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ABSTRACT

The image motion analysis algorithms that generate the two dimensional velocity of

objects in a sequence of images are developed. The algorithms considered consist of: the

parallel extended Kalman filter method; the spatiotemporal gradient methods; the

spatiotemporal frequency methods; and the one-dimensional FFT methods. These algorithms

are designed to perform on low signal to noise ratio images. Each of these algorithms is

applied to a sequence of computer generated images with varying signal to noise ratios.

Simulations are used to evaluate the performance of each algorithm.
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I. INTRODUCTION

The measurement of displacement between successive frames in an image sequence

gives information about the motion (or velocity) of the objects in these images. The

motion information is an important element in the source coding, restoration, analysis

and interpretation of time-varying imagery, since a time-varying scene can be

characterized to a large extent by the motion it contains. The characterization may lead

to detection of objects (targets, their velocities and trajectories), it can be used to

distinguish between scene and noise components in order to reduce additive noise in

sequences and furthermore can be used as a cue for image segmentation. Motion

imformation may also be useful for the compact representation of the image sequences

for transmission and storage purposes (as in motion-compensated interframe coders). The

motion patterns in the image sequence may be due to the motion of objects in the scene,

the motion of the observer or both. Also, the motion may be apparent motion where a

change in the image intensity between frames gives the illusion of motion.

There are 4 basic approaches for motion estimation:

(1) feature correspondence (matching),

(2) difference picture methods,

(3) spatio-temporal gradients,

(4) Fourier phase changes.

Matching methods use algorithms for matching the components of objects between two



successive frames of a scene containing moving objects. This leads to an optimization

process which can easily be solved. The drawback to this approach is that identifiable

features must be derived from the image before matching can be tried. Also the spatial

range over which image flow is derived is short in comparison to the size of the region

in which identifiable features exist. Difference picture methods start with a pixel-wise

difference between successive frames in an image sequence. The differences can be

thresholded to produce a binary motion image. Since difference picture methods do not

take the direction or speed of the motion into account, the methods are not easily applied

when the background is moving and can not easily differentiate between different objects

moving with different velocities. The problem with difference picture methods is that

they are local and do not combine spatial and temporal changes over neighborhoods to

improve the information on the velocity field. Spatio-temporal gradient methods relate

the spatial and temporal gradient at each pixel in the image plane to the instantaneous

velocity at that pixel point. This forms a two-dimensional vector field called the

displacement field (velocity field or optical flow). The Fourier-phase methods utilize the

shift property of Fourier transform and generate a solution based on the spatial-frequency

domain data.

In this thesis, some of the current motion estimation algorithms are introduced,

discussed, and improved. A comparison between algorithms is established. Chapter II

includes the application of the parallel extended Kalman filter. The Extended Kalman

Filter is applied to sequential images containing a moving object to estimate object's two-

dimensional velocity components and to increase image quality by the reduction of noise



for low signal to noise images. The idea of using an extended Kalman filter (EKF) to

enhance the quality of the image frame and provide an estimate of the object velocity was

proposed by Burl [Ref. 1]. Chapter III includes the algorithms that utilize the Image

Flow Constraint equation which relates the spatial changes in an image frame to the

temporal changes between the frames. Several ways for solving this equation are

discussed. Chapter IV and V address the Fourier transform methods of motion

estimation. These relate phase changes in the Fourier domain representation of image

frames to the velocity of objects contained in the image frames. The algorithms discussed

in this thesis are simulated under different background and noise conditions to evaluate

their performance. Chapter VI includes the simulation results and the final comments.

In this thesis, a moving image model is defined as a series of image frames

containing a moving object. An image frame consists of a two-dimensional array where

the individual array elements are defined as pixels. Each pixel is given a numerical value

based on the intensity of the image at that point.



H. THEEXTENDEDKALMANFILTER

A. INTRODUCTION

An extended Kalman filter (EKF) may be developed for the estimation of both the

image and velocity components from a sequence of images in a nearly optimal manner

[Ref. 1]. First the EKF requires a dynamic model that describes the evolution of the

sequential image frames. A simple dynamic model consists of a shift operator in the

spatial domain which describes the motion of the object. Unfortunately the EKF

developed from this model requires a prohibitive number of computations. This difficulty

is overcome by transforming both image and EKF into the spatial frequency domain. The

two-dimensional discrete Fourier transform is used to transform these two-dimensional

image frames from the spatial domain to the spatial frequency domain. By transforming

the image frame to the spatial frequency domain, the shift operator in the spatial domain

becomes a phase shift operator in the spatial frequency domain. The shift of each spatial

frequency is given by the scalar product of the velocity and the frequency. The EKF can

be applied to each of the spatial frequencies separately. The number of calculations can

then be reduced by limiting the number of spatial frequencies that are analyzed.



B. THEMOVINGIMAGEMODEL

1. The Moving Image Model in the Spatial Domain

The evolution of successive image frames containing a moving object is

modeled by a nonlinear state equation in the spatial domain. The background of the

image is assumed to be zero to simplify the initial presentation. A new model for the

images with background will be presented later. Also the moving object is assumed to

be completely contained in the image. So the state-space equation is defined as,

x(k+l) =
(2.1)

flk+i) s(v)o Ak)

v(fc+l)J [ l\ [v(k)

= fl(v) *(*),

where x(k) is the state vector of the system, /(&,) E Ft™1
is the NxN pixel image at time

k stacked into a vector of the amplitudes of each pixel, v G R2
is the velocity vector

(consists of a two-element column vector describing the horizontal and vertical velocities

of the moving object in terms of pixels per sampling time) and S(v) is a two-dimensional

shift operator with magnitude and direction given by v. The vectors /and v combine to

form the state vector* G R"*"*
2

. Note that object motion is equivalent to a shift operator

applied to the entire image since the background is zero. Also the shift operator is a

circular shift operator since the object is assumed to remain within the boundary.

Equation 2. 1 describes a sequence of identical replications of an object as it

moves accross an image frame with constant velocity. A more realistic model would be

to include changes in the object due to rotations, change in the aspect angles etc.

Additionally, changes in the object's velocity may occur. A new model which includes



these changes may be developed as,

x(k+\) = x(k) CM (2.2)

5(v)

/

= a(y) x(k) C(*),

where the plant noise is composed of the image plant noise, £ and the velocity plant

noise, £,. The plant noise is assumed to be a zero-mean, white, Gaussian random noise

with a covariance matrix defined as,

Qrr =Ecc [c; q =
aj I

a
2
v I

(2.3)

where E[»] is the expectation operator and / is the identity matrix. The measurement of

the image, y(k), is defined by the corresponding measurement equation,

y(k) =f(k)+n(k) = [/ 0]x(k)+n(Q = C x(k)+n(k), (2.4)

where v E RNxN
is the measured image and n(k) E R** is the measurement noise which

is assumed to be a zero-mean, white, Gaussian random process with a known covariance

matrix,

*„ = E [n(k) n T
(k)} = oj /. (2.5)

2. Derivation of the Shift Operator in the Spatial Frequency Domain

The two-dimensional image frame defined as/fa.nj where < n, < N-l

and < n 2
< M7 is transformed from the spatial domain to the spatial frequency



domain by using the two-dimensional discrete Fourier transform (DFT),

AM AM -An^kjnw = E E^»,«2) ^ *
.

(26)
n

t
=0 «2=0

where < k, < N-l and < k2 < N-l.

The shift operator in the spatial frequency domain is derived from the circular

shift property of the discrete Fourier transform [Ref. 2:p. 67]. The circular shift

property is defined as,

*( ((ri
1
-m

l )) Nt ((n 2 -m2)) N ) ~ <* 1 WJ* X(k v k
2 ),

~ D(m lt m
2) X(^,y,

where ((•)) is the modulus operator, WN = e'
J2r/N

,and Dfm; ,/nJ is the transformed shift

operator. Equation 2.7 indicates that a circular shift in the spatial domain results in a

phase shift in the spatial frequency domain. The original image frame, xfn^nj, is

assumed to be a periodic two-dimensional sequence with the fundamental period equal

to the frame dimensions. The object moving across the image frame then describes a

circular shift [Ref. 2:pp. 61-62], This implies that, as the object moves off one edge of

the screen, it reenters the screen from the opposite side. Real image frames, such as a

radar screen or video display, do not require this property because the moving object's

size will likely be much smaller than the screen dimensions.

The derivation of D(m,,mJ begins by introducing a circular shift into the

original image frame, f(n ly n^. Equation 2.6 now becomes,



AM AM .n%(!th.*^b.)

F'(W = E E An.-m^-m^ e « » ,
(2-8)

where F'fk^kJ is the circular- shifted, transformed image frame. The amount of pixel

movement is described by m, for the horizontal shift and m2 for the vertical shift. Letting

l,=n r m, and l 2 =n 2-m 2 Equation 2.8 becomes,

f'(*ijy= E E AW"'" 1 * " '•
(2 ' 9)

Rearranging terms, Equation 2.9 reduces to,

(2.10)

-;2n(-li + -^)

= D(mvm2) Fik^kJ,

where F(k u kJ is the transformed image frame without the circular shift. This proves that,

when an object moves across an image frame in the spatial domain, the motion is

described by a phase shift in the spatial frequency domain, thereby agreeing with the

circular shift property (Equation 2.8).

3. The Moving Image Model In The Spatial Frequency Domain

The spatial domain model described by Equation 2.3 can be transformed to

the spatial frequency domain. The transformation is accomplished by taking the discrete

Fourier transform of the image portion of these equations which gives,



F(*+l)

v(Jt+l)

=
D(y)

/

F(k)
+

z^k)

Cv(*)

X(fc+1) = A(v) X(k) + Z(it)

= «(X(*),Z(*))

(2.11)

where,

F(k) = ^{/(it)} e C*\ (2.12)

z/*) = ^K/*)} e C"
2

,
(2.13)

Z>(v) = diagonal [ J**" ].

(2.14)

and a(*,*) is a non-linear operator. The vector, f(k) and its corresponding plant noise,

X/k) are transformed to the spatial frequency domain, where &{•} is the two-dimensional

discrete Fourier transform operator (Note that the index k refers to the sample at time

k). The transformed shift operator, D(v) is a diagonal matrix where the diagonal terms

D
{
(v) are the transformed shift operators for specified spatial frequencies so that the

corresponding elements w, of spatial frequency vector w is defined as,

°>*
=

2-nkj

N

N

(2-15)

The image plant noise remains a zero-mean, white Gaussian random process since it is

generated by a linear operation:



Q„ = Elzz
7

]
=

all

o
2

J
(2.16)

Additionally, note that only half of the spatial frequencies need to be stored in F(k) due

to the conjugate symmetry property of discrete Fourier transform of a real image [Ref.

3:p. 45].

The corresponding measurement equation in the spatial frequency domain is:

Y(k) = JFX*) + W),

= [10] X(k) + N(k), ( 2 - 17 )

= C X(k) + N(k),

where Y(k) = £y(k)) and N(k) = ^v(k)), and Wis a zero-mean gaussian with known

covariance matrix,

Rm = E[N(k) NT
(k)] = a

2
HL ( 2 - 18 >

In practice, the image is measured and then the Fourier transform is performed. But for

simplicity, we will assume that the Fourier transform of the image is measured. The state

equations given by Equations 2.11 through 2.18 are the basis for implementing the EKF

in the spatial frequency domain. The Equations 2.11 through 2.18 define a nonlinear state

space model of a sequence containing a moving object. The state of this system consist

of both the image (in the spatial frequency domain) and the velocity of the moving

object. The model is driven by white noise. Measurements consist of the image in the

spatial frequency domain corrupted by additive noise. The extended Kalman filter has

found wide application as a state estimator for systems of the form described above.

10



C. THEEXTENDEDKALMANFILTER

1. The Extended Kalman Filter

The extended Kalman filter is a nonlinear, recursive filter that can be

employed to generate estimates of a system whose evolution is governed by a nonlinear

state equation. The extended Kalman filter equations for the moving image model are:

State Prediction:

X(k+l\k) = a(X(k\k),0), ( 2 - 19 )

Y(k+l\k) = CX(k+l\k), ( 2 - 2 °)

Covariance Prediction:

P(k+l\k) = A(X(k\k))P(k\k)A T
(X(k\k)) + Qu ,

(2-21)

Kalman Gain:

G(*+l) = P(k+l\k)C T [CP(k+l\k)C T + Rmy\ (2.22)

State Correction:

X(£+l |A:+1) =X(k+l \k) + G(k+l) [Y(k+l) - Y(k+l \k)], ( 2 - 23 )

Covariance Correction:

P(k+l\k+l) = [I-G(k+l)C]P(k+l\k). (2-24)

The A
denotes an estimate and the notation k+1 \k is read as: at time k+1 given data

through time k. These equations are a set of recursive equations that can be used for

estimating the state X(k).

11



2. The Modified Extended Kalman Filter

As mentioned earlier, the diagonal properties of the transformed shift

operator, D(v), and the covariance matrices are the basis for the parallel structure shown

in Figure 2.1. This parallel structure is referred to as the modified extended Kalman

filter. Reference 1 outlines how the EKF converges to the MEKFas the velocity estimate

approaches the actual velocity. Practical implementation of the MEKFsuggests that each

filter in the parallel bank be dedicated to a specific spatial frequency. Each individual

filter is referred to as a single frequency extended Kalman filter (SFEKF). The state

vector for a specific spatial frequency is defined as,

Xfk) =

\m ReiFtf))

X
i2

(k) = /m(F.(*))

Xu (k)
T

Ci),V

(2.25)

where the first two states, X,(k) and X2 (k) are the real and imaginary parts of Fourier

coefficients associated with a specific spatial frequency and the third state, Xs (k), is the

product of the spatial frequency vector and the velocity vector. Xu (k) is called the

velocity-frequency product for each frequency, Equation 2.11 becomes,

Im(FXk+l))

T
CO, V

T ' T
cos(co,v) sin(cOjV)

T T
-sin( co , v) cos( co , v)

1

Re(Fflt))

ImCF^k))

T
co,v

(2.26)

where v contains the two velocity components as,

12



V = (2.27)

The non-linear state matrix of Equation 2.26 can be linearized around the current

estimate of the state by using the Jacobian operator,

A(X(k\k)) = da

dX
(2.28)

X=X(k\k)

The linearized state equation for a single frequency is,

X.(*+l) = Aftfm *fto + Zffi, (2.29)

where,

cos(4(fc)) sin(4(Q) [-4(^)sin(4(^)) +4(^)cos(4(^))]

-sin(4(fc)) cos(4(it)) [-4(it)cos(4(fc))-4(*:)sin(4(A))]

1

(2.30)

The single frequency model (Equation 2.29), the measurement equation (Equation 2.20),

the linearized state matrix (Equation 2.30) combine with Kalman filter equations to fully

specify the single frequency EKF's. Application of these equations yields estimates of the

real and imaginary components of the Fourier coefficients and the frequency-velocity

products.

13



D. VELOCITY ESTIMATION

The single frequency EKF's each yield an estimated frequency-velocity product.

These estimates can be combined to yield an estimate of the velocity of the moving

object. This final estimate is computed by using a weighted least-squares algorithm.

Unfortunately this estimation algorithm is complicated by an ambiguity of multiplies of

2-7T in the frequency-velocity product estimates. This ambiguity is distinct from the

problem of phase unwrapping since the single frequency EKF's are free to converge to

any of the possible multiplies and do not have the rigid structure to the phase unwrapped

signal [Ref. 1]. By including these ambiguity terms the frequency-velocity estimates can

be modelled by,

XJk\k) = Qv + w+27iAn, (2.31)

where,

N

w = [w lt w
2

,...,w Ni ], (2.33)

and

m = [m
l
,m

2
,...,m Ni]. (2.34)

The term w is a zero-mean, Gaussian random vector with the estimated covariance,

E = E[ww T
] = diag[P mJ>2Si ,...J> l to 3l

(2.35)

where PU} is the 3,3 component of the z'th estimation error covariance matrix computed

14



by each of the SFEKF's. As stated before, the frequency-velocity product enters the state

equation only as a phase term and is ambiguous with respect to a shift of a multiple of

2x. The term m is an unknown integer vector which models this ambiguity.

The estimates from Equation 2.31 can be used to estimate the velocity by finding

the real vector v and integer vector m, that minimizes the weighted sum of the squared

errors,

J=(X
3
(k\k)-Qv-2nm) T

E- l (X 3
(k\k)-Qv-2nm). ( 2 -36)

The vectors v and m that minimize Equation 2.36 can be found by performing a search

over all possible values of m. For each value of m, finding the value of v that minimizes

Equation 2.36 is equivalent to the classical Weighted Least Squares problem. A new data

vector may be defined as,

X = X
3

(k\k) - 2izm, (2-37)

and the sum of the squared error is,

J = (X-Qv^E^CX-Gv). <2 - 38 )

Constraining the velocity estimate to be a linear function of the data yields,

v = G
V
X

3 (*|*), (2-39)

where,

G
v

= (Q'E^Q)- 1 Qr S- 1
.

(2-40)

Substituting Equation 2.39 into Equation 2.36 yields the sum of the error as a function

15



of m,

J(m) = (XikW-lnmfX-^I-QGJiX^klQ-lnm). (2-41)

Using Equation 2.41, mcan be estimated using a search of all possible vectors m to find

the one that minimizes J(m).

A simplification to this search for the optimal vector m is developed by Burl [Ref.

l:p. 12]. The values of the m,'s will be zero for low spatial frequencies. So by using this

subset of frequency components, the linear estimator of Equation 2.39 yields v^. This

velocity estimate is used to estimate the m,'s that do not meet the condition m=0by,

m
t

= Round(±[X
i3

(k\k)-uJv LJ), (2.42)

where Round(*) equals the integer nearest to •. This estimate, in turn, is used to estimate

the velocity using Equation 2.37 and 2.39. The estimated values of mare included in the

frequency-velocity product estimates that are fed back to single frequency EKF's.

Therefore, once the filter has converged the values of mwill all be zero.

E. IMAGESWITH NONZEROBACKGROUND

The background in most image sequences will be non-zero. A method of modifying

the MEKFfor use in this case is proposed by Burl [Ref. 1]. This method proposes that

2 more states are added to the single frequency EKF's. The additional states are defined

as the real and imaginary portions of the background in the spatial frequency domain

and,

16



x/® =

X
tl

(k) MFfk))

X
i2

(k) Im(Ffk))

Xa(k) = *4FM
X

i4
(k) ImiFjm

X^k) a^vik)

(2.43)

where F^fk) is the Fourier transform of the stationary background. The state transition

matrix for these new states are simply the identity matrix since the background is

considered to be constant. The state matrix of Equation 2.30 then becomes,

A,(X,(*)) =

cos(4(*)) sin(X.
5

(A:)) [-4(*)sin(4(*)) +4(fc)cos(4(*))]

-sin(4(*)) cos(4(*)) [-4(fc)cos(4(^))-4(*)sin(4(AD)] (2.44)

10
1

1

In this case the measurement is modeled as the sum of the moving object state, the

stationary background state, and the additive noise.
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Figure 2.1 The Modified Extended Kalman Filter.
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m. SPATIO - TEMPORALGRADIENTAPPROACH

A. THE IMAGEFLOWCONSTRAINTEQUATION

1. The Image Flow Constraint Equation

This method for computing the velocity field (optical flow) employs the first-

order spatial and temporal differentials of a time varying image to estimate the

component of motion at each point. Wecan derive an algorithm that relates the change

in image brightness at a point to the motion of the brightness pattern. Let the image

brightness at a point (x,y) in the image plane at time t be denoted by E(x,y,t). Now

consider that the pattern moves. The brightness of a particular point in the pattern is

constant, so that,

—= 0. (3.1)
dt

Using the chain rule for differentiation we see that,

dEdx
+

dEdy
+

BE
= Q (3 2)

dx dt dy dt dt

(A more detailed derivation with Taylor series expansion is included in Appendix A).

This equation can simply be written as,

E
x

u + E
y

v + E
t

= 0, (3.3)

where,
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u = dx

dt

dy

dt
(3.4)

E - — E - — E -
dE

dx y dy ' dt

The partial derivatives Ex , E
y , E, are estimated from the image intensity values and will

be formulated later. The constraint given by Equation 3.2 on the local flow velocity is

illustrated in Figure 1 [Ref. 3:pp. 20-46].

Figure 3.1. The locus of points satisfied by the image flow constraint equation defines

a line in the velocity space.
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This constraint is often called as the image flow constraint equation since it expresses a

constraint on the components u and v of the image flow. As seen in Figure 3.1, values

of (u,v) satisfying the constraint equation lie on a straight line in velocity space. Two

conditions are required to ensure the validity of the image flow constraint equation; (1)

the change in image irradiance at each point must be entirely due to the motion of the

image pattern, as opposed to changes in the pattern due to reflectance effects, and (2) the

image should be smooth except at a finite number of discontinuities [Ref. 4:pp. 185-189].

Surface based smoothing may be used to improve the velocity estimates for images with

discontinuities. These conditions are probably too restrictive to allow image flow to be

useful, but the image flow equation is obeyed in practice with sufficient accuracy for

tasks such as segmentation.

The image flow can not be computed at a point in the image independently

of neighboring points without introducing additional constraints. This limitation occurs

because the velocity field at each point has two components while the change in image

irradiance at a point due to motion yields only one constraint. Estimation approaches for

this problem, in one manner or another introduce additional constraints that allow

mathematical solutions. One solution to this dilemma is to assume that in the local image

region there are two values of E(x,y,t) that have the same image motion, i.e. adjacent

pixels exhibit similar image motion. Defining these two points as E, = E(x,,y,,t) and

E2
= E(x 2 ,y 2t t), we can write the set of two equations,
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dE. BE. BE.—l u + —

L

v + —I = 0,
dx dy dt

(3.5)

oE~ oE^ BE.—2-u + —2-v + —?• = 0,
dx dy dt

or the matrix equation,

£ = «„«. (3-6)

where u = fu y/
T

, and the matrix 5" is formed with the appropriate values from the

equations above. Inverting S yields fu vf [Ref. 5:pp. 230-238]. However, any errors in

the spatial and temporal derivative estimates may have severe effect on the velocity

estimates. Furthermore there is no guarantee that S is invertible. The local motion

homogeneity, although perhaps valid for image points corresponding to object points that

are close together on the moving object, is not a valid assumption when adjacent image

points correspond to the motion of independently moving and occluding objects.

An alternative approach is to explicitly formulate a local smoothness

constraint on the velocity vector, that is to assume that objects of small size are

undergoing rigid motion and deformation. In this case neighboring points on the objects

have similar velocities and the velocity field of the brightness patterns in the image varies

smoothly almost everywhere. Discontinuities in flow can be expected at the object

boundaries and also where one object occludes another. This may be formulated

mathematically as the additional constraint which is to minimize the sum of the squares

of the Laplacians of the x and v components of the flow. The Laplacians of u and v are

defined as,
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V* w = ^ +^ and *v-**J*l. (3.7)

&t 2 dy 2 dx 2 dy 2

Now we can introduce the optimization problem. The optimization measure consist of

two terms: a penalty on the deviation of estimated velocity field from the image flow

constraint equation and a penalty on the departure of velocity components from

smoothness (the smoothness penalty was the sum of the squares of the magnitude of the

gradient of the image flow velocity). These constraints may be written as,

$u #u d*v ch
Minimize, e, = + + +

dx 2 dy 2 dx 2 dy 2
(3.8)

subject to, z 2 = Ex u + E v + E
t

= .

The total error to be minimized becomes,

e r
= ej + X e 2 .

(3-9)

2. Estimating the Partial Derivatives and the Laplacian of Flow Velocities

Wemust estimate the derivatives of the brightness from the discrete set of

image brightness measurements available. The consistency of partial derivatives are very

important. That is they should refer to the same point in the image at the same time.

Although there are many formulas for approximate differentiation, an optimum method

given by Schunk [Ref. 4:p. 190] can be used, which gives an estimate of Ex ,E
y

,E, at a

point in the center of a cube formed by eight measurements. The relationship in space

and time between these measurements is shown in Figure 3.2. Each of these estimates

is the average of four first differences taken over adjacent measurements in the cube.
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Figure 3.2. The three partial derivatives of image brightness are estimated from the

average of first differences along four parallel edges of the cube.

(3.10)

Ex ~ ^ E
iJ*lJc

E
tJJc

+E
i*lJ*lJt

E
i*lJJt

+E
ij*lJc*l ijJc*l i*lj+lje*l i*ljJt*l*'

E
y ~ ^ E

i*lJJt~
E

iJJc
+E

i*iJ*lJt~
EU*U

+E
i*ljJc*l

~E
ijJc+l

+E
i*lj+lJt+l

~Eij+lMl

'

'

E
t

~ ^ E
iJJt*l~

E
iJJc

+E
iJ*lJt*l~

E
iJ*lJt

* E
i+ljJc*l~ E

i*lJJc
+E

i+lJ+lJc*l~
E

i*lj*lJc*
m

We also need to approximate Laplacians of u and v. One convenient

approximation takes the following form,
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v*« « (u - u) and V*v * (v - v), (3.11)

where the local averages u and v are defined as follows,

if iv
iVJfc

""

6
i v

<+vjt
+v

i-ijyk
+vv+u +vv-u'

J_, .
+

12
V,+1

^ +1
'
Jt+Vl+1 ^- 1 '*

+V, '-
1 ^ +1 '

jk+Vi - 1 ^- 1 ^^

(3.12)

Figure 3.3 The Laplacian is estimated from a weighted average of the values at

neighboring points.
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3. Minimization

The minimization of total error e r is a constrained minimization process which

has been formulated by Lagrange multipliers in Equation 3.9 (there are several other

ways). The solution to the Lagrange formulation is given by finding values of u = [u,vf

that satisfy,

"7T
=0

'

(3.13)

dc T—= 0.
dX

Using the calculus of variations [Ref. 6:pp. 107-178] yields the solution as,

E\ u + Ex E
y

v = X Vu - E
x

E
t ,

(3 U)
Ex

E
y

u * E
y

v = X Vv - £
y

£,.

Using the approximation to the Laplacian introduced previously gives the folowing

equations,

(A + El)u + E
x

E
y

v = (X u - E
x

E), ~ ^
(E

x
Eu + (X £> = (X v - E E).

Solving for u and v gives,

u = u - (El u + Ex E v + Ex E)/(X + E\ + E
y )-y "

T ^x ~|*V» T *-* T *V (3.16)

v = v - (Ex E
y

u + £; v + £
y

E
t
)/(X £x

' + £p

These results yield two solutions for X such that,
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k = -\E\ u+Ex E
y

v+Ex E
t
]/(u - u),

(3 n)
= -[E x E

y
u+E2

y
v+E

y
E

t
]/(v - v).

Notice that these equations constrain u and v but return no new information. They also

yield,

e 2
= 0.

Nowwe have a set of two equations for each point in the image. It would be

very costly to solve these equations simultaneously (also with the Lagrange multipliers).

Instead an iterative method can be developed. Wecan compute a new set of velocity

estimates (if
+1 ,V +1

) from the estimated derivatives and the average of previous velocity

estimates (it,Y) by,

u B+1 = u n - Ex [E x u n +E
y

v" + E
t
]/(X + Ex + E

y ),

v »*l = - n _ £ r £ ~n + E - n + £ y^ + £ 2 + £ 2
}y * y ' * y

(3.18)

(3.19)

The algorithm stops when convergence is obtained: that is when,

u\x,y,t) - u n
-\x,y,t) <. e v

v rt

(A:,y,r) - v"\x,y,t) <. er

In parts of the image where the brightness gradient is zero, the velocity

estimates will simply be the averages of the neighboring velocity estimates. There is no

local information to constraint the apparent velocity of motion of the brightness pattern

in these areas. Eventually the values in these areas will propagate inward. If the

velocities on the border of a region are all equal to the same value, then points in the
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region will be assigned that value too (after a sufficient number of iterations). If the

values on the border are not the same, it is a little more difficult to predict what will

happen. In all cases the values filled in will correspond to the solution of the Laplace

equation for a given boundary condition.

The best result in most cases is provided if the algorithm is performed a small

number of times per frame of a test sequence. In the first few frames an image flow

velocity will be estimated within the boundaries of moving object. The velocity field

outside the object area will be zero (or very small). As the object moves, the region of

nonzero velocity field does not move along with the moving object, since there is nothing

in the algorithm that forces the velocity field to be extrapolated in the direction of

motion. Since the location of the region of nonzero velocity field is not forced to move

along with the object, the translating object moves out from under the region of nonzero

velocity vectors. New nonzero velocity vectors are formed at the new position of the

object. The algorithm does not eliminate the old region of velocity that trails behind the

moving object. This creates a 'comet tail' behind the object. In regions where the

gradient is zero, the algorithm degenerates into the Laplace equation which smooths the

velocity field. The region of nonzero velocity vectors that trails behind the moving object

is also smoothed into a consistent (though obviously wrong) velocity field which persist

long after the object moves beyond the boundaries of the image. As mentioned before,

the algorithm cannot work in cases where there are motion boundaries in the velocity

field, or more than one moving object exist int he scene, since the smoothness constraint

leads to iterative equations that blur abrupt changes in the velocity field.
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One may use a smoothing algorithm for improving the velocity field

estimation. The smoothing algorithm constructs a smooth estimate of the velocity field

by approximating a surface between step discontinuities. Another algorithm called

Constraint Line Clustering that utilizes the polar form of the image flow constraint

equation to estimate the image flow velocity field when there are discontinuities is

described by Schunk [Ref. 7:pp. 1010-1027].

B. CONSTRAINTLINE CLUSTERING

1. The Polar Form of the Constraint Equation

The image flow constraint equation defines a line in velocity space as shown

in Figure 3.1. The line in velocity space that is the locus of possible velocities specified

by the image flow constraint equation is called the constraint line. The constraint line

may be uniquely defined by d, the distance of the line from the origin along the

perpendicular bisector and the angle a with respect to the u axis. The displacement and

the angle of the constraint line are given by,

\

£
t \

d =
(3.20)

J
arctanCE^Ep if E

t
* 0; ^2\)

1 arctan(-£'
Jc
,-£J otherwise.

To derive the constraint equation in polar coordinates, we first need to note that the

image flow equation contains the dot product of the gradient of the image irradiance with
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the velocity vector,

Ex u + E
y

v + E
t

= VE . (u, v) + E
t

. (3.22)

If we define p as the speed of motion and /3 as the direction of motion contained in the

constraint equation, then the dot product in Equation 3.22 becomes,

p |VE| cos( a - p ). ( 3 - 23 )

Dividing through by the magnitude of the gradient yields the polar form of the image

flow constraint equation,

d = p cos( a - p ).
(3.24)

Note that j3 is constrained to be between a-x/2 and a+x/2. Since the displacement d of

the constraint line from the origin must be nonnegative, the orientation a is reflected

when E, > 0. The displacement d is the projection of the motion vector onto the line of

the gradient of image irradiance and is independent of the magnitude or polarity of the

gradient.

The polar form of the image flow constraint equation can be used in the

analysis of algorithms for image flow estimation with motion boundaries since the polar

form will not contain 5-functions at step discontinuities. The polar form will not contain

5-functions since the displacement d is the ratio of the magnitude of the change in time

of the image irradiance to the magnitude of the gradient of image irradiance and this ratio

remains finite in the limit as the image irradiance becomes an ideal step discontinuity.

The constraints are sufficient to allow the sampled image sequence to
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accurately portray the local motion data between motion boundaries, but are not sufficient

to capture the motion information at motion boundaries. The motion constraints are

extremely sensitive to the effects of occlusion boundaries and are usually in severe error.

No practical sampling period can provide useful motion information along a motion

boundary. An image flow estimation algorithm must be able to work in situations where

there are motion boundaries in the image. So the algorithm called constraint line

clustering [Ref. 7:pp. 1010-1027] that estimates the image flow field when the image

irradiance pattern or the velocity field contains discontinuities is presented in the next

section.

2. Constraint Line Clustering

The constraint line clustering algorithm uses the polar form of the image flow

constraint equation given by,

d = p cos( a - p ),
(3-24)

where p(x,y) and fi(x,y) are the speed and direction of motion, respectively. The velocity

vector (p,0) for the motion at any point in the image must lie along the line in velocity

space defined by the image flow constraint equation shown in Figure 3.1. The constraint

line is uniquely defined by the displacement d of the constraint line from the origin and

the orientation a of the constraint line. The constraint line displacement has the

dimensions of speed; it is the minimum speed consistent with the motion constraint.

Assume that the image intensity E(x,y,t) already incorporates any spatial or

temporal filtering performed on the image. For example, the image could be smoothed
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Figure 3.4 The position of the intersection of two constraint lines along one of the

constraint lines.

with a Gaussian filter. The image is sampled in space and time to produce an image

sequence Eftj^fJ. The d and a intrinsic image arrays d(x it y) and afx^yj are computed

from the image sequence using the formulas in Equations 3.20 and 3.21. The partial

derivatives are computed by the differences over a cube in space and time by equations

given by Equation 3.10. The image flow estimation problem is to compute the intrinsic

image arrays pfx^yj and Pfx^yJ for the speed and direction of motion from the motion

measurements in the d and a arrays. The constraint line clustering algorithm uses a

cluster analysis in one dimension to extract the motion estimate from contradictory data.
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Suppose that for each d and a measurement, a set of measurements { d it a, } is taken

from some spatial neighborhood of the point that generated d and a. Compute the set of

intersections of each of the neighboring measurements d, and a, with the given d and a

measurement. All of these intersections lie along the line defined by d and a. Any

constraint lines in { d„ a, } that are part of the same region of motion as d and a will

tend to intersect the line defined by d and a in a tight cluster around the true velocity.

Any constraint lines that are from different regions of different motion will intersect the

line defined by d and a over a broad range of positions. The incorrect constraint lines

generated along a motion boundary will not intersect the line defined by d and a at a

consistent point.

The formula for the position of intersection along a constraint line can be

easily derived by first rotating the coordinate system so that the constraint line defined

by d and a is parallel to the vertical axis in velocity space. Let the angle between the two

constraint lines be denoted by <j> = a '-a as shown in Figure 3.4. The distance of the

intersection along the constraint line may be computed by,

b = ——

.

(3.25)
tan(4>)

The distance c is related to d, d' and <f> by,

( d + c ) cos(4>) = d'. ( 3 - 26 )

Using Equation 3.25 to eliminate c from Equation 3.26 yields,
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d cos(4>) + b sin (<J>)
= d'. ( 3 - 27 )

Solving for b and substituting using the definition for <t> yields,

, d'-d cos((|)) d'-d cos(ol'-ol) /o
28^

sin((J)) sinCa'-a)

This formula provides the position along a constraint line defined by d and a of the

intersection of the constraint line with another constraint line defined by d' and a'. So

given a set { b, } of intersections of the constraint lines within a neighborhood with a

constraint line at the center of the neighborhood, the set of intersections may be analyzed

to determine the most consistent subset of intersections that cluster about the likely

velocity. The cluster analysis criterion is motivated and explained by imagining a motion

boundary passing almost vertically through a neighborhood just to the left of a center

element. At any reasonable pixel resolution, the boundary will most likely pass smoothly

through the neighborhood dividing the neighborhood almost in half. The region on one

side corresponds to one surface in the scene and the other side including the center

element corresponds to a different surface. In the extreme case where the boundary

passes very close to the center of the neighborhood, almost half of the intersections of

neighborhood constraint lines with the constraint line from the center of the neighborhood

will be with constraints from the other side of the surface or the motion boundary itself.

These intersections will most likely not be close to the velocity of the surface from which

the center constraint line was obtained. Almost half of the intersections may be useless

in the most extreme case; but at least half of the intersections will correspond to the same
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region of motion. Since rejecting correct intersections is less harmful than accepting

incorrect intersections, a conservative algorithm can be taken: the algorithm looks for the

tightest cluster that contains roughly half of the intersections. The cluster analysis is done

in one-dimension which makes it easy. The algorithm sorts the set of n intersections {bj

and then looks for the tightest interval that contains half of the intersections by examining

successive pair of intersections that are [n/2] intersections apart. The algorithm chooses

the pair of intersections that are closest together as the estimate of the majority cluster

of intersections. Then the center position V of the tightest cluster along the constraint

line is the midpoint of the smallest interval that contains roughly half of the intersections.

So the estimated speed of motion is given by

and the estimated direction of motion is given by,

P = a + tan"
1 ^ / d). <3 - 30 )

The estimated speed and direction of motion (v, 0) computed with constraint line

clustering avoids the error problem in motion boundaries and gives another solution to

the image flow constraint equation. Also the constraint line clustering algorithm is very

robust and works even if the basic assumption that at least half of the intersections must

be from the same region of motion is violated. For example if the center constraint is

from just inside a right angle corner so that only 1/4 of the intersections are from the

same region of motion, the algorithm still works because the intersections from

constraints outside the corner are almost uniformly distributed along the constraint line
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and do not bias the estimate of the tightest cluster.

The constraint line intersections are not always numerically well conditioned.

When two constraint lines are close in orientation there can be a large error in the

intersection position. When the constraint lines have the same orientation and different

displacements, the lines will not intersect. In spite of these objections, the constraint line

clustering algorithm is robust by the fact that only the tightest group of points are

retained to compute the motion estimate. Nearly half of the intersection positions will be

discarded. Any grossly incorrect intersections will most probably be discarded since they

lie outside the tightest cluster.

The algorithm is also very insensitive to the neighborhood size. Good results

may be obtained even for the minimum neighborhood size of 3 by 3. Larger

neighborhood sizes produce only slightly better motion estimates. There are two reasons

for this. The first reason is that the accuracy of the motion estimate is limited by the

accuracy of the constraint line along which the motion estimate is obtained. The second

reason is that the number of points in the neighborhood may have little impact on the

quality of the motion estimate; it is the spatial extent of the neighborhood relative to the

gradient variation that determines the quality of the motion estimate. In order to get good

intersection measures, motion constraints must be used from beyond the region of similar

gradient. The motion estimate can be greatly improved by increasing the spatial coverage

of the neighborhood. One apparent weakness with the constraint line clustering is that it

depends on the accuracy of the constraint line at the center of the neighborhood. This is

not a problem with the constraint line clustering algorithm itself but is an instance of a
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more fundamental problem with assigning a motion estimate to a point in an image. If

the constraint equation is grossly incorrect, then there is a fundamental ambiguity in

assigning a motion estimate to the corresponding image location.

The information in image flow constraint equations could be combined by

least squares methods. The image flow constraint equation is one constraint with two

unknowns. The equations in a neighborhood could be solved by least squares methods

for an initial motion estimate.
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IV. ONI^DIMENSIONAL FOURIERTRANSFORMFORTRACKINGMOVING

OBJECTS

A. INTRODUCTION

The method presented in this chapter brings a solution to the problem of

determining motion estimates via a One-Dimensional Fourier transform formulation. The

technique identifies objects uniquely by their motion using an algorithm which is based

on the application of the one-dimensional Fourier transform [Ref. 8:pp. 383-388].

This method not only separates the time-varying and time invariant parts of an

image but perform these operations with the least amount of computation. The method

presented here associates sinusoids with the time-varying parts of the image, such that

the faster moving objects are associated with high frequency sinusoids and the time-

invariant parts are associated with constant levels.

B. THECOSINE-AREATRANSFORM

Let a one-dimensional discrete sequence be described by f(x,t), t=0,l,...,T-l of T

frames of size M. Define a general transformation as,

A/-1

8(0 = £ Ax,t) Mx\k) r=o,i,...,r-i, (4.1)

where w(x
\

k)is a weighing function of order k. A properly chosen weighing function

will allow us to use this weighted area, g(t), to find the velocity of a moving object while
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discriminating against a stationary background.

If w(x
|

k) = cos(2ickx/M) is chosen as a weighting function, Equation 4.1

becomes,

Ml
g{t) = £ MOcosQnkx/M) t=0,l t ... t T-l. ( 4 - 2 )

So if the signal f(x,t) is multiplied point for point with the amplitude of a sinusoid and

the result is summed (integrated) over all the spatial variables (0,M)> the result is a single

value g(tj at each point t,. When the signal is constant with respect to time, g(t) will have

a constant value, i.e. g(t) = A. When the time sequence contains a moving object, g(t)

will trace out a sinusoid [Ref. 9:pp. 281-283].

Suppose that for frame one (t=0) the sequence yields a one-dimensional array with

Mentries that are zero except at one location xm (where the object is). So the weighted

sum gives g(0)=cos(2-KkxJM). The movement of the object by one location in the next

frame (t= 1) gives g(l)=cos(2Trk(x m+l)/M). If the object continues to move one location

per frame, g(t) yields a sinusoid with frequency of k/M. If the object were moving v,

locations between frames then the sinusoid would have a frequency vJc/M. Since t varies

between and T-l in integer increments, if we restrict k to have integer values then the

discrete Fourier transform of the sinusoid would have 2 peaks, one located at frequency

vjc and the other at T-vJc. This latter peak is due to the symmetry foldover of the Fourier

transform. Thus a peak search in the Fourier spectrum would yield vjc and division of

this quantity by k yields vx

The factor k in the weighting function has several properties and limitations.
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Fundamentally,

< |*| < Ml 2, ( 4 -3)

which is basically determined by Nyquist sampling criteria to prevent aliasing and for

convenience k is usually a positive integer. A zero k value allows no sinusoid to be

created by a moving object and a k greater than M/2 produces an aliased spectral

response. The actual value of k is chosen from the frame rate and the maximum expected

object velocity,

where f^ is the frequency limitation given by the available number of frames and the

Nyquist criteria. The maximum and minimum velocities represent the dynamic range of

the system, i.e.,

v^ / v^ = # frames / 2. (4.5)

The Fourier transform of g(t) provides the basis for an efficient and effective

method for estimating the angular frequencies of sinusoids. The Fourier transform of g(t)

is given by,

r-i

G(J) = £ g(t) e-^ IT /=o,i,...,r-i

(4.6)
r-i mi

= E E ^ x ' f ) cos(2ic*c/Af) e'W 7
.

The result is that the moving object generates a frequency proportional to its velocity.
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All the stationary objects and the background will appear as a zero frequency component

in this transform domain. The frequencies generated by the moving objects can be easily

discerned by a simple peak detection algorithm.

This method is easily generalized for use on two-dimensional spatial images. Let

the time sequence of images be represented by f(x,y,t) with < x < N, < y < N,

< t < N. The resulting velocity is a vector v = [v x v
y f. The cosine area transform

is defined by,

N-l

£XW) cos

y=0

'inkx/rf

[2nky/N)
-J2*ft/T

(4.7)

and to extract velocity components, the following Fourier transformations are taken,

E
f=0

8x(t)

gfl))
e -J 2^ 7

.
(4.8)

C. THEGENERALIZEDAREA-TRANSFORM

We will generalize the cosine area transform in a way that will yield us the

extraction of both velocity components simultaneously and identification of the moving

objects in the original sequence. Two Fourier transformations are the foundation for this

generalization. These transformations result from a replacement of the cos(2irkx/N) term

with exp(-j2irkx/N). The first transform is a space to inverse-space transform whose

values are subsequently summed over the second spatial variable; while the second is a

time to frequency transform [Ref. 9:p. 284]. The transformations for a sequence of T
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digital images of size Nx N, at any integer instant of time are given by,

N-l am -flukjc.

^M E E >fcw)«
N ks =o,±u...

x=0 y=0

N-l N-l -/2*kj

Fik^t) ='£ y£Ax^)e N *
y

=0,±l,...

y=0 x=Q

(4.9)

(4.10)

G(M = E F(M* T
/=o,i,...,r-i ( 4 - n )

/=0

r-i -fl-*ft

G%f) = "£ F(k yi t) e
T /=0,l,-.,r-l ( 4 - 12 )

It should be noted that separate transforms are used for each spatial dimension, and the

first two transforms are summed over both spatial variables. This is done so that the

velocity components can be resolved for each dimension. The velocity k u product is found

by detecting a peak in the spectrum of G(k HJ) for a fixed value of k u . The velocity of an

object in the dimension u is then found by dividing the frequency of the peak by kH . Also

it is of interest to note that a sequence of frames in which no motion takes place would

yield identical exponential terms whose Fourier transform would consist of a single peak

at a frequency of 0. Since the operations are linear, the general case involving one or

more moving objects in an arbitrary static background would have a Fourier transform

with a peak at (corresponding to the static image components) and peaks at locations

proportional to the velocities of the objects.
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Figure 4.1 The ideal power spectrum (G(k„,f)) with DFT.

The determination of a velocity component requires the use of phase information

derived from the real and imaginary parts of F(k„J). Since the speed of object was

directly obtained from the spectrum of G(k u J), the phase information in F(k u ,t) is used

to derive the sign of the velocity. Once a moving object is found, comparing the signs

of the equations below determines the sign of the velocity;

C -

d 2Re{F(k
uy

t)}

1

dt 2

c
<Plm{F(k

u
jf)}

D2
dt 2

(4.13)

t=t.

(4.14)

*=<.

Since F(k H,t) is a sinusoidal, S, and S2 will have the same sign at an arbitrary point in
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time t, if the velocity has a positive sign. The velocity will be negative if St and S2 have

opposite signs. It should be noted that the ambiguity resulting when S, or S2 equals zero

is avoided by using the closest point in time t = t, ± At.

The algorithm proposes that the 1-D FFT (DVT) spectrum of F(k u ,t) provided by

Equation 4.11, 4.12 will have a peak proportional to the velocity components of the

moving object as shown in Figure 4.1. In reality the algorithm yields a wide spectrum.

This spectrum has "smeared" frequency peaks instead of one frequency peak at the

desired location as shown in Figure 4.2.
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Figure 4.2 The "smeared" power spectrum (G^f)) with DFT.

There are mainly 2 reasons for this undesirable result.

(i) The undesirable signal components in the image frames (noise, occluding boundary

effects, rotation of object, non-stationary background etc.). These "noise effects" can
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cause spectral spreading.

(ii) The loss of frequency resolution due to limited number of frames.

The first condition has already been mentioned where the model did not include the

non-stationary and non-uniform background. The effect of noise is always a problem for

any algorithm.

The second condition is caused by the situations where the equation VmJVKA —#

frames 12 is not satisfied due to the lack of available frames. Note that if V^ is taken to

be 1 pixel per unit time, V^ is limited by the number of frames available. This

limitation may be overcome by assigning the appropriate value to ku . For the case where

image size is an integer multiple of the available number of frames, the maximum peak

occurs at the frequencies integer divident of actual velocity. For other cases, the single

frequency component at kju will be "smeared" out to other frequencies. This smearing

effect is defined as "leakage" [Ref. 10:pp. 459-474] and may cause errors in velocity

estimates which also add to the errors due to the noise effects. Also as the leakage causes

significant nonzero frequency components at the undesired frequencies (starting from

adjacent frequencies), it also reduces the magnitude of the peak at the desired (or

accurate) frequency.

A precise analysis is beyond the scope of the discussion here, but an intuitive idea

of what is causing leakage may be obtained by looking at the time domain representation

of sinusoids. The primary source of leakage seen in the FFT (DFT) of these sinusoids

are the discontinuity introduced in the periodic extensions of complex sinusoid sequences

by the missing partial cycles in available data. Missing partial cycles of the periodic
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sinusoids occurs when the image size is not an integer multiple of the available number

of frames. Note that the best result occur in cases where the number of frames is equal

to the image size.

One solution to the problems introduced above is to use Spectral Estimation

techniques as a last step to extract the frequency information from the available corrupted

data. Besides the 1-D FFT (DFT), the Maximum Entropy Method can be used to

improve estimates of peak frequencies. The Maximum Entropy Method (MEM) was

originally devised by Burg [Ref. 11] to overcome the fundemental limitations of

Fourier-based methods for estimating the power spectrum of complex sinusoids in the

presence of additive noise.
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Figure 4.3 The improved power spectrum with the MEMmethod.
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Other spectral estimation techniques such as the Multiple Signal Characterization

(MUSIC) Algorithm, the Maximum Likelihood Method (MEM) and the Auto Regressive

(AR) Signal Modelling were considered. The MEMwas selected since it has significantly

better resolution characteristics than the others when not much data is available [Ref.

12:pp. 385-392]. In particular, the MEMavoids the use of periodic extension of data or

of the assumption that the data outside the available record length is zero.
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V. THE3-D FOURIERDOMAINANALYSIS OF IMAGEMOTION

A. THESPATIOTEMPORALFREQUENCYMETHOD(STF)

This approach to image flow derivation takes the advantage of the special form of

the Fourier transform of time varying images characterizing constant- velocity, rigid-body

translation. The method is based on the spatiotemporal-frequency image representation

and is called STF (Spatiotemporal-Frequency Approach) [Ref. 13,14]. A time-varying

image function, moving in a spatial direction determined by the velocity vector [u vf

may be defined as,

Ax,y,t) =fix- ut,y - vt),

= ftx,y) * 6(x - ut,y - vr),

where f(x,y) = f(x,y,0), b(x,y) is the Dirac delta function and "*" denotes convolution.

The 2-D Fourier transform of Equation 5.1 incorporates a phase term of the form,

F
2 - D i8(x,y,t)} = e*"*V*V* F

2 _ D{g( W)| r=0 },

(5.2)
-j2n(wji+w

y
v)t

= e F(wx,wJ,

where Ffw^wJ is the fourier transform of f(x,y). The existence of this phase component

in the above equation enables the estimation of image velocity. This phase term is

linearly dependent on t and the inner product of the 2-D Fourier indices (wx wJT with

the velocity vector (u v)
T

. Determining the 3-D Fourier transform of Equation 5.1 only
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(5.3)

requires an extension of the 2-D transform in Equation 5.2. Again assuming constant

velocity, the 3-D Fourier transform can be denoted by,

FCw^WyW) = F
3 _D{f(x,y,f)},

OS

= / F
2 _D[fajA) e'

i2 ™f
dt,

—OB

m
—

,

N t -y2K(w_«+w_vy -jliiwf j.
= FlWfWj

J
e * y " e * dt,

—OP

= F(w
x ,wJ 5(w

Jt
u+w

>
v+w

r
).

As shown in Appendix B, this gives a very interesting result that a uniformly translating

image with velocity [u^vf has a Fourier spectrum that is zero elsewhere in the 3-D

spatiotemporal space (w z ,w
y
,wj except on the single plane defined by,

{ OW^r) : Uo
W

x
+ V

o
W

y
+ W

t
= ° )• ^54 ^

In general, for each velocity [u ,vJ
T Equation 5.4 defines a unique planar locus of

spatiotemporal frequencies which are consistent with that velocity as shown in Figure

5.1. Thus F(wx ,w y ,wJ may be visualized as a 3-D solid of constant intensities, where the

slope of this solid surface is given by the values of u and Vq. This scheme for flow

derivation however, does not provide the generation of an optical flow function; rather

it yields a single velocity characterizing the entire image for all time. To make the

computation of a time-varying and local image flow function possible, numerous

regionally computed 3-D Fourier transforms could be employed instead of just one global

transform. Then a regional velocity could be determined for each of the regional Fourier

transforms in the manner described above.
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Figure 5.1 The velocity planes in the STF (spatiotemporal-frequency) Space.

The 3-D Fourier domain analysis of image motion is useful for several reasons, in

particular:

1) It suggests a method for determining motion (velocity) parameters by

examination of the nonzero region of F(w Jt w
y ,wJ.

2) It allows the design of a frequency domain filter for spatiotemporal interpolation

of images [Ref. 4: pp. 61-66].
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B. VELOCITY TUNEDFILTERS

The form of velocity-tuned filters is motivated by the frequency-domain description

of images which represent constant- velocity, rigid-body translation of objects [Ref. 15].

Although this is a very restrictive assumption, the results form a good foundation for

considering more general types of motion. Motivated by the form of F(wx,wy ,wJ, which

defines a plane in 3-dimensional frequency space, a velocity-tuned filter is defined as one

which passes the Fourier transform of a constant-velocity function with unity gain and

has zero gain over the rest of the frequency space. The filter will be supported on a

unique planar surface defined by the velocity components of the image. However, such

a filter turns out to have limited usefulness and is physically unrealizable. A better and

more general approach is to use a finite bandwidth filter, one which has approximately

unity gain in a solid 3-dimensional region surrounding the planar surface of F(wx ,w
y ,wJ

and goes to zero outside that region. So, we may consider the support of the

3-dimensional filter to be bounded by two planes which are parallel to the central plane

and separated in the w, direction by a temporal bandwidth of F
g (wJ. The velocity-tuned

filter will also pass constant-velocity functions whose velocity is different than the

velocity to which the filter is tuned; this requires only that the filter transfer function

H(wx ,w y ,wJ is approximately constant over the support of the input. The range of velocity

over which this is true gets smaller as the temporal bandwidth of F
g (wJ decreases and as

the spatial bandwidth of the input increases. Specifically the velocity range can be

defined as,
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Here i/,V are the velocity values to which the filter is tuned and U,V are the velocity

values of the input [Ref. 15:p. 64], B, is the temporal bandwidth of F
g (wJ, and Wx ,Wy

are

the spatial bandwiths of the original function. The quantities BJWZ and B/W
y

collectively

represent the effective velocity bandwidth of the filter when applied to this input. When

the conditions of Equation 5.5 are not met, the Fourier transform of the input intersects

the planar boundaries of the bandpass filter, and the frequency components outside the

passband are attenuated.
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VI. SIMULATION RESULTSANDCONCLUSIONS

The algorithms developed in the previous chapters are simulated with artificial and

real image frames where MATLABis used as a tool for simulation. The artificial image

frames were 32x32 pixels in size and contained a square to represent the moving object.

Sixteen shades of gray levels are used to represent the pixel intensity values of the square

object and the background, although the intensity values are normalized before applying

each algorithm. The algorithms are tested under two different background conditions. For

the first case the image frames are assumed to have uniform background with zero

intensity and for the second case a random checkerboard background with half the

intensity of the moving object is used. A random checkerboard background is used in

order to avoid any regular or periodic pattern in the background. The artificial images

used in the simulations are shown in Figures 6.1-6.4.

Throughout the simulations, an artificial disturbance (noise) is added to the image

frames (pixel values). The Relative Error in the estimation of velocity components is

used as a comparison criteria for different SNRand different algorithms. The SNR (in

decibels, dB) for an NxN image is defined as,

SNR= 10Log
10

/ N-l N-l

E E^.y)
2

x=0 y=0

N-l N-l

E E "(*.>-)
2

^ x=0 y=0

(6.1)
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where f(x,y) is the desired component (actual pixel value), and n(x,y) is the undesired

component (noise). The final pixel values of the image frames are determined by the sum

of these two terms. The Relative Error is defined as,

Relative Error = - (6.2)M2

where u is the actual value of velocity component, u is the estimated velocity component

and
||

•
|| 2 defines the Frobenius norm of a vector or matrix. Each algorithm is tested

4000-8000 times with very slowly changing SNR's. The resulting values of these tests

are averaged over larger changes of SNR's. In each test, the algorithms are iterated 32

times. Since the image size was 32, the moving object is simulated such that as it

disappeared from one end of the image frame it is allowed to reappear at the other end.

These algorithms are also tested with a real image sequence containing a moving

car. This real image was 128x128 pixels in size and contained 256 shades of gray to

represent the pixel values. These tests are done just to see if the algorithms would work

with real images. Also since the EKF and the 3-D FFT algorithm (with Velocity Tuned

Filter) promises restoration of the image and increase in SNR's, these two algorithms are

tested with the real image sequences.
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Figure 6.1 The test image frame containing a square object without noise.

Figure 6.2 The test image frame containing a square object with noise.
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Figure 6.3 The test image frame including background without noise.

Figure 6.4 The test image frame including background with noise.
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A. THEEXTENDEDKALMANFILTER

The extended Kalman filter is implemented with a 3 rd order filter for images with

zero (or uniform) background images and with a 5 th order filter for images with nonzero

background as was discussed in Chapter II.

Two sample test results of the EKF algorithm are shown in Figures 6.5-6.6. The

EKF gives good results even under fairly low SNRconditions. In general at high SNR

situations the EKF converges to the actual velocity values after 3-4 iterations and as the

SNRdecreases the iterations needed increases up to 25-30 iterations. At very low SNR

conditions (-30,-40 dB), the EKF estimate of the velocity components is not guaranteed

and depends on the random disturbance. Figure 6.7 shows the Average Relative Error

(computed by averaging the relative error over 32 iterations) and the Final Relative Error

(the relative error in the final velocity estimate) versus the SNR of the input image

frames. Figure 6.8 shows the Relative Error versus Iterations for some selected values

of SNR. Figures 6.9-6.10 shows similar results where the image frames included the

background (5* order EKF). As seen from these two sets of results the background

effected the performance of the algorithm. There are mainly two reasons for that. First,

the occluding boundaries create a noise term which is not included in the SNR term.

Second, the background which has much more signal power than the moving object,

makes it harder to detect the phase changes due to the moving object. Similar effects are

seen in other algorithms that use Fourier phase changes as a basis for velocity estimation.
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Figure 6.5 The EKF velocity estimates for a high SNRcase.
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Figure 6.6 The EKF velocity estimates for a low SNRcase.
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B. THE IMAGEFLOWCONSTRAINTEQUATIONMETHODS

The iterative solution given by Equations 3.16 - 3.17 and Constraint Line

Clustering method are used for the computation of the Image Flow Constraint equation

in the simulations. The iterative solution method is implemented in two different ways.

For the first case only two frames are used and the computations are iterated for 1, 4,

16, and 32 times. The estimated velocity fields are shown as arrow diagrams in Figure

6.11. Initially, the velocity estimates are assumed to be zero. Consequently, the first

iteration shows vectors where the temporal changes occur. Later the estimates approach

the correct values in most parts of the image. A few changes occur after 16 iterations.

In the next case, one iteration is used between two consecutive frames (per time step).

The resulting velocity fields are shown in Figure 6.12 for 1, 4, 16, and 32 time steps.

The estimates approached the correct values more rapidly and very few changes occur

after 16 time steps. This leads to the final method where the velocity estimates are

computed 4 times between two consecutive frames with 16 or 32 time steps. The velocity

fields after 1, 4, 16, and 32 time steps, where 4 iterations per time step are used, is

shown in Figure 6.13. The final estimates of the velocity components of the moving

object are computed simply by averaging the velocity field in pixel locations that have

significant temporal changes (i.e. where the moving object is). This created a

thresholding problem to determine the region of motion especially for the high noise

case. Since both the artificial image and the real image had higher intensity values at the

object points than the background, the problem is solved rather easily. But as the noise
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level is increased to higher values, the error in computing the regions of motion

increased the error in the velocity estimates. Since the new estimates at a particular point

do not directly depend on the previous estimates at the same point, increasing the time

steps does not effect (or improve) the final velocity estimates. Although it improves the

estimate of the velocity field.

Constraint Line Clustering methods do not use a previous velocity estimate at all.

Consequently it is computed between two consecutive frames. Again the final velocity

is estimated by averaging the velocity field in the region of motion. Figure 6.14 shows

the velocity field computed by the Constraint Line Clustering algorithm.

Both algorithms show good performance when the noise levels are low even if the

image has a finite number of discontinuities (or when the image is not smooth over all).

However, the performance decreases quickly with increasing noise levels. Therefore, the

image frames are smoothed with a Gaussian lowpass filter implemented in the frequency

domain to improve the velocity field estimates. The Relative Error vs. SNR for these

algorithms are shown in Figures 6.15-6.16 for image frames with 2 different choices of

backgrounds respectively.
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Figure 6.11 The velocity field after 1, 4, 16, and 32 iterations.
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Figure 6.14 The velocity field with Constraint Line Clustering.
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Figure 6.15 The Relative Error vs. SNRfor Image Flow Constraint Eq. solutions.
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C. THESPATIOTEMPORALFREQUENCY(3-D FFT) ALGORITHM

This algorithm requires a large memory space since the previous image frames (or

their 2-dimensional FFT's) need to be saved in order to perform the FFT in the third

dimension. Also, the definition and detection of the plane in the 3-dimensional

spatiotemporal frequency space is another problem to be solved. In the simulations the

planes are defined by their slopes in the wx , and w
y

directions. These slopes are extracted

by detecting the slope of the lines created by the intersection of the defined plane with

the vertical planes normal to the wx , and w
y

axes. The slopes are determined as integer

values which caused the final velocity estimates to be integer values as well. This is an

acceptable situation since the actual velocity values are accepted as integer values too.

The velocity estimates are affected by the number of frames available. Although it was

not mentioned before, the effect of smearing (or leakage) is seen around the central

plane because of missing image frames. Besides the expected nonzero central plane, the

3-D FFT creates other planes which are parallel to this central plane. These planes are

also supported by the noise terms. One test of velocity estimation with the 3-D FFT

algorithm is shown in Figure 6. 17. Figures 6. 18-6. 19 show the Relative Error values vs.

SNRand number of iterations for this algorithm.

The 3-D FFT algorithm can be used for images with nonzero background as well.

In this case, the algorithm creates a second nonzero plane with the slope of zero due to

the constant background. The actual plane can be determined by deleting the plane

associated with the constant background first. The smearing effect is also seen around
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the plane associated with the constant background. This makes the detection of the

desired plane harder and creates errors in the velocity estimates. The simulation results

of the Spatiotemporal Frequency algorithm with image sequences including background

are shown in Figures 6.20-6.21.

3-0 FFT (STF) ALGORITHM
7

6

5

4.

A A
00

i
2
fc 3

i
2

( J 5 10 15 20 25 30

ITERATIONS

Figure 6.17 Velocity estimates with the Spatiotemporal Frequency algorithm.
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Figure 6.18 The Relative Error vs. SNR for 3-D FFT algorithm.
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Figure 6.19 The Relative Error vs. Iterations for 3-D FFT algorithm.
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D. THE 1-DIMENSIONAL FFT ALGORITHM

This algorithm is the simplest, as mentioned before, but still gives fairly good

velocity estimates. It takes much less computation time since it uses only one-dimensional

Fourier transforms. Throughout the simulations, the estimates of this algorithm are also

improved in two steps. First, the velocity components are found by averaging the results

for 3 k„ values (k„ = 1,2,3). Second, the velocity components are computed by Spectral

Estimation (MEM) methods as discussed in Chapter IV for k„=l. The final velocity is

estimated by comparing the MEMestimate with the average estimates. A sample test

result is shown in Figure 6.22. For high SNR, even two frames are enough to yield a

solution. But as the noise level increases more frames are needed. Overall this algorithm

gives better results for the estimation of motion parameters than the other algorithms.

The Relative Error vs. SNR and Iterations are plotted in Figures 6.23-6.26 for two

choices of background.
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Figure 6.22 Velocity estimates with 1-D FFT algorithm.
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Figure 6.23 The Relative Error vs. SNRfor 1-D FFT algorithm.
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E. RESTORATIONANDIMAGEENHANCEMENT

The test image frames are restored by using the estimates of the EKF and by using

the Velocity Tuned Filter (VTF) as outlined in Chapter V. The artificial images with

decreasing SNR are used in the simulations. After each simulation, the SNR of the

restored (or output) image frames are computed and compared with the SNRof the noisy

(or input) image. The difference between these SNRvalues are plotted in Figures 6.30-

6.31 to show the increase (or decrease) in the image quality. As seen from these plots

the EKF does not improve the image quality for images with SNR's higher than 10 dB.

This occurs since some of the higher spatial frequencies are truncated in the EKF

algorithm. Similiarly, the results show an increase in image quality for images with SNR

terms lower than -20 dB. However when the restored images are checked, it is seen that

the increase in SNR is not a real increase in image quality, instead, it is an increase

related to lowpass filtering of the image caused by truncating frequencies. The same

effect is seen for VTF after -25 dB SNR's. Figures 6.26-6.29 show the original, noisy,

and the restrored image frames of a sample run of these algorithms.
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Figure 6.26 The original image frame without noise.

Figure 6.27 The original image with additive noise (SNR = -15 dB).
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Figure 6.28 The restored image with EKF (SNR = -10 dB).

Figure 6.29 The restored image vith VTF (SNR = -7.5 dB).
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F. CONCLUSIONS

As seen from the simulation results, the 1-D FFT algorithm gives the best result

for the estimation of velocity components, although this algorithm does not preserve the

original image. The EKF gives the second best result for the estimation of velocity

components for low SNR images and also increases the image quality. The 3-D FFT

(STF) algorithm does not perform as well as the others but promises an increase in the

image quality with Velocity Tuned Filters (VTF). The algorithms that implement the

Image Flow Constraint equation performed after smoothing. Additionally, these

algorithms produce a velocity field besides only the estimation of a single

two-dimensional velocity component.
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Appendix A. Derivation of Image Flow Constraint Equation

Let E(x,y,t) be the irradiance at time t at the image point (x,y). Then if the image

point is displaced a distance 5x in the x-direction and dy in the y-direction in time 5t, we

expect that the irradiance will be the same at time t+St at the point (x+5x,y+Sy). So,

E(x,y,t) = E(x+bx,y+by,t+bf). ( A1 )

The right hand side of Equation A. 1 can be expanded about a point (x,y,t) using Taylor

series and so obtain,

E(x,y,t) * -p5x + -^6y + ^§bt + e = E(x,y,t), (A.2)
ox dy dt

where e contains second and higher order terms in 5x,5y and St. After substracting

E(x,y,t) from both sides and dividing through by 5t, the result is,

dEbx
+

dEby
+

dE = (A 3)
dx bt dy bt dt

where co(5t) is a term of order dt that includes second and higher variations of x and y.

In the limit as 5t -» 0, the above equation becomes,

Ex u + Ev v + E = 0. (A.4)

This equation is called the image flow constraint equation as mentioned before.
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Appendix B. Fourier Transform of a Linearly Translating image

Let f(x,y,t) represent the time varying image function that contains a uniformly

translating object as given by Equation 3.1,

Ax,y,t) =Ax-vj,y-v
y

f)

=Ax,y) * ?>(x-v xt,y-v
y

t)

(B.l)

The 3-dimensional Fourier transform of f(x,y,t) is given by,

FK,w,,«-,) =
/ / / toV*' * ""' " w

' )

dx dy dt. (B.2)

Using the representation given in Equation B. 1 gives,

and

Fiw^w^w^fff^)*b(pc-v^-vfi]e^^^dxdyA, (B.3)

F(wxt WyW)=] e'*"' //[My) * 6(x-v
x

t, y -v
y

t)]e-
j ^^dxdy L ^ 4 )

F(w xi wy ,w)=fe'
jtw

' hwx
,w

y)f{b(x-v x
t,y-v

y
t) e'*™'

+ ** dx dy\ dt. ( B ' 5 >

Performing the integrals inside the brackets gives,

FK,w >>w,)
= fe

-""
{ F(w z , Wy) e *« * V*

} *, (B.6)
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and,

F{w
x ,w

y
,w) ^(w^jfe-^Wt'dt. (B.7)

This yields the final result as,

^(vVvyvv,) = F(w
x
,w

y
) *>(v

x
w

x
+v

y
w

y
+w

t
). (B.8)
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