
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�6�R�I�W�Z�D�U�H���H�Q�J�L�Q�H�H�U�L�Q�J���Z�L�W�K���G�D�W�D�E�D�V�H

�P�D�Q�D�J�H�P�H�Q�W���V�\�V�W�H�P�V��

�.�D�U�D�W�D�V�L�R�V�����/�D�E�U�R�V���*��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�&�R�S�\�U�L�J�K�W���L�V���U�H�V�H�U�Y�H�G���E�\���W�K�H���F�R�S�\�U�L�J�K�W���R�Z�Q�H�U

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

/OL

NAVALPOSTGRADUATESCHOOL
Monterey, California

K MJ7

A

SOFTWAREENGINEERING WITH DATABASE
MANAGEMENTSYSTEMS

by

Labros G. Karatasios

March 1989

Thesis Advisor S. H. Parry

Approved for public release, distribution unlimited

T?41988

ECURITY CLASSIFICATION OF THIS PAGE

REPORTDOCUMENTATIONPAGE
a REPORTSECURITY CLASSIFICATION

UNCLASSIFIED
1b RESTRICTIVE MARKINGS

a. SECURITY CLASSIFICATION AUTHORITY

b DECLASSIFICATION /DOWNGRADINGSCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT Approved for
public release, distribution unlimited

l. PERFORMINGORGANIZATION REPORTNUMBER(S) 5 MONITORINGORGANIZATION REPORTNUMBER(S)

ia NAMEOF PERFORMINGORGANIZATION
Naval Postgraduate
School

6b OFFICE SYMBOL
(If applicable)

37

7a NAMEOF MONITORINGORGANIZATION

Naval Postgraduate School

Ic. ADDRESS{City, State, and ZIP Code)

Monterey, CA 93943-5000
7b ADDRESS(City, State, and ZIP Code)

Monterey, CA 93943-5000

la. NAMEOF FUNDING/SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENTINSTRUMENTIDENTIFICATION NUMBER

c. ADDRESS(City, State, and ZIP Code) 10 SOURCEOF FUNDING NUMBERS
PROGRAM
ELEMENTNO

PROJECT
NO.

TASK
NO

WORKUNIT
ACCESSION NO

1. title (include security classification) SOFTWAREENGINEERING WITH DATABASE MANAGEMENTSYSTEMS

2 PERSONALAUTHOR(S)

Karatasiosj Labros G
3a TYPE OF REPORT

Master's Thesis
13b TIME COVERED

FROM TO
14 DATE OF REPORT (Year, Month, Day)

1989 March
15 PAGE COUNT

189

,. supplementary notation The views expressed in this thesis are tnose o± the author
and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS(Continue on reverse if necessary and identify by block number)

Database Design; Personnel Systems; Greek Navy
Personnel Database

9 ABSTRACT(Continue on reverse if necessary and identify by block number)

The purpose of this thesis is to communicate a general knowledge of
software engineering principles that can be applied to the development of

a software system. Fundamental Software Engineering concepts are first
discussed and then applied to a personnel database management system which
is featured throughout the thesis. The individual tools and techniques

_

that are used in each phase of the system development are widely known in

the computer science community and each has been employed successfully
in certain situations.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

6 UNCLASSIFIED/UNLIMITED C SAMEAS RPT DTIC USERS

22a. NAMEOF RESPONSIBLE INDIVIDUAL

Prof S. H. Parry

21 ABSTRACTSECURITY CLASSIFICATION
UNCLASSIFIED

22b TELEPHONE(Include Area Code)
(408)646-2779

:2c OFFICE SYMBOL
55Py

3D FORM1473, 84 mar 83 APRedition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

ft U.S. Government Printing Office 1986—€0624.

Approved for public release, distribution unlimited

Software Engineering with Database Management Systems

by

Labros G. Karatasios
Major, Hellenic Army

B.A., Hellenic Army Academy, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPDTERSCIENCE

from the

NAVAL POSTGRADUATESCHOOL
March 198 9

ABSTRACT

The purpose of this thesis is to communicate a general

knowledge of software engineering principles that can be

applied to the development of a software system. Fundamental

Software Engineering concepts are first discussed and then

applied to a personnel database management system which is

featured throughout the thesis. The individual tools and

techniques that are used in each phase of the system develop-

ment are widely known in the computer science community and

each has been employed successfully in certain situations.

111

<.'

6>l
TABLE OF CONTENTS

Page

I

.

INTRODUCTION 1

I I

.

THE SOFTWAREDEVELOPMENTPROCESS 6

III. PROBLEMDEFINITION 8

A . THEORY 8

B. IMPLEMENTATION 8

1

.

The Greek Army 8

2

.

The problem environment 9

3

.

The Problem Definition 11

I V

.

FEASIBILITY STDDY 13

A

.

THEORY 13

1 . Why a Feasibility Study? 13

2. Confirm the problem definition 14

3

.

Study the existing system 14

4

.

Develop a high-level model 15

5

.

Confirm the logical model 1

6. Develop and evaluate alternative solutions 15

7

.

Select one alternative 16

8. Initiate a development plan 17

9. Document and present the feasibility study 17

B. IMPLEMENTATION I 7

1

.

Confirm the problem definition 17

2

.

Study the existing system 18

3. Develop a high-level model 21

4

.

Confirm the logical model 23

5. Develop and evaluate alternative solutions 24

IV

Page

6

.

Select one alternative 26

7

.

Initiate a development plan 26

8. Document and present the feasibility study 27

V . ANALYSIS 2 8

A . THEORY 2 8

1

.

The purpose of the Analysis phase 28

2. Techniques of use during Analysis 30

3. A brief description of Structured Analysis 31

B. THE IMPLEMENTATION OF STRUCTUREDANALYSIS 33

1 . Explode the Data Flow Diagram 33

2

.

Define the data elements 38

3

.

Construct the data dictionary 41

4. Write process descriptions 41

5. Review the functional requirements 42

6. Present the functional requirements

to the management 4 3

VI . SYSTEM DESIGN 44

A . THEORY 4 4

1

.

The purpose of System Design 44

2. Identify alternative solutions 44

a

.

Data alternatives 4 5

b

.

Software 4 5

c

.

Hardware 4 °

d

.

People 46

3

.

Select one alternative 47

B. THE IMPLEMENTATION OF SYSTEM DESIGN 48

1

.

Identify alternative solutions 48

2

.

Select one alternative 50

1 Page

VII. DETAILED DESIGN 5 3

A

.

THEORY 5 3

1

.

Purpose of the Detailed Design 53

2

.

Database design 53

a. Logical Database Design 53

b. Physical Database Design 55

3. Design of the application programs 55

B. IMPLEMENTATION OF THE DETAILED DESIGN 60

1

.

Database design 60

a. Logical database design 60

b. Physical database design 55

2. Design of application programs 69

VIII

.

IMPLEMENTATION 7 3

A

.

THEORY 73

1. The purpose of the Implementation phase 73

2

.

The steps of Implementation 73

B. IMPLEMENTATION 76

1 . Constructing a test data base 76

2. Translating the design into dBASE III Plus code 77

3. Testing, debugging and documenting the system

IX. CONGLDSION 79

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

The system Data Flow Diagrams gO

The Data Dictionary 84

Process Descriptions 96

Application programs design 107

Program listings 168

LIST OF REFERENCES 179

INITIAL DISTRIBUTION LIST 182

VI

I. IHTROPOCTIOtt

During the past thirty years the advances in computer-

hardware have been so phenomenal that even the pioneers in the

computing industry are amazed at how much progress has been

made. Progress in computer hardware with respect to cost,

speed of computations and decrease in size is measured by

several orders of magnitude and the most amazing is the forty

percent compound annual rate of reduction in the unit cost of

memory and storage.

Unfortunately, our ability to build software, which is

necessary to interface with the computer hardware, has not

progressed as rapidly. As the range of computer applications

has grown and the complexity of tasks computers can handle has

increased, the cost of developing software for a computer

system has increased so much that it has become by far the

most costly component in the system. The main cause of the

increase in the cost of software was that the existing metho-

dologies for software development were inadequate. As a result,

many software systems failed, and many others were late,

unreliable, difficult to maintain, their performance was poor

and they cost much more than originally predicted.

Much research has been conducted during the last twenty

years on software development techniques and methodologies

that would end the "software crisis". A new technological

discipline, Software Engineering, has been developed to

improve the quality of software products and to increase the

productivity of software engineers.

The term "Software Engineering" was chosen as the title of

a NATO conference in 1968 in order to express "the need for

software manufacture to be based on the types of theoretical

foundations and practical disciplines that are traditional in

the established branches of engineering". [Ref. 1: p. 13]

Since then a lot of activity has been focused on software

engineering. The Institute of Electrical and Electronics Engi-

neers (IEEE) has been publishing the "Transactions on Software

Engineering" since 1975. The Association for Computing

Machinery (ACM) has founded a Special Interest Group on Soft-

ware Engineering (SIGSOFT). Several conferences and symposia

on this new discipline have been sponsored by many organizati-

ons. The chairman of the IEEE Richard Fairley stated in 1979

that "Software engineering has evolved into a major subdisci-

pline of computer science and engineering. Although much

remains to be done, a body of knowledge and a set of guide-

lines have emerged which incorporate traditional engineering

values into the production and maintainance of software

systems". [Ref. 2] During recent years a great number of

well known and unknown computer scientists and theorists have

defined numerous techniques and methodologies on the develop-

ment of software products. Much discussion and controversy

follow the announcement of every new method or technique. Some

of these techniques are more controversial than others. Some

of them do not work at all in certain situations while they

are very effective in others. Some techniques are very promis-

sing; Ed Yourdon, in one of his many books on the structured

techniques, trying to convince the reader how good these tech-

niques are, he writes: "... what the techniques can do is

impressive. Chances are that if you use the techniques, you'll

be sipping your mint julep in your Mediterranean villa before

long. If you don't use the techniques, well, chances are

you'll be replaced by someone who does." [Ref. 3:p. 3]

After so many years of analyzing and studying the mecha-

nisms of software development, software engineering has not

yet been able to develop a universally accepted methodology

for building software, and software development is. still con-
sidered an art by most people. The truth is that many of the

developed techniques really work. Studies conducted by large

software organizations have proven that the programmer produ-

ctivity and the software quality has improved significantly

with the use of certain techniques. For example, IBM studies
report an average of forty percent productivity savings in

real-time, business and systems software projects utilizing
structured programming. [Ref. 4] In other projects, however,

it has been found that the principles of software engineering

do not always guarantee success.

Although a definite trend exists in academic computer

science circles toward the recognition of software development

as an engineering discipline, such recognition is much less

pronounced among software houses and other software producers.

One of the reasons is that the established software enginee-

ring principles and techniques are very often too technical

and require a higher —level of knowledge in Computer Science to

understand them. Unfortunately, the main body of programmers

consists of people with litle or no higher education back-

ground. In fact only a very small fraction of the people who

are programming computers have ever studied computer science

in any depth. In the U.S.A., some 29,600 bachelor's degrees

were awarded in computer and information sciences in the six-

year period 1972-1977. [Ref. 5: Pg . 169] These courses of

study were first offered in the 1960's and are still growing;

therefore it can be assumed that a comparable number of degrees

were awarded in the years before 1972. Although we do not have

the statistics for the years after 1979 it is estimated that

the total number does not exceed one hundred thousand. This

number is quite small in comparison with the 300,000 program-

mers working full time and another 300,000 who work part time.

[Ref. 6: Pg . 6] On the other hand, the existing literature on

software engineering is anything but reliable. The books one

can find on software development tools and techniques are

usually very abstract and difficult to read. The majority of

such books concentrate on only one phase in the software life-

cycle and provide no interface with the rest of the phases

.

Most of them do not provide a case study to illustrate the

theoretical part and those who do, usually give very simpli-

fied examples that have nothing to do with the complexity of

the real world and they also shift to a different case study

as they go from one phase to another. As a result of the above

situation the books on software engineering concepts have a

very small number of readers, limited to academians and compu-

ter science students in the universities. On the other hand,

books of the type "How to become a programmer in ten easy

steps" or books with applications software that can be extended

or modified to fit someone's needs are becoming best sellers.

The purpose of this thesis is to communicate a general

knowledge of software engineering principles that can be

applied to the development of a software system. A personnel

database management system was chosen to serve as an example

throughout the thesis. The individual tools and techniques

that are used in each phase of the system development are

widely known in the computer science community and each has

been employed successfully in certain situations. This does

not mean that the presented techniques are the only techniques

a software engineer can use. On the contrary there are as good

or even better techniques in certain cases. What the reader

must understand is two things:

a. The development of any software system must follow

certain steps. Different people have given different names to

these steps and others have combined or analyzed them. Whether

the six-step decomposition of a system's life-cycle followed

in this thesis is better than others is not a key issue. What

is important is to recognize that phases exist and organize

the approach to account for them.

b. The development of software systems can be fascilitated

by software engineering tools and techniques that allow the

developer to continuously assess the extend of his progress

and the validity of his decisions. The tools and techniques

used in the development of the example software system are not

to be considered as the most recommended ones or as suitable

for all cases. Each software engineer may choose the set of

tools and techniques that he thinks is most appropriate for

the system he is developing. The idea is that such sets do

exist and the thesis provides such an example.

The reason why a database management system (DBMS) was

selected to serve as a case study in the thesis is that a DBMS

is like any other software system, only it is somewhat more

complicated because it involves the design of a database. An

additional reason is that DBMS's are very popular today and it

is likely that most software engineers will face the problem

of developing such a software system.

1 1 . THE SOFTWAREDEVELOPMENTPROCESS

To better control the development of a software system,

software engineering has identified a sequence of stages

through which the system passes; these stages are collectively

called the software development life-cycle. The stages of the

software life-cycle followed in this thesis are described

below

.

A. PROBLEMDEFINITION

This first stage helps the software engineer understand

the problem and define the objectives and the scope of the

system he will develop.

B. FEASIBILITY STUDY

During this stage it is determined if the problem can be

solved and a number of solutions that might satisfy th<? user's

needs within the defined scope are identified. At the end of

this stage the software engineer obtains a decision from the

user or management whether to proceed with the development of

the system.

C. ANALYSIS

This is the most important stage in the system life-cycle.

The software requirements (i.e., the system's functions and

operational constraints) are specified and documented during

analysis

.

D. SYSTEM DESIGN

The software engineer determines how in general the system

will be implemented by identifying different alternative

strategies and selecting the one that best satisfies the

system's needs.

E. DETAILED DESIGN

The designer takes the software requirements prepared

during analysis and based on the decision made during system

design, organizes them in a way, suitable for computer execu-

tion .

F

.

I MPLEMENTATI ON

In this stage results produced during the detailed design

are implemented in source code. It is also the purpose of this

stage to verify that this source code implements correctly the

design specifications.

There is no single decomposition of the software develop-

ment process. The one presented here works in practice but

modifications may be required for other applications. The

important thing is that all the different decompositions of

the system life-cycle that exist require all of the above

functions to be performed, no matter what name they assign to

each stage, whether they combine two or more stages in one, or

further decompose one stage.

The following six chapters of the thesis develop each

stage of the software development process. Each chapter is

divided into two parts. In the first part the theory of the

particular stage is given and in the second part this theory

is applied to a real database management system for implemen-

tation in the Greek Army.

III. PROBLEMDEFINITION

The first step in the system life-cycle is the Problem

Definition during which the analyst understands the problem

and defines the objectives and the scope of a system that

sol ves i t

.

A

.

THEORY

It is very unlikely that an analyst would be asked to de-

sign a system that has no precedent. Most of the time a system

that works already exists but which may have some problems in

its performance. These problems may be recognized by the user

himself or by the management. If the problem is serious and

its solution is considered imperative, then an analyst will be

asked to offer his services.

The first thing the analyst must do, in any case, is to

understand the existing problem and pre^sre a written state-

ment of his understanding. Many analysts consider this step

as needless, but it has been proven that in a number of cases

the delivered system solved a different problem from the one

the user had in mind, just because the analyst ignored this

step

.

B. IMPLEMENTATION

1 . The Greek Army

Before introducing the problem that we as analysts

will be asked to analyze and try to solve, a very brief over

—

view of the Greek Army structure and the soldier life-cycle

will be presented.

The Greek Army consists of the Operational Arms

(Infantry, Artillery, Armor, Corps of Engineers and Signal

Corps) and the Support Services. The Arms and Services are

manned by officers, non-commissioned officers and soldiers.

The officers and NCOs are for the most part professional

career personnel who graduate from the Military Academy and

the NCO School. The soldiers are citizens who have been con-

scripted to serve in the Army for a period of 22 months.

Every two months a new group of soldiers is conscripted.

Every Greek citizen has to join the Army, usually at the age

of 21, unless he has been medically proven to be physically or

mentally incapable.

Every soldier passes through the following stages

during his time in the military:

- Enlistment

- Basic Training, lasting two months

- Specialty Training, the duration of which varies

depending on the specialty the soldier has been assigned.

- Service in one or more of the units of the Arm or Service

to which the soldier belongs.

- Separation from military service.

Each Arms or Service Directorate has its own Personnel

Office, located in the General Staff, which manages its per

—

sonnel and is responsible for the smooth transition of its

soldiers from one stage to the next.

2 . The Problem Environment

The Personnel Office of the Signal Corps Directorate,

among its other responsibilities, performs the following fun-

ctions related to the management of its soldiers:

- Maintains updated files of the soldiers in the

Signal Corps.

- Maintains updated files of the Signal Corps Units.

- Estimates the number of soldiers that must be trained in

each specialty.

- Performs the assignments of the soldiers that are necessa-

ry to fill the vacancies created by the retirement or

transfer of other soldiers.

The personnel responsible for carrying out the above

procedures consists of one captain, 2 sergeants and 3 soldiers

acting under the supervision of a colonel who is the director

of the Personnel Office. The director, after almost 2 years of

supervising the Personnel Office, has come to the conclusion

that there are problems in its performance.

One of the problems is that too often the personnel

office is not able to prepare the list of the soldiers' trans-

fers and assignments on time. This is due to the great volume

of transactions involved and frequently because of the untime-

ly arrival of the required information from other subordinate

units. At other times, errors have been discovered in some of

the lists and reports generated by the Personnel Office.

Finally, the most important problem is that during the schedu-

ling of the soldiers' assignments, the office personnel evalu-

ate the needs of the military units, but are rarely able to

evaluate the soldiers needs as well.

The Colonel reported his observations to the Signal

Corps Director and suggested that the personnel system should

be studied to find the means to eliminate the problems. He

also suggested that simply to increase the personnel in his

office should not be considered as a solution, since this

would only create more problems in other areas.

The Signal Corps Director understood the importance

of the reported problems and asked the Studies Directorate to

assign a systems analyst to investigate a possible solution.

10

3 . The Problem Definition

First the analyst must understand the problem. Next he

must define the objectives of a new system that would solve

the problem. He must also estimate an approximate cost of the

new system. He finally prepares a written statement of the

scope and objectives.

Usually the most difficult part in this procedure is

to estimate the cost of the new system. At such an early stage

we do not usually expect someone to define accurately the cost

of a system, but to set an upper limit. How can such a limit

be estimated? The operating cost of the existing system must

be considered first. The system is manual, therefore its main

cost is the wages of the employees. This cost is calculated to

be approximately $50,000 annually. One of the constraints for

the new system was that it should not increase the personnel.

This means that the new system may be less expensive than the

old one because it may require fewer people. Of course there

is no way that the system could operate without any people at

all, but the analyst feels that it could use two fewer people

than the old one, i.e., a sergeant and a soldier could be

transferred to another office resulting in annual savings of

about $10,000. Therefore with a new system that costs $20,000

we could have a return on investement in about two years. This

sounds like a reasonable upper limit. In a few cases of course

the management might agree for political reasons to spend even

more on a new system than it was spending on the old one. Our

case belongs to this category. The new system will satisfy the

soldiers needs for transfers and this will have a positive

effect on the soldiers' morale. We cannot evaluate morale in

terms of money. For the sake of generality the systems scope

will be defined at $20,000.

11

Next the analyst prepares a written statement of the

scope and objectives which summarizes his understanding of the

problem (see Fig. 3.1).

DATE : 29 ;

STATEMENTOF SCOPE AND OBJECTIVES

anuary 1987

THE PROJECT : PERSONNELMANAGEMENT

PROJECT OBJECTIVES : To investigate the potential for a

new system to perform the functions of SCD/

Personnel Office/Soldier Section. This sys-

tem compared to the existing one should be:

. More accurate

. More timely

. Less error prone

. Will consider not only the military units

needs but the soldiers needs as well.

KEY SELECTION CRITERIA : The number of employees must not

increase

.

PROJECT SCOPE : The preliminary cost estimate of the sys-

tem is $20,000 with a precision of 30"/. .

FEASIBILITY STUDY : In order to investigate the potenti-

al for this project more fully, a fea-

sibility study lasting approximately

2 weeks is recommended. The cost of

this study will not exceed *1,000 and

is included in the project scope.

Fig. 3.1. The Statement of Scope and Objectives

12

IV. FEASIBILITY STUDY

A . THEORY

1 • Why a Feasibility Study?

The initial phase of the Specification Stage ended

with the preparation of a written statement of the system's

scope and objectives. What must be the next step?

Many analysts tend to become attached to the first

possible solution they think of and start proceeding in this

direction. This is a very bad habit that quite often leads to

catastrophic results. If during the process this solution is

found to be infeasible then a large amount of time and effort

has been wasted. Even worse is the case when the analyst does

not want to accept that he failed and tries to integrate the

system, changing part or all of its functions, so that they

fit into the one designed. As a result of the above tendancy,

many systems have been delivered with excessive delays, over

budget and often without solving the problem. In order to

avoid these undesirable effects, a feasibility study must

always follow the problem definition.

The primary objectives of a feasibility study are to

determine if the problem can be solved and to recommend a solu-

tion strategy. There is no standard format for a feasibility

study. Many people have described a number of ways on how to

conduct such a study. The reader can find some of them in

[Ref. 7], [Ref. 8], [Ref. 9] and [Ref. 10]. There are many

differences in the methods and steps they follow and even in

the contents of the study. The method described in [Ref. 10] is

one of the most complete and easiest to follow and therefore

will be used as a reference point for the feasibility study.

13

The main steps of a feasibility study are:

- Confirm the problem definition.

- Study the existing system.

- Develop a high-level logical model.

- Confirm the logical model.

- Develop and evaluate alternative solutions.

- Select one alternative.

- Prepare a development plan.

- Write and present the feasibility study.

A brief discussion on each of these steps follows.

2

.

Confirm the problem definition

It is very probable that the analyst's understanding

of the problem as described in the problem definition is not

quite accurate. For this reason the analyst must contact the

user and the management and confirm that what he has in mind

is exactly what they want.

3

.

Study the existing system

A new system almost always replaces an existing one.

We usually want the new system to perform basically the same

functions as the old system but in a faster, more reliable,

cheaper or generally more enhanced way. Sometimes it is

desirable that the new system includes a few new functions

that the old system did not perform or to eliminate some

functions that are no longer needed. In any case most of the

functions in both systems overlap. Therefore, the study and

documentation of the existing system can provide information

that will be very useful in the following steps. It is not

always easy to understand an existing system. During this step

of the feasibility study the analyst must identify and inter-

view key people in the existing system and collect documents,

distribution lists, or reports produced by the system. It is

14

usually easier to study an automated system than a manual one

because the documentation is better organized. Sometimes it is

helpful to summarize the gained knowledge in a systems flow-

chart. In any case the analyst must keep in mind that he is

not asked to document the existing system in detail, but only

to understand it.

4

.

Develop a high level model

The next step is to develop a logical model that

stresses the functions that must be performed by the new

system without considering the specific physical way these

functions are implemented in the existing system. In other

words this model will represent the existing system as it

ought to be rather than as it actually is.

One of the techniques that is often used to develop

a high-level logical model of a system is the Data Flow

Diagram (DFD)

.

5

.

Confirm the logical model

In some cases the new and the old systems are perfor-

ming exactly the same functions. In most cases however, the

new system includes some additional functions. The analyst,

working with the user, reviews the logical model developed in

the previous step and adds new features to the model or eli-

minates some features. The final product will be a logical

model of the system that the user had in mind when he asked

for an analyst.

<S . Develop and Evaluate Alternative Solutions

With the agreed logical model of the system in mind

the analyst will develop a variety of possible solutions to

the problem. There are a number of different techniques that

can help the analyst to generate these high-level solutions.

It is beyond the scope of this thesis to describe each of

15

these techniques. A simple and effective method is described

below.

First, the analyst generates a set of alternatives

without considering any restrictions or constraints. At this

point he may think of any system that could possibly solve

the problem: a manual system, a fully automated system, a

batch system on a mainframe, an interactive system on a main-

frame or on a microcomputer, a DBMS or any possible combina-

tion of such systems.

Next, the analyst sould consider the technical feasi-

bility for each of these alternatives. For example if one

possible solution is to create a data-base system on a micro-

computer using a DBMS package that needs more memory space

than is available on the micro, then this system must be dis-

carded .

The remaining possible solutions are examined for eco-

nomical feasibility. In other words the alternatives that can

not be accomplished within the specified scope are ignored,

Finally, political feasibility is considered. If, for

example, one solution is to replace or reduce the number of

personnel working in a department - especially in a goverment

organization - this may present a serious political problem in

the organization and it is very probable that the management

would not accept this as a solution.

7 . Select one alternative

Based on the set of alternatives that have passed the

above feasibility tests, the analyst should select the alter-

native that he believes is the best. Keep in mind that the

management usually bases its decision on the cost savings or

the positive return on investment relative to the existing

16

system. Therefore a cost / benefit analysis should accompany

the recommendation for an alternative.

8

.

Initiate a development plan

Assuming that management accepts the alternative

recommended by the analyst, they need to know how long it

will take to do the job, how many people from the organiza-

tion may be involved and what is the approximate cost of

each step in the process. The analyst must provide this infor-

mation in the form of an initial implementation plan of the

proposed solution.

9

.

Document and Present the Feasibility Study

The analyst collects and compiles the results of his

feasibility study and prepares a written report. There is no

standard format for the feasibility study report. The analyst

will decide which is the best way to document his work during

this study. However, for the reader who feels he needs a

guideline, Figure C.3 in [Ref. 10] provides an outline of a

typical feasibility study.

B. IMPLEMENTATION

1 . Confirm the Problem Definition

The problem definition statement prepared during the

first step of the specification stage included an understand-

ing of the system objectives and scope. But is this exactly

what the director of the SCD had in mind when he asked for

a new system? The first task is to confirm that the problem

definition is correct.

The problem is with the performance of the Soldiers

Section of the Personnel Office in the SCD which is headed

by a colonel . He is the one who suggested that a better

personnel management system is needed. The analyst visits

17

him and asks if he agrees with his view of the problem. He

confirms that the objectives are clearly stated, but he

thinks that the scope is too costly. The SCD is not willing

to allocate more than 415,000 for this project. Therefore

the scope of the system is changed to accomodate a cost of

415,000. Now both the scope and objectives have been con-

firmed .

2 . Study the existing system

The main purpose of this step is to understand the

existing system. If it is known what the existing system

does, then it is easier to find one or more ways to design

a new system that eliminates the problems.

The sources of information that will help in the

understanding of the existing system are two: people who work

in the system and documents (reports, forms etc) used or

produced by the system. During the interview the Colonel in-

dicated that the best source of information is his assistant.

The interview with this officer led the analyst to interviews

with some other key people inside and outside the SCD and

finally he came up with the following description of the

system

:

New soldiers enter the Signal Corps every two months.

On the first day of each odd month a new group of draftees

reports to the Enlistment Center (EC) where they are examined

for physical and mental ability. The EC then prepares a list

with the names and other information of the soldiers who were

judged acceptable and sends one copy to the Basic Training

Center (BTC) and one to the SCD.

Those draftees found capable of becoming soldiers are

sent to the BTC where they receive training for two months in

the basic subjects that every soldier must know. The average

18

number of soldiers that enter the Signal Corps every two

months is about 1,000.

The SCD matches the number of new soldiers with the

general needs for specialized personnel and calculates the

number of soldiers that must be trained in each of the 15

different specialties. One list with these numbers is sent

to the BTC which, after interviews with the soldiers, decides

in which specialty each soldier will be trained.

The BTC prepares a list with the names of the soldiers

and the specialty selected for each one and sends one copy to

the SCD for information and one copy to the Special Training

Center (STC) to assist in scheduling the training of the new

incoming soldiers.

After the end of their basic trainig the soldiers are

sent to the STC where they will receive training in the speci-

alty they were assigned. The duration of this training is

one, two, or three months, depending on the specialty. One

week before the end of the training of each specialty the

STC sends a report to the SCD with the names of the trained

soldiers

.

The SCD, based on this report and the personnel needs

of the Signal Corps units, selects the units to which the

newly trained soldiers will be assigned and sends a copy of

the assignments list to the STC and the interested units. This

procedure takes place during the first five days of each

month.

Each unit of the Signal Corps submits two reports

to the SCD at the end of each month. The first includes the

names of the soldiers who retired or were separated from act-

ive duty during the month and the second includes the changes

(if any) in the status of the soldiers in the unit. The SCD

19

uses these reports to update the soldiers' individual files

and the units' files.

The above description, although very general, is suf-

ficient for understanding the current system. Of course

during the study of the system notes have been taken on many

details that will help later to design the new system. For

example, copies of the various lists, reports or forms that

are produced or used by the system were requested.

The main observations about the existing system are

described below.

(1) The basic functions that the Soldiers Section in the

Personnel Office performs are as follows:

- Calculates the number of soldiers that must be trained

in each specialty.

- Updates the soldiers' files.

- Updates the units' files.

- Performs the assignments of the soldiers.

(2) The Personnel Office does not exist in a vacuum. A

number of other organizations (EC, BTC , STC and units)

must provide it with timely information in order to be

able to accomplish its mission. The delays reported in

the problem definition have their primary origin in the

untimely arrival of these data.

(3) Almost all the procedures that take place in the system

are purposely concentrated at the beginning or the end

of each month. This makes the problem of manually

synchronizing these procedures even more complicated and

the presence of errors more likely.

(4) The volume of information that is manipulated is so

large that it is almost impossible to evaluate the

20

soldiers' requests when performing the assignments with

a manual system.

(5) The general observation is that the existing system is

well designed and the problems that have been reported

are mainly caused by the relative difficulty that

characterizes manual systems in dealing with great

volumes of information under pressure of time.

3 . Develop a high-level model

Now that the analyst has an understanding what the

existing system does, the next step is to construct a high-

level logical model of the system. This model will assist

in the design of the new system. It can also be used as a

communications tool with the people in the Personnel 1 Office

and the Management.

There are many techniques for describing a physical

system. Some analysts prefer the systems flowcharts. Others

think that data flow diagrams are better. The Data Flow

Diagram (DFD) will be used to describe the personnel system.

The reason is that at this early stage in the process physical

implementation details should be avoided. The analyst wants to

summarize the functions that are performed by the system, but

not to be influenced by the specific way in which these

functions are performed by the existing system. The DFD is

excellent for a high-level description of a system because it

stresses functional rather than physical implementation. It is

also a diagram that is very easy to understand. There are only

four symbols used in this diagram (fig. 4.1). A source or

a destination of data is represented by a square; a process

in the system that transforms data by a circle or a rectangle

with rounded corners; a data store by an open-ended rectangle

and data flow by an arrow.

21

Source or destination of data

or Process

Data Store

Data Flow

Figure 4.1 The Symbols of a Data Flow Diagram

In order to develop a DFD of the system, its four ele-

ments must be identified, begining with an identification of

the sources and destinations. From the description of the

system it is determined that there are four sources or desti-

nations of data: the EC, BTC , STC , and the units.

After reviewing the system description it is found

that the processes the system performs are:

- Update Soldiers files

- Update Units files

— Estimate the number of soldiers for each specialty

— Perform assignemen ts

.

The description of the system is reviewed again,

identifying the data flows and the data stores. At the end of

the enlistment the EC sends a list with the soldiers who

joined the Signal Corps to the SCD. This list is a data flow.

Is it also a data store? The purpose of this list is to update

the soldiers' files. Most of the time, this updating is not

22

performed immediately after the list is received. Therefore

a data store is needed to keep the data until the user is

ready to use them. Continuing in the same way the remainder of

the data flows and data stores are identified.

The next step is to develop the DFD (Figure 4.2). Note

that the Processes and the Data Stores are numbered so that

the reference to them is facilitated.

ENLIST-

MENT

CENTER

Dl

LIST OF

ENLISTED
SOLDIERS

/ P2

UPDATE

SOLDIERS

FILE

M SOLDIERS

BASIC

TRAINING

CENTER

ESTIMATE

NUMBEROF

SOLDIERS/
SPECIALTY

D2

REQUIRED NUMB.

OF SOLDIERS

PER SPECIALTY

SPECIALTY

TRAINING

CENTER

D3

LIST OF SOLDIERS

HBO COMPLETED

SPECIAL TRAINING

D6

LIST OF _
ASSIGNMENTS

T

9—

UPDATE

UNITS

FILE

D5

PROCESS

ASSIGN-

MENTS

UNITS

1
—•> UNIT

1

UNIT

2

•

•

UNIT

D

D7

CBANGESOF

SOLDIERS

STATUS

~U
LIST OF

RETIRED

SOLDIERS

Figure 4.2 The Data Flow Diagram of the existing system

4. Confirm the logical model

One of the major advantages of a DFD is that it is an

excellent communications tool. Thus it can be used to explain

our understanding of the system to the management.

23

The DFD is presented to the Colonel and he agrees that

this is a good and accurate representation of the system. He

also reminds the analyst that the details of the implementa-

tion of the Assignments process will be changed to meet the

soldiers needs. There is no need to change any other process
in the system.

5 . Develop and Evaluate Alternative Solutions

The analyst now faces the question of how to solve the

problem. He must consider and evaluate several possible solu-

tions .

One simple solution could be to improve the manual

procedures of the existing system. It is true, however, that

people are not very effective when dealing with large amounts

of complex data. Therefore, the use of a computerized system

would be better. Should a traditional file processing or a

database system be used? Database processing has a number of

advantages over the file systems. Th^se advantages become

clearer as the volume and complexity of data increases. Clearly

it is better to choose a Database system. On what computer

should the database be implemented? The Generel Staff has its

own Computer Center that runs a number of applications, such

as payroll, mobilization procedures etc. There is enough

capacity to run our database on the mainframe. There are some

disadvantages to this solution, however. The director of the

Personnel Office, would not have complete control of the

soldiers' management. Also it is very likely that sooner or

later the other Arms will ask to use the mainframe for their

needs, but the Computer Center as it is now organized cannot

undertake the management of all the Greek army soldiers.

Another way is to have a centralized machine in the

SCD with a centralized database and implement some kind of a

24

network with the SCD as the central node and the EC, BTC, STC

and the units as peripheral nodes. This may appear to be

extremely expensive but it is not necessary to implement a

hardware network. For example the data could be transfered via

courier. The advantage of this fully centralized database is

that it guarantees the integrity of data and it also helps the

other units to benefit from the system by automating part of

their work. This solution also would put full control of the

whole system in the hands of the director of the Personnel

Office, something very important for elimination of delays and

other timing problems. The only disadvantage is that this is

still a very expensive solution, far beyond the scope of the

projec t

.

Finally, a third way is to implement the database on a

microcomputer system. This microcomputer would be positioned

in the Personnel Office. The data from the units outside the

SCD will continue to be delivered in the same way (manually

written reports or lists) and entered into the computer. All

the functions performed by the Personnel Office will be auto-

mated, speeding up execution time and eliminating delays

caused by the people in the office, but it does not address

delays from outsiders. One possible disadvantage of using a

microcomputer is that it may impose a limit in growth which

means that we a.r& not going to be able to go beyond micro-

computer storage capability. One of the advantages of this

solution is that it solves the delay and error problems inside

the SCD. Even more important is that this system is able to

solve the soldiers' assignments problem, which is one of our

major objectives. Another benefit of this system is that it

can be easily expanded to the other Arms.

25

What would be the cost of such a system? First the

type of microcomputer that would be appropriate for this

database must be determined. The main datastore is the SOLDIER

file which contains about 10,000 records, with each record

having about 400 characters. There is always an overhead of

about 20'/. for pointers, links etc, which results in about 500

characters per record. Therefore the total memory space needed

for this file is: 10,000 x 500 = 5 Mbytes. If an IBM/AT micro-

computer with a 20 Mbyte hard disk is considered, the system

can be implemented. The cost of such a microcomputer together

with the appropriate peripherals is about $6,000.

6

.

Select one Alternative

The analyst feels that the idea of using the General

Staff mainframe is the least desirable - by almost everyone. The

network solution is the most attractive but far beyond the

given scope limits. The solution of implementing a database on

a microcomputer is well within the limits of both the scope

and the objectives of the project and this is what the analyst

wi 1 1 recommend

.

7

.

Initiate a Development Plan

The purpose of this step of the feasibility study is

to provide the management with a rough implementation plan of

the proposed solution, together with an estimate of the

approximate costs for each step in the plan.

The implementation schedule prepared by the analyst is

shown in Figure 4.3. Note that this is a rough estimate of the

implementation. The cost figures were calculated on the basis

of the salary of a major (usual rank of an analyst). The total

cost of this system will be $14,000 ($6,000 for hardware plus

$8,000 for implementation).

26

STEP
PERSONNEL
TIME (months)

ELAPSED
TIME (months) COST

Feasibi 1 i ty
Ana 1 ysis
Design
Impl emen tat ion

0. 5
1 .0
1 .5
1 .0

Completed
1 .0
1 . 5
1 .0

$ 1,000
$ 2,000
$ 3,000
* 2,000

TOTAL 4.0 3.5 * 8,000

Figure 4.3 The implementation plan

8 . Document and present the Feasibility Study

The feasibility study is now completed. The analyst

writes a report including the results that he thinks are

necessary to support his recommendation. Then he presents his

report in a meeting with the director of the Personnel Office

and the director of the SCD. They agree with the proposed

solution and schedule. Now the analyst is ready to move to the

next step in the process: the analysis.

27

V. ANALYSIS

A . THEORY

1 . The Purpose of the Analysis Phase

The purpose of analysis is to define the system in

terms of what is to be produced. The question of how the

system will provide the required features will be answered

later, during the design phase. Therefore, analysis is a

logical process which does not really solve the problem, but

decides what should be done to solve it. It is obvious that

the importance of this stage is paramount. Decisions made here

will influence the rest of the development process.

Many studies have been conducted which document that

system analysis errors are extremely expensive to correct,

especially if they are discovered late in the system develop-

ment process Figure 5.1 [Ref. 11] illustrates the relative

cost to make a change as a function of the phase in which the

change is made. Note it is about 100 times as costly to cor-

rect a specification error during system testing as it is to

correct it during analysis.

Another stydy by James Martin also documented that

about 507. of the number of errors and 75"/. of the cost of error

correction in operational systems is caused by errors during

analysis. Finally there is strong empirical connection between

failure to define a system adequately during analysis and

failure to produce it. Nevertheless a great number of managers

and users think of analysis as a time consuming process that

must be minimized. This attitude has its origin in older times

when coding was really the dominating process in system deve-

lopment .

28

R
e
1

a
t
i
v
e

C
o

t
o

f
i

x

E
r
r
o
r

100

50

20

10

5

0.5

0.2

0.1

IBM-SDD

80 V.

Median-TRW survey
207.

Require- Design
men ts

Code Unit test Accept- Operation
and ance

Integration test

PHASE in which error was detected and corrected

Figure 5.1 Relative cost to correct an error

The main deliverable of the Analysis phase is a

document called Functional Specification or System Definition.

Very often this document is considered as being a training

manual, an operational handbook, or a management summary, but

it is not. The only purpose of this document is to provide a

specification of the functions to be performed by the system

and the constraints within which it must work. The Functional

Specifications will become the starting point for the Design

phase that follows analysis. Depending on the size and

complexity of the system, the functional specifications

29

document may consist of a few pages, or it may be packaged

in several volumes.

2 . Techniques of use during Analysis

Unfortunately, as was also the case with the Feasibi-

lity Study, there is no universally adopted method for the

Analysis phase and the system's functional specifications are

sometimes produced without following any method at all.

Because of the great importance of this phase, many

attempts have been made by computer science people to bring

a level of formalism to the production of the functional

specifications. As a result of this effort a great number of

different techniques have been produced. These techniques

range from manually driven techniques to fully computerized

ones. Some of them provide a way to generate the system defi-

nition, whatever form this may take. Others simply provide

a way of presenting the definition. The best technique is one

that combines both results for the system definition process.

Again some techniques are very effective in certain aspects

and for particular types of systems. For the reader who is

interested in the details of any particular analysis technique,

the names of the most popular ones together with the reference

of a description of the technique follow:

- Structured Analysis. [Ref. 12]

- PSL/PSA. [Ref. 13]

- Sructured Analysis and Design Technique (SADT) . [Ref. 14]

- Controlled Requirements Expression (CORE). [Ref. 15]

- Software Requirements Engineering Methodology. [Ref. 16]

- Finite State Machines (FSM). [Ref. 17]

- Petri Nets. [Ref. 18]

- Jackson System Development (JSD). [Ref. 19]

- Software Development System (SDS/RSRE). [Ref. 20]

30

All of these techniques in some way model the system

being defined. The difference is that each technique focuses

on a different aspect of the system such as data flow, data

structure, control of flow, etc. Therefore, before choosing

an analysis technique one should first identify which aspect

of the system is the most important. In the following section

a very brief and simplified description of the Structured

Analysis method [Ref. 12] is given and will be followed during

the implementation of the Analysis phase.

3 . A brief description of Structured Analysis

De Marco [Ref. 12] and Gane and Sarson [Ref. 21] have

defined a methodology which is primarily involved with the

application of a particular set of tools to the production

of a Structured Functional Specification. These tools are:

The Data Flow Diagrams , the Data Dictionary and Process

Description Tools . The Data Flow Diagrams (DFD) and their use

were described in Chapter IV.

The Data Dictionary (DD) is used to define the data

flows and data stores that appear in the DFDs. In other words

the DD is a collection of data about data. The basic idea is

to provide information on the definition, structure and use of

each data element an organization uses. A data element is a

unit of data that cannot be decomposed. A DD usually consists

of a listing of all elements found in each data store. For

each data element, information about its name, aliases or

synonyms, description, format, location and other characteri-

stics is recorded in the DD

.

The Process Description Tools are used to define the

processes in the DFD that cannot be further decomposed and are

called primitive processes (or primitives). Primitives are not

described in terms of further DFDs and so require some other

31

means of definition. Structured Analysis uses Structured

English, Decision Tables and Decision Trees for this purpose.

For each of the primitive processes a description called

mini-spec is written using these tools.

One way to produce the Functional Requirements using

the Structured Analysis tools is described below.

First explode the DFD which was produced during the

Feasibility study by taking each process in the DFD and

breaking it down into its subf unctions . These lower level

functions, together with their own data stores and data flows,

become processes on a new more detailed version of the DFD.

This decomposition continues to the point of code generation,

at which the analysis phase ends.

The next step is to d efine the data flows and stores

down to the element level. For each process in the exploded

DFD the elements that must appear in the output and input are

identified. Then a list is made of each data store and data

flow together with the data elements it contains. Finally, the

DD is constructed in which information is recorded about the

name, description, format, use, etc of each data element.

The third step during Structured Analysis is to

describe each process at a high level, using Structured

English,. Decision Tables or Decision Trees.

Note that this process is not linear. For example,

while the analyst is defining the data elements he may find

that he must go back and change the DFD, or a process descrip-

tion might imply the addition of new data elements in a data

store

.

The exploded DFD, the Data Dictionary and the process

descriptions form the Functional Specifications of the system,

which after being reviewed and approved by the user, are pre-

sented to the management,

32

B. THE IMPLEMENTATION OF STRUCTUREDANALYSIS

1 . Explode the Data Flow Diagram

The DFD developed during the Feasibility study phase

(Fig. 4.2) is the starting point for the Analysis phase. This

DFD contains four processes, one for each major function in

the Personnel Office. During this phase the analyst will con-

sider each process separately and try to decompose it into

lower-level processes.

a. Decompose process PI

Consider the first process, PI. The purpose of

this process is to calculate how many of the new enlisted

soldiers are needed to train in each specialty. Figure 5.2

shows the DFD of this process.

Dl
New
En 1 isted
Soldiers

D4 So 1 diers

D5 Units

PI
Estimate
number of
soldiers
for each
spec ia 1 ty

D2
Reguired number
of soldiers for
each spec ia 1 ty

Figure 5.2 The DFD for process PI

Trying to decompose PI we find that it cannot be

divided into functional groups to form separate processes.

Therefore process PI will not be further decomposed,

b. Decompose process P2

The DFD for process P2 is shown in figure 5.3.

This process updates the Soldiers file with information from

the following incoming data stores: Dl (new enlisted soldiers),

D3 (soldiers who completed specialty training), D6 (assign-

ments), D7 (changes of status) and D8 (retired soldiers).

33

Dl
NEW
ENLISTED
SOLDIERS

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

D6 ASSIGNMENTS

D7
CHANGES

OF
STATUS

D8
RETIRED

SOLDIERS

P2

UPDATE
SOLDIERS

FILE
• D4 SOLDIERS

Figure 5.3 The DFD of original process P2

These subfunc t ions are performed by this process:

- P2 . 1 : Add new records to Soldiers file.

- P2.2 : Update records in Soldiers file.

- P2 . 3 : Delete records from Soldiers file.

The new Data Flow Diagram for process P2 after

this decomposition is shown in figure 5.4.

Dl
NEW
ENLISTED
SOLDIERS

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

D6 ASSIGNMENTS

D7 CHANGESOF
STATUS

D8 RETIRED
SOLDIERS

P2.1
ADD new

RECORDSto
SOLDIERS

/ P2.2
UPDATE

RECORDSin
.SOLDIERS

P2.3
DELETE RE-
CORDS from
SOLDIERS

< file J

D4 SOLDIERS

Figure 5.4 Decomposition of process P2

34

Some of the processes in this new DFD require

further decomposition. For example process P2 . 2 uses three

different data stores that enter the system at different times

to update the Soldiers file. Therefore it could be decomposed

into three subfunctions shown in figure 5.5.

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

D6 ASSIGNMENTS

D7
CHANGES

OF
STATUS

P2.2.1
"UPDATE
SOLDIERS
file with

TRAINED
VSOLDIERSy

P2 . 2 . 2
"UPDATE'

SOLDIERS
file with

VASSIGNMENTSy

P2.2.3
I

UPDATE
SOLDIERS
file with
CHANGES

D4 SOLDIERS

Figure 5.5 Decomposition of process P2 .

2

c . Decompose process P3

The function of P3 is to update the Units file

with the information contained in the data stores D6 (assign-

ments) and D8 (retired soldiers). Figure 5.6 shows the origi-

nal version of the DFD for this process.

D6 ASSIGNMENT!

D8
RETIRED

SOLDIERS

UPDATE
UNITS

FILE
D5 UNITS

Figure 5.6 The DFD for process P3

35

The explosion of process P3 is shown in figure

Two new processes are created:

- P3.1 : Update the Units file with the retired soldiers.

— P3.2 : Update the Units file with the new assignments.

D9
RETIRED

SOLDIERS

D6 ASSIGNMENTS

P3.1
UPDATE

UNITS file
wi th

RETIRED
SOLDIERS

P3.2
UPDATE

UNITS file
wi th

ASSIGNMENTS

D5 UNITS

Figure 5.7 Decomposition of process P3

d . Decompose process P4

Finally process P4 is considered. This process is

used to assign the newly trained soldiers to units. The Dat<£

Flow Diagram for P4 is shown in figure 5.8.

D4 SOLDIERS

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

D5 UNITS

P4

PROCESS

ASSIGNMENTS
D6 ASSIGNMENTS

Figure 5.8 DFD of process P4

Three subfunctions of process P4 can be identified

as follows. The first subfunction (process P4 . 1) uses data

store D3 (soldiers who completed specialty training) to deter-

mine who is going to be transfered and data store D4 (soldiers)

to get information about each soldier. This information is

36

used by P4 . 1 to calculate the transfer points for each soldier

that will decide the priority for transfer among the soldiers.

Thus the need for a new data store Dll (Soldier Qualification

Points) to store this information is identified.

The second subfunction (process P4 . 2) uses data

store D3 to get the number of soldiers to be assigned and data

store D5 (Units) to read the number of existing and reguired

soldiers in each unit. It then calculates the number of soldi-

ers of each specialty that will be assigned to each unit. This

information will be recorded in a new data store D12 (Unit

Needs)

.

Finally, a third subfunction (process P4 . 3) will

assign each soldier to a unit using the information contained

in the data stores Dll and D12.

The decomposition of process P4 is shown in figure

5.9.

D4 SOLDIERS

P4.1
CALCULATE
TRANSFER
POINTS FOR

EACH SOLDIER/
< '

Dll
SOLDIER
QUALIFICATION
POINTS

1 '

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

P4.3
ASSIGN

EACH
SOLDIER

TO A UNI"
D6 ASSIGNMENTS

D12
I

UNIT NEEDS

1

D5 UNITS

CALCULATE
UNITS NEEDS

FOR EACH
VSPECIALTYy

Figure 5.9 Decomposition of process P4

P4.2

37

2 . Define the Data Elements

One objective of analysis is to define the data flows

and data stores down to the element level. To accomplish this

each process in the data Flow Diagram is considered separately

and the data that must appear as its outputs and inputs are

def ined

.

a. Using process PI

Process PI calculates the number of soldiers to

be trained in each specialty. Therefore its output, which is

stored in data store D2, will contain at least two elements:

The SPECIALTY and the REQUIRED SOLDIERS per specialty.

To calculate the Required Soldiers, process PI

uses the following elements:

(1) Total number of new enlisted soldiers.

(2) Total number of soldiers per specialty

required to satisfy the current unit's needs.

(3) Total number of soldiers per specialty

to retire in the next 4 months.

(4) Number of soldiers currently undergoing

training in each specialty.

Data store Dl (New Enlisted Soldiers) provides

information for element (1). Therefore, Dl must contain a

field: TOTAL NUMBEROF ENLISTED SOLDIERS.

Next consider element (2). Data store D5 (Units)

in the form that it is used now consists of a UNIT NAME field

followed by one field for each SPECIALTY, which is divided

into subfields for the EXISTING, REQUIRED and COMPLEMENT

number of soldiers for this Specialty. Thus, element (2) can

be calculated by adding all the Complement fields of one

specialty in all units.

38

As for element (3) the remaining time of service

for each soldier is needed. One way to obtain this information

is to include a field REMAINING TIME in D4 . Process PI will

read this number for each soldier and decide if it is greater

or less than 4 months. But the Remaining Time of Service is

a value that must be continuously updated (it changes every

day). Is there a more convenient way to derive the desired

information? One way is to calculate the date when the remai-

ning service time becomes 4 months. Then PI will compare the

current date with this date and if the current date is already

past this date then the remaining time will be less than four

months. This date is calculated by adding the duration of

service to the date of enlistment to get the retirement date

and then subtract 4 months from it. Therefore data store D4

must provide the elements DURATION of SERVICE and DATE of

ENLISTMENT. For purposes of speeding up the execution of PI,

it may be better to store this date in D4 after it is calcula-

ted for the first time.

Finally, element (4) (i.e., the number of soldiers

currently enrolled in training in a given specialty X) must be

calculated. We should be able to find this number by counting

the number of records in D4 with COMPLETED TRAINING = False

and SPECIALTY = X. Unfortunately the SPECIALTY field cannot

be updated before the completion of specialty training. There-

fore a new data store will be needed to provide the soldiers

enrolled in training in each specialty. This will become data

store D14 (CURRENTLY TRAINING SOLDIERS) and it will contain

the fields IDNUMBER and SPECIALTY. This data store will be a

list submitted by the Training Center every month together

with D3.

39

The needed number of soldiers per specialty can

now be determined if the specialty name is known. None of the

data stores in the DFD seems to contain this information,

though. Obviously something is missing. The user is asked

where the names of the specialties ar& stored. The answer is

that they do not use a data store for the names of the ten

specialties, because they can easily remember them or they can

look them up on a piece of paper, obviously not feasible for a

computerized application. A new data store is reguired to keep

the names of the specialties. This data store will be D9 (SPE-

CIALTIES) with one data element SPECIALTY NAME.

The DFD of process PI is updated to show the new

data stores D9 and D14 (Figure 5.10).

Dl
NEW
ENLISTED
SOLDIERS

D4 SOLDIERS

D5 UNITS

D9 SPECIALTIES-

D14
CURRENTLY
TRAINING
SOLDIERS

PI
ESTIMATE
NUMBEROF
SOLDIERS
FOR EACH
SPECIALTY

D2
REQUIRED NUMBER
OF SOLDIERS FOR
EACH SPECIALTY

Figure 5.10 Process PI after the addition of D9 and D14

Following is a list of the data stores used by

process PI, together with the data elements they contain:

- Dl : NEW ENLISTED SOLDIERS
1. Total number of enlisted soldiers

- D2 : REQUIRED SOLDIERS FOR EACH SPECIALTY
1

.

Special ty
2. Reguired soldiers for specialty training

40

- D4 : SOLDIERS
1. Date Enlisted
2. Service duration
3. Date when remaining service equals four months

- D5 : UNITS
1

.

Uni t name
2

.

Spec ia 1 ty
3. Required number of soldiers
4. Existing number of soldiers
5. Complement number of soldiers

- D9 : SPECIALTIES
1 . Spec ial ty

- D14: CURRENTLYTRAINING SOLDIERS
1

.

ID number
2

.

Spec ial ty

b. Using the remaining processes in the DFD

Proceeding in the same manner the data elements

that are required by the rest of the processes in the Data

Flow Diagram are identified. New data stores are added and the

DFD is expanded where necessary. At the end of this process

the DFDs for the processes PI through P4 have taken the form

shown in figures A. 2 through A. 5 of Appendix A. Also the data

stores are shown in section B.l of Appendix B. Note that a

new data store, HISTORY, was added to keep the information

about a soldier after he has retired and before his record is

deleted from the Soldiers file.

3

.

Construct the Data Dictionary

For each data element already registered in a data

store, information is recorded about its name, aliases,

description, format, location, etc. The Data Dictionary is

shown in sections B.l and B.2 of Appendix B.

4

.

Write Process Descriptions

As previously discussed the purpose of this step is to

describe each process in the DFD at a high level. There are

many available tools to be used for this purpose such as,

Decision Tables, Decision Trees and Structured English.

Structured English was chosen to document the processes. The

41

complete documentation is shown in figures C.l through C.ll of

Appendix C.

5 . Review the Functional Requirements

Working with the user the Functional Requirements are

reviewed to decide if they are complete.

During this review it was found that there are two

more processes that need to be added to the system.

The data stores Dl , D3 , D7 , D8 and D14 enter the

system in manual form. The computer cannot process manual

files. Therefore a new process P5 (ENTER DATA) is required

which will transform the manual data stores into electronic

files that can be manipulated by the computer. Figure 5.11

shows the DFD for this new process. The exploded process P5 is

shown in figure A. 6 of Appendix A and its algorithm descrip-

tion in sections C.12 through C.16 of Appendix C. Finally a

last process P<S (GENERATE REPORTS) is needed. This process

prints out the reports that the Personnel Office of the SCD

D8
RETIRED
SOLDIERS
(manua 1 list)

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING
(manua 1 list)

D7

"-» P5

CHANGES
OF STATUS
(manual list)

Dl
NEW ENLISTED
SOLDIERS
(manua 1 list)

D14
CURRENTLY
TRAINING SOLDIERS
(manual list)

ENTER

DATA

D8
RETIRED

SOLDIERS

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

D7
CHANGES
OF
STATUS

Dl
NEW
ENLISTED
SOLDIERS

D14
CURRENTLY
TRAINING
SOLDIERS

Figure 5.11 The DFD of process P5

42

must send to the training centers and the units (i.e., the

Assignments list and the list with the Training needs).

The Data Flow Diagram for process P6 is shown in

figure 5.12 and its exploded form in figure A. 7 of Appendix A.

Also the algorithm description for this process is contained

in sections C.17 and C.18 of Appendix C.

D2
REQUIRED NUMBER
OF SOLDIERS FOR
EACH SPECIALTY

D6 ASSIGNMENTS

P6

GENERATE]

REPORTS

Figure 5.12 The DFD of process P6

LIST WITH
TRAINING
NEEDS

LIST OF
ASSIGN-
MENTS

The final version of the system Data Flow Diagram is

shown in figure A.l of Appendix A.

6 . Present the Functional Requirements to the Management

At the beginning of this chapter it was mentioned that

the process of producing the Functional Reguirements for the

system is not linear. Very often the analyst backtracks and

repeats certain steps in the process. Finally it is felt that

the Functional Requirements are complete and they are

presented to the management. The contents of Appendices A, B

and C form the Functional Requirements of the system.

43

VI . SYSTEM DESIGN

A . THEORY

1

.

The Purpose of the System Design

During the analysis stage the analyst defined what is

going to be produced. The next step is to answer the question

of how to produce the system and this is the purpose of the

Design phase.

The majority of the literature that exists on the

different steps in the development of a system views Design as

one big step which takes the Functional Specifications produ-

ced during Analysis as its input and designs a system that

satisfies them. A number of people, however, believe that it

is better to break the Design stage in two phases: System

Design and Detailed Design.

During System Design it is determined in general how

the system will be implemented by identifying different alter-

native solutions and selecting one alternative that best

satisfies the system needs.

During Detailed Design it is determined how spec i f ic -

al 1

y

the selected alternative should be implemented.

However, no matter which design approach is followed

the system designer must always keep in mind that the final

product of this phase should be a system design which first

provides all the required functions and second can be easily

implemented

.

2

.

Identify Alternative Solutions

System Design begins with a search for different

systems that meet the user's requirements. To make this search

easier each one of the system's components is considered

44

separately. A system usually consists of four components:

Data, Hardware, Software and People.

a. Data alternatives

The main function of any computer system is data

processing. The way in which data is organized greatly affects

the system structure and most of the time its effectiveness.

There are two primary data alternatives.

One way is to organize data in f i les , which exist

independently of each other, and their structure is distribu-

ted across the application programs. Another alternative is to

utilize a database .

There are advantages and disadvantages related to

each of the two alternatives and the system designer should

evaluate them and choose the one that best satisfies the needs

of the particular application. Sometimes, a combination of

these two alternatives should be used.

b. Software

The evaluation and selection of the appropriate

software for the system is usually a difficult and time consu-

ming task. During this step different programming languages

must be evaluated that can be used to write the applications

programs. The operating system to be used should also be con-

sidered. The most difficult decision, however, is to choose a

Data Base Management System (DBMS) when a database is involved.

The functions provided by a DBMS must match close-

ly the user reguiremen ts . Unfortunately, most of the existing

DBMSs do not provide the same functions and the same interfa-

ces and therefore, we must proceed very carefully in choosing

the correct DBMS.

Gordon Everest in his book "Database Management"

has devoted a whole chapter to the DBMS selection and aguisi-

45

tion process [Ref. 22]. For the reader who needs more details

on this process, the reference provides a very good guide.

There is a substantial difference between a DBMS

for a personal computer and one for a large system. First of

all the size of the databases that must be managed by a perso-

nal computer DBMS is many orders of magnitude less than the

size of a commercial database. Also the personal systems are

usually intended for use by only one person, while the large

mainframe systems are serving concurrently many different

applications and users. Because of these differences a commer-

cial DBMS should be much more sophisticated and able to

coordinate the complex database activities. Therefore, it is

always much easier to select one of the many low-cost DBMS

packages available in the market for microcomputers.

c

.

Hardware

In most cases the management wants the new system

to run on existing hardware. If this is possible without any

major additions or modifications, it is wise to keep the

current system in place. Sometimes, however, new applications

require a new computer system. Also the involvement of a

database usually implies the use of special hardware with more

main and secondary storage space, faster CPU etc. The DBMS

vendor will provide information on the hardware needed to be

used .

d

.

People

Finally the people who are involved in the system

are considered. We must decide who the end-users are going to

be and the extent of training required.

If a database is involved then it must be decided

whether a Data Base Administrator (DBA) will be needed. The

function of the DBA is "to protect the database and to ensure

46

that it is structured and used so as to provide maximum bene-

fit to the community of users" [Ref. 9: p. 30]. When a great

number of different applications and users are using the data-

base the presence of a DBA becomes a necessity. The DBA could

be a single person or a whole team. The cost of the DBA staff

should be considered as part of the cost of the alternative

being evaluated.

3 . Select one alternative

The next step is to select one of the different alter-

native sets of the system components identified during the

previous step.
,

A number of different techniques exists that assist in

the selection of an alternative solution. David Kroenke

[Ref. 9] has described three such techniques which are briefly

reviewed below.

The first technique is called Subjective Evaluation .

This approach is the cheapest, quickest and most frequently

used. The purpose is to subjectively evaluate each alternative

and to make an intuitive decision. Thus the criteria for

comparing alternatives are first identified. Next the criteria

are weighted according to their relative importance. Then,

each alternative is subjectively scored by the members of the

evaluation team. The total score for each alternative is then

calculated and the alternative with the highest total score is

selected

.

Cost/benefit analysis is another technique, which

gives a reasonable picture of the costs and benefits associa-

ted with each alternative solution, so that management can

compare the alternatives and decide which one is a good

investment. First the costs of developing each alternative

system are identified. The cost of each phase in the system

47

development is estimated separately and the total cost of

development is the sum of these costs. Next the cost of main-

taining and operating the system after it is implemented is

estimated and is added to the development cost. The expected

benefits from the use of the system is estimated next.

•Note that the development costs occur only once. The

operating costs and the benefits occur continuously after the

system becomes operational and are not equally distributed

across time. Also, as is the case with most computerized

systems, they usually become obsolete in a few years. Therefo-

re it is wise to estimate the return on investment for any

system for a period no longer than five years. If the benefits

during this period do not exceed the sum of the development

and operation costs then this system might not be feasible.

A third technique suggested by Kroenke is to use a

combination of both of the above techniques. Subjective evalu-

ation can be used to reduce the number of alternatives to two

or three and then perform a cost/benefit analysis on these

alternatives to choose the best one.

B. THE IMPLEMENTATION OF SYSTEM DESIGN

1 . Identify Alternative Solutions

During the Feasibility Study phase a number of alter-

native solutions to the problem were developed and evaluated.

The result of that evaluation was that the implementation of a

database system on a microcomputer is the most desirable

solution. These results will be used during System Design to

help make the effort of identifying alternative solutions

easier

.

a. Data Alternatives

The system can be implemented using different data

processing technologies. One way is to continue using the

48

existing manual files for all processes in the system, except

for the assignments processing for which traditional file

processing can be used. Another option is to implement the

whole system using file processing. Finally, a third option

is to store all data in a single database.

b. Software

In the market there are a large number of DBMSs

(over one hundred) that run on microcomputers. Most of these

DBMSs provide a programming language that can be used to write

application programs when all processing reguirements cannot

be handled by the database functions provided by the DBMS.

Some of these full function DBMSs are listed below:

- DATAFLEX from Data Access Corp., Miami, FL

- dBASE II, III from Ashton-Tate, Culver City, CA

- INFORMIX from Relational Database Systems, Sunnyvale, CA

- MAG/base III from Micro Applications Group, Canoya Park CA

- MDBS+QRSfrom Micro Data Base System Inc., Lafayette, IN

- OPTIMUM from Uveon , Denver, CO

- ORACLE from Oracle Corp, Menlo Park, CA

- Q PRO-4 from Quick 'n Easy Products, Langhorne, PA

- RrBASE from Microrim, Bellevue, WA

- REVELATION from Cosmos, Seattle, WA

- UNIFY from Unify Corp., Portland, OR

c

.

Hardware

As described in the feasibility study the micro-

computer solution is the only acceptable one for the current

appl ication

.

d

.

People

Currently six men are working in the Soldier Sec-

tion of the SCD Personnel Office (a captain, two sergeants and

three soldiers). None of these needs to be replaced if the

49

current system is maintained. If it is decided to implement

a database system using a microcomputer then at least four

people will be needed: One captain, one sergeant and two sol-

diers. These people will be required to have some knowledge of

microcomputers

.

2 . Select one Alternative

After the evaluation of the different alternative

solutions and in agreement with the results and constraints of

the feasibility study, the system components are selected as

f ol lows

:

a. Data

A database will be used to store all the data in

the system.

b. Software

The dBASE III Plus package was chosen as the DBMS.

During the evaluation process a number of other DBMS packages

were found that provide almost the same functions as dBASE III

Plus. The prices of these packages were also similar. Some of

the reasons for selecting dBASE III Plus are:

— Product stability.

dBASE III Plus (was dBASE II before) has been in the

market for a long period and the number of people using

it is continuously increasing.

— Maintenance support.

There are many enhancements of the product and the users

interviewed were generally satisfied by the way the vendor

responds to occurring problems.

— Documentation and Training.

The documentation is very well written and readable.

There are also several references one can find that make

the learning and use of dBASE III Plus easier.

50

The dBASE III Plus features, limitations and

software/hardware requirements are described below.

dBASE III Plus is a relational DBMS which runs on

IBM microcomputers or compatible machines and stores informa-

tion in relational data tables.

The database can be processed in two ways. One

way is interactive command processing in which the data in the

database is manipulated by means of commands entered interacti-

vely from the keyboard, and the results are displayed on an

output device such as a monitor or a printer. A second way is

through application programs. An application program is a

collection of dBASE III Plus commands stored in a file. These

programs can be loaded and executed by the DBMS. This capabi-

lity makes dBASE III Plus useful for application development.

The database files used by dBASE III Plus can hold

a max imum of

:

- One billion records

- Two billion bytes

- 4000 bytes per record

- 128 fields per record

- 254 bytes per field

dBASE III Plus allows a maximum of 15 files to be

open at once including database, index, memo, procedure and

program files. This sounds like a serious limitation but if

the application programs are carefully designed these problems

can be avoided. Note that this limitation is imposed by PC_D0S

and not by dBASE III.

dBASE III Plus is designed to run on the IBM PC,

IBM PC XT, IBM PC AT and the IBM-compatible microcomputers.

It requires MS_D0S or PC_D0S version 2.0 or later. The minimum

memory requirement is 256 K under DOS version 2.0 or 2.1.

51

dBASE III requires mare memory to run under DOS 3.0 or above

and if you want to replace the dBASE III program editor with

an external editor then at least 3B4 K of memory will be requ-

ired. For a serious application development the microcomputer

should have at least 512 K main memory, a 360 K floppy disk

and a 10 megabyte hard disk.

c

.

Hardware

An IBM personal computer AT with a 20 Mbyte hard

disk and two 360 K floppy disks is recommended for implementa-

tion. Also a monitor and a printer will be used as output

devices

.

d

.

People

One captain, one sergeant and two soldiers with

some knowledge of computer science and especially on micro-

computers will be required.

52

VII . DETAILED DESIGN

A . THEORY

1

.

Purpose of the Detailed Design

As stated before the purpose of the Detailed Design

phase is to determine how specifically the system will be

imp lemen ted

.

During System Design the solution strategy which best

satisfies the user's reguirements was selected. If this

solution involves a database then the Detailed Design should

be divided in two tasks: The Database Design and the Design of

the Applications Programs.

2

.

Database Design

The Database Design is usually divided into two stages

Logical Database Design which is entirely independent of limi-

tations imposed by the hardware or any particular DBMS and

Physical Database Design which is dependent on the DBMS select-

ed during System Design.

a. Logical Database Design

During this stage the database logical structure

is developed by determining the actual contents of the data-

base in a way that satisfies the user reguirements without

using any particular DBMS.

What are the steps that should be followed during

logical database design? Although many technigues have been

defined, unfortunately once again there is no algorithm to

follow. David Kroenke in his book "Database Processing"

[Ref. 9: p. 177] writes:

"... database design is an intuitive and artistic process.
There is no algorithm for it. Typically, database design is an
iterative process; during each iteration the goal is to get
closer to an acceptable design..."

53

The different techniques that exist for logical

database design vary from very general and abstract to very

detailed techniques that focus only on specific aspects of the

database . The process described next provides a simple way to

create a logical database design and includes the major steps

found in most techniques.

First the data to be stored in the database is

identified. Using the Data Dictionary (DD) prepared during

Analysis, synonyms are identified. Synonyms are two or more

different names for the same data element. It is desired to

remove synonyms from the database in order to eliminate

ambiguity and redundancy. For this reason all different names

of the same data element are replaced with one standard name,

and a new revised version of the Data Dictionary results.

During the analysis phase every data element that

is needed by the system was recorded in the DD . Next a more

detailed examination of the DD is required in order to identi-

fy data elements that cannot be part of the database or must

be further analyzed. In this way a final version of the DD is

created

.

The next step in the logical database design pro-

cess is to specify the logical database records. By examining

the DFD of the system the data stores and data flows which

should become records in the database are identified. The data

elements, alias fields, that each record should contain are

already listed in the DD. Obviously this step is very straight-

forward and should not be difficult to execute. However, some

additional items must be acomplished. One is to determine

which records should be combined or separated. A closer exami-

nation of the process descriptions of the functional require-

ments may reveal that some processes utilize only a small part

54

of the information stored in some of the records. Performance

could then be improved by breaking such records into more

records according to how they are used by each process. In

other cases two or more records should be combined into one

if, for example, they are used simultaneously by most proces-

ses. In his effort to determine which records should be joined

or separated the system designer should also be guided by the

anticipated future use of the records.

Now that the final structure of the database has

been defined one final item is required: determine the primary

key for each record. It is required that each record be

uniquely identified in any of the files in the database. To do

this one or more of the fields in the records are used as

identifiers. These fields are called keys. It must be ensured

that a selected key uniquely identifies a record and this is

not always an easy job.

b. Physical Database Design

This stage takes the logical database design as

its input and transforms it into a form that is acceptable to

the hardware and to the Data Base Management System (DBMS)

that will be used.

Since this transformation varies greatly from one

DBMS to another it is not possible to provide a general des-

cription of the process. In order to be able to perform a

physical database design using a specific DBMS, the designer

should study its documentation first.

3 . Design of the Application Programs

After the database has been designed the next step is

to design the application programs. This design will later

result in code using the Data Manipulation Language (DML

)

provided by the DBMS. At this stage we work independently of

55

any particular programming language, designing the programs

that will call on the DBMS in order to provide the desired

database service.

The designer's goal is to identify the applications

programs and then develop a set of specifications for each

program that will contain the required information to support

writing the actual code during the next stage: the Implemen-

tation .

It is amazing that so many people have described so

many different program design techniques. Terms like Modular

design, Top-down design, Bottom-up design, Structured design,

Stepwise Refinement, Systematic Programming, Transform Analy-

sis, Transaction Analysis etc, are well known to almost every

computer science student. There is also extensive debate as to

which is the best technique. In this presentation of a strate-

gy for 'design ing application programs no particular design

technique will be followed in detail, although there is some

similarity with Structured Programming. A good designer should

know as many different techniques as he can but should not

commit himself to only one of them.

The programs in an application do not run independent-

ly of each other. One program is usually called by another and

either during or after execution, passes control to another

program. The hierarchy and the flow of control among the

application programs of a system can be represented using a

St ructure Chart .

A structure chart is a pictorial representation that

uses simple boxes and statements to describe the functions in

a system. To illustrate this concept Figure 7.1 shows the

structure chart for a very simple problem: boil an egg. Notice

that the processing flow in the chart is from left to right.

56

Also note that all subf unc tions are grouped under a main

control function.

BOIL
AN EGG

PLACE EGG
INTO POT

COVER EGG
WITH WATER

TURN
HEAT ON

BOIL EGG
FOR 5 MIN.

Figure 7.1 A simple Structure Chart

The first step in the process of designing the appli-

cations programs is to construct a Structure Chart. The Data

Flow Diagram of the analysis stage will provide all the infor-

mation needed. The processes in the DFD will become programs

in the Structure Chart. During analysis each process was

decomposed into subprosesses up to the point where each proc-

ces performed only one single task. Therefore, there is no

need for further decomposition of the programs. However, these

programs must be grouped under control programs which will

determine the order of execution. A main control program will

be on top of the other control programs.

In order to group the processes under common control

modules automation boundaries are drawn in the DFD. As an

example, suppose that certain processes in the DFD are perfor-

med daily, while others are performed weekly or monthly. A

line is drawn to surround all daily processes and another line

for the weekly or monthly processes, thus establishing automa-

tion boundaries in the DFD. Care must be taken not to include

in the same automation boundary processes with timing con-

flicts. Next a structure chart is prepared for the processes

in each automation boundary. Finally, by connecting all these

structure charts under a main control program, a structure

chart for the whole system is realized.

57

In order to make the reference to any of the modules

in the chart simpler, names and numbers are assigned. It would

be wise to use names that conform to the constraints of the

programming language to be used. Numbers assigned to each box

in an orderly fashion facilitate reference even more. A good

method for assigning numbers to modules that also shows the

hierarchy and functional dependence among the modules in a

structure chart is described below. (A full description of

this method is contained in [Ref. 23]).

a. Number the main control module by suffixing a digit with
as many zeros as the number of subordinate levels in the
structure chart. In the example in Figure 7.2 there are
three such levels. Therefore, the main control module
should be numbered "1000".

b. Assign numbers to the modules in a subordinate level by
incrementing the left-most zero digit of the controlling
module by one proceeding from left to right.

c. Repeat step (b) until all modules have been assigned
numbers

.

1100

B

1110 1120

1000

A

1200

1311

H

1300

D

1310

1312

Level 1

Level 2

1313

Level 3

Figure 7.2 Numbering the modules in a Structure Chart

58

The advantage of this numbering scheme is that by

knowing the number of a module one can tell which module
invokes it, by replacing the last non-zero digit with a zero.

For example module 1312 is called by module 1310, which in

turn is called by module 1300 which is finally called by
module 1000. Therefore it is easy to construct the structure
chart by simply knowing the numbers of all the modules.

The weakness of this method is that it cannot be

applied if a certain module in the system invokes more than

nine other modules, an occurence that is very unusual for

small and medium systems.

The second step in the design of the application

programs is to create a table that contains a brief descri-

ption of each module in the structure chart. This table is

usually called Visual Table of Contents or VT0C and serves as

a quick reference guide when someone wants to know the purpose

of a program.

Finally the third step is to document the programs in

the structure chart by creating an IPO (I nput /Output/Process

)

chart for each program. As its name implies, the IPO chart of

a module shows the inputs to, outputs from and the process

performed by the module. The data stores and flows shown in

the DFD are the sources of the inputs and outputs. The algo-

rithm descriptions of the Functional Specification will be

used to document the process. To describe the process steps

on each IPO chart Structured English, pseudocode, or a flow-

chart may be used.

The system Structure Chart, the VT0C and the IPO

charts produced during this stage provide an increasing level

of detail and together they constitute a complete design of

the applications programs.

59

B. IMPLEMENTATION OF THE DETAILED DESIGN

1 . Database Desig n

a. Logical Database Design

(1) Identify the data to be stored

The process is initiated with the Data Dictio-

nary (DD) constructed during analysis. A summary of all the

data items described in the DD is shown in Figure 7.3 (for the

moment do not consider the last three columns). Each data

element is now examined in detail.

First synonyms are identified. One example is

the data elements UNIT NAME, UNIT, UNIT ASSIGNED TO, and

ASSIGNED UNIT, found in the data stores D5, D8, D6 and D4

,

respectively, which are in fact the same data element under

different names. The term UNIT is chosen to be the common name

and a. reference number is entered in the column SYNONYMS.

Similarly DATE ASSIGNED of D4 and DATE OF REPORT of D6 can be

represented as one element. The remainder of the data elements

in the DD are similarly analyzed. The result of this work is

shown in the column SYNONYMSin Figure 7.3.

Next data that cannot be included in the data-

base are considered. For example, consider the data element

TOTAL NUMBEROF ENLISTED of data store Dl. It is undesirable

to include this element in every record in Dl . Unfortunately,

the relational model does not allow records of variable length

The solution is to create a separate file or to ask the user

to enter this information when needed. The second solution is

prefered and the DELETE column for this element is marked.

Data that must be analyzed are considered next,

For example, SOLDIER NAME is a data element consisting of

three subfields: FIRST NAME, MIDDLE INITIAL and LAST NAME.

This structure is not allowed by the relational model.

60

Therefore, this element is divided into three data elements

and the ANALYZE column in the DD is marked.

DA S

E 1 T

L A N

E L O

s/i DATA I I I B I i T TYPE WIDTH DATA STORE T I 1

E Z T

E B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 S

1 IDJUHBER NUMERIC + 4 4 4 4 4 4 4 4

2 SOLDIER NAME CHAR 36 + 4 4 4 4 4 4

3 DAT! ENLISTED DATE 4 4 4

4 SERVICE DDRATIOK NUMERIC 4 4

5 CLASS CHAR 4 4 4

6 HARITAL STATOS CHAR

7 NUMBER OF CHILDREN NUMERIC

8 FINANCIAL STATOS CHAR

9 FAMILY SUPPORTER CHAR

10 HOHBEROF BROTBERS IN SERVICE NUMERIC

11 SPECIAL REASONSFOR TRANSFER LOGICAL

12 PREFEREDUNITS CHAR 21 4

13 ADDRESS CHAR 69 4 4 4 4

14 TOTAL NUMBEROF ENLISTED NUMERIC 4

15 SPECIALTY CHAR 4 4 4 4 4 4 4 4 4 4 4

16 REQUIRED SOLDIERS FOR SPEC TRAINING NUMERIC 4

17 ASSIGNED UNIT CHAR 37

18 DATE ASSIGNED DATE

19 COMPLETEDTRAINING LOGICAL

20 DATE HHEN REMAINING SERVICE < 4 BON. DATE

21 UNIT NAME CHAR 4 4 4 37

22 REQUIRED NUMBEROF SOLDIERS NUMERIC 4

23 EXISTING NUMBEROF SOLDIERS NUMERIC 4

24 COMPLEMENTNUMBEROF SOLDIERS NUMERIC 4

25 UNIT ASSIGNED TO CHAR 4 37

26 DATE OF REPORT DATE 4 18

27 CHANGEDNAME CHAR 36 2

28 CHANGEDSERVICE DURATION NUMERIC 4

29 CHANGEDHARITAL STATUS CHAR 6

30 CHANGEDNUMBEROF CHILDREN NUMERIC
A

7

31 CHANGEDFINANCIAL STATUS CHAR 8

32 CHANGEDFAMILY SUPPORTER CHAR 9

33 CHANGEDNUMBERBROTHERSIN SERVICE NUMERIC 10

34 CHANGEDSPECIAL REASONSFOR TRANSFER LOGICAL 11

35 CHANGEDPREFEREDUNITS CHAR 21 12

36 CHANGEDADDRESS CHAR 69 13

37 UNIT CHAR 4

38 DATE RETIRED DATE 4 4

39 QUALIFICATION POINTS NUMERIC 4

40 HEEDS NUMERIC 4

Figure 7.3 The data items of the Data Dictionary

61

Finally, the type and width of each data

element is considered. Why should FAMILY SUPPORTER be a

three-byte character field instead of an one-byte logical

field' 7 Or the MARITAL STATUS field can be changed to an

one-byte character field which will store M for Married, D for

Divorced, S for Single and W for Widowed provided that a short

explanation is given to the user on the screen when he runs

the program. Also, there is no need for ID_NUMBER to be a

numeric field since there are no arithmetic computations

performed on it. A character field occupies less memory space

and can be manipulated much faster than a numeric field. A

summary of the Data Dictionary is shown in Figure 7.4.

(2) Specify the logical database records

Each data store in the DFD will normally be

transformed into a database file. The data elements of each

file are shown in the Data Dictionary in Figure 7.4. What

files should be combined or separated? To determine this the

chart in Figure 7.5 will be utilized. This chart shows which

data items of each data store are used by each process. For

example process P2.1 uses the ID_NUMBER of both data store Dl

and D4 . With the help of this chart consider data store D4

which is the largest data store in the system. D4 also con-

tains more records than any other data store. This means that

significant memory space will be occupied by D4 and therefore,

the process of loading it will take considerable time. On the

other hand observe that some of the processes make use of only

a small part of this data store. For example, process P4 .

3

only uses the names of the three units of preference. After

carefully looking at all processes it is decided that data

store D4 should be divided into four data stores as shown in

Figure 7.6.

62

S/I DATA E L I 1 E i T TTPI WIDTH DATA S T OE I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 ID ROBBER CHAR 4 4 4 4 + + 44 4

2 FIRST RARE CBAR 15 4 4 4 4 4 4 4

3 LAST rame CHAR 20 4 4 4 4 4 4 4

4 MIDDLE INITIAL CBAR 4 4 4 4 4 4 4

5 DATE ENLISTED DATE

6 SERVICE DORATION NOBERIC
7 CLASS CHAR 4 4 4

8 MARITAL STATOS CHAR

9 NUMBEROF CHILDREN NOBERIC

10 FINANCIAL STATOS CHAR

11 FAMILY SUPPORTER LOGICAL

12 ROMBEROF BROTBERS IN SERVICE NOBERIC

13 SPECIAL REASONSFOR TRANSFER LOGICAL
14 PREFEREDONIT 1 CHAR

15 PREFERED ONIT 2 CHAR

16 PREFEREDONIT 3 CHAP

17 STREET CBAR 15

18 CITY CHAR 20

19 STATE CHAR 15

20 ZIP CHAR

21 PBONE CHAR 14

22 SPECIALTY CHAR 44444 44444 4

23 REQUIRED SOLDIERS FOR SPECIALTY TRAINING NOBERIC 4

24 ONIT CHAR 4 4 4 4 4 4

25 DATE ASSIGNED DATE 4 4

26 COBPLETEDTRAINING LOGICAL

27 DATE NBEN REMAINING SERVICE < 4 BON. DATE

28 REQUIRED NOBBER OF SOLDIERS RUBERIC 4

29 EXISTING NOBBER OF SOLDIERS RDBERIC 4

30 COBPLEBENTNOBBER OF SOLDIERS ROBERIC 4

31 DATE RETIRED DATE 8 4 4

32 gOALIFICATION POINTS ROBERIC 3 4

33 REEDS ROBERIC 3 4

Figure 7.4 A summary of the Data Dictionary

Another use of the chart in Figure 7.5 is to

help determine which fields are redundant. For example, the

FIRST NAME, LAST NAME and MIDDLE INITIAL fields can be removed

from data stores D3 , D6 and D8 since no process uses these

fields

.

63

•-ft

fed co
aaa •— uo
OS i—i
£=> M
(S3 CJ

Csi H"> c*l

to

0)

CO

o:

1'

o
o
u
a

ID
r-

+^
(C

t3

C

03

+^
<D

,o

-H
,c

co

c
o

•l-l

<c

S-

CO COCDCO

ro -ro co co «

CO
CO
t4~> CO

ac os co oe a»-O ODUttO —- • CS) ro
—3 — COk-a •-— >—(X MS
<

1 C—3-O t-OPi-ODaL^ —i—«•—
•— •— <-& <30triO-H*xxx

D-O >-<U3C> *— 0,OW30DD
- K C*> HE •—• C3 COte.*JDQBtti
Q -<: *D —

. —} O<CO0Q QOO
a tat-*: MLCva ^a •—• .jiwic^w]
a K taa Mi cj> --a cc; o t*— ex ^= cc a; ck •—
> •— —3 —CO•— totf) X _J3 CaQ —« Ml imO ££ CM) (Ml
£ co •—a c*«a t»- co —> oq ^a i—» oq c_> c-»- c^- c^ a»3 >• •—

I cc co <=**— as -= os ac ac x: an o-o caa t-o cac oc •— —c i

a —-c —• -c co _^ -«e crr> i—. ^3 c=> a. as oc os t— •—« »—I

h taw _a jc t^i co c_> ac ate c-— u»_ ac co o—o_ Ci~ co c_> co i

« C-J CO•»- irf"» COr— CO 0"> C=> ^-t CMCO«»» <-<-> COC—COCT> I

CO
CO

<3> Ca c=a <=^

* <r> o <^>

. a=, oc ac no
• ama i--u cm aa
I COOQQQC=r>

o ac •— ac c=> en o*i •—

•

C/3 ts >—• ^ at t— as ^
t»- »—* <=» ^3 at •—• -^- ca t-o cm3 an t: ^ cj? cms •— c_j
—3 M o-j k—cmo l«: ac ad t«a •—

•

-c as <] B«l QBOC I—i Um3 OSOh
e_> c=> fr— Mo- cats cr=» l/3 Qlm catf —ac=a
adi or •— aa •— O"—i xi t— «3 lmj
a- no ^2 _> -^ CM3X <=> ^ t=> t-O
to OCcr> CC_^ C» OC t»J CJ> £=% OZ>
c^i CO—

-

ur> c_ * r —co crs <=i •—• o*» co
i c*nj c^a c*j o*o C--J en co co co

64

OriginalFIELD NAME Data NEW
Store

D4 D4.1 D4.2 D4.3 D4.4

ID NUMBER + + + + +
FIRST NAME -- +
LAST NAME + +
MIDDLE INITIAL + +
DATE ENLISTED + +
SERVICE DURATION + +
CLASS + +
MARITAL STATUS + +
NUMBEROF CHILDREN + +
FINANCIAL STATUS + +
FAMILY SUPPORTER + +
NUMBEROF BROTHERS IN SERVICE + +
SPECIAL REASONSFOR TRANSFER + +
PREFEREDUNIT 1 + +
PREFEREDUNIT 2 + +
PREFEREDUNIT 3 + +
STREET + +
CITY + +
STATE + +
ZIP + +
PHONE + +
SPECIALTY + +
UNIT f +
DATE ASSIGNED + +
COMPLETEDTRAINING + +
DATE WHENREMAINING SERVICE < 4 MON + +

Figure 7.6 The analysis of Data Store D4

Next, standard names are given to the files

and the data elements. Although this step in the design is

guite independent of any particular DBMS, it will save time if

while naming the files and data elements, consideration is

given to the selected DBMS, dBASE III Plus, which allows eight

characters for record names and ten characters for field names.

The data stores and the corresponding database files are shown

in Figure 7.7.

Next the key field for each record must be

determined. Most of the records in the data base contain an

ID_NUMBER field, which is an excellent identifier of the

record. In the few records that do not have an ID_NUMBER, the

65

S/N DATA STORE FILE NAME

1 Dl ENLISTED
2 D2 TRAIN RQ
3 D3 COMPL TR
4 D4.1 SLD ADDR
5 D4.2 SLD SERV
6 D4.3 SLD TRAN
7 D4.4 SLD PREF
8 D5 UNIT ORG
9 D6 ASSIGNMS

10 D7 CHANGES
11 D8 RETIRED
12 D9 SPECS
13 D10 HISTORY
14 Dll TRSF PTS
15 D12 UNIT REQ
16 D13 UNITS
17 D14 TRAINEES

Figure 7.7 Naming the database files

UNIT, SPECIALTY or a combination of these two fields was

selected as a key. Figure 7.8 shows the final structure of

the database. A circled cross denotes that this field is a

key .

Now that the logical structure of the database

has been defined the memory space that each field and each

record will occupy can be determined. The maximum number of

records that each database file may contain is also known

Therefore, the memory space needed for each file and consequ-

ently for the whole database can be calculated. This calcula-

tion is shown in Figure 7.9.

b. Physical Database Design

The logical database sructure defined during the

previous step will now be transfered into a physical structure,

This means that the actual database will be created and its

structure stored on a computer storage device, such as a disk,

using the DBMS software package that has been selected, namely

dBASE III Plus.

66

Q o a. cc > z u. o tn c/> O C/)

lu a.)-OCC<UJCC2(0Q > K LU UJ

FIELD NAME TYPE WIDTH I- 1

tf) z
l oujccocOzujllj
J < (ft h a I o 13 t 0)

cc a oc
O 1 1 (/)

LU

z— — 0-
1 1 1 1 t- - z - u H U. t- H

-i < 2QOQQ—C/3<I-UJ (/)(/)— — <
z a. 0-J-J-I-IZC/5IIUCL - cc z z cc
Mi i- OC/)(rt</)(/)0<OCC</) I H 3 3 (-

1

2
ID NUMBER
F NAME

CHAR
CHAR

7
15

©
+

©000© 0©©
+ +

©©+
3 L NAME CHAR 20 + + + +
4 M INITIAL CHAR 1 + + + +
5 DATE ENL DATE 8 + + +
6 SERV DUR NUMERIC 2 + + +
7 CLASS CHAR 3 + + +
8 MARIT STAT CHAR 1 + + +
9 NUM CHILD NUMERIC 1 + + +

10 FINAN STAT CHAR 1 + + +
11 FAM SUPP LOGICAL 1 + + +
12 BROTH SERV NUMERIC 1 + + +
13 SPEC REAS LOGICAL 1 + + +
14 PRF UNIT1 CHAR 7 + + +
15 PRF UNIT2 CHAR 7 + + +
16 PRF UNIT3 CHAR 7 + + +
17 STREET CHAR 15 -t- + + +
18 CITY CHAR 20 + + + +
19 STATE CHAR 15 + + + +
20 ZIP CHAR 5 + + + +
21 PHONE CHAR 14 + + + +
22 SPECIALTY CHAR 8 § + + © + + +© +
23 SPEC REQ NUMERIC 4
24 UNIT CHAR 7 04 GO
25 DATE ASIGN DATE 8 + ^ +
26 END TRAIN LOGICAL 1 +
27 DATE 4 DATE 8 +
28 REQUIRED NUMERIC 3 +
29 EXISTING NUMERIC 3 +
30 COMPLEMENTNUMERIC 3 +
31 DATE RET DATE 8 + +
32 QUAL PTS NUMERIC 3 +

33 NEEDS NUMERIC 3 +

Figure 7.8. The final structure of the database.

Creating a database using dBASE III Plus is very

easy and is done by using the CREATE command. The database

file ASSIGNMS is created as an example:

- First bring up dBASE III by typing:

C> DBASE

- When the period prompt is received enter the command

CREATE followed by the file name:

. CREATE ASSIGNMS

67

- dBASE III Plus will then ask for the field name, type and

width and if it is a numeric field, the width of the

decimal part. Since this information has been defined in

the logical design, it can easily be entered.

RECORD MAXIMUM MAXIMUM
FILE NAME SIZE NUMBER FILE SIZE NOTES

(Bytes) OF RECORDS (Bytes)

ENLISTED 153 (a) 1,500 229,500 (a) One byte is used
TRAIN RQ 13 10 130 as a flag by dBASE
COMPL TR 16 1 , 100 (b) 17,600 III Plus
SLD ADDR 113 16,500 (c) 1 ,864,500 (b) 400 soldiers comp-
SLD SERV 53 16,500 874, 500 lete training in
SLD TRAN 14 16,500 231 ,000 1 month
SLD PREF 29 16,500 478,000 (c) 1500 * 11 classes
UNIT ORG 25 300 (d) 7,500 (d) 10 spec * 30 units
ASSIGNMS 31 1 , 100 34,100 (e) no more than 2'/. of
CHANGES 142 330 (e) 46,860 all soldiers
RETIRED 16 1 ,500 24,000 (f) Removed from data-
SPECS 9 10 90 base once every
HISTORY 140 9,000 (f) 1 ,260,000 year .

TRSF PTS 19 1,100 20,900
UNIT REQ 19 300 5,700
UNITS B 30 240
TRAINEES 16 10 160

MAXIMUfl DATABASE SIZE 5,095,180

Figure 7.9 Memory reguirements of the database

The file ASSIGNMS as entered in the computer is

shown in Figure 7.10

Field Name Type Width Dec

1

.

ID_NUMBER charac ter 7

2. SPECIALTY character 3

3. UNIT character 7

4. DATE_ASIGN date 8

Figure 7.10 File ASSIGNMS

Working in the same way the remaining files in the

database are created.

68

2 . Design the Application Programs

The design of the programs that will be used by the

DBMS to process the data in the database is the next step.

According to the method previously described, the DFD of

analysis must be transformed into a structure chart.

The first step is to identify automation boundaries

for the processes in the DFD. For example, consider process

P2.1 which adds new records in data store D4 for the new

enlisted soldiers. What other processes could be inside the

same automation boundary with P2.1? Process P2.1 uses as input

data store Dl (New Enlisted Soldiers) which is being updated

by process P5.4 (Get Enlisted Soldiers data). Therefore, P5.4

and P2.1 can be included in the same boundary but it must be

assumed that P5.4 will be executed first. Next the other

processes sre considered, and after having examined each one

of them, the grouping of all processes in the DFD into automa-

tion boundaries is produced as shown in Figure 7.11.

T I M E P R C E S S

1st of each month P5.1, P3.1, P2.3, P5.3, P2.2.3

2nd of each month P4.1, P4.2, P4.3, P3.2, P2.2.2, P6.2

3rd of each odd month P5.4, P2.1

10th of each odd month PI, P6. 1

24th of each month P5.2, P5.5, P2.2.1

Figure 7.11 Automation boundaries

For each one of these boundaries a structure chart is

constructed. On the top of each chart a control module is

inserted, which controls the flow of execution among the

processes. Inside the boxes of the structure charts a very

brief imperative statement is provided which explains the

69

purpose of the module. The result of this work is shown in

Figures 7.12 through 7.16.

PROCESS
UNITS

REPORTS

P5.1

GET
RETIRED

DATA

PROCESSReport
for RETIRED

soldiers

P3.1

UPDATE
UNITS file with
RETIRED soldiers

P2.3

UPDATE
HISTORY

file

PROCESSReport
for CHANGES in

soldier data

P5. 3 P2.2.3

GET
CHANGES

data

UPDATE
SOLDIER files
with CHANGES

Figure 7.12 Structure chart for the processes:
P5.1, P3.1, P2.3, P5.3 AND P2 . 2 .

3

PROCESS
ASSIGNMENTS

P4.1 P4.3 P2.2.2

CALCULATE
POINTS

for each
soldier

ASSIGN
each SOLDIER

to a UNIT

UPDATE
SOLDIER file

with
ASSIGNMENTS

P4. 2 P3. 2 P6.2

CALCULATE
units NEEDS

for each
SPECIALTY

UPDATE
UNITS file

wi th
ASSIGNMENTS

PRINT
LIST OF

ASSIGNMENTS

Figure 7.13 Structure chart for processes:
P4.1, P4.2, P4.3, P3.2, P2 . 2 . 2 and P6 .

2

The system's structure chart is almost complete. The

only thing remaining is to connect all structure charts under

a main control module and number and name the modules in the

chart. Figure D.l in Appendix D shows the completed structure

chart

.

70

PROCESS
NEW ENLISTED

SOLDIERS

P5.4 P2.1

GET
ENLISTED SOLDIERS

DATA

ADD
NEW RECORDSTO
SOLDIER FILES

Figure 7.14 Structure chart for processes P5.4 and P2.1

PROCESS
TRAINING
NEEDS

PI P6.1

ESTIMATE NEEDS
for each
SPECIALTY

PRINT list
wi th

TRAINING NEEDS

Figure 7.15 Structure Chart for processes PI and P<S . 1

PROCESS
STC REPORTS

PROCESSsoldiers
who COMPLETED

SPECIALTY TRAINING

P5.5

PR0CE5S soldiers
ENROLLED in

SPECIALTY TRAINING

P5.2

GET
TRAINED soldiers

DATA

P2.2.1

UPDATE SOLDIER
file with new

TRAINED soldiers

Figure 7.16 Stucture chart for processes P5.2, P2 . 2 . 1 and P5.5

The next step is to prepare a table that contains a

brief description of the function of each module in the stru-

cture chart. This table gives some additional information

and helps in clarifying some of the imperative statements in

the boxes of the structure chart. The second ingredient of the

71

program design, the VTOC, is now complete (see Figure D.2 in

Append i x D) .

Finally the IPO charts are prepared, one for each box

in the structure chart. These charts provide detailed informa-

tion on the inputs that each module reguires, the process

performed by the module and the outputs produced.

When constructing an IPO chart, most designers prefer

to use Structured English to describe the process performed by

a module. Others prefer to use pseudocode, or logic flowcharts

or a combination of these technigues.

The logic flowchart provides an excellent way for

describing the steps of a process. It uses very few, simple

symbols and is easy to follow. Many people, however, consider

flowcharts as a bad choice. The reason is that flowcharts have

been misused for many years. Programmers in the past were

usually reguired to document their programs using flowcharts.

What they really were doing was writing the program first and

then drawing a flowchart that echoed the program code. Another

reason why flowcharts are not very popular is that they are

difficult to construct if the program is very complex. For the

DBMS considered in this thesis, the processes of the system

have been decomposed to the level where each module performs

only one function. Therefore, logic flowcharts are prefered

for the IPO charts to show the process performed by each

program. The IPO charts for all twenty seven modules of the

system structure chart are shown in Figures D.3.1 through

D.3.27 of Appendix D.

The Structure chart together with the VTOC and the IPO

charts form the design specifications of the applications

programs. This design will be translated into source code

during the Implementation phase.

72

VIII. IMPLEMENTATION

A . THEORY

1

.

The Purpose of the Implementation Phase

This phase is probably the largest and most difficult

one. It may fail if the phases preceding it, especially the

Analysis and Design phases, have not been adequately document-

ed. If, however, these two phases have been successfully

completed, the implementation phase will be straightforward.

The purpose of the Implementation phase is primarily

to deliver a system ready for execution. The two major tasks

accomplished during this phase are:

— To take the design specifications that resulted from the

Detailed Design phase and translate them into source code.

— To verify that this source code implements correctly the

design specifications.

2

.

The steps of Implementation

The steps that must be followed during this stage are:

a. Construct a test database

During the design phase the database is created

by defining, compiling and storing its structure using the

DBMS previously selected. This database, however, contains

no real information. The purpose of constructing a test

database is twofold: to test the accuracy of the database

definitions and to facilitate the testing of the application

programs

.

b. Code the application programs

During this step the detailed design specificati-

ons are transformed into source code. The first consideration

is the order of program development. In other words it must be

73

decided which programs to develop first. There are two appro-

aches used by the majority of the programmers: the top-down

and the bottom-up approach.

During top-down program development the programmer

starts with the main application program and works down

through the system structure chart, leaving for last the

programs at the bottom of the chart. To test a finished

program at a higher level, the programmer creates dummy subpro-

grams that simulate the lower level programs called by the

higher level program. These programs are called stubs.

During bottom-up development the programmer starts

with the programs at the lowest level which do not depend on

any other program in the system. When all the independent

programs have been developed and tested, the programmer moves

to the programs that call them. Using this approach no dummy

subprograms are necessary,

c. Test the system

To test the coded programs the test database is

used. First each program is tested independently, refered to

as a unit test. Finally the system programs as a whole are

tested which is called integrated test. Both unit and integra-

ted testing are difficult tasks. Each program should be tested

for its handling of abnormal situations and data entry errors,

attempting to use the system as the users will. Typical use

cycles should be exercised to make sure that the programs work

together as they were designed. Next, check the data files to

see if the application adds, updates and deletes data properly.

No matter how much time is spent on testing, it cannot be

overdone. Therefore it must be decided when sufficient testing

has been done to ensure that the system is not going to crash

after it is up and running.

74

d . Document the system

The user's opinion of a system is greatly influen-

ced by the quality of the documentation he is given and the

ease with which he can use this documentation. Documentation

helps the user to maintain the system. Users must be able to

read and understand the documentation in order to correct or

modify an application program. Well documented programs are

easier to maintain but incorrect and/or out of date documen-

tation is worse than none at all.

Well designed and carefully formatted code is the

start of a properly documented system. Document the programs

considering the people who will have to maintain the applica-

tion. Maintenance personnel do not trust documentation that is

not embedded in the code or otherwise "on line". Program

documentation starts with the program-header and includes

comment lines and line-by-line comments adjacent to the

program commands and statements.

The program header provides the name of the

program, a description of what it does, the date of the last

update and optionally the significance of each program para-

meter .

Comment lines are used to describe the function

of a group of statements. Usually a well documented program

includes a comment line for each box in the program flowchart.

Line-by-line comments document exactly what each line of

program code is doing.

To complete the documentation, in addition to

"on line" documentation:

(1) Document procedures for the user on how to:

. Use the new system

. React in case that the system fails

75

(2) Document procedures for the operations personnel on

how to:

. Act on a system failure

. Back-up the data base

e. Train users and operations personnel

Although the documentation given to the user and

the operations personnel provides information on how to in-

stall, operate and check out the system, some training of

personnel is required. Training will help them to understand

the documentation, answer the questions, and clarify misunder-

standings .

f. Test the new system in parallel with the old one

If possible, the new system should be run in paral-

lel with the old one. In this way the transition becomes

smoother and a comparison of the results of the two systems

can be made.

B . I MPLEMENTAT I ON

1 . Constructing a test data base

The data base consists of 17 files which were created

during the Detailed Design phase. The next step is to enter

data in these files to facilitate the testing of the applica-

tion programs. Using dBASE III Plus is very easy to add

records to a data base file and fill them with information

using the following commands:

- USE <file name)

- APPEND

A single blank record will be displayed on the screen

and the user can fill in the empty fields. After the last

field has been entered the user enters a <Pg Dn> and a new

blank record is displayed. When finished the user presses

76

<Esc> to terminate the addition process. All data base files

do not require initial loading. Borne of these files are loaded

by the system. For example, test data is not required for the

ASSIGNMS file or the RETIRED file. This is done by the

ASSIGNMT and GET-RET programs, respectively. The files in

which test data is entered will be:

SLD-ADDR, SLD-SERv", SLD-TRAN, SLD-PREF , UNIT-ORG, SPECS,

HISTORY and UNITS. Manual lists must also be prepared for NEW

ENLISTED soldiers, soldiers who COMPLETEDSPECIALTY TRAINING,

CHANGES in soldiers status and soldiers currently in TRAINING.

2. Translating the design into dBASE III Plus code

The IPO charts and the logic flowcharts of the

Detailed Design contain enough information to fully capture

the program logic. Therefore the effort to translate each step

in the flowcharts into one or more dBASE III commands is a

straightforward process.

As mentioned before there are two different approaches

to program development: bottom-up and top-down. It is the

author's opinion that the bottom-up approach is easier to

follow since the program can be tested immediately after

writing it, instead of having to create "stubs" as in the

top-down approach.

The listings for the programs PERS-MGT, ENL-SLDS,

GET-ENL and ADD-SLD are shown in Appendix E (Sections E.l

through E.4)

.

3

.

Testing, debugging and documenting the system

Using the test data base constructed, the application

programs are tested and debugged individually. Finally the

system as a whole is tested.

77

The listing of program PERS-MGT (Section E.l in Ap-

pendix E) provides an example of "on-line" documentation. Each

programmer can use his own skills to create good and readable

documentation

.

78

IX. CONCLUSION

The steady decline in computer hardware costs not only

makes it possible to add more applications on computers but

it also distributes computing power to more and more new

users. As a result the demand for software, that tells the

computer exactly what steps to perform to convert its raw

power into useful operations, is increasing steadily.

Therefore, improved techniques in software development

become the key issue if further expansion of the use of

computers is to be achieved. Software engineering is rapidly

emerging as a discipline for managing the development of

software systems, but like every new engineering discipline

has not yet achieved widespread acceptance.

Due to the existing shortage in software engineers, a

large number of people are building software systems who have

limited or no knowledge of the software engineering principles

In fact most of them have obtained only a technical knowledge

of one or two programming languages and one or two computer

systems

.

This thesis is intended especially for these people.

Fundamental software engineering concepts were first discussed

and then applied to a real software product which was featured

throughout this thesis.

Although panacean tools and techniques for the software

engineer do not exist, the value of software engineering

principles remains great. Until an adequate number of software

engineers using these principles has been developed, the

"software crisis" will continue to be the major restraint on

the progress of computer technology.

79

APPENDIX

THE SYSTEM DATA PLOW DIAGRAMS

REQUIRED ROBBER

02 OF SOLDIESS FOB

IACB SPECIALTY

Figure A.l The System Data Flow Diagram

80

Dl

D4

D5

D9

NEW
ENLISTED
SOLDIERS

SOLDIERS

UNITS

SPECIALTIES

D14
CURRENTLY
TRAINING
SOLDIERS

PI
ESTIMATE
NUMBEROF
SOLDIERS
FOR EACH
SPECIALTY

D2
REQUIRED NUMBER
OF SOLDIERS FOR
EACH SPECIALTY

Figure A. 2 Process PI

Dl
NEW
ENLISTED
SOLDIERS

P2.1
ADD new

records to
SOLDIERS

v__file_y

P2.2.1

D3
SOLDIERS WHO
COMPLETED
SPEC TRAINING

D6 ASSIGNMENTS

D7
CHANGES

OF
STATUS

D8
RETIRED

SOLDIERS

UPDATE
SOLDIERS
file with

TRAINED
SOLDIERS ,

P2.2.2
UPDATE

SOLDIERS
file with

^ ASSIGNMENTŜ

P2.2.3
UPDATE
SOLDIERS
file with

^ CHANGESy

P2.3
UPDATE

HISTORY and
SOLDIERS

files with
RETIRED

V SOLDIERS >

•" D4 SOLDIERS

DIO HISTORY

Figure A. 3 Process P2

81

D8
RETIRED

SOLDIERS

D6 ASSIGNMENT!

_ P3 - 1 _
UPDATE

UNITS file
with

RETIRED
SOLDIERS

P3.2
UPDATE

UNITS file
with

ASSIGNMENTS

D5 UNITS

Figure A. 4 Process P3

D4

D3

D5

D9

SOLDIERS

>
SOLDIERS WHO"

COMFLETED
SPEC TRAINING

UNITS

SPECIALTIES

D13 UNIT NAMES

P4.1
CALCULATE
TRANSFER

POINTS
FOR EACH

* V SOLDIER „

zxz:
Dll

SOLDIER
QUALIFICATION
POINTS

P4.3

EACH
SOLDIER

TO A UNIT

D12 UNIT NEEDS

P4.2
CALCULATE

UNITS NEEDS
FOR EACH
SPECIALTY

D6 ASSIGNMENTS

Figure A.

5

Process P4

D8

D3

D7

Dl

RETIRED
SOLDIERS
(manual list)

SOLDIERS WHO
COMPLETED
SPEC TRAINING
(manual listl

CHANGES
OF STATUS
(manual list

NEW ENLISTED
SOLDIERS
(manuaJ list)

D14
CURRENTLY
TRAINING SOLDIERS-
(manual list)

GET
RETIRED
SOLDIERS

DATA

GET
RETIRED
SOLDIERS

DATA

GET
CHANGES

DATA

GET
ENLISTED
SOLDIERS

DATA

GET
TRAINING
SOLDIERS

DATA

D8

D3

D7

Dl

RETIRED

SOLDIERS

SOLDIERS WHO
COMPLETED
SPEC TRAINING

CHANGES
OF
STATUS

NEW
ENLISTED
SOLDIERS

D14
CURRENTL'
TRAINING
SOLDIERS

Figure A. 6 Process P5

D2
REQUIRED NUMBER
OF SOLDIERS FOR
EACH SPECIALTY

P6.1

PRINT LIST
with

TRAINING
NEEDS

LIST WITH
TRAINING
NEEDS

D6 ASSIGNMENTS
PRINT

LIST OF
ASSIGN-

MENTS

LIST OF
ASSIGN-
MENT

Figure A. 7 Process P6

83

APPENDIX B

THE DATA DICTIONARY

Section B.l. The Data Stores

Dl : NEUI ENLISTED SOLDIERS

1. ID_NUMBER

2. SOLDIER NAME

3. DATE ENLISTED

4. SERVICE DURATION

5. CLASS

6. MARITAL STATUS

7. NUMBEROF CHILDREN

8. FINANCIAL STATUS

9. FAMILY SUPPORTER

10. NUMBEROF BROTHERS IN SERVICE

11. SPECIALREASONSFOR TRANSFER

12. PREFEREDUNITS

13. ADDRESS

14. TOTAL NUMBEROF ENLISTED

D2 : REQUIRED NUMBEROF SOLDIERS FOR EACH SPECIALTY

1. SPECIALTY

2. REQUIRED SOLDIERS FOR SPECIALTY TRAINING

D3 : SOLDIERS WHOCOMPLETEDSPECIALTY TRAINING

1. ID_NUMBER

2. SOLDIER NAME

3. SPECIALTY

84

D4 : SOLDIERS

1. ID_NUMBER

2. SOLDIER NAME

3. DATE ENLISTED

4. SERVICE DURATION

5. CLASS

6. MARITAL STATUS

7. NUMBEROF CHILDREN

8. FINANCIAL STATUS

9. FAMILY SUPPORTER

10. NUMBEROF BROTHERS IN SERVICE

11. SPECIAL REASONSFOR TRANSFER

12. PREFEREDUNITS

13. ADDRESS

14. SPECIALTY

15. ASSIGNED UNIT

16. DATE ASSIGNED

17. COMPLETEDTRAINING

18. DATE WHENREMAINING SERVICE EQUALS 4 MONTHS

D5 : UNITS

1. SPECIALTY

2. UNIT. NAME

3. REQUIRED NUMBEROF SOLDIERS

4. EXISTING NUMBEROF SOLDIERS

5. COMPLEMENTNUMBEROF SOLDIERS

D6 : ASSIGNMENTS

1. ID_NUMBER

2. SOLDIER NAME

3. SPECIALTY

85

4. UNIT ASSIGNED TO

5. DATE OF REPORT

D7 : CHANGESOF STATUS

1. ID_NUMBER

2. CHANGEDNAME

3. CHANGEDSERVICE DURATION

4. CHANGEDMARITAL STATUS

5. CHANGEDNUMBEROF CHILDREN

6. CHANGEDFINANCIAL STATUS

7. CHANGEDFAMILY SUPPORTER

8. CHANGEDNUMBEROF BROTHERS IN SERVICE

9. CHANGEDSPECIAL REASONSFOR TRANSFER

10. CHANGEDPREFEREDUNITS

11. CHANGEDADDRESS

D8 : RETIRED SOLDIERS

1. ID_NUMBER

2. SOLDIER NAME

3. SPECIALTY

4. UNIT

5. DATE RETIRED

D9 : SPECIALTIES

1. SPECIALTY

D10: HISTORY

1. ID_NUMBER

2. SOLDIER NAME

3. DATE ENLISTED

4. CLASS

5. ADDRESS

86

6. SPECIALTY

7. DATE RETIRED

Dll : SOLDIER QUALIFICATION POINTS

1. ID_NUMBER

2. SPECIALTY

3. QUALIFICATION POINTS

D12 : UNIT NEEDS

1. SPECIALTY

2. UNIT NAME

3. NEEDS

D13 : UNIT NAMES

1. UNIT NAME

D14 : CURRENTLYTRAINING SOLDIERS

1. ID_NUMBER

2. SPECIALTY

Section B.2. The Data Elements

Name: ID_NUMBER

Aliases:

Description: A number given to a soldier during enlistment,
that uniquely identifies him.

Format: Numeric, PIC 9(7)

Location: Dl , D3 , D4 , D6, D7, D8, D10, Dli, D14

Name: SOLDIER NAME

Aliases: CHANGEDNAME

Description: The name of a soldier in the form:
First, Last, Middle Initial.

87

Format: Character, PIC X (36

)

Location: Dl, D3, D4 , D6, D8 , D10

Name: DATE ENLISTED

Al iases:

Description: The date of the soldier enlistment

Format: Date, PIC X(8)

Location: Dl , D4 , D10

Name: SERVICE DURATION

Aliases: CHANGEDSERVICE DURATION

Description: The duration of the soldier service time in months

Format: Numeric, PIC 9(2)

Location: Dl , D4

Name: CLASS

Al iases:

Description: All soldiers enlisted in the same period belong in
the same Class

Format: Alphanumeric, PIC X(3) (two digits followed by a
letter. eg. 87B, 87E , 88A

)

Location: Dl , D4 , D10

Name: MARITAL STATUS

Aliases: CHANGEDMARITAL STATUS

Description: The marital status of the soldier, (eg. married,
single, divorced, etc)

Format: Character PIC X(7)

Location: Dl , D4

Name: NUMBEROF CHILDREN

Aliases: CHANGEDNUMBEROF CHILDREN

Description: The number of the soldier's children

Format: Numeric, PIC 9(1)

Location: Dl, D4

Name: FINANCIAL STATUS

Aliases: CHANGEDFINANCIAL STATUS

Description: The soldier financial status

Format: Character, PIC X(l)
(G = Good, M = Medium, B = Bad)

Location: Dl, D4

Name:

Al iases

FAMILY SUPPORTER

CHANGEDFAMILY SUPPORTER

Description: A soldier is considered family supporter if his
father has died and he is the oldest son.

Format:

Location

:

Character, PIC X(3) (YES, NO)

Dl, D4

Name:

Al iases:

Description

Format:

Location

:

NUMBEROF BROTHERS IN SERVICE

CHANGEDNUMBEROF BROTHERS IN SERVICE

The number of a soldier's brothers serving the
Armed Forces

.

Numeric, PIC 9(1)

Dl , D4

Name:

Aliases:

Description

Format:

Location :

SPECIAL REASONSFOR TRANSFER

CHANGEDSPECIAL REASONSFOR TRANSFER

A logical field that becomes true if the soldier
has special reasons to be transfered to a specific
uni t

.

Logical , T or F

Dl, D4

89

Name: PREFEREDUNITS

Aliases: CHANGEDPREFEREDUNITS

Description: The names of three units the soldier prefers to be
transferee! to, in order of preference.

Format: Character, PIC X(21)

Location: Dl , D4

Name

:

Aliases:

ADDRESS

CHANGEDADDRESS

Description: The soldier civilian address

Format:

Location :

Character, PIC X (69

)

Street, PIC X(15)
City,
State,
ZIP,
Phone

,

Dl, D4, D10

PIC X(20)
PIC X(15)
PIC X(5)
PIC X(14)

Name: TOTAL NUMBEROF ENLISTED

Aliases :

Description: The total number of new enlisted soldiers

Format: Numeric, PIC 9(4)

Location: Dl

Name: SPECIALTY

Aliases:

Description: The name of the soldier's specialty

Format: Character, PIC X(8)

Location: D2, D3, D4 , D5, D6 , D8 , D9 , D10, Dll, D12, Dl

Name:

Aliases

REQUIRED SOLDIERS FOR SPECIALTY TRAINING

Description: The number of new enlisted soldiers who must be
trained in each specialty to cover the units needs

90

Format: Numeric, PIC 9(4)

Location: D2

Name: ASSIGNED UNIT

Aliases: UNIT, UNIT NAME, UNIT ASSIGNED TO

Description: The name of the unit a soldier is assigned to

Format: Character, PIC X(7)

Location: D4

Name: DATE ASSIGNED

Aliases: DATE OF REPORT

Description: The date when a soldier is assigned to a unit.

Format: Date, PIC X(8)

Location: D8

Name: COMPLETEDTRAINING

Al iases

:

Description: A logical field that becomes true when a soldier
completes his specialty training.

Format: Logical, T or F

Location: D4

Name: DATE WHENREM. SERVICE = 4 MONTHS

Al iases:

Description: The date when the remaining service time of the
soldier becomes equal to 4 months. This date is
used in calculating the training needs.

Format: DATE, PIC X(B)

Location: D4

Name: UNIT NAME

Aliases: ASSIGNED UNIT, UNIT ASSIGNED TO, UNIT

91

Description: The name of a unit.

Format: Character, PIC X(7)

Location: D5, D12, D13

Name:

Aliases:

REQUIRED NUMBEROF SOLDIERS

Description: The number of soldiers of a specific specialty
required to meet a unit's needs.

Format:

Location :

Numeric, PIC 9(3)

D5

Name:

Al iases

EXISTING NUMBEROF SOLDIERS

Description: The number of soldiers of a specific specialty
in a uni t

.

Format:

Location :

Numeric, PIC 9(3)

D5

Name:

Al iases

COMPLEMENTNUMBEROF SOLDIERS

Description: The difference between the required and existing
number of soldiers in a unit.

Format:

Location :

Numeric, PIC 9(3)

D5

Name: UNIT ASSIGNED TO

Aliases: UNIT, ASSIGNED UNIT, UNIT NAME

Description: The unit to which a soldier is assigned.

Format: Character, PIC X(7)

Location: D6

92

Name: DATE OF REPORT

Aliases: DATE ASSIGNED

Description: The date when a soldier is assigned to a unit

Format: Date, PIC X(8)

Location: D6

Name:

Al iases

CHANGEDNAME

SOLDIER NAME

Description: The changed name of a soldier in the form
Last, First, Middle Initial.

Format: Character, PIC X (36

)

Location: D7

Name: CHANGEDSERVICE DURATION

Aliases: SERVICE DURATION

Description: New service time for a soldier in months

Format: Numeric, PIC 9(2)

Location: D7

Name: CHANGEDMARITAL STATUS

Aliases: MARITAL STATUS

Description: The new marital status of a soldier.

Format: Character, PIC X(7)

Location: D7

Name: CHANGEDNUMBEROF CHILDREN

Aliases: NUMBEROF CHILDREN

Description: The new number of children of a soldier.

Format: Nummeric , PIC 9(1)

Location: D7

93

Name: CHANGEDFINANCIAL STATUS

Aliases: FINANCIAL STATUS

Description: The new financial status of a soldier.

Format: Character, PIC X(l)

Location: D7

Name: CHANGEDFAMILY SUPPORTER

Aliases: FAMILY SUPPORTER

Description: The new status of the soldier relatively to
being a family supporter or not.

Format: Character, PIC X(3)

Location: D7

Name: CHANGEDNUMBEROF BROTHERS IN SERVICE

Aliases: NUMBEROF BROTHERS IN SERVICE

Description: The new number of the soldier's brothers
serving the Armed Forces.

Forme t:

Location

:

Numeric, PIC 9(1)

D7

Name:

Al iases

CHANGEDSPECIAL REASONSFOR TRANSFER

SPECIAL REASONSFOR TRANSFER

Description: This field is updated whenever the special
reasons for transfer change.

Format:

Location :

Logical , T or F

D7

Name:

Al iases

CHANGEDPREFEREDUNITS

PREFEREDUNITS

Description: The names of three units the soldier wants to be
transfered to, in order of preference.

Format: Character, PIC X(21)

Location: D7

94

Name: CHANGEDADDRESS

Aliases: ADDRESS

Description: The new address of a soldier

Format: see ADDRESS

Location: D7

Name

Al iases:

QUALIFICATION POINTS

Description: A number calculated during the assignments process
The higher this number, the more probable for a
soldier to be transfered to the unit he prefers.

Format

:

Location :

Numeric, PIC 9(3)

Dll

Name: UNIT

Aliases: ASSIGNED UNIT, UNIT NAME, UNIT ASSIGNED TO

Description: The unit name of a retired soldier.

Format: Character, PIC X(7)

Location: DB

Name: DATE RETIRED

Al iases :

Description: The date when the soldier retired from service.

Format: Date, PIC X(8)

Location: D8 , D10

Name:

Aliases:

NEEDS

Description: The number of soldiers of a specialty that a unit
requires to acomplish its mission.

Format:

Location

Numeric, PIC 9(3)

D12

95

APPENDIX

PROCESS DESCRIPTIONS

Section C.l : Algorithm Description of Process Pi

INPUT

OUTPUT

PROCESS

Dl, D4, D5, D9, D14

D2

Get TOTAL_ENL (total number of new enlisted soldiers)

from Dl.

Get CURRENTDATE.

Calculate TOTAL_REQ (total number of required soldiers for

all spesialties) as follows:

TOTAL_REQ = TUTAL_COMPL+ TOTAL_RET + TOTAL_TR where:

TOTALJZOMPL = The sum of all COMPLEMENTfields in D5

TOTAL_RET = The number of records in D4 with DATE

WHEN REMAINING SERVICE EQUALS 4 MONTHS

earlier than CURRENTDATE.

TOTAL_TR = The number of records in D14.

For each Specialty i in D9 do the following:

Calculate COMi (the number of soldiers needed to sa-

tisfy the needs of all units for this specialty) by

adding all COMPLEMENTfields for Specialty i in D5.

Calculate TRi (number of soldiers currently training

in Specialty i) by counting the records in D14 with

SPECIALTY = i)

96

Calculate RETi (number of soldiers to retire within

the next 4 months) by counting the records in D4

with DATE WHEN REMAINING SERVICE EQUALS 4 MONTHS

earlier than CURRENTDATE and SPECIALTY =1.

Calculate REQi (total number of soldiers required to

fully satisfy the needs for Specialty 1) as follows:

REQi = COMi + RETi - TRi

Calculate Xi (number of new enlisted soldiers to be

trained in Specialty i) as follows:

Xi = REQi * TOTAL_ENL / TOTAL_REQ

Append a record to data store D2

.

Store i and Xi in D2

.

Section C.2 : Algorithm Description of Process P2.1

INPUT

OUTPUT

: Dl

: D4

PROCESS

For each record in Dl do the following:

Create a new record in D4

.

Read all the fields from the record in Dl into the

respective fields of the record in D4

.

Initialize the rest of the fields of the record in D4

:

COMPLETEDTRAINING = False

SPECIALTY = "ZZ. . .
Z

"

ASSIGNED UNIT = "ZZ...Z"

DATE ASSIGNED = 01/01/01

DATE WHENREMAINING SERVICE EQUALS 4 MONTHS=

(DATE ENLISTED) + (DURATION OF SERVICE) - (4 Months)

97

Section C.3 : Algorithm Description of Process P2 . 2 .

1

INPUT

OUTPUT

: D3

: D4

PROCESS

For each record in D3 do the following:

Read the ID_NUMBER and SPECIALTY.

Find the record of the soldier in D4 using ID_NUMBER

as a key.

Update the SPECIALTY field.

Write "True" into the COMPLETEDTRAINING field.

Section C.4 : Algorithm Description of Process P2 . 2 .

2

INPUT

OUTPUT

: D6

: D4

PROCESS

For 6'ach record in D6 do the following:

Read the ID_NUMBER, UNIT ASSIGNED TO and DATE OF

REPORT.

Find the record in D4 with the same ID_NUMBER.

Update the ASSIGNED UNIT and ASSIGNED fields in this

record

.

Section C.5 : Algorithm Description of Process P2 . 2 .

3

INPUT

OUTPUT

: D7

: D4

PROCESS

For each record in D7 do the following:

Read the IDJMUMBER and the rest fields.

Find the record in D4 with the same ID NUMBER

98

If CHANGEDSERVICE DURATION <> 99 then

(DATE WHEN REMAINING SERVICE EQUALS 4 MONTHS) =

(DATE ENLISTED) + (CHANGED DURATION OF SERVICE) -

(4 MONTHS)

.

If CHANGEDNAME <> "ZZ...Z" then

update SOLDIER NAME in D4

.

If CHANGEDMARITAL STATUS <> "ZZ...Z" then

update MARITAL STATUS in D4

.

If CHANGEDFINANCIAL STATUS <> "11... 1" then

update FINANCIAL STATUS in D4

.

If CHANGEDFAMILY SUPPORTER<> False then

update FAMILY SUPPORTERin D4

.

If CHANGEDNUMBEROF CHILDREN <> 9 then

update NUMBEROF CHILDREN in D4

.

If CHANGEDSPECIAL REASONSFOR TANSFER <> False then

update SPECIAL REASONSFOR TRANSFER in D4

.

If CHANGEDPREFEREDUNIT 1 <> "ZZ...Z" then

update PREFEREDUNIT 1 in D4

.

If CHANGEDPREFEREDUNIT 2 <> "11... 1" then

update PREFEREDUNIT ? in D4

.

If CHANGEDPREFEREDUNIT 3 <> "11... 1" then

update PREFEREDUNIT 3 in D4

.

If CHANGEDSTREET <> "11... 1" then

update STREET in D4

.

If CHANGEDCITY <> "11... 1" then

update CITY in D4

.

If CHANGEDSTATE <> "11... 1" then

update STATE in D4

.

If CHANGEDZIP <> "ZZ...Z" then

update ZIP in D4

.

99

If CHANGEDPHONE <> "11... 1" then

update PHONE in D4

.

Section C.6 : Algorithm Description of Process P2.3

INPUT

OUTPUT

PROCESS

D4, D8

D4, D10

For each record in D8 do the following:

Read the ID_NUMBER and the DATE RETIRED.

Find the record in D4 with the same ID_NUMBER.

Create a new record in D10.

Transfer the following fields into the respective

fields in D10:

- ID_NUMBER

- SOLDIER NAME

- DATE ENLISTED

- CLASS

- ADDRESS

- SPECIALTY

Write DATE RETIRED into the respective field in D10

Delete the record from D4

.

Section C.7 : Algorithm Description of Process P3.1

INPUT

OUTPUT

PROCESS

D8

D5

For each record in DB do the following:

Read the UNIT and SPECIALTY

Find the unit record in D5, using UNIT and SPECIALTY

as a key.

100

Decrement by 1 the EXISTING field.

Increment by 1 the COMPLEMENTfield.

Section C.8 : Algorithm Description of Process P3.2

INPUT : D<S

OUTPUT : D5

PROCESS :

For each record in D6 do the following:

Read the UNIT ASSIGNED TO and SPECIALTY.

Find the record in D5, using UNIT ASSIGNED TO and

SPECIALTY as a key.

Increment by 1 the EXISTING field.

Decrement by 1 the COMPLEMENTfield.

Section C.9 : Algorithm Description of Process P4 .

1

INPUT

OUTPUT

PROCESS

D3, D4

Dll

For each record in D3 do the following:

Initialize variable POINTS =

Read the IDJMUMER and SPECIALTY.

Find the record in D4 with the same ID_NUMBER

If MARITAL STATUS = "MARRIED" then

add 40 to POINTS.

If NUMBEROF CHILDREN > 1 then

add 70 to POINTS.

If NUMBEROF CHILDREN = 1 then

add 35 to POINTS.

If FAMILY SUPPORTER= True then

add 40 to POINTS.

101

If FINANCIAL ABILITY = "BAD" then

add 20 to POINTS.

If FINANCIAL ABILITY = "MEDIUM" then

add 10 to PPINTS.

If NUMBEROF BROTHERS IN SERVICE > 1 then

add 20 to POINTS.

If NUMBEROF BROTHERS IN SERVICE = 1 then

add 10 to POINTS.

If SPECIAL REASONSFOR TRANSFER = True then

add 10 to POINTS.

Add a new record to Dll.

Write the ID_NUMER, POINTS and SPECIALTY into the

respective fields in Dll.

Section C.10 : Algorithm Description of Process P4 .

2

INPUT

OUTPUT

PROCESS

D3, D5, D9, D13

D12

For each record in D9 do the following:

Read the SPECIALTY name.

Calculate TOTAL_ASSIBN (number of soldiers to be as-

signed for this specialty), by counting the records

in D3 with the same SPECIALTY name.

Calculate T0TAL_REQ (number of soldiers of this spe-

cialty required for all units), by summing up the

COMPLEMENTfields for this specialty in D5.

For each record in D13 do the following:

Read the UNIT NAME.

Find the record in D5, using SPECIALTY and UNIT NAME

as a key.

102

Read the COMPLEMENTfield in this record.

Calculate :

NEEDS = (TOTAL_ASSIGN / TOTAL_REQ) * COMPLEMENT

Create a record in D12.

Write the UNIT NAME, SPECIALTY and NEEDS into the

respective fields.

Section C.ll : Algorithm Description of Process P4 .

3

INPUT : D3, D4 , Dll, D12

OUTPUT : D6

PROCESS :

Get CURRENTDATE.

DATE OF REPORT = CURRENTDATE + 7 DAYS.

Sort Dll by SPECIALTY and QUALIFICATION POINTS.

For each record in Dll do the following:

Read the ID_NUMBER and SPECIALTY.

Find the record in D4 with the same ID_NUMBER.

Read the PREFEREDUNIT 1, PREFEREDUNIT 2 and PREFERED

UNIT 3.

Find the record in D12 using PREFEREDUNIT 1 and

SPECIALTY as a key.

If NEEDS > then

assign the soldier to prefered unit 1 as follows:

- Subtract 1 from the NEEDS field in D12.

- Write the ID_NUMBER, SPECIALTY and PREFEREDUNIT 1

in a new record in D6

.

Else find the record in D12 using PREFEREDUNIT 2 and

SPECIALTY as a key.

103

If NEEDS > O then

assign the soldier to prefered unit 2 as above.

Else find the record in D12 using PREFEREDUNIT 3

and SPECIALTY as a key.

If NEEDS > then

assign the soldier to prefered unit 3 as above.

Else assign the soldier to the first unit in D12

in which the NEEDS for this SPECIALTY is > 0.

Section C.12 : Algorithm Description of Process P5.1

INPUT

OUTPUT

PROCESS

Manual list of Retired soldiers

D8

Delete all previous records from DB.

For each record in the manual list do the following:

Append a record to DB.

Read the IDJMUMBER, SOLDIER NAME, SPECIALTY, UNIT and

DATE RETIRED fields into the respective fields in DB

Section C.13 : Algorithm Description of Process P5.2

INPUT : Manual list of Soldiers who completed spec, training

OUTPUT : D3

PROCESS :

Delete all previous records from D3.

For each record in the manual list do the following:

Append a record to D3.

Read the ID_NUMBER, SOLDIER NAME and SPECIALTY fields

into the respective fields in D3

.

104

Section C.14 : Algorithm Description of Process P5.3

INPUT : Manual list of changes in soldier status

OUTPUT : D7

PROCESS :

Delete all previous records from D7

.

For each record in the manual list do the following:

Append a record to D7

.

Read all fields of the manual list record into the

respective fields of the record in D7

.

Section C.15 : Algorithm Description of Process P5.4

INPUT : Manual list of new enlisted soldiers

OUTPUT : Dl

PROCESS :

Delete all previous records from Dl

.

For each record in the manual list do the following:

Append a record to Dl

.

Read all fields in the manual list record into the

respective fields of the record in Dl

.

Section C.16 : Algorithm Description of Process P5.5

INPUT : Manual list of soldiers enrolled in special training

OUTPUT : D14

PROCESS :

Delete all previous records from D14.

For each record in the manual list do the following:

Append a record to D14.

Read the ID_NUMBER and SPECIALTY fields from the list

into the respective fields of the record in D14.

105

Section C.17 : Algorithm Description of Process P6 .

1

INPUT : D2

OUTPUT : Printed list of TRAINING NEEDS

PROCESS :

Prepare the system printer to print.

Print the list according to a desired format.

Section C.18 : Algorithm Description of Process P6 .

2

INPU T : D6

OUTPUT : Printed list of ASSIGNMENTS

PROCESS :

Prepare the system printer to print.

Print the list according to a desired format.

106

APPENDIX D

APPLICATION PROGRAMS DESIGN

107

1000

JEISJGT
PERSONNEL
HAHAGEBEHT

1100

LOIITJEP.
i PROCESS

OHITS
! REPORTS

1110

1ETJEP '

PROCESS

RETIRED

SOLDIERS
|

REPORT

—̂mi P5.i

LSETJSL
"

GET

RETIRED

DATA

1112 P3.1
UPOIRET

UPDATE UNITS

file Bith

RETIRED

SOLDIERS

1113 P2.3

OPDJIST
j

UPDATE

HISTORY
I

File

1120

CfllGJEP
PROCESS

REPORT for

CHANGES id

soldier data

1122 P2.2.3

OPSLDCHI

OPDATE

SOLDIER file

with CHANGES

_CALC_PTS

I CALCULATE
~ TRANSFER

POINTS for

each soldier

1220 P4.2

JLCJEED I

|

CALCULATE

1 UNIT NEEDS/

|
SPECIALTY

1230 P4.3

ASGlSLB
ASSIGN

- each SOLDIER

,o a UNITu
1240 P3.2

UPDOIASH
UPDATE

I
UNIT file

Bith

ASSIGNMENTS

1250 P2.2.2

UPSLDASI
UPDATE

SOLDIER

file with

ASSIGNMENTS

1260 P6.2

1310 P5.4

|_£ETJIL_
GET

ENLISTED

SOLDIERS

DATA

1320 P2.1

JIIJEED
ESTIMATE"

REEDS

for each

SPECIALTY
;

1420 P6.1

COIPTRI

1

UPD SLD

ADD nes

RECORDSto

SOLDIER files

PROCESSsldrs

sho COMPLETED

SPECIALTY

TRAINING

1511 P5.2

_P1_TBAIB

PRINT LIST

with TRAINING

NEEDS

GET TIID

GET TRAINED

SOLDIERS

DATA I

1512 P2.2.1

DPSLDTER

UPDATE

SOLDIER file

Bith new TRAINED

SOLDIERS

1520 P5.5

SP TBIEE
PROCESS

SOLDIERS

ENROLLED in

SPECIALTY

TRAINING

Figure D.l The System Structure Chart

108

PROGRAMLEVEL DESCRIPTION

1000

1100

1110

1111

1112

1113

1120

1121

1122

1200

1210

1220

1230

Main control program of the PERSONNELMANA-
GEMENTSYSTEM. It displays a menu screen and
depending on the user's choice it gives con-
trol to one of five functions.

- Enters the units reports into the system
and performs the necessary updates to the
system files.

- Enters the units report for RETIRED SOL-
DIERS to the system and updates the UNIT
ORG, HISTORY, SLD_ADDR and SLD_SERV file

- Creates the RETIRED file and updates
it with the data from the unit report.

- Reads each record in the RETIRED file
and updates the UNIT_0RG file.

- Reads each record in the RETIRED file,
updates the HISTORY file and deletes
the soldier record from the SLD_ADDR
and SLD_SERV files.

- Enters the units reports for CHANGESin
SOLDIER DATA to the system and updates
the SLD_ADDR, SLD_SERV, SLDJTRANSF and
SLD_PREF files.

- Creates the CHANGESfile and updates
it with the data from the unit report.

- Reads each record in the CHANGESfile
and updates the SLD_ADDR, SLD_SERV,
SLD_TRANSF and SLD_PREF files.

- Calls other modules which assign soldiers
to units, update the units and soldier
files and print the list of assignments.

- Calculates transfer qualification points
for each soldier and updates the TRSF_PTS
file.

- Calculates the units needs for soldiers
of each specialty and updates the
UNIT_REQ file.

- Considers the soldier transfer points,
his preferences and the unit needs and
assigns each soldier to a unit. This de-
cision is entered into the ASSIGNMS file

Figure D.2 The Visual Table of Contents (VTOC)
of the Personnel Management System (Contin.)

109

PROGRAMLEVEL DESCRIPTION
1 2 3

1240 - Reads each record in the ASSIGNMS file
and updates the UNIT_ORG file.

1250 - Reads each record in the ASSIGNMS file
and updates the SLD_SERV file.

1260 - Prints the list of ASSIGNMENTS.

1300

1310

1320

- Enters the EC report for new ENLISTED
SOLDIERS into the system and updates the
ENLISTED, SLD ADDR, SLD SERV, SLD TRANSF
and SLD_PREF files.

- Creates the ENLISTED file and updates
it with the data from the EC report.

- Reads each record in the ENLISTED file
and updates the SLD ADDR, SLD SERV,
SLDJTRANSF and SLD_PREF files.

1400

1410

1420

- Calculates the training needs for each
specialty and prints a list of the needs.

- Calculates the training needs for each
specialty andstores them in the
TRAIN.REQ file.

- Prints the list with the training needs
for each specialty.

1500

1510

1520

1511

1512

- Enters the STC reports into the system and
updates the necessary files.

- Enters the STC report for SOLDIERS WHO
COMPLETEDSPECIALTY TRAINING into the
system and updates the COMPL TR and
SLD_SERV files.

- Creates the COMPL_TR file and updates
it with the data from the STC report.

- Reads each record in the COMPL_.TR file
and updates the SLD_SERV file.

- Creates the TRAINEES file and updates it
with the data from the STC report for
the soldiers currently enrolled in
special training.

(contin.) Figure D.2 The Visual Table of Contents (VTOC)
of the Personnel Management System

110

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

PERS_MGT

1000

: Labros Karatasios DATE : 4/30/1987

INVOKED Bi r MODULE : INVOKES MODULES :

1100, 1200, 1300, 1400,
1500

INPUTS :

ENLISTED,
COMPL TR,
SLD SERV,
SLD PREF,
ASSIGNMS,
RETIRED,
TRAINEES,
UNIT_REQ,

TRAIN RQ,
SLD ADDR,
SLD TRAN,
UNIT ORG,
CHANGES.
SPECS,
TRSF PTS,
UNITS

OUTPUTS :

ENLISTED,
COMPL TR.
SLD SERV,
SLD PREF,
ASSIGNMS,
HISTORY.
UNIT REQ,

TRAIN RQ,
SLD ADDR,
SLD TRAN
UNIT ORG,
RETIRED,
TRSF PTS,
TRAINEES

PROCESS : See Flowchart in Figure D.3. 1 .a

Figure D.3.1 The IPO chart of program PERS_MGT

111

1000

(pers-mgt)

~znr
CLEAR
SCREEN

CLOSE
FILES

f DISPLAY
MAIN MENU/

READ
CHOICE

ncE=r

:ce=:

:ce=3;

>ice=c

:ce=i

N

DO PROCEDURE

UNIT-REP

DO PROCEDURE

ASSIGNMT

DO PROCEDURE

ENL-SLDS

DO PROCEDURE

TRAINING

DO PROCEDURE

STC-REPS

DISPLAY
ERROR

MESSAGE

C END)

Figure D.3.1.a The flowchart of program PERS-MGT

112

SYSTEM : PERSONNELMANAGEMENT

MODDLENAME : UNIT_REP

MODDLENo : 1100

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1000

INVOKES MODULES :

1110, 1120

INPUTS :

Manual list of retired
soldiers, RETIRED,
UNIT ORG, SLD SERV

,

SLD ADDR, Manual list
of changes, CHANGES

OUTPUTS :

RETIRED, UNIT ORG,
HISTORY, SLD ADDR,
SLD SERV. SLD TRAN

,

SLD PREF, CHANGES

PROCESS : See Flowchart in Figure D.3.2.a

Figure D.3.2 The IPO chart of program UNIT_REP

113

1100

(ONIT-REP)

CLEAR
SCREEN

T
/ DISPLAY
'SUBMENU 1,

READ
CHOICE

DO SUBROUTINE

RET-REP

DO SUBROUTINE

CHNG-REP

DISPLAY
*/ ERROR

MESSAGE

(END)

Figure D.3.2.a The flowchart of program UNIT-REP

114

SYSTEM : PERSONNELMANAGEMENT

MODDLENAME : RET_REP

MODDLENo : 1110

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1100

INVOKES MODULES :

1111, 1112, 1113

INPDTS :

Manual list of retired
soldiers, RETIRED,
UNIT ORG, SLD SERV,
SLD_ADDR

OUTPUTS :

RETIRED, UNIT ORG,
SLD ADDR, SLD SERV,
SLD TRAN, SLD PREF,
HISTORY

PROCESS : See Flowchart in Figure D.3.3.a

Figure D.3.3 The IPO chart of program RET_REP

115

1110

(ret -rep)

CLEAR
SCREEN

/ DISPLAY
'SUBMENU 1 . 1,

;choice=

N

XHOICE=:

• ICE = :

N

>JCE = .

N

DO SUBROUTINE

GET-RET

DO SUBROUTINE

UPUNRET

DO SUBROUTINE

UPD-HIST

DISPLAY,
ERROR

MESSAGE

(END)

Figure D.3.3.a The flowchart of program RET-REP

116

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : GET_RET

MODULENo : 1111

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE : INVOKES MODULES :

1110

INPUTS : OUTPUTS :

Manual list of retired
soldiers

RETIRED

PROCESS : See Flowchart in Figure D.3.4.a

Figure D.3.4 The IPO chart of program GET_RET

117

1111

(get_ret)

DISPLAY MESSAGE
"This program will delete

all previous records from
RETIRED file. Do you want
to run the program?"

READ
ANSWER

OPEN file
RETIRED

DELETE all records
from RETIRED

DISPLAY
Enter Soldier ID"

READ
M_ID NUMBER

DISPLAY :

"Confirm the;
f ID Number"

/ DISPLAY
'M ID NUMBER;

Look up
M_ID_NUMBER
in RETIRED

DISPLAY
'"ID NUMBER
already

/exists

APPEND
a record to

RETIRED

CLOSE
FILES

DISPLAY:
ID NUMBER

is not valid/
*

RETIRED. ID_NUMBER
= M ID NUMBER

DISPLAY
Enter Date of;
Retirement"

(end)
BK

READ
RETIRED. DATE RET

Figure D.3.4.a The flowchart of program GET-RET

118

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

UPUNRET

1112

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1110

INVOKES MODULES :

INPUTS :

RETIRED, UNIT ORG,
SLD_SERV

OUTPUTS :

UNIT_.ORG

PROCESS : See Flowchart in Figure D.3.5.a

Figure D.3.5 The IPO chart of program UPUNRET

119

1112

(oponret)

OPEN files:
RETIRED, UNIT-ORG,

SLD SERV

GET next record
in RETIRED

M_ID_NUMBER=
RETIRED. ID NUMBER

Look up
M_ID_NUMBER
in SLD SERV

M_SPECIALTY=SLD_SERV. SPECIALTY
M_ONIT=SLD SERV. UNIT

Look up
M_SPECIALTY and M_UNIT

in UNIT ORG

DISPLAY,
ERROR

MESSAGE

UNIT_ORG. EXISTING =
UNITJDRG. EXISTING - 1

CLOSE
FILES

UNIT_ORG. COMPLEMENT=
UNIT_ORG. COMPLEMENT+ 1 (END)

Figure D3.5.a The flowchart of program UPUNRET

120

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : UPD_HIST

MODULENo : 1113

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1110

INVOKES MODULES :

INPUTS :

RETIRED, SLD ADDR

,

SLD_SERV

OUTPUTS :

HISTORY, SLD ADDR,
SLD SERV, SLD TRAN

,

SLD PREF

PROCESS : See Flowchart in Figure D.3.6.a

Figure D.3.6 The IPO chart of program UPD_HIST

121

1113

(dpd-hist)

OPEN files:
RETIRED, SLD_ADDR. SLD_SERV

SLD_TRANSF, SLD_PREF. HISTORY

DELETE
record from

SLD ADDR

GET next record
in RETIRED

Look up
M_ID_NUMBEE
in SLD SERV

M_ID_NUMBER=

RETIRED. ID NUMBER

M_DATE_RET =
RETIRED. DATE RET

Look up
M_ID_NUMBER
in SLD ADDR

CLOSE
FILESx

(END)

DISPLAY
ERROR

'MESSAGE

APPEND a
record to

HISTORY

HISTORY
HISTORY
HISTORY
HISTORY
HISTORY
HISTORY
HISTORY
HISTORY
HISTORY

ID_NUMBER:
F_NAME :

M_INITIAL:
L_NAME
STREET :

CITY :

STATE :

ZIP
PHONE :

M_ID_NUMBER
SLD_ADDR.F_NAME
SLD_ADDR.M_INITIAL
SLD_ADDR. L_NAME
SLD_ADDR.STREET
SLD+ADDR.CITY
SLD_ADDR.STATE
SLD_ADDR.ZIP
SLD_ADDR.PHONE

&

HISTORY. DATE_ENLr
SLD_SERV.DATE_ENL

HISTORY. CLASSr
SLD SERV. CLASS

DELETE record
from SLD SERV

Look up
M_ID_NUMBER

in SLD TRANSF

DELETE record
from SLD TRANSF

Look up
M_ID_NUMBER
in SLD PREF

DELETE record
from SLD_PREF

Figure D.3.6a The flowchart of program UPD-HIST

122

SYSTEM

MODDLENAME

MODDLENo

DESIGNER

PERSONNELMANAGEMENT

CHNG_REP

1120

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1100

INVOKES MODDLES :

1121, 1122

INPDTS :

Manual list of changes,
CHANGES

ODTPDTS :

CHANGES. SLD ADDR,
SLDJTRAN, SLD_PREF

PROCESS : See Flowchart in Figure D.3.7.a

Figure D.3.7 The IPO chart of program CHNG_REP

123

1120

(CHNG-REP)

CLEAR
SCREEN

I
/ DISPLAY
'SUBMENU 1 . 2,

(END)

Figure D.3.7.a

Y DO SUBROUTINE

GET-CHNG

DO SUBROUTINE

UPSLDCHN

i

DISPLAY
ERROR

MESSAGE

The flowchart of program CHNG-REP

124

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

GET_CHNG

1121

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1120

INVOKES MODULES :

INPUTS :

Manual list of changes

OUTPUTS :

CHANGES

PROCESS : See Flowchart in Figure D.3.8.a

Figure D.3.8 The IPO chart of program GET_CHNG

125

1121

(get-chng)

DISPLAY MESSAGE:
"This program will de

lete all previous re-
cords in CHANGESfile.

r Do you want to proceed?'/

GET ANSWER

OPEN file

DELETE all
records from

CHANGES

/ DISPLAY:
/ "Enter the
Soldier ID"/

£1

(END)

DISPLAY
ERROR

MESSAGE

DISPLAY
Confirm

ID Number

GET ANSWER

dv

DISPLAY
ERROR

MESSAGE

BV

Look up
M_ID_NUMBER
in CHANGES

APPEND a record
to CHANGES

INITIALIZE
record fields

CHANGES.ID_NUMBER
=M ID NUMBER

/ DISPLAY
' SOLDIER I

RECORD /

GET DATA
from user

Figure D.3.8a The flowchart of program GET-CHNG

126

SYSTEM PERSONNELMANAGEMENT

MODULENAME UPSLDCHN

MODULENo 1122

DESIGNER Labros Raratasios DATE : 4/30/1987

INVOKED B^ r MODULE : INVOKES MODULES :

1120

INPUTS : OUTPUTS :

CHANGES SLD ADDR, SLD SERV

,

SLD_TRAN, SLD_PREF

PROCESS : See Flowchart in Figure D.3.9.a

Figure D.3.9 The IPO chart of program UPSLDCHN

127

1122

cUP5LDCHN)

OPEN files:
CHANGES,

SLD_ADDR,
SLD_TRANSF,

SLD_PREF,
SLD SERV

-©
GET next record

in CHANGES

M_ID_NUMBER=
CHANGES.ID NUMBER

Look up
M_ID_NUMBER
in SLD ADDR

SLD_ADDR.
F_NAME =
CHANGES.
F NAME

SLD_ADDR.
M_INITIAL=
CHANGES.
M INITIAL

CHAN
ZIP

vXz

.

GESV\ Y
SLD ADDR.
ZIP =

<> y? * CHANGES.
ZIP

N

N •

Look up
M_ID_NUMBER
in SLD SERV

SLD_ADDR
PHONE =
CHANGES.
PHONE

«©

Figure D.3.9a The flowchart of program UPSLDCHN (part 1 of 2)

128

SLD_SERV. SERV_DUR=
CHANGES. SERV_DUR
SLD_SERV.DATE_4 =
SLD_SERV. DATE_ENL
+ CHANGES.SERV_DUR
- 4 months

Look up
M_ID_NUMBER

in SLD TRANSF

SLDJTRANSF.
MARIT_STAT=
CHANGES.
MARIT STAT

SLD_TRANSF
SPEC_REAS=
CHANGES.
SPEC REAS

©

SLD_TRANSF.
NUM_CHILD=
CHANGES.
NUM CHILD

SLD_TRANSF.
FINAN_STAT=
CHANGES.
FINAN STAT

SLD_TRANSF.
BROTH_SERV=
CHANGES.
BROTH SERV

Look up
M_ID_NUMBER
in SLD PREF

SLD_TRANSF
FAM_SUPP =
CHANGES.
FAM SUPP

SLD_PREF.
PREF_UNIT1
CHANGES.
PREF UNIT1

SLD _PREF.
PREF~_UNIT2 =

CHANGES.
PREF UNIT2

SLD_PREF.
PREF_UNIT3=
CHANGES.
PREF UNIT3

DISPLAY
ERROR

MESSAGE ©
CLOSE
FILES

c END J
Figure D.3.9a The flowchart of program UPSLDCHN (part 2 of 2)

129

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

ASSIGNMT

1200

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE

1000

INVOKES MODULES :

1210, 1220, 1230, 1240,
1250, 1260

INPUTS

COMPL_TR. SLD_TRAN,
SPECS. UNITS, UNIT_ORG,
TRSF_PTS. SLD_PREF,
UNIT_REQ. ASSIGNMS

OUTPUTS :

TRSF PTS, UNIT REQ,
ASSIGNMS, UNIT ORG,
SLD SERV, Printed 1 ist of
assignments

PROCESS : See Flowchart in Figure D.3.10.a

Figure D.3.10 The IPO chart of program ASSIGNMT

130

1200

(assTgnmT)
i

CLEAR SCREEN

I
DISPLAY program

PURPOSE. Ask us-
er if he wants

to proceed .

(END)

GET
ANSWER

DO
CALC PTS

DO
CLC NEED

DO
ASGN SLD

DO
UPDUNASN

DO
UPSLDASN

DO
PR ASIGN

CLOSE all
files

Figure D.3.10a The flowchart of program ASSIGNMT

131

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

CALC_PTS

1210

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1200

INVOKES MODULES :

INPUTS :

COMPL_TR, SLD_TRAN

OUTPUTS :

TRSF_PTS

PROCESS : See Flowchart in Figure D.3.11.a

Figure D.3.11 The IPO chart of program CALC_PTS

132

POINTS=
POINTS + 10

(END)
POINTS =

POINTS + 40 —»/A)

APPEND a
record to
TRSF PTS

TRSF PTS. ID NUMBER=
M ID NUMBER

TRSF PTS.SPECIALTY=
M SPECIALTY

TRSF PTS.QUAL PTS=
POINTS

Figure D.3.11a The flowchart of program CALC-PTS

133

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : CLC_NEED

MODULENo : 1220

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1200

INVOKES MODULES :

INPUTS :

SPECS, COMPL TR, UNITS,
UNIT_ORG

OUTPUTS :

UNIT_REQ

PROCESS : See Flowchart in Figure D.3.12.a

Figure D.3.12 The IPO chart of program CLC_NEED

134

1220

(CLC-NEED)

OPEN 1 1 1 es

:

SPECS, UNITS,
COMPL TR,
UNIT ORG,
UNIT REQ

I

INITIALIZE vars :

TOTAL ASSIGN =
TOTAL REQ =

COMPLEM =
UNIT NEED =

©-
GET next record

in SPECS

M_SPECIALTY =
SPECS. SPECIALTY

GET next record
in COMPL TR

CLOSE
FILES

TOTAL_ASIGN =
TOTAL ASIGN + 1

(END)

GET next
record in

UNITS

TOTAL_REQ =
TOTAL_REQ +

UNIT ORG. COMPLEMENT

M UNIT=UNITS.UNIT

Look up
MJJNIT and M_SPECIALTY

in UNIT ORG

COMPLEM=
UNIT ORG. COMPLEMENT

UNIT_NEED =
TOTAL-ASSIGN x COMPLEM

TOTAL REQ

APPEND a record
to UNIT REQ

UNIT_REQ.SPECIALTY=M_SPECIALTY
UNIT_REQ.UNIT =M_UNIT
UNIT REQ. NEEDS =UNIT NEED

Figure D.3.12a The flowchart of program CLC-NEED

135

SYSTEM : PERSONNELMANAGEMENT

MODDLENAME : ASGN_SLD

MODDLENo : 1230

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1200

INVOKES MODULES :

INPUTS :

TRSF PTS, SLD PREF

,

UNIT_REQ

ODTPDTS :

ASSIGNMS

PROCESS : See Flowchart in Figure D.3.13.a

Figure D.3.13 The IPO chart of program ASGN_SLD

136

1230

(asgn-sld)
I

OPEN files:
TRSF_PTS, SLD_PRF,
UNIT_REQ, ASSIGNMS

GET CURRENT DATE
Look up MJJNIT2
and M_SPECIALTY

in UNIT REQ

REPORT_DATE=
CURRENT DATE +7 DAYS

SORT TRSF_PTS
by QUAL_PTS

Get next record
in TRSF PTS

Look up MJJNIT3
and M_SPECIALTY

in UNIT REQ

M_ID NUMBER=
TRSF_PTS. ID_NUMBER
M_SPECIALTY =
TRSF PTS. SPECIALTY

Look up
M_SPECIALTY
and NEEDS>0
in UNIT REQ

M_UNIT1=
SLD_PREF. PRF_UNI T

1

M_UNIT2=
SLD_PREF. PRFJJN I T2
M_UNIT3=
SLD PREF.PRF UNIT3

DISPLAY/
'ERROR

'MESSAGE,

Look up MJJNIT1
and M_SPECIALTY

in UNIT REQ
—®

CLOSE
FILES

(END)

UNIT_REQ. NEEDS =

UNIT_REQ. NEEDS - 1

Append a record to
ASSIGNMS

ASSIGNMS. ID_NUMBER =

M_ID_NUMBER
ASSIGNMS.UNIT =
UNIT_REQ.UNIT
ASSIGNMS.DATE_ASIGN=
REPORT_DATE
ASSIGNMS. SPECIALTY =

M SPECIALTY

Figure D.3.13a The flowchart of program ASGN-SLD

137

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : UPDUNASN

MODULENo : 1240

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1200

INVOKES MODULES :

INPUTS :

ASSIGNMS

OUTPUTS :

UNIT_ORG

PROCESS : See Flowchart in Figure D.3.14.a

Figure D.3.14 The IPO chart of program UPDUNASN

138

1240

(updunasn)

OPEN files
ASSIGNMS,
UNIT ORG

Get next record
in ASSIGNMS

M_SPECI ALTY=ASSIGNMS. SPECIALTY
M UNIT=ASSIGNMS.UNIT

Look up
M_SPECIALTY

and MJJNIT
in UNIT ORG

UNITJDRG
UNIT_0RG
UNITJDRG
UNIT ORG

EXISTING =
EXISTING + 1

COMPLEMENT=
COMPLEMENT- 1

CLOSE
FILES

(END)

Figure D.3.14.a The flowchart of program UPDUNASN

139

SYSTEM : PERSONNELMANAGEMENT

MODDLENAME : UPSLDASN

MODDLENo : 1250

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1200

INVOKES MODOLES :

INPOTS :

ASSIGNMS

ODTPDTS :

SLD_SERV

PROCESS : See Flowchart in Figure D.3.15.a

Figure D.3.15 The IPO chart of program UPSLDASN

140

1250

(upsldasn)

OPEN files
ASSIGNMS,
SLD SERV

Get next
record in

ASSIGNMS

M_ID_NUMBER=ASSIGNMS.I D_NUMBER
MJJN I T = ASSIGNMS. UNIT

M DATE ASIGN=ASSIGNMS.DATE ASIGN

Look up
M_ID_NUMBER
in SLD SERV

DISPLAY
ERROR

'MESSAGE

SLD_SERV. UN I T = M_UNI

T

SLD SERV. DATE ASS I GN= M . DATE ASIGN
CLOSE
FILES

(END)

Figure D.3.15a The flowchart of program UPSLDASN

141

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : PR_ASIGN

MODDLENo : 1260

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE : INVOKES MODULES :

1200

INPUTS : OUTPUTS :

ASSIGNMS Printed list of assign-
ments

PROCESS : See Flowchart in Figure D.3.16.a

Figure D.3.16 The IPO chart of program PR_ASIGN

142

1260

(pR-ASIGn)

OPEN file
ASSIGNMS

Ask user
to set up

printer

send
set-up string

to printer

PRINT
REPORT

1

RESET
printer

CLOSE file
ASSIGNMS

(END)

Figure D.3.16a The flowchart of program PR-ASIGN

143

SYSTEM : PERSONNELMANAGEMENT

MODDLENAME : ENL_SLDS

MODDLENo : 130

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1000

INVOKES MODULES :

1310, 1320

INPUTS :

Manual ENLISTED file,
ENLISTED

OUTPUTS :

ENLISTED, SLD ADDR

,

SLD SERV, SLD TRAN

,

SLD PREF

PROCESS : See Flowchart in Figure D.3.17.a

Figure D.3.17 The IPO chart of program ENL_SLDS

144

1300

(enl-slds)

CLEAR
SCREEN

/DISPLAY
'SUBMENU 3,

(END)

N

DO SUBROUTINE

GET-ENL

DO SUBROUTINE

ADD-SLD

DISPLAY/
ERROR

MESSAGE

Figure D.3.17.a The flowchart of program ENL-SLDS

145

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : GET_ENL

MODULENo : 1310

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1300

INVOKES MODULES :

INPUTS :

Manual ENLISTED file

OUTPUTS :

ENLISTED

PROCESS : See Flowchart in Figure D.3.18.a

Figure D.3.18 The IPO chart of program GET_ENL

146

1310

(get-enl)

DISPLAY
'PURPOSE o1

'PROGRAM
i

Ask user to
'confirm that

'he wants to
'run the program,

OPEN file
ENLISTED

DELETE all
records from

ENLISTED

DISPLAY
"Enter the,

soldier ID

GET
ID NUMBER

CLOSE
FILES

(END)

Figure D.3.18a

DISPLAY
M_ID_NUMBER

'and ask user
'to confirm it/

GET ANSWER

N

APPEND
a record to

ENLISTED

ENL I STED . I D_NUMBER;
M ID NUMBER

"0

N

DISPLAY/
ERROR

Y /MESSAGE,

The flowchart of program GET-ENL

'DISPLAY
'the fields/

/bf record

Get fie Ids

:

F_NAME, M_INITIAL,
L_NAME, DATE_ENL,
SERV_DUR. .

.

. . .PRF UNIT3

147

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : ADD_SLD

MODULENo : 1320

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1300

INVOKES MODULES :

INPUTS :

ENLISTED

OUTPUTS :

SLD ADDR, SLD SERV

,

SLD_TRAN, SLD_PREF

PROCESS : See Flowchart in Figure D.3.19.8

Figure D.3.19 The IPO chart of program ADD_SLD

148

1320

(ftDD-SLD)

®

OPEN files:
ENLISTED,
SLD_ADDR,
SLD_SERV,
SLD_PREF,
SLD TRANSF

GET next
record in

ENLISTED

M_ID_NUMBER
ENLISTED.
ID NUMBER

Look up
M_ID_NUMBER
in SLD ADDR

DISPLAY/
ERROR

MESSAGE

APPEND
a record to

SLD ADDR

SLD_ADDR
SLD_ADDR
SLD_ADDR
SLD_ADDR
SLD_ADDR
SLD_ADDR
SLD_ADDR
SLD_ADDR
SLD ADDR

ID_NUMBER
F_NAME
M_INITIAL
L_NAME
STREET
CITY
STATE
ZIP
PHONE

=M ID NUMBER
^ENLISTED
UNLISTED
UNLISTED
^ENLISTED
^ENLISTED
^ENLISTED
^ENLISTED
UNLISTED

F_NAME
M_INITIAL
L_NAME
STREET
CITY
STATE
ZIP
PHONE

APPEND a record
to SLC_SERV

SLD SERV. ID NUMBER=M ID NUMBER
SLD SERV. DATE ENL =ENL I STED . DATE ENL
SLD SERV. SERV DUR =ENLISTED.SERV DUR
SLD SERV. CLASS =ENLISTED. CLASS
SLD SERV. SPECIALTY ="ZZZZZZZZ"
SLD SERV. END TRAIN =False
SLD SERV. UNIT ="ZZZZZZZ"
SLD SERV. DATE ASIGN=01/01/01
SLD SERV. DATE 4 =DATE ENL +
SERV DUR - 4 months

®
DISPLAY

ERROR
MESSAGE

§>-
CLOSE
FILES

I
C END)

Figure D.3.19a The flowchart of program ADD-SLD (part 1 of 2)

149

Look up
M_ID_NUMBER

in SLD TRANSF

DISPLAY
ERROR

'MESSAGE

APPEND a record
to SLD TRANSF

SLD_TRANSF
SLD_TRANSF
SLD_TRANSF
SLD_TRANSF
SLD_TRANSF
SLD__TRANSF
SLD TRANSF

IDJMUMBER =M_ID_NUMBER
MARIT_STAT=ENLISTED
NUM_CHILD =ENLISTED
FINAN_STAT=ENLISTED
BRQTH_SERV=ENLISTED
FAM_SUPP =ENLISTED
SPEC REAS

MARIT_STAT
NUM_CHILD
FINAN_STAT
BROTH_SERV
FAN SUPP

=ENLISTED.SPEC REAS

Look up
M_ID_NUMBER
in SLD PREF

DISPLAY
ERROR

MESSAGE

APPEND
a record to

SLD PREF

©

SLD_PREF. ID_NUMBER=M_ID_NUMBER
SLD_PREF. PRF_UNI T 1 =ENL I STED. PRFJJN I T

1

SLD_PREF.PRF_UNIT2=ENLISTED.PRF_UNIT2
SLD PREF.PRF UNI T3=ENL I STED . PRF UNIT3

Figure D.3.19a The flowchart of program ADD-SLD (part 2 of 2)

150

SYSTEM

MODULENAME

MODDLENo

DESIGNER

PERSONNELMANAGEMENT

TRAINING

1400

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE

1000

INVOKES MODULES

1410, 1420

INPUTS :

ENLISTED, SLD_SERV,
UNIT_ORG, SPECS,
TRAINEES, TRAIN_REQ

OUTPUTS :

TRAIN_REQ, Printed
with training needs

Hi St

PROCESS : See Flowchart in Figure D.3.20.a

Figure D.3.20 The IPO chart of program TRAINING

151

1400

(training)

CLEAR
SCREEN

/DISPLAY
^SUBMENU 4,

C END)

N

DO SUBROUTINE

TRN-NEED

DO SUBROUTINE

PR-TRAIN

DISPLAY/
ERROR

MESSAGE.

Figure D.3.20.a The flowchart of program TRAINING

152

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : TRN_NEED

MODULENo : 1410

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1400

INVOKES MODULES :

INPUTS :

ENLISTED, SLD SERV

,

UNIT ORG, SPECS,
TRAINEES

OUTPUTS :

TRAIN_REQ

PROCESS : See Flowchart in Figure D.3.21.a

Figure D.3.21 The IPO chart of program TRN_NEED

153

1410

cTRN-NEED}

OPEN files
ENLISTED,
TRAINEES,
SLD_SERV,
UNIT_ORG,
SPECS,
TRAIN RQ

INITIALIZE Vars:
TOTAL_REQ=0,
TDTAL_COMP=0,
TOTAL_RET=0,
TOTAL_TR=0,
REQ=0, COM=0,

TR=0, RET=0, X=0

Ask user
'enter the

'TOTAL number/
/bf ENLISTED.

GET
TOTAL ENL

Get next record
in UNIT ORG

Get nex t
record in

SLD SERV

TOTAL_TR =

TOTAL TR+1

TOTAL_RET =

TOTAL RET+ 1

*®

N

TOTAL_COMP=
TOTAL_COMP+

UNIT ORG. COMPLEMENT

M_SPECIALTY =
SPECS. SPECIALTY

CLOSE
FILES

(END J

2

Get next
record in

UNIT ORG

COM=
COM+UNITJDRG

COMPLEMENT

Figure D.3.21a The flowchart of program TRN-NEED (part 1 of 2)

156

B>«-

Get next record in
5LD SERV

Get next record in
TRAINEES

REQ= COM + RET + TR

X= REO xTOTAL ENL
TOTAL REQ

RET= RET +1

TR = TR + 1

APPEND
a record to

TRAIN RQ

TRAIN_RQ. SPECIALTY =
M_SPECIALTY

TRAIN RQ.SPEC REQ = X

¥
Figure D.3.21a The flowchart of program TRN-NEED (part 2 of 2)

155

SYSTEM : PERSONNELMANAGEMENT

MODOLENAME : PR_TRAIN

MODDLENo : 1420

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODDLE :

1400

INVOKES MODULES :

INPUTS :

TRAIN_REQ

OUTPUTS :

Printed list with
with training needs

PROCESS : See Flowchart in Figure D.3.22.a

Figure D.3.22 The IPO chart of program PRJTRAIN

156

1420

(pr-train)

OPEN file
TRAIN RQ

Ask user
to set-up

printer

SEND set-up
string to

prin ter

PRINT
REPORT

RESET
printer

CLOSE file
TRAIN RQ

f END)

Figure D . 3

.

22a The flowchart of program PR-TRAIN

15 7

SYSTEM : PERSONNELMANAGEMENT

MODULENAME : STC_REPS

MODULENo : 1500

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1000

INVOKES MODULES :

1510, 1520

INPUTS :

Manual list of trained
soldiers, COMPL_TR

,

Manual list of trainees

OUTPUTS :

COMPL TR, SLD SERV

,

TRAINEES

PROCESS : See Flowchart in Figure D.3.23.a

Figure D.3.23 The IPO chart of program STC_REPS

158

1500

(STC-REPS)

CLEAR
SCREEN

/DISPLAY
SUBMENU5/

(END)

N

DO SUBROUTINE

COMP-TRN

DO SUBROUTINE

SP-TRNEE

/ DISPLAY
ERROR

MESSAGE

Figure D.3.23.a The flowchart of program STC-REPS

159

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

COMP_TRN

1510

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1500

INVOKES MODULES :

1511, 1512

INPUTS :

Manual list of trained
soldiers, COMPL_.TR

OUTPUTS :

C0MPL_TR, SLD_SERV

PROCESS : See Flowchart in Figure D.3.24.a

Figure D.3.24 The IPO chart of program C0MP_TRN

160

1510

(comp-trn)

CLEAR
SCREEN

t
I DISPLAY
SUBMENU5.1

N

DO SUBROUTINE

GET-TRND

DO SUBROUTINE

UPSLDTRN

DISPLAY
ERROR

MESSAGE

Figure D.3.24.a The flowchart of program COMP-TRN

161

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

GET_TRND

1511

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1510

INVOKES MODULES :

IF PUTS :

Manual list of trained
soldiers

OUTPUTS :

COMPLJTR

PROCESS : See Flowchart in Figure D.3.25.a

Figure D.3.25 The IPO chart of program GET_TRND

162

1511

(get-trnd)

DISPLAY program/
purpose

Ask user if he
ants to run it./

READ ANSWER

N

OPEN file
COMPL TR

DELETE ALL
records from

COMPL TR

' DISPLAY
Enter ID'/

GET
M ID NUMBER

CLOSE
FILES

N

DISPLAY/
ERROR

Y /MESSAGE

C END)

-Q
ii

Ask user
to confirm;

'ID NUMBER

APPEND
a record to

COMPL TR

COMPL_TR.
ID_NUMBER=

M ID NUMBER

DISPLAY
"Enter

'Spec laltyV

GET
COMPL_TR.
SPECIALTY

Figure D.3.25a The flowchart of program GET-TRND

163

SYSTEM : PERSONNELMANAGEMENT

MODDLENAME : UPSLDTRN

MODULENo : 1512

DESIGNER : Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1510

INVOKES MODULES :

INPUTS :

COMPLETE

OUTPUTS :

SLD_SERV

PROCESS : See Flowchart in Figure D.3.26.a

Figure D.3.26 The IPO chart of program UPSLDTRN

164

1512

(upsldtrn)

OPEN files
COMPL_TR,
SLD SERV

Get next
record in
COMPL TR

M ID NUMBER=
COMPL TR. ID NUMBER

M SPECIALTY=
COMPL TR. SPECIALTY

\
1

Look up
M ID NUMBER
in SLD_SERV

i r

CLOSE
FILES

DISPLAY
ERROR

MESSAGE

SLD SERV.SPECIALTY=M SPECIALTY

SLD SERV.END TRAIN = True

c END ~)

Figure D.3.26a The flowchart of program UPSLDTRN

165

SYSTEM

MODULENAME

MODULENo

DESIGNER

PERSONNELMANAGEMENT

SP_TRNEE

1520

Labros Karatasios DATE : 4/30/1987

INVOKED BY MODULE :

1500

INVOKES MODULES :

INPUTS :

Manual list of trainees

OUTPUTS :

TRAINEES

PROCESS : See Flowchart in Figure D.3.27.a

Figure D.3.27 The IPO chart of program SP_TRNEE

166

c
'wa

1520

(sp_trnJe
)

DISPLAY progr.
PURPOSE.

Ask user to
onfirm that he
nts to run it

GET
ANSWER

N

OPEN file
TRAINEES

DELETE all
records from

TRAINEES

DISPLAY
'"Enter ID"

GET
M ID NUMBER

CLOSE
FILES

N

®
(END)

DISPLAY
ERROR

'MESSAGE

-6

/DISPLAY
"Confirm ID'

GET
ANSWER

N

APPEND
a record to

TRAINEES

TRAINEES. ID_NUMBER
M ID NUMBER

DISPLAY
"Enter the

Spec ia 1 ty

"

GET
TRAINEES. SPECIALTY

Figure D.3.27a The flowchart of program SP-TRNEE

167

APPENDIX K

PBQGRAMLI SIIflGS

Section E.l Th e listing of program PERS-MGT

A X X A- A A A 'A' 'X A- A "X' "X "X 'A "X "A A" '"A' "A A A" A A A" "A A1 'A' A A" A 'A'' "A"' A i A.' A: A 1 A 'A- *A A-- A A A- A' A 'A' ^A' A- - •A' ^ *A^ *A' A' A'' ^A* A* 'A' A^ A' A'

* *
* PERS-MGT : Main control program. It displays a menu *
* screen and depending on the user's choice *
* 5/12/87 it gives control to one of five processes. *
* *
A ~A- A A A A A A A A A A a ^ 1 A X A A X A X A A X A A X A A

CLEAR && Clear the screen

* Initialize basic dBASE III Plus functions

CLEAR ALL

SET TALK OFF

SET BELL OFF

STORE " " TO CHOICE && Initialize variable CHOICE

* Main loop

DO WHILE .T.

* Display Main Menu

@ 2,27 SAY "PERSONNEL MANAGEMENTSYSTEM"

@ 3,38 SAY "MENU"

@ 6,20 SAY "1. Units Reports"

@ 8,20 SAY "2. Assignments"

@ 10,20 SAY "3. New Enlisted Soldiers"

@ 12,20 SAY "4. Training needs"

@ 14,20 SAY "5. STC Reports"

@ 16,20 SAY "6. Exit Program"

@ 20,20 SAY "Your selection, please " GET CHOICE

READ

168

* Execute selected process

DO CASE

CASE CHOICE = "1"

DO UNIT-REP && Process Units Reports

CASE CHOICE = "2"

DO ASSIGNMT && Process Soldiers Assignments

CASE CHOICE = "3"

DO ENL-SLDS && Process New Enlisted Soldiers

CASE CHOICE = "4"

DO TRAINING && Estimate Training Needs

CASE CHOICE = "5"

DO STC-REPS && Process STC Reports

CASE CHOICE - "6"

CLEAR ALL

CLEAR

RETURN && Exit program

ENDCASE

ENDDO

Section E.2 Th e listing of program ENL-SLDS

.1 .1 . 1 J «J -J . J A 1. U J J A J J J J L J A] i. J J L 4 X J ^ .1 X J J ^ J J X 1 ± -J J;' i J i ! -A. .i A J d -i.- -J . .J 1 -^. J . L -X J 1 i

* *
* ENL-SLDS : Program to enter the report for new enlisted +
* soldiers into the system and to update the *
* 5/12/87 soldier files. *
* *

CLEAR && Clear the screen

STORE " " TO EC

DO WHILE .T.

@ 2,24 SAY "ENLISTED SOLDIERS PROCESSING"

@ 3,38 SAY "MENU"

@ 6,20 SAY "1. Input new enlisted data"

169

@ 8,20 SAY "2. Process new data"

@ 10.20 SAY "3. Return to main menu"

@ 14,20 SAY "Your selection, please"

GET EC

READ

DO CASE

CASE EC = "1"

DO GET-ENL

CASE EC = "2"

DO ADD-SLD

CASE EC = "3"

CLEAR ALL

CLEAR

RETURN

OTHERWISE

* Display error message

CLEAR

@ 15,15 SAY "Your selection must be 1 , 2 or 3

CLEAR ALL

RETURN

ENDCASE

ENDDO

Section E.3 Th e listin g of progra m GET-ENL

% #
* GET-ENL : This program creates the ENLISTED file and *
* updates it interactively with the data from *
* 5/12/87 the EC report. *
* *

CLEAR

CLEAR ALL

170

SET TALK OFF

SET BELL OFF

* Define what the program does

@ 4,5 SAY "This program allows you to put new soldiers into'

@ 6,5 SAY "the system. Note: This program also deletes the'

@ 8,5 SAY "last group of soldiers that were put in the system'

STORE " " TO C

@ 10,5 SAY "Type Y to proceed, anything else to abort."

GET C PICTURE " !

"

READ

CLEAR

IF C <> "Y"

RETURN

ENDIF

RUN DEL ENLISTED. DBF

RUN COPY TE.DBF ENLISTED. DBF

USE ENLISTED

DO WHILE .T.

CLEAR

@ 2,5 SAY "Enter to exit"

STORE SPACE(7) TO MID_NUMBER

@ 4,5 SAY "Enter ID number

GET MID_NUMBER

READ

DC) CASE

CASE VAL(MID_NUMBER) =

RETURN

CASE VAL(MID_NUMBER) < 1000000

@ 7,5 SAY "Invalid ID number"

DO WHILE VAL(MID_NUMBER) < 1000000

STORE SPACE(7) TO MID_NUMBER

171

STORE SPACE(36) TO CL

@ 4,5 SAY "Enter ID number"

GET MID_NUMBER

READ

IF VAL(MID_NUMBER) =

RETURN

ENDIF

ENDDO

ENDCASE

STORE " " TO CONF

@ 6,5 SAY "Please confirm the above number (Y to confirm)

GET CONF PICTURE " !

"

READ

IF CONF <> "Y"

LOOP

ENDIF

STORE SPACE(20) TO MCITY, ML_NAME

STORE SPACE(15) TO MF_NAME, MSTREET, MSTATE

STORE SPACE(14) TO MPHONE

STORE SPACE(7) TO MPRF_UNIT1, MPRF_UNIT2, MPRF_UNIT3

STORE SPACE(5) TO MZIP

STORE SPACE(3) TO MCLASS

STORE SPACE(l) TO MM_INITIAL, MMARIT_STAT, MFINAN_STAT

STORE " " TO MFAM_SUPP, MSPEC_REAS

STORE CTOD(" / / ") TO MDATE_ENL

STORE TO MSERV_DUR, MNUM_CHILD, MBROTH_SERV

CLEAR

@ 1,24 SAY "Entering new soldier into system"

@ 2,34 SAY "ID number: "+MID_NUMBER

@ 4,5 SAY "First Name " GET MF_NAME PICTURE "a"

@ 4,32 SAY "M. Initial " GET MM_INITIAL PICTURE "!"

172

@ 4,47 SAY "Last Name

@ 6,5 SAY "Street "

@ 6,30 SAY "City "

@ 8,5 SAY "State "

@ 8,28 SAY "ZIP "

@ 8,39 SAY "Phone "

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

GET ML_NAME

GET MSTREET

GET MCITY

GET MSTATE

GET MZIP

GET MPHONE

@ 10,5 SAY "Date entered Service " GET MDATE_ENL

@ 10,37 SAY "Number of months of service "

GET MSERV_DUR PICTURE "99"

@ 10,69 SAY "Class " GET MCLASS PICTURE '^gi-

ts' 12,5 SAY "Marital status: (D)ivorced, (M)arried, ";

"(S) ingle, (W)idowed " GET MMARIT_STAT PICTURE "!'

@ 14,5 SAY "Number of children " GET MNUM_CHILDPICTURE "9

@ 14,30 SAY "Financial status: (G)ood, (M)edium, (B)ad "

GET MFINAN_STAT PICTURE "!"

@ 16,5 SAY "Family Supporter (T/F) "

GET MFAM_SUPP PICTURE "!"

@ 16,30 SAY "Number of brothers in service "

GET MBROTH_SERV PICTURE "9"

@ 18,5 SAY "Priority for transfer (T/F) "

GET MSPEC_REAS PICTURE " !

"

@ 20,5 SAY "List unit preferences ttl:

GET MPRF_UNIT1 PICTURE "a"

@ 20,39 SAY "#2: " GET MPRF_UNIT2

@ 20,52 SAY "#3: " GET MPRF_UNIT3

READ

IF MFAM_SUPP= 'T'

STORE .T. TO MFAM_SUPP

ELSE

STORE .F. TO MFAM_SUPP

ENDIF

PICTURE "a

PICTURE "a

173

IF MSPEC_REAS= 'T*

STORE .T. TO MSPEC_REAS

ELSE

STORE .F. TO MSPEC_REAS

ENDIF

USE ENLISTED

APPEND BLANK

REPLACE ID_NUMBER WITH MID_NUMBER, F_NAME WITH MF_NAME

REPLACE L_NAME WITH ML_NAME, M_INITIAL WITH MM_INITIAL

REPLACE DATE_ENL WITH MDATE_ENL, CLASS WITH MCLASS

REPLACE SERV_DURWITH MSERV_DUR, MARIT_STAT WITH MMARIT_STAT

REPLACE NUM_CHILD WITH MNUM_CHILD

REPLACE FINAN_STAT WITH MFINAN_STAT

REPLACE FAM_SUPPWITH MFAM_SUPP

REPLACE BROTH_SERVWITH MBROTH_SERV

REPLACE SPEC_REAS WITH MSPEC_REAS

REPLACE PRF_UNIT1 WITH MPRF_UNIT1

REPLACE PRF_UNIT2 WITH MPRF_UNIT2

REPLACE PRFJJNIT3 WITH MPRF_UNIT3

REPLACE STREET WITH MSTREET, CITY WITH MCITY

REPLACE STATE WITH MSTATE, ZIP WITH MZIP, PHONE WITH MPHONE

STORE " " TO DA

@ 22,5 SAY "Do you want to enter another soldier?

GET DA PICTURE " !

"

READ

IF DA = "Y"

LOOP

ELSE

RETURN

ENDIF

ENDDO

174

Section E.4 The listing of pr ogram ADD^SiJ)

CLEAR

CLEAR ALL

USE ENLISTED

GOTO TOP

DO WHILE .NOT. EOF()

STORE ID_NUMBER TO MID_NUMBER

USE SLD_ADDR INDEX SLAD

SEEK MID_NUMBER

IF FOUNDC

)

@ 4,5 SAY "ID Number already exists in address file!!!

CLEAR ALL

CLEAR

RETURN

ENDIF

USE ENLISTED

STORE F_NAME TO MF_NAME

STORE M_INITIAL TO MM_INITIAL

STORE L_NAME TO ML_NAME

STORE STREET TO MSTREET

STORE CITY TO MCITY

STORE STATE TO MSTATE

STORE ZIP TO MZIP

STORE PHONE TO MPHONE

USE SLD_ADDR INDEX SLAD

APPEND BLANK

REPLACE F_NAME WITH MF_NAME, M_INITIAL WITH MM_INITIAL

REPLACE L_NAME WITH ML_NAME, STREET WITH MSTREET

REPLACE CITY WITH MCITY, STATE WITH MSTATE, ZIP WITH MZIP

REPLACE PHONE WITH MPHONE, ID_NUMBER WITH MID_NUMBER

175

USE SLD_SERV

SEEK MID_NUMBER

IF FOUND(

)

@ 6,5 SAY "ID Number already exists in service file!!!"

CLEAR ALL

CLEAR

RETURN

ENDIF

USE ENLISTED

STORE DATE_ENL TO MDATE_ENL

STORE SERV_DURTO MSERV_DUR

STORE CLASS TO MCLASS

STORE SERV_DUR * 30 TO MLS

STORE MLS - 120 TO MLE

STORE MDATE_ENL + MLE TO MDATE_4

USE SLD_SERV INDEX SLSE

APPEND BLANK

REPLACE ID_NUMBER WITH MID_NUMBER, DATE_ENL WITH MDATE_ENL

REPLACE SERV_DURWITH MSERV_DUR, CLASS WITH MCLASS

REPLACE DATE_4 WITH MDATE_4, END_TRAIN WITH .F.

USE SLD_PREF INDEX SLPR

SEEK MID_NUMBER

IF FOUND(

)

@ 8,5 SAY ID Number already exists in preference file'

CLEAR ALL

CLEAR

RETURN

ENDIF

USE ENLISTED

STORE PRF_UNIT1 TO MPRF_UNIT1

STORE PRF_UNIT2 TO MPRF UNIT2

176

STORE PRF_UNIT3 TO MPRF_UNIT3

USE SLD_PREF INDEX SLPR

APPEND BLANK

REPLACE ID_NUMBER WITH MID_NUMBER, PRFJJNIT1 WITH MPRF_UNIT1

REPLACE PRF_UNIT2 WITH MPRF_UNIT2, PRF_UNIT3 WITH MPRF_UNIT3

USE SLD_TRAN INDEX SLTR

SEEK MID_NUMBER

IF FOUND(

)

@ 10,5 SAY "ID Number already exists in transfer file!!"

CLEAR ALL

CLEAR

RETURN

ENDIF

USE ENLISTED

STORE MARIT_STAT TO MMARIT_STAT

STORE NUM_CHILD TO MNUM_CHILD

STORE FINAN_STAT TO MFINAN_STAT

STORE BROTH_SERVTO MBROTH_SERV

STORE FAM_SUPP TO MFAM_SUPP

STORE SPEC_REAS TO MSPEC_REAS

USE SLD_TRAN INDEX SLTR

APPEND BLANK

REPLACE MARIT_STAT WITH MMARIT_STAT

REPLACE ID_NUMBER WITH MID_NUMBER, NUM_CHILD WITH MNUM_CHILD

REPLACE FINAN_STAT WITH MFINAN_STAT

REPLACE BROTH_SERVWITH MBROTH_SERV

REPLACE FAM_SUPPWITH MFAM_SUPP, SPEC_REASWITH MSPEC_REAS

USE ENLISTED

IF .NOT. EOFO
SKIP

ENDIF

177

LOOP

ENDDO

USE ENLISTED

DELETE ALL

PACK

CLEAR ALL

RETURN

178

LIST OF REFERENCES

Naur, Peter and Randell, Brian, Softw are Engin eering,

Report o n a conie.re.nge. sponsored bv the NATO Sci ence

Cemmiitsfe, Garfish, Sermany, Lzll Qc.ic;b_e.r_19_££ NATO

Scientific Affairs Division, Brussels, 1969.

Fair ley, Richard, Sof twa re Engineering Edu cation: S tatus

an d Pro spects , Proceedings of the 12th Hawaii Internatio-

nal Conference on System Sciences, Pt . I, pp. 140-146,

Western Periodicals Ltd, North Hollywood, CA , 1979.

Yourdon, Edward, Managing the. Structured Te c hniques.,

Yourdon Inc., New York, 1986.

Mc Clure, Carma, Managin g Softw a re Develo pment and Main-

£e_nanc,e., Litton Educational Publishing Inc., 1981.

U.S. Bureau of the Census, S tatist i cal abs t rac 1

United Sta tes: 1 979, Washington, D.C., 1979.

,he

Reifer, Donald, Tu tor i al

:

Computer Society, 1984.

Clifton, David and Fyffe,

A Guid e to Pr ofitable New,,

Inc. , New York, 1977.

lanag ement . IEEE

jafilMIiiy Ana ly.fi Is jl

aires., John Wiley and Sons,

Fitzerald, J., Fitzerald and Stallings, Fu nda menta ls of

Syst ems A nalysis. John Wiley and Sons Inc, New York, 1981.

Kroenke, David, Database processing . Science Research

Associates, Inc., 1983.

179

10. Davis, William, Systems Analysi s a nd Des ign. Addison

Wesley Publishing Co., 1983.

11. Boehm, Barry, Softwar e Engineering , IEEE Transactions on

Computers, vol. C-25, no 12, December 1976.

12. De Marco, Tony, Structured Analys is an d System Spec ifica-

tion . Yourdon Press, New York, 1978.

13. ISDOS Project, PSL/ PSA User's Re ference Manual . University

of Michigan, Ann Arbor, Michigan.

1 4

.

Connor , M
.

, F
.

, SADT , Structured Analysis a nd Design

Techn ique Introd uction, SofTech report 9595-7, SofTech

Inc., Waltham, Mass, 1980.

15. Mullery, G., P., CORE. A method fo r controll ed req uirement

spec j f i cation , Proceedings of the 4th International Confe-

rence on Software Engineering, pp. 126-35, 1979.

16. Alford, M, W, Software Requirements Enginee rin g Methodolo-

gy (SREM) at t h e a g e o f four. Proceedings of the Inter-

national Computer Software and Applications Conference,

pp. 866-74, 1980.

17. Salter, K., G., A methodology for d eco mpos ing system

requirements. in to da ta processing r equ i r ements., Procee-

dings of the 2nd International Conference on Software

Engineering, pp. 91-101, 1976.

18. Peterson, J., L., Petri Net Theory an d th e Mo d eling P.£

Systems , Prentice Hall, Englewood Cliffs, N.J., 1981.

19. Jackson, M., Systei

Cliffs, N. J. , 1983

lopm ent . Prentice Hall, Englewood

180

20. SSL 1982a, I ntro duction to SDS. Software Sciences Limited,

Macclesfield, 1982.

21. Gane , C. and Sarson, T., Structur ed Systems Analvsi s

:

T£o_ls. and Techniques . Prentice Hall, Englewood Cliffs,

N.J., 1979.

22. Everest, Gordon, Database Management, McGraw Hill, Inc.,

1986.

23. Campbell, Sally, Microcom puter So f"

Hall, Inc. , 1984.

ifiigll, Prentice

181

INITIAL DISTRIBUTION LIST

No. Copies

1

.

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor S. H. Parry, Code 55Py 2
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

4. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Computer Technology Curicular Office 1
Code 37
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor Thomas Wu , Code 52 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

7. Major Labros G. Karatasios 6
Information Systems Division
Hellenic Army General Staff
Stratopedo Papagou , Holargos
Athens, GREECE

182

Thesis
K14275
c.l

Karatasios
Software engineering

with database management
systems.

Thesis
K14275
c.l

Karatasios
Software engineering

with database management
systems.

