re-

ception processing.

Assuming a narrowband point source in the far field, a plane wave will pass through

a linear array in a specified order, where the magnitude of the excitation on any indi-

vidual sensor will be related to the phase of the signal at the instant of sampling. The

individual sensors will see different instantaneous magnitudes based on this phase dif-

ference which is a function of the frequency (or wavelength), the DOA, and the spacing

between sensors. The difference in phase for two successive sensors for a linear array

with equally spaced sensors is

A0 = ~^-sin0 (13)

where d is the distance between sensors. / is the signal wavelength, and 6 is the angle

between the wavefront and the array axis. This phase difference A</> is also known as the

normalized wavenumber, k [Ref. 4: pp. 341-343], Figure 1 illustrates the array-

wavefront interaction.

The output of a simple narrowband delay-and-sum beamformer is

M

Ie{t) = > xm{t-xm) (14)

where x„(t), m— 1, 2, ... , M is the signal at the mth sensor. The time lag, rmt between

two adjacent sensors is to make up for the propagation delay caused by the wavefront

having to travel the extra distance ds'mO. One can adjust the magnitude of the output

to plane waves arriving from a particular direction by introducing appropriate time



delays at each sensor prior to summing. This is known as "steering the array" or

"steering the beam". An illustration of a typical beamformer arrangement is shown in

Figure 2.

WAVEFRONT

ARRAY

Figure 1. Wavefront

In the multiple source case, especially if the undesired signals are interfering with the

detection of other sources, this technique may be modified to steer nulls instead of

beams thus minimizing output from "jammers". Nulls may be directed toward a single

known source to minimize the strength of the signal with respect to that source, with the

output being analyzed to determine what other sources are present. Another imple-

mentation is to steer the nulls to minimize the total output. The analysis of the delays

will indicate the directions of multiple targets. [Rcf. 4: pp. 351-355, Ref. 9
]

Beamforming may also be analyzed in the frequency domain by transforming

equation 14 into the frequency domain

*(/)- I *M*~ (15)
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Figure 2. Simple delay-and-sum beamfoi nier

In vector notation we can write e = \\
Tx where w are the weights and x are the outputs

ofM sensors

where w = and x =

*2W

,-***
*m(/)

(16)

The steering vector sk is the phase relationship between the angle and the normalized

wavenumber k given in equation 13



and k
2nd

sin 9 (17)

It can be shown that the steering vector from an array with weights w, directed toward

an arbitrary direction 6, can be expressed in terms of the steering vector as a = sA [Ref.

4: pp. 343-344].

Frequency domain beamforming is directly analogous to spectral estimation

decribed above. Spatial sampling has the requirement that sensor distances d must be

less than ).\2 apart to prevent "grating lobes" (or aliasing) corresponding to the Nyquist

rate in the frequency domain of fm3X <fJ2 . Longer arrays, containing more sensors,

will give better resolution and smoothing. This is similar to frequency resolution being

proportional to the data record length (A/a ~Trf)> t
Re ^- 4: PP- 341-345. Ref. 10: pp.

4-8, Ref. 11 : pp. 293-299]

The DOA is actually a relative comparison of observed spatial frequency and known

signal frequency. The spatial frequency is greatest on endfire, when the wavefront is

perpendicular to the array (6 = 90° or — ). Here the phase difference between adjacent

sensors is at a maximum. A simultaneous sampling of all sensors at one instant in time,

or snapshot, will indicate the maximum spatial frequency. Observation of the spatial

wave over time (with a known temporal sample rate) will indicate the end of the array

where the source is located.

On broadside (6 = or n), the wavefront excites each sensor identically. Spatial

sampling indicates no phase difference along the entire array, except for the effects of

additive noise, resulting in the computation of zero spatial frequency. Unfortunately,

linear arrays have an inherent ambiguity with broadside signals. The side of the array

at which the source is located cannot be determined without further information. Spatial

frequency is illustrated in Figure 3.

An extra requirement in the standard DOA problem is a priori knowledge of in-

coming signal frequencies. Typically, this is handled via a bank of bandpass filters on

the output of the sensors. Data streams from the sensors at each desired center fre-



ARRAY SENSOR

ARRAY SENSOR

Figure 3. Spatial Frequency: Two signals with SNR = 2dB,

0, = 1° and
2
= A5° for two snapshots at time = (a) /„ , (7>) /,. Note

the variation in 'DC level' as the snapshots sample the nearly broadside

signal at different phases.



quency (/J, f2 , ...) are processed in parallel, resulting in spatial frequencies for each

temporal frequency. The DOAs are calculated by comparing these spatial frequencies

with the center frequencies of their respective filter banks.

Improvement in beamforming may be seen through the use of windows, weighing

each sensor output by the appropriate amount to narrow the beamwidth or lower

sidelobes, but, as discussed earlier, at a cost of lowering overall resolution.

C. SUBSPACE METHODS
1. Introduction

The projection-type subspace method utilizes the properties of the

autocorrelation, covariance, or modified covariance data matrices and their

eigenvalue/eigenvector decomposition into signal components and noise components in

estimating the DOA. Generally, subspace methods use an assumed property of the data

to provide good resolution if the data fits the particular assumptions, even for extremely

short data sets. If the data (and signals) do not meet the assumptions, the results can

be quite misleading. The assumptions here call for white noise and a signal whose esti-

mated autocorrelation matrix converges to the true autocorrelation matrix as the order

is increased.

For p complex sinusoids in additive complex white noise the combined

autocorrelation function of the signal plus noise is given by

Rxx {
fn )

= \ p^ff" + a\d{m) (18)2*

We define R„ as the signal autocorrelation matrix of rank p, R
Z2
= a\\ of full rank M

and give the autocorrelation matrix as

p

Rxx = \ Pfitf + a
2

v l
= Rss + R22 (19)

where I is an A/by M identity matrix, Rxx is of full rank M due to the noise contribution,

P, is the power of the /th complex sinusoid, a] is the noise variance, and

e, = [ 1, e 2"^, ... , e'
!2n/

>
<M- l) ~] T

. Unfortunately, this decomposition is not possible without



absolute knowledge of the noise. The p signal vectors e, contain the frequency infor-

mation and are related to the eigenvectors of R„ bv v, = —?=- e, for i < p. The

eigendecomposition of R„ is

P M

= \ ().
t
+ o

2
v)yjy? + > ajvfvf (20)

The principal eigenvectors of Rxx are a function of both the signal and noise. If no signal

is present the autocorrelation matrix is simply a diagonal matrix with the eigenvalues

equal to the variance of the noise [Ref. 1: pp. 422-423]:

(21)

2

°v

The data generated from taking M samples of/? sinusoids in white noise can be

used to generate an autocorrelation matrix with the following properties:

• The theoretical autocorrelation matrix will be composed of a signal autocorrelation

matrix and a noise autocorrelation matrix.

• The signal autocorrelation matrix is not full rank ifM> p.

• The p principal eigenvectors of the signal autocorrelation matrix may be used to

find the sinusoidal frequencies.

• The p principal eigenvectors of the signal autocorrelation matrix are identical to the

p principal eigenvectors of the total autocorrelation matrix.

The matrix will have a minimum eigenvalue ). = o]. [Ref. 1: pp. 422-434]

Furthermore, the noise subspace eigenvectors are orthogonal to the signal

eigenvectors, or any linear combination of signal eigenvectors. For the theoretical

autocorrelation matrix, RM , all eigenvalues not associated with the signals are associated

with the noise and are identical in magnitude at ). = a] , the minimum eigenvalue of

R u . Thus,



R A/VM = }-mmyM (22)

The zeros of this minimum eigenvector polynomial

M-\

I yp+,(J+l)z-
J

(23)

will have p zeros on the unit circle corresponding to signal frequencies [Ref. 4: pp.

335-337, Ref. 5: pp. 371-372].

For the simple case of M - 1 complex sinusoids, the autocorrelation matrix RM

will have a single noise subspace eigenvector \M with its associated eigenvalue / = a*
,

the minimum eigenvalue of R w . Thus, the resulting zeros correspond exactly to the

sinusoidal frequencies.

2. MUSIC

Multiple Signal Classification (MUSIC) is a form of a noise subspace fre-

quency estimator, based on noise subspace eigenvectors with uniform weighting. The

MUSIC algorithm finds a pseudo spectral estimate from [Ref. 5: p. 373]

Puusictf) =
JJT

(24)

where e, = [1, e'
2<, ... , e-'<

(M- 1) ~] T
. The advantage of this method is in its generalized

nature. There is no longer is a requirement for uniform spatial sampling. Any array

geometry will provide a solution. A well-designed array will eliminate bearing ambigui-

ties and provide unique solutions [Ref. 2: pp. 19-28].

R.O. Schmidt [Refs. 2, 12. 13] has shown that a group of sensors excited by a

stationary point source emitter of known frequency will have a magnitude and phase

relationship (or correspondence) based on the DOA of the plane wave. This corre-

spondence depends on the array geometry, as well as individual sensors characteristics

(i.e., directivity, gain, and frequency response), and may not be unique for that one di-

rection of arrival.



By examining the signal in terms of an M dimensional complex field, where each

sensor provides an orthonormal axis, one can see that a single signal will result in one

steering vector. This steering vector describes the relationship between the individual

sensors in terms of phase and magnitude differences, thus for any unique signal fre-

quency and direction of arrival there is one unique steering vector. The magnitude of

the vector will vary with time, but its direction in M space is a constant determined by

the amplitude and phase relationship of the sensors for that particular signal as illus-

trated in Figure A.

The theory of superposition applies, thus with two signals present the instanta-

neous received steering vector is a linear combination of the individual steering vectors.

The time varying steering vector will move in a plane that is spanned by the individual

steering vectors. Figure 5 shows the subspace plane spanned by two steering vectors.

The same idea can be expanded to a case of/? independent signals causing the steering

vector to move through a p dimensional subspace (as long as M> p).

Unfortunately, the steering vector may not determine the actual DOA uniquely.

In the example of a one-dimensional linear array, a signal gi\es an infinite number of

Sensor 3

Sensor 1

x(0

Sensor 2

Figure 4. Steering vector for 3 sensors and 1 signal



Sensor 2

Sensor 1

Figure 5. Signal Subspace for 2 signals

DOAs that lie in a cone that is formed by revolving the actual DOA about the axis of

the array. Thus the array design and its manifold (expected response) will play a large

part in achieving optimum results. The array manifold describes the predicted response

of the array to any possible signal or combination of signals. The manifold may be es-

timated analytically or through physical calibration.

Analytically describing an array is a complex mathematical procedure for all but

the simplest arrays (i.e., equally spaced sensors in a linear array or a 3 element

orthogonal array). It also assumes that absolute knowledge of the array geometry is

available -- an assumption which can lead to errors if the differences are too large.

Calibration with test sources requires a known, low noise environment while the

test sources of each desired frequency are placed in a finite number of possible locations.

The estimated response to actual signals is an interpolation of these responses. Each set

of calibration parameters requires storage in memory; this results in overall massive

storage requirements for a comprehensive grid.

Several parameters such as the number of signals present, the directions of ar-

rival of those signals, and the signal strengths can be determined from the signal sub-



space information. More complex models, however, can be developed that can

determine signal frequency and polarization as described in References 2 and 13.

We will now describe the basic steps in the MUSIC algorithm for the DOA
problem. First, we sample the signals and compute the autocorrelation matrix of the

data R. Then, we determine the ordered set of eigenvalues and eigenvectors of R. In

particular, the eigenvectors associated with the minimum eigenvalues must be accurate.

In the theoretical case the signal eigenvalues are composed of signal strength (P, ) and

noise variance (o*) and the nonprincipal eigenvalues will all be identically a2
v

.

We now determine the number of signals by eigenvalue comparison. A simple

counting of the eigenvalues greater than a] will give the number of signals present in the

theoretical case. However, the sample autocorrelation estimates does not lead to such

simple results. Small power level signals may have small eigenvalues (perhaps smaller

than o] ). and the noise eigenvalues will not actually be identical but will group or cluster

near an approximation of a; . Methods of solution include likelihood ratio tests where

the gaps between the eigenvalues determine threshold placement [Ref. 2: pp. 77-79].

Once we find the number of signals present we can determine the signal sub-

space by the span of the first p eigenvectors

Vk-Iv! v
2

... v,] (25)

The signal nullspace is its orthogonal complement

yKc=[yp+] Vp+2 ... vM] (26)

We now find the intersection of the signal subspace with the array manifold. The

intersection is given in equation 24 for the case of the uniformly spaced linear array. In

actuality the intersection is estimated with a "best-fit" method used to determine the

optimum result. In the nonlinear case the array manifold is much more difficult to rep-

resent.

Two major areas of difficulty with the MUSIC algorithm are the calculation and

storage of the array manifold and performing the eigendecomposition of the

autocorrelation matrix that results from very large arrays.

3. ESPRIT

In Reference 14, Paulraj, Roy, and Kailath describe Estimation of Signal

Parameters via Rotational Invariance Techniques (ESPRIT), a subspace method which

utilizes two identical subarrays X and Y. A known distance called a displacement vector



separates the two parallel subarrays, but no rotation can be present. Each sensor in a

matching pair (doublet) must be identical, but knowledge of individual sensor and array

response characteristics is not required.

The N elements of both arrays are sampled simultaneously with the signal at

each sensor being given by

P

Sk(<)ai{
Qk) + nm

(27)

where the sampled signal at each sensor in a doublet differs only by a phase term and

additive noise. With /> signals present, sk is the wavefront at the reference sensor in the

X array, B k is the DOA relative to the displacement vector. a{6 k ) is the response of the

/th sensor in a subarray relative to the reference sensor in that array for a signal from

bearing 6 k , d is the magnitude of the displacement vector and n the noise term. In vector

notation the signals at the subarravs are

x(f) = Hs(0 + nxU)

\U) = HOs(r) + n
v (/)

x(r) = lx
1
{t),x2{t),...,xm(t)j

r
t

y(0 = Oi(0. yiif), - ,ym(t)l
T

,

nx {!) = ZnXl(t),nX2(t),...,nXm(t)l
T

,

and n
y
(t) = [ w> . (r), n

>2
(t), ... , n,^ 1

(28)

(29)

The vector of wavefronts at the reference sensor in array X is represented by s(/). All

displacements and phase differences are based on this sensor. The p by p diagonal ma-

trix, O, contains the phase delays that occur with each set of doublets

<D = diag[^', ^...., J**] (30)

where 4> k
= ^\~

sin 8
k , as shown in equation 13.



If R,,
p

is the signal autocorrelation matrix, the subarray autocorrelation matrix

is given by

Rxx = UR
pp
U T + a

2
vl (31)

The cross correlation between subarrays is

Rxy
= HR„O rH r

(32)

where H is the direction matrix whose columns are the direction vectors for the p

wavefronts

H0k ) = UW,W hm(dk)Y (33)

After some manipulation [Ref. 15: pp. 251-253], we obtain the matrix

r = (R„ -W) - J**,

= HR
pp
HT- yHR

pp
®THT

(34)

= UR
pp

{\ - y<D
r
)HJ

In general, there will be p eigenvalues of this matrix. But when y = e,2if
sir,fl

<, the /th row

of (I — y^ 7
) becomes zero, leaving p-\ eigenvalues. Each value of y where this occurs is

called a generalized eigenvalue (GE). Now, the DOAs can be determined by

dk = arcsm(^) (35)

Due to estimation errors in the calculation of the correlation matrices, some

error will be induced. Generally, the GE's will be moved off the unit circle and out from

the origin, but in the case of strong signals, they will still be easily discernible. It should

be noted that poor array design may result in possible ambiguities (similar to MUSIC).

Advantages to note over the MUSIC algorithm come with respect to the array

manifold. With ESPRIT, no manifold is required. The considerable calibration efforts

and storage requirements are nonexistent. However, the two subarrays must be identical

in all respects and must be positioned exactly parallel to each other [Ref. 14].



4. Other Subspace Methods

Large variance effects may be seen in the above methods due to the poor reli-

ability of the estimation of the eigenvectors associated with the minimum eigenvalues

of the estimated autocorrelation matrix R„. A different method of spectral estimation

is the use of the principal components where only the eigenvectors associated with the

largest eigenvalues are used. Some methods have tried to minimize the effect of noise

by using R„ — o]\ but the estimation errors in both R„ and o 2
v
have limited their suc-

cess [Ref. 1: pp. 425]. Other spatial spectral methods include the parametric methods

such as AR and ML [Ref. 1: pp. 426-427].

The structured matrix approximation of Kumaresan and Shaw [Ref. 16] uses K

snapshots in time of an N element uniformly spaced linear array with each snapshot in

time forming a column of a data matrix X, which is then approximated by XM in the least

squares sense. The bearings information is then calculated using the properties of the

Vandermonde matrix.

A combination of frequency domain beamforming and autoregressive modeling

techniques have been employed in Reference 17 to estimate the direction of arrival in a

multiple source localization situation using a planar array.

Halpeny and Childers [Ref. 18] use frequency-wavenumber filters to break the

multiple wave case down to a succession of single wave problems.

Reference 19 explains an algorithm that uses non-noise eigenvectors from a

covariance matrix to obtain high resolution direction of arrival for narrow band sources.

An adaptive beamforming method similar to a minimum energy approach is

decribed in Reference 20. The eigenstructure of the correlation matrix is analyzed and

the computations are modified to optimize resolution but at a cost of array gain.



III. THE LANCZOS ALGORITHM

Lanczos algorithms provide a method to find some of the extreme eigenvalues

(smallest or largest) and their associated eigenvectors from large matrices with fewer

operations than required in an entire matrix decomposition. The procedure is a

tridiagonalization of the original matrix based on an iteration developed by Cornelius

Lanczos [Ref. 21: pp. 49-206]. Once the matrix is in a tridiagonalized form the

eigenvalues can be easily computed using a symmetric QR algorithm [Ref. 15: pp.

278-279] or bisection (with or without Sturm sequencing) [Ref. 15: pp. 305-308]. The

algorithm takes advantage of "minimized iterations" providing quick convergence to the

final tridiagonal matrix and avoiding accumulation of roundoff error. [Ref. 22]

The method fell from favor as a tridiagonalization technique with the advent of the

Givens and Householder transformations later on in the 1950s. Givens transformations

[Ref. 15: pp. 38-47] use plane rotations (orthogonal matrices) to zero out undesired en-

tries in the matrix undergoing tridiagonalization. The Householder methods [Ref. 15:

pp. 43-47] use elementary reflectors to accomplish the same end. Both methods are in-

herently stable, with the Householder method being slightly superior in both speed and

accuracy. Both methods outperformed Lanczos as a complete tridiagonalization proce-

dure in the general case where all eigenvalues are required [Ref. 23: pp. 42-43].

The real power of the Lanczos method however lies in obtaining the extreme values

quickly. The entire matrix need not be tridiagonalized before solutions start to converge.

Also, if the original matrix is sparse, the Lanczos method maintains that property, sav-

ing even more computations. Thus for large matrices (order > 100) the Lanczos method

will converge on extreme eigenvalues in many fewer operations. Recently Tufts and

Melissinos [Ref. 24: pp. 43-47] have derived a variation of the Lanczos method for high

resolution spectral estimation and showed that their method outperforms both the sin-

gular value decomposition and the power method of principal eigenvector and

eigenvalue computation. Later in this chapter, it will be shown that storage require-

ments are also minimized.

This chapter starts with an explanation of the classical Lanczos algorithm as devel-

oped by Lanczos and modified by Paige [Ref. 25]. Then we will discuss the unorthodox

Lanczos algorithm of Cullum and Willoughby where no reorthogonalization is per-

formed [Ref. 23]. Finally, the algorithm used in the direction of arrival problem are



discussed in detail. Also, we present some results of the algorithm in the form of spectral

estimation of multiple tones.

A. CLASSICAL LANCZOS AND ITS VARIANTS

The original algorithm was designed as a means to directly tridiagonalize the sym-

metric matrix A. The development of Lanczos algorithm requires the knowledge of

Krylov sequences and subspaces. For an n by n matrix A and any arbitrary non-null

n by 1 vector \\ the Krylov sequence of vectors is defined as:

v
/+]

= Avj = A'vj for k = 1, 2, ... , n (36)

In the above sequence there will be a vector, say vro+1 , which can be expressed as a

linear combination of all the preceding vectors. The Krylov matrix of rank m is then

given by

Vm = [v, v2 v
3 ... vj = [v

l5
Av,, A2

v„..., A^vJ (37)

and the Krylov subspace is the space that spans the vectors [v„ \\. ... , vj,

A'"
;

(A,v,) = span{vls Av,, A2
v ls ... , A^'vJ (38)

The columns of the n by m Krylov matrix Vm are orthogonal. The tridiagonalization

of the given matrix A is then obtained as

T = v£AV
OT , (39)

where T is an m by m tridiagonal matrix. Thus, the given matrix A can be

tridiagonalized provided we have an efficient way to compute the orthogonal matrix V
;
.,

or to compute the elements of matrix T by performing the decomposition of equation

39 directly as proposed by Lanczos [Ref. 22, Ref. 15].

The most direct way of performing the tridiagonalization assumes that T = V 7AV

where V = [v, v
2

... vm ] . Note that A is a symmetric n by n matrix and V is an

n by m orthogonal matrix constructed from the Krylov sequence of vectors. The basic

recursion for a real n by n matrix A starts with a randomly generated unit Lanczos vec-

tor v,. Define scalar /), = and v = 0. Define Lanczos vectors v, and elements tx, and

&_, for i = 1,2,..., M,

/^^Av.-a^-ftv, (40)



a, = v/Av, (41)

(42)

This is referred to as the basic Lanczos iteration or recursion. The actual Lanczos ma-

trix T, j = 1,2, ... , M, is a symmetric tridiagonal matrix with a, , 1 < /' <j, on the di-

agonal, and /?,.! , 1 </<(/'— 1), above and below the diagonal.

(43)

«1 h
h a

2 h
ft

• • .

o /?,

Each new Lanczos vector v/4., is obtained from orthogonalizing the vector Av, with

v, and v,_, . The elements a, and /?,., are the scalar coefficients that make up the Lanczos

matrix. The basic Lanczos recursion may be condensed into matrix notation by defining

^'
m = (vn v2> ••• .

VJ- Then from equations 40, 41, and 42

AV„ V„,Tm (44)

where e,„ is the coordinate vector whose mih component is 1 while the rest of the com-

ponents are 0, Jm is the m by m Lanczos matrix, the diagonal entries are

Tm(k,k) = a k for \<k< m, (45)

and the entries along the two sub-diagonals on either side of the principal diagonal are

JJkJi + 1) = Tm(k + \,k) - /Jk+] for 1 < k < m - 1 (46)

Note that A is never modified (unlike in Givens and Householder transformations), thus

advantage may be taken of any existing sparsity. Also, the only storage requirements

are for the three Lanczos vectors (n dimension), the Lanczos matrix T,, and the original

matrix A.

We summarize the actual steps:

• Use the basic recursion of equations 40, 41, and 42 to transform the symmetric
matrix A into a family of symmetric tridiagonal matrices T

y ,
j= 1,2,...,.U.



• For m < M find the eigenvalues of Tm ,
\x (also known as the Ritz values of TJ.

• Use some or all of these eigenvalues, n, as approximations of the eigenvalues of
A, / .

• For each eigenvalue ix Find a unit eigenvector u so that Tmu = ^u .

The Ritz vector y is the approximation of the eigenvector of A. It is found from map-

ping the eigenvector u of the Lanczos matrix.

y = V„u (47)

So the eigendecomposition of Tm finally results in the Ritz pair (/x, y) which approxi-

mates the eigenvalues and eigenvectors of A. [Ref. 23: pp. 32-33., Ref. 15: pp. 322-325.]

Unfortunately, the effects of finite precision arithmetic prevent the theoretical

Lanczos algorithm from working. The eigenvalues of A and the eigenvalues of T„ no

longer converge. Roundoff errors are partially to blame, but the dominant effect is from

the loss of orthogonality of the Lanczos vectors v, . From equation 40 it can be seen

that a small /?,_, will have great effect on v,.,. Paige showed that the algorithm runs

within allowable error constraints until it starts to converge on the first eigenvalue. At

this point />,.! becomes small and the Lanczos vectors lose orthogonality. The loss of

orthogonality is not random, however. It always occurs in the direction of the Ritz

vector y.

This trouble can be dealt with through reorthogonalization. But questions that we

must answer include:

• How much reorthogonalization is required?

• Where should it be performed?

• Reorthogonalize with respect to what?

Complete reorthogonalization is the first choice, inserting a Householder matrix

computation into the Lanczos algorithm. This enforces orthogonality among all the

Lanczos vectors and is effective at keeping the system stable. But the extra computa-

tions it requires negate any advantage of the Lanczos algorithm, making the number of

computations on the same order as a complete decomposition. Numerous vectors have

to be stored and compared requiring many swaps into and out of storage. [Ref. 15: pp.

334-335]



Selective reorthogonalization is clearly more efficient. The extra computations are

performed only if orthogonality checks indicate loss is imminent. Paige shows that the

loss of orthogonality occurs only when the algorithm converges on a Ritz pair. Thus,

instead of reorthogonalizing against every other Lanczos vector, using the less numerous

Ritz vectors will be sufficient. Storage is therefore minimized. Only when all eigenvalues

of the matrix are required does this method become computationally more expensive

than other techniques. [Ref. 26]

The last option is no reorthogonalization. The explanation above would seem to in-

dicate that maintaining orthogonality is required. However by analyzing the causes and

effects of the original loss of orthogonalization one can insert corrections into the sol-

ution to give valid eigenvalues and eigenvectors. This is the procedure that will be ex-

amined in the next section.

One other property will be mentioned. Here the single vector Lanczos recursion

described above will not find duplicate eigenvalues of the matrix A. Parlett's proof uses

the power method to expand v to compute the columns of the Krylov matrix K"(v, A).

If J{\) is the smallest invariant subspace of R'1 which contains v. then the projection of

A onto J{\) has simple eigenvalues. Also, the Krylov subspaces fill up J{\) and for

some / < /; we have

sPan{\] c K\k, v) c K\k, v) c ... a K\\, v) = Kl+]
(A, v) = J{\) (48)

The result is that some eigenvectors of A may be missed, and any repeated eigenvalues

will not be detected. [Ref. 27: pp. 235-239]

The multiple eigenvalue problem can be treated by using a Block Lanczos algorithm.

Instead of obtaining a tridiagonal matrix, the result is a banded block matrix, where the

diagonal is M„, an / by / matrix, and the above and below the principal diagonal are

upper triangular matrices B„ . Each block must be dimensioned / > p , where p is the

estimated multiplicity of the desired eigenvalue.

T,=

M] Bi

B
2
M

2 Bf

B
3

• •

B/

B M

(49)



This is analogous to the general case [Ref. 15: pp. 337-339]. The block Lanczos algo-

rithm is briefly reviewed at the end of this chapter.

The above discussion assumes that the given matrix A is real and symmetric. Besides

the algorithms summarized in this section for a real and symmetric matrix case, there

are other general Lanczos algorithms proposed in the literature [Ref. 23] that are suitable

for Hermitian matrices, non-symmetric matrices, and for rectangular matrices.

B. IMPLEMENTATION

The Lanczos phenomenon states that a few, not all, of the eigenvalues of a very

large matrix A can be computed using the Lanczos recursion with no

reorthogonalization. But to find most of the eigenvalues, the Lanczos matrix, Tm , will

grow in size approaching that of A, causing the loss of orthogonality of the Lanczos

vectors. The loss of orthogonality results in many spurious eigenvalues, as well as extra

copies of good eigenvalues. In any case, a test is required to confirm either:

• a "found" eigenvalue is good, or

• the eigenvalue that appears is spurious.

Golub and Van Loan. Parlett, and Paige [Refs. 15, 27, and 28] describe procedures

that look at the eigenvalues for each T,„ as m is stepped up in size. All the eigenvalues

of lm are computed at each step. The good eigenvalues will repeat at each larger Tm .

while the spurious eigenvalues jump around. If an eigenvalue does not match at con-

secutive T„/s it may be considered spurious and thrown out. If a good eigenvalue is

mistakenly deleted (due to numerical roundoff), it can be counted on to reappear in the

next step.

Cullum and Willoughby [Ref. 23] take a different tack by developing a test to find

and eliminate bad eigenvalues and retain the rest. The advantage here is in utilizing the

machine's tolerance to drop bad eigenvalues, while not discarding good eigenvalues that

have yet to converge. As a result a larger spectrum is available sooner, even though it

may only be a rough estimate of where the eigenvalues will finally converge.

In practice, parts of the Lanczos recursion (equations 41 and 42) are replaced by

a, = v/lAv,.-/^,.,) (50)

and

fiw = IIAvj-ow-ftv,!! (51)



Computation of the element a, is a modified Gram-Schmidt orthogonalization proce-

dure. The new /?/+ , is equivalent to the /?,^, of equation 42 but now it directly controls

the size of the Lanczos vector.

In what follows we describe two Lanczos algorithms, namely the single vector

Lanczos algorithm which is modified and analyzed by Paige [Ref. 28] and the block

Lanczos algorithm described by Cullum and Willoughby [Ref. 23]. Both algorithms have

been considered for the estimation of the directions-of-arrival of multiple targets in noisy

environments in this thesis.

1. Single Vector Lanczos Algorithm

The first procedure to be described is the Paige's single vector Lanczos algo-

rithm [Ref. 28] for real symmetric matrices. The single vector Lanczos procedure is one

of the most straightforward implementations of the theory. This procedure will find

some or many of the eigenvalues and eigenvectors of a real symmetric matrix A such that

Ax = /x. It will not detect repeated eigenvalues. However, it may be noted that for

many problems of interest in practice we do not have strictly multiple eigenvalues. For

example, in the direction-of-arrival problems the smallest eigenvalues of the

autocorrelation matrix corresponding to the noise associated with the target signals are

spread over a small range rather than coinciding on the same value [Ref. 2].

No reorthogonalization is performed as part of the single vector Lanczos al-

gorithm. As mentioned earlier, the Lanczos vectors begin to lose their orthogonality

when we seek to estimate all or most of the eigenvalues of the real symmetric matrix A.

For the application under consideration, however, we are generally interested in only a

few of the minimum eigenvalues and the corresponding eigenvectors. It is mainly for this

reason that we have not attempted the complete or selective reorthogonalization of the

Lanczos vectors in this study.

Now we shall outline the basic steps involved in the single vector Lanczos al-

gorithm. This is based on the recursion described by equations 40, 50 and 51. Based on

these equations Paige [Ref. 28] presented four different single vector algorithms. We

have adapted one of in this study. The complete eigenvalue/eigenvector problem actually

consists of three parts: (a) obtaining the tridiagonal matrix Tm from the given symmetric

and real matrix A using Paige's recursion, (b) determining the smallest eigenvalues of

Jm using the bisection method and Sturm sequencing, and (c) estimating the corre-

sponding eigenvectors by computing the Ritz vectors. The details are presented in the

following.



Step 1: As shown in equation 43 the symmetric tridiagonal matrix T, has entries

a, and /?, along its principal, and the adjacent sub and super diagonals, respectively. The

following recursive expressions are then used to compute the entries of the tridiagonal

matrix, and also the Lanczos vectors v
;
[Ref. 28]:

Initial conditions: v, is an arbitrary n by 1 vector such that ||v||
2
= 1

u, = Av,

«o = fa =

for j = 1,2, ... , m

*j = v/u, (52)

W . = U; - Xffj

fij - li»>ll2

V/+] - YFjfij

u
;+]

= Av
y+1

- fyvj

where w and u
r
are some intermediate vectors. The vector v, is obtained by filling its

entries with a random number sequence and then normalizing it with respect to its

Euclidean norm. Now Tm is obtained by simply filling its entries as in equation 43. Note

that m 4 n in the above. One quick test to ensure that we have obtained a fairly accurate

estimate of Tm is to compute the product v/v
y

. The result should be equal to 5
t] , where

S„ is the Kronecker delta function.

Step 2: The eigenvalues of the tridiagonal matrix Tm , denoted by np can be

computed using the bisection method and Sturm sequencing. Actually one could obtain

both eigenvalues and eigenvectors of T^ by employing such methods as the QR algo-

rithm. However, when only a few eigenvalues are required, the bisection method seems

appropriate. For the given m by m matrix Tm we define the characterstic polynomial

pm{n) = det (Tm - al) (53)

which can be recursively computed as follows

;
7
o(^) = 1

p x {fi)
= a

x -n

for j = 2, 3, ... , m

(54)



The roots of the polynomial pm{n) are the required eigenvalues. For our appli-

cation, we are only interested in a small range of eigenvalues at the lowest end of the

eigenvalue spectrum. We make use of the Sturm sequencing property that the

eigenvalues of T,_, strictly separate those of T, [Ref. 15: pp. 305-307] and implement the

following iteration:

a + b

b = v if Pm (a)Pm(b)<0 (55)

a = pl if pm(a)pm (b) >

and we repeat the above as long as | b — a
\
> e( | b | + | a

\ ), where c is the machine

unit round-off error and \_a,b~] is the range of our required eigenvalues. Determining the

range of interest in our application may require some a priori knowledge about the signal

to noise ratios (SNR) and it may take a couple of iterations to do this. Some alternatives

to the iteration given in equation 55 are to use a straightforward polynomial root finder

and then pick the roots of interest, or to employ the well known L-D-U factorization,

both of which may not be computationally efficient.

Step 3: There are two ways to obtain the eigenvectors of A knowing its

eigenvalues, /,. Note that /i, are the estimates of A,. In the first method, we compute

the eigenvectors of Tm , denoted by t , and then obtain the eigenvectors of A given by

x,. = Ljj (56)

where Lm = fv, v
2

... vm] is the Lanczos matrix which ideally is the same as the

Krylov matrix of equation 37. Note that (li,, t) e Tm .

The second method involves computing the Ritz vectors cither from the

Rayleigh quotient interation or by the orthogonal iteration. Here we assume that we

have good estimates of/, from the previous step, and proceed to obtain the eigenvector

Xj by minimizing the cost function

7= ||(A-;
7
.I)x

y || 2 (57)

It can be shown that a simple minimization of J with respect to x, yields the Rayleigh

quotient of x.



r(xj) = Aj = -^-4- (58)
XjXj

Therefore, given /, and using equation 58 we can formulate the Rayleigh quo-

tient iteration as follows [Ref. 15, 27]

Initial condition: x is an arbitrary- vector such that ||x
|| 2
= 1

for k = 0, 1,2,...

r(*j) = ^L
tf* (59)

solve (A - r(xk)V)jk+] = xk for yk+]

**+] = h+ilhk+ih

where ykM is some intermediate vector. We stop the iteration when ||yA_,|| 2 converges to

a constant or when r(xk) ^ ). k , one of the known eigenvalues. At each iteration step we

need to solve an nbx n system of equations in this method. One advantage with this

method, however, is that it converges very quickly. Besides the above iteration, some

other methods are outlined in References 15 , 23 and 27. We remark that if only a few

eigenvalues and eigenvectors (say, five) are required, it may be more direct to use

equation 56.

We now present an example of the ability of the single vector Lanczos algorithm

to estimate the direction of arrival, or to find spectral lines in noise, and the advantages

in extracting more than one eigenvalue and eigenvector in this process. We consider a

signal with three sinusoids present in noise

3

An) = y A
t
cos(27ry>0 + n{n) (60)

where A, are the amplitudes of sinusoids, / are the normalized spatial frequencies

(0 <f:

< 0.5 corresponding to .0 <6 <-^-) , and n(n) is the zero mean white noise with

a variance of a].



We have computed a 25 by 25 autocorrelation matrix of x(n), R„ , by using 100

data samples. We have used the covariance method for this purpose, hence R„ is real

and symmetric. The eigenvectors x, of R„ corresponding to the lowest eigenvalues are

computed by employing the single vector Lanczos algorithm. The power spectral density

estimates are computed as follows:

s%M-

I
(61)

me™

where x
Jt
are the elements of the jth eigenvector, x

y
.

Figure 6 and Figure 7 show the power spectral density (PSD) estimates of

equation 60 with an SNR of 10 dB for J = 1 and 2, respectively.
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Figure 6. PSD of first eigenvector

Note that the index j indicates the increasing magnitude of the eigenvalues. Thus,

(/l,,x,) are the lowest eigenvalue and the corresponding eigenvector. In both figures we

have the peaks at the correct locations (9°, 27°, 63°). However, they both have spurious



smaller peaks at different locations. We can observe the same trend for the first five

eigenvectors as shown in Figure 8, where the spectral estimates are over laid on each

other.

Based on the above results one feels that we could employ some kind of aver-

aging to get rid of the spurious peaks and improve the estimation performance. We have

implemented two such methods: the eigenvector averaging and the spectral averaging.

Figure 9 shows the result of the algebraic averaging of the first 5 eigenvectors, and

Figure 10 shows the result of the algebraic averaging of the spectral estimates of the

same eigenvectors. As seen from Figures 9 and 10, eigenvector averaging yields better

results than spectral averaging.

Figure 7. PSD of second eigenvector

Improved results, however, were obtained by using what is called spectral

multiplication which is obtained by taking the product of the individual spectra, given

by

r>
s«W =

J J«(/)
(62)



where 7 is a predetermined number (7 <m< n). Figures 11 and 12 show the results of

spectral multiplication for 7 = 2 and 7=5, respectively. As can be seen in these fig-

ures, using more spectra in equation 62 greatly improves the performance. Also, even

for 7=2, spectral multiplication outperforms the eigenvector averaging method.

Figure 8. Overlayed PSDs of first 5 eigenvector

In the remainder of the thesis, we have used spectral multiplication in prefer-

ence to the eigenvector or spectral averaging. Figure 13 shows the multiplication of 5

spectra for the case when the SNR = dB. We notice a spurious peak around

6 = 74°. iMore spurious peaks are observed when the SNR is decreased to -5 dB (see

Figure 14) and Figure 15 shows the spectrum for the SNR but we have used the

eigenvectors 6-10 in this case. Improved performance is obtained as shown in

Figure 16 (J = 10) and Figure 17 (J = 15) by using more and more eigenvectors in the

spectral multiplication.

In all the above cases we always observed the signal spectral peaks at the right

places. The spurious peaks, however, did not appear at the same location as we used a

different eigenvector to compute the spectrum, S^(/).



Figure 9. Eigenvector averaging

Figure 10. Spectral averaging
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2. Other Methods

The single vector Lanczos algorithm will not determine that repeating

eigenvalues exist, thus it cannot find the corresponding eigenvectors. The subspace that

results has an incomplete basis as it is described only by the eigenvectors that are com-

puted. The solution is to use a block method that is analogous to the single vector

Lanczos algorithm. As we mentioned earlier, the block form of the Lanczos algorithm

does find eigenvectors with multiplicity p as long as the blocks are dimensioned l>p.

We attempted to incorporate the Cullum and Willoughby hybrid block Lanczos algo-

rithm (Ref. 29 Chapter 8) into our direction of arrival model. We postulated that it

would be desirable to compute a few of the extreme smallest repeating eigenvalues and

their respective eigenvectors. However we were never able to get the program to reliably

compute good eigenvalues and eigenvectors for the autocorrelation matrix. This has not

posed a problem for our model as the covariance matrix does not appear to have re-

peating eigenvalues, but a larger order matrix may indeed include duplicating noise

eigenvalues and require an algorithm that will accurately operate with that perturbation.



The algorithm we attempted to use is actually a hybrid approach to finding the

eigenvalues and eigenvectors of a real symmetric matrix A. For insight into the problem

look at the block analogy of equations 40, 41, and 42. Define matrices

B
t

= and V„ = 0. The « by q matrix \
x
has columns that are orthonormal random

vectors. The value of q must be greater than or equal to the number of eigenvalues to

be found.

for / = 2, 3, ... , 5

t (63)

M, = V/CAVj-V^B/) (64)

VWBW - P, (65)

The matrix B,,, is a modified Gram-Schmidt orthonormalization of the columns of P,,

Also note that the matrix M, correspond to the pc's of the single vector Lanczos.

The block analogy to the Krylov subspace approach can be performed with

/^(A.V,) = span{\ lt AV lt A2
V,, ... , A

s~ ]

\] (66)

The blocks V„ for j = 1, 2, ... , 5 form the orthonormal basis of the Krylov subspace.

It can be shown that for a symmetric n by n matrix A and an orthonormal

n by q starting matrix V,, that the block recursion equations 63, 64, and 65 will generate

blocks V2) V3 , ... , \
s
where qs < n. It is these blocks that form an orthonormal basis

of the subspace A'-'(A, V,) . In much the same way as the single vector Lanczos algorithm

generates the tridiagonal Lanczos matrix, the block variant generates blocks, but these

are now nontridiagonal. At the end of each iteration the Lanczos matrix is of the form



A, « MjAM

b2 «2 &

M rAMj
h <*3

04 0C4

ft

(67)

The submatrix MfAM consists of the reorthogonalized terms and M, is the portion of

the first block that is not generating descendants. Ritz vectors are computed on every

iteration and are used as the starting blocks for the next iteration. Each block is required

to be reorthogonalized with respect to the all the vectors in first block which is not being

allowed to generate descendants. It is apparent that the block procedure requires a great

amount of storage and is very computationally intensive.



IV. RESULTS

Using the Lanczos algorithm it is possible to find some of the eigenvalues and

eigenvectors of a matrix without going through an entire matrix decomposition. The

smallest eigenvalue of the autocorrelation matrix and its corresponding eigenvector will

have the required spectral information to determine a source's bearing (direction of ar-

rival) from an array. Multiplying several of the resultant eigenvectors' power spectral

densities will tend to reinforce the true spectral peak and zero out spurious peaks that

do not occur with every eigenvector.

The problem with finding the split between the noise and signal eigenvalues disap-

pears as only a few of the smallest eigenvalues of a large matrix (in relation to the

number of sources) are used.

A. APPROACH

The received signal is modeled by sinusoids at normalized spatial frequencies pro-

portional to their bearings from endfire (.0 = 0°
, .5 = 90° ). The sum of these

sinusoids is sampled at a rate based on the interelement spacing of A mJ2. Thus a source

at endfire is sampled at the Xyquist rate and the sample rate increases as the bearing

shifts toward the arrav broadside. The simulation uses

T

1ss(n) = ) A cos(2tt/-«) + n{n) (68)

where ss{n) is the instaneous excitation for the sensor at location n, A is the amplitude

of each of the T signals, f, is the normalized spatial frequency of the fth source (de-

pendent upon bearing), and n{n) is white gaussian noise. The relationship between A

and the noise variance a] is determined by the desired signal to noise ratio (SNR), where

SNR = lOlogf -y"
J

(69)

The experiment consists of simulating a linear array with equally spaced sensors re-

ceiving signals of known temporal frequency from various bearings. One possible



physical implementation would place a bank of bandpass filters on each sensor with the

outputs from each similar filter tied into a correlator. Advantages of this method include

the processing gain found by prefiltering the noise and simple parallel implementation

with separate channels for each frequency band. The lowering of the noise bandwidth

will raise the SXR at the correlator. As more filters are used (smaller bandwidth) the

noise power decreases and the SXR is increased. The algorithm creates an

autocorrelation matrix with the output of the correlator. The Lanczos tridiagonalization

and eigendecomposition provides the eigenvectors that are estimates of the spatial PSD.

The PSD corresponds to the sources directions of arrival. A possible implementation is

shown in Figure 18.

B. EXPERIMENT SET UP

The first three cases show the effect of different signal strengths on the ability to

accurately determine the number of targets and the bearing resolution for various di-

rections and target spacing. In each of these cases, the number of sensors is 100, a ma-

trix size of 25 is used and 15 iterations (the number of eignevalues/eigenvectors found)

are performed. Case 4 uses three 5 dB sources at 18°, 36° and 41.4° to illustrate the ef-

fects on changing the number of sensors (samples), the size of the autocorrelation ma-

trix, and the number of eigenvectors used. The noise is randomly generated white

gaussian noise with a standard deviation selected to provide the desired SXR. Each

figure shows, (a) the PSD of selected eigenvectors overlayed and plotted versus bearing

and (b) the product of selected PSDs of those eigenvectors.

Case 1 is with all sources at a signal strength oC 5 dB. Figure 19 shows results from

the second through sixth eigenvectors of a single source at 1S°. Xote that some of the

eigenvectors have individual peaks as high as the true signal peak, but only at the true

bearing do all have a common peak. Figure 20 illustrates the other end of the spectrum,

at 81°. Once again the second through sixth eigenvectors are overlayed to show that the

correct bearing is consistently displayed, but in this case one eigenvector has an indi-

vidual peak higher than the true signal peak. The product of these PSDs provides suf-

ficient resolution. Figure 21 has two closely spaced sources at 36° and 38°. Resolution

is achieved but the PSD product of the second through sixth eigenvectors shows a spu-

rious peak near 75°. Figure 22 is from three sources at 0°, 36° and 88.2°. The individual

eigenvector PSDs clearly show the excellent performance at broadside.

Case 2 lowers the signal strength of all sources to dB. Figure 23 shows results

from the second through sixth eigenvectors of a single source at 18°. Many more peaks



I I L SENSORS

BANDPASS
FILTERS

CORRELATORS

E I GENDECOMPOS I T I ON

SPECTRAL
ESTIMATOR

bearing:

Figure 18. A physical implementation

are visible in the PSD product, making the decision of how many targets more difficult,

figure 24 shows that at the the other end of the spectrum (at 81°) the situation is
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Figure 19. Case 1 5 dB, 1 target at 18 °: (a) overlay of PSDs from second

through sixth eigenvectors, (b) product of the above PSDs
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slightly worse (due to a lower sampling rate). The overlays of the second through sixth

eigenvectors show that the correct bearing is consistently displayed, but in this case

enough spurious peaks reinforce one another, resulting in the PSD product that has not

zeroed out the bad peaks. Figure 25 illustrates that the proper choice of eigenvectors

will resolve this problem. Here the PSDs of the first through fifth eigenvectors are used,

giving a product that is easier to determine correctly. Figure 26 shows the dB case for

two close spaced sources at 36° and 38°. Resolution is achieved but the PSD product

of the first through fifth eigenvectors shows several spurious peaks, including the same

one as in Case 1 near 75°. Figure 27 is the three source example at dB. The individual

eigenvector PSDs are repeating at the proper bearings but the performance at broadside

is resulting in the product at the other bearings actually being driven down.

A signal strength of -5 dB is used for Case 3. Figure 2S shows results from the first

10 eigenvectors of a single source at 18°. Using more good eigenvectors increases the

likelihood that all spurious peaks will be diminished. Figure 29 illustrates results at the

other end of the spectrum (at 81°). Resolution is looked at in Figure 30. At -5 dB the

algorithm cannot separate the two close spaced sources at 36° and 38°. A number of

spurious peaks are higher than the bump at 36° making it impossible to accurately de-

termine the number of sources as well as both locations. Resolution is tried again in

Figure 31 with 2 sources at 36° and 40°
. Using five eigenvector PSD products produces

good results. Figure 32 shows 3 sources at -5 dB. Good performance is seen both in

the overlays and in the PSD product.

Case 4 starts with 100 sensors and a 25 by 25 covariance matrix shown in

Figure 33. As the number of sensors is decreased and the number of eigenvectors used

is held constant, more spurious peaks start to occur (Figure 34 and Figure 35).

Figure 36 shows the spectral improvement as more eigenvectors are used. As the

number of sensors is decreased to 40 (Figure 37) and seven eigenvectors are used, the

results are still acceptable. Using only 30 sensors we can no longer see resolve between

the two closely spaced sources. With a sufficient number of eigenvectors no spurious

peaks are present but the true number of targets is nondeterminable (Figure 38 and

Figure 39).
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Figure 26. Case 2 dB, 2 targets at 36 ° and 38 °: (a) overlay of PSDs from first

through third eigenvectors, (b) product of the first through fifth

eigenvector PSDs



40 60 80 100

Bearings
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from second through sixth eigenvectors, (b) product of the above PSDs
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Figure 33. Case 4 5 dB, 3 targets at 18 °, 36 ° and 41.4 °: 100 sensors, (a) PSDs

of second through sixth eigenvectors, (b) product of the above PSDs



Figure 34. Case 4 5 dB, 3 targets at 18 °, 36 ° and 41.4 °: 75 sensors, (a) PSDs

of second through sixth eigenvectors, (b) product of the above PSDs
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V. CONCLUSIONS AND RECOMMENDATIONS

The results plotted in Chapter IV indicate that the eigenvectors found using the

Lanczos algorithm are sufficiently accurate to determine the spectrum. Although no

direct comparisons with other eigendecomposition methods are performed, the theory

indicates that many fewer operations are required. We handle the other difficulty of

conventional subspace methods by using only a few of the eigenvectors associated with

the minimum eigenvalues of the autocorrelation matrix. No estimation of the noise

subspace dimension is required or performed.

This theory may be applied to any system requiring rapid decomposition of the

correlation matrix. Examples include phased array radar and passive acoustic arrays

[Refs. 30, 31]. Reference 32 details an experimental system using the MUSIC algorithm

for multiple source direction finding.

The following areas are recommended for future study.

• Use of the products of multiple spectra apparently resulted in good detection at low
SNR. More research in this area to determine a physical interpretation of this

method is required.

• Analysis and comparison of the results in terms of computational speed and accu-

racy with other eigendecomposition methods should be performed to find the true

results.

• The Lanczos algorithm developed uses no reorthogonalization nor will it find re-

peating eigenvalues. Other forms of the Lanczos algorithm are available. Com-
parisons between these different methods to determine accuracy and speed may
lead to more optimum results.

• A more detailed model should be developed that will simulate an array with a bank
of bandpass filters to better forecast results of a physical implementation (as seen

in Figure IS of Chapter IV).

• A method which implements the algorithm in parallel fashion may be tried. Using

one long linear array, several overlapping subarrays may be used to simultaneously

create several autocorrelation matrices. The algorithm may be applied to these

matrices in parallel. It is predicted that the greater number of available

eigenvectors will more properly describe the noise subspace and therefore more
accurately estimate the spectrum.
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