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ABSTRACT

Root locus techniques are used infrequently in the design of

tachometer and acceleration feedback compensation, for feedback control

systems. A root locus stability criterion is discussed, which has the

capability of handling more than one variable coefficient in the character-

istic equation. This stability criterion is applied to the analysis and

design of tachometer and acceleration feedback compensation. The design

of cascade compensation is attempted, and the difficulties of designing

this type of compensation with the root locus technique are discussed.

The root locus stability criterion is found to be a useful tool for

designing tachometer and acceleration feedback compensation for third

order systems, and for certain fourth order systems.
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1. Introduction.

Tachometer and/or acceleration feedback are commonly used to compen-

sate feedback control systems. This compensation is frequently designed

from a Bode plot, less frequently root locus techniques are used. Tacho-

meter and acceleration feedback, used together, involve two variable co-

efficients in the system characteristic equation, and neither method is

really convenient.

A simple stability test, using root locus methods, has been present-

ed by K. W. Han and G. J. Thaler which has the additional advantage of

being capable of handling multiple adjustable coefficients in the char-

acteristic equation. [1] This method can give considerable information

about the effects of tachometer and acceleration feedback on a system,

and some insight as to the reasons behind these effects.

Briefly, this root locus stability test involves partitioning the

characteristic equation of the closed-loop system into even and odd parts,

such that

F(S) = F (S) + F <S) =
e o

and by then dividing through by F (S) to get a proper root locus form

F (S)/F (S) = -1.
e o

In general, this form of the characteristic equation can be written as

A( even polynomial ) = -1

S( even polynomial )

where A is a gain constant.

It is known that all roots of the numerator and denominator poly-

nomials will be on the imaginary axis of the S - plane. The only ex-

ception is the possible case of two pairs of complex roots with identi-

cal imaginary parts, and with the real part of one pair being the



negative of the real part of the other pair, as shown in Figure 1(b).

JOJ
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Fig. 1. Possible pole-zero distributions. (a). Unstable
system with all roots on imaginary axis, (b) . System with
complex roots.

It is shown that for the system to be stable, the poles and zeros

of the system must lie on the imaginary axis, and must be in the follow-

ing, alternating sequence

P0< Z1< P1< Z2< P2< Z
3 ••

where P is at the origin of the S-plane. A system with any other ar-

rangement of poles and zeros is unstable.

Figure 2 shows a typical root locus for a stable system. In gener-

al, the loci will consist of lobes extending into the left hand plane.

For any sequence of poles and zeros other than that specified, one or

more of the root loci lobes will be completely in the right half plane.

10



These lobes may be roughly approximated by semi-circles, so that the

maximum real part is approximately

<T = -h P - Z
|

.

c
-10

10

Fig. 2. Root loci for stable 5 order system

For purposes of design, Cx) n is approximately bounded by the

magnitudes of the poles and zeros for each lobe, and the maximum possi-

ble L can be approximated by constructing a line from the origin

tangent to each lobe.

This thesis will apply the above root locus methods to the analy-

sis of tachometer and acceleration feedback compensation of third,

fourth, fifth and sixth order feedback control systems. Limitations to

the ability of tachometer and acceleration feedback compensation to

stabilize fifth and sixth order systems is presented. A design techni-

que is discussed and applied to the design of tachometer and acceleration

11



feedback compensation of example control systems. The method is also

used to design cascade compensation for a system.

The system performances, predicted by the design technique, are

compared to the results of digital computer simulations of the example

systems.

-

<

12



2. Stability analysis of third order system with tachometer and ac-

celeration feedback compensation.

+ + GO

-> * > 5(S + lHS + 5)

\J e* . u c
r\g^ o + rVt o i

The effects of tachometer and acceleration feedback compensation on

the third order feedback control system shown above are to be analyzed

by means of the root locus stability criterion.

The characteristic equation of the closed loop system is

F(s) = s
3 + (6 + 60K )s

2 + (5 + 60K )s + 60 = .

a t

Partitioning this equation into even and odd parts yields

F (s) - (6 + 60K )s + 60

F (s) - s + (5 + 60K )s .

o t

The proper root locus form is obtained by forming F (s)/F (s) , which

gives

(6 + 60K )[s
2
+ 60/(6 + 60K )] - -1

.

a a

s[s
2
+ (5 + 60K

t
)]

Setting K = K - yields the basic system, which has the pole-zero

distribution shown in Figure 3. It is apparent from the order of the

poles and zeros that the system is unstable without compensation. In

order to stabilize the system, it is necessary to interchange the order

13



of P and Z . P and Z are called the critical pole and zero, as the

stability of the system depends upon their locations on the imaginary

axis.

1 . JO)

5

c >

J

J

i

( >

-5

(<X

Fig. 3. Pole-zero plot for 3 order system

Interchanging P. and Z can be accomplished in one of three ways,

(a) ,by moving the zero towards the origin, (b) , by moving the pole away

from the origin, or (c), by a combination of movements. Inspection of

the even and odd parts of the characteristic equation shows that the

second derivative acceleration feedback appears only in the even part,

while the first derivative tachometer feedback appears only in the odd

part. Therefore, adding acceleration feedback will cause only Z. to

move. Increasing K , the acceleration feedback gain constant, will

move Z toward the origin, as required for stability. Likewise, add=

ing tachometer feedback will cause P. to move away from the origin.

Therefore, the system may be stabilized by adding acceleration feedback

alone, tachometer feedback alone, or by a combination of tachometer and

14



acceleration feedback.

At this point, the effect of the various compensation schemes should

be considered. The location of the root on the root locus lobe will, in

general, depend upon the separation between the pole and zero, and upon

the root locus gain constant. Low root locus gain causes the root to be

located near the pole, high root locus gain moves the root nearer to the

zero. Greater separation between the pole and zero causes the lobe to

enlarge, and the root will not move as far, relatively, around the lobe

for the same value of root locus gain. The greater separation also al-

lows a larger maximum possible value of f . The possible values of

CJ n are approximately bounded by the locations of the pole and zero.

The root locus gain constant, for the third order system, is the

2
coefficient of the S term. This coefficient is dependent on the ac-

celeration feedback gain. An increase in the acceleration feedback gain

raises the root locus gain, and moves the root of the system nearer to

the zero. In effect, large values of acceleration feedback gain make U)n

approximately equal to the frequency of the zero, and decreases L

For these reasons, it may not be desirable to use large values of accelera-

tion feedback gain in compensation of a third order system. On the other

hand, large values of tachometer feedback gain tend to increase the pos-

sible C0 n » and may decrease f as the system root moves nearer to

the pole. With a combination of tachometer and acceleration feedback,

however, a satisfactory combination of r and d) n should be attain-

able from a third order system.

In order to demonstrate the effects of varying tachometer feedback

gain, acceleration feedback gain and system gain, the curves of Figures

4 and 5 are drawn. These curves are generated by considering the odd

and even parts of the characteristic equation separately.

15



To determine the movements of the zero, consider F (s).
e

.''•>..;•
. ,» 2
(KK + 6)s + K =

a

Partitioning this equation to separate the variable parameters, and put-

ting it in root locus form yields

w 2
KK S

a = -1 .

6(s
2
+ K/6)

By calculating the root locus for this equation, points may be gener-

ated for a curve showing the movement of the zero (Z.) for varying KK .

1 a

Various values of K can be substituted to give a family of curves describ-

ing the movements of Z. while varying K and KK .

1 a

To determine the movements of the pole (P ), consider F (s).

s
3
+ (5 + KK )s -

Partitioning this equation as before yields

KK - 1

y . s
2
+ 5

A single curve may be generated, from the root locus calculations, show-

ing the movement of P. for varying KK .

If K =0, the even part is partitioned to give
a

K - -1.

6s
2

A single curve may be generated to show the movement of Z. for varying

K. If K 0, P will not change its location with variations in K or

KK .

a

' As stated before, the curves in Figures 4 and 5 were generated by

calculating root loci and plotting the movements of P. and Z as K, KK

16



and KK were varied. This would not be necessary, however, as points on
8

the curves could be generated directly for this simple system. The loca-

%
tion of P- varies as (KK + 5) , and the location of Z. varies as [K/(KKit la
+ 6)]

%
.

For any given system, values of K and K could be found to give

any desired separation of the critical pole and zero. There are an in-

finite number of values of K and K which will give a particular separa-
t a

tion of P. and Z , however, a minimum G0 n will normally be desired, and

this value should be set equal to Z , to determine the necessary K . It

is then simple to determine the necessary K from the relations below.

Z
x

= [K/(KK
a
+ a

2
)]

%

< ^n >L " K/(KK
a
+ *2>

K
a
=1/<^>min " V*

P = Z + desired separation

= «!KK
t
+ a

x
)
%

K
t

= (P
1

2
" a

l
)/K

The constants a. and a are, respectively, the coefficients of the first

and second order terms of the uncompensated characteristic equation.

Figure 4 shows the movement of the critical pole and zero for vary-

ing acceleration and tachometer feedback gains, and the effect of vary-

ing system gain. Intersections of the curves indicate that the criti-

cal pole and zero lie one on top of the other. These points are the

limits of stability for the system. Therefore, the areas between the

curves, and to the right of an intersection, are stable regions for

the system. For a given KK , the frequency of the critical zero can be

determined. Likewise, for a given KK , the frequency of the critical

17
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pole can be found. The vertical separation between the two points found

on the curves, is the separation between the critical pole and zero on

the imaginary axis of the S-plane» The separation can thus be picked

off the curves for any desired values of tachometer and acceleration

feedback gains.

Figure 5 shows the effect of varying system gain and tachometer feed-

back gain, with no acceleration feedback. The only intersection shown

on Figure 5 is with the system gain curve and the KK =0 curve. It is

obvious, however, that for sufficiently high values of K and for low

values of KK , the zero on the K curve would be above the pole of the

KK curve, and instability would result. Therefore, the comments con-

cerning Figure 4 also apply to Figure 5, The intersection on Figure 5

shows that the uncompensated system will be unstable for system gains

greater than 30. The addition of sufficient tachometer feedback, how-

ever, will give any desired separation between P and Z .

As an example of the use of the curves, assume K = 24, K =2.0,

and K =0. From Figure 5, Z would be at a frequency of 2.0 radians

per second and P
1

at a frequency of 7.3 radians per second. From this

information, approximate values for the system damping factor and

natural frequency are:

CJn = 2,0 + %(7.3 - 2.0)

= 4.65 radians/second

£ = 2,65/ [(2, 65)
2
+ (4.65)

2
]^

= 0,495

Figure 6 is the root locus plot for this sample system. From this

plot, it is seen that the actual values are

CJfl =6=53 radians/second

£ = 0,383,

19
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Obviously, the approximations to the actual values are very rough. The

reason for the differences in the values is that the approximation as-

sumed the root would lie on the midpoint of a semi-circular lobe, while

the root was actually closer to the pole, and the lobe was not semi-

circular. This difference will be discussed later, in the design of

compensation for example systems.

Figures 7, 8, 9, and 10 are root locus plots for the third order

system with different combinations of tachometer and acceleration feed-

back gains. The location of the roots, on the root loci lobes, are

shown, and demonstrate the effects discussed earlier.

It was seen from the even and odd parts of the closed-loop charact-

eristic equation, that the even part is a function of two parameters, K

and KK , and the odd part is a function of one parameter, KK . By set-

ting the parameter of the odd part equal to a constant, it should be

possible to plot stability curves with the ordinate and abscissa vari-

ables the two parameters of the even part. Figure 11 is a family of

such curves. They show the limit of stability for constant KK while

varying K and KK . The system is stable in the region below the curves,
s

and is unstable above the curves. These curves demonstrate the same

stability information as the curves of Figures 4 and 5, but in a differ-

ent manner.

21
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rd
Fig. 8. Root locus of 3 order system with

K^ - 0.7 and K - 0.1.
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*lg. 9. Root locus of V order system with

K$ 0.7 and Ka • 0.5.
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3. Stability analysis of fourth order system with tachometer and

acceleration feedback compensation.

to +— \000

: -\ : S(S+l)lS+5)(S + IO)

K< S
8
+ Kt S

The characteristic equation of this closed-loop system is

F(S) = S
4
+ 16S

3
+ (1000K + 65)

S

2 + (1000K + 50) S + 1000.
a t

To use the root locus stability criterion, this equation is partitioned

into even and odd parts

F (S) = S
4
+ (1000K + 65)S

2
+ 1000

e a

F (S) = 16S
3
+ (1000K + 50)S.

o t

The proper root locus form is obtained as

F (S) S + (1000K + 65)S
2
+ 1000

e a - -1.

F (S)
o

16S [S + (1000K
t
+ 50)/16]

Setting K and K = yields the basic system, which has the pole-
a t

zero distribution shown in Figure 12. This system is seen to be un-

stable without compensation. In order to stabilize the system, it is

necessary to interchange P and Z .

As was seen in the analysis of the third order system, the addi-

tion of acceleration feedback will effect only the zeros of the system.

To see the effects of varying acceleration feedback and system gains,

consider the even part of the characteristic equation.

4 2
F (S) = S + (KK + 65)S + K -
e a

28
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Fig. 12. Pole-zero distribution of basic 4 order system.

Partitioning this equation and putting it in root locus form yields

.2
KK S

a = -1.

4 2
S + 65S + K

In general, the root locus of this form of F (S), will appear as shown
e

in Figure 13. It is seen that the addition of acceleration feedback

will move Z. in the proper direction to stabilize the system.

With no tachometer feedback, the poles will remain fixed, as seen

from F (S) with K - 0.
o t

F (S) = 16S(S + 3.12)
o

Therefore, it is always possible to stabilize a fourth order system with

the addition of sufficient acceleration feedback.

Since the addition of tachometer feedback will effect only the poles

of the system, a study of F (S) will determine the movements of P while

varying tachometer feedback and system gains.

F
q
(S) = 16S

3
+ (KK + 50)S =

29



j<*>

:: 2...

\: z-x

it-
er

jc z;

:^i

Fig. 13. Root locus of F (S) for increasing acceleration

feedback gain.

Partitioning this equation and putting it in root locus form yields

KK. = -1.

16(S + 3.12)

The root locus of this form of F (S) will appear as shown in Figure
o

14(a). With no acceleration feedback, the root locus form of F (S) be-

comes

K = -1.

2 2
S
Z
(S + 65)

This root locus is shown in Figure 14(b).

The addition of tachometer feedback is seen to move P_ in the proper

direction for stability. Figure 14(b), however, shows that for suffici-

ently large values of system gain, the zeros of the system become com-

plex. In the general case, F (S) will be of the form

F (S) = S
4
+ bS

2
+ K.

e

30
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Fig. 14. (a). Root locus of F (S) for increasing tachometer
feedback gain. (b). Root locus of F (S) for in-
creasing system gain, K =0.

a

The zeros will become complex when

K >b2
/4.

The root locus stability criterion states that all poles and zeros

must lie on the imaginary axis, and in the proper sequence, for stability.

Therefore, a system with complex zeros is unstable. As the addition of

tachometer feedback does not effect the zeros of the system, when K ^
2

b /4 the system can not be stabilized by tachometer feedback alone. In

this case, acceleration feedback is required to move the zeros back to

the imaginary axis in order to achieve stability.

For a fixed value of system gain, less than required to make the

zeros complex, Figures 14(a) and (b) show that the addition of tacho-

meter feedback will stabilize the system. If the tachometer feedback

gain is increased sufficiently, however, P. will move above Z_ and in-

stability will result. Therefore, tachometer feedback alone may or may

31



not be able to stabilize a fourth order system, and large enough values

of tachometer feedback gain will always make a fourth order system un-

stable.

Figures 15 and 16 demonstrate the movements of the system poles

and zeros when tachometer feedback, acceleration feedback, and system

gains are varied. Figure 15 shows the movements of P and Z for varying

tachometer and acceleration feedback gains, and for various values of

system gains. These curves were generated from root locus calculations,

in the same manner as the curves of Figure 4,

Points on these curves could also have been generated directly, al-

though with more difficulty than was the case for the third order system.

The location of P. varies as (KK + 50)^/4, and Z, varies as { KK + 65
1 t 1 ^ a

+ 50)*/

[(KK + 65) - 4K] ''

r
2

. The curves in Figure 15 are very similar

to those of Figure 4, for the third order system, and the same comments

apply.

Figure 16 shows the movements of P , Z and Z as system and tacho-

meter feedback gains are varied, without acceleration feedback. For this

system, it is seen that Z and Z become complex for K c 1056, and the

system can not be stabilized with tachometer feedback alone for system

gains greater than this value. It is also seen that P.. moves above Z

for sufficiently high tachometer feedback gains, causing instability.

From the curves in Figures 15 and 16, certain conclusions may be

drawn concerning the effects of various compensation schemes. It has

already been stated that tachometer feedback alone may or may not be

capable of stabilizing the system, and that acceleration feedback a-

lone can always stabilize a fourth order system. Figure 15 shows that

a proper combination of acceleration and tachometer feedback will give

any desired separation between the critical poles and zeros. As with
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the third order system, the damping and natural frequency of the system

depend upon the location of the roots on the root loci. The location of

the roots depend upon the separation of the poles and zeros, and upon the

root locus gain. Unlike the third order system, the root locus gain does

not vary with changes in acceleration feedback gain. The root locus

3
gain is the inverse of the coefficient of the S term, which remains con-

stant. Therefore, it is expected that L, and Ct)n will depend entire-

ly upon the separation between the system poles and zeros, and upon their

location on the imaginary axis of the S-plane. It would therefore be

expected that even though tachometer feedback may stabilize the system,

it would not normally produce satisfactory performance. With a con-

stant root locus gain, it might also be expected that it would be rather

difficult to determine the required amount of separation, between the

poles and zeros, to locate the roots for a desired performance. This

point will be discussed further when compensation is designed for a

fourth order system.

Figures 17, 13, 19, and 20 are root loci of the example fourth order

system. The system roots are shown, and the effects of various combina-

tions of tachometer and acceleration feedback gains are demonstrated.

It is seen, with the small root locus gain of this system, that quite

large pole-zero separations are required to achieve adequate damping.

The large separations cause the system to have a high natural frequency.
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th
Fig. 17. Root locus of k order systmm with

K
t

- 0.k7 and Km - 0.
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th
Fig. 18. Root loous of U ordor systom with

K* - 0.U7 and K - 0.U7.

37



th
fig. 19. Root locus of k order systoa with

K. - 0.7 1* and K - 0.85.
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Fig, 20. Root locus of k order system with

K
t

- 3.5 and Ka . 1.0.
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4. Stability Analysis of a Fifth Order System with Tachometer and

Acceleration Feedback Compensation.

+

3?

10000

S(S+I)(S*5)(S + \0)(S*20)

K*S2
+ Kt S

The fifth order system shown above has the following characteris-

tic equation

F(S) - S
5
+ 36S

4
+ 385S

3
+ (1350 + 10

4
K )S

2
+ (1000 + loV )S +

a t

4
10 = 0.

For analysis, the characteristic equation will be partitioned into

even and odd parts, as before.

F (S) = 36S
4
+ (1350 + 10

4
K )S

2
+ 10

4

e a

F (S) = S
5
+ 385S

3
+ (1000 + 10 K )S

o t

The proper root locus form is then obtained as

F (S) 36 [ S
4
+ (37.5 + 278K )S

2
+ 278]

e a

F
o
(S)

S [S
4
+ 385 S

2
+ (1000 + 10

4
K )]

Without compensation, the system will have a pole-zero distribu-

tion as shown in Figure 21. It is seen that the basic system is un-

stable, and requires compensation.

In order to achieve stability, it is necessary to interchange the

positions of P. and Z , without disturbing the relative locations of V

and Z_. The locations of Z and Z are governed by F (S) , which is a

2
quadratic in S . A study of F (S) reveals that as acceleration feedback
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Fig. 21. Pole-zero distribution of 5 order system without
compensation.

is added, Z. will move down, and Z will move up the S -plane imaginary

axis. The locus of zeros, for increasing acceleration feedback, is shown

in Figure 22(a). Therefore, it may be possible to stabilize the system

with acceleration feedback alone; however, too large a value of accelera-

tion feedback gain will cause Z- to move above P , resulting in instabil-

ity. It should also be noted that large values of system gain will cause

the roots of F (S) to become complex, as shown in Figure 22(b). To

achieve stability in this case, it is necessary to return the roots to

the imaginary axis by means of adding acceleration feedback.

2
The locations of P. and P are governed by the quadratic, in S ,

of F (S) . A study of this quadratic shows that the poles move closer

together on the imaginary axis, as tachometer feedback is added. The

locus of the poles, for increasing tachometer feedback gain, is shown
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(c).

Fig. 22. (a). Root locus of Fe (S) for increasing Ka . (b) . Root
locus of Fe (S) for increasing K, Ka 0. (c) . Root
locus of F (S) for increasing K .

in Figure 22(c). Tachometer feedback alone may be capable of stabiliz-

ing the system' however, it is seen that large values of tachometer feed-

back gain cause the poles to become complex. Therefore, there is an

absolute maximum value of tachometer feedback which may be used without

causing instability. In general,

F
o
(S) = S [S

4
+ a

3
S
2
+ (a

L
+ KK.)].
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The maximum tachometer feedback gain which may be used is

K
t

- (a
3
/2)

2
- a

t

K

The above conclusion can be extended to define the condition under

which a fifth order system may not be stabilized with tachometer and/or

acceleration feedback. This condition is that for

&l > (a
3
/2)

2

the poles of the basic system will be complex, and compensation by tacho-

meter and/or acceleration feedback will not be capable of returning the

poles to the imaginary, S -plane axis.

The pole and zero movements, discussed above, are shown in Figures

23 and 24. The curves in these figures were generated from root locus

calculations for the even and odd parts of F(S). Figure 23 is the locus

of pole-zero movements when tachometer feedback and system gains are

varied, and acceleration feedback is zero. The curves demonstrate that

there are maximum values of the system and tachometer feedback gains,

which may be used without the system poles becoming complex. For this

system, the values are

K = 12600

K
t

= 3.61.

The curves also show that tachometer feedback alone is capable of stabU

lizing a fifth order system, when the system zeros are not complex.

Figure 24 shows the pole-zero movements for varying tachometer and

acceleration feedback gains, and for various values of system gain.

These curves indicate that the proper values of tachometer and accelera-

tion feedback should always be capable of stabilizing a fifth order sys-

tem, .providing the system gain is not too high. As before, it is noted
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that large values of tachometer and acceleration feedback gains will al-

ways cause instability.

Figure 25 shows stability curves for the example system. These

curves are part of a family of plots of the limit of stability for vari-

ous values of tachometer feedback gain, while varying acceleration feed-

back and system gains. The system is stable in the area below, and un-

stable in the area above the curves.

Figures 26, 27, and 28 are root loci for various values of tacho-

meter and acceleration feedback gains. Figure 26 shows the example sys-

tem stabilized with a combination of tachometer and acceleration feed-

back. Although stable, the system will not have very desirable perform-

ance characteristics. The root locus gain of a fifth order system, is

5
a constant, the coefficient of the S term in the characteristic equa-

tion. This coefficient is not affected by tachometer or acceleration

feedback^ therefore, pole-zero separation must be used to change the

system root location on the root loci lobes. As shown in Figure 24, the

possible pole-zero separation is limited. Therefore, there are also

limits on system performance.

Figure 27 is a root locus of the example system when excess accelera-

tion feedback is applied, demonstrating the instability caused. Figure

28 is a root locus of the example system to which excess tachometer feed-

back has been applied. The poles are complex, with the result that one

portion of the root locus lies completely in the right half of the S-

plane. The system is therefore absolutely unstable.
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Fig, 26. Root locus of 5 order system with

K^ 0.5 and Ka • 0.5.
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Fig. 27. Root loous of 5 order system with

K
t

- 0.5 and K • 1.5.
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Jig. 28. Root locus of 5 ordor systoa with

K
t

- 3.7 and Ka • 1.0.
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5. Stability analysis of a sixth order system with tachometer and

acceleration feedback compensation.

-*9
-A

10

5 (S + 01S+5X S + 20)( 5 + 100 X 5 + 2 00

)

K*S* + K t S

From the results of the fifth order analysis, it is not expected

that tachometer and acceleration feedback will be capable of providing

good response from a sixth order system. Under certain circumstances,

however, it may be possible to stabilize a sixth order system with this

type of compensation. An analysis of the above system, by means of the

root locus stability criterion, will point out the possibilities and

difficulties of compensation with tachometer and/or acceleration feed-

back.

The characteristic equation of the above system is

F(S) = S
6
+ 326S

5 + 2245S
4 + 403520S

3
+ (401600 + 10

7
K )S

2

8

+ (2X10
6
+ 10

7
K
t
)S + 10

7
-

This equation is partitioned into even and odd parts as

F (S) - S
6
+ 2245S

4
+ (401600 + 10

?
K )S

2
+ 10

?

6 3

F (S) = 326S
5 + 403520S

3
+ (2X10

6
+ 10

7KjS .

o t

The required root locus form is

F
e
(S)

- S
6
+ 2245S

4
+ (401600 + 10

?
K )S

2
+ 10

7

F
o
(S)

326S(S
4
+ 1237. 8S

2
+ 6134.97 + 35674. 8K)

-1.
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With K = K 0, the basic system will have a pole zero distribu-at
tion as shown in Figure 28(a).

> z3

O z,

>C P,

;c P,'

<> z;

* Pa

Za

cr

Fig. 28(a) .Pole-zero distribution of basic 6 order system.

The system is unstable. In order to stabilize it, the locations of

P and Z must be interchanged.

The locations of the system poles are governed by the quadratic in

2
S , contained in F (S) . Figure 29(a) shows the locus of pole movements

for increasing tachometer feedback gain. It is seen that adding tacho-

meter feedback moves P. and P closer together on the imaginary axis.

Therefore, it may be possible to stabilize the system with tachometer

feedback alone. As with the fifth order system, there is an absolute

maximum value of tachometer feedback gain which may be used without

causing the poles to become complex, thereby causing instability. In
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general, this value is

2
(a~/2a ) - a../a-

K - — —

-

t K

where: a. coefficient of S term

3
a coefficient of S term

a_ coefficient of S term.

For this system, the maximum value is K 0.0377.

As before, there is also a condition under which tachometer and/or

acceleration feedback are not capable of stabilizing the sixth order

system. This condition is

a
l
/a

5 > (a
3
/2a

5
)2

In this case, the poles of the basic system are complex, and they can not

be returned to the imaginary axis with tachometer feedback. The root

locus for this case is shown in Figure 29 (b)

.

2
The system zero locations are governed by F (S) , a cubic in S . The

roots of the cubic may all be negative real, yielding six zeros on the

imaginary axis, or the roots may consist of one negative real root and

one pair of complex conjugate roots. In this case, there would be two

roots on the imaginary axis, and four complex roots located symmetrically

about the origin of the S-plane.

The example system has all six zeros on the imaginary axis. To

study the effect of adding acceleration feedback, F (S) is partitioned

and put in root locus form.

7 2
io'k S*

a = -1

S
6
+ 2245S

4
+ 401600S

2
+ 10

7

Figure 30 (a) shows the locus of zero movements as acceleration feedback

gain is increased. It is seen that Z moves in the proper direction for
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Fig. 29. (a). Locus of pole movements with increasing K .

(b) . Locus of pole movements with increasing K ,

poles initially complex.

stability. Z moves up the axis, however, and there is the possibility

that it will move above P« before the system can be stabilized. There

is also a maximum value of acceleration feedback gain, which may be used

without causing Z_ and Z to become complex. This value is not easily

found algebraically; however, for a given system it may be found very

simply from third order Mitrovic curves. [2] It may also be found from

root locus calculations. For the example system, this maximum value is

K = 0.087.
a

Figure 30 (b) shows the locus of zero movements for increasing ac-

celeration feedback gain, when Z_ and Z_ are initially complex. It is

seen that acceleration feedback will return the zeros to the imaginary
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Fig. 30. (a). Locus of zero movements, with increasing Ka , for
6th order system with all zeros on the imaginary axis,
(b) . Locus of zero movements, with increasing K , for
6th order system with two complex conjugate pairs of

zeros.

axis. The comments concerning Figure 30(a) also apply, however, and ac-

celeration feedback alone may or may not be capable of stabilizing a

sixth order system.

Figure 31 is a plot of pole-zero movements when acceleration feed-

back is zero, and system and tachometer feedback gains are varied. The

curves show that tachometer feedback alone is capable of stabilizing

this system, for K ^ 1.87 X 10 . For system gains greater than this

value, acceleration feedback is required to return the zeros to the
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imaginary axis.

Figure 32 is a plot of pole-zero movements for varying tachometer

and acceleration feedback gains. The curves in this figure were generat-

ed from root locus calculations. The curves show that acceleration feed*

back alone is not capable of stabilizing this system, except at lower

values of system gain. For high values of system gain, Z. and Z_ become

complex before Z. is moved far enough to stabilize the system. The

curves indicate, however, that a combination of tachometer and accelera-

tion feedback should normally be capable of stabilizing a sixth order

system, and that tachometer feedback alone is capable of stabilizing

this system.

Figure 33 includes curves from the family of tachometer feedback

stability curves. The area below the curves is the stable region, when

the indicated values of tachometer feedback gain are used. The curves

terminate with KK = 8.6 x 10 , due to Z_ and Z. becoming complex for
a 2 J

larger amounts of acceleration feedback.

Root loci are plotted in Figures 34 and 35. Figure 34 is the root

locus for the example system stabilized with tachometer feedback only.

While the system is obviously stable, the roots are quite close to the

imaginary axis, and the response will be very oscillatory. The root

location on the locus is due to the small root locus gain available to

the normal sixth order system. This gain is the reciprocal of the co-

efficient of the S term in the characteristic equation. This coeffici-

ent is not affected by tachometer or acceleration feedback *

t therefore,

good response can not be achieved with this type of compensation.

Figure 35 is the root locus of the example system, using both tacho-

meter and acceleration feedback compensation. Again, the system is

stabilized', however, the response has not been improved.
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6. Design of compensation for a third order system.

The system to be compensated has the transfer function

,4

C(S) = 10

S(S + 10) (S + 50)

The system is to be compensated with tachometer and/or acceleration feed-

back. The system response is to have a damping factor of L =0.50,

and is to have the maximum possible velocity-error constant.

The block diagram of this system is

-> to
10*

— 4
-J k 5(S+IO)(5 + SO)

Ka S
2
* Kt S

The characteristic equation is

F(S) = S
3
+ (60 + 10 K )S

2
+ (500 + 10

4
K )S + 10

4
.

Partitioning this equation and putting it in the proper form for the root

locus stability criterion yields

F
e
(S)

FTsT
o

(60 + 10
4
K ) [S

2
+ 10

4
/(60 + 10

4
K )] .

a a = -l

S[S
2
+ (500 + 10

4
K

fc

)]

In order to design compensation, it is necessary to vary the pole-zero

locations and the root locus gain to place the system roots in proper

position, in the S-plane, to give the required damping. For the third

order case, the pole-zero locations are obvious from inspection of the

root locus equation, when values are substituted for K and K . The root

2
locus gain is the coefficient of the S term in the characteristic
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equation.

The design of compensation must satisfy two requirements which are

not independent. It is expected that the requirement that T = 0.5

could be met with numerous combinations of tachometer and acceleration

feedback gains. The velocity error constant, K , depends on the value

of tachometer feedback gain used. Therefore, it is expected that there

is some optimum combination of tachometer and acceleration feedback,

which will satisfy both requirements.

It has been shown that the velocity-error constant can be determined

as follows. [3]

1/K . i r
l

111
v ds

L

1 + F(S)
J S-0

For this system,

K = 10
8
/(500 + 10

4
K ).v t

Therefore, for the velocity-error constant to be a maximum requires that

the minimum possible amount of tachometer feedback be used.

Use of this root locus stability criterion in design requires some

knowledge of the shape of the root locus for a given pole -zero combina-

tion. Figures 36(a) and (b) show the two extreme forms which the third

order root loci can take.

In general, the root loci in Figure 36(a) will occur when

Z.I > P Z
*i

L
\V11

The root loci in Figure 36(b) will apply when

N «
|

p
i

- z
i|-

For pole-zero locations other than above, the root loci will take the

general shape shown in Figure 36(c).

If there is an optimum combination of tachometer and acceleration
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feedback, to meet the design requirements, a plot of velocity-error con-

stant versus acceleration feedback gain, for Q =0.5, should show a

maximum. To plot such a curve accurately would require a great deal of

effort^ however, using the information in Figures 36(a), (b) and (c)

should allow the plotting of a reasonable approximation to the true curve,

Points on the approximate curve will be generated with the following

procedure

:

1. Assume a value of acceleration feedback gain to locate

Z in the S -plane.

2. Sketch in the approximate root locus crossing the L "0.5

line, and entering Z.

.

3. By trial and error, locate P. for root locus gain

(60 + 10
4
K ).
a

4. After locating P verify general shape of root locus.

5. Determine the required tachometer feedback gain, and the

resulting velocity-error constant.

This procedure is demonstrated in Figure 37. A study of this figure in-

dicates that there is one trivial solution; compensation with accelera-

tion feedback gain very large, causing Z to approach the origin. Since

this is not a practical solution to the design, it will not be consider-

ed further.

Figure 38 is the plot of velocity-error constant versus accelera-

tion feedback gain resulting from the above procedure. It is seen that

the maximum velocity-error constant is achieved by using tachometer

feedback alone, with K = 0.0394. To prove system performance, the

root locus of the compensated system is shown in Figure 39. The domin-

ant root is shown, and it is seen that the specified damping factor has
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been realized. Since the minimum tachometer feedback has been used to

achieve the required damping, the maximum possible velocity-error con-

stant has also been realized.

Figure 40 shows the transient response of the compensated system,

for a step input. The transient response curve verifies that the

specified damping has been realized.

.
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7. Design of tachometer and acceleration feedback compensation for a

fourth order system.

The system to be compensated has the following transfer function

G(S) = 10

S(S + 10) (S + 50) (S + 100)

It is to be compensated with tachometer and acceleration feedback to

provide transient response with a damping factor of f 0.5, and

is to have the maximum possible velocity error constant. This sytem is

the third order system of Chapter 6, with a pole added and the gain in-

creased. The design specifications are the same, and a similar design

technique will be attempted.

The system block diagram is

V4?
0'

S(S+ I0)(5f 50)(S+ 100)

K* S
e
* Kt S

The characteristic equation is

/ *i ft 9 ft ft

F(S) - S + 160S + (5150 + 10 K )S + (50000 + 10 K )S +10 = 0.
3 t

Putting this equation in the proper root locus form yields

F (S) S
4
+ (5150 + 10

6
K )S

2
+ 10

6

e = a

F
o
(S)

160S[S
2
+ (50000 + 10

6
K )/160]

= -1.

In general, this root locus will appear as shown in Figure 41. It is

seen that a second order approximation may be used to design for the

required response of the system. If however, P. is moved up the im-

aginary axis far enough, the root locus will appear as shown in Figure
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Fig. 41. Root locus of uncompensated 4th order system.

42. The real root would lie close to the origin in this case, and the

second order dominance approximation could not be applied. Therefore,

it is desired to move P. and Z within the limits necessary to assure

the general root locus form in Figure 41.

It can be shown that the velocity-error constant for this system

is

K = 1/(K + .05)
v t

In order to achieve the maximum velocity-error constant, it is desirable

72



JW

€

Fig. 42. Root locus of fourth order system with excessive tacho-
meter and acceleration feedback. Small negative real
root dominant.

to keep the tachometer feedback gain as low as possible.

The compensation design will be accomplished in a manner similar

to that used for the third order system. An approximate curve of velo-

city-error constant versus acceleration feedback gain, for C m 0.5,

will be plotted to determine the required compensation. Points on the

approximate curve will be generated with the following procedure:

1. Assume a value of acceleration feedback gain to locate

Z. in the S -plane.
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2. Sketch in the approximate root locus crossing the f 0.5

line and entering Z .

3. By trial and error, locate P for root locus gain = 1/160.

4. Verify general shape of the root locus, and check for

second order root dominance.

5. Determine required tachometer feedback gain and the result-

ing velocity-error constant.

Figure 43 is the root locus used to generate the above points.

Figure 44 is the resulting velocity-error constant curve. It is seen

that a maximum does occur for

K = 0.0038
a

K = 11.0.
v

This value of velocity-error constant corresponds to

K
fc

- 0.0409.

Figure 45 is the root locus for the system with the indicated tacho-

meter and acceleration feedback compensation.

It is seen that the system has approximate second order root domin-

ance. The compensated system has a damping factor of L 0.47, quite

close to the specified value. This indicates that the design technique

used is valid. Figure 46 is a plot of the transient response of the

compensated system. This curve verifies that the designed compensation

is adequate.

74



\£ =a5

° JO)

<> 100

.. 80

- 60

Uo

20

-< < i ii i ii i i

-100 -50
u

-20

- -IfO

-60

- -80

O-100

Fig. 1*3. Root locus of k order system used to

generate points on approximate Telocity-error

constant curre.

75



.*
en o
I «o .0
iH •0

•
M •

«
ki e
* o

H

•
H

J»
. O

H O
(0

»

CM •P
H c

ffl

V) •

e v>
o •

o oO
H h

o
u
u

1

• 42
1 4»
X H

00 *

O a
o •
iH <»
• «

vo <M
e u

9
4» •0
O fc

fH o

J*

P.

• Jt
.*
J*

•
• C
tt •H

CM «H «fm ftfi

w 00 \o N

^uv^suoo aojao-X^xooI A

76



th
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8. Design of cascade compensation for a second order system.

The design of cascade compensation will be attempted in this chapter.

The difficulties of designing this type compensation, with the root locus

method, will be presented.

The system to be compensated has the following block diagram

This system is stable, but is highly underdamped. It is desired that

the peak overshoot be limited to thirty percent for a step input, and

that the bandwidth be kept low without reducing the velocity-error con-

stant.

The block diagram for cascade compensation is

-k
— i

•\

C(S)
1000

scs + i)

With C(S) = (S + z)/(S = p) , the system has the following characteristic

equation:

F(S) = S
3 + (1 + p)S

2
+ (1000 + p)S + lOOOz =

It can be shown that

K - lOOOz/p.
v

A phase lag filter is indicated to meet the requirement that the velocity-

error constant not be reduced. This type of filter will also meet the
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low bandwidth requirement.

The root locus form of the characteristic equation is

F (S) (1 + p) [S
2
+ 1000z/(l + p)]

F
o
(s)

s[s
2
+ (1000 + p)]

In order for the filter to be useful, it must take effect at some fre-

quencies less thanG0= 1. Therefore, it is seen that the value of p

will have very little effect on the location of the root locus poles.

It will have only minor effects on the root locus gain and the location

of the root locus zeros. The value of z can be used to control the

location of the zeros. Therefore, it might be expected that the required

filter could be designed with the root locus method.

The compensated system will have the root locus shown in Figure 47.

From inspection of this root locus, it is seen that one section of phase

lag filter will probably not give the required response. There are two

obvious difficulties with attempting the design. The root locus gain

is small and can not be changed to any degree. Therefore, the root, on

the root locus lobe, will be located close to P . This will cause the

system to be underdamped. Also due to the low root locus gain, the

system will not have dominant second order roots. There will be a

negative real root close to the origin, which must be considered in the

transient response.

Figure 48 is the root locus of the system compensated with the filter

CCS) -_
(S +0-5)

L ^ b)
(S + 0.05).

The roots are shown, and illustrate the problems discussed above.

Additional sections of filter are indicated, and Figure 49 shows

the root locus of the system with two identical sections of the above
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Fig. 47. Generalized root locus of cascade compensated 2

order system.

filter placed in cascade. It is observed that the order of the basic

system has now been doubled. The roots are still very near the imagin-

ary axis, and there are now two pairs of complex roots to consider, as

neither pair is dominant. The root loci become increasingly complex as

additional sections of filter are added. Since there is not a domin-

ant pair of roots, all roots must be considered in designing for the

transient response. It is impossible, practically, to design the com-

pensation by root locus methods.

Although, in specific cases it may be possible to design cascade

filters, it is concluded that, in general, this root locus method is not

an effective tool for the design of cascade compensation.
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fig. U8. Root locus of 2
n ordor system with ono

section of cascade, phase-lag filter.
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9. Conclusions.

This paper has investigated the applicability of a root locus stahil*

ity criterion to the analysis and design of feedback control systems.

The stability criterion has the advantage of reducing the order of the

equations that must be handled, and is applicable to systems with more

than one variable parameter.

Third, fourth, fifth, and sixth order systems, with tachometer and

acceleration feedback, have been analyzed. It has been shown that this

root locus criterion is an effective tool in the analysis of the effects

of tachometer and acceleration feedback on system stability. The stabil-

ity criterion may be used for a simple check to determine whether tacho-

meter and/or acceleration feedback is capable of stabilizing fifth and

sixth order systems. For fifth and sixth order systems, conditions have

been derived defining systems which may not be stabilized with tacho-

meter and acceleration feedback.

It has been shown that this root locus stability criterion is a

particularly valuable tool in analyzing and designing tachometer and ac-

celeration feedback compensation for third order systems and below. It

is useful in analyzing the effects of this type compensation on a fourth

order system, and may be used for compensation design, providing that

second order dominance is shown.

It was found that, in general, this method is not useful in the

design of cascade compensation.

In conclusion, this root locus stability criterion is most useful

for the analysis of systems with two variable parameters, in which one

parameter occurs only in the even part of the characteristic equation,

and the other parameter occurs only in the odd part. Under these condi-

tions the stability criterion will generally be an effective design tool
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for fourth order systems and below. On an individual basis, it may be

useful in the design of systems with order greater than four.
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