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ABSTRACT

The performance of an Af-ary orthogonal frequency-shift keying (MFSK) non-

coherent communication system employing fast frequency-hopped spread spectrum

waveforms transmitted over a frequency-nonselective, slowly fading channel with

partial-band interference is analyzed. A procedure referred to as noise-normalization

combining is employed by the system receiver to minimize partial-band interference

effects. Each hop is assumed to fade independently. The partial-band interference is

modeled as a Gaussian process. Both the signal and the partial-band interference are

assumed to be affected by the fading channel which is modeled as Rician. The effect

of fading of the partial-band interference on worst-case receiver performance is rela-

tively minor. When there is no signal fading or when the signal fading is Rician, then

the counter-intuitive result of poorer receiver performance when the partial-band in-

terference experiences fading is obtained. This effect is most pronounced when the

signal does not fade and the partial-band interference experiences Rayleigh fading.
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I. INTRODUCTION

Spread spectrum is a communication modulation technique used both for

commercial and military communications. The commercial users are primarily con-

cerned with multiple access to the same frequency bandwidth due to bandwidth

limitations. The military users are primarily concerned with transmission security.

Transmission security includes the reduction of a hostile user's ability to intercept

the transmission, to detect the transmission, or to jam the transmission [1, 2].

Direct sequence, frequency-hopping, and time-hopping are common spread

spectrum techniques; direct sequence, frequency-hopping, and hybrid direct se-

quence, frequency-hopped systems are the most commonly used. Direct sequence

spread spectrum modulation affords a low probability of detection by spreading the

signal power over a much wider bandwidth. In frequency-hopping spread spectrum

modulation, the carrier frequency is continually switched pseudorandomly over a

large bandwidth resulting in a low probability of interception. Both of these types

of spread spectrum systems reduce the effectiveness of hostile jamming. Hybrid

direct sequence, frequency- hopped systems combine direct sequence and frequency-

hopping by generating a direct sequence signal that is then frequency-hopped. Hy-

brid systems are capable of a wider bandwidth than can be obtained by either

system alone and offer both low probability of detection and low probability of in-

terception. This combination of characteristics is classified as low probability of

exploitation [2, 3, 4].

For a frequency- hopped spread spectrum system, if more than one symbol is

transmitted per frequency hop, the system is classified as a slow frequency-hopped

system. If the hop rate is equal to or greater than the symbol rate, producing one

1



or more hop per symbol, the system is classified as fast frequency-hopped. Fast

frequency-hopped spread spectrum signals reduce a jammer's ability to interfere

with the signal's transmission. Ideally, the communication must seem complex and

random to the jammer and completely deterministic to the intended receiver. A

block diagram of a frequency-hopping system is shown in Fig. 1 [2] [3, 4, 5].

Binary or M-ary frequency-shift keying (FSK) is most frequently used with

frequency-hopping spread spectrum, although other modulations such as binary

phase-shift keying could in principle be employed. Typically phase recovery is im-

practical for modern frequency-hopped spread spectrum systems, with the result

that only modulation schemes that can be demodulated noncoherently are employed.

In contrast, direct sequence spread spectrum systems typically use either binary

phase-shift keying (BPSK) or quadrature phase-shift keying (QPSK) and coherent

detection.

In FSK the data determines the frequency of the signal sent as indicated in

sm (t) = A cos [2tt (fc + mA/) t] for < t < T

where m = 0, 1,2, • • • ,M — 1

A/ = frequency separation (1)

fi

= — for orthogonal noncoherent FSK, n = 1, 2, 3, •

The symbol energy, Es , is

E3 =
f

T
s
2

m (t)dt
Jo

= I A 2
cos

2
[2tt (fc + mA/) t] dt

Jo

T

(2)
A*_ f sin[47r(/c + mA/)*r
2 1 47r(/c + mA/)



A 2T f sin[47r(/c + mA/)r]

2 1 47r(/c + mA/)

A 2T / 1

(assuming fc > — or A/ = — , n = 1,2,3, • •

-J2

The number of bits required to represent a Af-ary symbol is k, where k

log 2 M [3]. Thus, Es is equal to k times the bit energy, E^. The symbol rate. /?,, is

equal to the bit rate, Rt,, divided by k [2].

The transmitted signal might be reflected off surrounding objects as it travels

to the receiver either in addition to or in place of a direct line-of-sight signal path.

Therefore, the receiver may pick up a direct component of the signal, i.e.. from

the line-of-sight path and an indirect component from a reflected path as shown in

Fig. 2. The indirect signal component, referred to also as multipath, may interfere

constructively or destructively, thus, reducing receiver performance. This reduction

in performance is called multipath fading [4, 6].

When the line-of-sight component of the received signal is zero, the received

signal amplitude is modeled as a Rayleigh random variable, and the channel is

called a Rayleigh fading channel. When the line-of-sight component is not zero, the

received signal amplitude is modeled as a Ricean random variable, and the channel

is called a Rician fading channel. Rician fading is more likely for the mobile user

satellite communication, especially when either the transmitter or the receiver have

highly directional antennas. Rayleigh fading is more likely in the case of mobile

user ground station communication where a direct path between the transmitter

and receiver may not exist [2, 7].

A jammer can interfere with the transmitted signal by transmitting power

on the same frequency band. The jammer can either transmit a noise-like signal

over the entire bandwidth, called barrage jamming, or transmit over a fraction

of the bandwidth. This can consist of either tone jamming or partial-band noise



jamming. In response the transmitter can employ a repetition technique such as

fast frequency-hopping, a form of diversity, to offset the effects of multipath fading

and partial-band jamming. A noncoherent receiver can significantly decrease the

advantage gained by diversity when fading is not present. The repeated signals, L,

are received and combined out of phase (noncoherently) resulting in noncoherent

combining losses. The coherent receiver does not suffer these losses; however, the

coherent FSK receiver is not often employed because of the added complexity and

expense [4, 8].

Depending on power constraints and system design, the transmitter can either

use a constant energy per hop, Eh, or a constant energy per symbol, Es , strategy. A

constant Eh with increasing diversity implies an increase in Es , since Es = LEh =

LEn/k [5]. The choice also depends on the interference environment and the type

of intended receiver.

The receiver can combine the outputs of the M branches of the receiver in

either a linear or a nonlinear manner. A linear combining receiver is the easiest to

analyze. The conventional FSK receiver utilizes linear combining and is shown in

Fig. 3. A conventional receiver equally weights each hop of the received signal. If the

interference noise is not considered an input to the system, then the noise-normalized

receiver also ultilizes linear combining, however, each hop of the received signal

is weighted differently depending on the level of jammer interference, thus better

receiver performance is achieved. If a receiver can distinguish between jammed and

unjammed hops it is said to have side information. This allows the receiver to give

less weight to the jammed hops. If the side information is without error, called

perfect side information, than the jammed hops can be ignored [4, 9].

In this thesis the performance of a noise- normalized, fast frequency-hopped

M-ary orthogonal frequency-shift keying (FFH/MFSK) system with noncoherent



detection is analyzed. The FFH/MFSK transmitter is assumed to perform L hops

per data symbol. At the receiver the dehopped signals are demodulated by two

correlators in phase quadrature per signal waveform. The correlator outputs are

sampled every T seconds where T is the symbol period. Since the carrier phases

are not recovered, the sampled outputs of each correlator pair are squared and

summed. The noise power of a noise-only channel estimator is used to normalize

the output of each of the M branches of the MFSK demodulator before the L hop

receptions are combined to form the decision statistics. A block diagram of the

FFH/MFSK receiver with noise-normalization combining is shown in Fig. 4. An ac-

curate measurement of the noise power present in each hop is a challenging problem

in fast frequency- hopped spread spectrum systems. In order to perform a complete

evaluation of the noise-normalized receiver, the effect of an inexact estimation of

noise power on system performance should be examined [4]. The noise power is

assumed to be estimated without error; hence, the performance obtained for the

noise- normalized receiver in this thesis is in this sense ideal.

The communications channel is modeled as a fading channel, and the FFH/

MFSK signal is assumed to be affected by partial-band interference in addition to

standard additive white Gaussian noise. The effect of channel fading and partial-

band interference on communications systems was initially investigated for standard

noncoherent MFSK demodulators in [10]; and the effect of partial-band interference,

but without channel fading, on noise-normalized FFH/MFSK demodulators was in-

vestigated in [11, 12]. More recently, the effect of both partial-band interference and

channel fading on noise-normalized FFH/MFSK demodulators has been examined

[13]. In previous work examining the effects of fading channels on system perfor-

mance, it is assumed that only the communications signal is affected by fading. It

seems reasonable that, in general, in situations where channel fading affects the com-



munications signal that it will also affect the partial-band interference signal. Hence,

previous analyses that ignore the effect of fading on the partial-band interference

yield, from the viewpoint of the communications system, overly pessimistic results.

In this thesis, communications system performance when both the FFH/MFSK sig-

nal and the partial-band interference are affected by the fading channel is examined.

The partial-band interference that is considered here may be due to either

a partial-band noise jammer or some unintended narrowband interference. The

interference is modeled as additive Gaussian noise and, when present, is assumed

to be in each branch of the MFSK demodulator for any reception of the dehopped

signal. In addition to partial-band interference, the signal is also assumed to be

corrupted by thermal noise and other wideband interferences which are modeled as

additive white Gaussian noise. This wideband noise is assumed to be unaffected by

the fading channel.

The narrowband interference for each hop and each dehopped signal are both

assumed to fade independently. This implies that the smallest spacing between

frequency hop slots is larger than the coherence bandwidth of the channel [8, 14,

15]. The channel for each hop is also modeled as a frequency-nonselective, slowly

fading Rician process. This implies that the bandwidth of both the signal and

the narrowband interference is much smaller than the coherence bandwidth of the

channel and that the hop duration is much smaller than the coherence time of

the channel [8, 14]. The latter assumption is equivalent to requiring the hop rate

to be large compared to the Doppler spread of the channel. Consequently, both

the dehopped signal amplitude and the amplitude of the partial-band interference

signal can be modeled as independent Rician random variables where the total

power in both the communication signal and the narrowband interference signal can



be considered as the sum of the power in a direct component and that in a diffuse

component.

The bit rate is taken to be Rt,. Hence, the corresponding symbol rate is Rs =

Rb/ log
2 M where M is the order of the MFSK modulation. Since the FFH/MFSK

signal has L hops per symbol, the hop rate is Rfj — LR s .The equivalent noise

bandwidth of noise-only channel estimator is B, where B is assumed to equal Rh-

The overall system bandwidth is assumed to be very large compared to the hop rate.

Note that for a fixed symbol rate that the hop rate increases as the number of hops

per symbol increases. As a result, the required minimum equivalent noise bandwidth

of the correlation detectors in the MFSK demodulator also increases as the number of

hops per symbol increases. Hence, as the number of hops increases, the assumption

that the channel is frequency- nonselective becomes more restrictive. On the other

hand, the assumption that the channel is slowly fading becomes stronger.
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II. NOISE-NORMALIZED RECEIVER SYSTEM
ANALYSIS

The partial-band interference is assumed to be present in each branch of the

MFSK demodulator for any reception of the dehopped signal with probability 7.

Thus, 7 represents the fraction of the spread bandwidth being jammed, and the

probability that narrowband interference is not present in all M detectors is 1 — 7.

If N[/2 is the average power spectral density of interference over the entire spread

bandwidth, then ~f~
l Ni/2 is the power spectral density of partial-band interference

when it is present. The power spectral density of thermal noise and other wideband

interferences, which is modeled as additive white Gaussian noise, is defined as N /2.

Hence, the power spectral density of the total noise is 7
-1
A//2 + Ao/2 when partial-

band interference is present and Ao/2 otherwise. If the equivalent noise bandwidth

of each correlator in the noise-normalized MFSK demodulator is B Hz, then for

each hop each correlator output has noise of power NQB with probability 1 — 7when

interference is not present and noise of power (7
-1 A/ -f N )B with probability 7

when interference is present. Hence, the noise power in a given hop A; of a symbol

is defined

<j\ + a\ with probability 7

(3)

g\ with probability 1 — 7

where a\ - N B and a] = 7
-1 N/£.

A. PROBABILITY OF BIT ERROR

The probability of symbol error for the receiver in Fig. 1 when partial-band

interference is present is [2]

P. = £
( \ ) 7

l
'(l " if-'Ui) (4)



where Ps (i) is the conditional probability symbol error given that i hops of a symbol

have interference. Due to the symmetric structure of the receiver, Ps {i) can be

obtained by considering only the case where the signal is present in branch 1 of

the MFSK demodulator. The outputs of each channel not containing the signal are

assumed identical and independent.

For orthogonal MFSK the probability of bit error is related to the probability

of symbol error by [2]

The energy per bit is related to the symbol energy, Es , by

** = r^7 (
6

)
log

2 M

and the energy per bit is related to the energy per hop, Eh, by

Eh = LEH (7)

In this case, Z\ is the random variable conditioned on i of L hops having

interference that represents the output of the demodulator branch containing the

signal after the noise normalization operation and after the combining of each hop

of a symbol. The random variables Zm,m = 2, 3, • • • ,M represent the outputs of

the demodulator branches that do not contain a signal after the noise normalization

operation and after the combining of each hop of a symbol. Given the conditional

probability density functions fzx
{zi\i) and fzm {zm ),m = 2,3, • • • , M, the probability

for symbol error is [2]

/•oo r rz\ "| M-l
Ps (i) = l- /z,(*ilO / fzm (zm )dzm dz x (8)

Jo Uo

for all m ^ 1
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since for all m ^ 1 the random variables Zm are identical and independent. The

noise-normalized random variables Zm^, m = 1, 2, • • • , M , are related to the outputs

of each demodulator branch by

Zm4 = ^r, m=l,2,.--,M (9)

where the random variables A"m fc
represent the outputs of the demodulator branches

before the noise normalization operation for each hop of a symbol. Let the subscript

n — 1,2 denote when hop k of a symbol has interference and has no interference,

respectively. The output random variable from the diversity summer for each de-

modulator branch after combining L independent hops is obtained from

L

fc=l

t L

= E Z^i+ £ Zmk7 ,
m = l,2,-..,M (10)

k=l k=L-i

B. PROBABILITY DENSITY FUNCTION OF THE NARROW-
BAND INTERFERENCE NOISE POWER

Although the narrowband interference signal for hop k of a symbol is modeled

as a Gaussian random variable, it is assumed to be affected by the Rician fading

channel. Hence, the amplitude of the narrowband interference signal is modeled as

a Ricean random variable, and the probability density function of the narrowband

interference noise power is [7]

I <7l+ alr\ r
a°lV u

I

tetf) = 5^-p [-^r1
]

>° -3H- «M) (")
ai \ erj / \ 07

where a2
a is the average power of the direct component of the narrowband interfer-

ence signal and 2cr^ is the average power of the diffuse component of the narrowband

interference signal. The ratio of the direct to the diffuse component of the narrow-

band interference signal is al
[
/2al

I
= R2. The total average received narrowband

11



interference signal power, a2 = a 2

ai + 2<r^, of hop & of a symbol is assumed to re-

main constant from hop to hop when it is present. Since the average power received

due to thermal noise and other wideband interference is not considered a random

variable, the probability density function for the total noise power received with hop

A: of a symbol when partial-band interference is present is obtained from (11) and

the linear transformation of random variables given by (3) as

da]
fc\(ak) = hfak = ak- °t)

da\

1 / al - al + a 2
k
- uT T«

exp '

2< r
V 2<

la
^f^y

al _ al) (12)

C. PROBABILITY DENSITY FUNCTION OF THE DECISION
VARIABLE Zm , m = 2, 3, • • •

,

M
The conditional probability density functions of the identical, independent

random variables Xm k, rn = 2,3,---,M that represent the signal for hop k of a

symbol at the outputs of the quadratic detectors of the demodulator branches that

do not contain a signal are [7]

fxmk (xmkWli) = ^expl-^j)u(xmk ), m = 2,3,---,M (13)

where u(-) is the unit step function. The probability density functions of the noise-

normalized random variables Zm k, m = 2, 3, • • • , M are obtained from (13) and the

transformation of random variables indicated by (9) as [16]

fzmk (Zmk) = I vlfxmk (xmk = Zmk(?lWl) /« (<**)<&*
J

—

oo
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1

— o eXP
Zmk

u{zmk), m = 2,3, -,M

since u(zmk ) = u{zmka
2

k ) and /
°° fo^aDdal = 1.

The Zmk's corresponding to demodulator branches with no signal are in-

dependent not only of the signal but, due to the normalization used, also of the

interference; consequently, for each hop k = 1,2, •-,//, the noise-normalized ran-

dom variables that represent the outputs of demodulator branches with no signal

present are identical, independent random variables that are independent of channel

fading affecting either the signal or the interference. Since each hop is independent,

it can be seen from (10) that the Laplace transform of fzm {
zm) is

Fzm {s) = [FZmk (s)Y (15)

where

Fzmk {s) =
2(5 + 1/2)

is the Laplace transform of fzmk {
zmk) [17]. Substitution of (16) into (15) yields

r 1 i
L

FzJs) =

(16)

.2(s + l/2)_

1

2/ \s + \/2j

The inverse Laplace transform of (17) is

fzmM =
(J) (f^^(-y)«(*»)

=
2(1- 1)!

eXp
V if)

u
( Zm ^ m = 2

'
3>---,^

Substitution of (18) into (8) yields [18]

c\ 1

[°°
r ( n r k£rg

2
> ( M 1 M-\

2(1-1)1
dZr

(17)

(18)

dz x (19)
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Substitution of x = zm /2 in (19) results in

-1/2 (x)
L~ l

Ps (i) = l- f%(zi|i) /
Jo Jo

which can be evaluated to yield

iM-l

(L-iy,
exp(—x)dx dz x (20)

P.(0 = 1-f /,WO x{^f
L-l i *il 2 \

-xL- 1 + ^-l(L-l)(L-2)- (£-*);

Zl

.L-l -A:
dzi

= L- r fMt)
Jo

exp -

(L-l)\

f7 xL-l L-l , vL-1-4 l^" 1

-(f) -E(^-1)(^-2)---(^-^)(y) +l] dz x

/•oo

= 1-/ fzMW
Jo

i-^[^)E^
L-l-fc nM-1

2 / £J (I - 1 - *)!
cfei (21)

As zi — oo, the bracketed term in (21) approaches unity which indicates the inte-

gral converges. Use of /
°°
fz1

{z\\i)dz\ = 1 in (21), yields a more computationally

efficient expression

./o

l-exp(^E^
2 / & (^ - 1 " *) !

ofzi (22)

In order to complete the evaluation of (22), /zi(zi|0 is required. This issue is

addressed in the next subsection.
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D. PROBABILITY DENSITY FUNCTION OF THE DECISION
VARIABLE Zx

The conditional probability density function of the random variable X\k that

represents the detector output of branch 1 of the demodulator, given a signal am-

plitude y/2a k , is [7]

fx xk
{x lk \a k ,ak )

= ^ exP
I

2a~2— J /o
I

—

~2
I
"( z i*) (

23
)

where In {-) represents the modified Bessel function of the first kind and order n.

Fading of the communications signal for hop A: of a symbol is modeled by assuming

a k to be a Rician random variable. The probability density function of the Rician

random variable a k is [7]

fAkM = ^exp I
-~^-^~

I h (
==-

)
UM (24)

ak / a +«M (aka

where a2
is the average power of the direct component of the communications signal

and 2a 2
is the average power of the diffuse component oi the communications signal.

The ratio of the direct to the diffuse component of the communications signal is

a 2 /2a2 = Rl. The average received signal power of hop k of a symbol is assumed

to remain constant from hop to hop.

The conditional probability density function of the noise-normalized random

variable Z\ k is obtained from (23) and the transformation of random variables indi-

cated by (9) as

dzn
fzxk z\k\ak,vk ) = fx lk xik = z\kOk \

ak,°k)
dxu

*l ( zlka
2 -2a 2

\ (
aky/2zlkol \

= 2^T
XP

( 2aJ—)
Io (—

-*T~ '

^^^

1 / a 2

k zxk + 2a\ \ ( a ky/2z~[k
~

\
= rxH

—

w~ )
° [~^~

)

u{Zxk) (5)
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The conditioning of Z\k on a k is removed by integrating the product (25) and (24)

with respect to ak from to oo to obtain [18]

/•oo

fzlk {zik\<rl) = / fzlk (zik\ak,(rl)fAk (a k )da,
Jo

(26)

f°° 1 (
fzlk (zikWk ) =

Jo 2
exp (~

a 2
k zlk + 2a\

2*1

(ak%/2zxk \ a k (
x^ol- -)— exp -

a 2

k + a 2

2a2
Io V^J dak

2cr 2
exp

x
/•oo

/
a

Jo
fcexp

zlk2a
2 + a 2

k \

2a2
J

at(2a
2 + a 2

)

(27)

2a2* 2
j
a ky/2zlk \

<?k

da i

1

2(l + 2*>/*l)
exp

1 (zlk + 2a2
/cr

2
k (

^2zlka 2
/a

2

\
i
z\k)

2 V 1 + 2<T 2 /cr£

where ci
2 jo\ and 2a2 ja\ are the signal-to-noise ratios of the direct signal component

and the diffuse signal component, respectively, of hop k of a symbol.

Let Zxkl and Zxk2 denote the random variable Zxk when hop & of a symbol has

interference and no interference, respectively. Analogously, let fzlk {zxkn ), n = 1,2

denote the corresponding probability density functions and akn , n = 1,2 represent

the corresponding noise power when hop A: of a symbol has interference and no

interference, respectively. Since each hop is independent, it can be seen from (10)

that the Laplace transform of fzx
{z x \a

2
^) is

FzM°l,i) = K^k2
,)]' [Fzlk2

(s\0\
L~ X

(
28

)

where a 2

2
is not a random variable. The Laplace transform of fzlkn {ziknWkn ), n =

1,2 is [19]

/oo

Fzikn (
s Wln ) = / fzAzA°l)zxv(-sz\kn )dzxkn
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where

fc.exp &„ Zlkn += / 5
./o

x/o \23kn ^2z lka 2 /al) exp(-sz lkn )dz ikn

= Pkn exp(-23knPk )

J
exp[-z lkn (s + kJ]Io \20kn y/2zTw)dz lkn

&„
s + k

exp
-2/7

fcftn s

.
s + /3kn _

(29)

5*

& =

2(l+2aV<)

Pk = —

The inverse Laplace transform of (29) raised to the cn power is [20]

[/zlfc>u>Uf" - ^{[^(skUp}

= c ik
Cn

,^ + ^n
exp

c„ /•-!
= #:£

i

x exp

U 5 + &n;
exp

-2pk (3kn scn

-2pk [3kn cn (s + kn )

\ * + &„ /J

/?£ exp [-2/> fc^nCn] exp (-ftnZ1JfcJ

l\
c" r-2^/?

fc

2

n
5cn

'

x£ -i

= ft.
flfcn

2cnpk

exp

(Cn-l)/2

exp [-/?*„ (2Un +2cn /j fc )]

X^cn-l (?-Pkn \]lCnPkZ\kn ) "(*!*„)

(30)

(31)

(32)

(33)
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where (g)cn represents a cn -fold convolution, C\ = ^, and c2 = L — i. Thus,

hx («iki.») = [/zlfcl (-lkfcj]
' ® [/zlfca (*!*,)

®L-i
(34)

In order to remove the conditioning on the random variable <j\ from either

(29) or (34), it is necessary to multiply these equations by (12) and integrate the

products over the entire range of a\
x

. This is done numerically as required. Since

a\ is not a random variable, no further integration is necessary.
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III. NUMERICAL RESULTS

A. NUMERICAL PROCEDURE

Computation of the probability of bit error requires the evaluation of (8) for

each of the possible combinations of jammed and unjammed hops given L hops per

symbol. For the special case of all hops free of interference, a\ is not a random

variable, and the probability density function of Z\ is given by (33) with cn = L and

n = 2. In this case, (8) can be evaluated analytically [21], but the result is so complex

that it is easier and more straightforward to evaluate (8) numerically. For the special

case of all hops jammed, the conditional probability density function of Z\ is given

by (33) with cn = L and n = 1. The conditioning on cr\ is removed numerically

as discussed at the end of the last section, and (8) is evaluated numerically. When

i hops of a symbol have interference fzx
{z\\i) must be evaluated numerically. The

conditioning on a\ is removed from the Laplace transform of fzx
{z\ \a\^ , j), given by

(34), numerically as discussed at the end of the last section, and fzx
{z\\i) is obtained

by a numerical inversion of Fz
1
(s\i) [22]. As in the previous two cases, (8) is then

evaluated numerically.

In many cases an analytical solution can be obtained by making the assump-

tions that a] ^> u\ and Eb/N >• 1 [5]. For the system investigated in this thesis,

these assumptions do not result in either an analytical solution or any significant

simplification. Thus, in this thesis the system is evaluated without making the above

assumptions.

B. PERFORMANCE

To obtain worst-case partial-band jamming, the jamming fraction 7 which

maximizes the probability of bit error is found for various values of diversity, fading
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conditions, signal-to-noise power density ratios, and order of modulation. When

L > 2 or R\ < 1, the worst case 7 is approximately one. Thus, 7 = 1 is used to

approximate the worst-case performance curves for L > 2 or R\ < 1. All results

presented in this thesis are obtained by assuming that the ratio of direct-to-diffuse

signal power R\ and the direct-to-diffuse narrowband signal power R2 are the same

for each hop A; of a symbol.

Receiver performance for a signal experiencing Rayleigh fading with slow

hopping (L = 1) and M = 2 is illustrated in Fig. 5 for Eb/N = 20 dB. Plots

are shown for the narrowband interference experiencing no fading, Rayleigh fading,

and Rician fading (specifically, R2 = 10), and for both broadband interference

(7=1) and partial-band interference (7 = 0.1). As with the conventional case of

no fading of the narrowband interference, worst-case performance is obtained for

both Rayleigh fading and Rician fading of the narrowband interference when 7 = 1;

that is, partial-band interference has no adverse effect on receiver performance when

the signal experiences Rayleigh fading irrespective of the fading experienced by the

narrowband interference. As can be seen, there is only a slight improvement in

receiver performance when the narrowband interference experiences Rayleigh fading.

The signal-to-thermal noise power ratio does not influence the relative effect of fading

of the narrowband interference signal on receiver performance.

Receiver performance when there is no signal fading for slow hopping (L = 1)

and M = 2 is illustrated in Figs. 6 and 7 for Eb/N = 16 dB. Plots are shown for the

narrowband interference experiencing no fading, Rayleigh fading, and Rician fading

(R2 = 10) for pseudo worst-case partial-band interference where 7 = 2/(Eb/Nj)

[5] in Fig. 6 and broadband interference in Fig. 7. As can be seen, there is very

little effect on worst-case receiver performance as a consequence of fading of the

narrowband interference. For fixed 7, the counter-intuitive result of poorer receiver
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performance when the narrowband interference experiences fading is obtained for a

broad range of both the ratio of signal-to-narrowband interference power, £'j,/Ar
/,

and 7. This effect is most pronounced for Rayleigh fading.

Receiver performance for a signal experiencing Rician fading (Rl = 10) with

slow hopping (L = 1) and M = 2 is illustrated in Fig. 8 for Eb/N = 16 dB.

Plots are shown for the narrowband interference experiencing no fading, Rayleigh

fading, and Rician fading (R2 = 10) for pseudo worst-case partial-band interference

where 7 = 2/(Eb/Ni). As in the previous case, there is very little effect on worst-

case receiver performance as a consequence of fading of the narrowband interference.

Also, as in the previous case, for fixed 7 the counter-intuitive result of poorer receiver

performance when the narrowband interference experiences fading is obtained for

some signal-to-narrowband interference power ratios and for a broad range of 7;

although, the effect is much less pronounced and occurs for a much smaller range of

Eb/Ni than when the signal does not experience fading.

When the communications signal experiences fading, the probability of bit

error, Pb, is increased due to the phase differences of the received signal components.

Likewise, when the interference signal experiences fading, the received interference

signal components have phase differences. This causes a change in the shape of the

noise variance probability density function. The Pb is reduced if the average noise

variance, (f£, decreases or if the noise variance probability density function is of a

shape to cause the reduction. Since a\ is held constant in this analysis, then any

change in Pb is due to a change in shape of the noise variance probability density

function. Without fading of the interference signal, the noise variance probability

density function is a delta function, and its effects on Pb are predictable. With

fading, the noise variance probability density function is a noncentral Chi-Squared

distribution, and its effects on Pb are not predictable.

21



Since the P\, is proportional to exp (— l/2cr^), then the Pb increases as cr\

increases. In order for the Pb to increase as E^/Nj increases, the probability density

function for the narrowband interference power must weight larger values of a\

more at large values of E^/N^s than lower values of Eb/Nj. The probability density

function for Z\ is the only parameter that depends on the noise power. Therefore,

fzi (
ziWlii) f& (°fc) verses a\ is plotted in Figs. 9 and 10 illustrating the effect

of different direct to diffuse interference power ratios for E^/N^s of dB and 10

dB, respectively. In both figures M = 4, Eb/N = 13.35 dB, L = 1, and the three

cases where there is essentially no interference fading (R2 = 100), Rician fading

(R2 =10), and Rayleigh fading (R2 = 0) are shown. As can be seen in Fig. 9, the

R2 — curve is more heavily weighted by the smaller values of a\. The R2 = 100

curve is more heavily weighted by the larger values of a\. This results in better

receiver performance as interference fading increases for Eb/Ni = 0. The reverse is

observed in Fig. 10 where Eb/Ni = 10, thus explaining the results shown in Fig. 7.

Receiver performance with a relatively strong direct signal component (i?l =

10), a relatively weak direct interference signal component (R2 — 1), and specific

partial-band interference fractions are compared to pseudo worst-case performance

in Figs. 11-14 for M = 4 and diversities of L = 1,2,3, and 4, respectively. The

ratio of bit energy-to-thermal noise density in each of these figures is Eb/No =

13.35 dB. The pseudo worst-case partial-band interference for L = 1 shown in Fig.

11 is approximated by selecting 7 = 2A3/2(Eb/N[) [5]. Partial-band jamming

progressively becomes less effective at degrading receiver performance as diversity

increases. A composite curve for L = 2 is shown in Fig. 12. For L > 2, the worst-

case 7 is approximately unity as can be seen in Figs. 13 and 14. As observed in the

case of no interference signal fading [13] and seen in Fig. 11, receiver performance
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is degraded more by partial-band interference than by broadband interference when

no diversity is used and the Eb/Nj is between about 7 dB to 36 dB.

It is interesting to note by comparing Figs. 11-14 in this thesis with Figs. 2-5

in [13] that the effect of a Rayleigh faded interference signal on receiver performance

is slight. The range of Eb/Nj over which partial-band jamming is more effective than

barrage jamming is reduced by one dB. Otherwise, the effects are virtually identical.

As in Figs. 5-8, there is a very slight difference between receiver performance when

the interference signal is not faded and when it experiences Rician fading with

R2 = 10.

Figures 15-22 illustrate the effects on worst-case receiver performance due

to different combinations of effectively Rayleigh (direct /diffuse component =1) and

Rician (direct/diffuse component =10) fading for both the communications and

interference signals for L = 4 and 10, M = 4 and 16, and for Eb/N = 13.35

and 16 dB. As can be seen in all cases, poorer receiver performance occurs when

the interference signal experiences less fading at low E^/N^s. At larger values of

Eb/Ni's, better receiver performance occurs when the interference signal experiences

less fading. When the communications signal has a larger direct component (Rl =

10), there is a greater fractional difference between the two curves generated by

R2 = 1 and R2 = 10 than for the case when the communications signal has a small

direct component (Rl = 1).

A diversity of 10, modulation order of 16, and Eb/N = 16 dB are shown in

Figs. 15 and 16. The direct signal component is increased from Rl = 1 in Fig. 15

to Rl — 10 in Fig. 16. There is no effect on the points where the R2 = 1 and

R2 = 10 curves cross at low Eb/Nj's. However, the merge point at larger values of

Eb/Ni occur at about 5 dB lower for Rl = 1. Also, the receiver's performance is

greatly improved by the strong direct component for large values of Eb/Nj.
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In Figs. 17 and 18, the ratio of bit energy-to-thermal noise density is reduced

to 13.35 dB. Again there is no effect on the points where the Rl = 1 and R2 = 10

curves cross at low values of Eb/N[. As Eb/No decreases, the merge point for each

curve shifts to a lower value of Eb/Nj. Asymptotic receiver performance significantly

decreases as Eb/No decreases. The Eb/No is 16 dB and the modulation order is four

in Figs. 19 and 20. The crossover point is again unshifted at low Eb/N^s, and the

merge points of these curves occur at lower values of Eb/Nj as M decreases.

As can be seen by comparing Figs. 15 and 16 to Figs. 21 and 22, respec-

tively, there is a slight increase in receiver performance at low Eb/N^s, and a great

decrease in receiver performance at high Eb/Nfs when diversity is reduced. The

increase in receiver performance at low Eb/N^s is attributed to lower noncoherent

combining losses for L = 4 than for L = 10. It is interesting to note that at low

Eb/Ni's, a strong direct component of the interference power has a greater influ-

ence in increasing the worst-case receiver performance than a strong direct signal

component has in reducing the worst-case receiver performance. The worst-case

^>m=iH2=io > A».iom-io > p6ri=ir2=i > ftja-ioM-i for low values of Eb/Ni'a. This

can be seen in Fig. 23 for worst-case receiver performance with L = 4, M = 16, and

Eb/No = 13.35 dB. As diversity increases, which is demonstrated in Fig. 24, the

worst-case PbR1=1R2=10 « Aju.iojb-io and ^ju-ijb-i ~ Am-xow-i at low Eb/Nr 's.

Worst-case receiver performance for a relatively strong direct signal

(Rl= 10), Eb/N = 13.35 dB, diversity of 10, and modulation values of 4, 8, and, 16

are shown in Fig. 25. As can be seen, increased modulation order greatly enhances

receiver performance for large values of Eb/N[. However, it is interesting to note

that from about 10 dB to 18 dB, better performance is obtained for M = 8 when

there is a strong direct interference component (R2 = 10) than for M = 16 when

there is a weak direct interference component (R2 = 1). This trend is observed for
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the different combinations of diversity, modulation, Eb/N , and for a weak direct

signal component (Rl = 1).

The effects of diversity on worst-case receiver performance are most dramat-

ically displayed in Figs. 26-28. In all three figures, there is a strong direct signal

component (Rl = 100) and a weak direct interference component (R2 = 1). The

modulation order is four and Eb/N — 16 dB in Fig. 26. Comparison of this figure

with Fig. 27, where the modulation order is increased to 16, demonstrates im-

proved receiver performance for a larger range of Eb/Ni's as the modulation value

increases. Likewise, comparison of Fig. 27 with Fig. 28, where the modulation

order is 16 but Eb/N is reduced to 13.35 dB, shows the significant improvement in

receiver performance for a larger range of Eb/N^s when Eb/N is larger.

The effects on the worst-case receiver performance due to fading of the inter-

ference signal is shown in Figs. 29-31. There is a strong direct signal component

(Rl = 10) and diversities of 3, 6, and 10 in these figures. The modulation order

is four in Fig. 29 and 16 in Figs. 30 and 31. The ratio of bit energy-to-thermal

noise density is 16 dB in Figs. 29 and 30 and 13.35 dB in Fig. 31. When the direct

component of the interference signal is weak (R2 = 1) the range of Eb/N^s where

an increase in diversity improves worst-case performance decreases by about 3 dB.
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IV. CONCLUSIONS

The effect of fading of the narrowband interference signal on worst-case re-

ceiver performance is relatively minor for slow hopping and is more significant for

fast hopping. When the signal experiences Rayleigh fading, partial-band interference

has no adverse effect on receiver performance irrespective of the fading experienced

by the narrowband interference. When there is no signal fading or when the signal

fading is Rician and when 7 is fixed, the counter-intuitive result of poorer receiver

performance when the narrowband interference experiences fading is obtained for

some Eb/N^s for a broad range of 7. The noise variance probability density function

is affected by the Eb/Ni in such a manner as to produce counter-intuitive results for

a wide range of Eb/Ni's. This effect is most pronounced when the signal does not

fade and the narrowband interference signal experiences Rayleigh fading.

Like the noise- normalized receiver without interference fading, partial-band

jamming becomes less effective at degrading receiver performance as diversity in-

creases. The receiver performance is also improved at large Eb/Nj's by a strong

direct signal component, increasing Eb/No, increasing diversity, or larger modu-

lation order. The range of Eb/N^s where increasing diversity is an advantage is

reduced when the interference signal is Rayleigh faded in comparison to the range

obtained for a nonfaded interference signal. A Rayleigh faded interference signal

with lower modulation order results in better receiver performance than a weakly

faded interference signal with a higher modulation order over moderate values of

Eb/Ni's. The results obtained for faded interference and nonfaded interference sig-

nals asymptotically approach each other at a lower Eb/N[ for weaker direct signals,

lower Eb/No, lower diversity, or smaller modulation order.
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At low Eb/Ni's a strong direct component of the interference power has a

greater influence in increasing the worst-case receiver performance than a strong

direct signal component has in reducing the worst-case receiver performance. At

moderate Eb/Nj values, when the communications signal has a larger direct compo-

nent, a greater fractional difference between receiver performance exists when the

interference signal is Rayleigh faded as compared to when it is weakly faded.

Given the advantage of hindsight, the relatively minor effect that fading of the

narrowband interference signal generally has on system performance seems intuitive.

Fading is a term used to connote a channel that consists of many different signal

paths, that is, multipath, where due to path length differences the various signal

components arrive having random phases with respect to one another. When the

signal is a standard communications signal, the result is that the various components

sometimes combine constructively while other times they add destructively. As a

result, the received signal amplitude fluctuates; hence, the term fading. When the

signal is noise-like, however, constructive and destructive addition of the multipath

signal components has much less effect on the received signal amplitude since the

amplitude and phase of the transmitted signal are, in this case, random and rapidly

fluctuating to begin with. Thus, channel fading does not significantly affect the

received amplitude of a noise- like signal.

The work in this thesis is theoretical. A simulation should be done for com-

parison. No practical method exists for exact measurement of the average noise

power as modeled in the noise-normalized receiver. Hence, further study is needed

to investigate receiver performance with the estimated average noise power. The

receiver performance against tone jamming was not addressed in this paper. Tone

jamming seems likely to be affected more by fading than Gaussian jamming and

should be studied.
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Previous work has investigated the performance of both the conventional and

the noise-normalized noncoherent receiver for constant energy per symbol signaling

when communication is corrupted by fading and partial-band interference [10. 11. 12.

13, 23]. However, that work has not considered constant energy per hop signaling. It

is unclear whether the noise-normalized noncoherent receiver offers a performance

advantage over the conventional noncoherent receiver in the constant energy per

hop case, especially when fading is severe. The expense and complexity of the

noise-normalized noncoherent receiver may not be justified when utilizing a constant

energy per hop system. Since practical military communication systems employ a

fixed hop rate and a variable data rate, the constant energy per hop assumption

is more logical [24]. Therefore, the most valuable comparison between these two

receivers will assume constant energy per hop. This subject should also be addressed.
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(a)

<b)

Figure 2. Multipath progagation for (a) mobile user satellite transmission and (b)

mobile user ground transmission.
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dB.

55



1x10

1x10

1x10

1x10

1x10

1x10

1x10o
1—

LU

m 1x1 °

° 1x10"
8

§ 1x10
.q

I 1x10

1x10

1x10

1x10

1x10

1x10

1x10
15 20 25

E
b
/N (dB)

40
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Figure 28. Worst-case receiver performance for diversities of of L = 3, 4, 6, 8, and
10 for a Rician faded signal, Rayleigh faded interference, M = 16 and E^/No = 13.35

dB.
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Figure 29. Worst-case receiver performance for diversities of of L = 3, 6, and 10

for a Rician faded signal with both Rayleigh and Rician faded interference, M = 4

and Eb/No = 16 dB.
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