
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�6�R�I�W�Z�D�U�H���W�H�V�W�L�Q�J���I�R�U���H�Y�R�O�X�W�L�R�Q�D�U�\���L�W�H�U�D�W�L�Y�H

�U�D�S�L�G���S�U�R�W�R�W�\�S�L�Q�J

�'�D�Y�L�V�����(�G�Z�D�U�G���9�������-�U��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVAL POSTGRADUATE SCHOOL
Monterey, California

In

Lfl

DTIC
0~~GA% ELECTE

0 AR0 6 1991 '

THESIS

SOFTWARE TESTING
FOR

EVOLUTIONARY ITERATIVE RAPID PROTOTYPING

by

Edward V. Davis, Jr.

December, 1990

Thesis Advisor: Timothy .,. Shimeall

Approved for public release; distribution is unlimited.

913 04 -00 2

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY DTSIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

.NAMEOF PERFORMINGORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
avalPostgraduate School (if applicable) Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classificaton)
SOFIARE TESTING FOR EVOLUTIONARY ITERATIVE RAPID PROTOTYPING(U)

B . P I RSP NIAL AUT , -,R(S)avis, Ed ar v.r.

aTYP.REPRT 13b. TME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
sters _ess FROM TO December 1990 295

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by block number)

FIELD GROUP SUBGROUP Software Testing, Software Prototyping, Rapid Prototyping, Reusable Com-
ponents, Requirements-based Testing, Software Testing Tools

19. ABSTRACT (Continue on reverse if necessary and identity by block number)
Rapid prototyping is emerging as a promising software development paradigm. It provides a systematic and autom-
atable means of developing a software system under circumstances where initial requirements are not well known or
where requirements change frequently during development. To provide high software quality assurance requires suf-
ficient software testing. The unique nature of evolutionary iterative prototyping is not well-suited for classical testing
methodologies, therefore the need exists for a testing methodology tailored for this prototyping paradigm.

This thesis surveys current prototyping and testing practices to provide a foundation for developing a software
testing methodology for prototyping. The thesis then describes a testing methodology for rapid prototyping, Spiral
Testing, and the Test Goal Tracking System (TGTS), a requirements-based testing tool developed for use with the
Computer Aided Prototyping System (CAPS). TGTS provides the first in an anticipated family of testing tools to
support the CAPS environment. This thesis shows key prototyping characteristics impinging on testing, the value of
Spiral Testing and the feasibility and qualities of complementary testing tools to support evolutionary iterative rapid
prototyping.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED [] SAME AS RPT. DTIC USERS UNCLASSIFIED

2 FmmOF aPONBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 2c
timot y imea (408) I4-20 M

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

Software Testing

for

Evolutionary Iterative Rapid Prototyping

by

Edward V. Davis, Jr.

Major, United States Marine Corps

B.S., United States Naval Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENGK IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1990

Author: _ _ _

Edward V./I6avis, Jr.

Approved by:

Timothy / Shimeall, Thesis Advisor

Patrick D. Ba'rnes, Second Reader

Robert B. McGhee, Chairman

Department of Computer Science

ii

ABSTRACT

Rapid prototyping is emerging as a promising software development

paradigm. It provides a systematic and automatable means of developing a

software system under circumstances where initial requirements are not

well known or where requirements change frequently during development. To

provide high software quality assurance requires sufficient software

test inig. Th unique natur(, of evolutionary iterative prototy'i n is not

well-suited for classical testing methodologies, therefore the need exist;

for a testing methodology tailored for this prototyping paradigm.

This thesis surveys current prototyping and testing practices t

provide a foundation for devoJop.ing a software testing methodology for

prototyping. The thesis then describes a testing methodology for rapid

prototyping, Spiral Testing, and the Test Goal Tracking System (TGTS), a

requirements-based testing tool developed for use with the Computer Aided

Prototyping System (CAPS). TGTS provides the first in an anticipated

family of testing tools to support the CAPS environment. This thesis

shows ke3 prototyping characteristics impinging on testing, the value of

Spiral Testing and the feasibility and qualities of complementary testing

tools to support evolutionary iterative rapid prototyping.

Acoession For

NTI S CRA&I
DTIC TAB 0
Unintiounced 0
Just i ficatio

D I -t.rbution/

A_ lability Codes

~ Avcill and/or
Dtst SpecialA I

THESIS DISCLAIMER

DBase and dBase III+ are registered trademarks of Ashton-Tate.

iv

TABLE OF CON'ENTS

I. IN"TRODUCTION . I

A. SIGNIFICANCE OF RAPID PROTOTYPING

1. The Need for Prototyping

a. The Software Gap 2

b. Software System Reliability and Maintainability . ?

2. Purpose of Prototyping 3

a. Prototyping as a Concept 3

b. Prototyping Contrasted with the Waterfall Life

Cycle Model

3. Techniques of Rapid Prototyping and Testing

Implications q

4. Strengths and Weaknesses of Prototyping 10

5. Prototyping Today 11

B. SIGNIFICANCE OF SOFTWARE TESTING 12

1. Purpose of testing 12

2. Conventional testing and its limitations in

prototyping 14

C. PURPOSE OF THESI3 17

D. SCOPE OF THESIS 19

1. Need for a Companion Testing Methodology in Rapid

Prototyping 20

V

2. Overview of Thesis . 22

II. SURVEY OF PRECEDING WORK 24

A. SELECTIVE OVERVIEW OF RAPID PROTOTYPING 24

1. The Promise and Value of Prototyping 24

2. Analysis of existing prototyping methodologies 27

a. Rapid Throwaway Prototype Methodology 28

b. Incremental Development Methodology 29

c. Evolutionary Prototyping Methodology 30

d. Reusable software components methodology 31

e. Automated Software Synthesis Methodology 32

3. Conclusions on prototyping methodologies 34

B. SOFTWARE TESTING: PURPOSE AND SELECTED AUTOMATED

METHODOLOGIES . 3f

1. The Software Testing Process 36

2. Software Testing Methodologies and Companion Testing

Tools 37

a. Requirements-based testing 39

b. F-inctional Testing 43

c. Structural Testing 44

3. A Brief Review of Selected Automated Testing Tools 49

(1) ASSET - A System to Select and Evaluate

Tests 49

(2) UNISEX: a UNIx-based Symbolic FXecutor for

Pascal 50

vi

C. SYNOPSIS 01 SOFTWAr[TESTING MFTHOI); WITHIN RAPII1

PROTOTYPING 51

D. BOFHX'S SPIRAL, MODI. OF SOFTWARE DEVELOPMENT 53

E. THE CAPS RAPID-PROTOTYPING SYSTEM 55

1. CAPS 56

2. PSDL 58

III, A PROPOSED TESTING METHODOLOGY AND TOOL DEVELOPMENT STRATEGY

FOR RAPID PROTOTYPING 62

A. RAPID PROTOTYFING SYSTEM CHARACTERISTICS. 62

B. PROTOTYPE-BASED TESTING 62

1. Test Information From Iteration 63

2. Test Information About Components 64

3. Test Information About Performance 65

4. Recording Test Information 66

C. OVERVIEW OF A TESTING SUPPORT SYSTEM FOR EVOLUTIONARY,

ITERATIVE RAPID PROTOTYPING 66

1. Shimeall's Testing Within Iterative Rapid Prototyping 66

2. Testing-related Features Needed in a Prototyping

System 70

a. Requirements-capturing Features 70

b. Reusable Components Features 70

c. Prototyping Language Features 71

3. Spiral Testing: A Testing Methodology to Support

Evolutionary Iterative Rapid Prototyping 72

a. The First Test Planning Iterations 73

vii

b. Subsequent. Test Planning Iterations 75

C. The Final lTtst Planning Iterations 80

d. Spiral Testing: Advantages and Disadvantage.,, . 81

e. Characteristics of Candidate Softw rf Testing

Tools 82

D. REQUIREMENTS-BASED TESTING: A KEY METHODOLOGY FOR RAPID

PROTOTYPING 83

1\. TGTS: A SAMPLE REQUIREMENTS-BASED TESTING TOOL 87

A. AN OVERVIEW OF THE TEST GOAL TRACKING SYSTEM 87

1. TGTS Distinction 87

2. TGTS Goals . 81

2. TGTS Database Software F

Y. DEVEIOPMENT AND DESIGN OF THt TEST GOAL. TRACKING SYf'TF . 9

1. Detailed Design Decisions and Tool Structure for TGTS 90

a. Modular Design 90

b. Menu-driven Format 91

c. Tool Input and Output 92

d. TGTS Database Design 92

2. Tori Operations with TGTS 95

a. TGTS Database Output Operations 95

b. TGTS Test Goal Update Operations 97

c. TGTS PSDL Update Operations100

d. TGTS' Iteration Information Facility 101

C. USE OF THE TEST GOAL TRACKING SYSTEM 101

1. Problem Environment and Prototype Specification . . . 102

viii

2. .Yes;Jfe Procesoi R(,ui r.rm.,', . . 0

3. Test Gou] lxclo rr, e I I'rocs . A It I; T ,'.]Ob

D. PERFORY-NCF OF TII! Tr'-TI GOAl TRACKIN(G .Y.;, 1!1

V. CONCLUSIONS AND RECOMMENDATION!. 112

A. RESEARCH CONTRIBUTION!.. !13

L. FLrURE RESEARCH. 114

APPENDIX A TGTS DATABASF SAYPIrs.. 116

APPENDIX B TGTS USER'S MANUAL 138

APPENDIX C TGTS SOURCE CODI.170

REFERENCESDl

BIBLIOGRAPHY 279

INITIAL DISTRIBUTION LIST.282

ix

LIST OF FIGURES

Figure 1. Iterative Rapid Prototype Development. 7

figure 2. Waterfall Life Cycle Model 8

Figure2 3. Rapid Prototyping Methodology 9

Figure 4. Conventional Test Flow 16

Figure 5. Spiral Model of the Software Process 53

Sigure 6. Main CAPS Tools............ 5

Figure 7. Shimeall's Iterative Test Planning Process 6

Sgur 8. A "Targeted" Spiral 74

Figure 9. Top Level TGTS Program Decomposition 91

Figure 10. TGTS Database Structure 93

Figurc 11. C31 Message Processor Module Decomposition 104

1 igure 12. Manage Radar Tracks Sub-module 106

Figure 13. PSDL Description of Radar Track Manager 107

x

ACKNOWLEDGMENWS

I wish to express my gratitude toward, and admiration fur, Professor

Tit olth J. Shimeall for providing the initial idea for this thesis and for

his mentoring efforts. He introduced me to the fascinating field of

software testing and haF. been a phenomenal source of computer science

knowledge.

Captain Patrich D. Barne,, USAF and Professor l.uqi have also been a

regular sour,.. of professional assistance. I hope their continuing

resvir(h efforts will be enhanced by the work presented herein. It has

certainly been my privilege to have been associated with them.

My, wife, Janet, and our three boys, Micah, Matthew and Mark truly have

been a blesting and a regular source of joy and encouragement throughout

tht. proces- o! thesi", prepar.tion. Mark arrived in the mid:;t ,f the

process and occasionally kept later hours than I did. Amidst the hustle

and bustle, their prayers and help around the house were a great ast..

Finally, if anything shows the fallibility of man in his fallen state,

it is software testing. Hopefully, this thesis' results, ii improv,

software quality and performance. Sola Dei Gloria.

xi

1. INTRODUCTION

Prototyping is a rapidly developing software engineering paradigm that

is receiving increasing attention as a wa) of speeding software

development. As we look to rapid prototyping methodologies to evolve

production code from prototypes, the need for effective testing

methodologies becomes increasingly important. Current testing approaches

ar not designed to support evolutionary or iterative prototyping

methodologies. Testing in a prototyping context has been either ad-hoc or

*lsj ho:., faled to accomodate iterative development. ShimealI's work

[Shimea1190] initiated questions regarding testing for iterative

prototyping. This thesis will describe a software testing approach for

evolutionar3 iterative rapid prototyping systems. The following sections

o erview is,,ues nece'.;ary to fully introduce the implications of testinjg

support for prototyping.

A. SIGNIFICANCE OF RAPID PROTOTYPING

Rapid prototyping is among the most promising emerging technologies

in the field of computer science today. It facilitates a systematic and

automatable means of developing a desired software system under

circumstances where initial requirements are not well known or where

requirements change frequently during development.

1. The Need for Prototyping

a. The Software Gap

The past. two ducade., have seen the gal, between so!t.ware

system demand and development expand into a backlog known as the "software

crisis." Software development has not effectively kept up with demand.

Computer hardware technology has outpaced our ability to develop software

that fully exploits the hardware's capabilities and meets the user's

stated requirements on time. Many reasons for the backlog exist. The

techniques for engineering requirements for large, complex systems are

still immature. This immaturity exacerbates resource limitations and

lengthens development times. Requirement and hardware changes are also a

certainty during large system development that, in turn, will require

system changes. Increasing software development. costs mitigate toward

extending the service life of software, therefore software should b,.

developed within a life cycle that eases system maintenance and

modification throughout its life. Ensuring that systems are amenable to

modification also slows development. System size and complexity today

demand automated tools for system development and flexible development

paradigms. Both the tools and the paradigms should be adaptable to change

throughout the development process.

b. Software System Reliability and Maintainability

Reliability and maintainability are the other key system

development problem areas today. The key question is, "How does one know

that a system is correct and does all that is required and nothing that it

is required not to do?" The larger the system, the more complex one's

2

attuript at an answer will be. In short, test. teams must test the system

for proper behavior. Testing methods must give the necessary assurante

tha t t hl system works. Debugging mus, b: qui ck, complete, and

consistently applied where it propagates change throughout a system.

Current manual methods are slow, tedious, and error prone. Maintenance is

a very broad area that includes "modification of a software product after

delivery to correct faults, to improve performance or other attributes, or

to adapt a product to a changed environment" [ANSI Stds83]. It currently

accouitS, for over half the total software cost in today's system:.

Maintainability implies a need to track the adjustments to a system over

time and the accompanying verification and validation that come both with

the initial acceptance and with each system change. Even more

fundamental, the system and its life cycle model must promote eab3 change.

2. Purpose of Prototyping

a. Prototyping as a Concept

Prototyping is not a new concept. Industry has long applied

prototyping a, a means of determining project feasibility and model

refinement. Aircraft prototypes are an example of this. Prototyping i$.

a new concept though, within the realm of software engineering.

Most software prototyping work to date has been with

prototyping for requirements analysis purposes. A model (prototype) of

the anticipated software is constructed for customer and developer

assessment. In some cases (i.e., real-time systems), a model is the only

effective requirements derivation technique. Once the model is built, it

is demonstrated to the user for his feedback. The "develop, demonstrate,

3

modif5 " app-roach is repeat.ed iteratively un '.I I requi F 01LI ar

form-liz.d or until the system evolves into a productioh £ysteTLe.

Pressman notes that prototyping has been conducted %,it.h ,

of two objectives in mind:

" the purpose of prototyping is to establish a set of formal
requirements that may be translated into production software through
the use of software engineering methods or techniques, or

" the purpose of prototyping is to provide a continuum that can lead to
the evolutionary development of production software.
[Pressman87: p.150]

The two purposes are not necessarily mutually exclusive. Methodologie,-,

can be used both to capture requirements and subsequently to build a model

or instance of a system to serve as a pattern upon which to iterat ively

develop later stages of the system. Prototyping is useful for capturing

system requirements when they are not well known or when thty" are of

questionable feasibility. A prototype provides a partial representation

of a desired system to be used in system analysis and design to captur(

requirements and/or determine feasibility. One can apply iterative rapid

prototyping to the spiral model-iterative design approach to provide a

pilot version or executable model of the intended system and evolve

(transform) that model into the production system. Prototyping then

becomes the software engineering technique used to transform requirements

into the production system.

Researchers have proposed several software prototyping

methodologies to which the preceding paragraphs have alluded. While

authors have coined many names for these methods, they can be taxonomized

into five basic methodologies.

4

I. Rapid Throwawa) Prototyping Methodology. Thin approa(h augment:
traditional system development methods by providing a quici.
imp ern.ntation for users to test and then provide a respon..e to thu
designers on how well it meets requirements. It is used before or
during the requirements phase of the life cyclu to, enhant(
requirements capturing and does not become part of the production
code.

2. Incremental Development Methodology. A partial model of the system
is developed and then enhanced in small, successive increments. The
target here again is capturing requirements without using the
resulting prototype in the production code.

3. Evolutionary Prototyping Methodology. Methods one and two are
combined to capture requirements and then iteratively develop the
system. The resultant prototype is used as part of the production
systen . The prototype is "tuned" along the way and proponents of
this methodology see it as a way to eliminate formal, Wri' Len
requirements specifications.

4. Reusable Software Component Methodology. This methodology builds

prototypes using written components retrieved from a library, thus
saving development time. The components must be written in a caommon
language that al]o,- for an adequate interface after component
linkag,,. Portions of the prototype may become part (f the
production system.

5. Automatud Software Synthesis Methodology. This method transforms
high level design specifications directly into operational codu so
that the protot ype attains full functionality via full
specification. The specification serves as the source to generate
the operational code and the specification language provides thc
means for all the design, coding, and integration. This method is
not currently feasible.

A thesis by Fountain discusses these methods at length [Fountain9O].

Chapter II analyzes each method in detail, particularly noting which

methods need formal testing support. Formal testing methods are

applicable to those methodologies that can directly result in production

code development.

Rapid-prototyping is a key descriptor for the concept of

software prototyping since developers need ways to speed the software

design process. Prototypes must be capable of being developed rapidly for

irot.otyping to bt. effective. Pressman cites three generi(classe!; of

method:, and tools used for rapid prototyping: fourth generation

techniques, reusable software components, and formal specification and

prototyping environments [Pressman87: p. 150]. Rapid prototyping exists

specifically to help create software in instances where requirements are

not well known or are not well understood or may change often and readily

adapts to requirements changes. Evolutionary and iterative rapid-

prototyping systems capture functional requirements via a series of

increasingly functional partial implementations to produce a system that

matches the cu,;toirvr's desires after development. The customer evaluates

each partial implementation which is then extended to reflect his

comments. Figure I graphically illustrates this process. The spiral

suggests the iterative prototype development, with the angle denoting the

developmental phase and the radius indicating a measure of software

complet eness ['Shimeal 90: p.1].

b. Prototyping Contrasted with the Waterfall Life Cycle Model

Prototyping, when applied iteratively within a spiral life

cycle model, is flexible and responds quickly to the user's feedback.

This is in sharp contrast to the Waterfall Life Cycle Model of software

development where all requirements-capturing occurs as the first step in

a sequential process of system development. Developers must "lock in"

requirements at the onset of development or else face the prospect of

requirements changes that force them to back up in the development

sequence and reimplement the changes. The sequential nature of the

Waterfall Model makes it unresponsive to change and a poor validation

6

method for uncertain software system requirements. Figure 2 graphically

Functionality
Designed

i mplementation .Delivery to Customer

Design "

Evaluation

Functionality New Requirements

Specified Identified

FRequirementsFunctional , Analysisi
Specification

Consistent Requirements
Identified

Figure 1. Iterative Rapid Prototype Development [Shimeall9O: p.1]

depicts the Waterfall Model as described initially by Royce in 1970 and

as referenced by Davis, Bersoff and Comer [Davis,Bersoff&Comer88].

Though some claim that prototyping is too expensive, studies

suggest that it is still far cheaper to prototype than to correct a system

after it is in production. One can readily see that it is much simpler to

correct errors in requirements and specifications early, rather than once

the system has gone into production. Gomaa and Scott were among the first

to point this out as far back as 1981 [Gomaa&Scott8l].

Specifying user requirements has always been difficult. The

written specifications typical of the Waterfall Model are generally dull

7

Requirements Analysis

Functional Specifications

Architectural Design

Module Design

Program Coding

Testing

Implementation & Maintenance

Retirement

Figure 2. Waterfall Life Cycle Model

reading and difficult for users to understand. All this presupposes the

designer correctly captured the user's requirements in the first place.

On the other hand, prototyping provides a working model (or prototype)

that makes the designer's interpretation of the user's functional

requirements clear and helps identify misunderstandings, missing

requirements, and errors. The use of a prototype clarifies and verifies

that the designer correctly captured the user's functional requirements.

A functional requirement is "a requirement that specifies a function that

a system or system component must be capable of performing" [ANSI Stds83].

By taking the user's comments on any iteration, designers make appropriate

corrections and additions to increase the prototype's functionality.

8

Figure 3 shows the standard rapid prototyping methodology using a feedback

loop.

Determine Requirements Construct
Requirements I Prototype

Requirements Prototype
Adjustments

Requirements
OK

System
Implementation

Figure 3. Rapid Prototyping Methodology [Fountain90: p.16]

3. Techniques of Rapid Prototyping and Testing Implications

Evolutionary rapid-prototyping methods are especially interesting

since they lead to production system development directly from the

prototype. Production code is the object of formal testing. Evolutionary

prototyping incorporates the incremental (or iterative) methodology and is

efficient because it uses the prototype directly in producing the

delivered (production) system. Using such an approach over the system

lifecycle closely parallels the spiral model of systems development.

Boehm describes the effectiveness of the spiral model and its adaptability

to prototyping [Boehm89]. This thesis investigates the implications of

the spiral model on prototype testing.

9

Coupling rapid-prototyping with capabilities such as iterative

development and libraries of reusable software components, speeds

development since a prototype demonstration will show quickly whether the

system meets the customer's requirements. However, prototype

demonstration alone is not generally sufficient evidence for determining

that a software system performs acceptably. Therefore tools to aid in

software testing form an essential part of a production-system-oriented

rapid-prototyping system. To generate production code directly from

prototyping will require evolutionary, iterative ra-id-prototyping

environments, employing reusable software components. These

characteristics show great promise for the development of production

software systems, to include very large applications in real-time

computing environments using high-level languages.

4. Strengths and Weaknesses of Prototyping

As mentioned, the current Waterfall Model of lifecycle

development is proving to be too slow and costly for today's large

software systems. Prototyping promises to reduce development costs and

time for several reasons. First, prototyping puts the onus of

requirements validation on the user, who must validate each iteratio of

the prototype during demonstration. Second, requirements tend to be

captured earlier because users comment the system after each iteration

vice at the end of implementation, therefore erroneous or missing

requirements are less likely. The expense of requirement errors is a

major development cost. Third, all prototyping methods allow requirements

validation to be completed before production and provide working models

10

that are available for evaluation throughout the development process.

Prototyping also promises to produce equivalent software faster than

conventional approaches [Boehm84: p.86].

Several weaknesses of the prototyping methodology bear mentioning

as well. First, there is a tendency not to record requirements as they

are captured. The argument for not recording requirements is that the

working prototype and the prototype specification language provide the

requirements. Such a view poses problems because it does not address the

need for those not expert at reading prototype requirements (customers) to

understand the system requirements apart from watching a demonstration.

Failure to record requirements also does not address the need for formally

testing the prototype. Much of the intent of a prototyping specification

is implicit and not readily evident. Prototyping captures the "what" of

a system, but often loses the "why." Justification of the system's

behavior is therefore often hard to state, especially as the size of the

system grows.

Another weakness of prototyping is its immaturity as a

methodology. The diversity of prototyping methodologies under development

and the lack of completed sophisticated prototyping environments limit its

current applicability.

5. Prototyping Today

As mentioned, prototyping is a new field and no general purpose

prototype systems (environments) have been fully developed, so many

environment implementation questions are not yet answered. Increasing the

prototype methodology complexity elevates the need for complex

11

development environments to support the prototyping capabilitie.. Most of

the research in evolutionary and reusable software components

methodologies is likely to require five to fifteen years to mature since

these prototyping environments are much more complex than the simple user

interface demonstration methodologies in use today. Maintaining design

histories and matching requirements and their modifications to prototype

iterations is another major research task needed for building effective

prototyping environments. Fountain provides a detailed analysis of the

existing methodologies and published models [Fountain9O].

B. SIGNIFICANCE OF SOFTWARE TESTING

Software systems abound today and the list of additional application

areas continues to grow rapidly. As software components control mor-

life, mission, and cost critical systems, we must be the more sure that

these systems are complete and correctly designed. Software systems

testing verifies that these systems are complete and sufficiently correct

as implemented. Testing is an essential and complementary partner of

design within the software system lifecycle. As the importance of the

consequences of system failure increase, so does the importance of

software testing.

1. Purpose of testing

"Testing is the process of exercising or evaluating a system or

system component by mqnual or automated means to verify that it satisfies

specified requirements or to identify differences between expected and

actual results" [ANSI Stds83]. The primary goal of testing is to ensure

that bugs do not enter the system under consideration. Testing

12

accomplishvs, this goal by making potential mistakes and misunderstanding"

visible and by identifying incomplete requirements anid de igi.. A

secondary testing goal is to find the bugs that have managed to enter the

system. Testing accomplishes this second goal by causing them to produce

a result that conflicts with a specified or expected result

[Beizer83:p.3]. Note that neither of these goals is a demonstration that

the system will work for all cases.

Systems under development will contain errors since fallible

humais are necessiarily involved in the development proces:>. Beizer cites

the disconcerting fact that programming done well still has on the order

of one bug per 100 statements [Beizer83]. Testing must be performed if we

are to hope for better system performance than such a bug rate will

provid,.

Testing and qualitN assurance are the single largest costs iin

software developmtnt and typically consume thirty to sixty percent of

total development resources (more as the size of the system grows). InI

the early years of computer science, virtually all testing was learned in

the school of hard knocks and conducted in an ad-hoc manner. Indeed, it

was not until the early 1970's that software testing received serious

formal attention [Iletze188J. The need for effective testing methods has

increased with the growth in application size, complexity and cost.

Therefore, efforts have expanded in the software engineering community to

formalize and systematize testing methods. Today's system complexity

mandates that. a design system and its lifec"cle model be highly amenable

to thorough testing with minimal resource cost and maximal assurance of

proper system performance.

13

2. Conventional testing and its limitations in prototypirnl

There exist theoretical limits to complete testing. Testing i&

never a proof of program correctness. Any given program will operate on

a finite set of inputs and complete testing would subject a program to

every conceivable input. Therefore complete testing is practically

impossible due to the combinatoric explosion of possible inputs for a

program of any size. Beyond this, Manna and Waldinger succinctly express

the theoretical limits to complete testing:

S"We can never be sure that the specifications are correct."

* "No verification system can verify every correct program."

* We cani never be certain that a verification system is correct."
[Manna&Waldinger78: p.1991

Therefore the objective of testing is to demonstrate suitability as

opposed to proving correctness.

flow one defines suitability is context-sensitive and niunt bc

determined within the framework of the application environment. We want

a level of assurance that the system is correct commensurate with the

criticality of the system. Therefore the need for effective testing

methodologies arises, ones suited both to the development and the

application environments so that we can declare a system performs

suitably. Concurrently, testers need automatable testing methodologies to

complete testing in an acceptable time.

Testers need three things to conduct software testing:

* an object to test (e.g., a system containing software)

" a set of test conditions (e.g., data to feed through the program)

14

* a standard for evaluating the behavior of the object (e.g., a
statement, of correct program results) [Shimeall90: p.21]

Given a system that needs testing, testers collect test cond itior.. and

develop a test oracle against which to measure the system's suitability.

Testing unfolds in the following manner. The tester collects and

validates the needs and assumptions made during the application

development and then expands and develops them into a set of consistent

test goals in a manner similar to requirements analysis.

Based upon a test goal analysis, testers state and prioritize

possible test goals. Since only a fraction of the possible inputs of a

system can be tested, the tests must be prioritized and then grouped to

ensure the most efficient testing and to know what to abbreviate, if

required. The testers select specific test conditions to satisfy the test.

goals. A single requirement may require multiple test goals. Each test

goal may additionally require multiple test cases to ensurte that the

proper behavior is present. Testers will use various testing techniques

to select. test cases and evaluate the system under consideration. They

place tests in a logical order to test particular goals and situations,

with progressively larger portions of the system being tested as the

process continues.

At any given level, testers test the most critical portions of

the system first to make sure that those portions perform correctly. Once

testers derive the test oracle, and the user approves the tests, the tests

will be executed and analyzed. System prototypers and testers correct

encountered test irregularities in the prototype and the prototype test

plan respectively. Testers generate additional test conditions and Lests

15

for the next iteration of testing, if needed, to test previous

corrections. Figure 4, from Shimeall [Shimeall90: p.3] provides a picture

of the conventional testing process.

Behavior Requirements Modified
Descriptions Expected

Behavior

Test hanges
Set Subject

Test Assumptions
Goals Se Behavior

Select
Prioritizec Test
BehavioT Procedure Evaluatio
to Test Constraints Object

on Operator ObjectInterventions Candidate/ffct.Pr c d r/ f e t Test

Group Employ _ _ Describe Desciptio Execute
Group .Test Evaluati'n Test - Test
Tests onBehavior Oracle Standard -Test

CanddateRevisions
-Data/Results }7Constraints! :,

onDaaonditions of

Select Evaluation
Test
Data

Figure 4. Conventional Test Flow [Shimeall9O: p.3]

Prototyping brings some unique testing concerns as well. One

iteration of a prototype can vary significantly from another.

Requirements may be changed or added or deleted. As iterations progress,

the number of requirements explicitly added and the requirements that will

16

need to be derived due to requirement interactions will increase

significantly. What worked in the system's context in one iteration may

well not work in the context of some future iteration. When using

reusable components, changes in component context of use will usually

require further component testing. Changes in the prototype specification

also may change the component chosen in reimplementation, thus

instantiating different code to match the changed specification. This

implies that prototype testing must occur in the context of the

prototype's history, the current set of requirements, and any previous

testing conducted.

While prototyping languages capture what the prototype is to do,

they are weak at capturing why the prototype is to do this and the

accompanying assumptions. Without capturing requirements, building a

proper test will be virtually impossible in contrast with conventional

testing where such documentation exists as part of the waterfall model of

development. All the above cries out for a companion testing methodology

that promotes a high assurance of proper system behavior and is tailored

for rapid prototyping.

C. PURPOSE OF THESIS

The purpose of this study is to investigate software testing within

an evolutionary, iterative-rapid-prototyping environment, and to establish

both the need for and feasibility of a companion testing methodology for

iterative rapid-prototyping. Testing support is a critical aspect of such

an environment since the prototype will evolve into the production code.

This topic has not previously been investigated. This thesis also

17

investigates methods for software testing tool development for integration

into rapid-prototyping environments. Now is the time to consider how to

enhance the rapid-prototyping methodology to facilitate thorough software

testing. Once prototyping allows thorough testing, we will have a

powerful means of developing very economical software systems with a low

risk of system error. Due to the current "software crisis," we must

establish more rapid, flexible and reliable software development methods.

Since rapid prototyping, as currently viewed, does not result in any

final statement of the customer's expectations, apart from the series of

prototypes, there exists no objective standard as a basis for testing the

software product. We need a formal testing methodology to accomplish such

testing. Therefore, formulating a corpus of foundational thought for

implementing specific testing methodologies on particular qualifying

rapid-prototyping systems will allow us to build testing tools for them.

A second purpose of the thesis investigates how to conduct

requirements-based testing within rapid-prototyping environments. Sinep

a series of prototypes results in a form of the customer's system

requirements, a central aspect of any functional testing must include

capturing these requirements in a way that leads to automatable

requirements-based testing methods. These methods must remain consistent

with rapid prototyping's purposes and concurrently move us toward

increased testing reliability and speed. Such methods also should aid in

executing a formal test process cycle.

A supporting thesis purpose is to demonstrate software testing tool

feasibility in rapid prototyping by constructing a simple requirements-

based testing tool for use in a particular rapid-prototyping system. This

18

tool will be the first member of a planned family of increasingly capable

rapid-prototyping testing tools.

The foundation for building a rapid-prototyping requirements-based

testing formalism exists in the necessary testing information's residency

within the development process and in our ability to usably capture this

information for testing purposes. The thesis will show, from key rapid-

prototyping system characteristics, such as system design, prototyping

language, revision control, and implementation language, how each

contributes to effective tool design. It must then establish key testing

tool design principles supporting the rapid-prototyping environment.

Finally, the thesis iill provide recommendations for continuing research

in rapid-prototype testing.

D. SCOPE OF THESIS

The entire spectrum of software testing concerns accompanies the

software testing in rapid prototyping issue. Shimeall raises the topic of

iterative prototype testing and asks key questions on the topic

[Shimea11901. This thesis elaborates on prototyping methodologies best

suited to lead to production code requiring testing. Prototyping

methodologies, lifecycle models, and current testing practices are

investigated as appropriate, to clearly establish an effective testing

methodology supporting rapid prototyping. The need for a prototype

testing methodology is highlighted in the following section. The

requirements-based testing tool developed will be demonstrated, by way of

example, to substantiate the testing methodology presented and

recommendations and conclusions regarding the research will be presented.

19

1. Need for a Companion Testing Methodology in Rapid Prototyping

As mentioned earlier, a given software design' implementation

m,,thod is only as good as the attendant ability to test the resulting

system sufficiently. Such is no less true for the rapid-prototyping

process. One has a frustrating situation, at best, if prototypes can be

developed quickly, but then require most of the allotted development time

for testing to see if they really meets requirements.

Most prototype testing proposals to date, where such proposals

exist at all, involve only manual procedures and ad-hoc testing

strategies. To achieve this thesis' primary goal, an essential set of

principles and characteristics for building effective rapid-prototyping

testing tools must be developed. In particular, the thesis will

concentrate on tool development that allows requirements-based testing in

rapid-prototyping environments.

Ideally, a given system's design process can take place in a

development environment that uses a fully integrated design tool set.

This is no less the case in rapid prototyping. In fact, one might argue

that such tools are all the more essential with rapid prototyping, since

a convenient, set. of integrated testing tools will aid the primary goal of

rapid development. Rapid prototyping's complexity generally requires an

environment of integrated and highly specialized tools. Because of the

modular designs typically used, the system is generally adaptable to

further tool integration, subject to certain restrictions to be described

within the body of the thesis.

The general testing method investigated herein views software

testing as that process concerned with ensuring a software application

20

does all it is intended to do and nothing it is not intended to do. There

must be a certain measure of formalism to automate the testing process.

This formal testing process is essential ii rapid prototyping, both to

ensure prototypes meet all validated requirements and to isolate and

demonstrate new iteration enhancement effects for receiving necessary

customer feedback.

The means of capturing the information believed to be present. or

else made to be present in the rapid-prototyping process is a major thesis

concern. There are many possible mechanisms that may aid this process, to

include:

" mechanisms to allow analysts and designers to record assumptions mad(
during analysis, specification, and design, to assist in test goal
analysis;

" history predicates, identifying modifications made between iterations
of the rapid prototyping development, to provide a basis for decision
making during test. goal analysis;

" analysis of developer comments on the intent of portions of the
specification and design, to provide a basis for test oracle
derivation:

• analysis of user comments on the intent of usage during the
evaluation phase of rapid prototype development, to provide a basis
for test oracle derivation and test condition selection;

0 automatic generation of test documentation from captured information.
[Shimeall90: p.91

Since this is the first rapid-prototype testing study, the thesis

investigates key princ:ples and characteristics of rapid-prototyping

systems that lend themselves to testing mechanisms, with the main effort

being requirements-based testing and test goal analysis.

21

Current ly, there exists; an evolutionary, iterat ive rapid

prototyping system that is undergoing development at the Naval

Postgraduate School. This system, the Computer Aided Prototyping System

(CAPS), is intended primarily for development of real-time applications

using a reusable component base, currently Ada. The requirements-based

testing tool developed in Chapter IV is for use with this prototyping

system.

Over the long haul, substantial research will be needed to cover

effectively the entire issue of testing within evolutioiry, iterative

rapid-prolotyping environments. This thesis seeks to open the door on the

subject.

2. Overview of Thesis

Chapter II provides an overview of the problem domain, covering

selected rapid prototyping methodologies that appear to possess the most

promise and adaptability for future applications and development of formal

and rigorous testing methodologies. A selective overview of the purpose

of testing and currently automatable software testing methodologies

follows. Chapter III proposes a software testing tool methodology for

evolutionary, iterative rapid prototyping systems, using reusable software

components. It includes a description of the system characteristics

needed for testing that attends particularly to requirements-based testing

tool development. Next, Chapter IV describes a basic requirements-based

testing tool developed for use with the Computer Aided Prototyping System

(CAPS) currently under development at the Naval Postgraduate School,

Monterey, California. The chapter describes tool implementation, usage

22

and performance. Chapter V suimmarizes the thesis contents and proposes

directions for further research.

23

II. SURVEY OF PRECEDING WORK

Software testing within an iterative, rapid-prototyping environment

is an interesting blend of several software engineering sub-disciplines.

Resultantly, the topic can be fully discussed only by establishing how

software testing and rapid prototyping interact. This chapter discusses

rapid prototyping, software testing, current rapid-prototype testing

methods, and several other lesser topics pertinent to the research at

hand. The survey covers the state of the art and focuses on prototyping

methodologies that. directly develop production code and on techniques to

aid in testing this code.

A. SELECTIVE OVERVIEW OF RAPID PROTOTYPING

1. The Promise and Value of Prototyping

The frustrations that. software engineers encountered using the

various traditional software development approaches have led them to look

to new paradigms to realize the needed software development gains.

Prototyping is one such new paradigm that has received incroasing

attention over the past decade. Many researchers are convinced it holds

great promise for helping to solve the software crisis. The prototyping

paradigm directly addresses several key problems contributing to the

software crisis. Luqi and Berzins summarize the vision of its value as

follows: "Rapid prototyping is particularly effective for ensuring that

the requirements accurately reflect the real needs of the users,

24

increasing reliability, and reducing costly requiremewts changes"

[Luqi&Berzins88]. This is very much the case Since thC prototyping

process tends accurately to capture requirements early. Further, since it

also places the burden for requirements validation upon the user, there is

less chance of unexpected changes later. A consequence is lower

maintenance cost over the system's life since the user's experience with

the prototype during development lowers the chance of performance

surprises after system delivery. Where feasibility is questionable,

prototyping shows if the system can be developed within cost constraints,

without having to commit excessive effort to the project.

The wealth oil material written to date on prototyping attests to

its many possible meanings. A basic dictionary definition describes

prototyping as "an original type, form, or instance that serves as a modfe]

on which later stages are based or judged" [AmHerDict781. In the software

engineering context, prototyping refers to an executable model of a

requested software system. It typically represents some portion of the

entire system, varying in the completeness of its functionality,

consistent with the purposes of the particular prototyping methodology

used.

The advantages of prototyping in requirements engineering are

readily apparent. The two components of requirements engineering are

requirements analysis and requirements validation. A requirement, as used

in this context, is:

(1) A condition or capability needed by a user to solve
a problem or achieve an objective. (2) A condition or
capability that. must be met or possessed by a system or
a system component to satisfy a contract, standard,
specification, or other formally imposed document. The

25

set of all requirements forms the basis for subsequent
development of the system or system component. lANaI
Stds83]

Requirements analysis in rapid prototyping is easiex since th user

interacts regularly with the designer, especially when development

commences. The biggest payoff is in requirements validation since the

user validates most requirements early in development, thus reducing the

opportunity for ripple effects that propagate through a system when later

changes are introduced. In the Waterfall Model, requirements validation

by the users did not occur until completed software product d.li~er.

This usually adds to system maintenance costs.

The iterative process i- essential to the prototyting

methodology's success because it establishes a dialogue between the user

and the system designer that captures and validates system requirements.

The final validated requirements serve as the basis for the system design.

Designers add enhancements to the initial system during each additional

iteration and iteration continues until the system is complete and all

pertinent design issues are solved.

The above version of prototyping is but a skeleton of the whole

vision of rapid prototyping. As summarized in Chapter 1, at least five

prototyping methodologies have been proposed to date. Advances in

Computer Aided Software Engineering (CASE) tools provide considerable help

in automating the entire rapid prototyping process to make it truly rapid

and manageable. CASE tools are based upon formal specification languages,

therefore, to support the tools, the specification language, any

prototyping language, and the design language must be fully integrated to

achieve automated performance in a given prototyping system. Current

26

research promises to provide, rapid prototyping ,-yst ems that produCL

production quality code for large software systems in it fraction of thf.

t. ilme requi red for convent ionial decx lopIUivnt met hod. Add I toI, , I I

prototyping environments promise to be very complex systems requiring many

supporting tools such as text editors, database managers , dictionary

maintenance tools, procedural language program generators, screen

generators, documentation reporters, non-procedural report writers,

teleprocessing monitors and interactive query languages [Fountain9O].

Lach tool its(,lf is a research area.

Published prototype system research has focused on subsets of

complete, prototyping systems. The complexity of the issue, iiivolved in

prototype system implementation are sufficiently great that no such system

wil likely be completed soon. Many issues are polemi(,a!, slhkh ai , tIli

need for specific prototyping language, and the feasibility of , single'l

prototyping system's usefulnes,, to multiple domains. Fountain address(,.

these concerns in his thesis [Fountain90: pp.137-139].

2. Analysis of existing prototyping methodologies

This section briefly reviewE tho five major prototyping

methodologies proposed and/or used to date. The goal here is to discurn

prototyping methods that are most likely to evolve into production systems

and that will need testing support. Fountain conducted a thorough,

in-depth methodology analysis that is summarized in the following sub-

sections and extended to apply to formal testing methodologies supporting

the final production system. Fountain considers six evaluation criteria

for the prototype methodologies:

27

" Prototype development - the efficiency of prototype construction and
its effect on requirements engineering, especially the ease of user
requirements validation and change;

* Use of reusable software components - the use of reusable components
in prototype construction and whether the production coding is manual
or use of reusable components is promoted;

* Evolutionary prototype production - whether the developed prototype
results in a production system or is used primarily for requirements
validation;

• Meeting user needs - meeting user needs of on-time delivery and
fulfilling requirements (Fountain notes that this information is
anticipatory rather than currently available);

" Time, activities and effort - the relative amounts o' each exptunid,,l
in usin.g the methodology;

• Implementation outlook - the likelihood of when a fully implemented
version of the methodology will be available.

For an in-depth treatment of just the methodologies refer to Fountain's'

thesis [Fountain90: pp.39-99]. This thesis extends Fountain's an:i3ysi.s t.

include value of a testing methodology - whether a complementary form'.!

testing methodology would be beneficial to help test teams e aluat.

prototype design team's final product

a. Rapid Throwaway Prototype Methodology

This approach produces a throwaway prototype used for

validating requirements. Once the user concurs that requirements ar-

correct, the prototype is abandoned and a conventional system development

occurs. Typically a subset of the requirements is prototyped. The

methodology is described by Bersoff, Gregor and Davis

[BersoffGregorDdvis88].

* Prototype development. The system prototyped lacks a complete
definition, limiting its usefulness and allowing only partial

28

val idat ion of requirements. The intent of the methodology possibly
suits it for modeling key portions of small system,. It i, difficult
to jut .ify devoting much effort to something that will no(t b(- used in
the production system.

* Use of reusable components. This is not supported.

* Evolutionary prototype production. This is not supported.

* Meeting user needs. The user's initial requirements are captured
earlier and more accurately, therefore, needs should be better met
and met more quickly than with the Waterfall Model due to the early
validation of requirements by the user.

" Time, activities, effort.. Bersoff, Gregor and D; vis
[BersoffGregorDavis88: pp.5-6] found that effort expended in this
methodology was greater than that expended in the conventionl life
cycle model. Too much effort for too little gain is the result.

• Implementation outlook. The system is achievable now without
reusable components. Mature implementations can and should be
available within the next couple years. It is a first generation
prototyping methodology and has value in getting prototyping
paradigms started, but is not an end in itself.

• Value of a testing methodology. The value of a formal testing
methodology for rapid throwaway prototyping is very limited since no,
production code results directly from the methodolog>. It does no
good to formally test code that will not be directly used as part of
the final system.

b. Incremental Development Methodology

The incremental development methodology is a more detailed

and efficient superset of the rapid throwaway prototype methodology. It

starts by representing the most difficult parts of the system first to

shape the project and then fills in the lesser details.

* Orototype development. The increase in detail will provide the user
with a larger set of requirements that will more fully match his
expectations. The prototype is not envisioned to become the
production system.

* Use of reusable components. This is not a part of the methodology,
but would be an enhancement.

29

• Evolutionary prototype production. The prototype code is not
directly used after the requirements have been validated, so
evolution is not envisioned. Considerable effort is expended in
developing the prototype that does not apply directly to the
production system.

• Meeting user needs. This approach is more adaptable to user needs
than the throwaway approach because of the multiple iterations
involved in validating the prototype. The iterative nature also
makes the methodology particularly adaptable to change.

• Time, activities, effort. More activity is required initially to
establish an architectural design to allow for system expansion as
the system adds functionality. Particular modules of the system can
be validated early and go into production coding while the remainder
of the system is defined. This can speed coding efforts and allows
more development tasks to happen concurrently.

* Implementation outlook. The methodology can be partially implemented
now. The iteration capability requires a much more complex
development environment than the previous methodology and probably
will take eight to ten years to implement.

" Value of a testing methodology. The value of a specific testing
methodology is limited for the same reasons as in the throwaway
approach. Note that test sets related to validated requirements will
be built earlier than in conventional approaches since coding onl
these requirements will start sooner as well.

c. Evolutionary Prototyping Methodology

The main view here is that the prototype evolves into the

production system. All the work on the prototype development builds the

production software. The approach continues to be incremental and builds

the simpler portions of the system first since they are understood from

the onset of development.

* Prototype development. It uses resources well since the user
validates both the requirements and the production system
concurrently. This method appears better suited to dynamic
conditions since enhancements and change will be realized more
quickly. The major cost is in a sophisticated environment.

30

" Use of reusable components. This is not specifically noted as a part
of the methodology.

* Evolutionary prototype production. The main feature of the.
methodology is its evolutionary nature.

" Meeting user needs. Each iteration should more closely match the
user needs and remains responsive to the user and further
enhancements.

* Time, action, effort. The initial iteration of the prototype is
available quickly since it it is built from initially known, simple
requirements. Therefore user feedback can start more quickly than
with conventional life cycle approaches. The requirements
engineering efforts are less complicated up front but the prototype
incrementally tackles more difficult issues and must deal with a
larger base of code.

* Implementation outlook. This will depend primarily on the
development of prototyping tools environments. It will likely take
fifteen to eighteen years to see these systems fully functional.

* Value of a testing methodology. A testing methodology would be
invaluable here since the prototype will become the production code,
which must be verified. Requirements-capturing and functional
testing will need to be formal beyond the scope of simple
demonstration of an iteration to a user via a prototype script. The
faster the testing ability is, the better. Testing tools can help
substantially, but automation of testing tasks will require formality
and structured methodologies.

d. Reusable software components methodology

Fountain rightly mentions that this is an "implementation

feature rather than an independent process" [Fountain90: p.92]. Let us

now view this feature's value via the evaluation criteria.

o Prototype development. This feature should be integrated with other
methodologies to harness the power of instantiating reusable
componentE to speed code wri ing and prototype implementation. This
gives us a near term approximation of automatic code generation,
since the latter is a long term long shot as we now view it. Note
that this does not reduce the designer's efforts at all since he must
perform the same work to determine system requirements.

31

" Use of reusable components. Exactly! The degre(to which th(.
capability can be harnessed will depend on many factors to includt:
the size of the components library, the generality of library
components compared to the specificity of the particular
implementation code needed in a given instance, and the power of the
environment's component search tools. Current database management
systems technology is relation-based vice specification-based.
Solutions are achievable but are not near term.

" Evolutionary prototype production. The reusable components feature
is applicable. The major issue is how to use it in a given
methodology.

" Meeting user needs. Production system delivery times should be
reduced since the code generation should be considerably shortened
(less manual coding). The degree of automation involved in the
retrieval and reuse process will decide how much faster the
methodology will be.

* Time, activities, effort. Development schedules will be shorter with
less new design and code development.

• Implementation outlook. This feature is largely dependet cis
prototyping tools development and will need a solid prototyping
language to integrate the prototype definition and coding processes.
Probably five to fifteen years will be required to realize the reuse
capability. The reusable components libraries, can and should be
built now so we can experiment and decide what prototyping system and
library characteristics lend themselves to automated reuse
methodologies and component integration.

" Value of a testing methodology. Testing methodologies and tools that
support reusable components will be invaluable to track unit tests
conducted on components and suggesting further tests within the
context of instantiation. Integration and path testing also will
need to occur within the context of reusable components and their
interaction.

e. Automated Software Synthesis Methodology

The automated software synthesis methodology is the current

"dream level" of software engineers' thinking. All system design, coding

and integration would occur in a very high level language (VHLL). Many

expect the VHLL concept to provide the same or nearly equivalent software

productivity advance as that caused by the introduction of high level

32

languages in the early 1970's. This VHLL does not exist yet, nor i.s our

technological level or theoretical understanding of involve-d concrept,.

sufficiently mature to implement it. This situation helps promote rapid

prototyping because we do know enough to implement prototyping concepts

and then apply what we learn to this next step of automatic code

generation.

• Prototype development. Development would be extremely fast compared
to current conventional practices by harnessing the anticipated power
of VIli.

* Use of reusable components. This concept will like]3 be employed t,,
some degree, but most of our reliance for coding will depend upon the
VIILL directly.

* Evolutionary prototype production. This will occur with very little
effort since the VHLL will transport our concepts directly into
product ion code.

" Meeting user needs. The changes here are probably the most dramatic
anticipated. Generally, any time the user's needs changed, you wuul'
directly generate a new s stemi, rather than pa.ch the old one because
of the minimal effort required.

" Time, activities, effort. Several currently used development
processes, such as design, coding, and integration would comp'.tel,
cease to exist, ergo radically diminished effort expenditures.

* Implementation outlook. The idea is at least several rapid prct Ie
generations away and will not be realized until several decades into
the next century.

" Value of a testing methodology. I emphatically believe that some
fashion of system validation and verification will always be
necessary. All mankind, and the systems they create exist within a
fallen and fallible world. Testers will still need to know what the
system developed is to do, what is acceptable performance and what
must be excluded. They must then provide sufficient a~surance the
system performs as stated. The more test researchers formalize and
automate this process, the more likely developers and testers will
develop reliable systems with small resource expenditures.

33

3. Conclusions on prototyping methodologies

The methodology evaluations indicate that. ev.lution, r,

iterative, rapid prototyping methods using reusable components, hold the

most promise in the next ten or so years for providing a more efficient

software development paradigm. The system development effort involved in

producing software by this methodology synthesis appears to have the best

cost/benefit ratio. Reusable components retrieval comes closer to

automatic code generation than anything now available or soon anticipated.

An incremental, iterative development approach makes good sense when one

is unsure of requirements or feasibility and when one must design in a

fluid environment, responding quickly to change. The desire for efficient

resource use highlights the evolutionary methodology's prime asset:

directly produced implementation code. Some might be willing to wait for

automatic code generation, but evolutionary, iterative rapid prototypillg

with reusable components can be available within the short term to help

solve the software crisis.

B. SOFTWARE TESTING: PURPOSE AND SELECTED AUTOMATED METHODOLOGIES

Software testing is the process of ensuring that a program does

everything that it is required to do and nothing that it is required not

to do. Testing is essential to every software development process.

Software systems will contain faults (bugs) because people make mistakes

and people develop both the systems and the associated tools and hardware

that work with the system. User reviews will not suffice for checking

program correctness. User reviews, while possibly guided by a

demonstration script, are geared to capturing requirements and lack the

34

ri gor of thorough testing practices. The range of test cordition:; is n.ot

liLkel; to be demonstrated and checked. Additionally, demonstration casef,

ijnportant to testing may be of little consequence to a use(r's

demonstration and be viewed by the user as a waste of his time.

A fault is "an accidental condition that causes a functional unit

(software) to fail to perform its required function" [ANSI Stds83]. Bugs

(faults) fall into two basic classes: those of commission, in which we

introduce something contrary to specifications and those of omission, in

which we leave out a requirement . Testers test to ensure bugs do not

enter the production system or, when they do, find and eliminate them.

Testers prevent bugs from entering the system by trying to "break" tile

system code and then correcting the faults that allowed the system to

break. Testers find existing bugs primarily by finding discrepancits

between the system's results at any stage of computation and the true

results for that stage. The ideal end of thorough software testing is

error-free code. One's confidence in system reliability and suitabilit3

therefore depends largely upon our confidence in software testing.

Chapter I provided an overiew of conventional software testing. This

section covers the test process, in detail, and the key testing

methodologies and several associated automated testing tools. It focuses

heavily on the requirements-based methodology because prototyping is

intricately bound to requirements-capturing and seeks to ensure that

requirements are captured and functionally demonstrated. Practically, if

we do not capture the required functionality, then it will not matter one

whit how well the software structure operates. A solid understanding of

35

testing purposes and methodologies is essential for forming a foundation

for testing in a rapid prototyping environment.

1. The Software Testing Process

The process of software testing begins with collecting conditions

that require testing. These conditions are behaviors that the evaluated

software must possess and perform correctly. Shimeall notes [Shimeall90:

p.2] that the testable conditions should be augmented by a collection of

all assumptions made during the development process. Assumptions are

often a source of bugs due to misunderstandings between the designer and

the user. Finding these assumptions can be difficult and Hernandez's

thesi; [Hfernandez89] deals in part with this issue. The tester then

analyzez the requirements and assumptions and expands them into a stated

set of consistent test goals. The analysis identifies the parts of e

software to be tested and the acceptable behavior for each goal. Next

testers prioritize the test goals. They can then match their testing

effort to the resources available and know what to eliminate if testing

must be abbreviated. Testers also try to provide as much order and

economy to the testing process as possible.

Once testers prioritize the test goals, they group then to

eliminate redundancy and build test procedures to test the goals. Test

conditions such as system states, input data, operator action sequence

during test execution and any other special values needed for the test

must be specified and may be collected to suit a number of testing

methodologies. Test condition selection is not usually limited to just

one method. Using more methods increases one's likelihood of removing

36

bugs. The test team then derives a test oracle for each test condition.

The test oracle can tak.- a variety of forms but mu'.t provide the

information used to judge if the system has performed correct1 . Shimeall

notes that the test oracle is both "a final set of test conditions and an

associated set of result evaluation criteria" [Shimeall90: p.4]. This, is

because the test oracle derivation process may reveal missing, incomplete

or unrealistic test conditions. Testers prepare a test description

document next and order the test executions. The customer reviews the

test plan and comments/approves it. Once the user approves the t pes l plan,

the testers execute it. Irregularities are noted and evaluated to see if

they are a result of program fault or of a test plan problem. Bugs then

get fixed, test plans corrected and further tests conducted to cover the

testing missed du: to test plan irregularities. This proce,,, can cofltili-.

iteratively until program performance is acceptable. Regres!sion testinLg

followt. and ensures that bug fixes actually work and do riot introduce2 new

faults and errors. Additional step.s such as test debugging and review,

are interspersed throughout, the test development process.

2. Software Testing Methodologies and Companion Testing Tools

Testers use multiple testing methodologies because of existing

testing dichotomies. Systems can be tested from either a functional or a

structural perspective. Structural testing looks at the implementation

details of a program: coding style, structure of the code and its

modules, control and flow paths through the code, source languages and

various coding details. Functional testing takes a black box perspective,

asking what the program is to do and checking to see if it meets its

37

performance objectives. The Iatter takes a user 's vie w f rom th, outside-

and the former an interior view of all the details and interactions within

the code and of the code with the host. computer(s). Both method, are

needed and can be very effective for testing, each having strengths and

weaknesses. Beizer, reflecting on this, states,

Both methods are effective and both have limitationL.
Functional tosts can, in principle, detect. all bugs but would
take infinite time to do so. Structural tests are inherently
finite but cannot detect all errors, even if completely
executed. The art of testing, in part, consists of making
judiciou, choices between structural and lunctional test.,-
[Beizer83: p.5]

Testers also may test the system code at varioW. level:

include:

* unit. testing - testing an algorithm, module or atomic functional unit
such as a function or procedure;

* integration testing - testing the interfacing of the various units 'f
a program;

* acceptance testing - testing the whole system for acceptance;

" regression testing - testing the whole revised system.

The code writers normally do the unit testing and separate et p(,rsonnel

conduct the other levels. Experience has shown that using separate

testing personnel helps prevent them from operating with the same

(mis)perceptions as those who wrote the code. Functional and structural

testing can be applied at any of these levels. The following sections

consider these testing methodologies in more detail.

38

a. Requirements-based testing

Requirements-based testing is; a sub.set of fun(tional testing

(described in the follo-ing section). This section closely follows

Beizer's explanation of requirements-based testing [Beizer83]. Testers

usually start with testing requirements because the functionality defined

by the requirements is the reason the system is needed in the first place.

Conceptually, requirements-based testing is very straightforward.

Requirements-based testing take, a system's specified requirements and

tests the program to ensure that all required functionality is presen.

Testers must first determine the requirements from source,-

such as formal specifications, requirements documents, contracts, user

interviews or processes such as prototyping. Not all statements will be

requirempnts, nor will all requiremeuts be stated. Single statements may

translate iinto multiple requirements and multiple statements may combine

to imply additional requirements (derived requiremenlt).

System requirements generally require restatement ; test

goals to be independent and explicitly testable. Each test goal should be

separately identifiable so that it can be specifically referenced using

some number or index. Test goals should be tracable to the requirements

that they test. Each test goal should be simply stated and describe only

a single aspect. of the software so that in testing testers can ask, "Is

this behavior present?" Often requirements either singlely or taken

together will imply test. goals. Any such derived test goals should be so

identified and the justification for their derivation recorded so that

testers can trace back to the test goal's origin.

39

Once testers determine t he test goal s, t hy muF-t bv

classified as to how testers will verify them. There exist four classes,,

of test goals that follow in increasing order of effort required for

validation. Non-testable test goals are those testers cannot test, such

as vocabulary definitions, user action descriptions and generalities like

"user-friendly." Next are inspection test goals that testers can tell by

observation if they are met. Inspection test goal examples include device

usage, language usage, screen layout, and documentation. Third are

analysis test goals which require observation and inlerenc' to sec if the

are met. Analysis test goals encompass variable usage, expression usage.,

support software usage, and commenting. Last and most difficult. to test

are execution test goals such as program calculation results, value

transformations, value maintenance, efficiency, and tineliness which

require observation of properties available only during program executIo,.

Test goal aggregation is the third step in requirement-s-base!

testing. Here testers group tests into sets they intend to test together,

called aggregates. They also group test goal duplications so they ca, be

tested together. Some test goals must be tested together because of

dependencies. Test goals that are independent also may be tested togcthtr

because one does not affect the other. Finally, there are test goals that

can be subsumed by other test. goals. For example, if testing test goals

"A", "Be, and "C" also effectively test "E", then "E's" testing was

subsumed by the tests on "A", "B", and "C". Ideally aggregation will

require fewer tests because of subsumption and testing overlap between

test goals.

40

Case selection I ol lows aggregat i o . B con,. i d.,-il. tl,..

reason for aggregation, testers can usuallN establish some bas. case's that

fit t he aggregate. Typical cases should be considered anu- Lai LIt,, 1..

obtained from examples in requirements documents. Atypical or extremn

casc., should be selected to test performance onl tlre boundaries o:

acceptable inpat. Pathologic cases are also good candidates since they

can heavily tax the system. Bug prone cases should definitely be tried.

One should note that the tester is trying to see if the system can be

broken. lie is trying to outguess the developer:,. 14 considering hoN a

requirement might be misconstrued, how a design might be mis-implenientel",

what. might cause an infinite loop, or how bad data could b(- fed irA', the

system (and many other strategies), the tester can derive data sets that

are very likely to find existing bugs.

Data selection i,; the proce,:; of picking the part icul:ir d,,

to use. Testers pick a flow of processing to be examined, then choo-,t,

data that will cause that flo to execute. Logically, testers start with

the cases that are our primary focus. Strategies exist for selecting

numeric data, bit. field data, case control field dat.i, and boundary data.

Semantic shifts (different terminology referring to the same thing or the

same terminology referring to different things) are fertile ground for

bugs, so jargon in requirements, strange definitions, processes with

identical descriptions and such are good areas from which to make data

choices.

Expected results must be generated. These often must be hand

calculated. Testers should anticipate possible test outcomes and

establish criteria for correct results, incorrect results and abcrt

41

r(,.;un.t Al ,rt re.;ul t.; are t ho.e that will caus', test sivcpn- (,n u.' .

programmers correct the failt.

Te.t cases must be sequenced. Secquf'r ing ma; :1 a

consequence of the test planning process thus far, or established by a

separate step at this point. The goal is to make test runs as long as

possible to minimize resource use. Cases that require special set-u

should be grouped together. Testing should progress from the simple to

the complex, with normal and typical cases tested before load and boundary

case ',. If faults exist with the simpler aspects of the sy,tem, the

changes required migh!t well nullify any of the other testin.;, sK thi>,

sequlen(C. just nake. good sen.;se.

The last step prior to running the tests and evaluating the

result.5, is aggregate sequencing. Generally this should fl-', the

precedence of test goals. System inputs and early processes should 'D(

tested before later processes and outputs. Common processes should be

tested before special processes. The logic here is the same as in thi,

previous step. Additionally, there must be a sense of priorities. . T!.,

most cormmon processing will likely be the most used so often it is thLh

most important to test. If the normal and common do not work, then t1.

special probably will not either.

The result of requirements-based testing is usually more

requirements which the user validates, typically de facto, since they

arose during demonstrations or as the result of problems detected by

designers and demonstrated for user comment. The designers correct the

software and the testing process continues until product acceptance. The

next more detailed level of testing is functional testing.

4.

b. Functional Testing

Functional testing verifies that a program or subprogram

performs each function correctly. The description of functional testing

in This section is taken after Howden's tutorial on functional testing

[Howden8O]. Functional testing's emphasis is on functionality and the

operation of the system. All requirements-based testing is functional

testing but not all functional testing is requirements-ba,,er since any

given requirement may require multiple internal program functions to

support the requirement. Design-based functional testing verifies that

each module performs; each function as intended. Code-based functional

testing verifies that each code structure performs each function as

int ended. This is to ask if there is agreement between the code and the

design and if the code does what the design says that. it should. Code-

based fiunct ioial testing beins to look much like structural testing

because it begins t,., look in detail at the code and its structure.

Structural testing is discussed in the following section.

Design-based functional testing is generally similar to

requirements-based testing but does differ in several ways. It works iro.

the modute descriptions and not from the requirements of the system.

Aggregation is not normally needed because what testers want to test is

clear and relates directly to the one module. Testers often need to

insert extra code to set and view internal variables and determine the

internal state of the program. The inserted code must be carefully placed

to limit. any interactions and problems in code execution. Results may

need to be evaluated relatively, rather than absolutely, noting

consistency vice correctniess of the result.

43

Testers select data for functional testing using equivalence

classes. Testing applies representative data for an equivalence class

because every conceivable input cannot be tried. Testers also us- illegal

value strategies to see how the functions respond to bad data. The intent

here is to see if the system can filter out invalid data yet retain valid

but unexpected data. Border cases should be accepted. Elements should

not fail when subjected to bad inputs, nor should they corrupt other

program elements. Data processing should always be correct.

Many functional testing techniques exist. Cause and effect

graphs can be constructed to link specified causes (inputs/equivalence

classes) to each specification effect (outputs/functions) with boolean

operators, annotating the links with conditions. Traversing the resulting

graph yields, a decision table that can be converted to tes t cases, to b

run.

c. Structural Testing

Structural testing methodologies test to ensure that each

significant part of a program's design structure has been exercised and

evaluated. Structural testing uses the control and data flow structure of

a program as a basis for test construction. It is a standard follow-on to

functional testing to ensure that portions of a program not exercised in

functional testing are tested. Additionally, it provides a quantitative

measure of test coverage. Structural testing holds considerable promise

for adaptation into prototype testing methods. Prototype flow graphs are

likely structures for automating structural testing tools.

44

Struct ural testing methodologies tend to recei\,, ni.-e

acaderi attelitiori than functional and requirements-based methodclogiel-

because structural testing is a more tractable problem and te,;ter - 1,1ow

more about it. Structural testing is not necessarily a more effective

strategy than the others. Howden's explanation of structural testing

forms the basis for the description of structural testing that follows

[Howden8l].

In structural testing, program designs are most often modeled

as graph structureb. Nodes are typically statement levels and the link,

are the conditions and controls that direct movement between the statement

levels. Path sensitizing is the process of finding thf- significa.t

portions of the code. Testers have two criteria available for conducting

structural testing: use of control flows and use of data flows.

Control flow approaches to str'uctural testing may use anN of

a nurnb . of criteria, to include: all statements, all branches, all loop,

(zero, one, and many iterations), weighted paths, aiid all pat h.- Each of

these has some distinct strengths and weaknesses.

"All statements" coverage exercises the program to execute

each program statement at least once during the test. It serves as the

basis for all other methods and, compared to other criteria, is not hard

to achieve, except for unreachable code. Its basic reasoning is, "Has

each node been visited at least once?" It may detect erroneous

expressions but usually does not detect loop or logic problems and cannot

reach unreachable code (as one might expect). Since it only executes each

statement once, it does not exercise multiply accessed code by morp than

one ac(e-,s path .

45

"A!l brancheF," (arcs or edge.s) coverage exercise!; the prograil.

to take every branch at least once during the test. This also imnpes all

statements and, compared to other criteria, is not difficult to achieve.

Some erroneous statements may be detected by this method and it can detect

contradictory branches and non-branching branches, but it does not detect

missing branches.

"All paths" coverage exercises all paths possible from input

to output at least once during the test. This method will detect all

faults but it is often impractical to do so because the nu-' -r of possible

paths can be far too large for many programs. The use of looping programs

makes the number of paths infinite and "all paths" coverage becomut

impossible, the-efore a continuing area of research is to discover

covrage that finds "all paths" faults without requiring the sam,.

resources.

"Selected paths" coverage seeks to cover typical and boundary

paths as a way of restricting the number of paths that require testing.

It effectively reduces to functional testing and serves to show that the

boundary between structural and functional testing can be quite fuzzy a

times.

"Weighted paths" coverage divides the possible paths through

the program into pools and exercises the program by executing a sample of

paths from each pool during the test. Weights are assigned to each path

reflecting its relative importance and paths are tested in each pool until

a particular score is accumulated. The method implies "all branches" and

provides an objective measure of coverage, scheduleable testing and

trackable testing. It will detect most faults if the relevant patl, are

46

tested, but tends not to find overgeneralized paths, missing branches and

random typographical errors.

Structural testing also may be conducted using a data flow

criteria approach [Frankl&Weyuker86] that starts where the code defines a

variable and checks to the point of variable use along what are termed

define-use paths. It classifies variable occurrences as definitions,

.undefinitions, and uses. Uses are either computation uses, that directly

affect computations, or predicate uses, that directly affect the program

control flow through a subprogram. By tracing variable uses, tLe tester

can find improper variable uses and make any necessary corrections.

Most structural testing techniques instrument the tested

programs to set up the test structures. At times instrumentation can

affect program performance, so one must be careful with such techniques.

The instrumentation is essential though in structural techniques to

provide the required status of variables, their use and paths tested.

Code instrumentation is simpler using automated tools such as ASSET which

I describe in a following section.

There is a problem with many of the testing criteria. For

any criteria short of path criteria, there are trivial data sets that

satisfy the criteria but do not detect faults. The tester's challenge is

to select criteria and data carefully to stress the code in a way that

detects faults.

Structural testing is a multi-step sequential process that

includes selecting coverage, selecting data, generating expected results,

instrumenting the code, running the test, and evaluating the results. The

coverage level should be high enough to detect faults not found by

47

functional testing. Structural testing occurs at a finer level than

functional testing and testers must realize the two approaches'

interrelatedness. If testers run functional tests first, then they can

see what cases remain for structural testing and then design tests to

cover what remains. Testers concentrate on variables that affect

predicate outcomes and then select values that force as much remaining

coverage as possible. In running tests they look for excluded values,

forbidden combinations, overgeneralization and overspecialization in

predicates, and missing functionality. Generally, coverage may be

evaluated automatically but passing, failing or aborting the test must be

evaluated manually. Failure to achieve planned coverage often indicates

bugs are in the code.

Research is continuing in structural testing to address some

particular concerns. Problems exist with loop progress and termination.

When has the code looped long enough? How do testers know what the loop

is supposed to do? Has the loop accomplished its mission? Data flow

criteria, such as variable "defines", or "define-uses" are not well

understood in the presence of certain loop conditions [Frankl&Weyuker86].

Test researchers have not yet resolved the issue of how to treat loops

that build structures like search trees. Treatment of infeasible paths is

also problematic. All path sensitizing criteria must deal with infeasible

paths. Paths may be either statically or dynamically infeasible. Ideas

exist on how to formulate criteria to exclude infeasible paths but there

has been little success in automating the process. Suffice it to say that

there is plenty of work yet to be done.

48

3. A Brief Review of Selected Automated Testing Tools

Software engineers have developed many automated testing tools

both for research and industry. Most testing techniques in the past have

been almost entirely manual and have relied on the savvy and experience of

the individual programmer. The emergence of automated testing tools and

the formalisms upon which they are built is changing this and increasing

the speed and accuracy with which systems can be tested today. The

previous sections should give the reader at least a small appreciation for

the complexity of the testing issues that must be addressed for sound,

methodical testing. This section briefly outlines two testing tools:

ASSET - a structural testing tool and UNISEX - a symbolic executor. No

examples of a good requirements-based testing tool are available, but

these two tools give a good sense of the state of the art for testing

tools.

(I) ASSET - A System to Select and Evaluate Tests. Asset is

a structural testing tool designed for data flow testing. It is

interactive and takes Pascal programs as input. It tests individual

subprograms in Pascal and works interactively with a user at a terminal.

The user inputs test data to exercise a particular data use criteria and

continues to do so until the criteria satisfaction or until he identifies

enough errors to decide to stop testing. The data flow analysis performed

is intra-procedural. Programs must be syntactically correct and must not

contain seven Pascal constructs mentioned by Frankl [Frankl87] as well as

several identifier names and file names that the tool uses. It also

places several arbitrary restrictions on program size. Asset instruments

49

the subject procedure and produces a graph of the structure for the type

of data flow testing conducted. It outputs appropriate comments for the

executed data and keeps a tally of the flows executed and the flows yet to

be executed. The tester has a choice of path selection criteria involving

predicate uses and computation uses of data. Plans exist to enhance ASSET

to add heuristics that will help determine what data associations are

executable since analysis problems exist in the presence of unexecutable

paths [Frankl&Weyuker86].

(2) UNISEX: a UNIx-based Symbolic EXecutor for Pascal.

UNISEX provides an environment for testing and formally verifying Pascal

programs for a large subset of Pascal and runs on UNIX. It uses symbolic

execution to test the program. Kemmerer's and Eckmann's work provides a

complete description of UNISEX [Kemmerer&Eckmann85].

Symbolic execution uses algebraic symbols in the place

of an exhaustive set of data inputs since this is infeasible for many

programs, as discussed earlier. Equivalence classes of inputs can be

established by restricting the values each symbol may represent and the

program can then manipulate the symbols and the symbolic results examined

to see if they meet with the desired results. Symbolic execution is a

form of static testing not discussed in the previous sections. Basically,

static testing does not require the program to run or else requires it to

run in a non-standard way. Howden's "A Survey of Static Analysis Methods"

[Howden8l] is a classic that covers static testing in detail. The value

of symbolic execution is that all the possible equivalence classes for a

program's variables can be represented, thus one can verify that a program

50

performs correctly for all inputs. Pascal required some language

extensions to allow for this. Symbolic execution also discovers how input

values for a program must be constrained to cause a particular path to be

executed.

UNISEX is a flexible tool. It has two modes of

operation: test and verify. It also has a debug feature. UNISEX can

provide a trace, can save states, provide various displays of the program

or path conditions or saved states or variable values. Breakpoints can be

inserted and execution can be either manual or automatic in the verify

mode.

The primary stated goal of UNISEX is to have a testing

and verification tool useful for academic users. Future work will include

expanding the subset. of Pascal supported by the tool and simplification

theorem proving.

The review of ASSET and UNISEX provides a good reflection

of the current sophistication of testing tools and technological

capabilities supporting testing. They also show that there exists no all-

purpose testing tool that effectively covers all testing paradigms. There

exists a need to tailor testing tool development to fit particular testing

methodologies and keep their design within current theoretical and

technological limits. Proper tool development must consider both the

needs of a testing methodology and the aforementioned limits.

C. SYNOPSIS OF SOFTWARE TESTING METHODS WITHIN RAPID PROTOTYPING

At the time of this writing, I am aware of only one published work on

the idea of testing methodologies for evolutionary, iterative rapid

51

prototyping [Shimeall90]. In fact, there were very few comments about

prototype testing at all in the literature on either prototyping or

testing. This is not surprising when one considers that much of the

prototyping to date has been of the throwaway variety and rarely has

prototyping been used to evolve production code from the prototype.

In current practice, prototyping activity occurs early in the

development process to define system requirements. Once the requirements

are established, prototyping stops. Coding follows and testing occurs

later, independent of prototyping. Boehm's spiral model cf the software

process proceeds similarly and will be elaborated in the next section.

Therefore, conventional testing approaches have been used at the

conclusion of prototyping in a manner and place analogous to testing's

position in the Waterfall Life Cycle model. Current literature indicates

prototyping is moving increasingly into the commercial world and

researchers are seeking how best to apply the paradigm and expand its

capabilities. Such being the case, now is the time to research testing

methodologies that will provide the greatest benefit to prototyping and

receive the maximum benefit from prototyping. To the degree that software

development methods ease the testing process and that testing methods

build upon development methods, testing and the resultant developed

system, will benefit. Additionally, researchers must determine what

development paradigms will best suit the prototyping process.

Shimeall has addressed the research topic of testing within iterative

rapid prototyping (Shimea1190]. As his work provided the impetus for this

thesis, the starting point for considering testing methodologies to

support prototyping is his insights. Chapter III takes up this issue.

52

D. BOEIHM'S SPIRAL MODEL OF SOFTWARE DEVELOPMENT

The spiral model was developed by Barry Boehm, working at TRW over the

last few years and incorporates the ideas of prototyping and iteration.

It demonstrates the value and flexibility of prototyping in the software

development process and considers the place of testing in the process.

Figure 5 illustrates the spiral model.

Cumulative
cost

Progress
through
steps

Determine Evaluate alternatives,

objectives,identiy resolve risks

alternatives,
constraints Rs

analysalyss

Rissaalsi

ana Y- Prototype Prototype Prototype Operational

Review Commitment 2sis 3 prototype
partitionequirements plan -- Simulations, models, benchmarks

" I ~operaion /Sotware /Dtie

product design

Develop- Requirements designment lan I validation C d
f~~n unit ICd

Itgain Design atonv al id atio n I test
and test and veiicto Integration!

an and test
Implementationl AcceptanceII

Plan next phases It s

Develop, verify
next-level product

Figure 5. Spiral Model of the Software Process [Boehm89: p. 2 9]

53

Loehm points out:

The primary functions of a software process model are to
determine the order of the stages involved in software
development and evolution and to establish the transition
criteria for progressing from one stage to the next. These
include completion criteria for the current stage plus choice
criteria and entrance criteria for the next stage. Thus, a
process model addresses the following software project
questions: (1) What shall we do next? and (2) How long shall
we continue to do it? [Boehm89: p.28]

Note that a process model differs from a software methodology that tells

us how to move through the phases of development and deals more with

mechanics.

The process concept follows from the previous figure. At the end of

each iteration of development, if the prototype is sound for future

product development and if requirements mandate further enhancement,

another iteration commences. If the present prototype is sufficient, then

the waterfall approach continues on through to product delivery. The

flexibility of the process should allow any of a number of approaches for

product completion. Boehm points this out by noting that the model's

primary advantage is that the range of options with the spiral model

allows it to become equivalent to other models such as the waterfall model

or evolutionary model [Boehm89: p.34]. He cites additional advantages of

the model as:

" It focuses early attention on options involving the reuse of existing
software.

" It accommodates preparation for life cycle evolution, growth, and

changes of the software product.

* It provides a mechanism for incorporating software quality objectives
into software product development (emphasis on identifying all types
of objectives and constraints during each round of the spiral).

54

0 It focuses on eliminating errors and unattractive alternatives early.

• For each source of project activity and resource expenditure, it
answers the key question, "How much is enough?"

* It does not involve separate approaches for software development and
software enhancement (or maintenance).

* It provides a viable framework for integrated hardware-software
system development. [Boehm89: p.34]

Difficulties mentioned include matching the model to contract software,

reliance on risk assessment expertise and the need for further definition

and elaboration of the spiral steps. Experience to date with the model

indicates it is applicable to large and complex systems [Boehm89]. The

model's iterative nature holds considerable promise in evolutionary

iterative rapid prototyping and will be investigated further in Chapter

III.

E. THE CAPS RAPID-PROTOTYPING SYSTEM

The Computer Aided Prototyping System, CAPS for short, is currently

under development at the Naval Postgraduate School, Monterey, California,

under the direction of Luqi. It uses the Prototype System Description

Language,(PSDL), that supports rapid prototyping based on abstractions and

reusable software components for building large, real-time Ada

applications. CAPS closely matches our view of the prototyping

methodology most likely both to generate production code and to need a

supporting testing methodology. It is assumed that CAPS, in its final

form, will likely be capable of producing production code. CAPS'

methodology and availability make it the choice prototyping system for

55

this thesis' testing tool research. The following subsections cover both

CAPS and PSDL more closely.

1. CAPS

Luqi designed CAPS to support complex programming, particularly

control systems with hard real-time constraints. This allows the

prototyping system to take full advantage of Ada's tasking capability. It

seeks to integrate a full set of prototyping tools to automate as much of

the prototyping process as possible by using PSDL to integrate the tools.

The main system components (tools) are shown in Figure 6. Note that there

are three main subsystems: the user interface, the software database

system, and the execution support system.

The user interface allows entry of requirements and design

information and presents prototype results to the user. It is interactive

and aid5 in guiding choices on prototype demonstration as well. It also

facilitates the propagation of design changes.

The software database system contains two databases. The design

database contains the PSDL prototype descriptions of the various projects

in CAPS. All reusable components have PSDL descriptions and source code

stored in the software base, from which they are retrieved. The software

design-management system manages and retrieves the versions, refinements,

and alternatives of the prototypes in the design database and the reusable

components in the software base.

Finally there is the execution support system. This subsystem's

translator "generates an executable framework that binds together the

56

User
Interface

DesignSSoftwae

Database Base Design Subsystem
Management
System

Execution
Support

Figure 6. Main CAPS Tools [Fountain9O: p.53]

57

reusable components extracted from the software base" [Luqi89]. It

performs functions such as implementing data streams, control constraints

and timers. The static scheduler allocates time slots for operators with

real time constraints before execution of the prototype begins. Operators

are guaranteed to make their deadlines if the allocator succeeds. The

dynamic scheduler, on the other hand, invokes operators with no real time

constraints into available time slots during execution. Further details

on CAPS exists in many publications to include Luqi's [Luqi89] and White's

[White89].

2. PSDL

PSDL deserves a bit more attention for it is the glue that holds

CAPS together and its power will determine the strength of the final

prototyping system. The following information is summarized from Luqi's,

Berzin's and Yeh's work [Luqi,Berzins&Yeh88].

PSDL is based on a computational model containing operators that

communicate via data streams. Data streams carry values of a fixed

abstract data type and also of the built-in type exception. Operators are

either data driven or periodic.

Formally, the computational model used is an augmented graph

G = (V, E, T(v), 0(v))

where:

" V is the set of vertices, each an operator;

" E is the set of edges, each a data stream;

" T(v) is the maximum execution time for each vertex (operator);

* C(v) is the set of control constraints for each vertex.

58

Operators may be either functions or state machines. They may be

atomic or composite, where atomic means no more decomposition in PSDL.

Composite operators represent data and control flow networks of lower

level operators.

Data streams are the comunication link connecting exactly twc

operators, the producer and the consumer. They exhibit the pipeline

property and are either data flow streams or sampled streams. Data flow

streams are like a FIFO queue where the data is all essential and ordered.

Sampled streams are like a holding cell in which whatever is in there gets

read when the time is right. PSDL determines the stream type by the

activation conditions of the consumer.

Exceptions are built-in abstract data types for creating and

detecting exceptions. They can be transmitted along data streams and are

encoded as data values to decouple exception transmission from exception

handling.

Abstractions are particularly important in prototyping for

controlling complexity because they make a system appear simple in order

to be prototyped rapidly. PSDL supports data, operator, and control

abstractions. PSDL data types are immutable and include ada built-in

types, user defined abstract data types (ADT), and those built with PSDL-

type constructors. ADT's have both a specification and an implementation.

Operator abstractions may be functional or state machine and both have a

specification and implementation. The specification attributes describe

the form of the interface, the timing characteristics, and both informal

and formal observable operator behavior descriptions. They further

specify the operator and the basis for retrievals of reusable components.

59

Atomic operators have a keyword to specify the implementation language.

Control abstractions are represented as enhanced data flow diagrams,

augmented by a set of control constraints.

Control constraints are either periodic (a period has been

specified) or sporadic (no period specified). A trigger condition and

output guards are also specified.

Two types of data triggers exist: triggered by all and triggered

by some. Every operator must have a period or data trigger or both.

Timers are an abstract state machine that operate like a

stopwatch and record the time between events or the time the system is in

a state. This allows expression of timing aspects of real-time systems

and they are specially treated since they provide a form of non-local

control. They remain visible in the module in which they are declared and

to the subcomponents of the module.

PSDL supports two conditionals: conditional execution of an

operator and conditional transfer of an output. Conditional operators

execute using operator trigger conditions. Generally, the trigger

condition acts as a guard for the operator and can depend only on either

input conditions for the operator or the values of timers.

Exceptions can be produced by both PSDL and the underlying

language. Language exceptions not caught by the language must be

converted and handled by PSDL. Exceptions can be handled in the

underlying language or PSDL exceptions can be converted to the underlying

language for handling there.

Stream types are derived by the data trigger of an operator. If

a stream is listed as an "ALL" data trigger then it is a data flow stream,

60

otherwise it is a sampled stream. Operators must be executable whenever

their trigger conditions are satisfied.

Timing constraints are essential to real-time systems and PSDL

constrains time three ways: maximun execution time, nximum response

time, and minimum calling period. Maximum execution time is an upper

bound on the time between when a module begins execution and the instant

it completes execution and may be applied to all operators. Maximum

response time may be applied to periodic and sporadic operators and is an

upper bound on the time between the arrival of a new data value and the

time the last output value outputs in response to the input (sporadic) or

the time between the beginning of the period and the time of the final

output. The maximum response time includes all delays while the maximum

execution time does not. Lastly, the minimum calling period is for

periodic operators only and is a lower bound on the consecutive arrivals

of data.

How does it all fit together? PSDL operators are defined in a

hierarchical structure, having a number of constraints. Inputs and

outputs must fit together consistently, like in building a data flow

diagram in systems analysis. The inputs and outputs for connected

operators must match, as well as timing constraints, to include

"inherited" timing. The execution support system for the language must

ensure that all the above constraints are met or error messages are sent.

Luqi and Berzins provide some examples of PSDL implementations

[Luqi&Berzins88] and the PSDL grammar can be found in work by Kraemer,

Luqi and Berzins [Kraemer&Luqi&Berzins90].

61

III. A PROPOSED TESTING METHODOLOGY AND TOOL DEVELOPMENT STRATEGY FOR

RAPID PROTOTYPING

A. RAPID PROTOTYPING SYSTEM CHARACTERISTICS

This chapter assumes the rapid prototyping system will have the

following characteristics:

" Iterative;

" Evolutionary;

" Prototyping language with a defined grammar;

" Reusable components capability (library and retrieval);

" Implementation code from reusable components written in a high-level
language such as Ada;

" Sophisticated support environment similar to that proposed by Luqi
[Luqi89].

These characteristics will keep the prototyping paradigm sufficiently

general that we can propose change as required to support testing

concerns. Since program verification and validation is the most costly

activity in current development, any changes to prototyping to simplify

testing will accelerate the development process and increase prototyping's

appeal.

B. PROTOTYPE-BASED TESTING

The testing methodology should take maximum advantage of the iterative

nature of development. It also should focus on the requirements-capturing

purpose of prototyping. Thus, a prototype-based testing technique starts

62

by capturing the testing information resident in the prototyping process

in a form suitable for thoroughly testing the prototyped system. Testers

must know both the assumptions and the requirements the designers are

trying to meet so that a test oracle and test series can be built to

verify the system. Remember, the test personnel are not usually the

design personnel, nor should they be, therefore prototype-based testing

must provide tools and methods to analyze system requirements and capture

requirements changes.

1. Test Information From Iteration

The iterative nature of prototyping implies that the prototyping

system must track revision histories and maintain version control of

alternate prototype versions. The user's response to a demonstration may

require that the prototype fall back to a previous iteration for change or

the developer might wish to demonstrate several iteration alternatives for

user comment (one of which or portions of several being selected).

Requirements may be added (expressed), changed (refined), or deleted.

Test goals must easily change to fit modified requirements. Ideally, the

prototyping environment will capture this modification explicitly, along

with the accompanying purpose of the modification. Any testing tools

developed must take these modifications into account to test the proper

version and to appropriately consider the requirements and purpose germane

to that version for test development. The tool should also exploit change

as a likely source of errors. A tool that helps testers compare changes

from one iteration to the next, along with system dependencies potentially

affected by changes, will help test development considerably.

63

2. Test Information About Components

The use of reusable components raises reliability concerns about

the reusable component library. Have the components been unit tested and,

if so, to what degree? Have they been used in previous implementations

before, and, if so, which ones? What testing has been conducted on the

previous implementations as well as the individual component? The testing

methodology must consider how information on past component testing can be

recorded and referenced to determine what unit testing might still be

needed and what integration testing strategies might I -st check the

components in their instantiated context.

Reusable components use also raises an additional set of test adequacy

concerns. Weyuker [Weyuker88] has developed an axiomatic theory of test

data adequacy that she demonstrated to be useful in exposing weaknesses in

several program-based adequacy criteria. The article also demonstrates

that her set of axioms remains insufficient to guarantee test data

adequacy. Two axioms, antidecomposition and anticomposition are relevant

to testing of reusable components.

Antidecomposition states that testing a program component in the

context of an enclosing program may be sufficient with respect to the

enclosing program, but is not necessarily so for other component uses. At

the simplest level, this implies that just because a component has worked

before without a problem, does not mean that it is bug-free in a new

context. For example, a context change may introduce interactions that

did not previously exist. Previously reachable code may become

unreachable or vice versa and error-producing values previously blocked by

prz :ous ccntetc may now be introduced into code.

64

The anticomposition axiom states that adequately testing each

individual component is not necessarily sufficient to test adequately the

entire program. This assertion contrasts markedly with some who would

suggest that if the reusable components are bug-free then any prototype

built from those components will be bug-free. Interactions arising from

composition may introduce bugs that were impossible in isolation. If

structural testing is considered, then component composition may increase

the number of potential paths through the composed code. This might

require additional test data to exercise important paths beyond that

required to exercise the independent components. Explicit capture of

design decisions aids in the determination of important paths.

3. Test Information About Performance

One necessary testing component is a set. of test conditions.

Requirements-based and functional testing base test conditions upon some

stated form of behavior or required performance standard such as formal

specifications or a requirements document. The prototyping methodology

does not provide a separate performance standard. The testing methodology

must establish an objective standard of the intended behavior of the

prototype under consideration. Every test involves comparisom with an

oracle, so every program must have an objective performance standard. The

prototyping system must then, in some fashion, provide the tester and his

tools with access to a system functionality description and system

requirements to allow rapid, complete and consistent derivation of the

test oracle from the prototype. This access to functionality descriptions

and requirements has the added benefit of helping develop prototyping

65

scripts for demonstrations so that particular iteration changes and

enhancements will be highlighted for the user's comments.

4. Recording Test Information

The prototyping environment should not only capture requirements,

assumptions, and design decisions but ideally would map these into the

prototype in a way useful to both prototype development and testing. This

mapping automatically provides a trace, documenting the prototype's

development. As the size of the system grows, knowing why a particular

design decision was made and being able to see where (and how) the

prototype implements it will be difficult without automated support. The

prototyping/testing paradigm must capture mappings from design or

prototyping decisions to the implementation. These mappings need to be

rapidly revisable to quickly account for prototype changes between

iterations.

C. OVERVIEW OF A TESTING SUPPORT SYSTEM FOR EVOLUTIONARY, ITERATIVE RAPID

PROTOTYPING

This thesis refines and extends a proposal [Shimeall90] to conduct

testing within a rapid-prototyping context. In this section, I summarize

Shimeall's proposal for testing within iterative rapid prototyping,

describe testing-related features that a prototyping system needs in the

light of the prototyping methodology, and then integrate this into

describing a prototype testing methodology.

1. Shimeall's Testing Within Iterative Rapid Prototyping

Shimeall's proposal [Shimeall90] provides a framework for

iterative prototype testing. Shimeall notes that the most obvious

66

approach to testing during rapid prototype development would be to treat

each development iteration as one software life cycle. He cites as an

advantage that this keeps intact the methodology of testing familiar to

most testers. He then states the lack of a conventional specification

effectively removes the information basis for test planning. Under

current descriptions of the prototyping process, a specification would

need to be generated, at least in part, before conventional techniques

could be applied. The process' complexity is also compounded by the need

to conduct a full cycle of testing for each iteration, even though the

early iterations will almost never contain detailed or unchanging

requirements. This would be inefficient and impractical testing.

Shimeall's alternative [Shimeall90: pp.5-8] is to iterate test

planning in parallel with the prototyping iterations. lie contends that

this will simplify testing and reduce overall testing costs when compared

to the above approach. The initial test plan would only consider the

basic system description contained in the initial prototype iteration. As

prototype iterations proceed, the test plan would expand to incorporate

the latest iteration modifications. One disadvantage he mentions is that

this approach causes the test plan to follow closely the prototype

development. The decisions in the prototype development might unduly

influence the test plan, causing important test conditions to fail to be

explored. The possible disadvantage suggests that the unit and

integration testing might be done iteratively, with acceptance testing

occurring entirely on the final iteration of the development cycle.

67

By considering how the prototyping process closely follows Boehm's

spiral process model, Shimeall noted parallels that led to a spiral

iterative test planning process. Figure 7 illustrates this process.

Conditions & Results
Determined

Test
Descnption

Test Approved
Testt ra l

et Test OracleExection/ •Derivation
& Analysis Di o

Needs/Assumptions Test Conditions Specified
Identified

Test Condition
SelectionAnalysis

Consistent Goals
Stated and Prioritized

Figure 7. Shimeall's Iterative Test Planning Process [Shimeall90 p. 6]

Compare the above figure with Figure I from Chapter I. There is one test

planning iteration for each development iteration. The opposite spiral

directions in each figure indicate that the results of each stage of the

cycle are being evaluated against the results of the previous stage.

Shimeall reduces the issue of iterative test planning to two concerns:

how to construct the initial test plan and how to build successive test

plans from the initial test plan.

Initial test plans would be constructed within the existing

prototyping language structure, with the test planning process beginning

68

by identifying the process paths that map input to output. The paths

would be prioritized by characterizing the semantics of each path. By

analyzing each path, data and expected responses would be identified to

test typical cases, special cases, pathological cases, and illegal cases

along the path. The requirements analyst (or prototyper) would be

consulted in any case where specifying responses raises a problem.

Shimeall observes that the requirements analysis will likely be the most

time-intensive portion of the test planning process and needs automation.

Once cases were established, then the implementation modules

along each path would be analyzed to select data to cause the paths to

execute in the desired manner for testing. Particular aspects of each

module would need to be considered, to include: similarities uf the

actual model's semantics to its specified semantics, differences of the

module from its specification, and how compatible the module is with

environmental assumptions. Analysis would likely need to be done by hand,

as a general matching of performance to specifications is undecidable.

Data is then selected to exercise the modules and a test oracle is derived

by applying the specification to the test data to determine the expected

results. Automated support for data selection and test oracle derivation

is possible and desirable.

Shimeall states that for every prototype after the initial one,

the testers expand the initial test plan to cover the prototype's enhanced

functionality. As mentioned earlier, an iteration can change in one of

three ways: changes to current specifications, additions to existing

specifications, and deletions of existing specifications. In each case,

anywhere that a change potentially interacts with previously tested

69

components, those components must be retested to see if the changes

introduced any bugs.

2. Testing-related Features Needed in a Prototyping System

a. Requirements-capturing Features

Prototyping systems and their associated development

techniques must capture all system requirements. One key prototyping

system weakness noted throughout the thesis is that prototyping languages

are geared to prototype construction and not to validation and

verification. The prototypes tend to capture what is neee4ed and not why

it is needed. This is not a problem as far as construction is concerned,

since anything that does not appear can be explicitly added later. The

problem is that the design decisions and assumptions made during

construction are not usually captured, so testers have no way to check to

see if the assumptions are accurate. Prototyping systems must contain

prototyping language constructs or tools explicitly to capture pertinent

system assumptions and requirements. PSDL intends to provide this

capability via the "informal description," and "formal description"

("axiom") grammar constructs. Implementation research is ongoing.

b. Reusable Components Features

Modules in the reusable components library should conform to

a rigid coding style and documentation standard. Each module should be

rigorously unit tested before incorporation into the components library.

The test history should be recorded and linked to the module for reference

so that during test review, testers can determine needed test data to test

the module in a particular context. Unreachable paths, input/output value

70

range, arid such can be compared with previous test data to avoid redundant

testing and prioritize additional required unit testing, if any, and

prioritize testing various paths. This can save considerable required

testing effort, at the price of some additional test history analysis.

The environment should maintain a module-use history so that,

should a module fail in a given system, other systems using that module

can be checked to decide their susceptibility to a similar flaw. The

failure would be documented and possibly the module would be removed or

modified to correct the flaw. In the event of correction, the modified

module would require the same rigorous verification for admission into the

components library. The beauty of this approach is that systems using a

module continue the system verification process by flagging potential

faults in other systems. By tracking module use, we reduce the risk to

all consumers because, when one experiences a failure, the other systems

using the module can be checked. Therefore any "sleeper" bugs net yet

activated in a system are more likely to be caught before they can do

damage.

c. Prototyping Language Features

Prototyping language structure should lend itself to

structural testing techniques such as path testing. The implementation

language also shoild be amenable to such testing. Thus, the reusable

components can be path tested and the results stored in the testing

history of the component. Also, upon implementing larger portions of the

prototype, the testers can commence path testing on critical paths in the

prototype',, completed portions, using the structur' implicit in the

71

prototype and its implementation language. PSDL and Ada in the CAPS lend

themselves readily to structural testing. The PSDL timing constraints are

examples of how language structures can provide important testing

information for selecting test data to exercise modules. Techniques such

as these will considerably enhance developed prototype reliability.

3. Spiral Testing: A Testing Methodology to Support Evolutionary

Iterative Rapid Prototyping

The testing method proposed in this thesis follows from that of

Shimeall and elaborates on his proposal with several modifications. No

complete prototype environment exists yet and this forces some protoLype

and testing discussion to be anticipatory. For example, the CAPS probably

will not have a working database until 1992-93 and the complete CAPS

environment will not be available for some time beyond that. Our stated

long-term goal is two-fold: to formalize the testing of rapid prototype

systems by ensuring that the information needed to construct an objective

basis for evaluating rapid prototype systems is captured, and secondly, to

automate, or aid by automation, as much of the testing process as

possible.

The proposed prototype testing methodology, termed "spiral

testing," remains iterative and parallels Lhe prototype development

process. Spiral testing expands Shimeall's work by characterizing the

varying types of prototype iterations and by tailoring the testing process

to account for these differences. Spiral testing distinguishes between

the initial few prototype development/testing iterations, subsequent

iterations, and the final few iterations. The major distinction between

72

the first few testing iterations and the subsequent ones is the first

iterations, for any but the smallest of systems, probably will have only

test planning and structuring activities that establish priorities and

areas of test emphasis. The framework for intermediate t;zLting activity

and final acceptance testing, to include test oracle derivation, is laid

in the initial iterations. Test oracle derivation and unit and

integration testing will likely be confined to subsequent and final

testing iterations. Subsequent testing iterations will have less

framework-related activity and more acceptance test. oracle derivation

activity. The major distinction between the subsequent and final

iterations is that trie final iterations are where developers return to

their prototype to fix identified errors and testers conduct final

integration and acceptance and regression testing. Figure 8 shows the

separation of the groups of iterations for either the development or

testing spiral. The following sections cover spiral testing in detail.

a. The First Test Planning Iterations

The first few iterations of prototype development serve

varying purposes, depending on the particular software under design. When

feasibility is not a consideration or when a detailed requirements

document exists, the first development iterations establish the product's

design framework as a base upon which to prototype the remainder of the

system. When feasibility must be investigated and/or when requirements

are unknown, the first several development iterations seek to construct

abstract prototypes to see if an acceptable system can be designed. If

the prototype is feasible, developers establish the major software

73

Final User
Comments

........................ loftware
Delivery

Initial User Comments

Figure 8. A "Targeted" Spiral

requirements and design a development plan upon which to build the system

during successive iterations, as in the first case above. The first few

development iterations will usually be devoted to establishing an overall

prototype structural framework.

To mirror this process for test planning purposes, the

initial test planning iterations consider the prototyping results and

frame the testing process for the remainder of the project. This is the

logical point for testers to determine the major critical portions of the

prototype, and establish test priorities. As prototypers establish major

requirements, the test team begins to break these down into test goals,

determining derived goals as well. As development continues, the testers

74

can define the testing emphasis in greater detail, make needed test plan

adjustments and record test justifications.

It appears prudent (though not essential) throughout the

prototyping process for the test team to review user input and generate

goals independently from the prototype team, so as to identify miss-stated

requirements and to find missing requirements. This increases the quality

of the prototype versions, decreasing the number of iterations needed.

The initial iterations are where the test team will forecast

the most important portions of the system to test. As the implementation

hierarchy of the system takes shape, the testers establish test sections

for path and integration testing. The long-term testing purpose is to

build the framework for constructing the final acceptance-test oracle and

to fit the intermediate testing activities into the overall development

plan. The process will be manual for the most part and this would be

where initial testing tools and their databases/instrumentation would be

initialized. The initial iterations phase would end at the prototype

iteration in which the top level requirements specification is

established.

b. Subsequent Test Planning Iterations

Once the basic prototype developmental framework is

established, subsequent iterations commence in which developers enhance

the prototype's functionality and demonstrate it for user/designer review.

In the typical case, additional requirements are identified and the design

matures in parallel over multiple iterations. Both are validated in the

75

review process. At some point. sufficient requirements are identified to

establish the overall system design.

The subsequent testing iterations will be characterized by

unit testing, integration testing and continued requirements review to

determine if there are missing requirements. To complement the design

process, the test team concurrently develops integration test plans as

designers complete subsections of the system design. In addition, as

reusable components are instantiated to provide required functionality,

the test team or design team unit tests these modules (both 'pproaches are

acceptable in current practice) by consulting the test history of the

instantiated modules and conducting additional unit testing appropriate to

the developing system. Should this additional testing be necessary, the

test team updates the test history to reflect the additional testing and

its results. This update could be as simple as appending a test script

(though this could eventually cost a large amount of storage for a large

components test library) or as complex as completely revising the test

history to incorporate new test sets, assumptions tested, test case

justifications, and additional test history details. The complex update

may be needed to reduce a series of simple updates into a consistent and

usefully compact synthesis. As performance aberrations are found during

a given iteration's tests, they are readdressed to the design team for

correction prior to the next iteration demonstration.

As the design team prototypes system components, the test

team can commence integration test planning for those components.

Prototyping languages such as PSDL generally provide the framework upon

which prototyping tools work to select components and build interfaces for

76

implementation. As the components are selected and combined, the test

team can begin to design their integration tests. Once a system

subsection is complete, and validated by the user, the design team

completes the integration test plan and conducts the test (dependent on

the subsection's finality - a judgement call), providing results to the

design team for correction and to themselves to guide future testing,

including correction of problems in the test execution. Designers make

corrections and, depending on noted problem severity, the iteration is

either retested without further enhancement or else tested by appending

tests to the next iteration's test plan.

The integration testing process is the same at any

hierarchical system level for integration testing. The test team needs to

keep integration testing at various levels coordinated to maximize test

efficiency. If a standard structure for integration test sets could be

constructed, then it might be possible to develop tools to manipulate

these to conduct increasing levels of integration testing as more

components and system subsections are implemented. Currently most of this

process would be manual. Final integration testing cannot commence until

the prototype implementation is complete.

Shimeall [Shimeall90: p.7] notes that it is likely that a

language such as PSDL can be used to develop an initial test plan based

upon the prototype language implementation. However such a plan should

not be executed until all source code implementing the prototyping

language specification has been instantiated. The test team can select

test cases and data in advance, but as Weyuker's general-multiple-change

test adequacy axiom [Weyuker88] states, two programs of the same shape

77

(syntactically similar) usually require different test sets. Therefore to

run a test using the prototype specification for execution is not to test

the implementation code, even though the specification describes the

implementation. A related concern is the closeness of the match a

prototyping system provides between the prototyping language specification

and the selected implementation module. This match should be closely

checked to ensure achievement of the desired result. Test data should be

carefully selected to check the match and to ensure that any assumptions

made in the module development do not conflict with the system's intended

performance or operating environment.

Throughout testing, testers consult the prototype

specification and all requirements to determine the correct responses to

test data. Considerable information needed for test data selection will

likely be found in the prototype specification language. Automated

support to extract this information would be very helpful, but will depend

on the prototyping language in question and in possessing the capability

automatically to relate the criteria to selected test data and execute the

test.

Throughout the iterations, the test methodology must remain

responsive to change. Existing components and specifications may change

or disappear between iterations, contingent with user/developer/tester

input. Additionally, each new iteration will add increased functionality

or further the completion of existing incomplete implementations. The

test development process must capture all effects of change because

additional testing or retesting of previously tested code may be required.

78

This retesting raises the issue of "phase agreement" between the prototype

development spiral and the test planning spiral.

An "in-phase" agreement would have formal iteration testing

proceed at the completion of a development iteration and prior to

iteration demonstration to the user. The advantage here is that the test

team will have tested the system and the developers are not as likely to

demonstrate a system that contains undiscovered or obvious bugs. Any

problems encountered in testing are corrected prior to user review. User

confidence is not enhanced when bugs are discovered during the

demonstration that are not related to design issues. On the other hand,

many iterations will usually be demonstrating requirements not yet

validated and it is wasteful to test unvalidated requirements.

An "out-of-phase" testing approach would rely on the

designers to test their prototype iteration sufficiently prior to

demonstration (for their reputation, not for formal testing). The test

team would conduct formal testing for an iteration at the conclusion of

the user demonstration. They would modify the formal test plan, developed

during the development iteration, by removing any planned testing of

eliminated, changed, or superseded requirements and by adding additional

testing of corrections and modifications resulting from the user's review.

Test planning would proceed in tandem with iteration development, but

actual testing would wait for the results of the user's review. Once the

testers obtain user comments, they may assume that the stated requirements

at that point represent solid requirements for the purposes of testing.

This assumption continues until a requirement is explicitly or implicitly

changed or eliminated. The advantages of the out-of-phase testing are a

79

savings in testing conducted (due to testing only reviewed requirements)

and increased test responsiveness to user review. The disadvantages are

the increased likelihood of missed requirements and the possibility of

bugs in the demonstrated system.

c. The Final Test Planning Iterations

Once developers establish all requirements (usually in the

latter iterations), the final few iterations of development are devoted to

implementing the remaining functionality, followed by error correction.

Therefore the testers can devote their work to completing the test oracle

for acceptance testing, and to remaining unit testing and subsection

integration testing.

The final test planning iterations commence with the

completion of the operational prototype and prior to final user

acceptance. As any final requirements are implemented or as system

components are fine tuned, tests are developed and conducted to cover

these changes. Most importantly, the test team completes the acceptance

test plan. Once the system is completely implemented and the acceptance

test design, including the test oracle, is complete, the test team

conducts the acceptance test. The test team checks differences in actual

results from expected results and corrects the tests as appropriate while

the design team corrects system faults. The cycle continues until the

system successfully completes testing. If the design team is busier than

the test team then the test team can use the available time to conduct

additional testing or priority-superseded testing previously skipped. The

result should be a sufficiently tested software system.

80

d. Spiral Testing: Advantages and Disadvantages

Spiral testing has the advantages of being flexible and

maximizing the amount of testing conducted during prototype development.

It allows for the steady development of an acceptance test in the face of

continual system change and facilitates lower level testing as soon as

implementation code is instantiated. The spiral testing approach

particularly suits the methodology for use with evolutionary iterative

rapid prototyping that is itself spiral. Using test histories for

reusable components should speed the testing process by reducing the

amount of unit testing rcquired. A further benefit of the test history

feature is the compounding of unit testing for reusable components with

use, either increasing our component confidence factor or at least

delineating the bounds in which it may be successfully used.

The spiral testing approach also results in thorough

documentation of the testing conducted and in a formal, written test plan

that can be reviewed with the user for approval. The extended time for

test development. (considerably more than in conventional life cycle

models) also should provide a more thorough test.

The major disadvantage to the approach is that the final

acceptance test remains a moving target until the completion of

implementation coding. Additionally, the test team must remain vigilant

against following the development process so closely that they fail to

view the system objectively from the outside. The first disadvantage is

inherent to the prototyping process, therefore our goal is to minimize its

effect. Spiral testing is likely to do this. The second disadvantage may

81

be reduced with experience, but will likely require separate test teams to

conduct critical acceptance tests.

One should note that the methodology remains a theory at this

point. Further research will be required to determine its feasibility and

practicality. Refinements and amplification will almost certainly be

required. Chapter V addresses recommendations and conclusions regarding

spiral testing.

e. Characteristics of Candidate Software Testing Tools

The amount of detail present in the evoluti -n of software

re:tires tools that could correctly capture information from prototype

iterations. This information comes from sources including both the

prototyping specification language and the implementation language. Once

captured, the information must be suitable for review. For testing we

must automate assumption recording in the design process and explicitly

capture requirements, whether we list these requirements in text form or

else have a sufficiently powerful and expressive prototype specification

language to cause the requirements to be recoverable. The latter sounds

appealing but does not appear to be feasible in the near or short term.

These tools also must support a huge amount of information gathering and

review and be fully integrated with the remainder of the prototyping

environment.

The tool integration issue is essential in large systems to

ensure consistency maintainance between all aspects of the prototype and

the related software liie cycle. The requirements, specification,

reusable components, design histories, version control, test cases, test

82

histories, test. oracles and such must remain as consistent as possible,

without corruption or else the developers lose the ability to assure

correct implementation and sufficient testing. Testing tool integration

must preserve the security of the test team from the development team.

Some argue that one value of a test :-an is that the designers plan to

ensure tha: the implementation handles all the test cases. There is value

in this visibility but a concern is that if tests become corrupted, then

they will not accomplish their intended purpose. Access to testing tools,

at least the set used by the test. team, should be controlled.

Testing tools must allow the testers to predict important

test cases and strategies based on a knowledge of the prototype. The

tools must respond correctly to change between iterations. Because of the

size of most modern software systems, the tools should help the testers to

aggregate, prioritize and record test cases, providing the test team with

feedback on coverage of code (all statements, all paths, etc.), and range

of possible test cases (typical, boundary, pathological, load). Many

tools are possible now and more will become so as prototyping research

matures. The challenge now is to hone in on those testing tools that are

currently feasible and will provide us with the most assistance for the

effort expended.

D. REQUIRFEENTS-BASED TESTING: A KEY METHODOLOGY FOR RAPID PROTOTYPING

The key system developmental concerns in rarid prototyping are to

determine, demonstrate, and meet the user's requirements. At the center

of all this are the sybLem requirements. To test a prototype at all,

testers must know objectively what it is to do. The testers must capture

83

requirements explicitly. Requirements must be restated as test goals so

that they are objectively testable and reflect a single behavior for which

we can ask, "Is this behavior or characteristic present?" The primary

rapid prototype testing method will therefore be requirements-based. This

is not to say structural testing is not needed. Both are necessary, but

structure implements function and does not define it in a way readily

apparent to humans. Requirements-based testing puts the desired program

characteristic directly before the tester and begs validation. Since

prototyping is most likely to be used in situations where requirements are

not well known, requirements-based testing will particularly complement

the prototyping methodology.

As early as 1982, Taylor and Standish noted that prototypes are used

to determine if requirements are adequate and that a way was needed to

perform this task systematically [Taylor&Standish82]. They then go on to

say that testing needs to be coupled with requirements review and that a

"systematic traceability of the requirements to the tests that elicit the

behaviors that are supposed to satisfy them seems called for." This seems

straight-forward enough and may well be further enhanced if one also can

couple this with a mapping to the tested system's implementation code.

The process of requirements-based testing waF described in Chapter II.

The first step in aiding testing within evolutionary iterative rapid-

prototyping systems is to develop a tool to aid in requirements-based

testing. The Test Goal Tracking System (TGTS, pronounced "Targets")

provides testers with a way to capture explicitly every stated or derived

requirement fcr prototypes developed with CAPS. It further allows the

tester to record pertinent test information concerning each requirement,

84

such as test priority, test class, test aggregate, iteration in which

requirements were added (and deleted), and a test history for that

requirement. Each requirement maps directly to the portion of the

prototype that implements it, so that the requirement can be traced and

allows requirements to be cross referenced to determine where one

requirement's implementation may interact with other requirement's

implementation.

Shimeall [Shimeall90: p. 8] highlighted the need for tools like TGTS

by noting that the starting point for automating prototype testing is to

build tools to capture information on the intent of change to ascertain if

the intent was achieved. Since most prototyping languages are geared to

system construction and not. to validation and verification, we need tools

that will augment current prototyping systems to allow us to capture

riquirements and intentions and assumptions. TGTS is designed to do this.

A chief value of TGTS is that it helps testers deal with change in the

protoiype. When part of an implementation changes, TGTS can be used to

show testers what portions of the implementation have changed and what

other requirements may be affected. Further, since TGTS also cross

references into test aggregates, classes and priorities, testers also can

work to maintain consistency and completeness in the test plan. Thus

testers will know what portions of test plans may need revision or

retesting to ensure adequate test coverage. All the cross referencing is

automatic, thus saving testers considerable effort.

TGTS is designed specifically for spiral testing and is intended as

the first in a series of companion testing tools for CAPS. It is a menu-

driven tool, that will work well in a window environment with CAPS.

85

Chapter IV provides a detailed description of TGTS and a small example of

its use in a system under development.

86

IV. TGTS: A SAMPLE REQUIREMENTS-BASED TESTING TOOL

A. AN OVERVIEW OF THE TEST GOAL TRACKING SYSTEM

The Test Goal Tracking System, or TGTS, helps testers explicitly

capture test goals for prototypes developed with the CAPS. Testers derive

test goals from system design requirements and assumptions, restating them

for testing purposes. TGTS is a database tool that maps test goals to

their source in PSDL/source code for cross-referencing and retrieval. It

allows testers to track information about a test plan's test goal coverage

(how, where, why). and about test goals that do not yet appear in a

prototype.

1. TGTS Distinction

Some may initially be inclined to levy the criticism that

prototyping captures the system requirements in the prototyping process,

so why bother recording requirements separately? Isn't TGTS just

duplicating effort? The response is, "No" simply because what TGTS does

is record explicitly what already occurs implicitly in the prototyping

process. One cannot test implicit requirements with any certainty of the

completeness of sufficiency of the test. Testers are commonly concerned

with sufficient testing, particularly in the embedded, real-time

programming environment that CAPS handles. TGTS does not add a redundant

process to prototyping, but simply helps testers capture results of what

is already occurring in the prototyping process, namely requirements

verification and validation. All this is to say "You can't test what you

87

don't know and you can't know the requirements unless you explicitly

capture them, particularly for complex systems." Therefore, TGTS allows

the system requirements captured and/or validated by the prototyping

process to be developed into test goals and recorded for testing purposes,

mapping each to the implementing code in the prototype.

One of prototyping's primary purposes is requirements-capturing.

If one expends effort to prototype and determine or validate requirements,

then one should capture the requirements as well as the prototype. It is

inefficient to fail to capture explicitly requirements (vHnce it may be

accomplished in parallel with the construction process) and then turn

around and have the testing process grind to a halt while testers scramble

to figure out what behaviors they are trying to verify. In the end,

prototypingwill be slower for evolutionary systems unless testers readily

capture requirements and establish concise, clear and complete test goals.

2. TGTS Goals

The primary goal was to provide a tool to map captured and/or

validated requirements to the prototype. The tool needed to capture

accompanying test-related information (such as test priority, aggregation,

and classification) to aid test planning and execution. The tool also had

to be flexible enough to capture change in requirements between iterations

and maintain consistent mappings to concurrently changing implementations

in CAPS.

A second goal was to show the spiral testing methodology of in

Chapter III to be a non-intrusive testing approach within evolutionary

iterAilive rapid prototyping. Further, the spiral testing approach needed

88

to be shown to be appropriate for test tool design supporting rapid

prototyping.

Testers may record a history for each test goal, describing how

that test goal has been met or noting what remains to be tested. They

also record current status, including the iteration in which they added

the test goal and the iteration in which they last modified the test

goal's history.

Concurrently, TGTS allows testers to track the status of the PSDL

prototype, noting the implemented operators and data streams and their

degree of implementation. Testers record the iteration in which the

various operators and data streams are added and fill in the accompanying

history for each. By combining the test goal and PSDL information,

testers can more readily decide for a given iteration what should be

tested and how.

3. TGTS Database Software

The database software chosen as a basis for TGTS was dBase III+.

The primary reasons for this choice were: software availability, software

familiarity (thus reducing the learning curve), dBases' rapid database

construction facilities, and the availability of PC's and workstations to

run TGTS. Additionally, many computer users are familiar with dBase,

making further research more readily accessible to them.

As with any design decision, trade-offs exist. Certain

weaknesses resulting from using dBase III+ include: limited data types

and allowable manipulations, lack of a full SQL approach to relational

databases, and limitations inherent with certain data field types in

89

dBase, such as memo fields. Additionally, unless TGTS is compiled with a

dBase compiler, such as Clipper, it only will run inside dBasc. Since

dBase III+ is a DOS operating system application, TGTS can only be used on

workstations that execute or emulate DOS. Nevertheless, the tool works

quickly and meets current research needs. It is also simple and flexible

enough that new users can quickly become familiar with it.

B. DEVELOPMENT AND DESIGN OF THE TEST GOAL TRACKING SYSTEM

1. Detailed Design Decisions and Tool Structure for TGTS

The TGTS design philosophy was to build a simple, user-friendly,

tool with a very direct modular implementation to be used, studied, and

evaluated over time. The tool design needed to be easily modifiable and

extensible over time, as experience provided sufficient input to determine

what operations, utilities, and output would best suit CAPS prototype test

development.

a. Modular Design

TGTS has a modular structure so that the system may be easily

modified. Module coupling is minimal in the program, other than the menu

modules linking to the called application modules. Minimal coupling makes

future tool modifications easier to effect. Should users desire added

functionality, the tool can be extended by simply adding additional

program modules and then including appropriate calls to invoke the new

module(s). The modular approach is also the programming style around

which dBase programming is designed. The dBase program execution is a

series of module calls, depending on the functionality being invoked. The

conditional program calls are effectively and easily implemented with an

90

interactive, menu-driven program approach. The following figure shows the

top level program decomposition. Note that the decomposition groups

TARGETS

ITERATION REPORTS UPDATE UPDATE
INFORMATION TEST GOALS PSDL

Figure 9. Top Level TGTS Program Decomposition

logically related tool functions together. For example, the "Reports"

module contains all the output functions for TGTS and the "Update Test

Goals" module contains the functions that manipulate the test goals

database.

b. Menu-driven Format

The TGTS program is menu-driven, both allowing users to see

TGTS functionality options immediately, and keeping the tool simple and

easy to use. The tool's functionality is "set" in the sense that user-

performed operations only include those explicitly accessible from the

menus. Of course the serious dBase III+ programmer has considerable

latitude to manipulate TGTS directly from the dBase command line, apart

from the TGTS program. While not recommended for typical usage, command

line tool/database modifications can actually benefit development and

91

research because it allows the test databases and the programs to be

modified quickly, as research might dictate.

c. Tool Input and Output

Standard input for TGTS is via the keyboard and the database

and index files contained on disk. Standard output for TGTS may be

optionally directed to the screen only or the screen and standard system

printer. DBase III+ automatically updates database and index files to

reflect changes in data contents. The user navigates menus by choosing

the number corresponding to the desired action. Data fields requiring

input have accompanying guiding statements, where appropriate. TGTS

guards data input fields to accept input only within designated ranges.

DBase III+ provides screen entry progran~ning facilities to conduct data

input checking that ensure data is of the appropriate type and range.

d. TGTS Database Design

TGTS is a multiple database application, using three main

databases. The first database (GOALS.DBF) is a test goals database used

for recording and referencing all prototype test goals. The second

database (OPSTREAM.DBF) is the PSDL operator and data stream database,

used for recording and referencing information on all the PSDL operators

and data streams. Finally, the link database (ROLINK.DBF) contains data

records linking test goals to operators and/or data streams that implement

the prototype system requirements (restated in test goal format). The

mappings between the first and second database may be one-to-many, many-

to-one and many-to-many. Usually they will be many-to-many. The

following figure illustrates the relational structure of the database.

92

The iteration information database (ITERATNS.DBF) is not linked to the

other three databases and is used to record overviews of each iteration's

history.

GOALS

M:N

ITERATION
INFORMATION LINK

M:N

Figure 10. TGTS Database Structure

The database fields are excluded from the above figure to

avoid clutter. The following table lists the fields and field

characteristics of the database records and includes the dBase III+ field

types and index files relating to fields. DBase keeps the index files

listed to index records. Each index file's key is the respective field

name beside which the index file is listed. Each of the first two

databases assigns a unique number to each record that serves as a key for

referencing the record. This allows the link database to establish unique

links simply by referencing the two numbers. The field names in Table 1,

are written out descriptively. The field names in the source code are

93

TABLE I

GOALS. DBF

Field Field Name Type Width Range Index File Name

1* Goal Number Numeric 6 1-9999 GOALNUM.NDX
2 Goal Description Memo
3 Test Priority Numeric 1 0-4 TESTPRI.NDX
4 Aggregate Numeric 2 0-99 AGGREGAT.NDX
5 Updated Numeric 2 0-99 UPDATED.NDX
6 Iteration Added Numeric 2 1-99 ITERADD.NDX
7 Test Class Numeric 1 0-4 TESTCLAS.NDX
8 Goal History Memo
9 Deleted Numeric 2 0-99 DELETTG.NDX

OPSTREAM.DBF

Field Field Name Type Width Range Index File Name

i* Operator Number Numeric 6 1-9999 OP_NU M.NDX
2 Operator Name Character 40 OPNAME.NDX
3 Operator Logical 1 T or F
4 Updated Numeric 2 1-99 OUPDATED.NDX
5 0 Iteration Added Numeric 2 1-99 0_ITERAD.NDX
6 Operator History Memo
7 Deleted Numeric 2 0-99 DELETOP.NDX

RO LINK.DBF

Field Field Name Type Width Range Index File Name

1* Goal Number Numeric 6 1-9999 GNUMLINK.NDX
2* Operator Number Numeric 6 1-9999 ONUMLINK.NDX
3 PSDL Part Character 40 PARTLINK.NDX
4 L Iteration Added Numeric 2 1-99 LITERAD.NDX
5 Deleted Numeric 2 0-99 DELETLK.NDX

* - INDICATES KEY FIELD

shorter to fit dBase programming requirements. The ranges chosen for the

fields are arbitrary and provide sufficient range for anticipated

projects.

Several field data ranges limit input, either to restrict the

possibility of errors or because each possible value represents something.

For example, there are four test priorities and four test classes

94

possible, with an entry of zero signifying that testers have not yet

assigned priority or class. Each number allowed in the "class" field

represents a test class: 1 - non-testable, 2 - inspection, 3 - analysis,

4 - execution. The TGTS User's Manual, in Appendix B, describes all the

database fields in detail.

2. Tool Operations with TGTS

The primary purpose of TGTS is to record test plan information on

a developing prototype's test goals and then map the test goals to their

source in the prototype code. As TGTS' top-level module decomposition

shows, the operations fall into four categories: database outputs, test

goal updaie-,, PSDL updates, and iteration information. The principal

operations of each will be discussed in turn. A complete description of

TGTS' operations is contained in the TGTS User's Manual, Appendix A.

a. TGTS Database Output Operations

The key to TGTS effective use is the proper presentation of

the database contents. The information provided must give testers the

information needed to develop a thorough test plan. Ideally, it also will

aid development personnel by pointing them to likely sources of errors

when tests detect faults. TGTS provides these services with sixteen

output operations, each implemented as a separate module.

For each output operation, the user has the option to receive

the output on the screen only or else on the screen and printer. Once

projects grow to any sizeable extent, testers will usually need printed

output. TGTS groups output listings as either "Test Goal Output Options,"

"Operator/Data Stream Output Options," or "Link Output Options." The

95

"Test Goal" and "Operator/Data Stream" options further allow the user to

specify either a brief or descriptive output of the database records. The

brief description excludes the descriptive text fields for each record,

while the descriptive output includes these text fields.

At the most basic output level are the "All" output options.

A user may list all contents for either of the three databases, which is

useful in many general ways. In each of these listings, the lists may be

indexed by any of several keys to provide users with appropriate record

groupings.

More specific listing operations exist. Test goals added,

changed or deleted in a given iteration as well as those of a given test

class or priority or aggregate may be listed. In similar fashion,

operators or data streams added, changed, or deleted in a given iteration

may be listed. Particularly helpful are the listings that show all the

operators and data streams that map to a particular test goal, and its

opposite, the listing that shows all the test goals that map to a

particular PSDL operator or data stream. The last two listings are

especially helpful in test planning because they let the testers rapidly

update tests to account for implementation changes and to track

implementation code test coverage. When developers change an

implementation module, the testers can see which test goals are most

likely affected. When testers change or delete a test goal, then they can

note appropriate test modules for additional testing consideration.

Finally, an output operation exists to list all the links

between test goals and PSDL parts added in a given iteration. This helps

provide a history of test development concurrent with the system

96

development process and serves as a test plan management aid. When

testers combine this last listing with detailed listirZc of the other

databases, they have an overview of the entire requirements-based test

plan.

b. TGTS Test Goal Update Operations

Testers derive requirements-based test goals from the

validated system requirements for a given software project. Previous

research has described various sources for these requirements

[ilernandez89]. Once the testers develop the requirements into test goals,

the test goals are added to the database, annotated as appropriate and

mapped to the prototype implementation code.

TGTS provides five operations upon test goal database

records. These are very straight-forward. First, a test goal may be

added. Initially, testers fill the test goal record's description field,

followed in the goal history field by a justification of the goal's

derivation, such as "user comment on iteration x demonstration" or

"initial requirements document, requirement no. 23" or some such

sufficiently clear description so that the test team knows explicitly

where the goal originated. The "Add" operation automatically assigns test

goal numbers sequentially. This prevents two test goals from having

identical test goal numbers and also allows the numerical value of test

goals to reflect the sequence of test goal derivation, should the test

team deem such information valuable.

The second operation is the "Delete" operation. This

operation marks a test goal as deleted from the test plan. The test

97

goal's record remains a part of the test goal database with a deleted

field flagged. This operation is particularly valuable because it allows

test goal information tu be retained for record purposes and keeps records

that may have to be added back in a subsequent iteration, should the

results of an iteration demonstration dictate. Testers may review a given

iteration's deleted test goals to determine what test plan modifications

will be required in light of requirements changes. This operation is a

bit more complex than previous ones in that it requires TGTS to delete all

link records that mapped to the deleted test goal. Note though that the

links are non-destructively deleted in the same way as the test goals so

that they may be added back, if necessary.

The third operation is the "Change" operation. This

operation does not allow testers to change the nature and description of

a given test goal per se. The "Change" operation allows testers to change

test plan related information concerning a given test goal, such as its

test priority or test aggregate or it allows testers to fix incorrectly

added information in a given test goal record. The reason for this

approach is basic. A test goal itself does not change. It is either a

valid test goal or it is not. If it is invalid, then it should be

deleted. If it is valid, then its description remains unchanged. A brief

digression to explain the meaning of an inappropriate test goal is

appropriate.

A test goal may be inappropriate because of many reasons.

First, it may simply have missed the mark of system requirements

completely. Second, a test goal may be invalid because it was not

specific enough, combining too much into one test goal. Testers may then

98

delete the initial test goal and replace it with multiple succinct test

goals (here, justification comments referring to the initial test goal may

be appropriate for test history purposes). Third, a test goal may not be

feasible in its current state or may require modification to conform

better to the overall test plan. Again, justification comments would be

appropriate.

The "Change" operation has an additional important function,

namely to undelete previously deleted test goals. Should a previously

deleted test goal need to be reinstated, then the "Change" operation

undeletes the test goal by marking the record's deleted flag as undeleted.

Further, it then allows the user to undelete all the test goal's previous

links or else selectively revive test goal links to account for changes

that may have occurred in the prototype's implementation code.

Test goals must be linked to the prototype implementation

code, once developers add the functionality to the prototype. The "Link"

operation links a test goal to an existing operator/data stream record.

The "Link" module implementing this operation also works in the opposite

direction, linking operator/data stream records to existing test goal

records, making it one of TGTS'few modules that is called by multiple

modules. The "Link" operation explicitly allows the testers to link test

goals to the prototype implementation code.

The final operation is the "Unlink" operation. "Unlink"

allows links to be removed between a test goal record and an operator/data

stream record. This allows the link database to be manipulated to account

for changes in prototype implementation. Like the "Link" operation, the

99

"Unlink" implementation is a shared operation with the operator/data

stream database.

c. TGTS PSDL Update Operations

The PSDL database is subject to five operations similar to

the test goal database operations. Two of the operations, "Link" and

"Unlink," are identical to those described above. The other three, "Add,"

"Delete" and "Change" are similar to the analogous operations for the test

goals database, but have input screens to manipulate operator/data stream

database records.

The "Add" operation, like its counterpart allows implemented

PSDL operators and data streams to be added to the database. There is an

"Operator" boolean field in each record to flag each as either an operator

or a data stream record since both record types reside in the same

database. Each record receives a unique operator number to distinguish

each part and provide a key for linking PSDL parts with test goals.

The second operation is the "Delete" operation which non-

destructively removes a PSDL part record from the database. Again, should

a future change reinstate the PSDL part, it can be retrieved from the

database. When a user invokes the "Delete" operation, the links related

to the record are also non-destructively deleted.

Lastly, the "Change" operation serves the same purpose for

PSDL parts records as its test goal namesake operation. Historical

information can be updated and previously deleted PSDL parts records can

be undeleted. As before, the associated links can be batch or

individually undeleted.

100

d. TGTS' Iteration Information Facility

TGTS has a fourth database that provides a descriptive

overview of iteration informationi regarding a project's design and test

goal development. While this database is not directly related to the main

three databases, it allows test personnel to record information about an

iteration's development deemed important for testing purposes. Such

information might include: major areas of functionality added in a given

iteration, key user responses to a given iteration demonstration that bear

on testing, and major portions of the test plan for a given iteration.

The iteration information's design is very basic consisting

of two fields: the iteration number field and the iteration history field

(a descriptive text field). Operations allowed on this database include

adding, deleting or changing an iteration record, listing iteration

information for a given iteration and listing the last iteration number

used. The iteration information database can be used in whatever way the

test team decides is most beneficial for a project's needs. Since the

main information field is a text field and dBase does not manipulate it in

any way, almost anything deemed appropriate may be recorded. Experience

and/or particular project needs may dictate redesigning this database to

allow a more structured form of iteration data storage.

C. USE OF THE TEST GOAL TRACKING SYSTEM

The purpose of this section is to provide an example of TGTS usage

with a software prototype. To make the example practical and relevant to

current prototyping research underway at the Naval Postgraduate School, I

chose a published CAPS prototype specification. This publication, A

101

Software Prototype of the Message Processor in Navy C31 Station,

[Luqi&Davis89], provides a set of software requirements and a PSDL

prototype decomposition suitable for an example. Since the specification

only covers the upper levels, it is modified and extended slightly with

dummy requirements and operators to allow particular TGTS capabilities to

be demonstrated. Only selected portions of the prototype specification

are included in the example for simplicity and brevity. The reference

provides the entire specification. Finally, Appendix A provides the

complete TGTS database for the example that follows.

1. Problem Environment and Prototype Specification

The C31 project entails ongoing research at the Naval

Postgraduate School to provide the U.S. Navy with a low cost Navy Tactical

Data System (NTDS) display using commercially available resources.

Researchers saw this as an ideal application for PSDL and rapid

prototyping due to the time constraints requirements for this large real-

time system. A Command, Control, Communications and Intelligence (C31)

System provides commanders with an information tool to aid in seeing the

tactical situation within their area of responsibility. Many processes

exist. within a complete system, but the present example concentrates upon

a Message Processor (MP) component for routing:

" track reports,

" participating unit directives,

* status reports, and

" combat directives

102

between a Direction System (DS) with Onboard Sensors (OS), and various

radio transceivers.

2. Message Processor Requirements

System design commences with the design team determining the

system requirements. Generally, the Message Processor (MP) must offload

the following data:

" message routing information,

• ship link track management,

* unit status,

* directive management, and

• communication link functions.

Given the top level system functional specifications (omitted here, see

[Luqi&Davis89: p. 51), a system can be decomposed into a top-level PSDL

module decomposition. As developers validate detailed requirements, the

subsequent modules to implement the requirements can be designed. Figure

11 shows the decomposition that system designers built.

For the purposes of this example, only the Manage Radar Tracks

sub-module's detailed requirements will be listed. The radar track

manager is responsible for processing all SL and AL tracks, which

originate from other C31 modules (SL and AL). The radar track manager

fulfills the following requirements:

103

Fowr owr sinFradForward Forward

Figure 11. C31 Message Processor Module Decomposition [Luqi&Davis89: p.11]

1. A DT report from DS shall, if possible, be assigned a free or
lowest priority track-id (if current id is null) and broadcast
over SL within two SL cycles of its arrival at the MP.

2. Each ST that is broadcast over SL shall be routed to DS if it
is consistent with the receiving ship's current SL tracks;
otherwise one of the two inconsistent track reports shall be
selected (to become the current track with that id) and routed
to DS. The ST is analogous to a remote track in TDS link-li

capable ships.

mendmnt - Each ST that is broadcast over SL shall be routed
to DS if it is consistent with the receiving ship's current SL
tracks; otherwise a correlation conflict warning shall be sent
to the DS. Both tracks shall be selected and routed to the DS
for resolution by the system operator. The system operator

104

must have control over traffic conflicts. YP conflict
resolution recommendations may be forwarded to the DS to assist
the operator.

3. In the absence of communications failures, a concurrent
allocation of the same SL track id to two inconsistent tracks
by different ships shall be resolved.

4. In the absence of communications failures, a concurrent
assumption of reporting responsibility for the same SL track
shall be resolved.

5. A base unit MP shall route to AL those SL tracks with ids that
are designated by DS (with TA messages) for reporting over AL
(irrespective of which ship has reporting responsibility).
This routing shall persist until a TA message retracts it or
the track is dropped.

6. Each track report in a packet received from a ship or aircraft
shall be processed or discarded within one link cycle of its
arrival at the MP. That is, before another updated or new
track can arrive from the same unit.

7. Each DT message from DS to MP shall be transmitted over SL
within two link cycles of its arrival at MP unless there are
more than 225 words of message data to be transmitted in the
next outgoing packet; in that event queued messages shall be
deleted or replaced in order of priority until the next
transmission opportunity. The message handling priorities are:

* ISL, IAL, SLS, and ALS

" incoming and outgoing directives

• outgoing messages (from base units) to remote units (aircraft)

* incoming SL and AL track reports

* outgoing SL track reports

* all other messages (including responses to directives)

*Amendment - The message priorities should be amended as follows:

* ISL, IAL, SLS, and ALS

* hostile quick response tracks (such as pop-up missiles). These
targets shall be identified by a special field in the track
descriptor.

105

* incoming and outgoing directives, including responses to directives

* outgoing messages (from base units) to remote units (aircraft)

• incoming and outgoing hostile and unknown DS, SL, and AL track
reports

• incoming and outgoing friendly SL and AL track reports

" all other messages.

For the purposes of the example, the abbreviations used above are

inconsequential. The amendments listed will be used to show the

responsiveness of TGTS to change in requirements.

From the above requirements, the designers decompose the manage

radar tracks sub-module shown in Figure 12, into the PSDL description

shown in Figure 13.

sitracks --- sitracks

forwordd- mat

sl-tracks - -lad=l_tracks

forward It

st : - mdt

sltracks

ssign rack tracks

dta

Figure 12. Manage Radar Tracks Sub-module [Luqi&Davis89: p. 14]

106

The textural description contained within the PSDL operators are conments

that can be a rich source for test goals and should be thoroughly

examined. Additionally, they can reflect assumptions made and serve to

amplify designer's intent for future lower level modules.

CONTROL CONSTRAINTS

OPERATOR forward_dt MINIMUM CALLING PERIOD 20 ms
MAXIMUM RESPONSE TIME 500 ms

-- worst case: each DT message from DS must be
-- forwarded over the link within 2 ship link cycles
-- worst case: no more than 50 DT messages/second shall
-- arrive from DS to the MP
- 2 ship link cycles = 1000 ms available to forward a
-- maximum of 50 DT messages, gives minimum
- calling period of (1000/50) seconds = 20 ms
- Minimum link cycle duration is 500ms, thus each module
-- must be capable of completing computation within this
-- time to handle worst case of a two ship link with few
-- messages to forward, thus maximum response time is
- 500 ms
- allocate 500 ms to mp and 500 ms to sl
-- Max latency considering both RF propogation delay
-- and DMA latency is 7.25 ms for ship link and 6.2 ms
-- for aircraft link

OPERATOR forwardat MINIMUM CALLING PERIOD 5.8 ms
MAXIMUM RESPONSE TIME 500 ms

-- system maximum track load is 256 tracks
-- radar track manager contains 3 modules responsible.
-- for forwarding messages over link
-- worst case assumption is that this module will have
-- 256/3 track messages for forwarding within one
- link cycle of 500ms, therefore this module must
-- be capable of forwarding one message every (500/256)x3
- seconds = 5.8 ms, which gives the minimum calling
-- period of the module
-- Maximum response time as for forward_dt
- Max latency for aircraft link is 6.2 ms

OPERATOR forwardst MINIMUM CALLING PERIOD 5.8 ms
MAXIMUM RESPONSE TIME 500 ms

-- Minimtim response time as for forward-at
-- Maximum response time as for forwardat
-- Max latency for ship link is 7.25 ms

END

Figure 13. PSDL Description of Radar Track Manager [Luqi&Davis89: p. 19]

107

3. Test Goal Development Process with TGTS

Assume that the first development iteration produced the system

decomposition given above, with the requirements listed, not to include

the amendments. The test team must translate the requirements into test

goals and load them into TGTS, along with the PSDL operators that define

the decomposition. To the extent that requirement implementation is

defined, the test goals may be linked to the PSDL implementation.

As an example decomposition, requirement one would become two

test goals, each describing an individual testable behavior:

" A DT report from DS shall, if possible, be assigned a free or lowest-
priority track-id (if the current id is null).

" A DT report from DS shall be broadcast over SL within two SL cycles
of its arrival at the MP.

Testers simply break compound requirements into their components. The

process continues until the requirements are all restated in an acceptable

test goal form.

Some requirements are derived, implicit or based upon system

assumptions. An example of this sort of requirement occurs in determining

the acceptable link cycle duration. Without deriving the requirement in

detail (done in [Luqi&Davis89]), derivation factors include the assumed

maximum distance between two communicating stations, radio frequency

propagation velocity and implementation architecture assumptions, all of

which testers need to know and record as test goal justification. The

resultant test goal is: "Minimum ship link cycle duration is 500 ms."

Appendix A contains the sample database at the conclusion of the first

development iteration.

108

After TGTS database loading, all the top-level and MP PSDL

operators are contained in the operator/data stream database and the test

goals are contained in the test goal database. By examining the modules,

the test team can determine which links, if any, can be established. The

test team establishes links for the module level at which a test goal's

implementation becomes explicit. They continue to establish links at

successively lower operator (module) levels that further the

implementation, continuing the process to the source code (reusable

component) module level. For example, if the "forward dt" module had four

sub-modules, W," ''X," 11Y,' and "Z," and two of them, "W" and "X"

implemented the ship link cycle length (500 ms maximum - derived

requirement from previous paragraph, then the "minimum ship link cycle of

500 ms" requirement would have a link to three modules: "forward_dt," "W"

and "X." Each link record would contain the portion(s) of the PSDL

specification to which the test goal was linked. The "forward_dt" link

would state that the PSDL implementation part would be "Operators W and X"

because they implement the requirement. Testers establish links only for

modules that actually help implement the requirement, not just simply

encompass it somewhere at a lower level. This is important to minimize

the number of links and to cause the links to point to the prototype parts

that effect the test goal's implementation.

As testers fill database records, they can classify test goals by

how they will be evaluated (inspection, execution, etc.), fill in the

iteration in which testers added the record, and such. For t st goals,

the test priority, test aggregate, and test history fields will only be

filled as testers make those decisions and the actual test plan design

109

matures. Successiv. iterations may produce requirements changes like the

requirements amendments listed previously. When this happens, the test

team rewrites the appropriate test goals. Prior to inserting the new test

goals, the test team uses TGTS to trace the old test goals' implementation

in PSDL. The old implementation and any test plan aggregates/accompanying

test oracles (if developed) are reviewed and compared with the new

implementation to determine what must be modified, deleted or superceded.

TGTS users add and link the new test goals and PSDL parts, and then delete

the superceded ones and their links. In both cases, testers comment

history fields to reflect the change justifications. Additionally,

testers update the iteration information database to reflect a summary of

the changes. Appendi\ A provides a before and after TGTS database

reflecting the effect. of Requirement. Two's amendment and samples of

Iteration Two's database contents.

Once developers complete a portion of the prototype, that

portion's Lest development can be completed (usually, barring additional

test dependencies). Testers can use TGTS output to group and compare test

aggregates and classes, review test results to date, and check test

coverage. Blank fields signify incomplete planning and test goals with

different "iteration added" or "iteration updated" field values from

linked operator/data stream namesake fields signify possible test plan

conflicts requiring resolution. Finally, TGTS outputs provide the

checklists for ensuring a complete requirements-baslI test plan. TGTS

output samples are included and explained in Appendix A.

110

D. PERFORMANCE OF THE TEST GOAL TRACKING SYSTEM

Since major portions of CAPS require continued researdh, TGTS has not

been used with CAPS ini an actual prototype development. Since this

situation will likely persist for the short term, TGTS will riot receive a

true "in situ" test for some time. TGTS is simple enough to be used for

research in parallel with continued research in CAPS prototyping

simulations. The TGTS should provide an effective, initial requirements-

based prototype, testing tool and a tool to help evaluate CAPS-developed

prototypes.

TGTS should be viewt.d as a sort of prototype itself. With continued

research, the final form for TGTS' successors will be determined. TGTS

will likely ')(improved by reimplementation in a high level language like

C++ or Ada so that it can be directly integrated into the CAPS

environment. More detailed functionality and a conmmand line capability to

manipulate TGTS would be welcomed additions to make the tool more

responsive to the experienced tool user. TGTS experience will establish

needed modifications for improved tool performance.

III

V. CONCLUSIONS AND RECOMMENDATIONS

This research is the initial investigation of software testing to

support evolutionary iterative rapid prototyping. As such, it has

concentrated on forming and expanding a general methodology (Spiral

Testing Method) for conducting software testing and more especially for

conducting requirements-based testing in evolutionary iterative rapid

prototyping environments. The research further dew,.nstrates the

feasibility of testing tool development to support both prototype testing

and the Spiral TesLing methodology developed herein. There was no attempt

_o prove rigorously the testing methodology or the TGTS testing tool

developed. Such tests will riot be possible until prototyping environments

and supporting test tools have matured considerably. However, the utility

of the tool was demonstrated using published descriptions of a military

system.

This thesis addresses several key aspects of software testing to

support evolutionary iterative prototyping. It explains the need for a

software testing methodology to support the rapid prototyping paradigm and

addresses the issue of which prototyping paradigms are most in need of

testing support. Additionally, the thesis shows the criticality of

requirements-based testing for generating reliable production code from

prototyping. Key characteristics of the prototyping-testing relationship

are identified. The requirements-based testing tool, TGTS, provides a

working research tool for further requirements-based testing research.

112

TGTS further shows that a series of testing tools, integrated into the

prototyping environment can provide increased testing assistance itn a noin-

intrusive way in the prototyping paradigm.

A. RESEARCH CONTRIBUTIONS

This research makes several contributions both to prototyping and to

software testing. First, it helps prototyping research efforts. The

thesis identifies the need for testing support for evolutionary iterative

rapid prototyping. It then identifies particular prototyping

characteristics, such as reusable components and prototyping languages,

that can aid the testing process. This will allow further prototyping

research to consider testing concerns and plan to support. them. The

intended result will be decreased risk and increased product reliability.

In addition, by incorporating the identified characteristics in

prototyping environments, researchers can accelerate the development of a

production system by prototyping.

Second, this research helps testing. It describes a testing

methodology, Spiral Testing, specifically designed to support prototype

development in as non-intrusive a way as possible. Spiral Testing is a

general testing methodology, tailored expressly for testing in

evolutionary iterative rapid prototyping environments. It is general and

will support many testing methodologies, taking advantage of the iterative

nature of prototyping.

Third, this research helps both prototyping and testing together.

The thesis argues the importance of explicit requirements-capturing to

both prototyping and requirements-based testing. It then identifies how

113

the prototyping model and requirements-based testing can be conjoined to

harness the requirements-capturing capabilities of prototyping in a way

that directly supports requirements-based testing. One of the greatest

values of this conjoining is the assurance that testing covers the

software buyer's requirements. Another significant value is ensuring

prototyping and requirements-based testing processes support each other.

Fourth, this research makes its assertions practical by providing a

requirements-based testing tool, TGTS, for use with an existing research

prototyping environment, CAPS. The tool assumes a Spiral Testing

methodology and evolutionary iterative rapid prototyping. It provides the

first. tool in an anticipated family of prototyping testing tooli.

B. FUTURE RESEARCII

The result of this thesis is to provide a foundation for further

prototype testing research. In the prototyping area, more research is

needed on assumption recording. Research to make more of the information

captured in the prototyping process recoverable for testing purposes would

be useful. Prototyping is new enough that many mechanisms needed for

truly evolutionary iterative prototyping environments are only in the

early stages of development. Tool integration research is essential to

incorporate testing tools in prototyping environments. The issue of

maintaining test histories on reusable components and component

performance within developed prototypes needs attention. Incorporation of

other testing methodologies within prototyping, to include structural

testing and general functional testing should be studied. Tool support

for test condition selection, test oracle derivation, and test execution

114

and analysis also need research to adapt them to prototyping and Spiral

Testing.

At a more specific level, research on how to incorporate consistency

checking in testing tools such as TGTS would be invaluable. Further

testing automation to include aggregation support also would help

prototype testing. With the use of reusable components in prototyping,

the ability within CAPS to analyze accompanying component test histories

for the purposes of test goal analysis and test case selection will be an

important. future research area. Shimeall covers additional testing

research concerns that pertain particularly to CAPS and PSDL [Shimeall90:

p.9].

115

APPENDIX A TGTS DATABASE SAMPLES

Appendix A takes the prototype example used in Chapter IV and provides

sample TGTS outputs to show how TGTS aids requirements-based testing. The

example divides outputs into three hypothetical development iterations to

show how users employ the tool throughout the prototyping process.

Additionally, the example augments the C31 Station requirements with dummy

requirements and dummy PSDL operators to illustrate various TGTS

capabilities.

A. DATABASE AT CONCLUSION OF FIRST ITERATION

The following figures show TGTS database contents at the conclusion

of the first development iteration. In each database's case, the brief

output format and the detailed output format are provided for comparative

purposes. Note that only one link was established during the first

iteration. Testers will need to use discretion to determine when to

establish links, so that they point to requirements implementations in

ways meaningful to test purposes.

116

OP_.NUBER OPNAME OPIRATOR UPDATED 0_ITID)D 0_IJISTIRY DELETED
1 MP .T. 0 I Memo 0
2 MANAGE RADAR TRACKS .T. 0 1 Memo 0
3 MANAGE DIRECTIVES .T. 0 1 Memo 0
4 MANAGE PARTICIPATING UNITS .T. 0 1 Memo 0
5 FMI WARU) Tr .T. 0 1 Memo 0
6 FRWARI) AT .T. 0 1 Memo 0
7 FORWARD ST .T. 0 1 Memo 0
8 ASSIGN TRACKS .T. 0 1 Memo 0

Figure A-1. Iteration One Operator/Data Stream Database Brief Output

The above figure is handy for reviewing operator status and recapping

the history of operator and data stream development. The following figure

gives the explanation of each operator's or data stream's purpose.

117

OPERATORS ADDED IN ITERATION 1
opniumbcr opjname ohistory

1 MP First level module
decomposition of C31
sys ter.

2 MANAGE RADAR TRACKS First level module
decomposition of MP,
designed to implement
requirements 1-7 of
initial specification.

3 MANAGE DIRECrIVES First level decomposition
of hP.

4 MANAGE PARTICIPATING UNITS First level decomposition
of MP.

5 FORWARD lT Second level decomposition
of MP.
First level decomposition
of Manage Radar Tracks.

6 FORWARD AT Second level decomposition
of MP.
First level decomposition
of Manage radar tracks.

7 FORWARD ST Second level decomposition
of MP.
First level decomposition
of Manage Radar Tracks.

8 ASSI(GN TRACKS Second level decomposition
of MP.
First level decomposition
of Manage Radar Tracks.

Figure A-2. Iteration One Operator/Data Stream Database Descriptive

Output

118

GOALNUM CA)ALI)ESCR TESTJPRI AGGREGATE UPDATED ITERADDED TEST_CLASS G IllSTORY LETED
I Mo 0 0 0 1 4 Memo 0
2 Mum) 0 0 0 1 4 Memo 0
3 Mea o 0 0 0 1 4 Memno 0
4 MC1o 0 0 0 1 4 Mtno 0
5 MrnKi 0 0 0 1 4 Meno 06 W1110) 0 0 0 1 4 Mtemo 0
7 Mciuo 0 0 0 1 4 Meno 0

8 Memo 0 0 0 1 4 Memo 0
9 M011 0 0 0 1 4 Me o 0

lOMm) 0 0 0 1 4 Memo 0
1i Memo 0 0 0 1 4 Memo 0

Figure A-3. Iteration One Test Goal Database Brief Output

TEST GOALS ADDED IN ITERATION 1
goalnum goal descr g-his tory

1 A DT report from DS shall, if Test goal is decomposed from
possible, be assigned a free two cases covered in
or lowest-priority track-id requirement 1 of initial
(if the current id is null), specifications.

2 Each ST that is broadcast over Test goal restates requirement
SL shall be routed to DS if it 2 of initial specification
is consistent with the document.
receiving ship's current
tracks; otherwise one of the
two inconsistent track reports
shall be selected (to become
the current track with that
id) and routed to DS. The ST
is analogous to a remote track
in NTDS link-il capable ships.

3 In the absence of Test goal restates requirsnent
communication failures, a 3 of initial system
concurrent allocation of the specification. Test goal will
same SL track id to two need more definition on how
inconsistent tracks by inconsistent tracks are
different ships shall be resolved.
resolved.

Figure A-4. Iteration One Test Goal Database Descriptive Output

119

4 In the absence of Test goal restates requirement
communication failures, a 4 of initial specification.
concurrent assumption of More details on resolution
reporting responsibility for criteria are needed and will
the same SL track shall be probably require additional
resolved, test goals.

5 A base unit MP shall route to Test goal restates requirement
AL those SL tracks with ids 5 in original specification
that are designated by DS document.
(with TA messages) for
reporting over AL
(irrespective of which ship
has reporting responsibility).

This routing shall persist
until a TA message retracts it
or the track is dropped.

6 Each track report in a packet Test goal is decomposed from
received from a ship shall be requirement 6 in the initial
processed or discarded within specification. Ships and
one link cycle of its arrival aircraft are distinct. User
at the M1. That is, before comnent made this clear.
another updated or new track
report can arrive from the
same unit.

7 Each track report received Test goal is decomposed from
from an aircraft shall be requirment 6 in the initial
processed or discarded within specification. Ships and
one link cycle of its arrival aircraft are distinct. This
at the MP. That is, before was made clear by user
another updated or new track comment.
can arrive from the same unit.

8 Each DT message from DS to MP Test goal is decomposed from
shall be transmitted over SI, two cases covered in
within two link cycles of its requirement 7 of initial
arrival at MP if there are 255 specification.
or less words of message data
to be transmitted in the next
outgoing packet.

Figure A-4(cont'd). Iteration One Test Goal Database Descriptive Output

120

9 Each lT message from DS to MP Test goal is decomposed from
need not be transmitted over two cases in requirement 7 of
SL within two link cycles of the initial specification.
its arrival at MP if there are
more than 255 words of message
data in the next outgoing
packet. In that event, queued
messages shall be deleted or
replaced in order of priority
until the next transmission
opportunity. The message
imidlintg priorities, in
descending priority are:
- ISL, IAL, and ALS.
- incoming and outgoing
directives.
- outgoing messages (from base
units) to remote units
(aircraft).
- incoming SL and AL track
reports.
- outgoing SL track reports.
- all other messages
(including responses to
directives).

10 A DT report from DS shall be Test goal is decomposed from
broadcast over SL within two two cases covered in
SI, cycles of its arrival at requirement 1 of the initial
the MP. specification.

11 Minimum ship link cycle Derived test goal.
duration shall be 500 ms. Source is initial

specification requirement 22
relating to the DS module.

Figure A-4 (cont'd). Iteration One Test Goal Database Descriptive Output

GOAL_NUM OPUMBER PSDL_PART LITERADD DELETED
11 5 OPtATOR - ALL 1 0

Figure A-5. Iteration One Link Database Output

121

B. DATABASE AT CONCLUSION OF SECOND ITERATION

The following database printouts reflect the additions and changes

resulting from the second iteration 's development. Links and

requirements changes are incorporated into TGTS' database. The figure

below of the test goal database reflects the removal of test goal two and

it.; replacement by test goal fourteen. Additionally, Test Goals Twelve

anid Thirteen were added in the second iteration.

GOAL_NUM GOALDESCR TESTPRI A(XRBGATE UPDATED I TE ADDED TEST_CLASS G_IIlSTORY DELETED
I Memo 0 0 0 1 4 Memo 0
3 Memo 0 0 0 1 4 Memo 0
4 Menlo 0 0 0 1 4 Mtno 0
5 Memo 0 0 0 1 4 Me(o 0
6 Menlo 0 0 0 1 4 Memo 0
7 Mino 0 0 0 1 4 Memo 0
8 Memo 0 0 0 1 4 Meno 0
9 Mclvao 1 1 2 1 4 MenmO 0

10 Memo 0 0 0 1 4 Meno 0
11 Menlo 0 0 0 1 4 Meno 0
12 Menlo 0 0 0 2 2 Menlo 0
13 Meno 0 0 0 2 2 Meno 0
14 Memo 0 0 0 2 4 Memo 0

Figure A-6. Iteration Two Test Goal Database Brief Output

Figure A-7 gives the new portion of the test goal database. Note that for

Test Goal Fourteen, the goal history field gives Test Goal Two as its

precursor. Test Goals Twelve and Thirteen provide examples of new test

goals resulting from user input during a prototype demonstration.

122

TEST COALS ADDED IN ITERtATION 2
goal_puin goal descr gjistory

12 Test goal 12. A dununy for Test goal restates requirement
example purposes. 25, recorded from iteration 1

demonstration user comment.

13 Test goal 13. Dunmy test goal Test goal restates requirement
for exanple. 26, recorded from iteration I

demonstration user comment.

14 Each ST that is broadcast over Replaces test goal 2.
SL shall be routed to DS if it Restates initial specification
is consistent with the requirement 2. User provided
receiving ship's current SL amplifying information
tracks; otherwise a explaining inconsistent track
correlation conflict warning resolution.
shall be sent to the DS. Both
tracks shall be selected and
routed to the DS for
resolution by the systen
operator. The system operator
must have control over traffic
conflicts. MP conflict
resolution recommendations may
be forwarded to the DS to
assist the operator.

Figure A-7. Iteration Two Added Test Goals Descriptive Output

An example listing of deleted goals is contained in the following

figure Observe that its history field reflects its successor test goal,

allowing a test goal history trace.

123

TEST GOALS DELETED IN ITERATION 2
goal-num goal descr g_history

2 Each ST that is broadcast over Test goal restates requirement
SL shall be routed to DS if it 2 of initial specification
is consistent with the document.
receiving ship's current
tracks; otherwise one of the -Deleted in iteration 2.
two inconsistent track reports Replaced by test goal 14.
shall be selected (to become
the current track with that
id) and routed to DS. The ST
is analogous to a remote track
in NTDS link-li capable ships.

Figure A-8. Iteration Two Deleted Test Goals Output

The added PSDL modules are reflected below. Operators "W, "X, Iy,"

and "Z" decompose the Forward DT module. Operators "A," "B, " "C," and "D"

decompose the Assign Track module.

OP. _"IM Oi' NAME OPERATOR UPDATE) 0_1 TLAI) 0_111 STO)RY DEIEr)
9 W .T. 0 2 Memo 0

10 x .T. 0 2 Memo 0
11 Y .T. 0 2 Memo 0
12 Z .T. 0 2 Meno 0
13 A .T. 0 2 Memo 0
1413 .T. 0 2 Muo 0
15 C .T. 0 2 Memo 0
16 D .T. 0 2 Memo 0

Figure A-9. Iteration Two Operators Added Brief Output

124

OI1iPATORS ADDED IN ITERATION 2
opnnmber op jiaine o.history

9 W Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Forward DT.

10 X Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Forward VT.

11 Y Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Forward DT.

12 Z Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Forward UT.

13 A Second level decomposition
of Mancge Radar Tracks.
First level decomposition
of Assign Track.

14 B Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Assign Track.

15 C Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Assign Track.

16 D Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Assign Track.

Figure A-10. Iteration Two Operators Added Descriptive Output

125

In the second iteration enough functionality had been added to the

prototype to allow the test team to begin linking test goals to their

implementation. The following figure shows the links established.

GOAL_NUM OP_NUMBER PSDLPART L_ITERAD DELETED
1 13 AXIOM 2 0
1 14 AXIOMA 2 0
1 15 AXI M 2 0
1 16 AXIOM 2 0
9 11 AXI(M 2 0
9 12 AXIM 2 0
9 13 IMPLUIENTATION ADA 2 0
9 14 AXICM 2 0

11 9 AXICM 2 0
11 10 AXIOM 2 0
12 15 AXIM 2 0
13 16 AXICM 2 0

Figure A-11. Iteration Two Link Database Output

The next two figures show how the links are useful to cross reference.

First, Figure A-12 shows how a particular goal number can be flagged to

trace all PSDL parts that implement the testable behavior. In this case,

Test Goal Eleven is flagged to see which PSDL operators affect it.

Operators Nine and Ten implement Test Goal Eleven, according to the links

and they are a decomposition of Operator 5. Then Figure A-13 shows how an

operator can be flagged to see which test goals are related to it.

GOAIJ_UM OP..UMBER PSDL_PART L_ITERADD DELETED

11 5 OPERATOR - ALL 1 0

11 9 AXICM 2 0

11 10 AXICM 2 0

Pigure A-12. Links to a Particular Test Goal Sample Output

126

GOAL_NUM OP_.JIJMBE PSDL_PART L_ITERAIDD DELETED
1 15 AXI(M 2 0

12 15 AXIO)M 2 0

FiWre A-13. Links to a Particular Operator Sample Output

Modified test goals can easily be examined. In our hypothetical

ex;imple, the test team has modified Test Goal Nine's record t.o rv[lect

that it is prioritized for testing and has a test oracle data set utider

coii,;truction. Figures A-14 and A-15 shows the TGTS outputs for this test

goal.

GOAL_.MNI C)ALJ)ESCR TESTPRI AGcREIXATE UPDATED ITER-ADDED TEST_CLASS L IIISTORY DELETED
9 Menio 1 1 2 1 4 Memo 0

Figure A-14. TGTS Brief Output for a Modified Test Goal

127

TEST GOALS MODIFIED IN ITERATION 2
goal-num goal_descr gjiistory

9 Each DT message from DS to MP Test goal is decomposed fromi
need not be transmitted over two cases in requirement 7 of
SL within two link cycles of the initial specification.
its arrival at MP if there are
more than 255 words of message Iteration 2 - prioritized,
data in the next oufm-oing aggregate started, Test oracle
packet. In that event, queued uses test data set 1.
messages shall be deleted or
replaced in order of priority
until the next transmission
opportunity. The message
handling priorities, in
descending priority are:
- ISL, IAL, and ALS.
- incoming and outgoing
directives.
- outgoing messages (from base
units) to remote units
(aircraft).
- incoming SL and AL track
reports.
- outgoing SL track reports.
- all other messages
(including responses to

directives).

Figure A-15. TGTS Descriptive Output for a Modified Test Goal

C. USE OF TGTS' OUTPUTS FOR TEST PLANNING PURPOSES

TGTS provides numerous database outputs useful to test planners. A

sample of these is included to show how they are used for test planning.

The example of Chapter IV continues with Iteration Three as a vehicle to

examine TGTS' outputs.

In Iteration Three, the test team adds three additional hypothetical

test goals into TGTS as decompositions of a Requirement 50 resulting from

Iteration Two's user demonstration. These are reflected below as Test

Goals Fifteen, Sixteen and Seventeen. The designers modify Requirement

Seven to conform to user input as well which results in Test Goal Nine

128

being superceded by Test Goals Eighteen and Nineteen below. Note that

Test Goal Nine is no longer a part of the database output. Also Test Goal

Eighteen has been compared with Test Goal Nine and the priority, aggregate

and data set remained the same.

(X)AL...NL- ()ALDESCR TESTPRI AG(2.ILATE UPDATED ITER ADDE) TESTCLASS G_ HISTORY DELETED
I Memo 0 0 0 1 4 Memto 0
3 MeImo 0 0 0 1 4 Memo 0
4 Memo 0 0 0 1 4 Memo 0
5 Memo 0 0 0 1 4 Meo 0
6 Me1o 0 0 0 1 4 Memo 0
7 MeNio 0 0 0 1 4 Memo 0
8 MeNo 0 0 0 1 4 Memo 0

10 M'nIjo 0 0 0 1 4 Memn 0
11 Me1o 0 0 0 1 4 Meano 0
12 MeMo 0 0 0 2 2 Memo 0
13 Memo 0 0 0 2 2 Meio 0
14 Meiio 0 0 0 2 4 Mewmo 0
15 Memo 0 0 0 3 4 Memo 0
16 Meno 0 0 0 3 4 Meio 0
17 Memo 0 0 0 3 4 Memo 0
18 MW111 1 1 0 3 4 Mno 0
19 Meo 0 0 0 3 2 Memo 0

Figure A-16. Iteration Three Test Goal Database Brief Output

The test goals added in Iteration Three are shown next. Test Goal

Eighteen's goal history field reflects that it replaced Test Goal Nine and

is part of a requirement decomposition.

129

TEST GOALS ADDED IN ITERATION 3
goal nun goal.descr g_history

15 Test goal 15. emwuy test goal Test goal decomposed from
for example. requirement 50, recorded from

iteration 2 demonstration user
commient.

16 Test goal 16. Dummy test goal Test goal is decomposed from
for example. requirement 50, recorded from

iteration 2 demonstration user
comment.

17 Test goal 17. Dummy test goal Test goal restates requirenent
for example. 55, recorded from iteration 2

demonstration user coment.

18 Each DT message from DS to N1P Replaces test goal 9.
need not be transmitted over Decomposes initial
SL within two link cycles of specification remjirement 7,
its arrival at MP if there are as modified by iteration 2
more than 255 words of message demonstration user comments.
data in the next outgoing Requirement 7 decomposes into
packet. In that event, queued 2 test goals.
messages shall be deleted or
replaced in order of priority
until the next transmission
opportunity. The message
handling priorities, in
descending priority are:
- ISL, IAL, SLS, and ALS.
- Hostile Quick Response
Tracks (such as pop-up
missiles).
- Incoming and outgoing
directives, including
responses to directives.
- Outgoing messages (fron base
units) to remote units
(aircraft).
- Incoming and outgoing
hostile mid unknown DS, SL,
mid AL track reports.
- Incoming and outgoing
friendly SL and AL track
reports.
- All other messages.

19 Hostile Quick Response Tracks Decomposed from modified
shall be identified by a requirement 7. User comments
special field in the track in iteration 2 demonstration
descriptor, caused modifications. Two

test goals derived, 18 and 19.

Figure A-17. Iteration Three Test Goals Added

130

In furthering the prototype's functionality, developers have added

modules "U" and "V to provide the source code for Operator "Y". In

addition, designers modified modules (operators) "Y," "Z," "A," and "B" to

account for changes in Requirement Seven. These developments are shown in

Figure A-18 and Figure A-19 as an excerpt of the Operator/Data Stream

Database output for the third iteration.

OP_.NUMBER OP_..NAME OPERATOR UPDATI) 0_IT1ERAI)) 0_III STORY DEL MED
1 MP .T. 0 1 Memo 0
2 MANAGE RADAR 'TRACKS .T. 0 1 Memo 0
3 MANAGE DIRECTIVES .T. 0 1 Memo 0
4 MANAGE PARTICIPATING UNITS .T 0 1 Memo 0
5 FORWARD DT .T. 0 1 Memo 0
6 FORWARD AT .T. 0 1 Memo 0
7 FORWARD ST .T. 0 1 Meno 0
8 ASSIGN TRACKS .T 0 1 Mcimo 0
9 W .To 0 2 Menno 0

10x .To 0 2 Memo 0
11 Y .T. 3 2 Memo 0
12 Z .T. 3 2 Mino 0
13 A * .T. 3 2 Menlo 0
14B .T. 3 2 Memo 0
15 C .T. 0 2 Memo 0
16 D .T. 0 2 Memo 0
17 U .T. 0 3 Memo 0
18 V .T. 0 3 Memo 0

Figure A-lB. Iteration Three Operator/Data Stream Database Extract

OPERA7roRS Gi1ANGED IN ITERATION 3
op-njixtber op name o_history

11 Y Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Forward DT.

Iteration 3 - modified to
account for requirement 7
modification from
iteration 2 demonstration
user comment.

Figure A-19. Iteration Three Operator Database Detailed Extract

131

12 Z Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Forward UT.

Iteration 3 - modified to
account for requirement 7
changes from iteration 2
demonstration user
couments.

13 A Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Assign Track.

Iteration 3 - checked, not
modified from initial
requirement 7 after
iteration 2 demonstration
user comments caused
requirement 7
modification.

14 B Second level decomposition
of Manage Radar Tracks.
First level decomposition
of Assign Track.

Iteration 3 - updated to
reflect requirement 7
modifications from
iteration 2 denonstration
user comments.

Figure A-19 (cont'd). Iteration Three Operator Database Detailed Extract

The modified operators were relinked to the modified test goal

(Eighteen) and the links to the old test goal (Nine) were deleted. The

changes in the operators mentioned in the above paragraphs resulted in the

test team determining further links. The following figure shows the link

database at some intermediate point in Iteration Three.

132

GOAl,_NUM OP_NUMBER PSDL_PART LITERAD) DELETED
1 13 AXIOM 2 0
1 14 AXI(2 0
I 15 AX I 2 0
1 16 AX IOM1 2 0

11 5 OPERATOR - ALL 1 0
11 9 AXIOMA 2 0
11 10 AXIOM 2 0
12 15 AXIOM 2 0
13 16 AXIOM 2 0
15 17 AXIOM 3 0
15 18 AXIOM 3 0
16 17 AXIOM 3 0
16 18 AXIOM 3 0
17 17 AXIOM 3 0
17 18 AXIOM 3 0
18 11 AXIOM 3 0
18 12 AXIO1 3 0
18 13 IMPLUIENTATION ADA 3 0
18 14 AXI(1i 3 0

Figure A-20. Iteration Three Link Database Output

The following figure shows the deleted links for Iteration Three.

GOAL_NUM OP_NUMBER PSDIPART L_ITERAI)) DELETED
9 11 AXIOM 2 3
9 12 AXIOM 2 3
9 13 IMPLIMENTAT1ON ADA 2 3
9 14 AXIOM 2 3

Figure A-21. Iteration Three Deleted Links

As test plan development continues through an iteration, the test team

modifies the TGTS databases first to reflect changes in requirements that

affect database test goals. Then they add prototype coding changes,

comparing changes to modules that TGTS indicates may have been affected by

requirements changes. The test team also modifies links accordingly.

They check any new modules for needed linking to existing or new test

goals. Testers match any new test goals against existing modules for

linking. They check all links of any ueleted test goals to see if they

point to operators/data streams that need to be linked to new or other

133

modules. Finally, testers check deleted operators/data streams to see

which new operators/data streams replace them and then relink them

accordingly.

The end result of checking, adding and deleting links is an

examination of each part of the test plan that links affect. This is

followed by necessary changes to keep the test plan current, with the

existing test goals and the prototype implementation. The changes

manifest themselves as updates to the test goal records, reflecting test

priority assignment, aggregating, and test history comments to link test

goals to particular test oracle data sets and test results as appropriate.

The following figures reflect how the example TGTS test goal database

might look after a bit of such work by testers in Iteration Three. They

include several of the output groupings for the test goals database.

GOAL__IIJM (OAL_J)ES(R TEST-JRI AGCiUGATE UPDATEO) ITER-MAl)ED TEST__CIASS G__I' ShRY DETE
I Memo 0 0 0 1 4 M01o 0
3 Memo 0 0 0 1 4 Memo 0
4 Moo 0 0 0 1 4 Memo 0
5 Mvino 0 0 0 1 4 Mcmio 0
G Mno 0 0 0 1 4 Memo 0
7 Mono 0 0 0 1 4 Memo 0
8 Mnemo 0 0 0 1 4 Memo 0

l0 MOW 0 0 0 1 4 Memo 0
11 Mono 1 1 3 1 4 Memo 0
12 Memo 0 0 0 2 2 Mono 0
13 Memo 0 0 0 2 2 Menwo 0
14 Mono 0 0 0 2 4 Memo 0
15 Mento 2 2 3 3 4 Memo 0
16 Memo 2 2 3 3 4 Memo 0
17 Memo 1 2 3 3 4 Memo 0
18 Memo 1 1 0 3 4 Meo 0
19 Mmo 1 0 3 3 2 Mew 0

Figure A-22. Iteration Three Test Goal Modifications

Listings for particular test classes can be produced as shown next.

134

GOAl_NUM GOALDESCR TESTPRI AGGREGATE UPDATED ITER_ADDED TESTCLASS GHISTORY DELETED
12 Memio 0 0 0 2 2 Meno 0
13 Mem1o 0 0 0 2 2 Menm 0
19 MOo 1 0 3 3 2 Meio 0

Figure A-23. Test Class 2 Test Goals

Test goals may also be listed by priority. This output is helpful for

planning the order in which to conduct the testing.

COALNU1 GOALDESCR TEST__PRI AGGRIWATE UPDATED ITER.ADED TEST_CLASS GJIISTORY DELETED
9 MC1o 1 1 2 1 4 Memo 3

18 Mehmo I 1 0 3 4 Memo 0
11 Wilno 1 1 3 1 4 Memo 0
17 Me.to 1 2 3 3 4 Memo 0
19 Memo 1 0 3 3 2 Menio 0

Figure A-24. Test Priority 1 Test Goals

The following output allows testers to view all the test goals for a given

aggregate. A detailed output is available for all the above test goal

outputs as well as the output below.

GOALNUM COAIJDES0R TESTJRI AG(YEGATE UPDATED ITER__ADDED TESTCLASS G HISTORY DELETED
9 MUmo 1 1 2 1 4 M-eo 3

18 M(Io 1 1 0 3 4 Memo 0
11 Memo 1 1 3 1 4 Memo 0

Figure A-25. Test Aggregate I Test Goals

Testers will often need to review and recap the updates made during a

given iteration. The following figure is a sample output of the modified

test goals for the third iteration.

135

GOALLtI C)ALJESCR TESTPRI ACGWGATE UPDATED ITER__ADDED TEST_.CASS GJII SiORY DELETEM
I Memo 1 1 3 1 4 Mawo 0
15 MeIli 2 2 3 3 4 Memo 0
16 Memo 2 2 3 3 4 Meio 0
17 Mrvio 1 2 3 3 4 Memo 0
19 Meno 1 0 3 3 2 Memo 0

Figure A-26. Iteration Three Modified Test Goals Brief Output

The final output example is the descriptive output of the modified test

goals for Iteration Three. The example, in a real development and t1esting

process would continue until all test goals were developed and all tests

conducted. The database would continue to be loaded to reflect. tile test

plani, and its results through to tile completion of all testing.

TEST COALS MODIFIED IN ITERATION 3
goal.uiun goa I descr ghistory

11 Minimum ship link cycle Derived test goal.
duration shall be 500 mis. Source is initial

specification requiremeit 22
relating to the DS module.

Iteration 3 - Update. Test
oracle uses test data set 2.

15 Test goal 15. Dummy test goal Test goal decomposed froi
for examile. requirement 50, recorded froin

iteration 2 demonstration user
comnent.

Iteration 3 - Updated. Test
Oracle uses test data set 5.

16 Test goal I. Dumt- test goal Test goal is decomposed from
for example. requirement 50, recorded froum

iteration 2 demonstration user
comment.

Iteration 3 - Updated. Test
oracle uses test data set 6.

17 Test goal 17. Dummy test goal Test goal restates requirement
for example. 55, recorded fron iteration 2

demonstration user comment.

Iteration 3 - Updated. Test
oracle uses test data sets 3 &
4.

Figure A-27. Iteration Three Modified Test Goals Descriptive Output.

136

19 Hostile Quick Response Tracks Decomposed from modified
shall be ident if i ed by a requirement 7. User u'cnnlags
special field in the track in iteration 2 deiioitst'atio,
descriptor, caused modifications. T%%o

test goals derived, 18 and 19.

Iteration 3 - Updated. Test
priority qssigned.

Figure A-27. Iteration Three Modified Test Goals Descriptive Out.put

The Iteration History outputs are not shown since they have no

prscribed format and consist simply of the iteration number and a text

field for recording the summary of an iteration's test-related history.

137

APPENDIX B TGTS USER'S MANUAL

The TGTS User's Manual provides user guidance for the Test Goal

Tracking System (TGTS). TGTS is a requirements-based testing tool for use

with the Computer Aided Prototyping System (CAPS) at the Naval

Postgraduate School. The tool is a database-type tool that allows testers

to record explicitly both test goals and related test plan information

concerning p-ototypes; developed with CAPS. Test goals can be explicitly

linked to the portions of the prototype's PSDL code or the implementation

language modules that produce the final production code. Additionally,

test information for each iteration may be summarized in an iteration

information database for reference purposes.

Tgts is a menu-driven tool with nested menus for the user. Menu

selection is by numerical selection of a menu item, thus TCTS is an easy

tool to begin to use.

This manual assumes the reader is familiar with three things:

" CAPS and PSDL and the associated prototyping process

• Spiral Testing, as described by Davis in his 1990 NPS Thesis

" dBase III+

Additionally, TGTS is a research tool for testing in evolutionary

iterative rapid prototyping. As such, it is to be used, modified and

eventually reimplemented in a high level language. The reimplementation

of TGTS will allow it to become the first of a family of integrated

138

esting tools within thl, CAPS prototy i ng environrierit.. CAPS is currently

under development A the Naval Postgraduate School

A. TGTS STRUCTURE AND DATABASE FIELDS

1. TGTS Structure

TGTS is a database tool implemented in dBase III+. It is not

compiled, so it must be run from within dBase III+, which is a DOS

software application. TGTS has three main databases:

* Test Goal Database - for Etoring test goals and related testing
information

• Operator/Data S, ream Database - for storing information on all PSDL

parts that implement the prototype undergoing development and testing

" Link Database - for storing the records that link particular test
goals to particular operators/data streams

Thwre is also another database, the Iteration Information Database, that

does not link with the other three databases. It is a summary or "catch-

all" database for recording such iteration related information as testers

deem necessary.

The mappings between the "Goals" and "Opstream" database may be

one-to-many, many-to-one and many-to-many. Usually they will be many-to-

many. The following figure illustrates the database structure for TGTS.

139

GOALS

M:N

ITERATION
INFORMATION

M:+N

r OP ST R EAF

The database fields are excluded from the above figure to avoid

clutter. The following table lists the fields and field characteristics

of the database records and includes the dBase III+ field types and index

files relating to fields. DBase keeps the index files listed to index

records. Each index file's key is the respective field name beside which

the index file is listed.

TABLE B-I

GOALS.DBF

Field Field Name Type Width Range Index File Name

1* Goal Number Numeric 6 1-9999 GOALNUM.NDX
2 Goal Description Memo
3 Test Priority Numeric 1 0-4 TESTPRI.NDX
4 Aggregate Numeric 2 0-99 AGGREGAT.NDX
5 Updated Numeric 2 0-99 UPDATED.NDX
6 Iteration Added Numeric 2 1-99 ITERADD.NDX
7 Test Class Numeric 1 0-4 TESTCLAS.NDX
8 Goal History Memo
9 Deleted Numeric 2 0-99 DELETTG.NDX

140

TABLE B-i (CoNT'D)

OPSTREAM.DBF

Field Field Name Tvpe Width Range Index File Name

1* Operator Number Numeric 6 1-9999 OPNUM.NDX
2 Operator Name Character 40 OPNAME.NDX
3 Operator Logical I T or F
4 Updated Numeric 2 1-99 OUPDATED.NDX
5 0 Iteration Added Numeric 2 1-99 OITERAD.NDX
6 Operator History Memo
7 Deleted Numeric 2 0-99 DELETOP.NDX

RO LINK.DBF

Field Field Name Type Width Range Index File Name

1* Goal Number Numeric 6 1-9999 GNUMLINK.NDX
2* Operator Number Numeric 6 1-9999 ONUMLINK.NDX
3 PSDL Part Character 40 PARTLINK.NDX
4 L Iteration Added Numeric 2 1-99 LITERAD.NDX
5 Deleted Numeric 2 0-99 DELETLK.NDX

* - INDICATES KEY FIELD

Note that each of the first, two databases assigns a unique number to each

record that serves as a key for referencing the record. This allows the

link database to establish unique links simply by referencing the two

numbers. The field names in Table B-1 are written out descriptively. The

field names in the source code are shorter to fit dBase programming

requirements. The ranges chosen for the fields are arbitrary and provide

sufficient range for anticipated projects.

TGTS has a modular design. The following figure shows the top

level program decomposition. The decomposition groups logically related

tool functions together.

141

TARGETS

ITERATION REPORTS UPDATE UPDATE
INFORMATION TEST GOALS PSDL

For example, the "Reports" module contains all the output functions for

TGTS and the "Update Test Goals" module contains the functions that

manipulate the test goals database.

2. TGTS Database Fields

This subsection describes the database fields for each TGTS

database, including field use and limitations. For the dBase features,

refer to Table B-1.

a. Test Goal Database Fields

The test goals database (GOALS.DBF in the implementation) has

nine fields.

* Goal Number - assigned automatically and sequentially, in the order
of record entry, by the tool. The value is inaccessible for change.
It serves as the key field for the database for test goal record
retrieval. It allows a maximum of 9999 test goals.

" Goal Description - the English text stating the test goal. This is
the field for storing each test goals. The size of the text allowed
is unlimited if it is to be manipulated by a word processor, but
dBase can only handle 5000 characters with the MODIFY COMMAND editor.

142

* Test Priority - for recording the priority assigned to testing the
test goal. Legal values are 0-4 with '0' signifying unassigned.
Priority '1' is the highest priority for testing.

* Aggregate - for storing the test aggregate encompassing the test
goal. Legal values are 0-99 with '0' signifying unassigned. Assumes
a maximum of 99 aggregates in the total test plan.

• Updated - for storing the last iteration number in which the user
updated the test goal to reflect a change in any of fields 3-8. Any
previous updates will be overwritten in this field. Legal values are
0-99 with '0' signifying unassigned.

* Iteration Added - for recording the prototype iteration in which the
test goal was added. Allows testers to track the history of when
test goals were added so that they can be compared to changes in the
prototype's implementation. This field should not be left blank.

" Test. Class - for recording the test class of a test goal. Legal
values are 0-4 with '0' signifying unassigned. The four test classes
are I - untestable, 2 - observation, 3 - analysis, and 4 - execution.

* Goal History - for recording text descriptions of the test goals
history to include: source of derivation (requirements numbers,
document, user comments - be specific), updates undertaken, to
include iteration and key points of update, reference to test data
sets and test oracle references to link the test goal to particular
test plan portions, and test results and other notes deemed necessary
for testers. The text limitations are identical with those for goal
description. For deleted goals only, prior to deletion, enter a
change to the history to reflect the reasons for the deletion and
list any new or other test goals that will replace or supercede the
deleted test goal. For undeleted records, the reason for undeletion
should be recorded.

* Deleted - for automatically recording the iteration number in which
testers deleted the test goal. Legal values are 0-99 with '0'
signifying the test goal is not deleted. Prior to deletion of test
goals, testers should update the goal history to reflect the
deletion's purpose. Should a test goal be undeleted, the user should
insert the iteration of undeletion and updates the record's history
to reflect undeletion.

Test goal descriptions are never changed. If the description is invalid

then the entire test goal should be deleted. Invalid test goals are those

superseded by multiple, more specific test goals, those that have become

obsolete due to prototype changes or those that are incorrect.

b. Opstream Database Fields

The Opstream Database (OPSTREAM.DBF in the implementation)

has seven fields.

* Operator Number - assigned automatically and sequentially, in the
order of record entry, by the tool. The value is inaccessible for
change. It serves as the key field for the database for opstream
record retrieval. It allows a maximum of 9999 records.

• Operator Name - for recording the name of the PSDL operator or data
stream that implements the test goal. All legal dBase "character"
characters, up to 40 in length are allowed. The tool converts all
into upper case.

9 Operator - for recording whether the PSDL part is an operator or a
data stream. This field is a boolean flag and accepts 'T' or 'F' or

or 'N'.

9 Updated - for storing the last iteration number in which the user
updated the PSDL part to reflect a change in any of fields 2-4 or 6.
Any previous updates will be overwritten in this field. Legal values
are 0-99 with '0' signifying unassigned.

0 0 Iteration Added - for recording the prototype iteration in which
developers added the PSDL part (opstream). It allows testers to
track the history of when developers added operators and data streams
so that the implementation can be compared to test goals that test
it. This field should not be left blank.

• Operator History - for recording text descriptions of the opstream's
history to include: source of derivation (requirements numbers,
documcnt, user comments - be specific), updates undertaken, to
include iteration and key points of update, reference to iterations
and test results to link the module to particular test plan portions,
and test results and other notes deemed necessary for testers. The
text limitations are 5000 characters for use with the MODIFY COMMAND
editor but no size restriction exists with word processors. For
deleted opstream records only, prior to deletion, enter a change to
the history to reflect the reasons for the deletion and list any new
or other opstreams that will replace or supercede the deleted one.
For undeleted records, the reason for undeletion should be recorded.

* Deleted - for automatically recording the iteration number in which
developers deleted the opstream record. Legal values are 0-99 with
'0' signifying the opstream is not deleted. Prior to deletion of
opstreams, the tester updates the operator history to reflect the
deletion's purpose. Should an opstream be undeleted, the user should

144

insert the iteration of undeletion and update the record's history to
reflect undeletion.

c. Link Database Fields

The Link Database (ROLINK.DBF in the implementation) has

five fields. Two of these fields are key fields and serve to create a

link between records of the Test Goals and Opstream Databases.

* Goal Number - as in goals database, but the user manually enters data
to match the desired link. Legal values are 1-9999. This field must
not be left blank. Responsibility for correct link numbers is the
users. It is one of two key fields.

" Operator Number - as in opstream database, but data is manually
entered to match: the desired link. Legal values are 1-9999. This
field must not be left blank. Responsibility for correct link
numbers is the users. This is the second key field.

" PSDL Part - for entering the PSDL correct grammatical part name when
the test goal relates to an operator's or data stream's internal
part. Any legal dBase "character" character is legal.
Responsibility for correct name match is the user's.

" L Iteration Added - for recording the prototype iteration in which
the user added the link record. It allows testers to track the
history of when operators and data streams were linked so that they
can be compared to test goals and opstream records. This field
should not be left blank.

" Deleted - for automatically recording the iteration number in which
the user deleted the link. Legal values are 0-99 with '0' signifying
the opstream is not deleted. When a user deletes either a test goal
or an opstream record, then TGTS deletes any links to it
automatically and inserts the deletion iteration number in the
deleted field. Should a user reinstate a link, then TGTS resets the
field to '0' automatically.

d. Iteration Information Database Fields

The Iteration Information Database (ITERATNS.DBP in the

implementation) records contain only two fields.

145

* Iteration Number - automatically inserted iteration number for the
iteration the user is recording. Legal range is 1-99.

" Iteration History - for recording text concernin' the iteration's
history as it relates to testing. The user records significant
events, (as defined by the user) as text. The MODIFY COMMAND editor
can only edit up to 5000 characters but word processors can edit any
field length.

TGTS non-destructively deletes all database records so that they

can be readded into the database should a prototype iteration fall back to

a previous position or a user reinstate a previously removed requirement.

The non-destructuive delete keeps the database flexible enough to respond

to multiple changes.

B. TGTS TOOL OPERATIONS

The primary purpose of TGTS is to record test plan information on a

developing prototype's test goals and then map the test goals to their

source in the prototype code. As TGTS' top-level module decomposition

shows, the operations fall into four categories: database outputs, test

goal updates, PSDL updates, and iteration information. The principal

operations of each will be discussed in turn. For many operations, sample

TGTS' menu screens show the user choices available.

1. Starting TGTS

Users start TGTS by a three step process. First, the user starts

the dBase program with the command "DBASE." Second, the user then removes

the "ASSIST" menu by pressing <ESC>. Third, the user types in the command

"DO TESTGOAL" at the dBase command dot prompt. TGTS commences with a

welcome screen, followed by the top-level menu, both shown below.

146

I fMNMt1MMM MMHMMflMMMMMMMMMMfMMMhtMMMMMflMMflMMMMMMMMlMfM;

WELCOME TO THE CAPS TEST GOAL TRACKING SYSTEM

This is a requirements-based test goal tracking
system (TGTS) designed to accompany prototype develop-
ment in CAPS. As verifiable test goals are
determined, they are added to the database. When

: the behavior is implemented in CAPS, the PSDL code
implementing the testable behavior is associated with
the proper test goal in the database for ease of ref-
erence during the development and testing of the pro-
totype. Test goals and PSDL operators and data -

: streams can be tracked to note changes between pro-
: totype iterations. System capabilities include data
: add, delete, change, annotation condition search and
: multiple report form outputs.
HMMflflMMMMMNMM~fMNMNMMMMMM HNNMMMItIMMMMfNMNNM~fN MIINM(

Press any key to continue...

IfMfMMHM fMMMM llfNMPNN'M1t1MMMMMMMlMNMMMMMMMMMfMMMMMMMMMt~f;

MAIN MENU

Select your choice by number:

* 1. Database outputs: screen and hard copy
* 2. Test goal updates

3. PSDL operator/data stream updates
4. Prototype iteration information
5. Quit

* Enter your choice here: 0

From this point, the user selects the appropriate action. The operations

following subsections discuss the operations.

2. TGTS Database Output Operations

The key to TGTS effective use is the proper presentation of the

database contents. TGTS information provides system testers the

147

iniformation needed to develop a thorough test: plan. It also will aid

dr-velopmont personnel by pointing them to likely sources of error.; when

t(,t.s (etect faults. TGTS provides these services with sixteen output

operations, each implemented as a separate module.

REPORT OUTPUT MENU
I MHMHlHlfllH lMfMffHfNl MN fM lfI l f1MtMflflHfHf MMl;

TEST GOAL OUTPUT OPTIONS : OPERATOR/DATA STREAM OUTPUT OPTIONS

1. All test goals :9. All operators
2. Test goals added in iteration x : 10. Ali data streams

:3. Test goals modified in iteration x : 11. Op/DStrm added in iteaion x
4. Test goals deleted in iteration x : 12. Op/DStrm modified in iteration x

:5. Test goals that map to an Op/DStrm : 13. Op/DStrm deleted in iteration x
:6. Test goals of aggregate x : 14. Op/DStrms that map to a test goal:
:7. Test goals of priority x

8. Test goals of class x
: flHflflHflHflflHMMHfl.M flflflflI.IflHH flflMHflflHflHflflHMI1HflMHflHflflflHjnlHf HM:

LINK OUTPUT OPTIONS

15. Global Link outputs 16. Iteration Link outputs
: flflMHflHflHflNHfh1HH flHflflflMHflHlflflflflPHflflHlflflflMMHflflflflHflJHIf 'flH:

17. Return to Main Menu
: lflflflfllffHlflflflflflflHfHflflflflfflflflflflflflflflllHlHflHflflNHfffhll 1:

Enter your choice here: I
Send output to printer (Y or N)? : N

H H H HHHflMMNM MM.fl1It#1fll~flfllflflfllM~flMflfl~fflfl~fM~tfl~Hf TMHHfHHHf1MfHHMMIIHHH#1f(

For each output operation, the user has the option to receive the

output on the screen only or else on the screen and printer. Once

projects grow to any sizeable extent, testers will usually need printed

output. TGTS groups output listings as either "Test Goal Output

Opt ions,"Operator/Data Stream Output Options," or "Link Output Options."

The "Test Goal" and "Operator/Data Stream" options further allow the user

to specify either a brief or descriptive output of the database records.

148

The, brief description excludes the descriptive text fields for ,ach

record. The descriptive output includes the text fields and excludes all

niteric fields except the key fields.

At the most basic output level are the "All" output options shown

below. A user may list all contents for either of the three databases,

which is useful in many general ways. In each of these listings, the

lists may be indexed by any of several keys to provide users with

appropriate record groupings.

I NNNNNNMMM#IMMMNMMIINHMHHMMlMfMMMMMI lHMIMMMHHMMNMHMMMMM;

TEST GOAL LISTING OPTIONS

* Select your choice by number:

* 1. List by Test Goal Number
: 2. List by Testing Priority

3. List by Test Aggregate
* 4. List by Test Class
* 5. List deleted goals
: 6. Return to Report Menu

: Enter your choice here: 1
tffHMflfllflfMM HMMMHIIN I#ThlflHMfHMMflflHMNHlfMfHflflHMffllt#flftI:

1 1. Brief output: description & history omitted
: 2. Descriptive output: w/ description & history

Enter your choice here: 1

HMNIMMNNMMMM MMNMHHflflIIMNNNMMMNN MNMMMMMNNMMNIM<

More specific listing operations exist. Test goals added, changed

or deleted in a given iteration as well as those of a given test class or

priority or aggregate may be listed. The "Deleted Test Goals" listing

options screen is shown next.

149

: DELETED TEST GOALS LISTING OPTIONS

: Select your choice by number:

S1. List all deleted test goals
: 2. List test goals deleted in an iteration
: 3. Return to Test Goal Menu

* Enter your choice here: 0

HMMMMflNNN1M'flNNNNM!#1NNNNMMMNNNN1?.MflMNNNHflflMINN(

T'ti-ther menu screen examples include one listing test goals added for a

particular iteration and the screen for listing test goals in a particular

test. aggregate.

: TEST GOALS ADDED FOR A GIVEN ITERATION

: Enter the iteration to output or 0 to escape

:H1MHfPMMtft1MMfNMMMMMMMMMMMMMMMMNt1N MMMMMfMMfMMflMM:

Enter your choice here: 2

:MNMHHMHKNHH MHMHHlfN MNmmmNNNmm MM HHlflIN MMMMMMfl:
i. Brief output: description & history omitted
2. Descriptive output: w/ description & history

HMIHMM~!?IHHMNHMNP/flfflfltflIIHM/HfIMN/HMI*IHlHIIMMPflNI*/INfltI(

Enter your choice here: I

150

IMMMMMJ'MMfltMMfMMMMMfMMMMMN4,MMMMMMMMMflflMMMMMMMfMMMMMfMMMMM

: TEST GOALS IN A GIVEN TEST AGGREGATE

: Enter the aggregate to output or 0 to escape

: IIIMMMfMfMMMMMNNNMMMNNMNMMMMMNMMMMNMNMMnN,.MM:

: Enter your choice here: 2

:MMMNMNNNNNMNNMMMNMNNNNNNMMNMHMMfNNMMNNNNNNMNMN:

1. Brief output: description & history omitted
: 2. Descriptive output: w/ description & history

HNNMMMNMMMMMMfMMMMfMNMNMNMMHNMNNMMNMMMHNMMNMMMMMMM(

Enter your choice here: 1

Particularly helpful are the listings that show all the operators

an-. daLa streams that map to a particular test goal and its opposite, the

listing that shows all the test goals that map to a particular PSDL

operator or data stream. The last two listings are especially valuable in

test planning because they let the testers rapidly update tests to account

for implementation changes and to track implementation code test covetage.

Whin developers change an implementation module, the testers can see which

tst goals are most likely affected. When testers change or delete a test

goal, then they can note appropriate test modules for additional testing

consideration. The "Test Goals That Map To A Given Op/Data Stream" menu

shown below is an example for providing trace outputs from a particular

operator or data stream to all the test goals that relate to it.

151

I NNMMMM~flNM~ MMMMM MMMMMf ;

: TEST GOALS THAT MAP TO A GIVEN OP/DATA STREAM

: Select your choice by number:

* 1. List Test Goals for all iterations
: 2. List Test Goals for a given iteration
: 3. Return to Report Menu

* Enter your choice here: 2
flllillll:lllllffMf llllllM t MlllllM lM fllI'M tlflMM flflM#1:

* Enter the iteration to output or 0 to escape
* Enter your choice here: 2
:llMMNMMMNMMMMNN lIIIMMMM~IfMfMNMMMfMMMMMfMMflflM:

1. Brief output: description & history omitted
2. Descriptive output: w/ description & history

Enter your choice here: I
Enter the op/data stream no. for goal listing: 0

bt ;imilar fashion, operators or data streams added, changed, or deleted

iti a given iteration may be listed. The two following menu screen

(xamples show how menu screeii: atpear for these type screens.

152

I flflMflMmfllMmMNmNtMMt MIMI#IMIlfMNM?#lfllffMfHHHHlflflflflltMH tIMNMtIm;

OPERATOR LISTING OPTIONS

: Select your choice by number:

: 1. List by Operator Number
: 2. List alphabetically
: 3. List deleted operators
* 4. Return to Report Menu

* Enter your choice here: 1
:MNM M~1lMfMfMlNNNN MMMMMflMfl ttMMMNMMtIMMMHMMMMflMMa:

1. Brief output: description & history omitted
2. Descriptive output: wI description & history
Enter your choice here: 1

HMMMMMHfI*1MMNflNMHIMMIMflMMfM IWMfMMMMMMMtI!MMMMMMMMtM

I f lilffNfffMtPMfffffN~ll~l MMflHMfMMMMffllN#fftft1M?#IM;

OPERATORS/DATA STREAMS ADDED FOR A GIVEN ITERATION

* Select your choice by number:

: 1. List Operators
* 2. List Data Streams

* 3. Return to Report Menu
I1MM: l fHllf~fMH~lfMMMMflfllfflMNMMlMIt'f MMflMMMMMMh:

: Enter your choice here: I

Enter the iteration to output: 2

1. Brief output: description & history omitted
2. Descriptive output: w/ description & history
Enter your choice here: I

HNMMfMM M flI1MM fMNNNI1MMM!M (*1MMMMMMMM NNMNIMM l(

153

Finally, an output operation exists to list all the links bftween

tvs;t goals and PSDL parts. TGTS divides outputs for links into two

groups: those for all iterations and those for a particular iler;ation.

The Lop-level screens for both groups are below.

I MMMMMMMI MfMMMMM 1MMfiMMMMMMMNMflMM M MMMfMMMM;

GLOBAL LINK LISTING OPTIONS

* Select your choice by number:

* 1. List all Links
: 2. List Links for a Test Goal Number
: 3. List Links for an Op/Data Strm Number
: 4. List Links for a PSDL Part
: 5. List all deleted Links
* 6. Return to Report Menu

: Enter your choice here: 2
NHNlMKMMMMM lMflIMM I~lMMMMMMflPMMMMMMMMMMMI*IMMfl:

- Enter goal number to seek: 0

H

HINHMlMMMMMfMMlMNNNIfINNNNI#1MtMfflMMlMflMflflMMhMMfN;

* LINK OUTPUT OPTIONS FOR A GIVEN ITERATION

: I. List Links added for iteration
2. List Links deleted for iteration
3. Return to Reports Menu
Enter your choice here: 1

flffllMM~fMIfffflMlMMfMflflflflfflfllMflflflMMfllMNfIfltflM *1ITh1M:

* Enter the iteration to output
: Enter your choice here: 2

: 1. List by goal number
: 2. List by operator/ data stream number
: Enter your choice here: I
HMMMMMMMMMMMMMHMMMMMMMMM 1MHMMMMHMMMMMMMMMMMMMMMMMMHMMMM(

154

The link outputs help provide a history of test development concurrent

with the system development process and serves as a test plan management

aid. When testers combine link listings with detailed listings of the

other databases, they have an overview of the entire requirements-based

test, plan.

Users should travel through the menus to see all the nested menu

options for output. Considerably more tailoring of output is possible

than the major listings shown above.

3. TGTS Test Goal Update Operations

TGTS provides for five operations upon test goal records in the

database. These are very straight-forward. The screen format below shows

the top-level menu for test goal updates.

I/fflMfl // flfMlMttttMMtfMMMMMMMMflIllllllfflllMMMflMMMlMN*1MMMMMMMMHMM

: TEST GOAL UPDATE MENU

* Select your choice by number:

: 1. Add a new test goal
: 2. Change an existing test goal
: 3. Delete an existing test goal
: 4. Link test goal to PSDL operator/data stream
: 5. Unlink test goal to PSDL operator/data stream
: 6. Return to Main Menu

Select your option: 0

HMNNNtf~fP/flflHP/lMIMMMMMMM~ff#INNIINMMNNMH flf15MMMM NNNN(

155

a. Add a New Test Goal

This operation adds a new test goal record t.o the test goals

database. Initially, users fill the test goal record's description field.

They then fill in the goal history field with a justification of the

goal's derivation, such as "user comment on iteration x demonstration" or

"i it iaJ req(I1irements document, requirement no. 23." The history f eld

entry should be a sufficiently clear description so that the test team

knows explicitly where the goal originated.

The "Add" operation automatically assigns test goal numbers

s(,qu t!ially. This prevents two test goals from having identical test

goal numbers and allows the numerical value of test goals to reflect the

sequence of test goal derivation, should the test team deem such

information valuable. The test goal data input screen is shown below.

I nnnltInl lNMMMNN~ftM~if#MNI~l~lMfMMMHMMMMMMMMMMMMMIMMM;

TEST GOALS DATABASE DATA ENTRY

TEST GOAL NUMBER 20

GOAL DESCRIPTION memo Move cursor to memo field, type Ctrl-PgDn

TEST PRIORITY 0 AGGREGATE 0 TEST CLASS 0

ITERATION ADDED 0

HISTORY memo Move cursor to memo field, type Ctrl-PgDn

to make corrections,
Return to continue, C to Cancel,
or X to exit

HtltlM~t~tltMI, fltlMHHHMMMMHMHKHMHMM MHMMMMMH HHHHHHHmmm MHMMHm15<

156

b. Change an Existing Test Goal

The second test goal operation is the "Change" operation.

Unlike what one probably thinks, this operation is not intended to allow

testers to change the nature and description of a given test goal. The

"Change" operation allows testers to change test plan related information

concerning a given test goal, such as its test priority or test aggregate.

It also allows testers to fix incorrectly added information in a given

test goal record. The reason for this approach is basic. A test goal

itself does not change. It is either a valid test goal or it is not. If

it is invalid, then it should be deleted. If it is valid, then it remains

unchanged. To change a test goal's description is to change the test goal

into a different test goal. A brief digression to explain the meaning of

an invalid test goal is appropriate.

A test goal may be invalid for many reasons. First, it may

simply have missed the mark of system requirements completely. Second, a

test goal may be invalid because it was not specific enough, combining too

much into one test goal. Testers may then delete the initial test goal

and replace it with multiple succinct test goals (here, justification

comments referring to the initial test goal may be appropriate for test

history purposes). Third, a test goal may not be feasible in its current

state or may require modification to conform better to the overall test

plan. Again, justification comments would be appropriate.

The "Change" operation has an additional important function,

namely to undelete previously deleted test goals. Should a previously

deleted test goal need to be reinstated, then the "Change" operation

157

undeletes the test goal by marking the record's deleted flag as undeleted.

The screen for test goal change screen input is very similar to the one

for adding test. goals, shown above. After the user inputs changes, a

second screen allows the user to undelete all the test goal's previous

links or else selectively revive test goal links to account for changes

that may have occurred in the prototype's implementation code. TOTS

reimplements the links for a user specified iteration. TGTS initiates the

link undelete action by interactive questioning of the user.

c. Delete an Existing Test Goal

The third test goal operation is the "Delete" operation.

This operation marks a test goal as deleted from the test plan. The test

goal's record remains a part of the test goal database with a deleted

field flagged. This operation is particularly valuable because it allows

test goal information to be retained for record purposes. It also keeps

records that may have to be added back in a subsequent iteration, should

the results of an iteration demonstration dictate. Testers may review

deleted test goals for a given iteration in determining what. test plan

modifications will be required in light of requirements changes. This

operation is a bit more complex than previous ones in that it requires

TGTS to delete all link records that mapped to the deleted test goal.

TGTS deletes the links in the same way as the test goals so that they may

be added back, if necessary. Before deleting a test goal, the goal

history field should be annotated with the reason for deletion and a list

of all replacement goals, if any. This maintains a trace of the test goal

development. A sample test goal deletion screen is shown next.

158

IMMMMmtKIK'MtMMMMMMMMMNI~lM MMMMMMMMMMMM;

GOAL DELETION

* Enter the goal number to delete: 40

* Enter the iteration in which deleted: 3

: Press 1 to cancel, 2 to exit,
: and return to continue 20

HJJlflM lMM MMMMMMMMMMM*MMHMMMMNI1MMMMMIMHM<

d. Link Test Goal to PSDL Operator/Data Stream

Test goals must be linked to the prototype implementation

code, once developers add the functionality to the prototype. The "Link"

operation links a test goal to an existing operator/data stream record.

The "Link" module implementing this operation also works in the opposite

direction, linking operator/data stream records to existing test goal

records, making it one of the few modules in TGTS that is called by

multiple modules. The "Link" operation explicitly allows the testers to

link test goals to the prototype implementation code. A sample link

database entry screen is shown below.

159

I NhlfIHMMNMMflNMMMNNMHflMNMMMMfPMMIMlfIMMIMMIMMMflNNMMMMMMNHN MMMMfMfMt# Tl.;

LINK DATABASE DATA ENTRY
H tMMMMI1 MMH<MMMMHMNMNMMMlMMfMMMHMMMMMM MNMMMMMMMIMMHMM IMM M(
GOAL NUMBER 0 OPERATOR/DATA STREAM NUMBER 0 DELETED 0

PSDL PART

ITERATION ADDED 0

Itfl flflt1MfMflMNNNMMtMfllNMIMfMMMMMMMtMlMflhtMMMM1MflflMMMNNMflfMMflMMMWM;
: List the particular PSDL part by its
: grammatical title for a detailed location
: of a goal's implementation.

~<

I fMMfMMMlffMflfMlMfMMHlfhtlMMllMflMfllffMfMM fMNflMMhMffffMflflflflflfMMMfllflMMMlflfllMMMf;

to make corrections,
: Return to continue, C to cancel,
: or X to exit
HMHMH HH MHMHMMHHMM 1M MMMM H HMMHHHHH HHH H

e. Unlink Test Goal to PSDL Operator/Data Stream

"Unlink" allows links to be removed between a test goal

record and an operator/data stream record. This allows the link database

to be manipulated to account for changes in prototype implementation.

Like the "Link" operation, the "Unlink" implementation is a shared

operation with the operator/data stream database.

4. TGTS PSDL Update Operations

The PSDL (opstream) database is subject to five operatiotns. Two

of the operations, "Link" and "Unlink," are identical to those described

above and are omitted here. The other three, "Add," "Delete" and "Change"

are similar to the analogous operations for the test goals database, but

have input screens to manipulate operator/data stream database records.

The top-level menu screen for the PSDL database is shown next.

160

I Mfff lMtMllfN1NMfMf~lf MMMMMMMMMMMMMMMMMMfl'M;

: PSDL OPERATOR/DATA STREAM UPDATE MENU

* Select your choice by number:

: 1. Add a new operator/data stream
: 2. Change an existing operator/data stream
: 3. Delete an existing operator/data stream
: 4. Link operator/data stream to test goal
: 5. Unlink operator/data stream to test goal
: 6. Return to Main Menu

Select your option: 0

HflMMMMflMIttlfMMtMMMMMlfMMMMMMMMMMMMMflMMflMlMMMfllMMMMM(

a. Add Operator/Data Stream

The "Add" operation, like its counterpart, allows implemented

PSDI, operators and data streams to be added to the database. There is an

"Operator" boolean field in each record to flag each as either an operator

or a data stream record since both PSDL parts reside in the same database.

Each record automatically receives a unique operator number to distinguish

each part and provide a key for linking PSDL parts with test goals. The

"Add" input screen is shown next.

161

OPSTREAM DATABASE DATA ENTRY
HPERATOR/DATA STREM NMBER 19(
OPERATOR/DATA STREAM NUMBER 19

OPERATOR/DATA STREAM NAME

OPERATOR T ITERATION ADDED 0
Enter T if operator or F if data stream

HISTORY memo Move cursor to memo field, type Ctrl-PgDn
IflfMMMMlMIfMflfflMt#IfMhfl M /flMffMlM fMMfllffM~MMflllf tffMM M MMMflfI;

to make corrections, 3 Operator field - Enter T' or Y
: return to continue, C to cancel, 3 if operator, else 'F' or 'N'
: or X to exit. 3 if data stream

b. Change an Existing Operator/Data Stream

The "Change" operation serves the same purpose for PSDL parts

r cords as its test goal namesake operation. Historical information can

be updated and previously deleted PSDL parts records can be undeleted. As

b ,fore, the associated links can be batch or individually undeleted. The

input screens for this operation are very similar to those for the "Add"

operation above.

c. Delete an Existing Operator/Data Stream

The third operation is the "Delete" operation. It. non-

destructively removes a PSDL part record from the database. Again, should

a f,,ture change reiiibtaLe the PSDL part, it can be retrieved from the

database. When a user invokes the "Delete" operation, the links related

to the record are also non-destructively deleted.

5. TGTS' Iteration Information Facility

The six iteration information operations include: adding,

deleting or changing an iteration record, listing iteration information

162

for either a given iteration or for all iterations and listing the last

1tel'at ion number used. The iteration information database can be tisd in

whaitever way the test. team decides is most beneficial Jor a jproject.'s

n,,4,ds. Since the main information field is a text fieldi and dBase does

no1t manipulate it in any way, almost anything deemed appropriate Tiy be

recorded. Experience and/or particular project needs may dictate

redesigning this database to allow a more structured form of iteration

dit;a storage. The operations menu for iteration information is shown

b, 1 ow.

I flflf i flflflfflt#Ifl*M/MM /NIMM MMMHMMMMM MM MM I;

: PROTOTYPE ITERATION INFORMATION

: Select your choice by number:

: 1. Add a new iteration
: 2. Modify an existing iteration
: 3. Delete an existing iteration
: 4. List all iteration information
: 5. List information for iteration x
: 6. List most recent iteration no.
* 7. Return to Main Menu

* Select your option: 0

HMNNIMMfMMflfMMflIM MMMMMHMMMMMNMMMMflMMhMMlMIINMM(

a. Add a New Iteration

The "Add" operation allows the user to enter a new record for

a new iteration and fill in the history field. The operation

automatically assigns the iteration number to the record, checking to find

the la;st iteration's number. A sample record input screen is shown ini the

following illustration.

163

I NfNffff l~lllllfffllllf~llfNf~lff~ MMflfHMMNMMMMHM MMMl~#fflllft;

ADD AN ITERATION HISTORY

NEW ITERATION NUMBER 4

NEW ITERATION HISTORY memo
: Cntl+PgDn to enter, Cntl+PgUp to exit
:DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDOODDDODDDDDDDODODDDDDDDD:
: Enter 1 to cancel, 2 to accept entry 2

b. Change an Existing Iteration

The "Change" operation allows the user to change aii5 data

fj,,ld. The user should be careful about changing the iteration number

field, since this is a key field. The input screen is very similar to the

one for adding records.

c. Delete an Existing Iteration

This operation allows the user to delete an iteration r cord

p~ermanently. This operation should be used with care to avoid inadvertent

loss of data. The program asks for the iteration to delete, retrieves it

and shows it to the user. The program then asks the user to confirm the

deletion. The default value is "No." TGTS then takes the requested

aCtion. This operation is useful for removing recor-d!s Lhat, require

massive corrections or for removing erroneous entries.

d. List All Iteration Information

The listing operations for iteration information are separate

from all the other output operations in TGTS. The "List. All" o(pelation

lists all the iteration information records in iteration order. The user

,ay specify output to the screen only or to the screen and print,,-

164

e. List Information for Iteration X

The "List for Iteration X" operation allows the user to

specify a single iteration for output. The user may specify output to the

screen only or to the screen arid printer.

f. List Most Recent Iteration Number

The "List Most Recent Iteration Number" operation simply

checks the Iteration Information database for the last iteration number

and returns it. Provided that users add an iteration information record

with every iteration, the operation gives last iteration of development

and testing. The operation provides a reminder to the user of the last

iteration recorded.

6. Exiting TGTS

Users exit TGTS very simply. The user returns to the top-level

TGTS menu and selects the "Quit" option. The "Quit" option saves all

files and closes all files, then exits TGTS. A "Good Bye for Now" screen

appears with the dBase command line dot prompt at the bottom. The user

types in "QUIT" followed by a carriage return, and the dBase program

concludes execution, completing the process.

C. TGTS USAGE

TGTS is a flexible too]. A particular test team's requirements for

recording testing information can easily be fit into the text recording

fields available. The information stored in the other fields is either

standard within requirements-based testing (i.e., test class) or else is

standard for CAPS (i.e., PSDL grammar). Almost any test goal information

can therefore be stored in TGTS.

1 (5

Chapter IV of the thesis, and Appendix A combine to provide a simple

example of TGTS usage. There are several TGTS user techniques that bear

particular men..ion and vary in nature from administrative to technical.

1. Memo Fields

All the text fields in the records are dBase memo fields. To

keep records vertically separated for output, always include a couple of

carriage returns at the conclusion of text in the fields. DBase makes no

provisions for separating fields vertically.

While not mandating any exact. formats for filling *ext fields in

TOTS, entries should be reasonably consistent in form and wording. The

more organized the users keep the text fields, the more useful TCTS will

be.

2. Input Guards

TGTS guards most data field input with dBase constructs that

restrict the type, size and range of data. TGTS enforces the type, sizes

and ranges but the user must ensure the data's correctness. TGTS simply

stores all text field data and does not analyze it in any way. TGTS

checks key fields for consistency and currency, especially in linking

operations.

3. Deletion Operations

When test or prototype changes require record deletions, users

should ensure that they first update the history fields since they can

only be accessed while records are flagged as undeleted. If a user fails

to update a history prior to record deletion, then the record must first

be undeleted, then updated, then deleted again.

166

Based upon present experience with TGTS, the follo1iig sequence

seem! best for test goal and operator/data stream deletion. The method

described is for test goal deletion but applies in mirror-fashion for

operator/data stream deletion.

1. Annotate the test goal history field with the reason and iteration
of deletion. Note any test goal numbers that are replacing the one
to be deleted.

2. Note all links from the test goal to be deleted. Analyze the old
links appropriately for signifying new test goal links.

3. Add any replacement test goals, noting the test goals they replace
or decompose in the test goal history fields of the new test goals.

4. Add new links, as appropriate.

5. Delete the old test goal.

D. TGTS SPECIAL FEATURES AND LIMITATIONS

TGTS is a research tool designed to demonstrate the feasibility of

testing tools to support. evolutionary iterative rapid prototyping. It

provides the essential functionality to link test goals to their

implementation in the prototype's source code and to provide the tester

with output in many forms useful for test planning. TGTS greatest

strengths are its requiremen,.-based test goal information recording

capability, its linking capability and its multiple data output formats.

As a demonstration tool, not integrated into the CAPS environment,

TGTS has very limited consistency checking. It does check link

consistency and its output reports can be used in cross referencing to

determine if all data is consistent. Further, the design of the data

167

output reports makes manual consistency checking easier than with the

traditional, manual testing methods.

TGTS will be as good as the data entry and the formatting of data in

the free text fields (dBase memo fields). If users use consistent text

entry formats, then consistency checking by review will be much easier.

With time, users can determine the best formatting methods to use.

TGTS has only one set of database files and no way to archive them,

therefore TGTS can only be used for one prototype at a time. Should users

need to start another project, they must first rename all the existing

database files (four), and then recreate the (new) database files with the

same names (GOALS.DBF, OPSTREAM.DBF, ROLINK.DBF and ITERATNS.DBF) by

using the dBase "CREATE" command. Index files do not need to be archived

or deleted. The "INDEXIT" utility (next paragraph) regenerates correct

index files for the above four database files.

If users wish to access the TGTS database files directly with dBase,

there is no safeguard to prevent this. At the current stage of research,

this is beneficial because it allows easy manipulation of the databases

with th dBase EDIT and BROWSE commands. After modifying data files, they

can be indexed by calling the utility program "INDEXIT.PRG" with the

command "DO INDEXIT." This utility program reindexes all the index files

for all the databases.

The dBase screen files TGTS uses for data entry allow the user to

cycle through a record and into the next for certain screen entries,

adding a blank or incomplete record without the user meaning to do so.

The user should be careful before entering the last record entry field to

prevent adding useless records. As long as the user is ini the entry

168

screen for a record, the cursor can be moved back to previous fields using

the up and down arrows. Once the user enters the last field, TGTS adds

the record. The record may be completed or corrected simply by performing

a "Change" operation. The only way to remove inadvertent records

permenently is to use dBase editing commands. While removal of

erroneously added records is not essential (just ensure they contain no

information and mark them deleted), it keeps the database uncluttered by

removing them.

TOTS is intended for further research and will hopefully be extended

and improved over time. It has been kept simple to provide an easy to use

requirements-based testing tool for CAPS. The source code for TGTS is in

Appendix C.

169

APPENDIX C TGTS SOURCE CODE

* Program Name : TESTGOAL.PRG
* Author : Ned Davis
* Date : 16 Aug 90
* Revised
* Language : Dbase ITT+
* Description : Displays a welcome screen to the TESTGOAL
* System. A menu is next presented for functional
* options selection. Appropriate subprograms are then
* called. THIS IS THE MASTER PROGRAM.

wee, set environment *
SET TALK OFF
SET SCOREBOARD OFF
SET STATUS OFF
SET MEMOWIDTH TO 30
choice = 0

** ~display welcome screen ****

DO WELCOME

**** display main menu
DO WHILE choice #5

choice - 0
SET COLOR TO R+/N,BG/N,GR+
CLEAR
@ 3,10 TO 20,70 DOUBLE
SET COLOR TO GR+/
@ 5,32 SAY "M A I N M E N U"
SET COLOR TO G/
@ 7,26 SAY "Select your choice by number:
@ 9,20 SAY "1. Database outputs: screen and hard copy"
@ 10,20 SAY "2. Test goal updates"
@ 11,20 SAY "3. PSDL operator/data stream updates"
@ 12,20 SAY "4. Prototype iteration information"
@ 13,20 SAY "5. Quit"
SET COLOR TO W+/
@ 16,26 SAY "Enter your choice here: " GET choice PICTURE "99";

RANGE 0,5
READ

*** perform user's request *
DO CASE

170

CASE choice~l
DO REPORTS

CASE choice72
DO UPGOALS

CASE choicer3
DO UPPSDL

CASE choice =4
DO ITERINFO

ENDOASE

ENDDO
CLEAR

*** display bye screen
DO BYE

171

* Program Name : WELCOME.PRG

Author : Ned Davis
* Date : 16 Aug 90
* Revised
* Language : Dbase III+
* Description : Displays a welcome screen that briefly

describes the TESTGOAL system.

SET COLOR TO BG+/B,GR+/R,G
CLEAR
@ 6,20 SAY "WELCOME TO THE CAPS TEST GOAL TRACKING SYSTEM"
@ 8,12 SAY
TEXT

This is a requirements-based test goal trackir
system (TCTS) designed to accompany prototype ;evelop-
ment in CAPS. As verifiable test goals are
determined, they are added to the database. When
the behavior is implemented in CAPS, the PSDL code
implementing the testable behavior is associated with
the proper test goal in the database for ease of ref-
erence during the development and testing of the pro-
totype. Test goals and PSDL operators and data
streams can be tracked to note changes between pro-
totype iterations. System capabilities include data
add, delete, change, annotation condition search and
multiple report form outputs.

ENDTEXT
@ 22,1 SAY
SET COLOR TO R+/B
@ 5,10 to 22,70 DOUBLE
SET COLOR TO W+/B
WAIT

172

* Program Name : REPORTS.PRG
* Author : Ned Davis

Date 1 Oct 90
Revised

* Language : dBase III+
* Description : Provides a menu screen for allowing report
* output of the type selected. Called by
* TESTGOAL.PRG.
* *** ****** **** ******** ********** ***** ** ******* * ***

**** set environment *
choice = 0

**** display menu
DO WHILE choice It 17

choice = 0
print it .F. && flag to send output to printer
SET COLOR TO R/BG,GR+/R,G
CLEAR
SET COLOR TO GR+/BG
@ 2,32 SAY "REPORT OUTPUT MENU"
SET COLOR TO R/BG
@ 3, 0 TO 24,79 DOUBLE
@ 14, 1 TO 14,78 DOUBLE
@ 18, 1 TO 18,78 DOUBLE
@ 20, 1 TO 20,78 DOUBLE
@ 4,40 TO 13,40 DOUBLE
SET COLOR TO GR+/BG
@ 4, 7 SAY "TEST GOAL OUTPUT OPTIONS"
@ 4,43 SAY "OPERATOR/DATA STREAM OUTPUT OPTIONS"
@ 6, 2 SAY "I. All test goals"
@ 6,42 SAY "9. All operators"

@ 7, 2 SAY "2. Test goals added in iteration x"
@ 7,42 SAY "10. All data streams"
@ 8, 2 SAY "3. Test goals modified in iteration x"
@ 8,42 SAY "11. Op/DStrm added in iteration x"
@ 9, 2 SAY "4. Test goals deleted in iteration x"
@ 9,42 SAY "12. Op/DStrm modified in iteration x"
@ 10, 2 SAY "5. Test goals that map to an Op/DStrm"
@ 10,42 SAY "13. Op/DStrm deleted in iteration x"
@ 11, 2 SAY "6. Test goals of aggregate x"
@ 11,42 SAY "14. Op/DStrms that map to a test goal"
@ 12, 2 SAY "7. Test goals of priority x"
@ 13, 2 SAY "8. Test goals of class x"
@ 15,30 SAY "LINK OUTPUT OPTIONS"
@ 17, 2 SAY "15. Global Link outputs"
@ 17,42 SAY "16. Iteration Link outputs"
@ 19,28 SAY "17. Return to Main Menu"
SET COLOR TO W+/BG
@ 21,26 SAY "Enter your choice here: " GET choice PICTURE "999";

173

RANGE 0,17
READ
IF choice # 17

@ 22,22 SAY "Send output to printer (Y or N)? :" GET print-it
PICTURE "Y"

READ
ENDI F
CLEAR

**** perform user's request *
DO CASE

CASE choice = 1
DO R CASE1

CASE choice = 2
DO R_ CASE2

CASE choice = 3
DO RCASE3

CASE choice 4
DO RCASE4

CASE choice 5
DO RCASE5

CASE choice 6
DO R_ CASE6

CASE choice 7
DO RCASE7

CASE choice 8
DO RCASE8

CASE choice 9
DO R CASE9

CASE choice 10
DO RCASE10

CASE choice = 11
DO RCASEll

CASE choice = 12
DO RCASE12

CASE choice = 13
DO R_ CASE13

CASE choice = 14
DO RCASE14

CASE choice = 15
DO RCASE15

CASE choice = 16
DO RCASE16

ENDCAS E
ENDDO

**** restore environment *
CLEAR
choice - 0
RETURN TO MASTER

174

* Program Name : RCASEI.PRG
* Author : Ned Davis
* Date J Oct 90
* Revised
* Language : Dbase III+
* Description : Provides menu options for test goal output.

Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "print_it" from calling program to
* det'm where to send output.

**** set environment *
choicel = 0
choicela = 1
SET MEMOWIDTH TO 25

**** display menu ***+
DO WHILE choicel # 6

choicel = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,30 SAY "TEST GOAL LISTING OPTIONS"

@ 7,20 SAY "Select your choice by number:
@ 9,20 SAY ". List by Test Goal Number"
@ 10,20 SAY "2. List by Testing Priority"
@ 11,20 SAY "3. List by Test Aggregate"
@ 12,20 SAY "4. List by Test Class"
@ 13,20 SAY "5. List deleted goals"
@ 14,20 SAY "6. Return to Report Menu"
SET COLOR TO W+/BG
@ 17,15 SAY "Enter your choice here: " GET choicel PICTURE "99";

RANGE 0,6
READ
SET COLOR TO GR+/BG
IF choicel # 6

choicela = 1
@ 19,15 SAY "1. Brief output: description & history omitted"
@ 20,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

ENDIP

**** perform choices *

175

DO CASE
CASE choicel : I

USE goals INDEX goalnum
IF choicela I I

IF print-it
LIST FOR deleted = 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR deleted = 0 OFF
WAIT

ENDIF
ELSE

SET MEMOWIDTH TO 30
IF print-it

LIST goal num, goal descr, ghistory;
FOR deleted = 0 OFF TO PRINT

ELSE
DISPLAY ALL goal num, goaldescr, ghistory;

FOR deleted = 0 OFF
WAIT

ENDIF
SET MEMOWIDTH TO 25

ENDIF
CASE choicel 7 2

USE goals INDEX testpri
IF choicela = 1

IF print-it
LIST FOR deleted = 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR deleted = 0 OFF
WAIT

ENDIF
ELSE

IF print-it
LIST testpri, goal num, goal-descr, g_history;

FOR deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL testpri, goal num, goal descr, g_history;
FOR deleted = 0 OFF

WAIT
ENDIF

ENDIF
CASE choicel = 3

US goals INDEX aggregat
IF choicela = 1

IF print-it
LIST FOR deleted = 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR deleted = 0 OFF
WAIT

ENDiF
ELSE

176

IF printt
LIST aggregate, goalnum, goal descr, g_history;

FOR deleted m 0 OFF TO PRINT
ELSE

DISPLAY ALL aggregate, goal_num, goal descr, g-history;
FOR deleted = 0 OFF

WAIT
ENDIF

ENDIF
CASE choicel = 4

USE goals INDEX testclas
IF choicela = 1

IF printit
LIST FOR deleted = 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR deleted n 0 OFF
WAIT

ENDIF
ELSE

IF print_it
LIST test_class, goalnum, goal_descr, ghistory;

FOR deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL testclass, gualnum, goaldescr,g-histor):
FOR deleted 0 OFF

WAIT
ENDIF

ENDI F
CASE choicel - 5

DO DEL_GOI.!;
ENDCASE
CLOSE DATABASE.,

ENDDO

CLEAR
SET MEMOWIDTH TO 30
RETURN

177

4.4.J.4.4. J..4444... ... 4.4 .4 .4.J.J....I. 4.. .I..,

* Program Name DEL-GOLS.PRG
* Author Ned Davis

Date 7 Oct 90
Revised

* Language dBase III+
* Description Allows deleted test goals to be listed
* to screen or printer in either brief or

descriptive format. Called by RCASEI.PRG.
* WARNING - uses global variable print it
* from REPORTS.PRG and choicela from R CASE1.PRG.
**

**** set memory variables *
del ch = 0
iter = 0

**** display menu
DO WHILE delch # 3

del _ch 7 0
iter = 0
CLEAR
SET COLOR TO R/BG
@ 3,10 TO 16,70 DOUBLE
SET COLOR TO GR+/BG
@ -4,25 SAY "DELETED TEST GOALS LISTING OPTIONS"
@ 6,20 SAY "Select your choice by number:
@ 8,20 SAY "I. List all deleted test goals"
@ 9,20 SAY "2. List test goals deleted in an iteration"
@ 10,20 SAY "3. Return to Test Goal Menu"
SET COLOR TO W+/BG
@ 12,20 SAY "Enter your choice here: " GET del_ch;

PICTURE "99" RANGE 1,3
READ
SET COLOR TO GR+/BG
DO CASE

CASE delch = 1 && list all deleted test goals
USE goals INDEX goalnum
IF choicela = 1

IF print - it
LIST FOR deleted I 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR deleted #0 OFF
WAIT

ENDIF
ELSE

IF print it
LIST goal num, goaldescr, g_history FOR deleted I 0;

OFF TO PRINT
ELSE

DISPLAY ALL goal num, goaldescr, ghistory;

178

FOR deleted P: 0 OFF
NAITF

ENDIF
ENDI F

CASE del_ch 7 2 && list deleted test goals for iter x
SET COLOR TO W+/BG
@ 14,20 SAY "Enter the iteration to output:

GET iter PICTURE "999" RANGE 1,99
READ
SET COLOR TO GR+/BG
USE goals INDEX delet tg
SEEK iter
IF POUND()

IF choicela = 1
IF printit.

LIST WHILE deleted a iter OFF TO PRINT
ELSE

DISPLAY WHILE deleted : iter OFF
WAIT

ENDIF
ELSE

IF print-it
SET PRINT ON
? "TEST GOALS DELETED FOR ITERATION ",iter
SET PRINT OFF
LIST goal num, goal descr, g-history;

WHILE deleted = iter OFF TO PRINT
ELSE

? "TEST GOALS DELETED FOR ITERATION ",iter
DISPLAY goal num, goal descr, g_history;

WHILE deleted = iter OFF
WAIT

ENDIF
ENDIF

ELSE
CLEAR
@ 5,5
? "No deleted test goals found for iteration ",iter
WAIT

ENDIF
ENDCASE && return to caller
CLOSE DATABASES

ENDDO
RETURN

179

* Program Name : RCASE2.PRG
* Author : Ned Davis

Da t c 3 Oct 90
* Revised
* Language Dbase III+

Description Provides menu options for test goal output.
* Outputs test goals added in a given iteration.

Sends output to screen or printer as req'd.
Called by REPORTS.PRG. !!WARNING- uses global
variable "print_it" from calling program to
det'm where to send output.

....... ***********************~ *****...... c**^***********

set environment *
choice2 = 1
iterno = 0

** display menu
SET COLOR TO R/BG,GR+/RG
CLEAR
@ 3,10 TO 17,70 DOUBLE
@ 9,11 TO 9,69 DOUBLE
@ 13,11 TO 13,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,24 SAY "TEST GOALS ADDED POR A GIVEN ITERATION"
@ 7,20 SAY "Enter the iteration to output or 0 to escape"
SET COLOR TO W+/BG
@ 11,15 SAY "Enter your choice here: " GET iterno PICTURE "999";

RANGE 0,99
READ
SET COLOR TO GR+/BG
IF iter no # 0

choice2 I
@ 14,15 SAY "I. Brief output: description & history omitted"
@ 15,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choice2

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

^*** perform choices ****

USE goals INDEX iteradd
SEEK iter no
IF FOUND()

IF choice2 = 1 && brief format
IF printit

LIST WHILE iteradded iterno OFF TO PRIVN"
ELSE

DISPLAY WHILE iter_added : iterno OFF

180

WAIT
ENDIF

ELSF && detailed format.
IF print-A

SET PRINT ON
? "TEST GOALS ADDED IN ITERATION ",it.er no
SET PRINT OFF
LIST goalnum, goal_descr, gjistory

WHILE iteradded = iterno OFF TO PRINT
ELSE

? "TEST GOALS ADDED IN ITERATION ",iter no
DISPLAY goal_num, goaldescr, g_history

WHILE iteradded = iterno OFF
WAIT

ENDIF
ENDIF

ELSE && iteration not found
CLEAR
@ 5,5
? "No test goals lound for iteration ",iter-no
?? CHR(7)
WAIT

ENDIF
ENDITF
CLOSE DATABASES
CLEAR
RETURN

181

* Program Name : RCASE3.PRG
* Author : Ned Davis
* Date 3 Oct 90
* Revised
* Language : Dbase III+
* Description : Provides menu options for test goal output.
* Outputs test goals modified in a given iteration.

Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "print_it" from calling program to

det'm where to send output.

**** set environment *
choice2 = 1
iterno = 0

**** display menu

SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 17,70 DOUBLE
@ 9,11 TO 9,69 DOUBLE
@ 13,11 TO 13,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,20 SAY "TEST GOALS MODIFIED FOR A GIVEN ITERATION"
@ 7,20 SAY "Enter the iteration to output or 0 to escape"
SET COLOR TO W+/BG
@ 11,15 SAY "Enter your choice here: " GET iter no PICTURE "999";

RANGE 0,99
READ
SET COLOR TO GR+/BG
IF iterno # 0

choice2 = 1
@ 14,15 SAY "1. Brief output: description & history omitted"

@ 15,15 SAY "2. Descriptive output: w/ description & history"

SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choice2

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

**** perform choices *
USE goals INDEX updated

SEEK iterno
IF FOUND()

IF choice2 1 1 && brief format
IF printit

LIST WHILE updated = iterno OFF TO PRINT
ELSE

DISPLAY WHILE updated = iterno OFF

182

WAIT
END] F

ELSE && detailed format
IF print_it

SET PRINT ON
? "TEST GOALS MODIFIED IN ITERATION ",iterno
SET PRINT OFF
LIST goal num, goaldescr, ghistory

WHILE updated = iterno OFF TO PRINT
ELSE

? "TEST GOALS MODIFIED IN ITERATION ",iter_no
DISPLAY goalnum, goal descr, ghistory

WHILE updated = iterno OFF
WAIT

ENDIF
ENDIF

ELSE && iteration not found
CLEAR
@ 5,5
9 "No modified test goals found for iteration ",iter_no
?? CHR(7)
WAIT

ENDIF
ENDI F
CLOSE DATABASES
CLEAR
RETURN

183

* Program Name : R_CASE4.PRG
* Author : Ned Davis
* Date : 3 Oct 90
* Revised
* Language : Dbase ITT+
* Description : Provides menu options for test goal output.
* Outputs test goals deleted in a given iteration.
* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "print _it" from calling program to

* det'm where to send output..

**** set environment *

choice2 1
iterno 0

**** display menu

SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 17,70 DOUBLE
@ 9,11 TO 9,69 DOUBLE
@ 13,11 TO 13,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,20 SAY "TEST GOALS DELETED FOR A GIVEN ITERATION"
@ 7,18 SAY "Enter the iteration to output or 0 to escape"
SET COLOR TO W+/BG
@ 11,15 SAY "Enter your choice here: " GET iterno PICTURE "999":

RANGE 0,99
READ
SET COLOR TO GR+/BG
IF iterno # 0

choice2 = 1
@ 14,15 SAY "1. Brief output: description & history omitted"

@ 15,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choice2

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

**** perform choices *
USE goals INDEX delettg
SEEK iterno
IF FOUND()

IF choice2 = 1 && brief format
IF print_it

LIST WHILE deleted = iterno OFF TO PRINT
ELSE

DISPLAY WHILE deleted = iterno OFF

184

WAIT
ENDI

ELS && detailed format.
IF printit

SET PRINT ON
? "TEST GOALS DELETED IN ITERATION ",iterno
SET PRINT OFF
LIST goal num, goaldescr, &_history

WHILE deleted = iterno OFF TO PRINT
ELSE

? "TEST GOALS DELETED IN ITERATION ",iterno
DISPLAY goal num, goal descr, g_history

WHILE deleted ' iter no OFF
WAIT

ENDIP
ENDIF

ELSE && iteration not found
CLEAR
@ 5,5
? "No deleted test goals found for iteration ",iter-no
?? CHR(7)
WAIT

ENDIF
ENDIF
CLOSE DATABASES
CLEAR
RETURN

185

Program Name : R_CASE5.PRG
* Author : Ned Davis
* Date 7 Oct 90
* Revised
* Language : Dbase II+
* Description : Provides menu options for test goal output.

Outputs test goals that map to a particular
operator/data stream - either all or for an

* iteration.

Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global

variable "print_it" from calling program to
* det'm where to send output.

**** set environment *
choice5 2 0
iterno 0 0
choicela 0
opstm - 0

**** display menu
DO WHILE choice5 V/ 3

choice5 = 0
iterno = 0
choicela = 0
opstm = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 14,11 TO 14,69 DOUBLE
@ 17,11 TO 17,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,18 SAY "TEST GOALS THAT MAP TO A GIVEN OP/DATA STREAM"
@ 7,20 SAY "Select your choice by number: "
@ 9,20 SAY "I. List Test Goals for all iterations"
@ 10,20 SAY "2. List Test Goals for a given iteration"
@ 11,20 SAY "3. Return to Report Menu"
SET COLOR TO W+/BG
@ 13,20 SAY "Enter your choice here: " GET choice5;

PICTURE "99" RANGE 0,3
READ
SET COLOR TO GR+/BG
IF choice5 = 2

@ 15,20 SAY "Enter the iteration to output or 0 to escape"
SET COLOR TO W+/BG
@ 16,20 SAY "Enter your choice here: " GET iterno PICTURE "999";

RANGE 0,99
READ
SET COLOR TO GR+/BG

186

ENDIF
IF iter no V 0 .01,. cAhoice5 ft 3

choicela 1
@ 18,15 SAY "1. Brief output: description & history omitted"
@ 19,15 SAY "2. Descriptive output: w/' description &history"
SET COLOR TO Wv+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ

@22,15 SAY "Enter the op,/data stream no. for goal listing: "

GET opstm PICTURE "99999" RANGE 1,9999
READ
SET COLOR TO GR+/BG

ENDI F

*** perform choices
CLEAR
DO CASE

CASE choice5 I:
DO TRACE10P

CASE choice5 2
DO TRACE20P

ENDCASE
CLOSE DATABASES

ENDDO
CLEAR
RIT'N

187

,+.**** .. *.. .*******.... *******........**,

* Program Name TRACEIOP.PRG
* Author Ned Davis

Date 8 Oct 90
Revised

* Language dBase III+
* Description Prints to screen or printer a listing of
* test goals that link to a particular op/

data stream. Called from RCASE5.PRG.
* WARNING!! - uses vars from RCASE5.PRG.

• * set work areas
SELECT A
USE ro_link INDEX onumlink

SELECT B
USE goals INDEX goalnum

• *** set up relationships ****

SELECT A
SET RELATION TO goal_num INTO goals

• output report
GO TOP
SEEK opstm
IF FOUND()

IF choicela = 1 && brief format,
IF printit

SET PRINT ON
? "TEST GOALS THAT MAP TO OP/DATA STREAM ",opstm
SET PRINT OFF
DO WHILE opnumber opstm

SELECT B
LIST FOR goalnum A->goalnum OFF TO PRINT
SELECT A
SKIP

ENDDO
ELSE

? "TEST GOALS THAT MAP TO OP/DATA STREAM",opstm
DO WHILE opnumber = opstm

SELECT B
DISPLAY FOR goal-num = A->goal num OFF
SELECT A
SKIP

ENDDO
WAIT

ENDIF
ELSE && detailed format

IF print_it
SET PRINT ON

188

?"TEST GOALS THAT YAP TO OP/DATA STREAX ",opstix
SET PRINT OFF
DO WHILF op number - opbtml

SELECT B
LIST goal nuni, goal-descr, gjhistory;

FOR goal-num =A-)goalnum OFF TO PRINT
SELECT A
SKIP

ENDDO
ELSE

? "TEST GOALS THAT MAP TO OP/DATA STREAM ",opstm
DO WHILE op_ number opstrn

SELECT B
DISPLAY goal nurn, goal descr, &_history;

FOR goal num :zA->goal-num OFF
SELECT A
SKI P

ENDDO
WAIT

ENDIF
ENDIF

ELSE && opnurn not found
CLEAR
@ 5,5
? "No operator/dat-a stream found to match ",opstm
WAIT

ENDI F
CLOSE DATABASES
CLEAR
RETURN

189

Program Name : TRACE20P.PRG

SAutho : Ned Davis

Dat v 8 Oct 90
Revised

• Language dBase II1+
* Description Prints to screen or printer a listing of
* test goals that. link to a particular op/
* data stream, where the links were added in a
* given iteration. Called from RCASES.PRG.

WARNING!! - uses vars from RCASE5.PRG.

S*set work areas
SELECT A
USE rolinP INDEX onumlink

SELECT B
USE goals INDEX goalnuni

**** set up relationships ****
SELECT A
SET RELATION TO goalnum INTO goals

**** output report

GO TOP
SEEK opstm
IF FOUND()

I ch: Icela = 1 && brief format
IF print_it

SET PRINT ON
? "TEST GOALS THAT MAP TO OP/DATA STREAM ",opstm

?? " FOR ITERATION ",iter-no
SET PRINT OFF
DO WHILE opnumber = opstm

IF 1_iteradd it.erno
SELECT B
LIST FOR goalnum = A->goal num OFF TO PRINT
SELECT A

ENDIF
SKIP

ENDDO
ELSE

? "TEST GOALS THAT MAP TO OP/DATA STREAM",opstm
?? " FOR ITERATION ",iter no
DO WHILE opnumber = opstm

IF Iiteradd = iterno
SELECT B
DISPLAY FOR goal-num = A->goal num OFF
SELECT A

ENDIF

190

SKIP
r*N1)1(-
WAIT

END I F
ELSE &&detailed format

IF print_it
SET PRINT ON

? TEST GOALS THAT MAP TO OP,'DATA STREAM ",opstm
??"FOR ITERATION ", iter_no

SET PRINT OFF
DO WHILE op_number =opstm

IF I-iteradd =iter-no
SELECT B
LIST goal_num, goal descr, ghjistory;

FOR goal num 0 A->goal num OFF TO PRINT
SELECT A

ENDI F
SKIP

END DO
ELSE

? "TEST GOALS THAT MAP TO OP,'DATA STREAM ",opstr
?" FOR ITERATION ", iter-no

DO WHILE op_number 7 opst~m
IF I-iteradd = iter-no

SELECT B
DISPLAY goal num, goal descr, gjiistory;

POR goal numrn A->goaljium, OFF
SELECT A

ENDIF
SKIP

END DO
WAIT

ENDIF
ENDIF

ELSE && opnum not found
CLEAR
@ 5,5

?"No operator/data stream found to match ",opstm
"for iteration ",iter_no

WAI T
ENDir
CLOSE DATABASES
CLEAR
RETURN

191

* Program Name : R_CASE6.PRG
* Author . Ned Davis
* Date 3 Oct. 90
* Revised
* Language : Dbase III+
* Description Provides menu options for test goal output.

Outputs test goals of a given test aggregate.

* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "printit" from calling program to

det'm where to send output.

**** set environment *

choice2 1
agg = 0

**** display menu
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 17,70 DOUBLE
@ 9,11 TO 9,69 DOUBLE
@ 13,11 TO 13,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,24 SAY "TEST GOALS IN A GIVEN TEST AGGREGATE"

@ 7,20 SAY "Enter the aggregate to output or 0 to escape"
SET COLOR TO W+/BG

@ 11,15 SAY "Enter your choice here: " GET agg PICTURE "999";
RANGE 0,99

READ
SET COLOR TO GR+/BG
IF agg # 0

choice2 L 1
@ 14,15 SAY "1. Brief output: description & history omitted"
@ 15,15 SAY "2. Descriptive output: w/ description & history"

SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choice2

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

**** perform choices *

USE goals INDEX aggregat
SEEK agg
IF FOUND()

IF choice2 = 1 && brief format
IF printit

LIST WHILE aggregate = agg OFF TO PRINT
ELSE

DISPLAY WHILE aggregate agg OFF

192

WAIT
ENDIF

ELSE && detailed format
IF print_it

SET PRINT ON
? "TEST GOALS IN AGGREGATE ",agg
SET PRINT OFF
LIST goal-num, goal descr, ghistory

WHILE aggregate = agg OFF TO PRINT
ELSE

? "TEST GOALS IN AGGREGATE ",agg
DISPLAY goalnum, goal descr, g_history

WHILE aggregate = agg OFF
WAIT

ENDIF
ENDIF

ELSE && iteration not found
CLEAR
@ 5,5
? "No test goals 'found for aggregate ,agg
?? CHR(7)
WAIT

ENDIF
ENDIF
CLOSE DATABASES
CLEAR
RETURN

193

* Program Name : R_CASE7.PRG
* Author : Ned Davis
* Date 3 Oct 90
* Revised
* Language : Dbase III+
* Description : Provides menu options for test goal output.
* Outputs test goals of priority x.
* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global

variable "printit" from calling program to
det'm where to send output.

*** set environment *
choice2 = 1
priority = 0

**** display menu
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 17,70 DOUBLE
@ 9,11 TO 9,69 DOUBLE
@ 13,11 TO 13,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,24 SAY "TEST GOALS OF A GIVEN PRIORITY"
@ 7,20 SAY "Enter the priority to output or 0 to escape"
SET COLOR TO W+/BG
@ 11,15 SAY "Enter your choice here: " GET priority PICTURE "99";

RANGE 0,9
READ
SET COLOR TO GR+/BG
IF priority 4A 0

choice2 = 1
@ 14,15 SAY "I. Brief output: description & history omitted"
@ 15,15 SAY "2. Descriptive output: w/ description & history"

SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choice2

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

**** perform choices *
USE goals INDEX testpri
SEEK priority
IF FOUND()

IF choice2 = 1 && brief format
IF printit

LIST WHILE testpri = priority OFF TO PRINT
ELSE

DISPLAY WHILE test_pri = priority OFF

194

WAIT
ENDIF

ELSE && detailed format.
IF print_it

SET PRINT ON
? "TEST GOALS OF PRIORITY ",priority
SET PRINT OFF
LIST goal-num, goaldescr, g_history

WHILE testpri = priority OFF TO PRINT
ELSE

? "TEST GOALS OF PRIORITY ",priority
DISPLAY goal num, goal descr, ghistory

WHILE testpri = priority OFF
WAIT

ENDIF
ENDIF

ELSE && iteration not found
CLEAR
@ 5,5
? "No test goals found for priority ",priority
?? CHR(7)
WAIT

ENDIF
ENDIF
CLOSE DATABASES
CLEAR
RETURN

195

* Program Name : R_CASE8.PRG
* Author : Ned Davis
* Date : 3 Oct 90

Revised
* Language : Dbase III+
* Description : Provides menu options for test goal output.
* Outputs test goals of class x.

Sends output to screen or printer as req'd.
Called by REPORTS.PRG. !!WARNING- uses global
variable "print_it" from calling program to
det'm where to send output.

**** set environment *

choice2 = 1
tclass a 0

**** display menu
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 17,70 DOUBLE
@ 9,11 TO 9,69 DOUBLE
@ 13,11 TO 13,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,24 SAY "TEST GOALS OF A GIVEN CLASS"
@ 7,20 SAY "Enter the class to output or 0 to escape
SET COLOR TO W+/BG
@ 11,15 SAY "Enter your choice here: " GET tclass PICTURE "99";

RANGE 0,4
READ
SET COLOR TO GR+/BG
IF tclass # 0

choice2 =1
@ 14,15 SAY ". Brief output: description & history omitted"
@ 15,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choice2

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

**** perform choices *
USE goals INDEX testclas
SEEK tclass
IF FOUND()

IF choice2 = 1 && brief format
IF print_it

LIST WHILE testclass = tclass OFF TO PRINT
ELSE

DISPLAY WHILE testclass = tclass OFF

196

WAIT
ENDI F

ELSE && detailed format,
IF printit

SET PRINT ON
? "TEST GOALS IN TEST CLASS ",tclass
SET PRINT OFF
LIST goal num, goaldescr, g_history

WHILE testclass = t.class OFF TO PRINT
ELSE

? "TEST GOALS TEST CLASS ",tclass
DISPLAY goal num, goal descr, g_history

WHILE testclass = tclass OFF
WAIT

ENDIF
ENDIF

ELSE && iteration not found
CLEAR
@5,5
? "Nu, test goals found for test class ",tclass
?? CHR(7)
WAIT

ENDIF
ENDIF
CLOSE DATABASES
CLEAR
RETURN

197

* Program Name : RCASE9.PRG
* Author : Ned Davis
* Date : 4 Oct 90

Revised
* Language : Dbase III+
* Description : Provides menu options for operator output.
* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "print_it" from calling program to
* det'm where to send output.

**** set environment *
SET MEMOWIDTH TO 25
choice9: 0
choicela = I

**** display menu
DO WHILE choice9 # 4

choice9 = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,28 SAY "OPERATOR LISTING OPTIONS"
@ 7,25 SAY "Select your choice by number:
@ 9,25 SAY "l. List by Operator Number"
@ 10,25 SAY "2. List alphabetically"
@ 11,25 SAY "3. List deleted operators"
@ 12,25 SAY "4. Return to Report Menu"
SET COLOR TO W+/BG
@ 17,26 SAY "Enter your choice here: " GET choice9;

PICTURE "99" RANGE 0,4
READ
SET COLOR TO GR+/BG
IF choice9 # 4

choicela = 1
@ 19,15 SAY "I. Brief output: description & history omitted"
@ 20,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

ENDIF

**** perform choices *
DO CASE

CASE choice9 = 1

198

USE opstream INDEX opnum
IF choicela :: 1

IF print it
LIST FOR operator .AND. deleted 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR operator .AND. deleted = 0 OFF
WAIT

ENDIF
ELSE

IF print it
LIST opnumber, op__name, ohistory FOR operator .AND.

deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL op__number, opname, ohistory;
FOR operator .AND. deleted 0 OFF

WAIT
ENDIF

ENDIF
CASE choice9 = 2

USE opstream INDEX opname
IF choicela = i

IF print it
LIST FOR operator .AND. deleted 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR operator .AND. deleted = 0 OFF
WAIT

ENDIF
ELSE

IF print-it
LIST op__name, op number, ohistory

FOR operator .AND. deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL opname, opnumber, ohistory;
FOR operator .AND. deleted 0 OFF

WAIT
ENDIF

ENDIF
CASE choice9 = 3

DO DELOPS
ENDCASE
CLOSE DATABASES

ENDDO

CLEAR
SET MEMOWIDTH TO 30
RETURN

199

* . *oj *. .°, ° **** **** *. ***. .*. * °* .. * * *° . j *.... * ,. *. * *.*. . . ° *

* Program Name : DELOPS.PRG
* Author : Ned Davis
* Date : 6 Oct 9 0

Revised
* Language : dBase III+
* Descripticu : Allows deleted operators to be listed
* to screen or printer in either brief or
a. descriptive format. Called by RCASE9.PRG.
* WARNING - uses global variable print it

from REPORTS.PRG and choicela from
* R_CASE9.PRG.

**** set memory variables *

del-ch = 0
iter 0

**** display menu
DO WHILE delch # 3

delch = 0
iter : 0
CLEAR
SET COLOR TO R/BG
@ 3,10 TO 16,70 DOUBLE
SET COLOR TO GR+/BG
@ 4,25 SAY "DELETED OPERATOR LISTING OPTIONS"
@ 6,20 SAY "Select your choice by number: "
@ 8,20 SAY "l. List all deleted operators"
@ 9,20 SAY "2. List operators deleted in an iteration"
@ 10,20 SAY "3. Return to Operator Menu"
SET COLOR TO W+/BG
@ 12,20 SAY "Enter your choice here: " GET delch;

PICTURE "99" RANGE 1,3
READ
SET COLOR TO GR+/BG
DO CASE

CASE delch = 1 && list all deleted operators
USE opstream INDEX opnum
IF choicela = 1

IF print-it
LIST FOR operator .AND. deleted # 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR operator .AND. deleted #0 OFF
WAIT

ENDIF
ELSE

IF print-it
LIST opnumber, opname, o history FOR operator;

.AND. deleted # 0 OFF TO PRINT
ELSE

200

DISPLAY ALL opnumber, op name, o history;
FOR operator .AND. deleted ft 0 OFF

WAIT
ENDIF

ENDIF
CASE delch -- 2 && list deleted operators for iter x

SET COLOR TO W+/BG
@ 14,20 SAY "Enter the iteration to output:

GET iter PICTURE "999" RANGE 1,99
READ
SET COLOR TO GR+/BG
USE opstream INDEX delet-op
SEEK iter
IF FOUND()

IF choicela = 1
IF printit

LIST WH1ILE deleted = iter FOR operator;
OFF TO PRINT

ELSE
DISPLAY WHILE deleted = iter FOR operator OFF
WAIT

ENDJF
ELSE

IF print _it
SET PRINT ON
? "OPERATORS DELETED FOR ITERATION ",iter
SET PRINT OFF
LIST opjnumber, opname, o history;

WHILE deleted = iter FOR operator;
OFF TO PRINT

ELSE
? "OPERATORS DELETED FOR ITERATION ",iter
DISPLAY opnumber, op__name, o-history;

WHILE deleted = iter FOR operator OFF
WAIT

ENDIF
ENDIF

ELSE
CLEAR
@ 5,5
? "No deleted operators found for iteration ",iter
WAIT

ENDIF
ENDCASE && return to caller
CLOSE DATABASES

ENDDO
RETURN

201

Program Name : RCASEIO.PRG
* Author : Ned Davis
* Date : 5 Oct 90
* Revised
* Language : Dbase III+
* Description : Provides menu options for data stream output.
* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "printit" from calling program to

det'm where to send output.

* set environment *
SET MEMOWIDTH TO 25
choicelO = 0
choicela = 1

**** display menu
DO WHILE choicelO # 4

choicelO = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
Q 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,26 SAY "DATA STREAM LISTING OPTIONS"
@ 7,25 SAY "Select your choice by number:
@ 9,25 SAY "1. List by Data Stream Number"
@ 10,25 SAY "2. List. alphabetically"
@ 11,25 SAY "3. List deleted Data Streams"
@ 12,25 SAY "4. Return to Report Menu"
SET COLOR TO W+/BG
@ 17,25 SAY "Enter your choice here: " GET choicelO PICTURE "99";

RANGE 1,4
READ
SET COLOR TO GR+/BG
IF choicelO # 4

choicela = 1
@ 19,15 SAY "1. Brief output: description & history omitted"
@ 20,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
Q 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ
SET COLOR TO GR+/BG

ENDIF

**** perform choices *
DO CASL

CASE choicelO = 1

202

USE opstream INDEX opnum
I1 choicela I

IF print-it
LIST FOR .NOT. operator .AND. deleted - 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR .NOT. operator .AND. deleted 0 OFF
WAIT

ENDIF
ELSE

IF print-it.
LIST op__number, opname, ohistory FOR .NOT. operator;

.AND. deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL opnumber, opname, ohistory;
FOR .NOT. operator .AND. deleted = 0 OFF

WAIT
ENDIF

END]F
CASE choicelO = 2

USE opstream INDEX opnane
IF choicela = I

IF print-it
LIST FOR .NOT. operator .AND. deleted : 0 OFF TO PRINT

ELSE
DISPLAY ALL FOR .NOT. operator .AND. deleted 0 OFF
WAIT

ENDIF
ELSE

IF print it
LIST op name, op_number, ohistory

FOR .NOT. operator .AND. deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL opname, opnumber, ohistory;
FOR .NOT. operator .AND. deleted 0 OFF

WAIT
ENDIF

ENDIF
CASE choicelO = 3

DO DELSTMS
ENDCASE
CLOSE DATABASES

ENDDO

CLEAR
SET MEMOWIDTH TO 30
RETURN

203

* Program Name : DELSTMS.PRG
* Author Ned Davis
* Date 7 Oct 90

Revised
* Language dBase III+
* Description : Allows deleted data streams to be listed

to screen or printer in either brief or
* descriptive format. Called by RCASEIO.PRG.
* WARNING - uses global variable print it
* from REPORTS.PRG and choicela from

R_CASEIO.PRG.

**** set memory variables *
delch = 0
iter - 0

**** display menu
DO WHILL del_ ch 4 3

delch 7 0
iter z 0
CLEAR
SET COLOR TO R/BG
@ 3,10 TO 16,70 DOUBLE
SET COLOR TO GR+/BG
@ 4,23 SAY "DELETED DATA STREAMS LISTING OPTIONS"
@ 6,20 SAY "Select your choice by number: "
@ 8,20 SAY "1. List all deleted data streams"

@ 9,20 SAY "2. List data streams deleted in an iteration"
@ 10,20 SAY "3. Return to Data Stream Menu"
SET COLOR TO W+/BG
@ 12,20 SAY "Enter your choice here: " GET del_ch;

PICTURE "99" RANGE 1,3
READ
SET COLOR TO GR+/BG
DO CASE

CASE delch = 1 && list all deleted data streams
USE opstream INDEX opnum
IF choicela = 1

IF print-it
LIST FOR .NOT. operator .AND. deleted # 0 OFF TO PRINT

ELZE
DISPLAY ALL FOR .NOT. operator .AND. deleted #0 OFF
WAIT

ENDIF
ELSE

IF print-it
LIST opnumber, opname, ohistory FOR .NOT. operator;

.AND. deleted # 0 OFF TO PRINT
ELSE

204

D1S1'IAY ALL opnumber, op name, ohistory;
FOR .NOT. operator .AND. deleted 0 0 OFF

WA IT
ENDIF

END] F
CASE del_ch r 2 && list deleted data streams for iter x

SET COLOR TO W+/BG
@ 14,20 SAY "Enter the iteration to output: ";

GET iter PICTURE "999" RANGE 1,99
READ
SET COLOR TO GR+/BG
USE opstream INDEX deletop
SEEK iter
IF FOUND()

IF choicela = 1
IF print_it.

LIST WHILE deleted - iter FOR .NOT. operator;
OFF TO PRINT

EL.SE
DISPLAY ,1 ,ILF deleted = iter FOR .NOT. operator;

FOR operatur OFr
WqAIT

ENDIF
ELSE

IF print_it
SET PRINT ON
? "OPERATORS DELETED FOR ITERATION ",iter
SET PRINT OFF
LIST opnumber, opname, ohistory;

WHILE deleted o iter FOR .NOT. operator;
OFF TO PRIN,

ELSE
? "OPERATORS DELETED FOR ITERATION ",iter
DISPLAY opnumber, op_name, ohistory;

WHILL deleted = iter FOR .NOT. operator OFF
WAIT

ENDI F
ENDIF

ELSE
CLEAR
@ 5,5
? "No deleted data streams found for iteration ",iter
WAIT

ENDIF
ENDCAS'. && return to caller
CLOSE DATABASES

ENDDO
RETURN

205

Program Name RCASElI .PRG

Author : Ned Davis
Date 5 Oct 90

* Revised
* Language Dbase III+
* Description : Provides menu options for operator output.

Outputs operator/data stream added for
iteration x.

* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "print_it" from calling program to

det'm where to send output.

**** set environment ****

SFT MEMOWIDTII TO 25
choicellz 0
choicela - I
iter = 0

**** display menu
DO WHILE choicell P 3

choicell -- 0
iter = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
@ 14,11 TO 14,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,16 SAY "OPERATORS/DATA STREAMS ADDED FOR A GIVEN ITERATION"
@ 7,25 SAY "Select your cboice by number:
@ 9,25 SAY "1. List Operators"
@ 10,25 SAY "2. List Data Streams"
@ 13,25 SAY "3. Return to Report Menu"
SET COLOR TO W+/BG
@ 15,24 SAY "Enter your choice here: " GET choicell PICTURE "99";

RANGE 0,3
READ
@ 17,15 SAY "Enter the iteration to output: " GET iter;

PICTURE "999" RANGE 0,99
SET COLOR TO GR+/BG
IF choicell # 3

choicela = 1
@ 19,15 SAY "1. Brief output: description & history omitted"
@ 20,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ

206

SET COLOR TO GR+/BG
ENDIF

perform choices *
USL opstream INDEX oiteradd
SEEK iter
IF FOUND()

DO CASE
CAS . choicell = 1 && list operators

IF choicela = 1 && brief description
IF printit

LIST WHILE oiteradd iter FOR operator OFF TO PRINT
ELSE

DISPLAY WHILE o_iteradd : iter FOR operator OFF
WAIT

ENDIF
ELSE && detailed description

IF printit
SET PRINT ON
? "OPERATORS ADDED IN ITERATION ",iter
SET PRINT OFF
LIST opnumber, opname, ohistory;

WHILE o iteradd = iter FOR operator OFF TO PRINT
ELSE

? "OPERATORS ADDED IN ITERATION ",iter
DISPLAY opnumber, op name, o history;

WHILE o_i'-radd 7 iter FOR operator OFF
WAIT

ENDIF
ENDIF

CASE choicell 2 && list data streams
IF choicela 1 && brief description

IF printit
LIST WHILE oiteradd n iter;

FOR .NOT. operator OFF TO PRINT
ELSE

DISPLAY WHILE oiterqdd :- iter FOR .NOT. operator 014
WAIT

ENDIF
ELSE && detailed description

IF printit
SET PRINT ON
? "DATA STREAMS ADDED IN ITPRATION ", iter
SET PRINT OFF
LIST opname, opnumber, ohistory

WHILE oiteradd = iter FOR .NOT. operator OFF TO PRINT
ELSE

? "DATA STREAMS ADDED IN ITERATION ", iter
DISPLAY opname, opnumber, o history;

WHILE oiteradd iter FOR .NOT. operator OF'
WAIT

207

ENDIF
ENDI F

ENDCASE
ELSE && iteration not found

Ir iter #k 0 &&print only if not menu escape
CLEAR
@ 5,5
IF choicell=I

? "No operators found for iteration ",iter
ELSE

? "No data streams found for iteration ",iter
ENDIF
??CHR(7)
WAIT

ENDIF
ENDI F
CLOSE DATABASES

ENDDO

CLEAR
SET MEMOWIDTH TO 30
RETURN

208

.... ** ,^* ,.^ * ^ * * ^**^*** * ... * **

Program Name : RCASE12.PRG
* Author : Ned Davis
* Date . 5 Oct 90
* Revised
* Language : Dbase III+
* Description : Provides menu options for operator output.
* Outputs operator/data stream changed for

iteration x.
Sends output to screen or printer as req'd.

* Called by REPORTS.PRG. !!WARNING- uses global
S* variable "print_it" from calling program to
* det'm where to send output.

**** set environment *

SET MEMOWIDTH TO 25
choicel2 = 0
choicela I 1
ITER = 0

**' * display menu

DO WHILE choicel2 # 3
choice12 - 0
iter = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
@ 14,11 TO 14,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,14 SAY "OPERATORS/DATA STREAMS CHANGED FOR A GIVEN ITERATION"
@ 7,25 SAY "Select your choice by number:
@ 9,25 SAY "I. List Operators"
@ 10,25 SAY "2. List Data Streams"
@ 13,25 SAY "3. Return to Report Menu"
SET COLOR TO W+/BG

@ 15,25 SAY "Enter your choice here: " GET choicel2 PICTURE "99";
RANGE 0,3

READ
@ 17,15 SAY "Enter the iteration to output: " GET iter;

PICTURE "999" RANGE 0,99
SET COLOR TO GR+/BG
IF choicel2 # 3

choicela = 1
@ 19,15 SAY "1. Brief output: description & history omitted"
@ 20,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ

209

SET COLOR TO GR+/BG
ENDIF

****A perform choices ****

USE opstream INDEX oupdate
SEEK iter
IF FOUND()

DO CASE
CASE choicel2 = 1 && list operators

IF choicela = 1 && brief description
IF printit

LIST WHILE updated = iter FOR operator OFF TO PRINT
ELSE

DISPLAY WHILE updated = iter FOR operator OFF
WAIT

ENDIF
ELSE && detailed description

IF printit
SET PRINT ON
? "OPERATORS CHANGED IN ITERATION ",iter
SET PRINT OFF
LIST opnumber, opnaine, o-history;

WHILE updated = iter FOR operator OFF TO PRINT
ELSE

? "OPERATORS CHANGED IN ITERATION ",iter
DISPLAY opnumber, op__name, ohistory;

WHILE updated = iter FOR operator OFF
WAIT

ENDIF
ENDIF

CASE choicel2 = 2 && list data streams
IF choicela = 1 && brief description

IF printit.
LIST WHILE updated = iter;

FOR .NOT. operator OFF TO PRINT
ELSE

DISPLAY WHILE updated =- iter FOR .NOT. operator OFF
WAIT

ENDIF
ELSE && detailed description

IF printit
SET PRINT ON
? "DATA STREAMS UPDATED IN ITERATION ", iter
SET PRINT OFF
LIST op name, op number, o-history

WHILE updated = iter FOR .NOT. operator OFF TO PRINT
ELSE

? "DATA STREAMS CHANGED IN ITERATION ", iter
DISPLAY opname, op number, ojhistory;

WHILE updated = iter FOR .NOT. operator OFF
WAIT

210

ENDIF
ENDIF

ENDCASE
ELSE && iteration not, found

IF iter #~ 0 && print only if not menu escape
CLEAR
@ 5,5
IF choicel2 = 1

? "No operators found for iteration ",iter
ELSE

? "No data streams found for iteration ",iter

ENDIF
? ? CIR(7)
WAIT

ENDI F
ENDI F
CLOSE DATABASES

ENDDO

CLEAR
SET MEMOWIDTII TO 30
RETURN

211

* Program Name : R_CASE13.PRG
* Author : Ned Davis
* Date 5 Oct 90
* Revised

!Language : Dbase III+
* Description : Provides menu options for operator output.

Outputs operator/data stream deleted for
iteration x.

* Sends output to screen or printer as req'd.
* Called by REPORTS.PRG. !!WARNING- uses global

variable "print_it" from calling program to
det'm where to send output.

**** set environment *
SET MEMOWIDTH TO 25
choicel3 = 0
choicela = 1
iter = 0

**** dispiay menu
DO WHILE choicel3 # 3

choice13 = 0
iter = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
@ 14,11 TO 14,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,14 SAY "OPERATORS/DATA STREAMS DELETED FOR A GIVEN ITERATION"
@ 7,25 SAY "Select your choice by number:
@ 9,25 SAY "I. List Operators"
@ 10,25 SAY "2. List Data Streams"
@ 13,25 SAY "3. Return to Report Menu"
SET COLOR TO W+/BG
@ 15,25 SAY "Enter your choice here: " GET choice13 PICTURE "99";

RANGE 0,3
READ
@ 17,15 SAY "Enter the iteration to output: " GET iter;

PICTURE "999" RANGE 0,99
SET COLOR TO GR+/BG
IF choicel3 # 3

choicela = 1
@ 19,15 SAY ". Brief output: description & history omitted"
@ 20,15 SAY "2. Descriptive output: w/ description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ

212

SET COLOR TO GR+/BG
ENDIF

**I* perform choices *
USE opstream INDEX delet-op
SEEK iter
IF FOUND()

DO CASE
CASE choicel3 = 1 && list operators

IF choicela = 1 && brief description
IF printit

LIST WHILE deleted = iter FOR operator OFF TO PRINT
ELSE

DISPLAY WHILE deleted = iter FOR operator OFF
WAIT

ENDIF
ELSE && detailed description

IF printit
SET PRINT ON
? "OPERATORS DELETED IN ITERATION ",iter
SET PRINT OFF
LIST opnpumber, opname, o-history;

WHILE deleted = iter FOR operator OFF TO PRINT
ELSE

? "OPERATORS DELETED IN ITERATION ",iter
DISPLAY opjiumber, opname, ohistory;

WHILE deleted = iter FOR operator OFF
WAIT

ENDIF
ENDIF

CASE choicel3 2 && list data streams
IF choicela = 1 && brief description

IF printit
LIST WHILE deleted iter;

FOR .NOT. operator OFF TO PRINT
ELSE

DISPLAY WHILE deleted = iter FOR .NOT. operator OFF
WAIT

ENDIF
ELSE && detailed description

IF printit
SET PRINT ON
? "DATA STREAMS DELETED IN ITERATION ", iter
SET PRINT OFF
LIST opname, opnumber, ohistory

WHILE deleted = iter FOR .NOT. operator OFF TO PRINT
ELSE

? "DATA STREAMS DELETED IN ITERATION ", iter
DISPLAY opname, opnumber, o.history;

WHILE deleted = iter FOR .NOT. operator OFF
WAIT

213

ENDIF
ENDI F

ENDCASE
ELSE && iteration not found

IF iter # 0 && print only if not menu escape
CLEAR
@ 5,5
IF choicel3=1

? "No operators found for iteration ",iter
ELSE

? "No data streams found for iteration ",iter
ENDIF
? ?CHR (7)
WAIT

ENDIF
ENDIF
CLOSE DATABASES

ENDDO

CLEAR
SET MEMOWIDTH TO 30
RETURN

214

* Program Namt: RCASEI4.PRG
* Author Ned Davis
* Date 9 Oct 90
* Revised

Language : Dbase III+
* Description : Provides menu options for op/data stream output.
* Outputs op/data streams that map to a particular

test goal - either all or for an iteration.
Sends output. to screen or printer as req'd.

* Called by REPORTS.PRG. !!WARNING- uses global
* variable "printit" from calling program to
* det'm where to send output.

**** set environment *

choicel4 0 0
iterno 0
choicela 0
tgoal = 0
SET MEMOWIDTI TO 20

**** display menu
DO WHILE choicel4 # 3

choicel4 = 0
iterno : 0
choicela = 0
tgoal = 0

SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 14,11 TO 14,69 DOUBLE
@ 17,11 TO 17,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,15 SAY "OPS/DATA STREAMS THAT MAP TO A GIVEN TEST GOAL"
@ 7,20 SAY "Select your choice by number: "
@ 9,20 SAY "1. List Ops/Data Streams for all iterations"
@ 10,20 SAY "2. List Ops/Data Streams for a given iteration"
@ 11,20 SAY "3. Return to Report Menu"
SET COLOR TO W+/BG
@ 13,20 SAY "Enter your choice here: " GET choicel4;

PICTURE "99" RANGE 0,3
READ
SET COLOR TO GR+/BG
IF choicel4 = 2

@ 15,20 SAY "Enter the iteration to output or 0 to escape
SET COLOR TO W+/BG
@ 16,20 SAY "Enter your choice here: " GET iterno PICTURE "999";

RANGE 0,99
READ

215

SET COLOR TO GR+/BG
ENDIF
IF iterno # 0 .OR. choice14 # 3

choicela = 1
@ 18,15 SAY "1. Brief output: description & history omitted"
@ 19,15 SAY "2. Descriptive output: w/1 description & history"
SET COLOR TO W+/BG
@ 21,15 SAY "Enter your choice here: " GET choicela

PICTURE "99" RANGE 1,2
READ
@ 22,15 SAY "Enter the test goal for op/data stream listing: ";

GET tgoal PICTURE "99999" RANGE 1,9999
READ
SET COLOR TO GR+/BG

ENDIF

**** perform choices *
CLEAR
DO CASE

CASE choicel4 1
DO TRACE1TG

CASE choicel4 2
DO TRACE2TG

ENDCASE
CLOSE DATABASES

ENDDO
SET MEMOWIDTH TO 30
CLEAR
RETURN

216

Program Nam, : TRACEITG.PRG
Author Ned Davis

* Date 9 Oct. 90
* Revised
* Language dBase III+
* Description Prints to screen or printer a listing of

op/data strins that link to a particular
* test goal. Called from RCASE14.PRG.

WARNING!! - uses vars from RCASE14.PRG.
* **** **** ** ******* *** **** ****** **** *** *** ***** ******* *

** set work areas
SELECT A
USE rolink INDEX gnumlink

SELECT B
USE opstream INDEX opnum

**** set up relationships ****

SELECT A
SET RELATION TO op_number INTO opstream

**** output report *

GO TOP
SEEK tgoal
IF FOUND()

IF choicela = && brief format
IF print_it

SET PRINT ON
? "OP/DATA STREAMS THAT MAP TO TEST GOAL ",tgoal
SET PRINT OFF
DO WHILE goalnum tgoal

SELECT B
LiST FOR op__number = A->op_number OFF TO PRINT
SELECT A
SKIP

ENDDO
ELSE

? "OP/DATA STREAMS THAT MAP TO TEST GOAL",tgoal
DO WHILE goalnum = tgoal

SELECT B
DISPLAY FOR opnumber = A->op.number OFF
SELECT A
SKIP

ENDDO
WAIT

ENDIF
ELSE && detailed format

IF print_it
SET PRINT ON

217

? "OP/DATA STREAMS THAT MAP TO TEST GOAL ",tgoal

SET PRINT OFF
DO WHILE goal num : tgoal

SELECT B
LIST opnumber, opname, ojhistory;

FOR op__number = A->op_number OFF TO PRINT
SELECT A
SKIP

ENDDO
ELSE

? "OP/DATA STREAMS THAT MAP TO TEST GOAL ",tgoal
DO WHILE goal num = tgoal

SELECT B
DISPLAY opnumber, opname, ojhistory;

FOR op__number = A->op__number OFF
SELECT A
SKIP

ENDDO
WAIT

ENDIF
ENDIF

ELSE && tgoal not found
CLEAR
@ 5,5
? "No test goal found to match ",tgoal
WAIT

ENDIF
CLOSE DATABASES
CLEAR
RETURN

218

* Program Name TRACE2TG.PRG

* Author Ned Davis
Date 9 Oct. 90

* Revised
* Language dBase III+
* Description Prints to screen or printer a listing of
"* op/data strms that link to a particular

test goal, where the links were added in a
given iteration. Called from R CASEI4.PRG.

* WARNING!! - uses vars from RCASE14.PRG.

** set work areas
SELECT A
USE ro link INDEX gnumlink

SELECT B
USE opstream INDEX opnum

**** set up relationships *
SELECT A
SET RELATION TO opnumber INTO opstream

**** output report *

GO TOP
SEEK tgoal
IF FOUND()

IF choicela : 1 && brief format
IF print_it

SET PRINT ON
? "OP/DATA STREAMS THAT MAP TO TEST GOAL ",tgoal
?? " FOR ITERATION ", iter-no
SET PRINT OFF
DO WHILE goal_num tgoal

IF 1_iteradd - iter-no
SELECT B
LIST FOR opnumber = A->opnumber OFF TO PRINT
SELECT A

ENDIF
SKIP

ENDDO
ELSE

?"OP/DATA STREAMS THAT MAP TO TEST GOAL",tgoal
?? " FOR ITERATION ",iter no

DO WHILE goalnum = tgoal
IF 1_iteradd = iterno

SELECT B
DISPLAY FOR opnumber A->opnumber OFF
SELECT A

ENDIIF

219

SKIF
ENDDO
WAI

ENDI F
ELSE && detailed format

IF print_it
SET PRINT ON
?"OP/DATA STREAMS THAT MAP TO TEST GOAL ",tgoal
?? " FOR ITERATION ",iter no
SET PRINT OFF
DO WHILE goalnum tgoal

IF 1_iteradd = it.erno
SELECT B
LIST op_number, opname, o history;

FOR op_number = A->opnumber OFF TO PRINT
SELECT A

ENDIF
SKIP

ENDDO
ELSE

?" OP/DATA STREAMS THAT MAP TO TEST GOAL ",tgoal
?? "FOR ITERATION ", iter no
DO WHILE goalnum = tgoal

IF 1_iteradd = iter no
SELECT B
DISPLAY opnumber, op name, o history;

FOR opnumber = A->opnumber OFF
SELECT A

ENDIF
SKIP

ENDDO
WAIT

ENDIF
ENDIF

ELSE && opnum not found
CLEAR
@ 5,5

? "No test goal found to match ",tgoal
9" for iteration ",iterno
WAIT

ENDIF
CLOSE DATABASES
CLEAR
RETURN

220

* Program Name : RCASEI5.PRG
* Author : Ned Davis
* Date . 9 Oct. 90
* Revised
* Language Dbase 111+
* Description Provides menu options for link output.

Sends output. to screen or printer as req'd.
Called by REPORTS.PRG. !!WARNING- uses global

* variable "print_it" from calling program to

det'm where to send output.

**** set environment *
choicel 0
choicela 1
gnum 0
onum 0
ppart

**** display menu

DO WHILE choicel # 6
choicel : 0
gnum = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 23,70 DOUBLE
@ 18,11 TO 18,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,27 SAY "GLOBAL LINK LISTING OPTIONS"
@ 7,20 SAY "Select your choice by number:
@ 9,20 SAY "I. List all Links"
@ 10,20 SAY "2. List Links for a Test Goal Number"
@ 11,20 SAY "3. List Links for an Op/Data Strm Number"
@ 12,20 say "4. List Links for a PSDL Part"
@ 13,20 SAY "5. List all deleted Links"
@ 14,20 SAY "6. Return to Report Menu"
SET COLOR TO W+/BG
@ 17,20 SAY "Enter your choice here: " GET choicel PICTURE "99";

RANGE 0,6
READ
SET COLOR TO GR+/BG

**** perform choices *

DO CASE
CASE choicel = I && list all links

USE rolink INDEX gnumlink
IF print_it

LIST FOR deleted = 0 OFF TO PRINT
ELSE

DISPLAY ALL FOR deleted = 0 OFF

221

WAIT
ENDIF

CASE choice1 = 2 && list links for a goal no.
USE rolink INDEX gnumlink
@ 19,25 SAY "Enter goal number to seek: " GET gnum;

PICTURE "99999" RANGE 1,9999
READ
SEEK gnum
IF FOUND()

CLEAR
IF print-it

LIST WHILE goal-num = gnum FOR deleted = 0 OFF TO PRINT
ELSE

DISPLAY WHILE goalnum = gnum FOR deleted = 0 OFF
WAIT

ENDIF
ELSE

CLEAR
@ 5,5
? "No links found for goal number ",gnum
WAIT

ENDIF
CASE choicel = 3 && list links for an op no.

DO LINK4OPS
CASE choicel = 4 && list links for PSDL part

DO LINK4PRT
CASE choicel = 5 && list deleted links

USE rolink INDEX delet_1k
IF print_it

LIST FOR deleted # 0 OFF TO PRINT
ELSE

DISPLAY ALL FOR deleted # 0 OFF
WAIT

ENDIF
ENDCASE
CLOSE DATABASES

ENDDO
CLEAR
RETURN

222

* Program Name LINK4OPS.PRG
* Author Ned Davis
* Date 9 Oct 90
* Revised
* Language Dbase 111+
* Description Lists links for an operator number.
* Called by REPORTS.PRG. !!WARNING- uses global
* variable "print_it" from calling program to
* det'm where to send output.

USE ro_link INDEX onumlink
@ 19,16 SAY "Enter operator/data stream number to seek: " GET onum;

PICTURE "99999" RANGE 1,9999
READ
SEEK onum
IF FOUND()

CLEAR
IF print_it

LIST WHILE op_number = onum FOR deleted = 0 OFF TO PRINT
ELSE

DISPLAY WHILE op__number z onum FOR deleted = 0 OFF
WAIT

ENDIF
ELSE

CLEAR
@ 5,5
? "No links found for operator/data stream number ,onum
WAIT

ENDIF
CLOSE DATABASES
CLEAR
RETURN

223

* Program Name : LINK4PRT.PRG
* Author : Ned Davis
* Date 10 Oct 90

' Revised
* Language : Dbase III+
* Description : Lists links for a PSDL part.
* Called by RCASEI5.PRG. !!WARNING- uses global
* variable "print_it" from calling program to

det'm where to send output.

USE ro_link INDEX partlink
@ 19,12 SAY "Enter PSDL part: "GET ppart;

PICTURE " !

READ
SEEK ppart
IF FOUND()

CLEAR
IF printit

LIST WHILE psdl_part = ppart FOR deleted 0 OFF TO PRINT
ELSE

DISPLAY WHILE psdl_part = ppart FOR deleted 0 OFF
WAIT

ENDIF
ELSE

CLEAR
@ 5,5
? "No links found for PSDL part ",ppart
WAIT

ENDIF
CLOSE DATABASES
CLEAR
RETURN

224

* Program : R_CASE16.PRG
* Author : Ned Davis
* Date . 11 Oct. 90
* Revised
* Language : Dbase 11I+
* Description : Provides menu options for link output for
* a given iteration.

Sends output to screen or printer as req'd.
Called by REPORTS.PRG. !!WARNING- uses global

* variable "print_it" from calling program to
* det'm where to send output.

**** set environment ****
listing = 0
choice2 =1
iterno = 0

**** display menu
DO WHILE listing # 3

listing 0
choice2 0
iterno 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 18,70 DOUBLE
@ 11,11 TO 11,69 DOUBLE
@ 14,11 TO 14,69 DOUBLE
SET COLOR TO GR+/BG
@ 5,20 SAY "LINK OUTPUT OPTIONS FOR A GIVEN ITERATION"
@ 7,20 SAY "1. List Links added for iteration"
@ 8,20 SAY "2. List Links deleted for iteration"
@ 9,20 SAY "3. Return to Reports Menu"
SET COLOR TO W+/BG
@ 10,20 SAY "Enter your choice here: " GET listing PICTURE "99";

RANGE 1,3
READ
SET COLOR TO GR+/BG

IF listing # 3
@ 12,20 SAY "Enter the iteration to output"
SET COLOR TO W+/BG
@ 13,20 SAY "Enter your choice here: " GET iterno PICTURE "999";

RANGE 1,99

READ
SET COLOR TO GR+/BG

@ 15,20 SAY "I. List by goal number"
@ 16,20 SAY "2. List by operator/ data stream number"
SET COLOR TO W+/BG

225

@ 17,20 SAY "Enter your choice here: " GET choice2
PICTURE "99" RANGE 1,2

READ
SET COLOR TO GR+/BG

ENDIP

**** perform choices *
DO CASE

CASE choice2 = 1
USE rolink INDEX gnumlink
IF listing = 1 S& links added

IF printit
LIST FOR 1_iteradd = iterno OFF TO PRINT

ELSE
DISPLAY FOR 1_iteradd = iter no OFF
WAIT

ENDIF
ELSE && links deleted

IF print-it
LIST FOR deleted n iterno OFF TO PRINT

ELSE
DISPLAY FOR deleted = iterno OFF
WAIT

ENDIF
ENDIF

CASE choice2 = 2
USE ro_link INDEX onumlink
IF listing = 1 && links added

IF print-it
LIST OP_NUMBER, GOALNUM, PSDLPART, DELETED, -ITERADD;

FOR 1_iteradd = iterno OFF TO PRINT
ELSE

DISPLAY OP_NUMBER, GOALNUM, PSDLPART, DELETED, i
L_ITERADD;

FOR 1_iteradd = iterno OFF
WAIT

ENDIF
ELSE && links deleted

IF printit
LIST OPNUMBER, GOALNUM, PSDLPART, DELETED, 1

L_ITERADD;
FOR deleted = iterno OFF TO PRINT

ELSE
DISPLAY OPNUMBER, GOALNUM, PSDLPART, DELETED, I

L_ITERADD;
FOR deleted = iterno OFF

WAIT
ENDIF

ENDIF
ENDCASE
CLOSE DATABASES

226

ENDI)O
CLEAR<
RETURN

227

* Program Name : UPGOALS . PRG
* Author : Ned Davis

Date : 17 Aug 90
* Revised 31 Aug 90 - Mapping option added.
* Language : Dbase III+
* Description : Provides the menu screen for allowing update
* of the test. goals database fil, and allows the

user to move to other system actions in the
* TGTS for requirements-based testing in the
* CAPS.

****set environment****

choice = 0

****display test goal update menu****

DO WHILE choice # 6
choice = 0
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 20,70 DOUBL.
SET COLOR TO GR+/BG
@ 5,30 SAY "TEST GOAL UPDATE MENU"
@ 7,20 SAY "Select your choice by number:

@ 9,20 SAY "I. Add a new test goal"
@ 10,20 SAY "2. Change an existing test goal"
@ 11,20 SAY "3. Delete an existing test goal"
@ 12,20 SAY "4. Link test goal to PSDL operator/data stream"
@ 13,20 SAY "5. Unlink test goal to PSDL operator/data stream"
@ 14,20 SAY "6. Return to Main Menu"
SET COLOR TO W+/BG
@ 17,15 SAY "Select your option: " GET choice PICTURE "99"

RANGE 0,6
READ

****perform user's request****

DO CASE
CASE choice = 1

DO ADD_TG
CASE choice = 2

DO CHANGETG
CASE choice = 3

DO DEL_TG
CASE choice = 4

DO ADDLINK

CASE choice = 5
DO DELLINK

ENDCASE

ENDDO

228

CLEAR
Ciioic~ -- 0

RETURN TO NSTER

229

* Program Name ADD TG.PRG
* Author Ned Davis
* Date 17-27 Aug 90
* Revised
* Language Dbase II+

Description Allows the addition of one or more new test
goals to Lhe LL SL goal ddtabase.

open database *
USE goals

•*** find largest current goal num
GO BOTTOM
Mgoal-num = goal_num && assumes largest num is last

*** select entry screen

SET FORYAT TO addtgscn

•*** set index files ****
SET INDEX To gual-num, testpri, aggregat, updated, iter add,;

testclas, deiet_tg

• ***start loop for adding goals *
Adding =-" " && memvar for accept, cancel, exit entry scrn
DO WHILE Adding P"X"

"***initialize memory variables****

Ml'estpri :- 0
MAggregate 0
MUpdated 0
MIteradd 0
MTest _clas 0
MDeleted 0
Adding = "
MGoalnum = MGoalnum + 1

APPEND BLANK
*--read in values using addtgscn.fmt

READ

IF adding # "C"
IF adding # "X" .OR. (adding "X" .AND. Miteradd 4 0)

*--store memory vars on new record

REPLACE goalnum WITH MGoalnum, ;
test_pri WITH MTestpri, ;
aggregate WITH MAggregate, ;
updated WITH MUpdated

REPLACE iteradded WITH Miter add, ;

230

test-_class WITH M'Iest _clas,
deleted WITH MDeleted

EL;1
DELETE
PACE

ENDIF
ELSE

DELETE
PACK
MGoal-num =MGoalnuni 1 M & decrement count; canc'd rec.

ENDIF
ENDDO
CLOSE DATABASES
CLOSE FORNA-T
RETURN

231

Program Name: ADDTGSCN. F71'
Author Ned Davis

*Dat 24 Aug 90
* Revised 31 Aug 90
* Language dBase II+

Description Format file for entering new test goals to
* the goals.dbf database file. Called by

ADD TG.PRG. Does not allow update or deletion
to be flagged.

@ 1, 25 SAY "TEST GOALS DATABASE DATA ENTRY"
@ 3, 0 SAY "TEST GOAL NUMBER"
*--auto insert next goal number

@ 3, 20 SAY MGOALNUM
@ 6, 0 SAY "GOAL DESCRIPTION"
@ 6, 18 GET GOALS->GOALDESCR
@ 6, 23 SAY "Move cursor to memo field, type Ctrl-PgDn"
@ 8, 0 SAY "TEST PRIORITY"
@ 8, 15 GET MTESTPRI PICTURE "99" RANGE 0,4
(8, 28 SAY "AGGREGATE"
@ 8, 39 GET MAGGREGATE PICTURE "999" RANGE 0,99
@ 8, 47 SAY "TEST CLASS"
@ 8, 59 GET MTESTCLAS PICTURE "99" RANGE 1,4
@ 10, 0 SAY "ITERATION ADDED"
@ 10, 17 GET MITERADD PICTURE "999" RANGE 1,99
@ 12, 0 SAY "ITERATION DELETED"

*@ 12, 19 GET MDELETED PICTURE "999" RANGE 0,99
@ 15, 0 SAY "HISTORY"
@ 15, 9 GET GOALS->GHISTORY
(a 15, 17 SAY "Move cursor to memo field, type Ctrl-PgDn"
@ 19, 2 SAY "Press "+CHR(24)+" to make corrections,"
@ 20, 2 SAY "Return to continue, C to Cancel,"
@ 21, 2 SAY "or X to exit";

GET Adding PICTURE "!!"
@ 0, 0 TO 2, 79 DOUBLE
@ 18, 0 TO 22, 79 DOUBLE

232

Program Namt. CHANGETG .,PRG
* Author- Ned Davis

bat , 1 Dec 90
Revised

* Language dBase 111+

* Description Allows user to update I record at a time
* of the GOALS.DBF database. All fields ma

be modified except goal _num field.
V A deleted goal may be undeleted and it,;

related link records may be block undeleted
or selectively undeleted. Goals are not
deleted by this program. Called by
UPGOALS.PRG.

* * * * **** ***** **** * ** ** , *,, .*.. * * * * *,* *** ** * * , ** * * ***

* aiiitialize memory variables *
Adding = "Y" && loop flag
Change it "Y" && choice variable
Mgoal-num 0 && dummy var to get goal number
choicea z I

**** start loop for changing goals

DO WHILE Adding #t "N"
CLOSE DATABASES

**** select. database *
USL goals INDEX i

goal_nu,t est.pri,aggregat,updated,iteradd,testclas,delet tg

** display input screen

SET FORMAT TO tgchg
READ

**'* det'm whether to change record *
IF Adding = "N" && decided not to change record

CLOSE FORXAT
LOOP

ENDIF

prep screen
CLOSE FORMAT
CLEAR

**** look for record *
SEEK Mgoal_num
IF FOUND()

*--show it to the user for confirmation
DISPLAY goal num, goal descr,g_history OFF

*--get confirmation

233

Changeit "Y" & set default
@ 22,0 SAY "Do you want to change this record? (Y or N)"
Q 22,45 GET Changeit PICTURE "Y"
RLA r

*--act on confirmation

IF Change-it = "N" && don't change this record
LOOP

ELSE && change record
CLEAR
IF deleted = 0 && record is in use

SET FORMAT TO chgtgscn
READ
WAIT "Goal updated, press any key to continue"
CLOSE FORMAT

ELSE && record is deleted
choice_a = 2 && set default choice
@ 0,0 SAY "Goal is currently deleted"
@ 3,0 SAY "Options:"
@ 5,5 SAY "I. Undelete and make appropriate changes"
@ 6,5 SAY "2. Disregard goal change"
@ 8,5 SAY "Select your choice:
@ 8,25 GET choicea PICTURE "99" RANGE 1,2
READ

**** act upon choice *

DO CASE
CASE choicea I && undelete

DO CHGTGHLP
CASE choicea 2 && disregard

LOOP
ENDCASE

ENDIF
ENDIF

ELSE
*--if riot found, warn user
@ 22,0
l "Can't find test goal: ",Mgoal_num
?? CHR(7)
WAIT

ENDIF
Mgoal-num T 0

ENDDO
CLOSE DATABASES
RETURN

234

* Program Name TGCHG. Prr.i

* Author Ned Davi',
* Date 7 Sep 90

Revised
Language dBase 1114
Description Screen for inputting test goal number to

change or exit w/o change. Starts modification
* of GOALS.DBF data base file one record at a

time. May also modify ROLINK.DBF if a
goal previously deleted is undeleted.

* Called by CHANGETG.PRG.

@ 5, 5 SAY "Enter goal number (or 0) of goal to change:"
@ 5,52 GET Mgoalnum PICTURE "999999"
@ 7, 5 SAY "Enter N to exit w/o change, Y to continue"
@ 7,58 GET Adding PICTURE "Y"

235

Program Name: CHGTGSCN. FMT

* Author : Ned Davis

Date : 7 Sep 9C
Revised

* Language : dBase III+
* Description Format file for changing test goals in

the goals.dbf database file. Called by
* CHANGETG.PRG. Does not allow deletion
* or undeletion.

@ 1, 25 SAY "TEST GOALS DATABASE DATA CHANGE"
@ 3, 0 SAY "TEST GOAL NUMBER"
@ 3, 20 SAY GOALNUM
@ 6, 0 SAY "GOAL DESCRIPTION"
@ 6, 18 GET GOAL_DESCR
@ 8, 0 SAY "TEST PRIORITY"
@ 8, 15 GET TEST_PRT PICTURE "99" RANGE 0,4
@ 8, 28 SAY "AGGREGATE"
@ 8, 39 GET AGGREGATE PICTURE "999" RANGE 0,99
@ 8, 47 SAY "TEST CLASS"
@ 8, 59 GET TESTCLASS PICTURE "99" RANGE 0,4
(10, 0 SAY "ITERATION ADDED"
@ 10, 17 GET ITERADDED PICTURE "999" RANGE 1,99
@ 12, 0 SAY "ITERATION UPDATED"
@ 12, 19 GET UPDATED PICTURE "999" RANGE 0,99
@ 12, 32 SAY "ITERATION DELETED"
@ 12, 51 SAY DELETED
@15, 0 SAY "HISTORY"
@ 15, 9 GET GHISTORY
@ 15, 17 SAY "Move cursor to memo field, type Ctrl-PgDii"
@ 19, 2 SAY "Press "+CHR(24)+" to make corrections,"
*@ 20, 2 SAY "Return to continue, C to Cancel,"
*@ 21, 2 SAY "or X to exit";
* GET Adding PICTURE "!"
@ 0, 0 TO 2, 79 DOUBLE
@ 18, 0 TO 22, 79 DOUBLE

236

* Program Name : CHGTGHLP.PRG
* Author Ned Davis

Date : 1Dec 90
* Revised
* Language : dBase II+
* Description : Allows user to update records and links
* of the GOALS.DBF database. All fields may
* be modified except goalnum fields.
* A deleted goal may be undeleted and its

related link records may be block undeleted
or selectively undeleted. Goals are not
deleted by this program. Called by
CHANGETG.PRG. Uses global vars.

**** initialize memory variables **

Miterchg - 0
chlink z 1

*** act upon choice *
SET FORMAT TO chtgscnl
READ
REPLACE deleted WITH 0
CLEAR
@ ,

WAIT "Goal updated, press any key to continue"
CLOSE FORMAT

* -- undelete link records. Change database.
USE rolink INDEX gnumlink
SEEK Mgoalnum
IF FOUND() && link record(s) found

CLEAR
ch-link = I && set default choice
@ 5,30 SAY "UNDELETE LINK OPTIONS"
@ 7,15 SAY "Options:"
@ 9,15 SAY "l. Batch undelete all links to PSDL part"
@ 10,15 SAY "2. Sequence through links for selective undelete"
@ 12,15 SAY "Enter option 1 or 2:"
@ 12,37 GET chlink PICTURE "99" RANGE 1,2
READ

DO CASE
CASE chlink = 1

DO WHILE goalnum = Mgoalnum
REPLACE deleted WITH 0
REPLACE 1_iteradd WITH Miterchg
SKIP

ENDDO
CASE chlink = 2

237

DO WHILE goalnun = Mgoal-nurn
CLEAR
DISPLAY OFF
@ 5,5 SAY "Enter Y to undelet:, N to skip"
@ 5,37 GET Adding PICTURE "Y"
READ
IF Adding = "Y"

REPLACE deleted WITH 0
REPLACE 1_iteradd WITH Miterchg
SKIP

ELSE
SKIP

ENDIF
ENDDO

ENDCASE

**** update index file "
SET INDEX TO delet_1k
REINDEX
CLOSE INDEX
CLEAR
@ 5,5
WAIT "Links updated, press any key to continue"

ELSE &t no link records found
CLEAR
@ 5,5 SAY "No link record found for this test goal."
WAIT

END] F
CLOSE DATABASES
RETURN

238

+ Program Name: CHTGSCNI .F 'T
Author : Ned Davis

* Date 7 Scp 90
Revised

* Language : dBase III+
* Description : Format file for changing test goals in
* the goals.dbf database file. Called by
* CHGETGHLP.PRG. Used explicitly with deleted

goal records that. are to be undeleted. Aids
in ensuring that info that must change with
an undelete gets changed.

@ 1, 20 SAY "TEST GOALS DATABASE DATA CHANGE FOR UNDELETE"
@ 3, 0 SAY "TEST GOAL NUMBER"
@ 3, 20 SAY GOALNIUM
@ 6, 0 SAY "GOAL DESCRIPTION"
@ 6, 18 GET GOALDESCR
@ 7,0 TO 7,79 DOUBLE
@ 8, 0 SAY "TEST PRIORITY"
Q 8, 15 GET TESTPRI PICTURE "99" RANGE 0,4
@ 8, 28 SAY "AGGREGATE"
@ 8, 39 GET AGGREGATE PICTURE "999" RANGE 0,99
@ 8, 47 SAY "TEST CLASS"
(d 8, 59 GET TESTCLASS PICTURE "99" RANGE 0,4
@ 10, 0 SAY "ENTER ITERATION FOR READDING LINKS"
@ 10, 16 GET Miterchg PICTURE "99" RANGE 1,99
@ 12, 0 SAY "ITERATION ADDED"
@ 12, 17 GET ITERADDED PICTURE "999" RANGE 1,99
@ 14, 0 SAY "ITERATION UPDATED"
@ 15, 0 SAY "Enter current iteration"
@ 14, 19 GET UPDATED PICTURE "999" RANGE 1,99
@ 14, 32 SAY "ITERATION DELETED"
@ 14, 51 SAY "Deleted field auto"
@ 15, 52 SAY "reset to 0"
@ 17, 0 SAY "HISTORY"
@ 17, 9 GET GHISTORY
@ 17, 17 SAY "Move cursor to memo field, type Ctrl-PgDn"
@ 18, 0 SAY "Enter reason for undelete and any link changes"
@ 21, 2 SAY "Press "+CHR(24)+" to make corrections,"
*@ 22, 2 SAY "Y to continue,"
* 23, 2 SAY "or N to exit";

GET Adding PICTURE "'"

@ 0, 0 TO 2, 79 DOUBLE
@ 20, 0 TO 24, 79 DOUBLE

239

J .,2 *2 *J ,. * *J.gJ *. * * ** 4,...4,t.J.4 .,I,. 4.*4. *4,,

' Program Name : DELTG.PRG
Author : Ned Davis

* Dae 11 Oct 90
* Revised
• Language : dBase Ill+

Description : Accepts user input to mark a test goal as
* deleted for a given iteration. Also marks

all associated links as deleted for the
same iteration. Called by UPGOALS.PRG.

* ** initialize variables *

g_num - 0
iter 0
ans 0
delit = .i.

DO WHILE ans # 2
g_num = 0
iter 0
ans 0
del_it = F.
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 14,70 DOUBLE
SET COLOR TO GR+/BG
@ 5,30 SAY "GOAL DELETION"
SET COLOR TO W+/BG
@ 7,20 SAY "Enter the goal number to delete: " GET gnum;

PICTURE "99999" RANGE 1,9999
READ
@ 9,20 SAY "Enter the iteration in which deleted: " GET iter;

PICTURE "999" RANGE 1,99
READ

@ 11,20 SAY "Press 1 to cancel, 2 to exit,
@ 12,20 SAY " and return to continue " GET ans PICTURE "99";

RANGE 0,2
READ
SET COLOR TO GR+/BG

CLEAR
IF ans I 1

IF ans # 2 .OR. (ans = 2 .AND. gnum I 0)
USE goals INDEX goal num, delettg
SEEK gnum
IF FOUND()

DISPLAY OFF
SET COLOR TO W+/BG
@ 5,5 SAY "Do you want to delete this goal(Y or N)?";

240

GET delit PICTURE "Y"
READ
SET COLOR TO GR+/BG

IF delit.
REPLACE deleted WITH iter
USE ro_link INDEX gnumlink, delet._1k
SEEK gnuum
IF FOUND()

REPLACE deleted WITH iter WHILE goalhum g_num
@ 7,5 SAY "Goal and links deleted"
WAIT

ELSE
@ 7,5 SAY "Goal has no links. Goal deleted."
WAIT

ENDIF
ELSE

@ 7,5 SAY "Goal. NOT deleted"
WAIT

ENDIF
ELSE

@ 5,20
? "No goal number found for ",g_num
WAIT

ENDIF
ENDIF

ELSE
@ 5,0 SAY "Deletion cancelled"
WAIT

ENDIF
CLOSE DATABASES

ENDDO

CLEAR
RETURN

241

Program Name : ADDLINK.PRG
Author : Ned Davis
Date t Dec 90
Revised

* Language dBase III+
* Description Builds the ROLINK.DBF database file.
* Manually loaded by the operator. Called
* by UP GOALS.PRG and by UP PSDL.PRG. Only
* links records that exist and are not deleted.

***+ initialize variables *

addlink = ".

legal = .F.

**** select entry screen

SET FORMAT TO addlkscn

**** start loop for adding links *

DO WHILE Addlink # "

**** initialize memory variables *

Mgoal_num 0
Mopnumber 0
Mpsdl_part
Ml_iteradd 0
Mdeleted = 0

**** read in values using addlkscn.fmt *
READ
CLOSE FORMAT

IF addlink # "C"
IF addlink 0 "X" .OR. (add-link "X" .AND. Mgoalnum # 0)

USE goals INDEX goalnum
GO TOP
SEEK Mgoal_num
IF FOUND()

IF deleted = 0
legal = .T.

ELSE
legal = P.
CLEAR
@ 5,5
? "Goal number ",Mgoalnum," is deleted."
WAIT

ENDIF
ELSE

legal =.F.
CLEAR

242

@ 5,5
? "Goal number ",Mgoalnum," not found."
WAIT

ENDII:
IF legal

USE opstream INDEX op-num
GO TOP
SEEK Mop_number
IF FOUND() .and. legal

IF deleted = 0
legal = .T.

ELSE
legal = .F.
CLEAR
05,5
? "Op/DaLa stream number ",Mopnumber," is deleted."
WAIT

ENDIF
ELSE

legal = P..
CLEAR
@ 5,5
? "Op/Data stream number ",Mopnumber," not found."
WAIT

ENDIF
ENDIF
IF legal

USL ro_link INDEX gnumlink, onumlink, partlink, I_iterad, 1
deletlk

APPEND BLANK

**** store mere vars on new record *
REPLACE goalnum WITH Mgoalnum,

op_number WITH Mop-number,
psdlpart WITH UPPER(Mpsd__part),
1_iteradd WITH Ml_iteradd,
deleted WITH Mdeleted

CLEAR
@ 5,5
? "Link added for test goal ",Mgoalnum," and Op/DS i

",Mopnumber,"."
WAIT

ELSE
CLEAR
@ 5,5
? "No link added."
WAIT

ENDIF
ENDIF

ENDIF

243

CLOSE DATAkPASES
SET FORMAT TO addlkscii

ENDDO

CLOSE DATABASES
CLOSE FORMAT
RETURN

244

Program Name : ADDLKSCN. FMT
Author : Ned Davis

* Date 5 Sep 90
* Revised
* Language dBase III+
* Description Format file for entering new links
* between test goals and PSDL operators/

data streams and listing the PSDL grammar
* portion where implementation occurs.

Called by ADD LINK.PRG.
............. **** ** * ****** ************* ******* *

@ 1, 27 SAY "LINK DATABASE DATA ENTRY"
@ 3, 0 SAY "GOAL NUMBER"
@ 3, 14 GET MGOALNUZM PICTURE "999999"
@ 3, 25 SAY "OPERATOR/DATA STREAM NUMBER"
@ 3, 54 GET MOPNUMBER PICTURE "999999"
@ 3, 65 SAY "DELETED"
@ 3, 75 GET MDELETED PICTURE "99"
@ 5, 0 SAY "PSDL PART"
@ 5, 11 GET MPSDL PART PICTURE '!! IYY t?9Y!?! Y Y II!t' ''I'?'?'?

@ 7, 0 SAY "ITERATION ADDED"
@ 7, 17 GET M1_ITERADD PICTURE "99"
@ 11, 2 SAY "List the particular PSDL part by its"
@ 12, 2 SAI " grammatica] title for a detailed location"
@ 13, 2 SAY "of a goal's implementation."
@ 19, 2 SAY "Press "+CHR(24)+" to make corrections,"
@ 20, 2 SAY "Return to continue, C to cancel,"
@ 21, 2 SAY "or X to exit";

GET Addlink PICTURE "!"
@ 0, 0 TO 2, 79 DOUBLE

1 10, 0 TO 14,79 DOUBLE
@ 18, 0 TO 22,79 DOUBLE

245

* Program Name DEL LINK

* Author Ned Davis
* Date 11 Oct 90

Revised
* Language dBase II1+

Description Removes link fm. ROLINK.DBF database file.
Manually loaded by the operator. Called
by UP_GOALS.PRG and by UPPSDL.PRG.

dellink = 0

**** open database

USE rolink INDEX gnumlink, onumlink, partlink, 1_iterad,
delet_1k

**** select entry screen

SET FORMAT TO dellkscn

**** start loop for adding links *
DO WHILE del-link 4 2

GO TOP

**** initialize memory variables *
del-link 0
Mgoal_num 0
Mopnumber = 0
Mpsdl_part "
Mdeleted L 0
del_it 7 F.

**** read in values using dellkscn.fmt "
READ

IF del-link # 1
IF dellink # 2 .OR. (dellink = 2 .AND. Mgoal_num 0 0)

CLEAR
SEEK Mgoal num
IF FOUND()

DO WHILE goal_num = Mgoalnum .AND. .NOT. delit .AND. .NOT. EOF()

IF opnumber = Mop;_number .AND. psdlpart = Mpsdl part
REPLACE deleted WITH Mdeleted
delit = .T.
? "Link deleted"
WAIT

ELSE
SKIP

ENDI'
ENDDO

246

EN~D IF
IF .NOT. del i t &&search done no link founhd

? "Link not found for goal tic. ",Ygoalnturrn
op no. *,Mopnunbci

"part ",Mpsdlpai-t
WAIT

ENDIF
ENDIF

ENDIF
ENDDO

CLOSE DATABASES
CLOSE FORMAT
RETURN

247

" Program Name DELLKSCN.FMT
Author Ned Davis

* Date 11 Oct. 90
Revisd
Language. dBase III+

* Description Format file for removing links from
between test goals and PSDL operators

* data streams and listing the PSDL grammar
portion where implementation occurs.
Called by DELLIN K.PRG.

@ 1, 32 SAY "LINK DELETION"
@ 3, 0 SAY "GOAL NUMBER OF LINK"
@ 3. 21 GET Mgoalnum PICTURE "99999" RANGE 1,9999
S3, 28 SAY "OPERATOR/DATA STREAM NUMBER"
S3, 57 GET MOP NUMBER PICTURE "99999" RANGE 1,9999
S5, 0 SAY "ITERATION DELETED"

@ 5, 19 GET MDELETED PICTURE "999" RANGE 1,99
@ 7, 0 SAY "PSDL PART"
@ 7, 11 GET MI'SD[. PART P]CTURE ',,,,,,, ',,,,',,',',,,,,, . ,' ,,
Q 11, 2 SAY "List the particular PSDL part by its"
@ 12, 2 SAY " grammatical title for a detailed location"
@ 13, 2 SAY "of a goal's implementation."
@ 19, 2 SAY "Press "+CHR(24)+" to make corrections,"
Q 20, 2 SAY "Return to continue, 1 to cancel,"
@ 21, 2 SAY "or 2 to exit";

GET dellink PICTURE "99" RANGE 0,2
0 0, 0 TO 2, 79 DOUBLE

@ 10, 0 TO 14,79 DOUBLL
@ 18, 0 TO 22,79 DOUBLE

248

Program Name: UP__PSDL. PRG
Author . Ned Davis
Date : '11 Aug 90
Revised

* Language dBase II+
' Description : Provides the menu screen for allowing update

of the PSDL' Operator/Data Stream database file
Y. and allows the user to move to other system
* actions in the TGTS for requirements-based

testing in the CAPS.

:' set environment **
choice = 0

display PSDI. op/data strm update menu
[KW WHILE choice f t

choice - 0
SET COLOR TO R,'BG,(,P+/R,G
CLEAL
(3,10 TO 20,70 DOUBLE
SET COLOR TO GR+/BcG
@ 5,23 SAY "PSDL OPERATOR/DATA STREAM UPDATE MENU"
@ 7,20 SAY "Select your choice by number: "
@ 9,20 SAY "1. Add a new operator/data stream"
@ 10,20 SAY "2. Change an existirg operaLor/data stream"
@ 11,20 SAY "3. Delete an existing operator/data stream"
(d 12,20 SAY "4. Link operator/data stream to test. goal"

(d 13,20 SAY "5. Unlink operator'data stream to test goal"
Ef 14,20 SAY "6. Return to Main Menu"

SET COLOR TO ,'+/BG
@ 17,15 SAY "Select your option: " GET choice PICTURE "99";

RANGE 0,6
REAl)

' perform user's reque,,*
DO CASL

CASE choice 7 1
DO ADD_PSDL

CASE choice = 2
DO CHNGPSDL

CASL choice 3
DO DELPSDL

CASE choice 7 4
DO ADDLINK

CASE choice - 5
DO DELLINK

ENDCASF

EN DGA)

249

C LEAP
ciic 0

RETURN TO MASTLR

250

Program Nawe ADD PSDL.PRG
Author Ned Davis
Date 1 Sep 90

* Revised
* Language Dbase 1114

Description Allows the addition of one or more new
operators/data strms to the opstream database.

open database ****
USE opstream

**** find largest current opnumber ****
GO BOTTOM
Mopnum = op number &,& assumes largest. num it; last

*' select entry screen
SET FORMAT TO addopsci

Y*** set index files "**:
SET INDEX TO opnum, opname, o-update, oiterad, dclet-op;

**** start loop for adding op/strm ****
Adding 7 " " && meinvar fur acc:ept, canctl , exit entry scrn
DO WHILE Adding P "X"

""initialize memory 'ariables......
Mop-name =
Moperator 7.T.

Mupdated = 0
Mo_it.eradd : 0
Mdeleted 0
Adding 1- "
Mop num = Mopnum + 1

APPEND BLANK
*--read in value,, using addopscn.fmt

READ

IF adding # "C"
IF adding # "X" .OR. (adding "X" .AND. Moiteradd # 0)

*--store memory vars on new record
REPLACE op_number WITH Mopnum,

opname WITH Mopname,
operator WITH Moperator,
o_iteradd WITH Moiteradd

REPLACE updated WITH Mupdated,
deleted WITH Mdeleted

ELSE

251

DELETE
PACK

ENDIF
L S F

DELETE
PACK
Mop__num =Mop rium -I

ENDI F
ENDDO
CLOSE FORMAT
CLOSE DATABASE")
RETURN

252

* Program Name ADDOP'SCN. FM'

Author Ned Davis
Datts 31 Aug 90

* Revised
Language dBase l1l+
Description Format file for entering new PSDL operator

or data stream to the opstream data base.
Called Ly ADD PSDL.PRG. Does not allow
update or deletion to be flagged.

@ 1, 26 SAY "OPSTREAM DATABASE DATA ENTRY"
@ 3, 0 SAY "OPERATOR/DATA STREAM NUMBER"
*--auto insert next goal number

@ 3, 30 SAY MOP_NUM'
@ 5, 0 SAY "OPERATOR/DATA STREAM NAME"
@ 5, 27 GET MOPNAME PICTURE

@ 7, 0 SAY "OPERATOR"
@ 7, 10 GET MOPERATOR PICTURE "L"
Q 7, 23 SAY "ITERATION ADDED"
@ 7, 40 GET MOITERADD PICTURE "999" RANGE 1,99
@ 8, 0 SAY "Enter T if operator or F if data stream"
@ 10, 0 SAY "HISTORY"
@ 10, 9 GET OPSTREAM->OHISTORY
@ 10, 15 SAY "Move cursor to memo field, type Ctrl-PgDn"
@ 12, 2 SAY "Press "+CHR(24)+" to make corrections,"
@ 12,37 SAY "Operator field - Enter 'T' or IY I

Q 13, 2 SAY "return to continue, C to cancel,"
@ 13,37 SAY "if operator, else 'F' or 'N'"
@ 14, 2 SAY "or X to exit.";

GET Adding PICTURE "!"
@ 14,37 SAY "if data stream"
@ 0, 0 TO 2, 79 DOUBLE
@ 11, 0 TO 15, 79 DOUBLE
(d 12,35 TO 14, 35

253

Program Nanw CHNGPSDL. PRG
Author Ned Davis

* Date 1 Dec 90
Revised

, Languag. : dBase II+
* Description : Allows user to update 1 record at a time

of the OPSTREAM.DBF database. All fields may
* be modified except op num field.

A deleted goal may be undelet.ed and its

* related link records may be block undeleted
* or selectively undeleted. op/data strms are not

deleted by this program. Called by
. UPPSDL.PRG.

J J ,L ,.S.J*J J .J...JJ * J* * . J* * * * J***************** J**

* set. environment e

SET MEMOWIDTH TO 20 && lets display output fit, on I litie

* n:'tn alize memory variables
Adding - "Y" && loop flag
Change it. : "Y" && choice variable
Mop_num 0 && dummy var to get goal number
choice a 2

**** start loop for changing operator/data streams **
DO WHILE Adding # "N"

CLOSE DATABASES

,** select database ***

USE opstream INDEX i
op-num, op name, o update, oiterad, delet-op

** display input screen

SET FORMAT TO opstmchg
READ

**** det'm whether to change record .

IF Adding = "N" && decided not to change record
CLOSE FORIFAT
LOOP

ENDIF

**** prep screen

CLOSE FORMAT
CLEAR

**** look for record *

SEEK Mop__num
IF FOUND()

*--Ehow it to the user for confirmation

254

DISPLAY opnumber,opname,ohistory OFF

*--get confirmation

Change-it = "Y" &I set default
@ 22,0 SAY "Do you want to change this record? (Y or N)"
@ 22,45 GET Changeit PICTURE "Y"
REAl)

*--act on confirmation

IF Change_it Y "N" && don't change this record
LOOP

ELSE && change record
CLEAR
IF deleted = 0 && record is in use

SET FORMAT TO chgopscn
READ
WAIT "Op/Data Stream updated, press any key to continue"
CLOSE FORMAT

ELLE && record is deleted
choicea = 2 && set default choice
@ 0,0 SAY "Operator is currently deleted"
@ 3,0 SAY "Options:"
@ 5,5 SAY "I. Undelete and make appropriate changes"
@ 6,5 SAY "2. Disregard op/data stream change"
@ 8,5 SAY "Select your choice: "
@ 8,25 GET choicea PICTURE "99" RANGE 1,2
REAl)

**** act upon choice
DO CASE

CASE choicea = 1 && undelete
DO CHGPHLP

CASE choice a m 2 && disregard
LOOP

ENDCASE
ENDIF

ENDITF
ELSE

*--if not found, warn user
@ 22,0
? "Can't find operator/data stream: ",Mop-num
?? CHR(7)
WAIT

ENDIF
Mopnum o 0

ENDDO
CLOSE DATABASES
SET MEMOWIDTH TO 30
RETURN

255

Program Name : OPSTMCIIG. PMT
• Author : Ned Davis

Date 18 Sep 90

Revised

Language : dBase III+
Description : Screen for inputting op/data stream number to

change or exit w/o change. Starts modification
of OPSTREAM.DBF data base file one record at a

• time. May also modify ROLINK.DBF if a
* goal previously deleted is undeleted.

Called by CHNGPSDL.PRG.

@ 5, 5 SAY "Enter operator/data stream number (or 0) of OP/DS to
change: "
@ 5,68 GET Mopnum PICTURE "999999"
@ 7, 5 SAY "Enter N to exit w/o change, Y to continue"
@ 7,58 GET Adding PICT)RE "Y"

256

Program Name: CHGOPSCN.FMT
* Author Ned Davis
* Date 18 Sep 90
* Revised
* Language : dBase 1114
* Description : Format file for changing op/data stream in
* the OPSTREAM.DBF database file. Called by

CHNGPSDL.PRG. Does not allow deletion or
* undeletion. Used exclusively for records

not currently deleted.

@ 1, 20 SAY "OPERATOR/DATA STREAM DATABASE DATA CHANGE"
@ 3, 0 SAY "OPERATOR/DATA STREAM NUMBER"
@ 3, 31 SAY OP NUMBER
@ 6, 0 SAY "OPERATOR NAME"
@ 6, 15 GET OPNAME

PICTURE "! l Y WIIMYW ? t 9,,,,,, 9!!!!!!"

@ 8, 0 SAY "OPERATOR"
@ 8, 10 GET OPERATOR PICTURE "L"
@ 9, 0 SAY "Enter T if operator and F if data stream"
@ 10, 0 SAY "ITERATION ADDED"
@ 10, 17 GET 0_ITERADD PICTURE "999" RANGE 1,99
@ 12, 0 SAY "ITERATION UPDATED"
@ 12, 19 GET UPDATED PICTURE "999" RANGE 0,99
@ 12, 32 SAY "ITERATION DELETED"
@ 12, 51 SAY DELETED
@ 15, 0 SAY "HISTORY"
@ 15, 9 GET OHISTORY
@ 15, 17 SAY "Move cursor to memo field, type Ctrl-PgDn"
@ 19, 2 SAY "Press "+CHR(24)+" to make corrections,"
*@ 20, 2 SAY "Return to continue, C to Cancel,"
*@ 21, 2 SAY "or X to exit";
* GET Adding PICTURE "'"

@ 0, 0 TO 2, 79 DOUBLE
@ 18, 0 TO 22, 79 DOUBLE

257

* Program Nam, : CHGPHLP.PRG

Author : Ned Davis
* Date : 1 Dec 90
* Revised
* Language : dBase III+
* Description : Allows user to update record of OPSTREAM.DBF
* and links of RO__LINK.DBF database. All fields may

be modified except opnum field.
* A deleted goal is undeleted and its
* related link records may be block undeleted

or selectively undeleted. op/data strms are not.
* deleted by this program. Called by

CHNGPSDL.PRG. Uses global vars.

**** initialize memory variables ***k

Miterchg = 0
chlink I

* ** act upon choice ****

SET FORMAT TO chopscnl
READ
REPLACE deleted WITH 0
CLOSE FORMAT
CLEAR
@ 5,5
WAIT "Op/data stream updated, press any key to continue
CLOSE FORMAT

*--undelete link records. Change database.

USE rolink INDEX onumlink
SEEK Mopnum
IF FOUND() && link record(s) found

CLEAR
chlink = 1 && set default choice
@ 5,30 SAY "UNDELETE LINK OPTIONS"
@ 7,15 SAY "Options:"
@ 9,15 SAY "1. Batch undelete all links to PSDL part"
@ 10,15 SAY "2. Sequence through links for selective undelete"
@ 12,15 SAY "Enter option 1 or 2:"
@ 12,37 GET ch_link PICTURE "99" RANGE 1,2
READ

DO CASE
CASE chlink = I

DO WHILE op_.number = Mopnum
REPLACE deleted WITH 0
REPLACE 1_iteradd WITH Miterchg
SKIP

ENDDO

258

CASE cklink : 2
DO WHILE op_number : Mopnum

CLEAR
DISPLAY goal_num, opnumnber,p.;d]_art,de] eted,]_iteradd OFF
0 5,5 SAY "Enter Y to undelete, N to skip"
@ 5,37 GET Adding PICTURE "Y"
READ
IF Adding = "Y"

REPLACE deleted WITH 0
REPLACE Iiteradd WITH Miterchg
SKIP

ELSE
SKIP

ENDI F
ENDDO

ENDCASI

**** update index file *
SET INDEX TO delet_1k
REINDEX
CLOSE INDEX
CLEAR
@ 5,5
WAIT "Links updated, press any key to continue'

ELSE && no link records found
CLEAR
@ 5,5 SAY "No link record iound."
WAIT

ENDIF
CLOSE DATABASES
RETURN

259

Program Name: C1IOPSCNI. FMT
* Author Ned Davis
* Date 18 Sep 90
* Revised
* Language dBase III+
* Description Format file for changing op/data stream in

the OPSTREAM.DBF database file. Called by
CHGPHLP.PRG. Used explicitly with deleted

* opstream records that are to be undeleted. Aids
* in ensuring that info that must change with

an undelete gets changed.

@ 1, 15 SAY "OPERATOR/DATA STREAM DATABASE DATA CHANGE FOR UNDELETE"
@ 3, 0 SAY "OPERATOR/DATA STREAM NUMBER"
@ 3, 30 SAY OP NUMBER
@ 6, 0 SAY "OPERATOR NAME"
@ 6, 16 GET OPNAME

PICTUR ' "2 '2 ! '2 '2 ' ' ' ', t I I I ,I ,,,II"
@ 7,0 TO 7,79 DOUBLE
@ 8, 0 SAY "ENTER ITERATION FOR READDING LINKS"
@ 8, 36 GET miterchg PICTURE "999" RANGE 1,99
@ 10, 0 SAY "ITERATION ADDED"
@ 10, 17 GET 0 ITERADD PICTURE "999" RANGE 1,99
@ 10, 25 SAY "IS AN OPERATOR"
@ 10, 41 GET OPERATOR PICTURE "L"
@ 11, 25 SAY "Enter T if operator or F if data stream"
@ 12, 0 SAY "ITERATION UPDATED"
@ 13, 0 SAY "Enter current iteration"
@ 12, 19 GET UPDATED PICTURE "999" RANGE 1,99
@ 12, 32 SAY "ITERATION DELETED"
@ 12, 51 SAY "Deleted field auto"
@ 13, 51 SAY "reset to 0"
@ 15, 0 SAY "HISTORY"
@ 15, 9 GET 0_HISTORY
@ 15, 17 SAY "Move cursor to memo field, type Ctrl-PgDn"
@ 16, 0 SAY "Enter reason for undelete and any link changes"
@ 19, 2 SAY "Press "+CHR(24)+" to make corrections,"
*@ 20, 2 SAY "Return to continue, C to Cancel,"
@ 21, 2 SAY "or X to exit";

* GET Adding PICTURE "'"
@ 0, 0 TO 2, 79 DOUBLE
@ 18, 0 TO 22, 79 DOUBLE

260

... . ..** * "*'.. ; .. :**-* ;:** ***** ** ' - " . ..

Program Name : DEI, - ,DI PRG
• Author Ned Davis
* Date 11 Oct 90

Revised
* Language dBase II1+

Description Accepts user input to mark an op/data strm as
* deleted for a given iteration. Also marks
* all associated links as deleted for the
* same iteration. Called by UPPSDL.PRG.
* * * * * ** * ** ** * *** * * *** ** * *** * ** * * * * ** *** *** ** ** * ** ** * * *

•*** initialize variables ****

o nu, 0
iter 0
ans 0
del-it .F.

DO WHILE ans # 2
0_num - 0

iter 0
ans 0
delit .F.
SET COLOR TO R/BG,GR+/R,G
CLEAR
@ 3,10 TO 14,70 DOUBLE
SET COLOR TO GR+/BG
@ 5,25 SAY "OPERATOR/DATA STREAM DELETION"
SET COLOR TO W+/BG
@ 7,20 SAY "Enter the op/data stream number to delete: " GET onum;

PICTURE "99999" RANGE 1,9999
READ
Q 9,20 SAY "Enter the iteration in which deleted: " GET iter;

PICTURE "999" RANGE 1,99
READ

@ 11,20 SAY "Press I to cancel, 2 to exit,
@ 12,20 SAY " and return to continue " GET ans PICTURE "99";

RANGE 0,2
READ
SET COLOR TO GR+/BG

CLEAR
IF ans 0 1

IF ans # 2 .OR. (ans= 2 .AND. onum # 0)
USE opstream INDEX opnum, deletop
SEEK o num
IF FOUND()

DISPLAY OFF
SET COLOR TO W+/BG
@ 5,5 SAY "Do you want to delete this op/dat.a stream(Y or N)?";

261

GET delit PICTURE "Y"
READ
SET COLOR TO GR+/IBG

IF del_it
REPLACE deleted WITH iter
USE ro link INDEX onumlink, delet_lk
SEEK onum
IF FOUND()

REPLACE deleted WITH iter WHILE op number r o num
@ 7,5 SAY "Operator/Data Stream and links deleted"
WAIT

ELSE
@ 7,5 SAY "Operator/Data stream has no links. i

Operator/Data stream deleted."
WAIT

ENDIF
EL F

@ 7,5 SAY "Operator/Data Stream NOT deleted"
WAIT

ENDIP
ELSE

@ 5,20
? "No Operator/Data Stream number found for ",o-num
WAIT

END]I
ENDIF

ELSE
@ 5,0 SAY "Deletion cancelled"
WAIT

ENDI F
CLOSE DATABASES

ENDDO

CLEAR
RETURN

262

" Pr(,gram Nm: ITFRINIO.PR(;
Autho : Ned Davis
Dat, : 2 Dec 90

L Iguage Dbase 111+
Description Displays a menu to add, change, delete or

change records on each iteration of preto_
type development. Also will give you the
highest iteration number used to date.
Called by TESTGOAL.PRG

*;', iLitialize variables :
axis o0

DO WHILE ann 0 7

Sri COLOR TO R!BG,GR+/R,(;
CLI AR
0 3,10 TO 20,70 DOUBLE
SFK COLOI TO GR+/LG

5,25 SAY "PROTOTYPE ITERATION INFORMATION"
@ 7,20 SAY "Select 3our choice by number:

S9,20 SAY -1. Add a new iteration"
@ 10,20 SAY "2. Modify an exist ing i terat ion"
@ 11,20 SAY "S. Delete an existing iteration"
@ 12,20 SAY ".. list all iteration information"
@ 13,20 SAY "5. List information for iteration x"
0 14,20 SAY "b. List most recent iterat ion no."

@ 15,20 SAY "7. Return to Main Menu"
;ET COLOR TO W+/IIG

@ 17,20 SAY "Select your option: " GET ans PICTURE "99";
RANGL), 7
RE'AD

SET COLOR TO GR+/BG

***0 perform request .
CLEAR
DO CASE

CASI ans 0 1
DO IADD

CASE ans- 2
DO ICHN(,

CASE ans : 3
DO I_ DLI.

CASE ans 7 4
DO ALL_I OUT

CASE: an 5
DO ITE'P O1'T

CASE ans - 6

,-2fw w v mnnununn

DO LASTITLL(
ENI)CASEL

ENDD()
CLEAR
RETURN TO MASTER

2 64*

Program Name IADD.PRG
Author Ned Davis
Date : 2 Dec 90

* Revised
* Language Dbase]11+

Description Adds a record to the ITERATNS.DBF database.
Auto increments iteration number.
Called by ITERINFO.PRG

* * * * , ** ** * * ... *, * ,, * ,, * * * * * ** * ** **

**** initialize variables **""

doit = 2
Miternum = 0

"'" initialize database ***

USL iteratns INDEX it num

f find largest current iter no.
GO TOP

,.': VA'A ' t,

DO WHILL .NOT. EOF()

*wait

II' iternum > MiLer_nirr
Miternum : iternum

END I F
SKIP

ENDDO

SET FORMAT TO additer
Miternum z Miternum + 1
APPEND BLAINK
REPLACE iternum WITH Miternum
READ
CLOSE FORMAT
IF doit :- I

DELETE
PACK
CLEAR
@ 5,5
? "Entry cancelled."
WAIT

ELSE
CLEAR
? "Record added"
WAI T

ENDIF

265

CLEAR
CLOSE DATABASE'-
RETURN

266

Program Name : ADDITER.FMT
Author : Ned Davis

* Date : 2 Dee 90
Revised

* Language : dBase III+
Description : Screen format file for adding new iteration

* information to the ITERATNS.DBF database
file. Called by ITERINFO.PRG.

@ 1,25 SAY "ADD AN ITERATION HISTORY"
@ 3,25 SAY "NEW ITERATION NUMBER"
@ 3,47 SAY iternum
@ 5,25 SAY "NEW ITERATION HISTORY"
@ 5,48 GET i history
@ 6,20 SAY "Cntl+PgDn to enter, CntI+PgUp to exit"
Q 8,15 SAY "Enter I to cancel, 2 to accept entry'
@ 8,53 GET do_it PICTURE "99" RANGE 1,2
S7, 1 TO 7,69

@ 0, 0 TO 9,70 DOUPLE

267

Program Name : ICHNG.PRG
"' Author : Ned Davis
* Date 2 Dec 90
* Revised
* Language : Dbase III+
* Description : Changes existing record in ITERATNS.DBF.

Called by ITERINFO.PRG.

**** initialize database *
USE iteratns INDEX itnum

**** initialize variables *
Miter num = 0
do-it =2

CLEAR
@ 5,5 SAY "Enter the iteration to change: "GET Miter num;

PICTURE "999" RANGE 1,99
READ
SEEK Miternum
IF FOUND()

SET FORMAT TO chg_iter
READ
CLOSE FORMAT

ELSE
? "Did not. jind iteration: ",Miternum
WAIT

ENDII
CLEAR
CLOSE DATABASES
RETURN

268

• l o %.*.*i.J.J... .. ~ J .J . * .* .. * * * J.. J 'J..*..I..J J * *.JJJJ * ° ,* * .

Program Name CHGITER. .

• Author Ned Davis
• Date 2 Dec 90
• Revised
• Language dBase III+

Description Screen format file for changing iteration
* information in the ITERATNS.DBF database

file. Called by ITERINFO.PRG.

@ 1,20 SAY "CHANGE AN ITERATION HISTORY"
@ 3,20 SAY "ITERATION NUMBER"
@ 3,42 GET iternum PICTURE "999" RANGE 1,99
@ 5,20 SAY "ITERATION HISTORY"
@ 5,43 GET ihistory
@ 6,20 SAY "Cntl-PgDn to enter, Cntl-PgUp to exit"
@ 8,15 SAY "Enter 1 to continue."
@ 8,53 GET doit PICTULE "99" RANGE 1,1
@ 7, 1 TO 7,69
@ 0, 0 TO 9,70 DOUBLE

269

Program Name IDEL.PRG
* Author : Ned Davis
* Date 2 Dec 90
* Revised

* Language Dbase III+
* Description Allows record delete for ITERATNS.DBF.

Called by ITERINFO.PRG.

**** initialize database *
USE iteratns INDEX it num

**** initialize variables *

Miter num = 0
delit .p
doit = 2

@ 5,5 SAY "Enter the iteration to delete: "GET Miter num;
PICTURE "999" RANGE 1,99

READ
SEEK Miternum
IF FOUND()

CLEAR
SET MEMOWIDTH TO 60
DISPLAY ITERNUM, I HISTORY OFF
SET MEMOWIDTH TO 30
@ 23,0 SAY "Do you want to delete this iteration(Y or N)?"
@ 23,48 GET delit PICTURE "Y"
READ
IF del_it

DELETE
PACK
CLEAR
? "Iteration ",mITERNUM," deleted."
WAIT

ENDIF
ELSE

? "Did not find iteration: ",Miternum
WAIT

ENDIF
CLEAR
CLOSE DATABASES
RETURN

270

' Program Name ALLlC! '.PRG
Author Ned Davis
Date : 2 Dt, c 90
Revised
Language Dbase 111+

* Description Displays all ITERATNS.DBF records to screen
* or to screen and printer. Called by

ITERINFO. PRG.

**** initialize database

USE iteratns INDEX itnum

**** initialize variables *

Miternum :7 0
output -

CLEAR
@ 5,5 SAY "Enter I to output to screen"
@ 6,5 SAY " or 2 to output to screen and printer";

GET output. PICTURF "99" RAINGE 1,2
READ
SET MEMOWIDTII TO 60
IF output = 1

DISPLAY ALL ITERNUM, 1_}1ISTORY OFF
WAIT

ELSE
DISPLAY ALL ITER_NL-', IHISTORY OFF TO PRINT
WA I

ENDIF
SET MEMOWIDTH TO 30
CLEAR
CLOSE DATABASES
RETURN

271

* Program Name ITER_OIUT.PRG
* Author . Ned Davis
* Date : 2 Dec 90

Revised

Language dBase Ill+
* Description Displays input fields for outputting an

iteration information record for the specified
iteration to the screen or screen and printer.
Called by ITERINFO.PRG.

.... ** *° * * * .** ** *.J *,*J******** * 1 * o .*.********* **..**Ja**°* ..*

**** initialize database *
USE iteratns INDEX itnum

**** initialize variable *

Mitet._num 0
output. I

@ 5,5 SAY "Enter the iteration to output" GET Miternum;
PICTURE "999" RANGE 1,99

REAl)
SEEK Miternum
IF FOUND()

SET MEMOWIDTH TO 60
@ 7,5 SAY "Enter I to output to screen, 2 to output"
@ 8,5 SAY "to screen and printer: " GET output;

PICTURE "99" RANGE 1,2
READ
IF output -- 1

DISPLAY ITERNU, I-HISTORY OFF
WAIT

ELSE
DISPLAY ITERNUM, IHISTORY OFF TO PRINT
WAIT

ENDIF
ELSE

? "Did not find iteration number ",Miternum
WAIT

ENDIF
SET MEMOWIDTH TO 30
RETURN

272

* Program Name : LASTITER.PRG
* Author : Ned Davis

Date . 2 Dec 90
£ Revised
* Language : Dbase III+
* Description : Displays the highest iteration number
* used to date. Called by TESTGOAL.PRG.
.. .. '* * **^ * *........ * * *,, * **:^***** ***

**** initialize variables *
Miternum = 0

**** initialize database
USE iteratns INDEX it__nun

DO WHILE .NOT. EOF()
IF iternum > Miternuin

Miterriwui :- itertiurn
ENDIF
SKI P

ENDDO
@ 5,10 TO 7,70 DOUBLE
@ 6,20 SAY "The most recent iteration is:
@ 6,52 SAY Miter_nui

@ 9,0
WAIT
CLEAP
CLOSIE DATABAS.,.
RETUR,

273

* Program Name BYE.PRG

* Author : Ned Davis
* Date 16 Aug 90
* Revised
* Language Dbase III+
* Description Displays a closing screen for the TESTGOAL
* system.

(OSE ALL

****display screen****

SET COLOR TO GR/B,GR+/R,G
CLEAR
@ 10,26 TO 14,51 DOUBLE
SET COLOR TO BG+/B
@ 12,30 SAY "GOOD BYE FOR NOW"

274

Program Name: INDEX_]T.PRG
Author Ned Davis
Date 3 Sep 90
Revised

* Language dBase III+
* Description This reindexes all the database files

and updates all index files.

USE GOALS INDEX GOAL NUMTEST-PRI,AGGRFGAT,UPDATED, ITERADD,
TESTCLAS, DELETTG
REINDEX
CLOSE DATABASES

USE OPSTREAM INDEX OP__NUY, OPNAME, OUPDATE, O.ITERAD, DELETOP
REINDEX
CLOSE DATABASES

USE ROLINK INDEX GNUMLINT, ONUMLINK, PARTLINK, LITERAD, DFLET_II
REINDEX

CLOSE ALL

275

REFERINCES

Agresti, William, New Paradigms for Software Development. IEEE Computer
Society Press, Washington D.C., 1986.

American National Standards Institute/Institute of Electrical and
Electronics Engineers Standard 729-1983, Standard Glossary of Software
Engineering Terminology. 1983.

Beizer, Boris, Software Testing Techniques. Van Nostrand Reinhold, Nc-w
York, New York, 1983.

Bersoff, E., Gregor, B. and Davis, A., Alternate L/fecycie Models, BTG
Iznc., Vienna, Virginia, 1988.

Boehm, B., "Prototyping Versus Specifying: A Multiproject Experiment ,"

IEEE Transactions on Software Engineering, v.SE-1O, no.3, pp.290-302, May
1984.

Boehm, Barry, Software Risk Management. IEEE Computer Society Press,
Washington, D.C., 1989.

Davis, A., Bersoff, E., and Comer, E., "A Strategy for Comparing Alternate
Software Development. Lifecycle Models," IEEE Transactions on Software
Engineering, v.14, no.10, pp.1453-1461, October 1988.

Fountain. Harrison, Rapid Prototyping: A Survey arid Evaluation of
Methodologies and Models. M.S. Thesis, Naval Postgriduate School,
Monterey, California, March 1990.

Frankl, P.C., ASSET Reference Manual, (Preliminary Draft), Department of
Computer Science, Courant Institute of Computer Science, N,., York
University, New York, June 29, 1987.

Frankl, P.G. and Weyuker, E.J., "Data Flow Testing it the Presence of
Unexecutable Paths," Proceedings of the IEEE Workshop on Software Testing,
Banff, Canada, pp.4-13, July 1986.

Gomaa, H. and Scott, D., "Prototyping as a Tocl in the Sp':cification of
User Requirements," The Proceedings of the 5th International Conference on
Software Engineering, pp.333-342, 1981.

Hernandez, Jr., Jose, Derivation Strategies for Experienced-Based Test
Oracles. M.S. Thesis., Naval Postgraduate School, Monterey, California,
December 1989.

276

Hvtzel, R., The Complete Guide to uf'ttarc Testine, Zid ed., QE)
Informat ion Sciences, Inc. 1988.

lowdvii, , .1 . , "Iunt.t iona] Testing and Design Abst ract ions, " The Journal of
System.-, and Software, Elsevier North Holland, Inc., pp.30 7-313, 1980.

llowden, W.E., "A Survey of Dynamic Analysis Methods," Tutorial: Software
Testing and Validation Techniques, IEEE Computer Society, pp. 209-231,
1981.

Howden, W.F., "A Survey of Static Analysis Methods," Tutorial: Software
Testing and Validation Techniques, IEEE Computer Society, pp. 101-115,
1981.

Kemmerer, R.A. and Eckmann, S.T., "UNISEX: A UNIx-based Symbolic EXecutor
for Pascal," Software - Practice and Experience, v.1515, pp.439-458, May
1985.

Kraemer, b. Luqi, and Berzins, V., "A Formal Semantics for PSDL,"
submitted to IEEE Transactions on Software Engineering.

Luqi, "Software Evolution Through Rapid Prototyping," IEEY Computer,
pp.13-25, May 1989.

luqi and Berzinsi, V., "Rapidly Prot.otyping Real-Time Systems," IrEE
Software, pp.25-36, September 198(,.

Luqi, Berzi,;, V. and Yeh, R., "A Prototyping Language for Real Time
Software". IEEE Transaction.; on Software Engineering, pi . 1409-1423,
October 198u".

Manna, A. and Waldinger, R., "The Logic of Computer Programming," IEEE
Transactions on Software Engineering, v. SE-4, pp.19 9 -229, April 1988.

Naval Postgraduate School Technical Report NPS52-87-012, Execution of
Real-Time Prototypes, by Luqi, 1987.

Naval Postgraduate School Technical Report NPS52-90-030, TWIRP: Testing
Within Iterative Rapid Prototyping, by T.F. Shimeall, July 1990

Pressman, R.S., Software Engineering: A Practicioner's Approach. 2d ed.,
McGraw-Hill, Inc., New York, New York, 1987.

Taylor, T. and Standish, T.A., "Initial Thoughts on Rapid Prototypiig
Techniques," New Paradigms for Software Development, Washington: IEEE
Computer Society Press, pp.38-47, 1986.

"The American Heritage Dictionary of the English Languagf," Houghton
Mifflin Co., Boston, Massachusetts, 1978.

277

Weyuker, E.J., "The Evaluation of Program-based Software Te .i Data
Adequacy Criteria," Corrmunrications of the ACV,, v.31, pp.668-675, Julie
1988.

White, Laura, The Development of a Rapid Prototyping Environmenrt . ~
Thesis, Naval Postgraduate School, Monterey, California, December 1989.

278

BIBLIOGRAPHY

Agresti, William, New Paradigms for Software Development. IEEE Computer
,,ociety Press, Washington,D.C., 1986.

American National Standards Institute/'Institute of Electrical and
Electronics Engineers Standard 729-1983, Standard Glossary of Software

Engineering Terminology. 1983.

Barr, A., Cohen, P.R., and Feigenbaum, E.A., The Handbook of Artificial
Intelligence. %.4, Addison Wesley, Reading, Massachusetts, 1989.

Beizer, Boris, Software System Testing and Quality Assurance. Van

Nostrand Reinhold, New York, New York, 1984.

Beizer, Bcris, Z;uf w~Lre Testing Techniques. Van Nostrand Reinhold, New
York, Npw Yor, 1983.

Bersoff, E., Gregor, B. and Davis, A., Alternate Lifecycle Models, BTG
11L., Vienna, Virginia, 1988.

Boehm, B., "Prototyping Versus Specifying: A Multiproject Experiment ,"

IEEE Transactions on Software Engineering, v.SE-10, no.3, pp.290-302, May
1984.

Boehm, Barry, Software Risk Management. IEEE Comp~uter Society Press,
Washington, D.C., 1989.

Davis, A., Bersoff, E., and Comer, E., "A Strategy for Comparing Alternate
Software Development Lifecycle Models," IEEE Transactions on Software
Engineering, v.14, no.10, pp.1453-1461, October 1988.

Fountain, Harrison, Rapid Prototyping: A Survey and Evaluation of
Methodologies and Models. M.S. Thesis, Naval Postgraduate School,
Monterey, California, March 1990.

Frank], P.G., ASSET Reference Manual, (Preliminary Draft), Department of
Computer Science, Courant Institute of Computer Science, New York
University, New York, June 29, 1987.

Frankl, P.G. and Weyuker, E.J., "Data Flow Testing in the Presence of
Unexecutable Paths," Proceedings of the IEEE Workshop on Software Testing,
Banff, Canada, pp. 4-13, July 1986.

279

Gomaa, i. and Scott, D., "Prototyping as a Tool in the Specification of
User Requirement.,;," The Proceedings of the 5th Interniational Conference oil
Software Engineering, pp.333-342, 1981.

Hernandez, Jr., Jose, Derivation Strategies for Experienced-Based Test
Oracles. M.S. Thesis, Naval Postgraduate School, Monterey, California,
December 1989.

Hetzel, B., The Complete Guide to Software Testing, 2nd ed., QED
Information Sciences, Inc. 1988.

Howden, W.E., "Functional Testing and Design Abstractions," The Journal of
Systems and Software, Elsevier North Holland, Inc., pp.307-313, 1980.

Howden, W.E., "A Survey of Dynamic Analysis Methods," Tutorial: Software
Testing and Validation Techniques, IEEE Computer Society, pp. 209-231,
1981.

Howden, W.E., "A Survey of Static Analysis Methods," Tutorial: Software
Testing and Validation Techniques, IEEE Computer Society, pp. 101-115,
1981.

Kemmerer, R.A. and Eckmann, S.T., "UNISEX: A UNIx-based Symbolic EXecutor
for Pascal," Software - Practice arid Experience, v.1515, pp.43 9 -458, May
1985.

Kraemer, B. Luqi, and Berzins;, V., "A Formal Semantics for PSDL,"
submitted to IEEE Transactions on Software Engineering.

Luqi, "Software Evolution Through Rapid Prototyping," IEEF Computer,
pp.13-25, May 1989.

Luqi and Berzins, V., "Rapidly Prototyping Real-Time Systems," IEEF
Software, pp.25-36, September 1988.

Luqi, Berzins, V. and Yeh, R., "A Prototyping Language for Real Time
Software". IEEE Transactions on Software Engineering, pp. 1409-1423,
October 1988.

Manna, A. and Waldinger, R., "The Logic of Computer Programming," IEEE
Transactions on Software Engineering, v. SE-4, pp.199-229, April 1988.

Naval Postgraduate School Technical Report NPS52-87-012, Execution of
Real-Time Prototypes, by Luqi, 1987.

Naval Postgraduate School Technical Report NPS52-90-030, TWIRP: Testing
Within Iterative Rapid Prototyping, by T.F. Shimeall, July 1990

Pressman, R.S., Software Engineering: A Practicioner's Approach. 2d ed.,
McGraw-Hill, Inc., New York, Ncw York, 1987.

280

TayIor, T. and Stanldi -h, T .A ., "In it ial Thoughts on Rapid Prototyping
Techniques," N(-w Paradigni; for Softwar2 Development, Washington: IEEE
Computer :,ciety Press, pp. 3 8 - 4 7 , 1986.

"The American Heritage Dictionary of the English Language," Houghton
Mifflin Co., Boston, Massachusetts, 1978.

Wevikpr, E.J., "The Evaluation of Program-based Software Test Data

Adequacy Criteria," Communications of the ACM, v.31, pp.668-675, June
1988.

White, Laura, The Development of a Rapid Prototyping Environment. M.S.
Thesis, Naval Postgraduate School, Monterey, California, December 1989.

281

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

4. Professor Timothy J. Shimeall, Code CSSm 6
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Luqi, Code CSLq 1
Computer Science Departmiit.
Naval Postgraduate School
Monterey, California 93943-5000

6. Captain Patrick D. Barnes, USAF, Code CSBa 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. Major Edward V. Davis, Jr., USMC
109 Winter Quarters Drive
Pocomoke City, Maryland 21851

282

