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ABSTRACT

The controlled system is the ORION satellite spinning about its single axis of sym-

metry. Hydrazine thrusters are used as the control and are modeled by ideal, constant

magnitude step functions.

The system is normalized and driven from non-zero initial angular velocities of the

two axes other than the spin axis to the final condition of zero. The control profiles

required to do this are determined based on a desired controller duty cycle. Adaptation

of the duty cycle changes the ratio of the time the thrusters are on (fuel use) and total

time to completion of the evolution.

A comparison between a single axis and a dual axis controller is presented. Simu-

lation programs for the normalized system using a single axis controller, with a 100%

duty cycle and a varying duty cycle, and a dual axis controller simulation program, with

each controller having a duty cycle of no more than 50%, are developed.

The operation of the system is optimized using a system cost function. An equation

relating the controller duty cycle of the dual system to the fuel time trade-off parameter

of the system cost function is required. A nonlinear feedback control algorithm (func-

tion of attitude angle rates) is developed from iterations of the simulation, and a priori

knowledge of the form of the control from optimal control theory. This numerical sol-

ution will allow system designers to incorporate a closed form state feedback control for

minimum fuel time strategies using the ORION satellite's onboard software.
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c.i

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

IV



TABLE OF CONTENTS

I. INTRODUCTION 1

II. SPIN STABILIZATION THEORY 2

A. TWO DIMENSIONAL RIGID BODY 2

B. THREE DIMENSIONAL RIGID BODY 3

III. OPTIMAL CONTROL 6

A. PERFORMANCE INDICES 6

B. SINGLE VS DUAL CONTROL 8

1. One Controller 8

a. Minimum Time 8

b. Minimum Fuel Time 11

2. Two Controllers 16

a. Minimum Time 16

b. Minimum Fuel, Time 18

3. Analysis 23

IV. NUMERICAL ANALYSIS 25

A. NUMERICAL DATA 25

B. LINEAR REGRESSION 28

V. CONCLUSIONS 30

APPENDIX A. PROGRAM FOR ONE MINIMUM TIME CONTROLLER . . 31

APPENDIX B. PROGRAM FOR MINIMUM FUEL/TIME SINGLE CON-

TROLLER 33

APPENDIX C. PROGRAM FOR MINIMUM FUEL/TIME DUAL CON-

TROLLER 35



LIST OF REFERENCES 38

INITIAL DISTRIBUTION LIST 39

VI



LIST OF TABLES

Table 1. CONTROLLER ASSIGNMENT FOR THE SINGLE CONTROLLER 13

Table 2. SINGLE CONTROLLER RESULTS 14

Table 3. CONTROLLER ASSIGNMENT FOR THE DUAL CONTROLLER . IS

Table 4. DUAL CONTROLLER RESULTS 19

Table 5. SINGLE VS DUAL CONTROLLER RESULTS 24

vu



LIST OF FIGURES

Figure 1. Two Dimensional Rigid Body Diagram 2

Figure 2. Three Dimensional Rigid Body Diagram 3

Figure 3. True Minimum Time Switching Curve for One Controller 9

Figure 4. Approximated Minimum Time Switching Curve for One Controller .... 9

Figure 5. System State Space with One Minimum Time Controller 10

Figure 6. Controller Assignment for One Controller 13

Figure 7. One Controller - Minimum Fuel/Time for the Far Field 15

Figure 8. One Controller - Minimum Fuel/Time for the Near Field 16

Figure 9. True Minimum Time Switching Curve for Two Controllers 17

Figure 10. Approximated Minimum Time Switching Curve for Two Controllers . . 17

Figure 11. Controller Assignment for Two Controllers - Case 1 19

Figure 12. System State Space with Two Minimum Fuel Time Controllers 20

Figure 13. Two Controllers - Minimum Fuel; Time for the Far Field 21

Figure 14. Two Controllers - Minimum Fuel/Time for the Near Field 22

Figure 15. Controller Assignment for Two Controllers - Case 2 23

Figure 16. The System Cost Function 26

Figure 17. Linear Plot Relating the Deadzone Angle to the Fuel Time Tradeoff Pa-

rameter 27

Figure IS. Semilog Plot Relating the Deadzone Angle to the Fuel/Time TradeofT

Parameter 28

Vlll



I. INTRODUCTION

For the last three years a considerable amount of space systems research at the

Naval Postgraduate School has been devoted to designing a small general purpose sat-

ellite (ORION).

The attitude control configuration chosen for the ORION prototype is spin stabili-

zation. Other attitude control options, three-axis and gravity gradient stabilization, were

considered for application on the ORION. The pointing accuracy for the gravity gra-

dient stabilization is not highly refined. Although three-axis stabilization can achieve

high pointing accuracy, it has problems with regard to thermal control, fuel consumption

and requires a more complex sensor system. [1 : p. 466-479J

We apply the theory of fuel time optimized control to a spinning satellite, where a

single axis of symmetry is assumed. The satellite spins about its axis of symmetry.

Control, via hydrazine thrusters, maintains or drives the satellite to a zero spin (or an-

gular velocity) about each of the two axes orthogonal to the axis of symmetry.

The purpose is to further explore an improved application of spin stabilization to

the ORION satellite in an effort towards greater fuel efficiency and cost effectiveness.



II. SPIN STABILIZATION THEORY

A. TVVO DIMENSIONAL RIGID BODY

A simple two dimensional rigid body model serves as the basis for developing the

necessary equations of motion for the ORION satellite. Figure 1 portrays such a model

in which the moment of inertia, / , is defined as:

I = mr U)

where in is the particle mass and / is the moment arm length. The angular momentum,

h, relative to the point O is expressed as:

h = lu) = 10 (2)

where co is the angular velocity and is equal to 0, the rate of change of the angle 6. The

moment of momentum, A/, of the force, F, about point O is:

M = Fl sin e (3)

Figure I. Tno Dimensional Rigid Body Diagram



This simple two dimensional model clearly states that momentum is a function of

only three variables. However, the situation becomes more complicated when a three

dimensional model is considered.

B. THREE DIMENSIONAL RIGID BODY

A three dimensional model is shown in Figure 2 with the three orthogonal compo-

nents of angular momentum /;„ h
y
and h

2
. Rotation about any one of the three axes will

produce a rotation through some angle. For example, rotation through an infinitesimal

angle, A(/>, about the the x-axis will result in two infinitesimal components of angular

momentum: h
y
A4>k and h

z
A<£>(—j). where j,k and / are unit vectors in the y. z and x

axes, respectively. Likewise rotating the y-axis through an angle AO results in: h
2
A0i

and h
y
A6( — k). And finally, rotating the z-axis through an angle At// produces: h

x
Aij/j

and h
y
A^( — i). The infinitesimal changes in the original angular momentum compo-

nents, A/i
x
i , Ah j and A/i

2
k must also be considered.

O
A4>h,

A<|.h

•*

. . i
Ah,

4> lyauu) *

(spin)

Ah

A^n A6h

Ah.

<J>
(roLL)

Figure 2. Three Dimensional Rigid Body Diagram

Recalling that the moment of momentum, or torque, is equivalent to the rate of

change of the angular momentum, then:

A/ = lim
Ah

A/-0 A/
(4)



Adding the components described in the preceding paragraph and taking the limit as At

goes to zero, results in the following momentum equations:

Mx = hx - h
y i> + hz6

M
y
= hy - hzi> + hx il/

M2
= hz - hxd + h

y
4>

(5)

Applying Equation 2 to a three dimensional body gives [2: p. 109]:

V *xx *xy -hz 4>

h
y

= -4, yy
-** e

K -4z -ly* hz •A

(6)

If the products of inertia are ignored [3: p. 51], such that I
i;
= for i=£j for i and

j e {x,y, z) then Equation 6 reduces to:

hx = lxx^

h
y
= Iyyd

h2=lj
(7)

The momentum equations can now be written as:

Mx = lj> - IyyOJ, + Ijd
My = iyyB ~1^ 4" I

^

Mz =iJ-ixx4>d + i
yy

d4)

(8)

In the case of a rigid body satellite, where external moments are absent [4: p. 524],

Equation S can be simplified by rearranging to become:

lxx4> = ( Iyy- hz)e ^

lyyd = (lZZ -lXX)4>{l/

lJ = (Ixx -Iyy)H

(9)

If the satellite spins uniformly around the pitch, 6, axis (also called the spin and/or

y axis) with an angular velocity of w
s
and assuming the satellite has a single axis of

symmetry, we can conclude that Ixx = I22
. We will also assume that 6 = w

s
+ e, where £,

the spin error, is a small angular velocity error due to perturbation and that e =£ 0,

</> ^ 0, and \p ± , with if) and \j/ both small. [2: p. 1 14]



Incorporating all of these assumptions into the euler equations, they now become:

<t>
=

l„ - /,

w,0
/

5

Iyyt =

*xx ~ *yy

V = 1 W-J0
J v- v

(10)

I
yy
i = reveals that the rate of change of the spin error is zero and therefore the spin

error is a constant! Normalize the system by letting:

= (

Ixx )-L-
1 L-L ; w

s
(11)

-_>•>• *XX

The state variables are expressed in terms of the system parameters as follows:

(12)

Substituting Equation 11 into the euler equations and converting to state variable an-

notation results in:

1

-1 JL-*2.

(13)

Applying control inputs to the system, the following system equations are obtained:

"0
1

i_i o

'1

x-

o r

-1 o

X

X
+

Ui

u-,JL"2J
(14)

where w, and u
2
are the normalized thruster control torques for the jc, (roll) and x2

(yaw)

axes, respectively.

Initially the system will be investigated with u2 set equal to zero and not used. Then

both u, and u2
will be used at the same time. The following chapter on optimal control

theory will explore how the values for these two controllers are assigned.



III. OPTIMAL CONTROL

Ideal control is a theoretical concept that may not be achievable, since it does not

account for the physical constraints of the system it is designed for. Conversely, optimal

control takes the physical constraints of the system into consideration. When a control

system is chosen based on a given satellite design and a set performance index, opti-

mization is the result.

A. PERFORMANCE INDICES

In general, a performance index is a function of system parameters and to a large

degree defines the character of the optimal control. This, in turn, determines the con-

figuration of the control system.

A performance index is normally chosen based upon the system's requirements,

which may often be in conflict with each other. For example, one requirement for a

satellite system may be to maintain a specified orientation (within certain given limits

of accuracy), while at the same time being required to maximize satellite lifetime. Since

lifetime is an inverse function of fuel usage, maximizing lifetime means minimizing fuel

usage. This is in direct conflict with the requirement for maintaining satellite orien-

tation, which constantly requires fuel for adjustments. The greater the requirement for

accuracy of satellite orientation, the greater the rate of fuel usage. Consequently, a

performance index often represents a compromise of system requirements.

Changing performance indices further complicates matters, since change in per-

formance indices results in a different optimal control. Practicality also enters the pic-

ture, since a desired optimal control may be beyond the capabilities of readily available

hardware, making the desired optimal control system impractical.

The difficulty of choosing an appropriate performance index for a complicated sys-

tem is further compounded by the fact that practicality requires the components of a

performance index be easily measured or computed through sensors or rate gyros. In

choosing a performance index, experience has shown that preference should be given to

the index that is developed from an application rather than one developed from a pure

mathematical point of view.

An appropriate control must be chosen which will minimize the performance index,

J, which is a cost function that is defined as:



J=j\x(t),t01 tf,u(t)} (15)

where x(/) is the state vector (Equation 12), /„ and t
f
are the initial and final times of the

system's operation, and \x{t) refers to the control vector (Equation 14).

It is important to understand that, in the optimal control application given in this

paper. J is a function of the control input, u{i) , and the control input is itself a function

of x . That is, the state vector, x(/), is included as a parameter for J since x(/) has such

a great influence upon the control input parameter, u(/).

The time optimal control system is one of two performance indices to be considered,

and is defined as:

-J*
J=\dt (16)

where the time interval t < t < tf is finite. The second performance index to be consid-

ered is the fuel optimal control system:

J = Yjmwt (i7)

(=i

For the purpose of this discussion, u(/) is defined as the thruster's state at a specified

time i. Three states will be considered: "off', "on" (positive), and "on" (negative). The

positive or negative condition for "on" state is an important consideration, as will be

seen.

Combining Equations 16 and 17 results in the performance index to be implemented

in this study. This index is defined as:

2

j= ri + ;.YW)i<// (is)

where ). is a weighting factor that influences the compromise between control response

and fuel use.

The weighting factor, )., is a critical parameter that is constant and positive in value.

By setting / equal to zero, Equation 18 becomes a simple minimum time problem. If/3
.



is increased to a value approaching infinity, then we have a minimum fuel problem.

Determining a performance measure for our system reduces to that of determining one

parameter: /. The following sections which simulate the normalized system will explore

this in more detail.

B. SINGLE VS DUAL CONTROL

1. One Controller

a. Minimum Time

The minimum time switching curve for a spinning satellite is the next topic

to be considered. When dealing with a control system where only one controller is al-

lowed to operate (i.e., u2 is set equal to zero), w, is a function of both states x
l

and x2
.

When Xi versus x2 is plotted, regions for the values of w, can be described. This plot is

called the state space or phase plane. In our minimum time problem, where /: is zero,

u
{

is always turned on. This is the case for an ideal thruster with a non-varying thrust

magnitude, \u
{

\
= constant. The thruster is always turned on. It can cause the satellite

body to rotate in a positive or negative direction since the sign of u
x
can be positive or

negative. For simplicity, a magnitude of unity for this constant normalized torque will

be used. The true switching curve for these conditions is given in Figure 3 [5: p. 29.].

Since this is difficult to model, the switching curve described in Figure 4 is often used.

Consequently, the curve in Figure 4 will be used in this study when simulating the system

model when there is only one "on" controller.

If the minimum time system is started at the initial condition: jc, = 6.844 and

x2
= —6.844, then the plot given in Figure 5 shows the system's response. All of the half

circles above the x-axis have origins at the point jc, = — 1 , x2
= 0. Likewise all of the half

circles below the x-axis have origins at the point x
x
= +1, x2

= . This is not a coinci-

dence.

In Figure 4, regressing in time from the origin allows the system to follow

either of the cusps. The right cusp is chosen (w, = +1), and followed from the origin until

the x-axis is approached at the point jc, = +2 and x
2
= . In other words, a half circle

is drawn counterclockwise (reverse time) around the point jr, = +1, x2
= starting from

the origin to the point ,y, = +2 and x2
= 0. When this point is crossed, the switching

curve boundary is also crossed and the controller changes from u
x
= +1 to u

x
= — 1, and

a new arc must be drawn (counterclockwise, as before) starting at the point x, = +2 and

x2
= with a new origin at the point jc, = - 1 and x

2
= . This arc continues until it

becomes a half or semicircle at the point x
x

= —4 and x2
= . Continuing in the same



x
2

u = -1

1

*
1

U.-+I

Figure 3. True Minimum Time Switching Curve for One Controller

o
X

2

u = -1
1

U,= *|
w -

Figure 4. Approximated Minimum Time Snitching Curve for One Controller

manner such that two semicircles are drawn above the x-axis and two plus —
Q

-
,

6 844
where a = tan -1

-^rr-rr = 49.506 decrees, semicircles are drawn below the x-axis. Bv
D.844

simple geometry the final point for this reverse time exercise is the same point as the



Figure 5. System State Space with One Minimum Time Controller:

Initial Condition (6.844,-6.844)

initial condition for the minimum time (forward time, clockwise) system simulation. The

conclusion that can be made from this is that the system is modeled correctly.

10



Another check can be employed to ensure this even further. Since the sys-

tem is normalized, the time it takes to travel each half circle corresponds to n seconds.

Therefore in this system model simulation, it is expected that it would take 4.7249 times

n seconds (14.84 seconds) to go from the initial condition to the zero condition. The

computer simulation takes 14.82 seconds to get to the point .v, = —.000000618,

x2
= —.0005524. Due to the configuration of the computer program, driving the system

to zero results in iterative reducing of the integration step size of the simulation so that

much computer time is wasted. This "close enough" final condition strongly implies

that the system model is running as expected.

b. Minimum Fuel/ Time

The discussion above dealt with the minimum time problem, where ). is set

equal to zero. Now it must be determined how to model the system when the controller

can be "off', i.e.. u = and therefore X =£ 0. The following paragraphs develop insight

in the minimum fuel time control problem using Pontryagin's Minimum Principle [6] for

second order linear systems with bounded control inputs.

Recalling that the system in state variable annotation can be written in the

form of first-order linear differential equations:

*/-J!{x,ii} (19)

where x is the vector of the state variables (xux2), and u is the vector of control variables

(u2Mi)-

The Hamiltonian defined as:

2

// = yarg + ^{x,u} (20)

i=]

must be minimized. Here J3r% is the argument (1 + X( | ux \ + | Mj| )) of the cost function,

J. Also p x
and p2 are auxilliary variables given by:

4^ =^ (21)
di dXi

v
'

and,

dx
i _ SH

di dpi

11

(22)



Substituting Equation 14, Equation 20 becomes:

H = p x
{x2 + u2 ) + p2 { -jcj + i/j) + 1 + ;.( |uj | + | u2 1

)

(23)

Substituting Equation 23 into Equation 21 and solving gives:

P\ = +Pl

Pi = ~P\
(24)

(25)

The solution to Equation 24 is of the form:

pl
= A sin(/ — 0)

p2
= A cos(t — 4>)

where A and </> are integration constants.

To minimize the Hamiltonian, the form of the optimal control is:

u
}

= -sign(/>2 ) if
I p2 1

>'•

Mt-o ififti<;.

«2 = -sign^J if \p ]
|
> A

u
2
= if |ft |

<).

The system with no control applied will describe a circle in its phase plane. In other

words, if the system starts at some initial condition other than zero, the system state

values will revolve clockwise (forward time) around the origin of the jc„ x
2
state space

plot. Since no analytical solution was obtained for the minimum fuel/time problem, an

optimized system model is deduced. Based upon Equation 26 and the sinusoidal re-

quirement described in Equation 25, both u
x
and u2 must cycle from plus to minus even'

180 degrees and be 90 degrees out of phase with each other. Two lines with slopes that

have the same magnitude but are of opposite sign will achieve the proper periodicity

requirement, since the regions where the control has a value of zero will always take the

same period of time to travel through. Figure 6 shows lines with slopes of — 1 and +1

(6 = 90 degrees) and the minimum time switching curve. Since the value for w, above the

switching curve is — 1 , and below is +1, there is a conflict in values for the controller in

12



the shaded regions A and B. In Table 1, the experimental matrix is shown where three

simulations will be run with varying values for the single controller, uv

Table 1. CONTROLLER ASSIGNMENT FOR THE SINGLE CONTROLLER
Region A Region B

Method 1 ", = -1 ?/, = +!

Method 2 u
t

=- +

1

«, = -!

Method 3 m, = u, =

Figure 6. Controller Assignment for One Controller

Figure 7 shows the curve that is common to all three methods. The final point (the one

closest to the axes' origin) for the three simulations is just outside region B, as depicted

in Figure 6. The separate plots of the three methods from their last common point to

13



an end condition described by a circle about the axes' origin with a radius of .01 are

shown in Figure 8.

The results of the experimental matrix shown in Table 1 are presented in

Table 2.

Table 2. SINGLE CONTROLLER RESULTS

Time to End
Condition

Fuel Consumed

Method 1 20.85 10.80

Method 2 20.17 10.75

Method 3 20.18 10.61

14



Figure 7. One Controller - Minimum Fuel/Time for the Far Field: Initial Condi-

tion (6.844,-6.844); 6 = 90 degrees

15



C\2

X

LEGEND
METHOD J

METHOD 2
METHOD 3

o

XI

Figure 8. One Controller - Minimum Fuel/Time for the Near Field: 6 = 90 de-

grees

2. Two Controllers

a. Minimum Time

The switching curves for the minimum time dual control system are shown

in Figure 9. The analytical derivation for these curves can be found in [7J. Again, as

with the single minimum-time controller, these curves are difficult to model, so they are

16



linearized in the region outside a circle of radius two about the axes' origin. This curve

is presented in Figure 10.

u,- -1

V +1

\ 11,- -1

J *,

V +1 U,- 41

u,- -1

Figure 9. True Minimum Time Switching Curve for Two Controllers

X
2

«,- -
1 u,= -1

u
2
= +1 u

2
= -1

X
1

u,= +1 u,= +1

u
2
= +1 \ u

2
- -1

Figure 10. Approximated Minimum Time Switching Curve for Two Controllers

17



b. Minimum Fuel/ Time

The major difference between the switching curves for the dual control sys-

tem and the one controller switching curve given in Figure 6 is that there is now a

controller on the y-axis.

The control regions for the case where each of the two controllers has less

than a 50% duty cycle (Case 1) is depicted in Figure 11. Figure 12 shows the switching

curves and control areas when the angle 0, the deadzone angle, equals 90 degrees. From

the state equations it can be seen that if x, = then = x2 + u2 , or x> = -u
2 . In other

words, when *2
= +l then u2

= —\. Thus the point (0,+ l) in the phase plane plot

equates to the controller value: u2
= — 1. Likewise, the point (0,-1) corresponds to:

u2
= +1 . This is a subtle but important point. Be aware that the switching curve ori-

gins for the controllers will be located on the x and y axes ONLY when 6 > 90 degrees.

(This will not be the case when 6 < 90 degrees. Discussion of this alternative will appear

later.)

Region 1 in Figure 12 has the following controller assignment u
x
= — 1 and

u2
= 0; region 2 has u

x
= +1 and u

2
— 0; region 3 has u

x
= and u2

= +1; and region 4 has

k, = and u
2
= —\. The minimum time switching curve for the x-axis remains as it was

for the one controller case; u
x
has the value of — 1 above the curve and +1 below. The

minimum time switching curve for the y-axis is the new addition. The value for u2 is

— 1 to the right of this switching curve, and +1 to the left.

The four shaded areas in Figure 12 imply a controversial assignment of the

controller values. Three simulations with varying values for the shaded regions a, b, c,

and d will be run as described in the experimental matrix shown in Table 3.

Table 3. CONTROLLER ASSIGNMENT FOR THE DUAL CONTROLLER
(0 = 90 desrees)

Region a

u
2
=

Region b
u2
=

Region c

M,=0
Region d

H, =
Method 1 u, = -\ w, = +1 u

2
= +l "2 = -l

Method 2 Wj = +

1

u, = — 1 u
2
= -\ u

2
= +l

Method 3 w, = u, = u
2
= u

:
=

Results from the series of simulations are shown in Figure 13 and

Figure 14. In Figure 13 the curve that is common to all three methods is shown. The

final point (the one closest to the axes' origin) is just outside the region depicted in
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Figure 12 as region a. The plot for the three methods starting from their last common

point to an end condition described by a circle of radius .01 around the axes's origin is

given in Figure 14. Table 4 compares the results of these three methods.

Table 4. DUAL CONTROLLER RESULTS (0 = 90 degrees)

Time to End
Condition

Fuel Consumed

Method 1 10.81 10.81

Method 2 10.75 10.75

Method 3 10.75 10.60

X
2

^T V °\
\ U

2
=

-1

/
A- U

2
= 0.

\ "- /

U 1= v°
fr o '

u
2
= -1 X

1

u
2
= +1

<- v 0,/ u
1

=

U
2
=

+1 \

I

\
1= u = o\

2

Figure 1 1. Controller Assignment for Two Controllers - Case 1: > 90 degrees



Figure 12. System State Space with Two Minimum Fuel/Time Controllers:

6 = 90 decrees
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Figure 13. Tuo Controllers - Minimum Fuel/Time for the Far Field: Initial Con-

dition (6.84-1,-6.844); = 90 degrees
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Figure 14. Two Controllers - Minimum Fuel/Time for the Near Field:

= 90 degrees

The diflerent control regions for the dual control case where 6 < 90 degrees

(Case 2) is shown in Figure 15. There are four regions where both controllers are si-

multaneously on. The switching curve for these minimum time regions is shown in
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Figure 10. All other regions comply with the minimum fuel: time switching curves as

given in Figure 12 using Method 3, from Table 3, for the controller assignment for the

shaded regions. Case 2 is a much more complicated scenario than previously encount-

ered. There arc now eight regions of controversial controller assignment. This case will

NOT be used in this study, but is mentioned in order to complete the possible scenarios

for spinning satellite minimum fuel time control problems.

Figure 15. Controller Assignment for Two Controllers - Case 2: < 90 degrees

3. Analysis

The switching curves for the single controller with a 100% duty cycle, where u
x

is always on, is shown in Figure 4. This is the minimum time problem. Figure 6 has
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the switching curves for the single controller with the deadzone angle, 6, equal to 90

degrees. The switching curves for the dual controller with a 50% duty cycle for EACH

of the two controllers, i/, and u2 , are shown in Figure 12. No more than one of the

controllers is ever on at any given time. Table 5 compares the results of these different

configurations.

Table 5. SINGLE VS DUAL CONTROLLER RESULTS

Time to End
Condition

Fuel Consumed

Single Control: Minimum
Time 6 = degrees

14.73 14.73

Single Control (Method 3)

= 90 degrees

20.17 10.75

Dual Control (Method 3)

= 90 degrees

10.75 10.60

The end condition for all cases is described by a circle of radius .01 about the axes' ori-

gin. In comparing the minimum time, single control system to Method 1 of the two

control minimum fuel, time configuration with 6 = 90 degrees, not listed in Table 5,

Method 1 achieves 26.6% fuel savings. A fufel savings of 28% is achieved when com-

paring Method 3. Method 3 improves fuel efficiency since there is actually less than a

50% duty cycle because the controllers in the four shaded cusp regions (Figure 12 on

page 20) are turned off. Table 5 confirms that with regard to both time and fuel effi-

ciency, the dual controller is by far the preferred system.

What minimum fuel 'time configuration of the dual control system should be

employed? This depends on the parameter /, the constant that provides a trade-off be-

tween fuel usage and time duration of the system being driven from some initial condi-

tion to a designated end condition. The following chapter develops a possible solution

to this problem.
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IV. NUMERICAL ANALYSIS

The objective is to find a functional relationship between 8 , the deadzone angle, and

)., the fuel time trade-off parameter. In order to facilitate this Equation 18 is rewritten

as the following simplified equation:

J=T+;.F (27)

where T, the total system time, is

T=[f

dt = tf -t (28)

and F, the fuel used during the evolution, is defined as

F=
ff 2

Y\u{t)\dt (29)

The system runs until the end condition criteria is met as defined by

jcf H- jc| < 0.01 (30)

A. NUMERICAL DATA
The following steps describe how the data for relating /. and 8 is obtained:

1. CHOOSE an initial condition for the dual control program simulation. (The point

x, = 6.844 and x2
= —6.844 is chosen for the first run since this is the initial condi-

tion used in all of the simulations presented in the previous chapter.)

2. RUN the dual controller fuel/time simulation for varying angles of 8. (An incre-

ment of two degrees on the interval from 90 to 180 degrees is used for the first run
presented below.) OBTAIN the values for T and F for each angle of 8.

3. CHOOSE a value of X. COMPUTE the values of J for the various deadzone an-

gles. (A plot of 8 versus J for / = 15 is shown in Figure 16. Observe the many
local minima.) RECORD the value of 8 and ). that gives the minimum computed
value for J.

4. REPEAT from 3. with a new value of A.
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Figure 16. The System Cost Function

Figure 17 shows the first run curve of X versus 6. It displays an exponential char-

acter. Additional values of/ are iterated using the above steps. Figure 17 is amplified

with the new data points and the scale is change to semilog. See Figure 18.
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B. LINEAR REGRESSION

To determine if the relation between ). and can truly be considered exponential in

character, a linear regression is accomplished using a commercial computer package

called Minitab. First, some background is provided.
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Assume for the moment that the relation between / and 6 is exponential in nature.

Then, this relation can be expressed by the following equation:

A=Ae B0
(31)

where A and B are both constants.

Taking the natural logarithm of both sides of Equation 31 results in the following

new equation:

111 X = In A + Bd (32)

A linear regression of the data can now be accomplished. Minitab computes the

following constants for the first run simulation data with the initial condition (6.844,

-6.S44): In A = -5.6465 (or A = 0.00353) and B = 0.07069S.

The goodness of fit is illustrated through the linear correlation coefficient r for the

number of data points, n, and is defined as:

^(in;,^.j-(y^Y^(in;,)

r =
,

— ===• M

where 1 < i < n. The linear correlation coefficient is always between the values of — 1

and +1. Values of r close to —1 and +1 indicate a strong linear relationship between the

variables 6 and In /. which means that the equation is useful in making predictions for

a value of/ based on a value of 8 or vice versa.

The value for r based on the data from the initial condition (6.844,-6.844) is 0.977.

Numerical data is obtained for a new initial condition (5,0.001) using the same pro-

cedure steps outlined above. The values for A, B and r are: A = 0.00236, B = 0.07361

1

and r = 0.975.
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V. CONCLUSIONS

This study provides simulation programs for incorporating an optimized control

system for a spinning satellite. The developed models support the theory that there is

greater fuel efficiency using a dual control rather than a single control configuration.

Additionally, fuel can be conserved by designing the system response for the maximum

time permissible for completion of the evolution.

The software required for this optimal control design is simple, can be easily imple-

mented and will require very little computer memory. This will allow the ORION to

operate autonomously while efficiently using the limited onboard fuel reserves.
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APPENDIX A. PROGRAM FOR ONE MINIMUM TIME CONTROLLER

This appendix shows the IODE program used for the minimum time single control-

ler. IODE is an interactive ordinary differential equations package that runs on the

VM/CMS time sharing system. It was developed at the Naval Postgraduate School by

Roger R. Hilleary.

VARIABLES & INITIAL CONDITIONS:
XI = 6. 844000000
X2 = -6. 844000000
F = .0
T = .0

XI = phi dot
X2 = psi dot
F = fuel
T = time

SPECIAL FUNCTIONS:
END = Xl**2 + X2**2

NEAR = ABS(Xl)

Ul = 0DEIF(X2, 0,1,-1)

U2 = 0DEIF(-Xl*ABS(Xl)/2+ XI + X2*ABS(X2)/2,0, 1,-1)

U = 0DEIF(NEAR,2,U2,U1)

; end condition
; criteria

; absolute value of
;X1

; if X2 is above the
;x-axis Ul=-1, else
;U1=+1

; if point (X1,X2)
; above the switch-
ing curve U2=-l,
; else U2=+l

if the absolute
value of XI is

less than 2, then
U=U2, else U=U1
U = control input

DERIVATIVES:
D(X1 /D(T ) = =

X2
D(X2 /D(T ) = =

-XI + U
D(F /D(T ) = =

ABS(U)

;X1 dot = X2

;X2 dot = -XI + U

;F dot = abs(U)
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OUTPUTS:
TITLE: MINIMUM TIME PROBLEM
TABULATE: T

AT INTERVAL
PLOT: X2

AGAINST: XI
PLOT: U U2

AGAINST
PLOT: F

AGAINST

XI X2 F
. 1000000000D-01

Ul

U

AT INTERVAL 1000000000

END CALCULATION WHEN END . LE. . 100000D-01

32



APPENDIX B. PROGRAM FOR MINIMUM FUEL/TIME SINGLE

CONTROLLER

This appendix shows the IODE program used for the minimum fuel time single

controller. IODE is an interactive ordinary differential equations package that runs on

the VM CMS time sharing system. It was developed at the Naval Postgraduate School

bv Roeer R. Hillearv.

VARIABLES & INITIAL CONDITIONS:
XI = 6. 844000000
X2 = -6.844000000
F = .0

T = .

XI = phi dot
X2 = psi dot
F = fuel
T = time

CONSTANTS:
P = 1. 000000000 ; P = tan(theta)

SPECIAL FUNCTIONS:
UNEAR = 0DEIF(-Xl*ABS(Xl)/2+Xl+X2*ABS(X2)/2, 0,1,-1)

CHECK = ODE IF(X2+P*X1, 0,1,-1)

UFAR = ODEIF(ABS(X2/X1),P,0,-X2/ABS(X2))

if point (XI, X2)
is below or on the
function described
by the first
argument of the
ODEIF line
then UNEAR=+1,
else UNEAR=-1

if point (XI, X2)
is below or on the
line described by
the first argument
of the ODEIF line
then CHECK=+1
else CHECK=-1

if point (XI, X2)
is below or on the
lines with slope P
AND slope -P
OR
above lines with
slopes P AND -P
(lines drawn thru
origin)
then UFAR=0, else
UFAR=-sign(x2)
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UCOND = ODEIF(ABS(Xl),2,0,UFAR)

U = ODE IF(ABS(UNEAR+CHECK),0, UCOND, UFAR)

END = X1*X1 + X2*X2

; if magnitude of XI
;gt 2, UCOND=UFAR,
; else UCOND=0

; if point (XI, X2)
; in REGION A or B

; then U=UCOND, else
; U=UFAR

; end condition
; criteria

DERIVATIVES:
D(X1 /D(T ) = =

X2
D(X2 /D(T ) = =

-XI + U
D(F /D(T ) = =

ABS(U)

;X1 dot = X2

;X2 dot = -XI + U

;F dot = abs(U)

OUTPUTS:
TITLE: SINGLE CONTROLLER MINIMUM FUEL/TIME
TABULATE: T XI X2 F U

AT INTERVAL . 1000000000D-01
PLOT: X2

AGAINST: XI
PLOT: U

AGAINST: T
PLOT: F

AGAINST: T AT INTERVAL . 1000000000

END CALCULATION WHEN END . LE. . 100000D-01
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APPENDIX C. PROGRAM FOR MINIMUM FUEL/TIME DUAL

CONTROLLER

This appendix shows the IODE program used for the minimum fuel/time dual con-

troller. IODE is an interactive ordinary differential equations package that runs on the

VM/CMS time sharing system. It was developed at the Naval Postgraduate School by

Roser R. Hillearv.

VARIABLES & INITIAL CONDITIONS:
XI = 6. 844000000
X2 = -6. 844000000
F = .

T = .

XI = phi dot
X2 = psi dot
F = fuel
T = time

CONSTANTS:
P = 1.000000000
Q = 1. 000000000

; P = tan( theta)
;Q = tan(90-theta)

SPECIAL FUNCTIONS:
UNEAR1 = 0DEIF(-Xl*ABS(Xl)/2+Xl+X2*ABS(X2)/2, 0,1,-1)

CHECK 1 = ODE IF(X2+P*X 1,0, 1,-1)

UFAR1 = 0DEIF(ABS(X2/X1),P,0,-X2/ABS(X2))

if point (XI, X2)
is below or on the
function
described by the
first argument of
the ODEIF line
then UNEAR1=+1
else UNEAR1=-1

if point (XI, X2)
is below or on the
line described by
the first argument
of the ODEIF line
then CHECK1=+1
else CHECK1=-1

if point (XI, X2)
is below or on the
lines with slopes
P AND -P
OR
above or on lines
with slopes P AND
-P (lines drawn
thru origin) then
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UC0ND1 = 0DEIF(ABS(X1),2,0,UFAR1)

Ul = 0DEIF(ABS(UNEAR1+CHECK1),0,UC0ND1,UFAR1)

UNEAR2 = ODEIF(Xl*ABS(Xl)/2-X2+X2*ABS(X2)/2, 0,1,-1)

CHECK2 = ODEIF(X2-Q*Xl, 0,-1,1)

UFAR2 = ODEIF(ABS(X2/X1),Q,-X1/ABS(X1),0)

UC0ND2 = ODEIF(ABS(X2),2,0,UFAR2)

U2 = 0DEIF(ABS(UNEAR2+CHECK2),0,UC0ND2,UFAR2)

END = X1*X1 + X2*X2

;UFAR1=0, else
;UFARl=-sign(X2)

; if magnitude of XI
;gt 2, UC0ND1=UFAR1
;else UCOND1=0

; if point (XI, X2)
; in REGION a or b
; then U1=0 else
; U1=UFAR1

if point (XI, X2)
is to the left or
on the function
decribed by the
first argument of
the ODEIF line
then UNEAR2=+1
else UNEAR2=-1

if point (XI, X2)
is below or on the
line described by
the first argument
of the ODEIF line
then CHECK2=+1
else CHECK2=-1

if point (X.,X2)
is below or on the
lines with slopes
Q AND -Q
OR
above or on lines
with slopes Q AND
-Q (lines drawn
thru origin) then
UFAR2=-sign(Xl)
else UFAR2=0

; if magnitude of X2
;gt 2, UCOND2=UFAR2
;else UCOND2=0

;if point (XI, X2)
; in REGION c or d
; then U2=0 else
; U2=UFAR2

; end condition
; criteria

DERIVATIVES:
D(X1 /D(T ) ;X1 dot = X2 + U2
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X2 + U2
D(X2 /D(T ) = =

-XI + Ul
D(F /D(T ) = =

ABS(Ul) + ABS(U2)

;X2 dot = -XI + Ul

;F dot = abs(Ul) +
; abs(U2)

OUTPUTS:
TITLE: DUAL CONTROLLER MINIMUM FUEL/TIME
TABULATE: T XI X2 Ul U2

AT INTERVAL
PLOT: X2

AGAINST: XI
PLOT: Ul U2

AGAINST: T

1000000000D-01

AT INTERVAL 1000000000

END CALCULATION WHEN END . LE. . 100000D-01

37



LIST OF REFERENCES

1. Boyd, Austin J., Design Considerations for the ORION Satellite: Structure, Propul-

sion and Attitude Control Subsystemsfor a Small General Purpose Satellite, Master's

Thesis, Naval Postgraduate School, Monterey, California, September 1987.

2. Agrawal, Brij X., Design of Geosynchronous Spacecraft, Prentice-Hall Inc., 1986.

3. Junkins, John L. and Turner, J. D., Optimal Spacecraft Rotational Maneuvering,

Elsevier, 1986.

4. Wertz, James R., Spacecraft Attitude Determination and Control, D. Reidel Pub-

lishing Company, 1985.

5. Bushaw D., "Optimal Discontinuous Forcing Terms", Contributions to the Theory

of Nonlinear Oscillation, Vol. IV, p. 29, Princeton University Press, 1958.

6. Kirk, Donald E., Optimal Estimation, Prentice-Hall Inc., 1970.

7. Athanassiades, Michael and Falb, Peter L., Time-Optimal Velocity Control of a

Spinning Space Body, Report 22G-8, MIT Lincoln Laboratory, September 1962.

38



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943-5002

3. Dr. H. A. Titus. Code 62Ts 4

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5002

4. Professor J. B. Burl. Code 62B1 1

Department o[ Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5000

5. Space Systems Academic Group 1

Attn: Dr. Rudolph Panholzer.Code 12

Naval Postgraduate School

Monterey, CA 93943-5000

6. Department Chairman. Code 62 1

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

7. Director of Research Administration, Code 012 1

Naval Postgraduate School

Monterey, CA 93943-5000

8. United States Space Command 1

Attn: Technical Librarv

Peterson AFB, CO 80914

9. Naval Space Command 1

Code N3
Dahlgren, VA 22448

10. Chief of Naval Operations 1

Director, Navv Space Svstems Division

OP-943
Washington, DC 20305-2006

39



11. Commander Space and Naval Warfare Svstems Command
PD-80
Washington, DC 20361-5100

12. LCDR J. L. Cunnineham
NAVSPASUR DErtCHO
APO San Francisco 96287-0006

40















Thesis
C9465
c.l

Cunningham
Spin stabilization of

the ORION satellite
using a thruster attitude
control system with
optimal control consid-
erations.

3 9 16

It

Thesis

C9465

c.l

Cunningham
Spin stabilization of

the ORION satellite

using a thruster attitude

control system with

optimal control consid-

erations .




