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ABSTRACT

A detailed exploration of free electron laser (FEL) theory has been done in two

areas. An exact solution to the phase-space trajectories in a linearly-polarized

undulator has been obtained using a numerical simulation. The complicated

phase-space motion caused by transverse undulator deflections makes a rigorous

derivation for trajectories difficult, if not impossible. The numerical solution

extends the understanding of electron trajectories by quantitatively describing the

fast and slow components of motion. The Bessel function coupling coefficient,

J.( ' 1(4), describing the slow evolution is found to be valid over a broad range of

parameters even though its derivation is approximate.

A second program has been developed that provides a simple, quick diagnostic

for accelerator designers to evaluate how well a simulated beam design will

perform as an FEL The effect of beam quality conditions like energy, angular, and

positional spread are shown to depend only on the initial conditions of the beam at

the entrance to the undulator. This program takes the six phase-space coordinates

of the beam directly from an accelerator simulation code, like PARMELA, and

predicts its performance in an FEL system. This method substitutes for more

lengthy, complex integrated simulations, like INEX, that require a CRAY

computer.
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I. INTRODUCTION

Since its conception in 1971, the free electron laser has been the subject of

extensive theoretical and experimental work [Refs. 1-31. While progress is being

made on advanced designs, the fundamental theory of FELs is constantly being

improved. There still remains many aspects of the basic theory which have not

been solved exactly. The essential physics of the FEL is determined by the single-

particle trajectories in the undulator and the evolution of the optical fields [Refs.

4,6]. Although FELs using linearly or circularly-polarized undulators work on the

same principle, their electron phase-space trajectories are drastically different.

The exact trajectories in a linearly-polarized undulator are complicated by motion

coupled to the transverse undulator deflection which causes the longitudinal com-

ponent of velocity to oscillate twice each undulator period. This causes difficulty in

analysis, because these less-interesting, fast longitudinal oscillations cannot be

precisely separated from the more-interesting, slow bunching motion responsible

for gain. Historically, the fast motion has been averaged into a coupling coefficient

which modifies the equation of motion for the slow evolution [Refs. 6-81. A small

error in the coupling coefficient could result in a large difference in the growth rate

or ultimate power, especially in high-gain FELs.

It is important to consider the validity of the coupling coefficient used to

describe the linearly-polarized undulator. The coupling coefficient uses

K[J.(4)-J 1(k)], instead of just K for the helical case, where J, and J1 are Bessel

functions of argument k = K 2/2(1+K2). K = eB k /2rmcw2 is the undulator parame-

ter, where e is the magnitude of the electron charge, B is the undulator rms field

strength, A is the undulator period, and mc 2 is the rest energy of the electron. The

averaging method uses an approximation to the fast motion before ta]ing a time-

average over each period of the undulator. However, all derivations of the coupling



coefficient solve for the approximate fast motion without optical fields [Refs. 7-12].

This method is not completely rigorous, since the optical interaction is not included

self-consistently. In order to make a more complete analysis, we derive the equa-

tion describing the z motion without approximation or assumption.

With the improvement of computer processing capabilities, the last ten years

have seen the emergence of simulation as a necessary tool for some experiments.

Projects that could cost millions of dollars are being evaluated for feasibility by

simulations. As confidence improves, these methods are becoming more useful for

designers. For FEL experiments, which are by nature, costly and complicated, the

savings realized by simulation could be substantial. Programs like PARMELA,

used at Los Alamos National Labs (LANL), are now used to design electron beam

accelerators before projects are built. The ability to evaluate these designs as they

perform as a system is essential. Integrated simulations like INEX currently per-

form this role, but as the accuracy improves, so does the size of the code, and

therefore the time and money to run them. Another feature of such programs is

the large amount of input required and prodigious output produced. Both serve to

discourage casual use. A simple, quick diagnostic that accounts for the essential

physics can fill the gap between accuracy and simplicity, and in turn serve as an

accessible tool for the designer.

The effects of beam quality on the performance of the FEL can be predicted by

the initial conditions of the beam at the entrance to the undulator. Electron

accelerator simulations must keep track of the six phase-space coordinates of the

sample electrons as they travel through the beam-line components. The output of

the accelerator simulation can be used as the input for the FEL performance

evaluator. The effects of off-axis undulator fields, which lead to betatron motion

[Ref. 13], and either single or two-plane focusing are included to make the descrip-

tion complete [Ref. 14]. A simple equation that converts initial conditions into the

meaningful FEL dimensionless phase-velocity is used to produce distributions

2



which describe the important parameters of FEL operation. This can also be made

into a standard 'orm for use with other previously developed models of beam qual-

ity effects.

3



II. BACKGROUND

A. FEL COMPONENTS

The complete FEL system consists of three major sections including the

electron beam accelerator and transport section, the undulator, and the optical

section, as illustrated in Figure 1. The accelerator section is the most complex

section, and includes not only beam-line components, but auxiliary systems such as

RF power and transport, vacuum systems, beam fe-using and conditioning

components, as well as shielding and diagnostic support. As an amplifier, the FEL

magnifies a pre-existing light beam. In the amplifier configuration, the optics may

consist of a seed laser and focusing elements. As an oscillator, the FEL starts from

spontaneous emission, and builds up optical power until the losses equal the gain.

In the oscillator configuration, the optics of a resonator cavity is made up of two or

more mirrors, or may take on a variety of complex configurations. This thesis

deals almost exclusively with the interaction inside the undulator, and assumes the

electron beam is provided with the necessary parameters, and that the optical

fields already exist in well-defined transverse and longitudinal modes.

electron beam
.: , undulator

resonator mirror

Fi -ure I. Elements of a typical FEL.
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The transverse deflection of the highly relativistic electron beam in the

alternating, periodic field of the undulator leads to classical spontaneous emission

over a narrow spectrum and into a 5.mall forward cone about the longitudinal axis

[Ref. 161. Some of this radiation may be trapped inside the optical resonator, and

provide the initial field for an oscillator. The interaction of the electrons with the

combined fields of the light and undulator cause microscopic bunching on the scale

of an optical wavelength. This microscopic bunching leads to coherent emission

and optical gain [Ref. 171.

Beam quality must be sufficiently good to preclude degradation of the

microscopic bunching either through energy or angular spread. A real energy

spread causes the beam to "stretch out," because the individual electrons have

different transit times through the undulator. If the energy spread is large enough

to cause an axial spr-ad in adjacent positions which is greater than an optical

wavelength, then the gain mechanism will be adversely affected. A spread in the

injection angle has a similar deleterious effect. The angular spread translates into

a spread in longitudinal velocity as the individual electron velocities are projected

onto the undulator axis. The effective mechanism is the same as for real energy

spread and causes a longitudinal stretching that works against the microscopic

bunching needed for gain.

The electron beam needed for FEL operation may take on a wide range of

parameters depending on the use intended. Electron sources include induction

linacs, RF linacs, electron storage-rings, Van de Graaffs, and microtrons, to name a

few. Typically, the beam is provided as a series of RF pulses that vary in peak

current from 1 A up to several kA. A direct current beam is less common and

must operate at lower current because of power limitations, but may still be as

high as 10 A. The beam radius may be from less than 1 mm up to 1 cm. The

beam energy ranges from 1 MeV up to several GeV. Beam quality requirements

depend on the specific FEL parameters for reasons discussed in the previous
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paragraph. A more detailed discussion of the effect of beam quality to FEL

performance is the subject of the last chapter of this thesis. Beam parameters can

be tailored to suit the desired laser output quantities such as ultimate wavelength,

and optical power, but because of the cost and complexity, beam parameters are

essentially fixed after the initial design. The beam parameters must be combined

with the specific undulator and optics parameters to complete the design of the

laser.

The optical section for an oscillator usually consists of a resonator similar to

standard laser designs. This may be a pair of spherical mirrors aligned axially,

which sustain a transverse mode structure such as ne fundamental Gaussian

mode [Ref. 181. A typical resonator length is about 5-10 m for an undulator that

may be 1 to 3 m long. For optical wavelengths this represents a mode separation
0

of .2/2S = 0.001 A for representative FEL parameters, where X is the optical

wavelength, and S is the resonator length. The gain bandwidth is substantially

greater than this so it is not necessary to consider longitudinal boundary

conditions. Resonator lengths must be chosen, for a given wavelength, in order to

ensure that the fundamental transverse mode doesn't diverge too rapidly inside the

undulator due to diffraction. This preserves a significant overlap between the

transverse dimensions of the electron beam and the optical mode. Beam quality

must also be constrained to prevent significant divergence for the same reason.

Angular spread will cause the electron beam to diverge rapidly or limit the

minimum spot size obtainable for focusing. Both effects limit the amount of

transverse overlap between the electron beam and optical mode.

The undulator section is usually constructed of alternating magnetic pole

pieces designed to present an intense, transverse, periodic field to the incoming

highly relativistic electron beam. A typical peak field strength may be as high as a

few Tesla, and have a period of a few cm. The relativistic contraction of the

undulator period, as seen by the near light-speed electron beam, causes a Doppler

6



shift in the radiation, and is the mechanism that leads to short optical wavelength

operation. Transverse fields may be constructed in a linearly-polarized structure,

which leads to linearly-polarized light emission. As an alternative, the magnetic

field may be circularly-polarized and can be made from helical electromagnetic

windings [Ref. 19]. The helical windings have a higher peak field strength at

shorter wavelength laser operation. Undulator construction is a field in itself, and

has been the subject of much theoretical as well as experimental research. The

theory for the helical undulator has the additional advantage that the

mathematical analysis is simpler, and therefore is used as an example in many

theoretical models. The important differences between helical and linear

undulators is the major subject of Chapter III.

B. ELECTRON TRAJECTORIES INSIDE A HELICAL UNDULATOR

In order to discuss the principle of operation of the FEL, it is important to

consider the individual electron trajectories inside the undulator without light.

Typical electron beam sizes and currents are are in the Compton regime such that

the electrostatic repulsion between the negatively charged electrons have a

negligible effect. Furthermore, the beam is focused externally before entering the

undulator. Under the influence of the undulator magnetic field, the electrons will

deflect periodically from side to side, or "wiggle." The ideal form for the on-axis

helical undulator field is

..= B [cos(koz), sin(koz), 0] , (1)

were B is the peak undulator field strength, k, = 21d, is the undulator wave

number associated with the period , and z is the distance along the longitudinal

axis of the undulator. The Lorentz force law becomes

F = d.C. ) = -exffm and d(ymc 2) = 0 (2)

where y = 1141- is the Lorentz factor, m is the rest mass of the electron, e = le 1
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is the magnitude of the electron charge, M = /c, and c is the speed of light. Let

0 = A, + , where the parallel component is along the axis of the undulator, and

the perpendicular component refers to the transverse direction. Substituting the

field in (1) into (2), and separating the components gives

d(,) ffB= - - [--sin(koz),cos(kz),O , and d-Id O (3)
dtF Mc dt

We see that the electron energy, nc2, and the parallel velocity, O, are constants of

the motion. From conservation of energy, the magnitude of the transverse velocity

N must also be constant. The z motion can be written immediately as z = Alct,

where the entrance to the undulator is chosen to be at z = 0. Then, this can be

substituted into the transverse equation, which can be integrated directly. The

parallel component can be found through the coupling equation, y-2 = 1-p - 2.

Assuming perfect injection, the exact velocity components can be written as

l(t) fi K[ cos(Akct), sin(k. ct), ] , where (4a)

Al = [l-(4b)

and K = eB ) /2cC 2 is the dimensionless undulator parameter for field strength

B.

The maximum transverse deflection can be found by an additional integration

and is

-f2fi13u sin(Pk oct), -cos(Pk oCt), t] (5)

For typical FEL parameters, K = 1, 4 = 5 cm, and y= 100, this leads to an

average deflection of r = 0.1 mm, which is smaller than the typical beam radius.

Even if the deflections are too small to be visualized on the scale of the undulator,

they still are responsible for significant spontaneous emission, and FEL gain.
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The spontaneous emission mechanism is essentially classical, and can be

described by the Larmor formula giving the total power emitted from a single

electron as P, = 2e%"2/3c (in cgs) [Ref. 16]. The transverse motion is already

found, and the substitution gives P, = (8xr2/3X2-2B 2c /87c), where re = e 2/mc 2 is the

classical electron radius. This radiation is narrowband and is emitted into a small

cone about the forward axis of motion with approximate angular width = y -'. This

radiation can be trapped in the optical resonator and used to supply the starting

photons for oscillator operation. The interaction of these photons with the electron

beam in the undulator is the essential concept of FEL physics. In the amplifier

configuration, the photons are supplied by the seed laser.

C. ELECTRON INTERACTION WITH LIGHT

1. Description of Fields

The electron beam in the undulator with light present will be subject to

the combined undulator and optical fields. Some time after startup, there will be a

classical optical field in the sense that the wave's magnitude and phase can be

measured with arbitrary precision. The optical fields are taken to be

. = E [ cos(kz-t +), -- sin(kz--W +),0] , and (6a)

if, E =E[ sin(kz--W +), cos(kz--wt +), 01 , (6b)

where E is the wave amplitude, k = 2/x, is the optical wave number for

wavelength X, (o = kc is the carrier frequency, and is the optical phase. In Figure

2, the net direction of the force, found by the vector relationship (2), on an electron

depends on its location within a wavelength of light. Half the positions have a net

force that retards their motion, and therefore lead to energy loss which is taken up

in the optical field as the creation of photons. The remaining half of the positions

gain energy from the optical field.

9
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Figure 2. Vector diagram showing fields acting on the electron [Ref. 20].

Since the electron travels at slightly less than the speed of light, a

number of optical wavelengths will pass over each electron as it travels the full

length of the undulator. When exactly one optical wavelength passes over the

electron in each undulator period resonance is established. Mathematically, this

can be expressed by the conwtion

k (7)
(k +k0)
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Using the solution for 1-(1+K 2)/2-2 , for y - 1, this can be inverted to find an

expression for the resonant optical wavelength given a specific electron energy

X-= AV (l+K 2) (8)
2-?

Unless specified otherwise, this equation will be used to discuss the resultant

wavelength for FEL operation. In practice, given a specific electron energy, there

are a number of factors which determine the ultimate optical wavelength, but it is

roughly constrained to be in the vicinity of expression (8).

This relation also demonstrates some of the advantages of the FEL.

Because factors like the electron beam energy, the undulator field strength, and

the undulator period can be modified, the operating wavelength of the FEL can be

tuned over a wide range. Also, because there is no internal medium other than

electrons and co-propagating light, there is no physical limitation to the power

density of the laser. Only external components, especially the optics tend to limit

the power of operation. These are some of the most desirable features of the FEL.

2. The Wave Equation

Electrons that are close to one optical wavelength apart will experience

identical forces. Therefore, a coordinate transformation that follows an electron

with resonant velocity for the chosen wavelength is =(k+ko)z-t. This

represents the phase of the electron within, roughly, one optical wavelength. The

physical situation is identical over a period of A = 2n. A phase velocity

v = L (k +k. ) r-k I describes how much faster or slower the electron is than its

resonance velocity, where v = 0. In order to follow the growth of the optical field it

is necessary to develop a wave equation. A classical wave equation may be written

by summing the individual electron currents.

c
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where 2 V2- 1 D2

12 -- is the d'Alembertian operator, and A is the vector field

potential, and , is the current density [Ref. 16]. An appropriate vector potential is

= (Elk)[ sin(kz -ot +0), cos(kz -- t +*0), 01. Assuming, the amplitude and phase

vary slowly, and keeping only terms with single derivatives, the left hand side can

be written as

A z+ Eei

The total beam current can be represented as the sum of the single-particle

currents J =--ec iS(3)(F-i ), where i follows the trajectory of the ith particle.

Using the motion of the electron in the undulator field, the form for 4 can be

inserted. Since the physical situation over one wavelength of light in Figure 2 is

completely periodic, it is only necessary to sum over a period of X. The result is

[Ref. 17]

0 
4Ca =-j<e-> , (9)

where the complex dimensionless field envelope and current are

41rNeKLEei  j 8N (e 7rKL )2P (10)
a= 1nc2  ,j ~ c

E is the peak field strength, and p is the electron beam particle density. The open

circle denotes a time derivative with respect to the dimensionless time variable,

= ct/L, and the brackets indicate a phase averaging over the sample electrons

within a wavelength of light. If many electrons are uniformly spread in

longitudinal position, then the phase average , <e-;>, will be zero, and there will

be no optical field growth. In order to understand the FEL interaction, first it

must be understood how electrons evolve from their initial positions within a

wavelength of light.

12



3. The Pendulum Equation

To solve for the motion of electrons with light, again write the full

equations of motion, the complete Lorentz force law is

JV=A= and

Inserting the full combined fields of the undulator and optical fields, the transverse

motion with perfect injection can be found again by direct integration.

$4. = K_[ cos(koz), sin(koz), 0] - A[sin(kz-eW+ ), cos(kz-eWt+ ), 0] (11)

Y 7

where A = eE V2wnce 2, analogous to the definition of K. The energy equation is

= -e- c12)
dt mc

The form for $ can be inserted to yield the energy change equation,

y=.A cos[(k, +k )z-<t-] (13)

Using the relation Y -2 f an equation in the longitudinal variable 01 can be

written. By rewriting the equation in terms of the dimensionless variable , it can

be shown that individual electrons follow motion described by a pendulum equation
0o 0

- v = la Icos({;+*) (14)

As electrons evolve along phase-space orbits, like a pendulum, they move in phase

in such a way as to either drive or diminish the optical field through (9). Phases

which make the argument of cosine between -x2 and x/2 cause a gain in electron

energy and a corresponding loss to the optical field. The other half of the possible

phases lead to optical field growth. Using the pendulum equation it is possible to

see by mathematical means what was said earlier for a uniform distribution of

initial phases, half the electrons gain energy and half lose. But, under the

influence of the combined fields, the electrons evolve and can "bunch" at desirable

phases and cause gain. The understanding of what leads to bunching of electrons

13



on the scale of an optical wavelength is the key to understanding the FEL. The

combination of the pendulum equation and the wave equation form a complete

description of the FEL, and can be simultaneously solved to show the effects of

various initial conditions on operation.

Figure 3 shows the phase-space evolution of electrons in a helical

undulator with light present, obtained by integrating (9) and (14) [Ref. 17]. The

initial optical field is a, = 3, and the initial phase-velocity is v0 = 0 (at resonance).

The large picture shows the phase-space evolution of the sample electrons. The

dots change in color from light to dark as they travel down the undulator. The

dimensionless time variable runs from t = 0--*1. The sample electrons are initially

chosen to be uniformly distributed in . The solid line represents the separatrix

which divides phase-space into dosed and open orbits. The separatrix can be

found by an elementary analysis of the pendulum equation.

Phase-space orbits can be found from the pendulum equation, (14), by

integration. First, multiply both sides by 2v to make it a perfect differential, so

that

0 o

2vv 21a I~cos()

where the optical phase is neglected. This can be integrated to yield the equation

of the phase-space orbits

v2-v 2 = 21a I[(sin( )sin(()] , (15)

where v. and C, are the initial phase-space coordinates. The separatrix

corresponds to the phase-space path that passes through C = -n/2, and v0 = 0.

The resulting equation for the separatrix is

v, = ±421a I(sin( - )+1) , (16)

which has a peak value of Vma = ±24a a'. Points which start outside the region

enclosed by the separatrix have "open" orbits, and points inside have "closed"

14



*** V.phase space 2vlution ~
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Figure 3. Phase-space evolution for monoenergetic electrons on reso-

orbits. There are fixed points at = -x/2, 3rI2, and x/2. The point at t :rJ2 is a

stable fixed point which can be demonstrated by considering small deviations

= x/2+x, where x c The substitution of this into the pendulum equation yields
0

x = la Icoe(x/2+x) = la I cos(7,2)cos(x) - sin(x/2)sin(x)] = -Ia Isin(x)

Using the small angle approximation, sin(x) = x, the equation becomes x = -1a Ix

which gives simple harmonic motion which is stable. The points at -rj2 and 3rI2

can be shown to be unstable (Ref. 211. In Figure 3, all points start inside the

separatrix, and therefore have closed orbits. Also displayed are the gain and phase

evolution through the undulator. The gain and phase are found from solving the

wave equation, (9).
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Figure 4 shows the effect of starting above resonance. The electrons are

started with vo = 2.6, which corresponds to the maximum gain condition, which

will be demonstrated below. Some electrons are trapped in closed orbits, and

others are in open orbits. The open orbits move into the next wavelength, but

wrap around because periodic boundary conditions are used. The gain is

substantially higher and the optical phase change is less, because the electrons

bunch near x -.

m jph.. 8v. Uolution ***
JML a,-3 v,62.6

5aw . 0.15

0-5 °.......... g

-x/2 3/2 0 T I

Figure 4. Phase-space evolution for monoenergetic electrons above reso-

nance.

Assuming a uniform distribution in ;, the small signal gain can be solved

for, giving [Ref. 17]

2 - 2cos(vo )- v°csin(v° )]

Gain at the end of the undulator, r = 1, can be plotted as a function of v. for these
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conditions, and is shown in Figure 5. This shows the maximum gain occurs at

v,,=2.6. The gain spectrum is anti-symmetric about v. = 0, and is characteristic

of small signal (low laser light intensity) and low gain FELs.

**** rzain Spectrum ****

J3. a,=.3 N-50

Gain 0.1144

0.0

1 W 1-~0.06614

-0.066

-10 V0  10

Figure 5. Small signal, low gain spectrum.
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III. ELECTRON DYNAMICS IN A LINEARLY-POLARIZED

UNDLJLATOR

A. MOTION WITH NO OPTICAL FIELD

1. Equations of Motion

The previous discussion is based on the helical undulator design. As

stated earlier, there is an advantage in the analysis, because the motion is simpler.

In this section, the exact motion in the linearly-polarized undulator is found. To

construct a systematic approach, it is best to start with the motion of electrons in

the presence of only the undulator field. The optical field will be considered later,

after the method of approach has been established.

In the helical case with perfect injection, the electrons travel down the

axis of the undulator with a constant velocity, 1. The transverse motion is

constant in magnitude, but changes direction smoothly in a circular fashion. This

makes the analysis simple, because the acceleration is constant in the equations,

making it possible to solve a set of coupled differential equations. In the linear

case, the acceleration is not constant, but varies as the electrons deflect from side-

to-side in one transverse plane. This leads to difficulty in separating the equations

of motion. In order to consider the motion, first consider an ideal linearly-polarized

magnetic field on-axis

9,m =B[ 0, sin(kz), C , (17)

where B is the peak magnetic field. Since the magnetic field varies sinusoidally

over each period, the rms value is B = B i2. Assign cartesian coordinates to the

undulator with the origin at one end, the z axis along the longitudinal axis of the

undulator, and the magnetic field in the y-plane. The electron motion will be in the
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x-z plane. The equations of motion are

*±(. 0= -)p sin(koz) , (18a)

d (18b)

d eBS--sin(kz) and (18c)

0= (18d)

The x-component is a perfect derivative, and can be integrated directly to yield

0 =- "2LKcoS(ko) , (19)

7

where K = eA), /2=nc 2.. In this case, perfect injection at z = 0 corresponds to the

electron's x component of velocity at a maximum in the negative direction. The

energy is a constant of the motion, neglecting losses to spontaneous emission,

because the magnetic force acts at right angles to the electron's motion. Perfect

injection also assumes that the other transverse component [y = 0. Therefore, the

perfectly injected beam must be sent into the undulator at an angle

0 = tan-(3 1/ ,) = 0,/[. Since the longitudinal component P, = 1, then 0 = 4-2K/y.

For typical values of FEL parameters, K = 1, 7 = 100, so that 0 = 0.01 rad.

Substitution of the solution for [3, into the equation for 0, results in

O = --- ko cos(ko z )sin(koZ) (20)

This can be made into a perfect differential by multiplying both sides by 2,.

Then,

-() =koz , giving p,2 = -2.-cos2koz) + C (21)
Wi- t 72 ' 9

where C is a constant of integration that accounts for initial conditions. At z = 0,
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p2 = 1-(1+2K 2)/?, so that C = 1_y -2. After some algebra, this can be separated

into a form which can be integrated

dz =cdt
4(S2o + (2KZhj )si9(koZ)

This can be integrated and the solution found in an inverted form, that is, with t

as a function of z, as

t(z) F(OM) , (22)

where 0 = koz, M 2 = K2/(^?-1), and F is an incomplete elliptic integral of the first

kind.

2. Phase-Space Description

While this result is purely analytic, it is of restricted use, because F(OM)

is a tabulated function. The actual trajectories will be evaluated later by

numerical means. As discussed in the helical case, the important characteristic of

the electron motion is bunching on an optical scale, and so the natural choice for

description are the dimensionless phase-space variables, C = (ko +k )z -ot, and

v = L[(ko+k )0,-k]. Although there is no light present, it is still possible to make

the discussion in terms of the wavelength defined by the resonance condition (7).

In the helical case, the electrons would appear as steady points in phase-space,

(M,v) that do not evolve. In the linear case, the side-to-side undulator deflection

causes the electrons to orbit about these steady points at twice the undulator

periodicity. To illustrate this, first write the complete expression for the

longitudinal velocity

03(z) = 0; + (2KN/-)sin(koz) (23)

In the regime where (Ky)2 -l, this can be approximated by a binomial expansion.
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K 2
z)= o + K2 sin2(koz ) (24)

Over the full range of possible arguments for z, P. varies by Ap = ±K 2/2-2 . This

will cause a variation in phase velocity v by Av = ±L (k +k0 )A = 2 rNK2/(1+K 2).

For a typical value of K=1, and N=50, this means a variation of Av = ±50n during

each half period of the undulator. This is 50 times greater than the natural gain

bandwidth of 2x!

The extent of motion in C cannot be computed without an approximate

solution of the elliptical equation. A perturbation in powers of (K/y) 2 to first order

will suffice. The result is

z(t) = 'Ct + - cos(2jkoct ) + , (25)

where P, is the average value over a half-period. This can be computed

analytically by the results above, and is

= __ = K 2z= 2F( ir/2, M) - o+2-? 26

This results in a variation of Az = ±X oK2/2n-?.

C(t) can be computed directly as

C(t ) = (k +k, )z (t )- = (t )+cos(2o),t) , (27)

where (t)f= (k+ko)pzt-ot, t =K 2/2(1+K 2), and o), = Pzkoc. The variation in t is

AC = (k +k,)Az = ±K22(1+K 2). For a typical design with K = 1, A = ±1/4. For the

periodicity of 2x in , this variation has a width of WI6. This is still only a fraction

of a wavelength, so it is not expected to destroy the microscopic bunching

mechanism needed for gain. But, AC is responsible for harmonics.

A numerical solution to the phase-space motion of electrons in a linearly-

polarized undulator is shown in Figure 6. The FEL parameters used are N = 50,

X = 5 cm, y = 100, K = 1, j = 0 (not needed unless light present), and a, very small

21



(no light). Periodic boundary conditions have been used again. The motion is

symmetric, and the variations agree with the approximate values computed above.

Although the sampled electrons are equally spaced on the average, in

Figure 6 they are not actually equally spaced longitudinally as they travel through

the undulator. The electrons are at different phases in their elliptical orbits

compared to adjacent electrons. These differences are obscured by the periodic

nature of the orbits, however, it can be observed by watching the simulation as it

runs. The transverse deflection slows them down, and they tend to bunch as they

reach their maximum deflection. They spread out again as they move back to the

axis. This "artificial" bunching, in the sense that it does not come from the optical

fields, requires some care in selecting the electron's initial conditions. It does not

suffice to take a uniform distribution as a starting point. The electrons must be

presented to the undulator one at a time, just as it occurs in the real beam. This

requires an extreme amount of precision until all the sample electrons are in place,

then the simulation can proceed as usual. Failure to provide for this effect can

lead to a non-physical pre-bunching which would create false gain. Also, it was

found that great care needed to be taken in the calculations, because of the fine

scales involved, which were on the order of one part in a million. Although the

electrons move above and below resonance by large amounts, they must return to

the exact same conditions after each half-period of the undulator. In practice, to

calculate this requires double precision throughout, and a fourth-order Runge-

Kutta-Nystrom integration technique [Ref. 23].
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* *** YM Phase space Evolution ***

X=50 ) .,Sca Yo10 1a
jinO aomle--lOv -oO
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V

-200 _________________________

-x/2 3/2

Figure 6. Exact phase-space trajectories of electrons in a linearly-
polarized undulator with no light present. The optical wavelength is
determined by the resonance condition.

B. MOTION IN THE PRESENCE OF OPTICAL FIELDS

1. Derivation of the Exact Equations of Motion in Ideal Fieldsj

Assume now that there is an actual optical field present, due either to a
seed laser (amplifier), or by captured spontaneous emission (oscillator). In the case
of the oscillator, with the assumption of plane-waves, the fields must have the
same polarization as the motion of the electron. The far-field radiation will be due
solely to the acceleration fields, in which case, the electric field vector will be in the
same plane as the electron's motion, and the magnetic field at right angles to it.
Fields that meet all of these requirements are
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4R = E [ cos(kz-cot + ), 0, 0] and ff4 = E [ 0, cos(kz -W +), 0] , (28)

where E is the electric field magnitude, k = 2riA. is the optical wavenumber for

wavelength X, (0 is the carrier frequency, and 0 is the optical phase. The equations

of motion are

=)-eEcos(kz-ot-4) + ep[Bsin(k) +Ecos(kz-c-i4) , (29a)

di

) =0 (29b)

d-a()mc = -e ,[Bsin(kz) + Ecos(kz- 4 )] ,and (29c)

di
- )cos(kz-Wot (29d)

The transverse x-component equation can be written as
( /2Acos( ) +-2Ksin()O (30)

where K=eX0I2cc 2, A =eEJ2vUnc2, O=koz, O=koi, 4=kz--ot+4, and

i= "-. Note that the time derivative of the optical phase is ignored, because

low gain is assumed. (30) is a perfect derivative, and can be integrated directly to

give

P. = -& 1"cos(O) + -2Asin(w) (31)

Y Y

where perfect injection has been assumed. This allows an exact expression for the

energy change to be found as

2o= KA cos(O)cos(WV) -A 2in(V)cos(V) (32)

These two equations, (31) and (32), along with f 2 = 1- [ are sufficient to find

a differential equation for the z-component. After some rearrangement, the

equation reads
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10.. = ' a A Pzj - l )s in ( 2 V)+ K A f -(Pz, 2
)cos(O+V)-K f +(O, )cos(O-V+o K 2sin(20) )

2 1+2K 2COs 2()-4KA cos(O)in(4f)+2A 2sin2(%p)

where o. = k.c and f+ = wo ±o)(0, -1). Without light, A=0, this reduces to the

equation of motion with the undulator fields alone, (20), and leads to the elliptic

functions previously derived. The complete equation as it appears cannot be solved

analytically. As an approximation, (33) can be shown to reduce to the pendulum

equation in the regime where K/y is small.

2. Pendulum Equation for the Linearly-Polarized FEL

In the equation for the energy change y, consider the term A 2 compared

to KA. The value of A depends on the optical field, a, which is limited by

saturation. The strongest optical field forces the electrons into about one

synchrotron oscillation during their pass through the undulator. Synchrotron

motion is the periodic oscillation in the longitudinal direction as compared to

betatron motion which is in the transverse direction.

The analysis of the phase-space motion shows that there is a stable fixed

point at = x/2. The electrons in closed orbits follow nearly circular paths about

the stable fixed point. Examine small deviations = rc2+x, where x -c 7.
00

Substitution of this form into the pendulum equation yields x = la Icos(72+x).

Use the trigonometric identity cos~rj2+x) = cos(7/2)cos(x )-sin(rJ2)sin(x) = -x. This
00

gives a harmonic equation x = -1a Ix = -v,2x, where v. = ffi is the dimensionless

synchrotron frequency. The assumption of approximately one synchrotron

oscillation during a pass through the undulator implies that v, = 27 * la I = 4X2.

If this estimate for strong fields is substituted into the definition of la I,

then

la It 8icKLNA -4,2 (34)

Using the resonance equation . = ,(1+K 2)/2, we find that
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A 1 (1+K 2)
K 4N 2  K 2

For K=1, A/K = 1/2N 2, so that even for a small number of periods, say, N110, the

ratio of terms is limited to A/K < 1/200. For more conventional designs, the ratio

is even smaller yet, and therefore, the effect of neglecting the A 2 term is minimal.

It is now possible to write the approximate energy equation as

7 = 2!AKcos(O)cos(w) (36)

By use of a trigonometric identity [Ref. 23, it can be rewritten in a way which

separates the fast and slowly evolving terms

Y = AK[cos(W+O) + cos(W-0)] (37)

The arguments can be rewritten as

m+eO=(k+ko)z(t)-t =(t) and iV-O=(k+ko )z(t)-ct-2k t = (t)-2o

From (27), +O = Z(t )+4cos(20), and -- = (t )+cos(20)-20. The cosine terms can

be expanded into products of slowly-varying and fast-varying terms by applying

another trigonometric identity so that

cos(V+O) = cos( )cos(tcos(20)) - sin(Z)sin(tcos(20) , and

cos(W--O) = cos(Z)cos(20-4cos(20)) + sin( )sin(20- cos(20))

These terms can be averaged over a period of the undulator, assuming that

varies slowly and its value remains essentially constant over one period. Over one

period, the argument 0 varies from 0 to 2x. For an arbitrary function of 0, the

average value over one undulator period is

1 2z

The average energy change rate then can be evaluated directly from the following

integrals [Ref. 23]:
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122

L cos(4cos(2e))d e = J (4) , (38a)

2x cos(2--cos(2e))d0 = -J 1() , (38b)

12z
-sin(cos(20))d 0 = 0 , and (38c)

- sin(20-4cos(20))d 0= 0 , (38d)

where Jo and J1 are zeroth and first-order ordinary Bessel functions. Substitution

of these integrals into the averaged energy rate of change equation gives the

following result [Ref. 61

< 7> = -- A()-JA(*]cs(+0) (39)

This differs from the helical case only in the replacement of K by K[Jo(4)-J( )].

The argument 4 varies from zero up to maximum value of 1/2. The Bessel function

coefficient therefore varies from a value of 1 at K=0, down to 0.72 as K-4oo. This

can be carried through everywhere K appears, and therefore, it is the only

modification necessary to derive the pendulum equation for the linearly-polarized

undulator. The slowly-evolving phase-space motion in the linearly-polarized

undulator is then
00

ff= la Icos(+) , (40)

where la I = 4xNeK[Jo(4)-JI(4)lLE /MC 2. All of the previous results from the

phase-space evolution in the helical undulator can be used to describe the linearly-

polarized undulator.

While, this result is essentially correct in the regime where K/y is small,

this "standard" derivation has a number of mathematical problems. Namely, a

number of factors were assumed to be essentially constant over one period of the

undulator. Secondly, approximate solutions to the z motion are used from the
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"no-light" solution obtained in the earlier section. This cannot be complete because

the effect of he light on the motion is neglected. This is not a rigorous

perturbation scueme, because the end result contains all powers of the optical field

in the trigonometric argument in . Other derivations proceed along the same

lines, and while more sophisticated, suffer from the same inconsistency. For this

reason, it is important to return to the exact differential equation (33), and seek an

alternative means of solution. A way of accomplishing this with a minimum of

difficulty is numerical simulation. Since (33) cannot be solved rigorously, not only

is numerical simulation easier, it is more appropriate and can extend the solution

into regimes where the K/y -c 1 condition is not met.

C. NUMERICAL SOLUTION TO THE EXACT EQUATIONS OF MOTION

1. Time-Averaged Phase-Space Trajectories

Equation (33) can be solved exactly by numerical means. This, however,

is not a complete description of an FEL because the field evolution must also be

included. Because of this necessity, the solution shall be restricted to the low gain

case such that the optical field evolution can be described by the slowly-varying

wave equation (9), and where the time derivative of the optical phase 0 can be

ignored in the Lorentz force equation. There are, however, no restrictions on the

values of K and y. The exact motion can be found by integrating (33), and

displaying the results in the traditional phase-space description (C,v), which was

developed earlier.

Figure 7 illustrates the phase-space motion of a single electron in the

presence of an optical field. The FEL parameters used are chosen to be

illustrative, and do not represent a specific FEL design. In particular, the number

of periods, N = 3, is chosen to limit the number of "loops" in the picture so that the

motion would be clear. The optical field, la I = 3, is below saturation, and large
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enough to cause noticeable motion. The current, j = 1, was chosen to be in the low

gain regime, so that the model conditions would be met. The motion demonstrates

the same fast oscillation previously described. The point about which the electron

oscillates, however, evolves in a manner similar to the the way the electrons in the

helical undulator did in the presence of optical fields. This suggests a reasonable

means for comparison of the numerical solution to the approximate analytical

result that led to a modified pendulum equation (40). If the center point of the fast

oscillations can be followed, then the equation of motion of the center should

resemble the solution to the pendulum equation. This can provide a validation of

the approximate results, and of the Bessel function coupling coefficient, J ()-J A).

*** FI l hase Space Zvolution ***

M-3 1.mcm yom40 Mal

1,1 a&-3 Vo,0
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-12.F . _
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-x/2 3x/2

V :,
+ . 0* = 0 0

" •0

-x/231c/2

Figure 7. Exact numerical solution to motion with light present.

The center of the fast oscillations can be determined by the time-averaged

phase-space coordinates over each period of the fast motion. The fast motion is

caused by undulator deflection, so that the fast oscillation has a period of exactly
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half the undulator period. This period can be found exactly, because the average

longitudinal velocity without light is known exactly, either from (26) or determined

numerically. Figure 8 shows the results of half-period averaging of the exact

phase-space motion with light present. As can be seen easily, the averaged motion

follows the exact evolution. The fast motion doesn't need to be followed within

each period, because the optical fields evolve slowly over several periods. The

phase-space trajectories do not depend on the fast motion, but the averaged,

slowly-evolving motion. Therefore the fast motion is less-interesting, but has the

undesired property that it covers a much greater scale than the slow motion.

There is no loss of generality in following, but omitting to display, the fast motion.

The optical fields depend only on the slow motion which can be put into the wave

equation (9). Figure 9 shows the same situation as Figure 8, but omits the fast

display.

U*** r Paae spwe rvoluton ***
3 0mlCM yo40 O 1

J-1 &aIf3 vO0O
12

40q1C0

3r0
A 0 0

-12 
3x/2

Figure 8. Exact fast motion and slow time-averaged motion.
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Figure 9. Slow time-averaged motion with fast oscillation omitted.

2. Comparison with the Modified Pendulum Equation

It is now possible to use this method to solve for the evolution of a

uniform distribution sampling of electrons in phase, and use the results to follow

their evolution in phase-space. Figure 10 shows the case with twenty sample

electrons, which are equally spaced in time as they enter the undulator, and are at

the exact resonance energy. As it appears, they follow trajectories that could be

described by solving the pendulum equation.

This can be compared directly to the numerical solution of the pendulum

equation in Figure 11 directly below it. The motion has the same general features,

but does not have the same amplitude. The Bessel function coupling coefficient can

accunt for the difference. For this case, K = 1, the argument of the Bessel

functions, =K 2 /2(1+K2 ) = 1/4. This yields as factor J.(4)-J( ) = 0.86. This
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factor modifies two parameters: the optical field, ao, and tn, current j. With the

substitutions, a --* a [Jo (4)-J 1 (t)] and . - j[Jo(t)-J()] 2, the new parameters

become a. = 2.6, and j = 0.71. Figure 12 is the numerical solution of the

pendulum equation using the Bessel function coupling coefficient modifications.

The motion is now virtually indistinguishable from the exact solution in Figure 10.

For these parameters, the Bessel function coupling coefficient modification to the

pendulum equation is an accurate mod~A to the exact time-averaged phase-space

motion in the linearly-polarized undulator.

M** FrL Phase Space Zvolution ***

1=10 x0olcm To=40 K=I
J=1 ,,%=3 Vo6=0 a00

0.1

--x/2 3x/2 0 1

Figure 10. Exact time-average numerical solution for linear undulator

with electrons exactly on resonance, and uniform longitudinal distribu-

tion.
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*** IM Phase space Zvolution ***

J= &= vrn0 K=10

0.1

-51H
Figure 11. Numerical solution to the pendulum equation with identical

FEL parameters.

3. Range of Validity for J0 (t)-J1()

-Although the success of modeling the time-averaged exact motion with

the Bessel function coupling coefficient modification to the pendulum equation is

encouraging, it has only been demonstrated in a regime where K/y is small. This,

however, was precisely where the approximate analytical solution could be found.

Now the question arises, what is the range of validity for the approximate result?

* Previously, there have been few means available to answer this question. The

numerical solution of (33) with time-averaging provides a visual means for

comparison. Just like what was done previously, different values of K/y can be

used, and compared to the numerical solution of the Bessel function coupling

coefficient modified pendulum equation. If the motion is identical, then the results

are compatible.
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*** FZL Phase Space Evolution**
j=0,3. A-2.6 v,-0 =10
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Figure 12. Numerical solution to the pendulum equation with Bessel

function coupling coefficient modifications to a. and j.

However, K/y cannot be chosen to be arbitrarily large. The physical

significance of K/y can be seen from the previous results with no light present. The

larger the magnetic field, the larger is the transverse deflection of the beam in the

undulator. This in turn reduces the longitudinal component of velocity. At the

most extreme, the deflection can completely turn the beam around, and no

electrons will pass through the undulator. If y in turn is made larger, the beam

will still have enough energy to make it past the undulator deflection. A limiting

case can be found by setting J, f 1-(1+2K ) 2 = 0. For a given value of K, the

minimum energy needed to make it through the undulator is y2m = 2K2+1. For an

example of K = 1, this leads to y¥. = 43, and Kt = 11/,3 = 0.58.

At low energies that are above y.,, the resulting deflection may cause

the beam to transition from the relativistic regime. In phase-space, this will cause
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some degree of asymmetry. In Figure 13, K = 1 and y = 2, and the optical field is

a. = 0. The resulting orbits without any light present are highly asymmetric

because 0, varies at the top and bottom. This suggests that this regime may be in

clear violation of some of the assumptions used in the standard derivation of (40).

The electron's velocity in the z direction can not be treated as a constant with

value- p. S 1. The precise variation of 0, must be included, making it even more

difficult to obtain simple integral relations that lead to the Bessel function coupling

coefficients. An exact result is impossible, not only in practice, but for reasons

discussed earlier, the method cannot be considered strictly rigorous.

A*" Sace Zvolution **
Na1 Xmbca y1 .8 .. :

50

V
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Figure 13. Phase-space orbits without light in large K/y regime.

Given that the analytical difficulties cannot be resolved, the range of

validity for the Bessel function coupling coefficient can be evaluated by comparison

with simulations. The region of large K/y is the most likely regime for discrepancy.

Figure 14 shows the phase-space evolution with light in the high K/y regime. Not
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only do the orbits take on a different shape, but the electrons appear to travel

further along their orbits than before. An unexpected benefit of such motion is

improved gain compared to the low K/y model using the pendulum equation. Since

the pendulum equation model has no dependence on K/y, it is immediately

apparent that the two models disagree. The disagreement cannot be resolved by

replacing the Bessel function coupling coefficient with some more accurate

functional form, which was the original aim of this research. A more fundamental

problem lies in the pendulum equation description.

***VZL :Phaa space Xvolution ***
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Figure 14. Exact averaged phase-space trajectories for the linearly-

polarized undulator in the large Kty regime.

In order to fully understand what happens, it is necessary to return to

the helical undulator. Theoretically, this model has none of the complications that

plague the linear case. The helical case can be solved exactly with only the

assumption of low gain, just as (33) was derived. The result is
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3 AK[oo+o)(1-P3 )]cos[(k +ko <z +C (41)
- = I+K 2+A 2-2AKsin[(k +k )z -W +0]

This result can be solved numerically, transformed directly into phase-space

variables and displayed as in the linear case. The complication of averaging is

unnecessary. Figure 15 shows a large K/y case in a helical undulator. This, too,

does not agree with the pendulum equation, shown in Figure 12, which is

independent of y. The assumptions, K/y <<1 and y = constant, used to derive the

pendulum equation do not apply in this regime, and the pendulum equation is not

the appropriate description.

*** M,, lhae Spacs 3o.ution:***
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Figure 15. Phase-space trajectories in a helical undulator in the large

Kty regime.

The result that the pendulum equation itself doesn't apply in the large

Kty regime supports the contention that an analytical result for all regimes is an

impossible goal. The validity of the Bessel function coupling coefficient doesn't
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extend into this regime, not because it is an inaccurate functional form, but

because there is no appropriate coupling coefficient concept. That would require

the same basic equation, but with a different constant multiplicative factor. The

basic equation itself is inadequate.

If the value of KIy is chosen such that the pendulum equation model is

an accurate description for the helical case, the accuracy of the linear model with

the Bessel function coupling coefficient can be evaluated. By exploration with

different parameters, Kly = 1/4 is the limit of validity for the pendulum equation in

the helical case. With identical parameters, the linear model is compared to the

pendulum equation with the Bessel function coupling coefficient. In Figure 16, the

result for the limiting case can be seen. The Bessel function coupling coefficient

accurately compares with the exact solution. This leads to a surprising conclusion:

The Bessel function coupling coefficient is accurate in all regimes of Kly where the

pendulum equation itself can be said to apply. The conditions required to make

the assumptions invalid, also change the basic physics involved. If a restriction is

made to regimes where the pendulum equation can be used, then the Bessel

function coupling coefficient compares extremely well with the exact solution.

Outside this regime, then a more fundamental equation like (33) or (41) must be

used instead of the pendulum equation.

3
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Figure 16. Exact averaged phase-space trajectories in the linearly-

polarized undulator at the limit of validity for the pendulum equation.
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IV. EVALUATING FEL PERFORMANCE FROM
ACCELERATOR SIMULATIONS

A. ACCELERATOR SIMLIATIONS

While accelerator technology and simulation is highly advanced, integration of

this technology with FEL technology has often lagged behind. This is partly

because there is no concise means of describing what the effect of beam design will

be on a specific FEL design. A recent trend has been to develop integrated

computer models that incorporate both accelerator simulation and FEL

simulations. The INEX code at Los Alamos National Lab (LANL) was designed to

integrate PARMELA accelerator and FELEX free electron laser codes. This

accomplishment can accurately model the entire FEL system from beam creation at

the cathode to the laser output. The price of this achievement has been

complexity. Both PARMELA and FELEX require a vast amount of input to specify

all the components. The INEX code is difficult to run, takes a long time on a

CRAY computer, and produces voluminous output. This is painstaking and costly

which makes it of value only in the characterization of mature designs. In practice,

accelerator and FEL designs are pursued independently. Beam quality

requirements are usually specified only vaguely, and are often at the limit of

current technology.

A simple code is developed for use with the accelerator simulation. It allows

quick, and easy interpretation of the beam's performance as an FEL There is a

sacrifice of accuracy, but it is of improved use as a tool for the designer, who can

test an accelerator design on specific FEL designs. This is an improvement over

vague beam quality specifications which are independent of specific FEL

parameters.
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B. BEAM QUALITY EFFECTS ON UNDULATOR TRAJECTORIES

As was seen in the preceding chapter, the motion of individual electrons

inside the undulator can be solved by approximate analytical and exact numerical

means. The exact trajectory of an individual electron can be determined by its

initial conditions. This leads to the important premise that beam quality manifests

itself as a spread in initial conditions. The final exit conditions from the

accelerator simulation are the initial conditions for the FEL undulator. Therefore,

the six phase-space coordinates of each of the sample electrons provides the data

base for beam quality predictions. For Ne electrons, there will be 6Ne coordinates.

Typical simulations use up to 20,000 sample electrons, and deal with 120,000

coordinates.

An accepted measure of beam quality from the accelerator community is

emittance. It has several definitions and has been the source of confusion in many

instances. Emittance, as it will be used throughout this chapter, is defined as the

transverse rms emittance [Ref. 241

eros= 4[<x2><x'2> - <x,>2] (42)

where x is a coordinate, and x' = dx/dz. The < > denotes an average value over

the sample electrons. For extremely relativistic beams, x' corresponds to an angle

with the longitudinal axis, 0, = [x/p. The transverse emittance has two

components, E and e,, each defined by (42). The combined transverse emittance

can be found as E = qiT. High energies make this number lower due to

relativistic effects, so a normalized emittance can be defined by 4-orm = YE. This

will be explicitly stated when used. Another characterization of emittance is the

area enclosed by an ellipse in phase-space that contains a certain percentage of the

sample electrons. An example is the "90%" emittance, £9O [Ref. 25], which is the

area of the ellipse which encloses 90% of the sample electrons. In practice, the 90%

emittance is easier to measure than e,,,. They are related but depend on the
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specifics of the distributions to be quantitatively related (Ref. 261.

The effect of initial conditions on trajectories in the undulator can be found by

approximate analytical results. First, introduce the additional complication of

non-ideal fields. This is included because it is a common feature, especially in

linearly-polarized undulators. The magnetic field of the undulator can be

represented by

E' = B [ 0, sin(koz )cosh(koy), cos(koz )sinh(koy)] , (43)

where k. = 2x/X, is the undulator wave number, and X. is the undulator period

[13]. This assumption correctly accounts for off-axis fields, with their increasing

magnitude towards the magnetic pole pieces. This is also more realistic than (17),

because it is a solution to the Maxwell equations for a static field whereas (17) was

not. Sometimes the pole pieces are shaped to provide a similar field structure in

the other transverse direction because of the desirable focusing properties [Ref. 14].

This is called two-plane focusing, but will be ignored here. It is a minor matter,

however, to add it to the resulting code.

The motion of the electrons can be found in a similar manner as the previous

chapter. The effect of beam quality can be found by examining the electron

trajectories without significant effect from light. The wavelength of light will be

assumed to be defined by the resonance condition, so that the motion can be

discussed with respect to the meaningful phase-space coordinates introduced

earlier, ( ,v). The Lorentz force equation gives the following component equations
-eB

= cos(koz ) sinh(koy) - sin(ko )cosh(koy)] , (44a)

xeB 2 coS(koZ )sinh(ky), and (44b)

= -eB sin(kZ )osh(koy) (44c)

The x component is a perfect derivative and can be integrated immediately
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(y ,z) = I3x (0) + 42Kcosh(koy )[1-cos(koz )I

where K = eff,/21nc 2 , and ft,(0) is the P, at z = 0. For nearly perfect injection,

there is little correction from treating P,(O) = 4-K/y. Therefore, the x component

can be written as

3, = -=2f2 Kcosh(koy)cos(koz) (45)
Y

Substituting (45) into (44b) gives

-2cko K2cos2(koz )sinh(2koy)

y2

The fast oscillating motion in the cos(k. z ) term is uninteresting so it is more useful

to take the average motion over several periods of the undulator. The averaged

equation is
1 ," cK~k0

. = - 2k, sinh(2koy)

For small deflections from the z-axis, use the small angle approximation

sinh(2kAy) = 2koy, so that

c 2K 2ko
Y =- - y

This describes simple harmonic motion in the y-z plane which is called betatron

motion. Using the variable r = ctIL, this can be rewritten in dimensionless form
y (46)

where the open circles denote derivative with respect to r, and CoP = 2r, VK/Y is the

dimensionless betatron frequency.

The exact betatron motion is determined by the initial conditions. The

solution for the y-component is
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Y (r) = Y cos(OP) + L ysin( ) , (47)

where y0 is the initial y position, L is the undulator length, and 0y is the initial

angle with respect to the z axis [Ref. 17]. The betatron motion causes a periodic

deflection in the undulator similar to the periodic deflection in the x direction but

with much longer period. Because the motion is coupled by conservation of energy

through y-2 = I- 10 - gy- 02, the deflection in the y direction causes changes in

P. Changes in the x position have no effect without two-plane focusing. A change

in the angle 0, adds a constant value to P3. The approximate average z motion is

= 1- L-2(1+K2) _ 1(02( Y02 _1 2 (48)2  2 'j

where 02= 02+)2. The effect on v can be computed from the definition

V = L [(k +ko)N -k ]. If this definition is taken as a transformation then for each

sample electron there will be an associated phase velocity given by

v. k ok)[1- (1+K2)1 12 yj  0j2  k 1

2.? 2 -L 2 (k k, ) I

where j denotes the coordinates of the ja electron. The real resonance condition

is defined by

1N

V -= -- 0VJ ---- 0 (50)
eO0

This can be satisfied by a unique value of k which corresponds to the resonant

optical wavelength for this electron beam.

Now, a complete, dimensionless description can be made which expresses the

effect of initial conditions on the phase velocity using (49). A sampling of electrons

can be used to make a distribution plot of phase velocity, which in turn can be used

as a diagnostic for FEL performance.
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C. PHASE VELOCITY DISTRIBUTIONS FROM INITIAL CONDITIONS

Using equation (49) as a formula for computing the effect of initial conditions

on the phase velocity, each electron can be assigned a value, vj, as a function of its

six phase space coordinates. This can be made into a distribution for each slippage

distance, the distance that light moves ahead of the electrons, since that is the

relevant interaction length in the micropulse. However, there may be thousands of

slippage lengths in a long micropulse with a short optical wavelength, thereby

making the number of plots prohibitive. A short characterization of each slippage

length may be given by the centroid and rms width of each distribution. If the

basic shape of the individual distributions are roughly the same, then this will be a

useful simplification.

Figure 17 shows a typical slippage-length phase-velocity distribution. The

resonance parameter refers to v. Since exact resonance is defined by v = 0, this is

effectively a plot of Av. The sample electrons came from the PARMELA simulation

of an accelerator design for a compact FEL under development at LANL. Beam

parameters are: peak current, I = 400A; beam energy, ymcw 2 = 15MeV; and pulse

length, At = 16ps. The FEL parameters are: undulator period, X. = 0.9cm; number

of periods, N = 15; and undulator parameter, K = 0.7. The resonance condition,

(50), gives an optical wavelength of 0.7pm. Beam quality was on the average

. = 10z mm-mrad, and energy spread Aly/= 0.07%.

The shape of Figure 17 is highly asymmetric. This can be understood in

terms of dividing the effects into two broad categories: transverse position and

angle, and real energy spread. Any combination of initial transverse phase space

coordinates will translate into a reduction in the phase velocity. Specifically, the

resulting betatron oscillation constitutes a reduction in the parallel component of

velocity, and therefore results in a reduction of the phase velocity. Real energy

spread may, or may not, have a well defined shape. Most typically, whatever

effects that result from unequal acceleration tend to be symmetric. Therefore, a
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Figure 17. Phase velocity distribution in one slippage distance.

beam dominated by real energy spread would have a more, or less symmetric

distribution while a beam dominated by angular divergence would show

pronounced inhomogeneous broadening. An approximation to the distribution duL

solely to angular divergence is a straight exponential e '. The beam in Figure 17

is an example of a case dominated by angular divergence. For the beam used, the

real energy spread is A/y = 0.07%, and the transverse rms emittance is

e= 1Ox mm-mrad. Without specific FEL parameters, these quantities alone cannot

be interpreted usefully.

Figure 18 shows the rms width of the distribution in each slippage distance

as a function of the position along the micropulse. In the center of the micropulse,

the value remains essentially steady at Av = 2.0. This value must be compared to

the relevant small-signal gain bandwidth, Av =i, as shown in Figure 5. This

distribution would fall entirely within the gain bandwidth, and therefore, one
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would not expect any serious gain degradation. This is not the only comparison

that can be made. It is also possible to take the resulting distributions and use

them with the theories of beam quality effects. Namely, it is a simple extension to

take the results and apply them to the theory of Blau and Colson and find a

characteristic function that can be used in the "integral equation" [Ref. 27]. Since

this area has already been well explored, it is useful to take advantage of the

previous work as much as possible. The phase velocity distributions provide the

bridge to this useful area.
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Figure 18. Phase velocity distribution rms variation as a function of position

along the micropulse.
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The shape of figure 18 also shows a dramatic drop in beam quality at the end

of the micropulse. However, trends in this data must be compared to the particle

density. Large variations at the ends are mitigated by the relatively low currents

there. Figure 19 shows how particle density varies along the micropulse. The ends

have relatively low current, and therefore, temper the effects of beam quality there.
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Figure 19. Particle density as a function of position in the micropulse.

The way phase-space coordinates are manipulated by accelerator beam-line

components and focusing elements can dramatically affect FEL performance even

though the inherent beam quality remains the same. Liouville's theorem

guarantees that the six-dimensional phase-space hypervolume will remain constant

for conservative forces [Refs. 21,251. Because the beam is highly relativistic, only

the transverse phase-space distribution can change. Liouville's theorem then

predicts that the transverse emittance is a constant of motion. Although the

emittance is constant, different combinations of the phase-space coordinates do not
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guarantee the same effect in the FEL. It has been shown that transverse phase-

space coordinates must be "matched" to achieve the best performance for a given

inherent beam quality. The matching condition [Ref 26] is

2_ EL (51)

While this can be done for any small fraction of the micropulse, it cannot be

achieved for the entire beam simultaneously. Some middle ground must be chosen

to hopefully achieve optimum FEL performance.

This also points out the inaccuracy of using a single transverse emittance

value for the entire pulse. If we look at the transverse emittance at any one

slippage length, it remains at a relatively steady value, consistent with Liouville's

theorem. However, the actual phase space plots may be distributed in radically

different ways. Although the plots take up the same area, an ellipse enclosing a

majority of the points can be highly eccentric. Since emittance measures only the

area, a matched ellipse by (51) has the same emittance as a highly eccentric

ellipse, although the later doesn't satisfy (51). The unmatched section may

oscillate on the whole, whereas the matched section is balanced and remains in the

same distribution throughout. Transverse emittance as a function of longitudinal

position in the micropulse is shown in Figure 20, and provides no information

about how the individual sections are matched. If all the slippage lengths are

projected onto the same plot, the resulting emittance may be much greater than

any individual slice. This is because there may be large areas of non-overlapping

coverage that together enclose a larger area than any one slice. A single number

that measures the transverse emittance of the beam cannot account for any of

these effects, nor does the plot of emittance as a function of position in the

micropulse. The only way to incorporate all of these considerations is to examine

the phase velocity distribution functions at each slice, or more simply a plot of the

rms width of these distributions as a function of position.
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Figure 20. Transverse emittance as a function of position in the micropulse.

In addition to the rms width of the distributions, the maximum or centroid of

the distribution may vary from slippage distance to slippage distance. Figure 21

illustrates the result obtained from the accelerator design under review. Again,

there is a strong variation at the ends. The same argument presented previously

applies to the extreme variation at the ends. However, there may be a systematic

variation along the entire length of the micropulse. In systems where the slippage

length is short compared to the micropuse, this may menifest itself as a temporal

frequency variation in the optical pulse. However, this effect is not limited to a

frequency "chirp," but the details of how this works in short pulse, long slippage

distance systems which account for collective effects has not yet been addressed.
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Figure 21. Variation of phase velocity along micropulse.

In summary, the six phase-space coordinates of all the sample electrons can

be put into a nominal number of plots that describe much of the essential FEL

physics. The particle density show what weight to give the various effects. The

average phase velocity describes any systematic variation in the frequency in the

optical pulse, but slippage length communication must be considered. The width of

the phase velocity -distribution along the micropulse most clearly illustrates the

beam quality effects, and can be used with any number of well established theories.

Various standard quantities can be computed for comparison to the more

frequently available measurements, for example, those obtained by experiment.

And finally, this program can easily recommend values for beam matching

parameters.
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