
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2006-06

Unsteady casewall pressure measurements in
a transonic compressor during steam induced stall

Levis, William R.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/2832

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

UNSTEADY CASEWALL PRESSURE MEASURMENTS IN
A TRANSONIC COMPRESSOR

by

William R Levis

June 2006

 Thesis Advisor: Garth Hobson
 Second Reader: Anthony Gannon

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Unsteady Casewall Pressure Measurements in a
Transonic Compressor during Steam Induced Stall
6. AUTHOR(S) William R Levis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
During launch of aircraft off of a carrier deck, steam leakage is sometimes ingested into

the aircraft’s engine and may cause a compressor stall or “pop-stall”. As the US Navy prepares to
field the single engine F-35C Joint Strike Fighter, it becomes necessary to investigate the
phenomenon known as “pop-stall”. In the present study, steady-state as well as transient
measurements prior to and during a steam induced rotating stall were taken. Changes to the
honeycomb altered the performance characteristics of the Transonic Compressor Rig and needed
to be remapped in order to determine a new stall line as well as a peak performance criterion.
Data was taken at 90 percent design speed as well as during a 70 percent steam induced stall with
the aide of 9 Kulites at varying positions along the case wall. Data was reduced and analyzed
through the use of a data acquisition and data reduction system.

15. NUMBER OF
PAGES

111

14. SUBJECT TERMS Compressor, Transonic, Steam Ingestion, Turbulence, Stall

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

UNSTEADY CASEWALL PRESSURE MEASURMENTS IN A TRANSONIC
COMPRESSOR

William R. Levis

Ensign, United States Navy
B.S., United States Naval Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: William R. Levis

Approved by: Prof. Garth Hobson
Thesis Advisor

 Dr. Anthony Gannon
Second Reader

Dr. Anthony Healey
Chairman
Department of Mechanical and Astronautical Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

During launch of aircraft off of a carrier deck, steam leakage is sometimes

ingested into the aircraft’s engine and may cause a compressor stall or “pop-stall”. As

the US Navy prepares to field the single engine F-35C Joint Strike Fighter, it becomes

necessary to investigate the phenomenon known as “pop-stall”. In the present study,

steady-state as well as transient measurements prior to and during a steam induced

rotating stall were taken. Changes to the honeycomb altered the performance

characteristics of the Transonic Compressor Rig and needed to be remapped in order to

determine a new stall line as well as a peak performance criterion. Data was taken at 90

percent design speed as well as during a 70 percent steam induced stall with the aide of 9

Kulites at varying positions along the case wall. Data was reduced and analyzed through

the use of a data acquisition and data reduction system.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. TRANSONIC COMPRESSOR ..3
A. SANGER STAGE ..3
B. TRANSONIC COMPRESSOR TEST RIG ..5
C. STEAM INJESTION SYSTEM ...8

III. INSTRUMENTATION ...11
A. KULITE PRESSURE TRANSDUCER ...11
B. INSTALLATION OF KULITE PRESSURE TRANSDUCER13
C. DATA ACQUISITION..15

1. DAC Express ..16

IV. EXPERIMENTAL PROCEDURE...19
A. KULITE CALIBRATION ..19
B. COMPRESSOR OPERATION ..19
C. STEAM-INDUCED STALL RUNS ..20

V. RESULTS AND DISCUSSION ..23
A. STEAM-INDUCED STALL AT 70% SPEED..23
B. PRESSURE CONTOURS 70% SPEED OPEN THROTTLE...................26
C. STEADY-STATE PRESSURE CONTOURS AT 90% SPEED................27
B. TRANSIENT MEASUREMENTS DURING AT 90% SPEED30
C. 90% SPEED STALL CELL GROWTH..33

VI. CONCLUSION ..35

APPENDIX A: PROCEDURE FOR USE OF MATLAB M-FILES37

APPENDIX B: MATLAB M-FILES (STEADY STATE) ..39

APPENDIX C: MATLAB M-FILES (STALL CASES)..73

LIST OF REFERENCES..93

INITIAL DISTRIBUTION LIST ...95

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Transonic compressor sectioned view ...3
Figure 2. Rotor-only configuration of the transonic compressor rig (From Ref. 8)..........4
Figure 3. Transonic Compressor in test cell with inlet piping removed (From Ref. 8)6
Figure 4. Transonic Compressor Rig Schematic...7
Figure 5. Transonic compressor rig with steam ingestion system8
Figure 6. SVS600 steam boiler system ...9
Figure 7. Steam pipe with intake plenum orientation (From Ref. 8)9
Figure 8. Kulite XCQ-080 series transducer (From Ref. 5)..11
Figure 9. Kulite Connection to RJ-45 Plug (From Ref. 5) ..13
Figure 10. Kulite Mounting Design ..14
Figure 11. Relative positions of Kulite pressure transducer and blades. (From Ref. 5) ...14
Figure 12. Relative positions or Kulite pressure transducers in case wall (From Ref.

5) ..15
Figure 13. Data Acquisition System (From Ref. 5) ..16
Figure 14. DAC Express GUI screen ..17
Figure 15. Electric throttle...20
Figure 16. Pressure ratio versus mass flow rate with shift in stall line23
Figure 17. Steam pressure and inlet temperature change during steam-induced stall at

70 percent speed...24
Figure 18. Raw-voltage Kulite signal going into steam induced stall at 70 percent

speed ..25
Figure 19. Change in compressor speed during steam-induced stall25
Figure 20. Power spectrum contour plot of Kulite data at 70 percent speed at through

stall...26
Figure 21. Pressure contours 70% speed with open throttle ...27
Figure 22. Pressure Contours 90% speed and a Pressure Ratio of 1.25 (Open throttle)...28
Figure 23. Pressure Contours 90% speed and a Pressure Ratio of 1.38 (Peak

Efficiency)..28
Figure 24. Pressure Contours 90% speed and a Pressure Ratio of 1.47............................29
Figure 25. Pressure Contours 90% speed and a Pressure Ratio of 1.49 (closest to

stall)..29
Figure 26. Raw Kulite data through 90% speed stall ..30
Figure 27. Simultaneous signal obtained from 3 probes at 90% speed.............................31
Figure 28. Change in compressor speed during a rotating stall event...............................32
Figure 29. Power spectrum contour plot of Kulite data at 90 percent speed at through

stall...32
Figure 30. 90% speed stall cell growth ...33

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Sanger Stage Parameters..5
Table 2. XCQ-080-25 Factory Specifications (From Ref. 5) ..12
Table 3. Measurements during transient analysis ..27

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 I would like to thank Professor Hobson for the amount of effort and time that he

put in to help me complete my thesis. I would also like to thank John Gibson and Rick

Still for their hard work and quick wit making the Turbopropulsion Laboratory a more

enjoyable place to work. I have appreciated my time here and couldn’t have asked for

better people or a better place to work.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

As the United States Navy begins to transition to the F-35C Joint Strike Fighter

(JSF) it becomes necessary that the phenomenon known as a “pop-stall” be resolved. A

“pop-stall” occurs when the catapult-launch system on an aircraft carrier releases steam

during a launch cycle. The steam is than ingested into the intakes of the aircraft, causing

a fan or compressor stall and a possible total engine stall or “pop-stall”. Experiments

conducted at Naval Air Engineering Station Lakehurst with an F-18 demonstrated the

relative susceptibility of the aircraft to “pop-stall” events. This susceptibility of the dual

engine F-18 is of significant interest because as the Navy begins to transition to the single

engine F-35C, the probability of a “pop-stall” occurring and causing a catastrophic loss of

an aircraft increases.

The work done at the Turbopropulsion Laboratory (TPL) at the Naval

Postgraduate School (NPS) focuses on the “pop-stall” problem with the use of the

Transonic Compressor Rig (TCR). The transonic compressor fan stage was specifically

designed for the Naval Postgraduate School to be used in the TCR by Sanger (1996) at

the NASA Glenn Research Center (Ref. 1 and 2). These investigations conducted on the

TCR are intended to improve the understanding of steam-induced stall.

The performance characteristics of the compressor in both the fan-stage as well as

the rotor-only configurations were mapped with the data that was collected by Gannon,

Hobson and Shreeve. This data was used to establish performance characteristics at 70%,

80%, 90% and 100% design speed prior to and during stall. (Ref 3-4). Unsteady pressure

measurements at 60%, 70%, and 80% design speed were reestablished by Rodgers in

2003 (Ref. 5). Inlet and exit surveys at 70%, 80%, 90% and 100% design speed with a

three-hole probe were conducted by Villescas (Ref. 6). Villescas determined the

spanwise distributions of the rotor diffusion factor at choke, peak efficiency and stall

while Brunner repeated the surveys with a 5-hole probe and determined the pitch angle

and Mach number distributions in the inlet of the rotor (Ref 7). Payne took performance

data at 95 percent speed, with a hot-film probe as well as Kulite pressure transducers in

the case wall. He also took transient data from both the hot film and Kulite pressure

transducers during steam induced stall at 70% speed (Ref 8).

2

Changes to the inlet and honeycomb have altered the performance characteristics

of the Transonic Compressor Rig. The compressor performance was remapped in order

to determine a new stall line as well as the peak performance criterion. In the current

study, unsteady pressure measurements were established, with the installation of 9

Kulites at varying positions along the case wall. Data were taken at the 90% design speed

as well as prior to and during a steam induced stall. Steam induced stall measurement

were also taken at 70% speed to reestablish previously taken data to reflect alterations in

the honeycomb. The data was then reduced and analyzed through the use of a data

acquisition and data reduction system.

3

II. TRANSONIC COMPRESSOR

A. SANGER STAGE
The Sanger compressor stage was specifically designed for testing and assessment

at the TCR using CFD techniques, while minimizing conventional empirical design

methods. Figures 1 and 2 show a sectioned drawing and the rotor installed into the test

rig, respectively.

Figure 1. Transonic compressor sectioned view

4

Figure 2. Rotor-only configuration of the transonic compressor rig (From Ref. 8)

The rotor had 22 blades and was made from a high strength aluminum alloy

(7075-T6). For the present experiment, the rotor was tested with a parabolic spinner,

which replaced the conical spinner used by O’Brien (Ref. 9).

For most of the previous studies the entire stage was evaluated. However, for the

current study, the stator was removed and only the rotor was present to ensure the

simplest configuration tested during steam ingestion. The design specifications for the

Sanger Stage are given in Table 1.

5

Table 1. Sanger Stage Parameters

The Sanger stage represents characteristic of a first stage of a modern fan. The tip

inlet relative Mach number is lower than most modern transonic compressors, however

the blade loading is higher, which allows a pressure ratio of 1.56.

B. TRANSONIC COMPRESSOR TEST RIG
The Transonic Compressor Rig (TCR) test rig, as shown in Figure 3, was driven

by two opposed-rotor air turbine stages, supplied by a 12 stage Allis-Chalmers axial

compressor. The Allis-Chalmers compressor supplied three atmospheres of air pressure

at a mass flow rate of 5 kg/s. Air was drawn into the TCR from the atmosphere through a

throttle valve as shown in Figure 4. A five-meter long 46cm diameter pipe connected the

settling chamber to the test compressor. The air would then flow through a nozzle, which

was used for flow rate measurements and was exhausted back to the atmosphere. The

rig’s schematic is also shown in Figure 5.

6

Figure 3. Transonic Compressor in test cell with inlet piping removed (From Ref. 8)

7

Figure 4. Transonic Compressor Rig Schematic

8

C. STEAM INJESTION SYSTEM

The compressor rig and steam ingestion system is shown in Figure 5. Steam was

generated by the SVS600 steam boiler and was directed through a 7.62 cm diameter pipe

and vented to the intake plenum as can be seen in Figure 6. The SVS600 was capable of

producing saturated steam up to a maximum working pressure of 1000 kPa or 1.4 kg/sec

at 100 0C and can be seen in Figure 7 (Ref. 9). In order to monitor the transient response

of the steam pressure, a pressure transducer was installed into the steam pipe and can be

seen in Figure 5. Two remotely-operated fast acting solenoid valves were used for

releasing the steam into the intake plenum as well as for venting the pipe. Figure 7 shows

the orientation of the steam pipe with respect to the intake plenum.

Figure 5. Transonic compressor rig with steam ingestion system

9

Figure 6. SVS600 steam boiler system

Figure 7. Steam pipe with intake plenum orientation (From Ref. 8)

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. INSTRUMENTATION

A. KULITE PRESSURE TRANSDUCER
A Kulite miniature silicon pressure transducer, model XCQ-080-25, was used to

obtain time-resolved pressure data. The probe was a miniature, semiconductor, strain

gauge transducer which incorporated a fully active four-arm Wheatstone bridge

dielectrically isolated silicon-on-silicon diaphragm. A diagram of the probe is given in

Figure 8 and the specifications are given in Table 2.

Figure 8. Kulite XCQ-080 series transducer (From Ref. 5)

12

Table 2. XCQ-080-25 Factory Specifications (From Ref. 5)
Input
Pressure Range 1.7 atm 25 PSI
Over Pressure 3.4 atm 50 Psi
Burst 5.1 atm75 Psi
Rated Electrical Excitation 10VDC/AC
Maximum Electrical Excitation 15VDC/AC
Input Impedance 800Ohms
Output
Output Impedance 1000Ohms
Full Scale Output 100mV
Residual Unbalance +-3% FSO
Non-Linearity and Hysterisis 0.1% FS BFSL
Hysteresis 0.1%
Repeatability 0.1%
Resolution Infinite
Natural Frequency 300kHz
Perpendicular Accel Sensitivity 0.0003% FS/g
Transverse Accel Sensitivity 0.00004% FS/g
Insulation Resistance 100Megohm
Environmental

Operating Temp Range -53.8 to 121.1 deg C
(-65 to 250
deg F)

Compensated Temp Range 26.7 to 82.2 deg C
(80 to 180 deg
F)

Thermal Zero Shift +- 1% FS/100 F
Thermal Sensitivity Shift +- 1% FS/100 F

For the current study, 9 Kulite transducers had to be installed in the casing of the

TCR. The full bridge Kulite Pressure Transducers were connected to the Hewlett-

Packard E1529A Remote Strain Conditioning Unit, via a RJ-45 cable (Ref. 10). Figure

19 shows the correct set up of the Kulite wires and their corresponding RJ-45 pin

assignments.

13

Figure 9. Kulite Connection to RJ-45 Plug (From Ref. 5)

The Kulite Pressure Transducer had four wires, a black, white, green, and red

wire. The black wire was connected to pins 2 and 7, and the white was connected to pin

6. Pin 3 was connected to the green wire and pins 1 and 8 were connected to the red

wire. Pins 4 and 5 were not connected to any wires.

B. INSTALLATION OF KULITE PRESSURE TRANSDUCER
Nine Kulites were connected to RJ-45 cables and were installed into aluminum

slugs. The aluminum slug was originally designed by Vavra for unsteady pressure

measurements of the Vavra stage, and can be seen in Figure 10 (Ref. 11).

RJ-45 Plug

Pin

 1 2 3 4 5 6 7 8

14

Figure 10. Kulite Mounting Design

Once the nine Kulite pressure transducers were installed into the aluminum slugs

they were mounted flush with the casewall. Figures 11 and 12 show the positioning of

the Kulites relative to the casewall. The Kulite pressure tap locations were spaced one

blade spacing apart and their corresponding locations across the blade were at 10.5%,

37%, 63%, and 89.5% axial chord. In addition a once-per-revolution speed pickup was

used.

Figure 11. Relative positions of Kulite pressure transducer and blades. (From Ref. 5)

15

Figure 12. Relative positions or Kulite pressure transducers in case wall (From Ref. 5)

C. DATA ACQUISITION

The Kulite pressure transducers were connected to a Hewlett-Packard E1529A

Remote Strain Conditioning Unit via an RJ-45 LAN cable. An adjustable power supply

would provide the necessary excitation voltage of 5 Volts and was input into the bridge

excitation port of the HP E1529A. An Remote Channel Multi-Function DAC Module

(HP E1422A), (Ref. 12), controlled and set the HP E1529A to a full bridge configuration,

calibration, and self test functions via a program written in HP Vee Pro, (Ref. 13). The

HP E1529A provided a wideband amplified output from each strain bridge signal, via a

37-pin connector, to a HP E1433A high-speed digitizer, capable of taking samples up to

196 kSa/sec (Ref. 14). A tachometer signal was also connected to the HP E1433A to

provide speed reference data. The tachometer signal came in via standard coax cables

and a break-out box was used as an adapter to route these signals into the 27 pin

connection of the HP E1433A. The HP E1433A and HP E1422A were addressed

through the HP E8404A VXI Mainframe and interfaced to a PC. The data was stored on

an Agilent N2216A VXI/SCSI Interface Module, containing two internal 50 Gbyte drives

(Ref. 15). The VXI Mainframe was interfaced to a PC, with a ‘firewire’ interface. DAC

 1
3
7

4 2
5

6

8 9

16

Express, an Agilent program, was used to acquire data. Figure 13 shows the connection

of the Kulite transducers to the data acquisition system.

Figure 13. Data Acquisition System (From Ref. 5)

1. DAC Express
The Hewlett-Packard DAC Express was used to monitor the digitized signal in

real time (Ref. 16). DAC Express set the sampling rate of the HP E1433A and recorded

the digitized data to the Agilent N2216A. DAC Express can analyze up to 16 channels at

a time, with the option of recording for any given amount of time. Figure 14 shows an

example DAC Express setup screen showing 12 channels in real-time, nine individual

Kulites, Kulites 2,7 and 8, the hotwire and the once per rev signal. For the purposes of

this experiment, the length of time for the transient pre-stall was .2 seconds, while the

two stall cases were 45 seconds. However, for ease of data analysis the stall cases were

later reduced to four seconds; two seconds before stall and two seconds after stall. Once

17

the start button had been pushed and the data recorded, the data had to be exported from

the N2216A to the PC as a .csv file. The .csv files were entered into MATLAB, for data

processing (Ref. 17).

Figure 14. DAC Express GUI screen

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

IV. EXPERIMENTAL PROCEDURE

A. KULITE CALIBRATION
Calibration of the Kulite was conducted while the compressor was running, to

alleviate any temperature dependence of the Kulite. Four sets of data were taken for the

specified throttle and speed setting and each set of data was applied to a reference

pressure. The reference pressures were 0, 5, 10 and 15 inches of mercury (0, 2.456,

4.912, 7.368 psig). The applied reference pressure was manually recorded from a

Wallace and Tiernan gauge with a mirrored scale graduated in .2 inches of mercury. For

the steady state analysis, the DAC Express would record the voltages for .2 seconds, at all

four reference pressures. However, for the two stall cases only the reference pressure of

10 psig was recorded into the DAC Express for 45 seconds. Once the data had been

recorded as a .csv file it was calibrated and reduced in MATLAB (Ref. 17). The

calibration constants calculated in MATLAB from the run closest to stall were used for

data analysis and data reduction of the stalled data.

B. COMPRESSOR OPERATION
During testing the Transonic Compressor Rig’s rotor was kept at a constant speed

and measurements were taken at different throttle settings. By closing the throttle, the

mass flow rate was reduced and the rig operating point could be determined by the

procedures described by Gannon et al. (Ref. 4). For this experiment the mass flow rate

was varied by actuating the throttle (Fig. 15) while the rotor RPM was set at a particular

speed.

20

Figure 15. Electric throttle

Mass flow rate, inlet and exit total temperatures and pressures were measured and

recorded. This data was used to calculate total-to-total pressure ratio and isentropic

efficiency which was used to determine position on the compressor map. Measurements

were taken from open throttle to a throttle position near stall. Measurement and

calibration procedures were described in more detail by Gannon et al. (Ref. 3).

C. STEAM-INDUCED STALL RUNS
For the current study the compressor was set at either 70% or 90% speed. The

throttle was closed incrementally, pausing only to take the necessary steady state

measurements. The process of reducing the mass flow by closing the throttle was done to

determine the point at which the rotor would stall before moving on to steam induced

stall test.

Once the throttle setting just prior to stall was established, and steady state

measurements were taken, the compressor was ingested with steam by the following

21

procedure. The steam vent solenoid valve and the boiler isolation valve were opened to

allow the steam pipe to heat up. Once fully heated, the vent valve was closed and the

data trace from the pressure transducer and thermocouple were started. The steam

pressure was monitored and once it reached its intended pressure, the isolation valve was

closed. At this point a three second countdown to steam ingestion would occur and the

Kulite data acquisition system was initiated. Once the end of the countdown had been

reached, the fast-acting solenoid valve was opened and the steam was dumped into the

plenum of the compressor. After several seconds, the Kulite data acquisition was

stopped. If the steam ingestion did not cause a “pop-stall” event, the procedure was

repeated at a reduced throttle setting until a “pop-stall” was achieved.

Post processing of the data was conducted with MATLAB (Ref. 17). The

procedure for the use of the MATLAB files is presented in Appendix A. Specific M-files

that were used with the steady-state data are given in Appendix B and the procedure for

the stall tests are presented in Appendix C.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

V. RESULTS AND DISCUSSION

A. STEAM-INDUCED STALL AT 70% SPEED
Given that changes to the honeycomb and pressure ports on the flow rate nozzle

were altered the performance characteristics of the Transonic Compressor Rig, transient

data using Kulite pressure transducers during steam induced stall at 70% speed needed to

be re-established. Figure 16 shows previous data taken on the rotor with a pneumatic

temperature and pressure probes, torque, flow, and speed instrumentation, and represents

time-averaged information. Figure 16 also shows the single point near stall at 70% speed

that was measured prior to steam ingestion (Ref. 18). The green dot was established by

Payne and the blue dot demonstrates shift along the stall line due to the changes in the

honeycomb and pressure ports (Ref. 8).

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
Mass flow (kg/s)

To
ta

l-t
o-

to
ta

l p
re

ss
ur

e
ra

tio

100% Speed

80% Speed 90% Speed
70% Speed

New Stall
Point

2005

New Steam
Induced Stall

95% Speed

2006

Initial Steam
Induced Stall

Figure 16. Pressure ratio versus mass flow rate with shift in stall line

The transient pressure measured in the steam line was used to calculate the mass

flow rate of the ingested steam. Figure 17 shows the pressure change in the steam pipe as

well as the temperature change in the inlet of the compressor over time during the steam-

induced stall experiment. A pressure of 480 kPa was reached in the steam pipe prior to

24

releasing steam into the compressor. A steam-induced stall of the rotor was observed at

70 percent speed at a mass flow rate of 0.045 kg/s.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Time [sec]

Te
m

p.
 [d

eg
re

es
 C

]

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Pr
es

s.
 [k

Pa
]

Inlet Temperature
Steam Pressure

Figure 17. Steam pressure and inlet temperature change during steam-induced stall at 70

percent speed

Figure 18 shows the raw-voltage of the Kulite signal going into stall at 70 percent

speed. The change in speed of the compressor going into stall is shown in Figure 19.

25

Figure 18. Raw-voltage Kulite signal going into steam induced stall at 70 percent speed

Figure 19. Change in compressor speed during steam-induced stall

26

Figure 20 represents a waterfall FFT contour plot of the data taken during stall at

70 percent speed. The stall cell frequency, once per revolution, and the blade-passing

frequency, can be seen in this contour plot. The stall cell frequency was approximately

60 percent of rotor speed and there was indication of a precursor to stall at 4.3 seconds.

Stall occurred at 4.34 seconds.

Figure 20. Power spectrum contour plot of Kulite data at 70 percent speed through stall

B. PRESSURE CONTOURS 70% SPEED OPEN THROTTLE
Figure 21 shows the pressure contours derived from the nine Kulite transducers at

70% speed.

27

Figure 21. Pressure contours 70% speed with open throttle

C. STEADY-STATE PRESSURE CONTOURS AT 90% SPEED
The process of reducing the mass flow by closing the throttle while keeping the

compressor at a constant speed of 24375 RPM, was done to determine the point at which

stall would occur. During this process, the reduction of the mass flow rate resulted in a

reduction of axial velocity into the fan and for constant rotational speed, this yielded an

increase in incidence. This increase in incidence increased the force on the blades, which

yielded an increase in static pressure rise (Ref. 19). Table 3 shows the pertinent

measurements while closing the throttle. Run 4 does not include efficiency, or ∆P

measurements because this was the run that was closest to stall and steady state data was

not able to be taken.

Figures 22-25 are the graphical pressure contours of Table 3. Note the shock

wave which moved forward as the mass flow is decreased.

Run Efficiency (η) Mass flow ∆P Pressure ratio
1 86.55 7.56 6.54 1.25
2 89.85 7.23 5.25 1.38
3 83.12 6.24 3.76 1.47
4 - 5.98 - 1.49

Table 3. Measurements during transient analysis

28

Figure 22. Pressure Contours 90% speed and a Pressure Ratio of 1.25 (Open throttle)

Figure 23. Pressure Contours 90% speed and a Pressure Ratio of 1.38 (Peak Efficiency)

29

Figure 24. Pressure Contours 90% speed and a Pressure Ratio of 1.47

Figure 25. Pressure Contours 90% speed and a Pressure Ratio of 1.49 (closest to stall)

30

B. TRANSIENT MEASUREMENTS DURING AT 90% SPEED
In order to gather data during a stall event, the compressor was run as close to

stall as possible. Once the high speed data acquisition system was activated, the

upstream throttle was closed until stall occured. As soon as stall occurred the upstream

throttle was reopened and stall stopped as soon as possible to reduce the adverse loading

on the compressor. Figure 26 shows the raw-voltage of the Kulite signal going into stall

at 90 percent speed.

Figure 26. Raw Kulite data through 90% speed stall

In order to post-process the data the stall speed cell needed to be determined.

This speed was acquired through the use of three pressure probes at the same axial

location but just upstream of the blades. Figure 27 shows the simultaneous raw voltages

at 90% speed.

31

220 240 260 280 300 320 340
0

0.5

1

Number of blade pitches

R
aw

 V
ol

ta
ge

 s
ig

na
l [

V
]

220 240 260 280 300 320 340
0

0.5

1

Number of blade pitches

R
aw

 V
ol

ta
ge

 s
ig

na
l [

V
]

220 240 260 280 300 320 340
0

0.5

1

Number of blade pitches

R
aw

 V
ol

ta
ge

 s
ig

na
l [

V
]

Figure 27. Simultaneous signal obtained from 3 probes at 90% speed

The stall cell size increased with each revolution but was separated by a region of

regular cyclic flow. A full investigation into this phenomenon at different speeds is given

by Gannon et. al. (Ref. 20). The change in speed of the compressor going into stall is

shown in Figure 28. A fast Fourier transform was also used to create a waterfall power

spectrum of the Kulite data as seen in Figure 29 plotted in contour format.

32

Figure 28. Change in compressor speed during a rotating stall event

Figure 29. Power spectrum contour plot of Kulite data at 90 percent speed at through stall

33

Figure 29 represents data taken during stall at 90 percent speed. The stall cell

frequency, once per revolution, and the blade-passing frequency, can be seen in this

contour plot. There was no indication of a stall precursor as measured by the Kulite

transducers.

C. 90% SPEED STALL CELL GROWTH

Figure 30 represents the development of the stall cell at 90% speed. The first strip

corresponds to the undistributed rotation before the formation of the stall cell. Each

subsequent strip corresponds to the stall cell as it passed under the pressure probes on the

subsequent rotation. Figure 30 shows the formation of only one stall cell rotating at 60%

rotor speed,

Figure 30. 90% speed stall cell growth

34

Once the stage was stalled it needed to be returned to the original flow conditions.

Note that because the speed of the machine was not held at a constant speed during the

stall event, the un-stalling of the stage was much less controlled than the entry into stall.

As covered by Gannon, when the required pressure ratio across the stage decreases the

flow through the rotor, the flow begins to return to its axi-symmetric pattern (Ref. 20).

35

VI. CONCLUSION

Changes in the honeycomb altered the performance characteristics of the

Transonic Compressor Rig. As a result, a steam induced stall at 70 percent speed and new

stall line were successfully determined. The transient pressure was measured in the steam

line and the mass flow of the steam was established. Kulite pressure transducers

recorded the pressures prior to and during steam induced stall. The stall cell induced by

the steam rotated at 60 percent of rotor speed with slight precursor for 0.04 seconds.

Performance measurements were carried out at 90 percent speed from open

throttle to stall. This data followed previous trends with respect to peak efficiency and

total pressure ratio. A graphical analysis of the data was used to better visualize the

structure of the flow as well as the stall cell and its growth. The measured stall cell also

rotated at 60 percent rotor speed with little or no indication of any precursor.

A steam induced stall at 90 percent speed is planned. With the aid of the

graphical techniques presented, insight could be gained into the formation and

propagation of the steam induced stall.

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

APPENDIX A: PROCEDURE FOR USE OF MATLAB M-FILES

Stall case

Directory that contains all the files:

C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Stall

load_data_90 is the file which calls all of the others

On line 14 in load_data_90 reads:

%Raw_data = dlmread('Dx2004_0914_1001_90_stall.csv',',','A187500..M200000'); %

'Dx2004_0914_1001_90_stall.csv' is the csv file will be read and needs to be altered to
accommodate a new set of data

 A187500..M200000 corresponds to the cells and time of the stall event

The timed can be determined by trial and error or can be determined by using the DAC
Express to find the exact time of the stall event. And given that each cell corresponds to
.00001 seconds one can determine which cells are at the inception of stall. For example,
the exact time that was determined using the DAC Express was 5.861 seconds. Given
that the data starts at 3.5 seconds. The difference between the two is subtracted and than
divided by .00001.

*Note
Because there is no calibration procedure for the stall case the calibration constants
closets to stall will be used in the stall case. Run the steady state programs for the case
closest to stall. The calibration constants will be created in:

C:\Bill_Levis\Kulite_Rotor_Only

under the file name “Kulite_calibrate”

for the 90% speed case rename Kulite_calibrate to Kulite_calibrate_90

and place the newly renamed file into

C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Stall
directory

load_data_90 can now be run

38

*Note

If color scheme isn’t working the contour map needs to be reset to within tolerance. This

can be accomplished in load_data_90 line:

contourf(PR_X,PR_Y,PR_Z,[0.4752:(1.4619-0.4752)/35:1.4619])

steady state

There should be 4 csv files for dictated percent speed as well as mass flow corresponding
to the different back pressures. As default they need to be saved in this directory:

C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Run11

*Note: this directory can be changed but alterations to the code need to be made

The following directory contains the necessary files to run the steady state calculations:

C:\Bill_Levis\Kulite_Rotor_Only

kulite_rotor_only is the file which calls all the others

In kulite_rotor_only line 12 needs to be changed:

Kulite_constants = 'Kulite_constants_90_PR_1_49'; % 90% speed near stall

Kulite_constants_90_PR_1_49.m dictates which directory will be used

Again unless one wants to alter the code the following directory needs to be used:

C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Run11

39

APPENDIX B: MATLAB M-FILES (STEADY STATE)

Kulite_constants_90_PR_1_49.m

M function file to store all the constants required

function

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,Kul_ax_c

ho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n,Kul_order,Ps_chan] =

Kulite_constants();

% Put this section in a gui to make it simpler for someone else to use

% The names of the subdirectory to be analysed and the run numbers involved

Kulite_Subdir = strvcat('90%\90%2004_09_14_Rot_only_0.00%'); % Grouping of Run

Kulite_Run_no = strvcat('Run11'); % Individual Run

Run_nos = [11 12]; % Run numbers from notes

text file

% Constants

Kul_no = [1 2 3 4 5 6 7]; % Kulite Channel plot order

% In one of the tests the Kulites were mixed up so this step was introduced in

case it happens again

Kul_order = [1 9 2 3 4 5 6];

colours = ['b' 'g' 'r' 'c' 'm' 'k' 'y']; % Colours to be used in

Kulite plotting

Avg_size = 150; % Approximate number of

points wanted in each bin, bins are a constant time size based on this number.

40

% Static pressure channels that are used to calibrate the Kulite channels are

listed as with the rest in order from front to back

Ps_chan = [46 39 7 8 9 10 43];

% Kulite offsets and plotting of results along a blade chord

Kul_ax_cho = [-80.44 mean([-80.44 -17.62]) -17.62 8.27 34.17 60.06 144.72]+17.62;

% Kulite axial positions as a percentage of axial chord starting at the blade leading

edge

%Kul_ax_cho = [-63.33 -0.51 25.39 51.28 77.18 161.84]; % Kulite axial positions as

a percentage of axial chord starting at the blade leading edge

Kul_offset = [4 5 3 2 1 0 4]; % Amount of Kulite offset in

order from 1 to 6 in terms of number of blades (Kulites at 360/Blade_num apart)

Blade_no = 22; % Number of rotor blades

%Blade_th = 19.1; % Angle in theta coordinates

from blade leading edge to trailing edge

Blade_th = 20.; % Angle in theta coordinates

from blade leading edge to trailing edge

Blade_th = pi*Blade_th/180; % Converted to radians

% Physical constants

Rho_Hg = 13550; % Density of mercury [kg/m^3]

g = 9.81; % Gravitational constant [m/s^2]

gam_gas = 1.4; % Gas constant

% Rotor dimensions

Diameter = 11; % Rotor diameter in inches

Chord = 0.88824; % Axial Chord in inches

% Contour plot constants

pitch_plot_n = 1; % Number of pitches to plot

pitch_time_n = 50; % Number of axial lines along the pitch plot

pitch_tang_n = 40; % Number of tangential lines in the axial direction

41

Kulite_rotor_only.m

% m-file to plot the Kulite contours for the rotor only case with 7 Kulites

clear all

% Kulite data filename

% 100% Speeds

%Kulite_constants = 'Kulite_constants_PR_1_32_open'; % Full open throttle

without honeycomb PAPER

%Kulite_constants = 'Kulite_constants_PR_1_51'; % Near peak efficiency for

PAPER

%Kulite_constants = 'Kulite_constants_PR_1_66_stall'; % Near stall with honeycomb

PAPER

% 90% Speeds

Kulite_constants = 'Kulite_constants_90_PR_1_49'; % 90% speed near stall

%Kulite_constants = 'Kulite_constants_90_PR_1_38'; % 90% speed near peak

efficiency

%Kulite_constants = 'Kulite_constants_90_PR_1_26'; % 90% speed near choke

% 80% Speeds

%Kulite_constants = 'Kulite_constants_80_PR_1_38'; % 80% speed near stall

%Kulite_constants = 'Kulite_constants_80_PR_1_28'; % 80% speed near peak

efficiency

%Kulite_constants = 'Kulite_constants_80_PR_1_20'; % 80% speed near choke

% 70% Speeds

%Kulite_constants = 'Kulite_constants_70_PR_1_28'; % 70% speed near stall

%Kulite_constants = 'Kulite_constants_70_PR_1_18'; % 70% speed near peak

efficiency

%Kulite_constants = 'Kulite_constants_70_PR_1_15'; % 70% speed near choke

%Kulite_constants

42

% Kulite constant file is initialised

%eval(Kulite_constants)

% Raw data is loaded in a seperate function file and also calibrated to make the

analysis function neater

[time,tach,samples,P_PR,m_dot_REF,PR_REF,RPM_sample] =

Load_Kulite_Data(Kulite_constants);

% Function to find the position of the trigger signal, the trigger level and the

Hz frequency of revolution

[Loc,Hz,Trig] = Process_Kulite_Data(tach,samples,time);

% Function to correct the times to phase the Kulites over the blades and correct

for errors in the triggers

[time_phase,time_err,time_angle,P_PR] =

Phase_Kulite_Data(Kulite_constants,Loc,Hz,tach,time,P_PR);

% Function to put all the data into single time traces over ONE ROTATION and also

ONE PASSAGE as if it was sampled at very high speed

[time_rev,P_PR_rev,time_passage,P_PR_passage] =

Rot_Kulite_Data(Kulite_constants,Hz,Loc,time,time_err,time_phase,P_PR);

% Function to find the moving averages of the data to smooth it out (quadratic

function is used to ensure that peak clipping does not occur)

[P_PR_bin,P_PR_bin_DELTA,time_bin] =

Avg_Kulite_Data(Kulite_constants,time_rev,P_PR_rev,Hz,0);

% Function to find the moving averages of the data to smooth it out but for one

averaged blade passage

[P_PR_bin_passage,P_PR_bin_passage_DELTA,time_bin_passage] =

Avg_Kulite_Data(Kulite_constants,time_passage,P_PR_passage,Hz,0);

% Function to interpolate in the axial direction over a single blade passage

[contour_z_passage,contour_th_passage,contour_PR_passage] =

Contour_Kulite_Data(time_bin_passage,P_PR_bin_passage,Hz,time_angle,Kulite_constants);

% Function to interpolate in the axial direction over the entire rotor

43

%[contour_z_rotor,contour_th_rotor,contour_PR_rotor] =

Contour_Kulite_Data(time_bin,P_PR_bin,Hz,time_angle,Kulite_constants);

% Data is saved and then loaded so that the whole thing does not have to be run

again

save Kulite

%Save_Kulite_Data(Kulite_Subdir,Kulite_Run_no,'save') % Data is saved in raw data

directory

Save_Kulite_Data('save',Kulite_constants) % Data is saved in raw data directory

Kulite_figures_rotor_only(Kulite_constants)

Load_Kulite_data

% M-function-file to load and calibrate the raw Kulite data

% This does not use the Kulites around the bottom of the case as they will be used

for the stall cases later

function [time,tach,samples,P_PR,m_dot_REF,PR_REF,RPM_sample] =

Load_Kulite_Data(Kulite_constants);

[Kulite_Subdir,Kulite_Run_no,Run_nos,fred1,Kul_no,fred2,fred3,fred4,fred5,fred6,Rh

o_Hg,g,gam_gas,fred7,fred8,fred9,...

 fred10,fred11,Kul_order,Ps_chan] = eval(Kulite_constants);

% For some reason the Constants file will not spit out more than 20 outputs so

this is inserted here

Kul_ord_rot_stall = [7 8 9]; % Kulite order of ones installed around the casing

to capture stall cell speed

Ps_chan_rot_stall = [39 39 39]; % Static pressure channels, the same as all three

Kulites at the same location

old_dir = pwd; % Current directory is

stored to be returned to later

new_dir = [old_dir '\' Kulite_Subdir '\' Kulite_Run_no]; % New directory in which

all the data is stored is defined

44

cd(new_dir) % Directory is changed to

one specified

% File names in the directory are found

file_info = dir;

% File names are listed and stored

Kulite_filenames = [];

count = 0;

for j = 1:length(file_info)

 temp = file_info(j).name;

 if file_info(j).isdir == 0 & temp(1) ~= 'K'

 count = count + 1;

 Kulite_filenames = strvcat(Kulite_filenames,file_info(j).name);

 temp =

(max(find(Kulite_filenames(count,:)=='_'))+1):(find(Kulite_filenames(count,:)=='.')-1);

 H_in_Hg(count,:) = str2num(Kulite_filenames(count,temp));

 end % if file_info(j).isdir == 0

 clear temp4

end % for j = 1:length(file_info)

% The Kulite files are read in and the mean voltages calculated

% This is where out of order probes are reordered as the data is streamed in

for j = 1:size(Kulite_filenames,1)

 if j == 1 % Kulite exposed to atmosphere is used for the data reduction

 Kulite_RawData = dlmread(Kulite_filenames(j,:),',',5,0); % File is

read in

 Kulite_Rot_Stall = Kulite_RawData(:,Kul_ord_rot_stall+1); % Here are

the three Kulites capturing stall

 Kulite_RawData(:,2:8) = Kulite_RawData(:,Kul_order+1); % Here the

data is sorted into the correct order

 temp = Kulite_RawData(:,2:8); % Kulite

raw voltage data

 volts_mean = mean(temp);

 volts_mean_Rot_Stall = mean(Kulite_Rot_Stall);

45

 else % if j == 1

 temp_raw = dlmread(Kulite_filenames(j,:),',',5,0); % File

is read in

 volts_mean(j,:) = mean(temp_raw(:,Kul_order+1));

 % Rotating stall data from the three Kulites are stored to use in the

calibration

 volts_mean_Rot_Stall(j,:) = mean(temp_raw(:,Kul_ord_rot_stall+1));

 end % if j == 1

 clear temp

end %

%volts_mean

%H_in_Hg

% Static pressures are read in

cd ..

file_info = dir; % Get file information of files in the directory

% Find the largest file

for j = 1:length(file_info)

 temp(j) = file_info(j).bytes;

end % for j = 1:length(file_info)

[Y_max,I_max] = max(temp); % Largest file is

assumed to be the spreadsheet

Static_RawData = dlmread(file_info(I_max).name,'\t',1,0); % File is read in

m_dot_REF = mean(Static_RawData(Run_nos,6)); % referred mass flow

rates are pulled out

PR_REF = mean(Static_RawData(Run_nos,7)); % referred pressure

ratios are pulled out

Pressure_RawData = Static_RawData(:,29:76); % Pressures are

stripped out

% Static pressures for the Kulites are inserted using all available runs

46

for i = 1:length(Ps_chan)

 Kulite_P_Static(:,i) = Pressure_RawData(Run_nos,Ps_chan(i));

end

Kulite_P_Static = mean(Kulite_P_Static);

% Static pressures for the Kulites for the three rotating stall probes

for i = 1:length(Ps_chan_rot_stall)

 Kulite_P_Stat_rot_stall(:,i) = Pressure_RawData(Run_nos,Ps_chan_rot_stall(i));

end

Kulite_P_Stat_rot_stall = mean(Kulite_P_Stat_rot_stall);

% Atmospheric pressure is also required in the calibration

P_atmos = mean([Pressure_RawData(Run_nos,2)]);

% P infinity at the compressor inlet

Pt_inf = mean([mean([Pressure_RawData(Run_nos,5)])

mean([Pressure_RawData(Run_nos,6)])]);

cd(old_dir) % Directory is changed back to the old one

% All data is now read in, directory is restored and the calibration is performed

% Mean pressures are calculated

for j = 1:size(Kulite_filenames,1)

 dP_mean(j,:) = Kulite_P_Static - (P_atmos +

Rho_Hg*g*(25.4/1000)*H_in_Hg(j));

 dP_mean_rot_stall(j,:) = Kulite_P_Stat_rot_stall - (P_atmos +

Rho_Hg*g*(25.4/1000)*H_in_Hg(j));

end % for j = 1:size(Kulite_filenames,1)

for j = 1:size(volts_mean,2) % Calibration is performed using a linear fit

 [P S MU] = polyfit(volts_mean(:,j),dP_mean(:,j),1);

 P_dP_v(:,j) = P';

 S_dP_v(j).S = S;

 MU_dP_v(:,j) = MU;

47

end % for j = 1:size(volts_mean,2)

clear P S MU

for j = 1:size(volts_mean_Rot_Stall,2) % Calibration is performed using a linear

fit for the rotating stall probes

 [P S MU] = polyfit(volts_mean_Rot_Stall(:,j),dP_mean_rot_stall(:,j),1);

 P_dP_v_rot_stall(:,j) = P';

 S_dP_v_rot_stall(j).S = S;

 MU_dP_v_rot_stall(:,j) = MU;

end % for j = 1:size(volts_mean_Rot_Stall,2)

clear P S MU

% Data is sorted into meaningful groups

time = Kulite_RawData(:,1); % Kulite time data

volts = Kulite_RawData(:,2:8); % Kulite raw voltage data

tach = Kulite_RawData(:,12); % Kulite trigger voltage

RPM_sample = Kulite_RawData(:,13); % RPM stated in the data file

samples = length(time); % Number of samples

% Pressure signal is processed

for j = 1:size(volts_mean,2)

 P_diff(:,j) = polyval(P_dP_v(:,j)',volts(:,j),S_dP_v(j).S,MU_dP_v(:,j)); %

Differential pressure relative to atmosphere

 P_abs(:,j) = P_diff(:,j)+P_atmos; %

Absolute pressure

 P_PR(:,j) = P_abs(:,j)/(gam_gas*Pt_inf); %

Pressure as a ratio relative to inlet

end % for j = 1:size(volts_mean,2)

% Polyfit is tested

%for j = 1:size(volts_mean,2)

% [(polyval(P_dP_v(:,j)',volts_mean(:,j),S_dP_v(j).S,MU_dP_v(:,j)))

dP_mean(:,j)]

% pause

%end % for j = 1:size(volts_mean,2)

48

%dP_mean

%P_dP_v

%S_dP_v

%MU_dP_v

% The pressure calibration is saved so that it can be used in the stall

calculations or elsewhere

save Kulite_calibrate P_dP_v S_dP_v MU_dP_v P_dP_v_rot_stall S_dP_v_rot_stall

MU_dP_v_rot_stall Pt_inf P_atmos

test_no_outs.m

% m-function file to test the number of outputs possible

function [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z] = test_no_outs(a)

a = 1

b = 1

c = 1

d = 1

e = 1

f = 1

g = 1

h = 1

i = 1

j = 1

k = 1

l = 1

m = 1

n = 1

o = 1

p = 1

q = 1

49

r = 1

s = 1

t = 1

u = 1

v = 1

w = 1

x = 1

y = 1

z = 1

Contour_Kulite_data.m

% m-funtion to interpolate onto a regular grid from the smoothed data

function [contour_z,old_contour_th,contour_PR] =

Contour_Kulite_Data(time_bin,P_PR_bin,Hz,time_angle,Kulite_constants)

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

% Axial grid for the Kulite data is created and scaled to same dimensions as the

pitch

z_bin = ones(size(P_PR_bin,1),1)*Kul_ax_cho;

z_bin = Chord*(z_bin/100)/(pi*Diameter/Blade_no);

% The passage interpolation is performed first

% Grid for the interpolation

contour_z = (min(Kul_ax_cho):(max(Kul_ax_cho)-

min(Kul_ax_cho))/Avg_size:max(Kul_ax_cho));

contour_z = Chord*(contour_z/100)/(pi*Diameter/Blade_no);

contour_z = ones(size(P_PR_bin,1),1)*contour_z;

% The raw data is grouped in larger sections to make sure the edges are correctly

interpolated

50

temp = max(time_bin(:,1))-min(time_bin(:,1));

[time_bins I] = unique([time_bin-temp; time_bin; time_bin+temp],'rows');

z_bins = [z_bin; z_bin; z_bin]; z_bins = z_bins(I,:);

P_PR_bins = [P_PR_bin; P_PR_bin; P_PR_bin]; P_PR_bins = P_PR_bins(I,:);

%contour_th = time_bin(:,1)*ones(1,size(P_PR_bin,1));

contour_th = time_bin(:,1)*ones(1,size(contour_z,2));

% Interpolation favouring blade

contour_PR_blade =

griddata(z_bins,time_bins,P_PR_bins,contour_z,contour_th,'cubic');

disp('1')

% Interpolation along the passage shock is performed

% Data is skewed to the actual shape

time_angle = Blade_no*Hz*time_angle; % Time to physical domain

time_bin = time_bin + ones(size(P_PR_bin,1),1)*time_angle; % Angle along blades

% Theta grid is also skewed

TH_skew = interp1(z_bin(1,:),time_angle,contour_z)-min(min(time_bin))*0;

contour_th = contour_th + TH_skew;

% The raw data is grouped in larger sections to make sure the edges are correctly

interpolated

temp = max(time_bin(:,1))-min(time_bin(:,1));

[time_bins I] = unique([time_bin-temp; time_bin; time_bin+temp],'rows');

z_bins = [z_bin; z_bin; z_bin]; z_bins = z_bins(I,:);

P_PR_bins = [P_PR_bin; P_PR_bin; P_PR_bin]; P_PR_bins = P_PR_bins(I,:);

% Interpolation favouring the passage

contour_PR_passage =

griddata(z_bins,time_bins,P_PR_bins,contour_z,contour_th,'cubic');

disp('2')

51

% Interpolation along the inlet shock

% Data is skewed along the lines of the inlet shock

temp = find(Kul_ax_cho<=0);

%time_bin(:,1)+1;

for i = temp

 temp_2 = find(time_bin(:,i)<=(time_bin(1,i)+1));

 [D_PR_max(i) I_max(i)] = min(diff(P_PR_bin(temp_2,i))); % Doing it with

maximum decrease, better for choke

 %[D_PR_max(i) I_max(i)] = max(diff(P_PR_bin(temp_2,i))); % Max increase of

gradient better for stall

 %[D_PR_max(i) I_max(i)] = max(P_PR_bin(temp_2,i));

 Z_max(i) = z_bin(I_max(i),i);

 TH_max(i) = time_bin(I_max(i),i);

end

TH_max

TH_max(find(TH_max>0)) = TH_max(find(TH_max>0))-1

TH_max = [TH_max(1) TH_max(end)]

Z_max = [Z_max(1) Z_max(end)];

%TH_max = [TH_max(end-1) TH_max(end)]

%Z_max = [Z_max(end-1) Z_max(end)];

if TH_max(1) < TH_max(2)

 TH_max(1) = TH_max(1)+1

end

Shock_gradient = polyfit(Z_max,TH_max,1)

old_time_bin = time_bin;

time_bin = time_bin - z_bin*Shock_gradient(1);

old_contour_th = contour_th;

52

contour_th = contour_th - contour_z*Shock_gradient(1);

% The raw data is grouped in larger sections to make sure the edges are correctly

interpolated

temp = max(time_bin(:,1))-min(time_bin(:,1));

[time_bins I] = unique([time_bin-temp; time_bin; time_bin+temp],'rows');

z_bins = [z_bin; z_bin; z_bin]; z_bins = z_bins(I,:);

P_PR_bins = [P_PR_bin; P_PR_bin; P_PR_bin]; P_PR_bins = P_PR_bins(I,:);

% Interpolation favouring the upstream shock

contour_PR_shock =

griddata(z_bins,time_bins,P_PR_bins,contour_z,contour_th,'cubic');

disp('3')

% Output contour is composed

temp = find(contour_z(1,:)<0);

contour_PR(:,temp) = contour_PR_shock(:,temp);

% The blade section is separated out

temp = find(Kul_ax_cho==0);

[Y I] = max(P_PR_bin(:,temp));

% Magic number to place the blade relative to the peak pressure on the leading

Kulite

% This changes from max flow to near stall

%offset = 0.05; % Offset for peak efficiency

%offset = 0.2; % Offset for full open throttle

offset = 0.125; % Offset for full open throttle

%offset = -0.125; % Offset for full open throttle

%temp_relax = abs(cos(2*pi*(-offset+old_contour_th(:,temp)-

old_contour_th(I,temp))));

temp_relax = (cos(pi*(-offset+old_contour_th(:,temp)-old_contour_th(I,temp)))).^4;

%temp_relax = (sin(pi*(-offset+old_contour_th(:,temp)-

old_contour_th(I,temp)))).^4;

53

%[temp_relax old_contour_th(:,temp)-old_contour_th(I,temp)]

%pause

temp = find(contour_z(1,:)>=0);

temp_relax = temp_relax*ones(size(temp));

temp = find(contour_z(1,:)>=0);

contour_PR(:,temp) = (1-

temp_relax).*contour_PR_passage(:,temp)+(temp_relax).*contour_PR_blade(:,temp); % Method

using passage and blade

if 0

 max(max(contour_PR_blade))

 max(max(contour_PR_passage))

 max(max(contour_PR_shock))

 max(max(contour_PR))

end

%contour_PR(:,temp) = (1-

temp_relax).*contour_PR_shock(:,temp)+(temp_relax).*contour_PR_blade(:,temp); % Method

using the shock and blade

%contour_PR(:,temp) = contour_PR_shock(:,temp); % Method using only the shock

%contour_PR(:,temp) = contour_PR_blade(:,temp); % Method using only the blade

%contour_PR(:,temp) = contour_PR_passage(:,temp); % Method using only the passage

fig_contours.m

% m function file to produce the moving averages figures plot

function [] = fig_contours(fig_no,contour_z,contour_th,contour_PR,repeat)

%[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,

Kul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

% pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

figure(fig_no);close;figure(fig_no);

54

[max(max(contour_PR)) min(min(contour_PR))]

% Contour matrix is constructed to avoid getting lines between each balde row

temp_z = []; temp_th = []; temp_PR = [];

temp = max(contour_th(:,1))-min(contour_th(:,1));

contour_th = contour_th+(-2)*temp;

for i = 1:repeat

 temp_z = [temp_z; contour_z];

 temp_th = [temp_th; contour_th+(i-1)*temp];

 temp_PR = [temp_PR; contour_PR];

end % for i = 2:repeat

1.41*[min(min(temp_PR)) max(max(temp_PR))] % correction for gamma

%contourf(temp_z,temp_th,temp_PR,[.4:.01:1.04])

%contourf(temp_z,temp_th,temp_PR,[.4017:.01:1.0563]) % Peak efficiency

%shading flat

TRI = delaunay(temp_z,temp_th);

trisurf(TRI,temp_z,temp_th,temp_PR*1.41);

shading interp

view(2)

hold on

axis equal

grid on

save_mov_avg.m
% m-function file to save the raw averaged kulite data

function [] =

save_mov_avg(PR_REF,time_bin_passage,P_PR_bin_passage,Kulite_constants)

% Constants are loaded

55

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

Datafile = [[0 Kul_ax_cho]; [time_bin_passage(:,1) P_PR_bin_passage]];

temp = num2str(PR_REF);

filename = [Kulite_Subdir(1:(min(find(Kulite_Subdir=='%'))-1)) '_1_' temp(3:4)

'.txt'];

% Directory is changed

old_dir = pwd; % Current directory is

stored to be returned to later

if filename(1) == '1'

 new_dir = [old_dir '\' filename(1:3) '%']; % New directory in which all the

data is stored is defined

else

 new_dir = [old_dir '\' filename(1:2) '%']; % New directory in which all the

data is stored is defined

end

cd(new_dir) % Directory is changed to

one specified

eval(['save ' filename ' Datafile ' '-ascii ' '-double ' '-tabs '])

% Directory is changed back

cd(old_dir) % Directory is changed back to the old one

Kulite_figures_rotor_only

% Kulite figures

function [] = Kulite_figures_rotor_only(Kulite_constants)

%clear all

% Kulite data filename

56

%Kulite_constants = 'Kulite_constants_PR_1_32_open'; % Full open throttle without

honeycomb

%Kulite_constants = 'Kulite_constants_PR_1_49'; % Full open throttle with

honeycomb

%Kulite_constants = 'Kulite_constants_PR_1_51_open';

%Kulite_constants = 'Kulite_constants_PR_1_56'; % Full open throttle with

honeycomb

%Kulite_constants = 'Kulite_constants_PR_1_60'; % Near 85% efficiency

%Kulite_constants = 'Kulite_constants_PR_1_66_stall'; % Near stall with honeycomb

%Save_Kulite_Data(Kulite_Subdir,Kulite_Run_no,'load') % Processed data file is

loaded from raw data directory

Save_Kulite_Data('load',Kulite_constants) % Processed data file is loaded from raw

data directory

load Kulite

% Figure of time signal is plotted

fig_tach_signal(1,time,tach,Loc)

% Figure of Kulite signals is plotted

fig_kulite_signal(2,time,P_PR,Loc,Hz,time_err,time_phase,Kulite_constants)

% Repeating plot of time signals

figure(3);close;figure(3);

for i = 1:(length(Loc)-1) % Last incomplete cycle left out

 temp = Loc(i):(Loc(i+1)-1);

 plot((time(temp,1)-time(temp(1),1)-time_err(i)),tach(temp,1),'-b');

 if i == 1

 hold on

 end % if i = 1

end % for i = 1:(length(Loc)-1)

clear temp

% Single trace plots, as if the data was sampled at a very high rate

fig_mov_avg(4,time_rev,P_PR_rev,[],Hz,Kulite_constants)

57

% Moving averages plot over entire row

fig_mov_avg(5,time_bin,P_PR_bin,[],Hz,Kulite_constants)

% Contour plot of passage

fig_contours(6,contour_z_passage,contour_th_passage,contour_PR_passage,6)

temp = axis

axis([-0.5 1 0 2])

% Contour plot of entire rotor

%fig_contours(7,contour_z_rotor,contour_th_rotor,contour_PR_rotor,1)

% Plot of all pressures over 1 blade passage

fig_mov_avg(8,time_passage,P_PR_passage*1.41,[],Hz,Kulite_constants)

% Moving averages plot over single average blade row

fig_mov_avg(9,time_bin_passage,P_PR_bin_passage,[],Hz,Kulite_constants)

% The raw data is saved into text files for comparison with CFD results

save_mov_avg(PR_REF,time_bin_passage,P_PR_bin_passage,Kulite_constants)

Avg_Kulite_Data.m

% Function to find the moving averages over the entire rotor and then over a

single averages passage

function [P_PR_rev_avg,P_PR_rev_avg_DELTA,time_bin] =

Avg_Kulite_Data(Kulite_constants,time_rev,P_PR_rev,Hz,fred2)

[fred,fred,fred,Blade_no,Kul_no,fred,Avg_size,fred,fred,fred,fred,fred,fred,fred,f

red,fred,fred,fred,fred,fred] = eval(Kulite_constants);

Avg_time_factor = 1/(max(max(time_rev))*Hz);

if max(max(time_rev)) > Blade_no % An entire passage

 bins = 0:1/Avg_size:Blade_no;

58

else % if max(max(time_rev)) > Blade_no

 bins = 0:1/Avg_size:1;

end % if max(max(time_rev)) > Blade_no

% Memory is assigned

time_bin = zeros(length(bins),length(Kul_no));

P_PR_rev_avg = time_bin;

P_PR_rev_avg_DELTA = time_bin;

% Moving average over all the passages

for j = Kul_no

 home

 j

 % Data bin ends, this method is an attempt to be faster than using the brute

force 'find' function (save huge amounts of time)

 Data_i_low = 1; % Initial bin beggining

 Data_i_high = 2; % Initial bin end

 tic

 for i = 1:length(bins)

 % Start and end times of each bin

 %bin_start = bins(i)-(1/Avg_size)/2; bin_end = bins(i)+(1/Avg_size)/2;

 bin_start = bins(i)-6*(1/Avg_size); bin_end = bins(i)+6*(1/Avg_size);

% Use a bigger bin

 Data_i_low_old = Data_i_low; Data_i_high_old = Data_i_high; % Old bin

borders to check if polyfit needs to be done (eliminates repeating of calculations)

 % Index of lower side of the bin

 while time_rev(Data_i_low,j) < bin_start

 [time_rev(Data_i_low,j) bin_start];

 Data_i_low = Data_i_low + 1;

 end

59

 % Index of high side of the bin

 while time_rev(Data_i_high,j) < bin_end

 [time_rev(Data_i_high,j) bin_end];

 Data_i_high = Data_i_high + 1;

 end

 Data_i = (Data_i_low:(Data_i_high-1))';

 % Check to make sure that a sufficient number of points is available for

the interpolation

 if length(Data_i) < 4

 Data_i = ((Data_i_high-4):(Data_i_high-1))';

 end

 % A quadratic moving average is fitted through the data, this smoothes the

data without clipping the peaks (0 = mean, 1 = linear)

 if length(unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)) > 2

 [P,S,MU] = polyfit(time_rev(Data_i,j),P_PR_rev(Data_i,j),2); % Fit is

only performed if the bin has changed

 [P_PR_rev_avg(i,j) P_PR_rev_avg_DELTA(i,j)] = polyval(P,bins(i),S,MU);

% Quadratic moving average and 50% certainty interval

 time_bin(i,j) = bins(i);

% Time of bin

 elseif length(unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)) == 2

 [P,S,MU] = polyfit(time_rev(Data_i,j),P_PR_rev(Data_i,j),1); % Fit is

only performed if the bin has changed

 [P_PR_rev_avg(i,j) P_PR_rev_avg_DELTA(i,j)] = polyval(P,bins(i),S,MU);

% Quadratic moving average and 50% certainty interval

 time_bin(i,j) = bins(i);

% Time of bin

 else % length(unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)) > 2

 [P,S,MU] = polyfit(time_rev(Data_i,j),P_PR_rev(Data_i,j),0); % Fit is

only performed if the bin has changed

60

 [P_PR_rev_avg(i,j) P_PR_rev_avg_DELTA(i,j)] = polyval(P,bins(i),S,MU);

% Quadratic moving average and 50% certainty interval

 time_bin(i,j) = bins(i);

% Time of bin

 end % if (max(time_rev(Data_i,j))-min(time_rev(Data_i,j)))>1e-10

 if fred2

 [i j]

 [time_rev(Data_i,j) P_PR_rev(Data_i,j)]

 unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)

 P_PR_rev_avg(i,j)

 pause

 end

 end % for i = 1:size(time_rev,1)

end % for j = Kul_no

Rot_Kulite_Data.m
% m function file to place the long sample into a single short very high speed

sample

function [time_rev,P_PR_rev,time_passage,P_PR_passage] =

Rot_Kulite_Data(Kulite_constants,Hz,Loc,time,time_err,time_phase,P_PR)

[fred,fred,fred,Blade_no,Kul_no,fred,fred,fred,fred,fred,fred,fred,fred,fred,fred,

fred,fred,fred,fred,fred] = eval(Kulite_constants);

% Time and pressures from hair plots are stored and sorted too

time_rev = []; P_PR_rev = [];

for j = Kul_no

 temp_time_rev = [];

 temp_P_PR_rev = [];

 for i = 1:(length(Loc)-1) % Last incomplete cycle left out

 temp = Loc(i):(Loc(i+1)-1); %

Indicies of elements in the relevant cycle

61

 % A small amount of data is added to the beggining and end of the sample

to make the moving averages correct (1 blade pitch)

 temp_nose = temp(1)-round(length(temp)/Blade_no);

 temp_tail = temp(end) + round(length(temp)/Blade_no);

 temp2 = temp_nose:temp_tail; % Total data

 temp_time = (time(temp2,1)-time(temp(1),1)-time_err(i)-time_phase(j)); %

Actual time elements

 temp_P_PR = P_PR(temp2,j); %

Actual pressure elements

 % Time and pressure ratios on a single time axis are stored

 temp_time_rev = [temp_time_rev; temp_time];

 temp_P_PR_rev = [temp_P_PR_rev; temp_P_PR];

 end % for i = 1:(length(Loc)-1)

 % Continuous signal

 time_rev(:,j) = temp_time_rev; clear temp_time_rev;

 P_PR_rev(:,j) = temp_P_PR_rev; clear temp_P_PR_rev;

 % Signals are now sorted as if they all stream in one after another

 [time_rev(:,j) I_time_rev] = sort(time_rev(:,j)); % Sorted time signal and

indicies

 P_PR_rev(:,j) = P_PR_rev(I_time_rev,j); % Sorted PR signal using

the time indicies

end % for j = Kul_no

% Data grouped over one blade passage

Passage_times = 0:(1/Hz)/Blade_no:(1/Hz);

time_passage = []; P_PR_passage = [];

for j = Kul_no

 temp_time_passage = [];

 temp_P_PR_passage = [];

62

 % Each blade passage is done

 for k = 1:Blade_no

 half_passage_time = (Passage_times(k+1)-Passage_times(k))/10; % 1/10 a

passage length to be added to each side of the sample

 temp = find(time_rev(:,j)>=(Passage_times(k) -

half_passage_time) & time_rev(:,j)<(Passage_times(k+1)+half_passage_time)); % Times in

passage

 temp_time_passage = [temp_time_passage; time_rev(temp,j)-

Passage_times(k)]; % Times are added to the passage

 temp_P_PR_passage = [temp_P_PR_passage; P_PR_rev(temp,j)];

 end % for k = 1:Blade_no

 % Data is sorted

 [temp_time_passage I_temp_time_passage] = sort(temp_time_passage);

 temp_P_PR_passage =

temp_P_PR_passage(I_temp_time_passage);

 [j length(temp_P_PR_passage)]

 % Data is grouped in seperate Kulite columns but all kept to the same length

but clipping is actually very very small

 if length(time_passage) ~= 0

 min_length = min([length(time_passage) length(temp_time_passage)]);

 time_passage = time_passage(1:min_length,:);

 time_passage(:,j) = temp_time_passage(1:min_length);

 P_PR_passage = P_PR_passage(1:min_length,:);

 P_PR_passage(:,j) = temp_P_PR_passage(1:min_length);

 else % first time around

 time_passage(:,j) = temp_time_passage;

 P_PR_passage(:,j) = temp_P_PR_passage;

 end

end % for j = Kul_no

63

% Time data is non-dimensionalised so that each blade passage is unity long

time_rev = Blade_no*Hz*time_rev; % Total revolution

time_passage = Blade_no*Hz*time_passage; % One average passage

fig_mov_avg.m
% m function file to produce the moving averages figures plot

function [] =

fig_mov_avg(fig_no,time_rev,P_PR_rev_avg,P_PR_rev_avg_DELTA,Hz,Kulite_constants)

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

figure(fig_no);close;figure(fig_no);

for j = Kul_no

%for j = 5

 temp = find(P_PR_rev_avg(:,j)~=0);

 temp_time = time_rev(temp,j)+0*Hz*Blade_no; % Non dimensionalised

according to the pitch

 plot(temp_time,P_PR_rev_avg(temp,j),['-' colours(j)]);

 if j == Kul_no(1)

 hold on; grid on

 end % if j == Kul_no(1)

 if isempty(P_PR_rev_avg_DELTA)

 else % if isempty(P_PR_rev_avg_DELTA)

 plot(temp_time,P_PR_rev_avg(temp,j)+P_PR_rev_avg_DELTA(temp,j),[':'

colours(j)]);

 plot(temp_time,P_PR_rev_avg(temp,j)-P_PR_rev_avg_DELTA(temp,j),[':'

colours(j)]);

 end % if isempty(P_PR_rev_avg_DELTA)

end % for j = Kul_no

temp = axis;

if temp(2) < 22

64

 axis([0 1 temp(3) temp(4)])

end % if temp(2) < 22

fig_cont_raw.m
% m function file to produce the moving averages figures plot from the raw data

function [] =

fig_contours(fig_no,time_passage,time_angle,P_PR_passage_avg,Hz,Kulite_constants)

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

figure(fig_no);close;figure(fig_no);

% At this point the data is set out as if the Kulites are set in a line, only some

of the points are needed as the data is so fine

% Data needs to be trimmed, trimming starts and ends at the same points

for j = Kul_no

 temp_start(j) = max(find(P_PR_passage_avg(1:round(end/2),j)==0));

 temp_end(j) =

min(find(P_PR_passage_avg(round(end/2):end,j)==0))+round(length(P_PR_passage_avg(:,j))/2)

-2;

 %interp1(time_passage(:,j),P_PR_passage_avg(:,j),[time_start time_end])

end % for j = Kul_no

temp_start = max(temp_start(Kul_no)); temp_end = min(temp_end(Kul_no));

P_PR_passage_avg = P_PR_passage_avg(temp_start:temp_end,:);

time_passage = time_passage(temp_start:temp_end,:);

% Conversion of data from the time to the physical domain

time_passage_pitch =

Blade_no*(time_passage+ones(size(time_passage,1),1)*time_angle)*Hz; % Also offset of

chord passages is added

Kul_ax_cho_pitch = Chord*(Kul_ax_cho/100)/(pi*Diameter/Blade_no);

% Scaling

65

Kul_ax_cho_pitch = ones(length(time_passage_pitch),1)*Kul_ax_cho_pitch;

% Rectangular grid for plotting contours

temp_x = time_passage_pitch;

temp_y = Kul_ax_cho_pitch;

temp_z = P_PR_passage_avg;

Red_fact = Blade_no; % factor by which the number of points in reduced, based on

the number of blades for simplicity

% Points are reduced by some skilled and cunning coding

temp = temp_x(1:Red_fact:end,:); temp_x = [temp; temp_x(end,:)];

temp = temp_y(1:Red_fact:end,:); temp_y = [temp; temp_y(end,:)];

temp = temp_z(1:Red_fact:end,:); temp_z = [temp; temp_z(end,:)];

temp = 1;

%for i = -2:3

for i = 1

 contour(temp_y(:,Kul_no),temp_x(:,Kul_no)+i,temp_z(:,Kul_no))

 if temp

 hold on; temp = 0;

 end

end

axis equal

% Blade leading and trailing edges are drawn in

axis([-1 2 0 3])

temp = axis;

temp_x = [temp(3:4); temp(3:4)]';

temp_y = [0 0; Chord*(100/100)/(pi*Diameter/Blade_no)

Chord*(100/100)/(pi*Diameter/Blade_no)]';

plot(temp_y,temp_x)

66

fig_kulite_signal.m
% m function file to plot the tach signal and Loc points

function [] =

fig_kulite_signal(fig_no,time,P_PR,Loc,Hz,time_err,time_phase,Kulite_constants)

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

% Repeating plot of kulite signals

% Also time and pressures from hair plots are stored and sorted too

figure(fig_no);close;figure(fig_no);

for j = Kul_no

 for i = 1:(length(Loc)-1) % Last incomplete cycle left out

 temp = Loc(i):(Loc(i+1)-1); %

Indicies of elements in the relevant cycle

 temp_time = (time(temp,1)-time(temp(1),1)-time_err(i)+time_phase(j)); %

Actual time elements

 temp_P_PR = P_PR(temp,j); %

Actual pressure elements

 plot(temp_time,temp_P_PR,['-' colours(j)]);

 if j == Kul_no(1)

 % axis([0 1.4e-4 -.15 .3])

 hold on

 grid on

 end % if i = 1

 end % for i = 1:(length(Loc)-1)

 % Mean pressure from Kulite is plotted

 temp = axis;

 plot([temp(1) temp(2)],[mean(P_PR(:,j)) mean(P_PR(:,j))],['-' colours(j)]);

 % Offset is plotted

67

 plot([Kul_offset(j)/(Blade_no*Hz) Kul_offset(j)/(Blade_no*Hz)],[0 1],['-'

colours(j)])

end % for j = Kul_no

clear temp

% Figure is modified

title(['Kulite ' num2str(Kul_no)])

axis auto

temp = axis;

axis([0 temp(2) 0.4 1.1])

clear temp

Phase_Kulite_Data.m
% m-function to calculate the amount the Kulite probes need to be phased in order

to lie along a blade.

function [time_phase,time_err,time_angle,P_PR] =

Phase_Kulite_Data(Kulite_constants,Loc,Hz,tach,time,P_PR)

% Kulite constants are loaded

[fred,fred,fred,Blade_no,Kul_no,fred,fred,Kul_offset,Kul_ax_cho,Blade_th,fred,fred

,fred,fred,fred,fred,fred,fred,fred,fred] = eval(Kulite_constants);

Trig = mean([min(tach) max(tach)]);

% Kulites are now lined up as if they sample along the blade chord, this will

reduce the amount of signal clipping needed

%[(Kul_ax_cho*Blade_th/100)/(2*pi*Hz); Kul_offset/(Blade_no*Hz);

+Kul_offset/(Blade_no*Hz)+(Kul_ax_cho*Blade_th/100)/(2*pi*Hz)]

time_angle = (Kul_ax_cho*Blade_th/100)/(2*pi*Hz); % Time that needs to be trimmed

from the samples to line them over blade

time_trim = Kul_offset/(Blade_no*Hz); % Time to line the Kulites up

along a straight line

time_trim = time_trim + time_angle; % Two times are combined to make

it simpler to work with

time_trim = time_trim - min(time_trim);

68

% Kulite signals are trimmed to get all the signals in phase. RPM is assumed

constant over sample period

for j = Kul_no

 temp = find(time>=time_trim(j)); % Number of points that are before

the correct sampling time

 time_phase(j) = [time(temp(1))-time_trim(j)]; % There is a slight error

associated with the chop off

 P_PR(:,j) = [P_PR(temp,j); zeros(length(P_PR(:,j))-(length(temp)),1)];

end % for j = Kul_no

% RPM from each trigger pulse is calculated and error according to the deviation

from the mean RPM is calculated

time_err = -[time(Loc)-[time(Loc(1)):(time(Loc(end))-

time(Loc(1)))/(length(Loc)-1):time(Loc(end))]'];

Save_Kulite_Data.m
% M-file to save the processed data into the raw data file so that the whole

process does not need to be repeated

function [] = Save_Kulite_Data(load_or_save,Kulite_constants)

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,...

 pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants);

if load_or_save == 'save'

 load Kulite % Data from current

directory is loaded into the present function

 old_dir = pwd; % Current directory

is stored to be returned to later

 new_dir = [old_dir '\' Kulite_Subdir '\' Kulite_Run_no]; % New directory in

which all the data is stored is defined

 cd(new_dir) % Directory is

changed to one specified

 % Data is saved in the raw data directory

 save Kulite

69

 cd(old_dir) % Directory is changed back to the old one

end % if load_or_save == 'save'

if load_or_save == 'load'

 old_dir = pwd; % Current directory

is stored to be returned to later

 new_dir = [old_dir '\' Kulite_Subdir '\' Kulite_Run_no]; % New directory in

which all the data is stored is defined

 cd(new_dir) % Directory is

changed to one specified

 load Kulite % Data from raw data

directory is loaded into the present function

 cd(old_dir) % Directory is

changed back to the old one

 save Kulite % Data is saved into

the current directory

end % if load_or_save == 'load'

Process_Kulite_Data.m
% m-function file to process the Kulite raw data

function [Loc,Hz,Trig] = Process_Kulite_Data(tach,samples,time);

Trig = mean([min(tach) max(tach)]);

% Location of trigger points and correction to exact trigger timing point

Loc = find(tach(2:samples)<Trig & tach(1:samples-1)>Trig); %location of time of

start of rev

% If Loc (location) if at the beggining of the sample it is discarded

if Loc(1) < 3

 Loc = Loc(2:end);

end

70

% Last trigger is discarded to ensure trailing zeros resulting from probe lining

up do not effect the calculations.

Loc = Loc(1:(end-1));

% Frequency of rotor revolution over the sample period

Hz = (length(Loc)-1)/(time(Loc(end))-time(Loc(1)));

unique_cmtfm.m
function [b,ndx,pos] = unique_cmtfm(a,flag,tol)

% This also finds points that are within a certain tolerance of each other

%UNIQUE Set unique.

% UNIQUE(A) for the array A returns the same values as in A but

% with no repetitions. A will also be sorted. A can be a cell

% array of strings.

%

% UNIQUE(A,'rows') for the matrix A returns the unique rows of A.

%

% [B,I,J] = UNIQUE(...) also returns index vectors I and J such

% that B = A(I) and A = B(J) (or B = A(I,:) and A = B(J,:)).

%

% See also UNION, INTERSECT, SETDIFF, SETXOR, ISMEMBER.

% Copyright 1984-2000 The MathWorks, Inc.

% $Revision: 1.21 $ $Date: 2000/06/01 04:40:02 $

% Cell array implementation in @cell/unique.m

if nargin == 2

 tol = 0;

end

if nargin==1 | isempty(flag),

 % Convert matrices and rectangular empties into columns

 if length(a) ~= prod(size(a)) | (isempty(a) & any(size(a)))

71

 a = a(:);

 end

 b = a;

 ndx = (1:length(a))';

 % [b,ndx] = sort(a);

 % d indicates the location of matching entries

 %%d = b((1:end-1)')==b((2:end)');

 d = abs(b((1:end-1)')-b((2:end)') < tol);

 b(find(d)) = [];

 if nargout==3, % Create position mapping vector

 pos = zeros(size(a));

 pos(ndx) = cumsum([1;~d(:)]);

 end

else

 if ~isstr(flag) | ~strcmp(flag,'rows'), error('Unknown flag.'); end

 b = a;

 ndx = (1:size(a,1))';

 % [b,ndx] = sortrows(a);

 [m,n] = size(a);

 if m > 1 & n ~= 0

 % d indicates the location of matching entries

 %%d = b(1:end-1,:)==b(2:end,:);

 d = abs(b(1:end-1,:)-b(2:end,:)) < tol;

 else

 d = zeros(m-1,n);

 end

 d = all(d,2);

 b(find(d),:) = [];

 if nargout==3, % Create position mapping vector

 pos(ndx) = cumsum([1;~d]);

 pos = pos';

 end

end

72

ndx(find(d)) = [];

fig_tach_signal.m
% m function file to plot the tach signal and Loc points

function [] = fig_tach_signal(fig_no,time,tach,Loc)

figure(fig_no);close;figure(fig_no);

plot(time(:,1),tach(:,1)); hold on;

plot(time(Loc,1),tach(Loc,1),'+r')

73

APPENDIX C: MATLAB M-FILES (STALL CASES)

calibrate_data.m

% m-file to calibrate the pressure data from volts to a pressure ratio

% The last measured inlet pressure is used which may not be correct.

% Look at the upstream static pressure as this may lead to some clues about the

mass flow rate.

function [PR,PR_rot_stall] = calibrate_data(volts)

% Constants are read in

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,fred,fred,fred,fred,fred,Kul_ord_r

ot_stall] = ...

 Kulite_constants_stall_90;

% Kulite calibration data from the run closest to stall is read in

% This is in the order of the Kulites from the front to the rear

load Kulite_calibrate_90_stall

% Pressure signal is processed

for j = 1:length(Kul_order)

 P_diff(:,j) =

polyval(P_dP_v(:,j)',volts(:,Kul_order(j)),S_dP_v(j),MU_dP_v(:,j)); % Differential

pressure relative to atmosphere

 P_abs(:,j) = P_diff(:,j)+P_atmos;

% Absolute pressure

 %PR(:,Kul_order(j)) = P_abs(:,j)/(gam_gas*Pt_inf);

% Pressure as a ratio relative to inlet

 PR(:,Kul_order(j)) = P_abs(:,j)/(1*Pt_inf);

% Pressure as a ratio relative to inlet

end % for j = 1:length(Kul_order)

clear P_diff P_abs

74

% Pressure signal for the three transducers that captured the rotating stall speed

for j = 1:length(Kul_ord_rot_stall)

 P_diff(:,j) =

polyval(P_dP_v_rot_stall(:,j)',volts(:,Kul_ord_rot_stall(j)),...

 S_dP_v_rot_stall(j),MU_dP_v_rot_stall(:,j)); % Differential pressure

relative to atmosphere

 P_abs(:,j) = P_diff(:,j)+P_atmos; % Absolute pressure

 %PR(:,Kul_order(j)) = P_abs(:,j)/(gam_gas*Pt_inf); % Pressure as a ratio

relative to inlet

 PR_rot_stall(:,Kul_ord_rot_stall(j)) = P_abs(:,j)/(1*Pt_inf); %

Pressure as a ratio relative to inlet

end % for j = 1:length(Kul_ord_rot_stall)

countour_data.m

% m-function file to interpolate the Kulite data onto a finer grid and perform the

required transforms

% to get a smooth picture of the pressure through the rotor.

function [PR_X,PR_Y,PR_Z] =

contour_data(PR,time,N_RPM,N_pitch,N_grid,pitch_offset)

% Constants are read in

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,Kul_ax_cho,Diameter,Chord,shock,SC

F] = Kulite_constants_stall_90;

Blade_no_SCF = ceil(Blade_no/SCF); % The number of blade pitches needed to

complete the interpolation.

% The axial Kulite positions are scaled to the size of the pitch

Cho_pit = Chord/(pi*Diameter/Blade_no); % Axial chord / Physical size of blade

pitch

Kul_ax_pit = Cho_pit*(Kul_ax_cho/100); % Non-dimensional Kulite axial chord

relative to pitch length

% Underlying Kulite grid is set up

75

for j = 1:length(Kul_order)

 K_Z(:,j) = PR(:,Kul_order(j)); % Pressure ratio grid

 K_X(:,j) = Kul_ax_pit(j)*ones(size(K_Z(:,j))); % Axial chord grid

 K_Y(:,j) = time(:,Kul_order(j)); % Tangential grid

end % for j = 1:length(Kul_order)

% Refined grid over the required rotation is set up

PR_X = [Kul_ax_pit(1) Kul_ax_pit(end)]; % X or axial

coordinates

PR_X = PR_X(1):(PR_X(2)-PR_X(1))/(N_grid-1):PR_X(2);

PR_X = ones(Blade_no_SCF*N_grid,1)*PR_X;

% Y or tangential coordinates at desired rotation

PR_Y = N_pitch+[(N_RPM-1)*Blade_no ((N_RPM-1)*Blade_no+Blade_no_SCF)];

PR_Y = (PR_Y(1):(PR_Y(2)-PR_Y(1))/(Blade_no_SCF*N_grid-1):PR_Y(2))';

PR_Y = PR_Y*ones(1,N_grid);

% This is the first interpolation with the blades in their normal positon

PR_Z_passage = griddata(K_X,K_Y,K_Z,PR_X,PR_Y,'cubic');

% This is the second interpolation with the grid skewed axially along the blades

% Both the interpolation and underlying grid are skewed and then the interpolation

grid is skewed back

% Arc of blade as fraction of pitch and non-dimensionalised wrt to pitch

temp = ((Blade_th)/(2*pi/Blade_no))/Cho_pit;

% Grids are skewed

PR_Y_blade = PR_Y - temp*PR_X;

K_Y_blade = K_Y - temp*K_X;

% Interpolation along the blade is performed

PR_Z_blade = griddata(K_X,K_Y_blade,K_Z,PR_X,PR_Y_blade,'cubic');

76

% This is the 3rd part of the interpolation along the bow shock upstream of the

rotor

PR_Y_shock = PR_Y + PR_X*tan(shock);

K_Y_shock = K_Y + K_X*tan(shock);

% Interpolation along the shock is performed

PR_Z_shock = griddata(K_X,K_Y_shock,K_Z,PR_X,PR_Y_shock,'cubic');

% Different parts of the three interpolations are now pieced together

PR_Z = PR_Z_shock;

% Upstream of rotor

temp = find(PR_X(1,:) >= 0);

% A cos function is used for the combining of the two sets

relax = PR_Y_blade-PR_Y_blade(1,1)-pitch_offset; relax = cos(pi*(relax)).^4;

% Within the rotor row

temp = find(PR_X(1,:) >= 0);

PR_Z(:,temp) = relax(:,temp).*PR_Z_blade(:,temp) + (1-

relax(:,temp)).*PR_Z_passage(:,temp);

% Downstream of the rotor the normal passage interpolation is used but this is

probably not

% physically realistic as a wake does exist

%temp = find(PR_X(1,:) >= Cho_pit);

%PR_Z(:,temp) = PR_Z_blade(:,temp);

%figure(6); close; figure(6)

%contourf(PR_X,PR_Y,relax)

count = 1;

for i = PR_Y(1,1):(PR_Y(1,1)+Blade_no)

77

 temp_1 = find(floor(PR_Y(:,1))==i); % Data points that fall in

the local pitch set

 % This is where the stall cell is at the end of the pitch

 temp_2 = i+(1-SCF)*count; % Pitch that the stall

cell data should come from

 temp_3 = find(floor(PR_Y(:,1)) == floor(temp_2)); % Data points from leading

pitch set

 temp_4 = temp_3+length(temp_3); % Data points from

trailing pitch set

 fract_1 = 1-(temp_2-floor(temp_2)); % Fraction from the

leading pitch set

 % This is where the stall cell is at the beggining of the pitch

 temp_5 = i+(1-SCF)*(count-1); % Pitch that the stall

cell data should come from

 temp_6 = find(floor(PR_Y(:,1)) == floor(temp_5)); % Data points from leading

pitch set

 temp_7 = temp_6+length(temp_6); % Data points from

trailing pitch set

 fract_2 = 1-(temp_5-floor(temp_5)); % Fraction from the

leading pitch set

 % Linear distribution between leading and trailing edge

 spread = (0:1/max([1 (length(temp_1)-1)]):1)'*ones(1,length(PR_Y(1,:)));

 if size(temp_1) == size(temp_3)

 PR_Z(temp_1,:) = spread.*(fract_1*PR_Z(temp_3,:) + (1-

fract_1)*PR_Z(temp_4,:)) +...% Trailing edge of pitch

 (1-spread).*(fract_2*PR_Z(temp_6,:) + (1-fract_2)*PR_Z(temp_7,:)); %

Leading edge of pitch cell

 end

78

 count = count+1; % Internal counter to tell which cell is being modified in

the local set

end % for i = PR_Y(1,1)

% Grid is trimmed to one revolution

temp = (find(PR_Y(:,1) <= ceil(Blade_no + min(PR_Y(:,1)))));

temp = [temp; max(temp)+1];

PR_X = PR_X(temp,:);

PR_Y = PR_Y(temp,:);

PR_Z = PR_Z(temp,:);

Kulite_constants_stall_90.m

% m-function file to store the Kulite constants

function

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,Kul_ax_cho,Diameter,Chord,shock,SCF,Kul_o

rd_rot_stall] = ...

 Kulite_constants_stall_100()

% In one of the tests the Kulites were mixed up so this step was introduced in

case it happens again

Kul_order = [1 9 2 3 4 5 6];

% These are the Kulites arranged to be able to capture the speed of the rotating

stall

Kul_ord_rot_stall = [7 8 9];

% Amount of Kulite offset in order from 1 to 6 in terms of number of blades

(Kulites at 360/Blade_num apart)

Kul_offset = [4 5 3 2 1 0 4];

% Kulite offsets and plotting of results along a blade chord

79

Kul_ax_cho = [-80.44 mean([-80.44 -17.62]) -17.62 8.27 34.17 60.06 144.72]+17.62;

% Kulite axial positions as a percentage of axial chord starting at the blade leading

edge

Blade_no = 22; % Number of rotor blades

%Blade_th = 19.1; % Angle in theta coordinates from blade leading

edge to trailing edge

Blade_th = 20.; % Angle in theta coordinates from blade leading

edge to trailing edge

Blade_th = pi*Blade_th/180; % Converted to radians

% Physical constants

gam_gas = 1.4; % Gas constant

% Rotor dimensions

Diameter = 11; % Rotor diameter in inches

Chord = 0.88824; % Axial Chord in inches

% The angle of the shock in radians relative to axial

shock = 10;

shock = shock*(pi/180);

% Stall cell frequency as a fraction of the RPM

%SCF = 0.82; % Pre-stall

%SCF = 0.82; % 1 Rev

%SCF = 0.82; % 2 Rev

%SCF = 0.75; % 3 Rev

%SCF = 0.70; % 4 Rev

%SCF = 0.70; % 5 Rev

%SCF = 0.66; % 6 Rev

SCF = 0.66; % 50 Rev

%Stall90

80

Load_data_90.m

% 90% speed

% M-file to pull in stall data and plot it out

clear all

close all

pack

% Constants

RPM_design = 27085; % Design RPM in RPM

RPM_Hz = RPM_design/60; % Design RPM in Hz

N_mov_avg = 5; % Number of times the moving average is performed

% Stall data is loaded

%Raw_data = dlmread('Dx2004_0914_1001_90_stall.csv',',','A187500..M200000'); %

Stall cell inception figure

Raw_data = dlmread('Dx2006_0403_1143.csv',',','A203000..M219000'); % Contour plot

data

% The data is seperated and initial processing is done

[time,volts,tach,Loc,RPM,time_err] = Process_data(Raw_data,N_mov_avg);

% Data needs to be normalised, each blade pitch is equal to unity

[time] = time_to_pitch(time,Loc,time_err);

% Data needs to be phased to correct for Kulite offset, this function puts them

all in a straight line

% The time vector becomes a matrix

[time,volts] = phase_data(time,volts);

%[time] = phase_data(time,volts);

% Data needs to be calibrated to pressure

[PR,PR_rot_stall] = calibrate_data(volts);

81

% Data is interpolated from the Kulites onto a finer grid

%N_RPM = 3; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 5; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 6; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 7; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 9; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 10; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 12; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 13; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 15; % Rotation number that the data will be interpolated from, INTEGER

%N_RPM = 16; % Rotation number that the data will be interpolated from, INTEGER

N_RPM = 50; % Rotation number that the data will be interpolated from, INTEGER

%N_pitch = 0; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = -5; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = 0; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = 7; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = -7; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = 2; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = -9; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = 2; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = -10; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

%N_pitch = 0; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

N_pitch = 0; % Blade pitch number, basically the fraction of rotation that is

needed, INTEGER

82

pitch_offset = 0.1; % Amount of offset to use to ensure that the interpolation

function lies along the blade, 0-1 REAL

N_grid = 100; % Number of grid points in each blade pitch, INTEGER

% The RPM is plotted

Plot_rpm(4,RPM,RPM_Hz)

[PR_X,PR_Y,PR_Z] = contour_data(PR,time,N_RPM,N_pitch,N_grid,pitch_offset);

% A particular column of the data is plotted

% Upstream probes

offset = -60; % Offset to start count at zero

offset = [offset offset-7-(1/3) offset-12-(2/3)]; % offsets to get same blades

passing at the same time

Plot_data(1,1,'k',offset(1)+time,PR_rot_stall,Loc,time_err,0,7,1,3)

Plot_data(1,0,'b',offset(2)+time,PR_rot_stall,Loc,time_err,0,8,2,3)

Plot_data(1,0,'r',offset(3)+time(:,7)*ones(1,size(time,2)),PR_rot_stall,Loc,time_e

rr,0,9,3,3) % The time offset is not needed

% Blade passage probes

Plot_data(2,1,'b',time,volts,Loc,time_err,0,2,0,0)

%Plot_data(2,0,'g',Raw_data,-1,2+1)

%Plot_data(2,0,'r',Raw_data,-2,2+2)

%Plot_data(2,0,'c',Raw_data,-3,2+3)

Plot_data(2,0,'m',time,volts,Loc,time_err,-0.75,6,0,0)

% Data is overlaid to see if the phasing is correct

Plot_data(3,1,'b',time,PR,Loc,time_err,0,1,0,0)

Plot_data(3,0,'g',time,PR,Loc,time_err,0,9,0,0)

Plot_data(3,0,'r',time,PR,Loc,time_err,0,2,0,0)

Plot_data(3,0,'c',time,PR,Loc,time_err,0,3,0,0)

Plot_data(3,0,'m',time,PR,Loc,time_err,0,4,0,0)

Plot_data(3,0,'y',time,PR,Loc,time_err,0,5,0,0)

83

Plot_data(3,0,'k',time,PR,Loc,time_err,0,6,0,0)

% A contour plot is plotted and a file outputed

figure(5); close; figure(5)

[min(min(PR_Z)) max(max(PR_Z))]

contourf(PR_X,PR_Y,PR_Z,[0.4752:(1.4619-0.4752)/35:1.4619])

%contourf(PR_X,PR_Y,PR_Z,35)

shading flat

axis equal

temp = axis;

axis([-.5 1 temp(3) temp(4)])

% Single blade passage is plotted

figure(7); close; figure(7)

temp_X = PR_X(1:2*floor(size(PR_X,1)/22),:);

temp_Y = PR_Y(1:2*floor(size(PR_X,1)/22),:);

temp_Z = PR_Z(1:2*floor(size(PR_X,1)/22),:);

contourf(temp_X,temp_Y,temp_Z,75)

shading flat

axis equal

%print fred -depsc2

mov_avg.m

% m-function file to calculate the moving averages at a particular point

% x,y data

% points ahead and behind central one ie 0 return same data, 1 = 3 points, 2 = 5

points

% n, polynomial to fit, 0 = average, 1 = linear, 2 = parabolic etc

function [y_avg] = mov_avg(x,y,points,N)

y_avg = y;

84

x_poly = zeros(1,(2*points+1));

y_poly = zeros(1,(2*points+1));

for i = (points+1):((length(x)-points)-1)

 for j = -points:points

 x_poly(j+points+1) = x(i+j);

 y_poly(j+points+1) = y(i+j);

 end

 y_avg(i) = mean([max(y_poly) min(y_poly)]); % Most effective method, just take

the mean of the max and min

end

% Leading points

if points > 0

 % Leading few points

 for j = 1:(2*points+1)

 y_poly(j) = y(j);

 end

 % Leading moving average

 for i = 1:points

 y_avg(i) = mean([max(y_poly) min(y_poly)]);

 end % for i = 1:points

 % Trailing few points

 for j = (2*points+1):-1:1

 y_poly(j) = y(length(x)-j+1);

 end

 % Trailing moving average

 for i = (length(x)-points):length(x)

 y_avg(i) = mean([max(y_poly) min(y_poly)]);

85

 end % for i = 1:points

end % if points > 0

phase_data.m

% m-function file to phase the Kulite data into a single line

function[time,volts] = phase_data(time,volts);

% Constants are read in

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,Kul_ax_cho,Diameter,Chord,shock,SC

F] = Kulite_constants_stall_90;

% A matrix of the time vector is made

time = time*ones(1,size(volts,2));

% Offset to ensure that each Kulite gives data from the same blade

for i = 1:length(Kul_order)

 time(:,Kul_order(i)) = time(:,Kul_order(i))-Kul_offset(i);

end % for i = Kul_order

% The stall cell moves slower than the RPM.

M = Blade_no - (1/SCF)*Blade_no; % Number of blade passages that stall cell

moves per revolution

M_N = M/Blade_no; % Fraction of a blade that the stall cell moves per

pitch

% A different offset is needed to make the data from the same position within the

stall cell

for i = 1:length(Kul_order)

 % Fraction of offset of stall cell

 temp = M_N*Kul_offset(i);

 fract = temp-floor(temp); % Fraction between blades

 %[time(1,Kul_order(i)) time(end,Kul_order(i))]

 %[i Kul_offset(i) temp floor(temp) temp-floor(temp) ceil(temp)]

86

 % Temporary floor and ceiling time

 time_floor = time(:,Kul_order(i))+floor(temp);

 time_ceil = time(:,Kul_order(i))+ceil(temp);

 % Intepolation of time before the stall cell

 %I =find(time(:,Kul_order(i))>time(1,Kul_order(i))+ceil(temp));

 I =

find(time(:,Kul_order(i))<(time(end,Kul_order(i))+floor(temp))); % There is an offset

 volts_floor = zeros(size(time(:,Kul_order(i))));

 volts_floor(I(end):end) = volts(I(end):end,Kul_order(i));

 volts_floor(1:I(end)) =

interp1(time_floor,volts(:,Kul_order(i)),time(1:I(end),Kul_order(i)),'cubic');

 % Intepolation of time after the stall cell

 volts_ceil = zeros(size(time(:,Kul_order(i))));

 volts_ceil = volts(:,Kul_order(i));

 volts_ceil(1:I(end)) =

interp1(time_ceil,volts(:,Kul_order(i)),time(1:I(end),Kul_order(i)),'cubic');

 % Final interpolation trying to match the speed of the stall cell

 %I = find(time(:,Kul_order)>time(1,Kul_order(i))+ceil(temp));

 I = find(time(:,Kul_order(i))<(time(end,Kul_order(i))+floor(temp))); % There

is an offset

 volts(1:I(end),Kul_order(i)) = fract*volts_floor(1:I(end)) + (1-

fract)*volts_ceil(1:I(end)); %Thought to be correct

 %volts(1:I(end),Kul_order(i)) = (1-fract)*volts_floor(1:I(end)) +

(fract)*volts_ceil(1:I(end)); % Cowboy thing again

 if 0

 figure(6); close; figure(6);

 %plot(time_floor,volts(:,Kul_order(i)),'r')

 plot(time(:,Kul_order(i)),volts_floor,'r')

 hold on

 %plot(time_ceil,volts(:,Kul_order(i)),'g')

87

 plot(time(:,Kul_order(i)),volts_ceil,'g')

 plot(time(:,Kul_order(i)),volts(:,Kul_order(i)),'b')

 end % if 0

end % for i = 1:length(Kul_order)

Plot_data.m

% m-file to plot a certain time part of the stall data file

function [fred] =

Plot_data(fig_no,bool_new_fig,fig_colour,time,volts,Loc,time_err,offset,Data_column,...

 subplot_no,subplot_tot)

% Time period is defined

time_start = time(1,Data_column); % Start time of sample

time_end = time(end,Data_column); % End time of sample

%time_start = 16.3 % User defined start time

%time_end = 17 % User defined end time

% Time period entry points are found

temp = find(time(:,Data_column)>time_start & time(:,Data_column)<time_end);

% figure is plotted and trimmed

if bool_new_fig

 figure(fig_no); close; figure(fig_no);

else

 figure(fig_no);

end

if subplot_no ~= 0

 subplot(subplot_tot,1,subplot_no)

end % if subplot_no ~= 0

plot(time(temp,Data_column),volts(temp,Data_column)+offset,fig_colour)

88

hold on

xlabel('Time [s]'); ylabel('Raw Voltage signal [V]')

grid on

temp = axis;

h = line([time(Loc(1:end),Data_column)

time(Loc(1:end),Data_column)]',(ones(size(Loc(1:end)))*([temp(3) temp(4)]))');

set(h,'Color',[0 0 0]); % Makes colour of line black

h = line([time(Loc(2:end),Data_column)-time_err time(Loc(2:end),Data_column)-

time_err]',(ones(size(Loc(2:end)))*([temp(3) temp(4)]))');

set(h,'Color',[0 0 0]); % Makes colour of line black

%axis([temp(1) temp(2) 0 0.7])

if subplot_no ~= 0

 axis([0 120 0.5 1.3])

end % if subplot_no ~= 0

Plot_rpm.m

% mfile to plot RPM through the stall

function [fred] = Plot_rpm(fig_no,RPM,RPM_Hz)

%temp = find(Raw_data(:,9)>0);

figure(fig_no);% close; figure(fig_no);

%plot(Raw_data(temp,1),Raw_data(temp,9))

%plot(RPM(:,1),RPM(:,2),'k');

plot(1:length(RPM(:,1)),RPM(:,2)/RPM_Hz,'k');

hold on

xlabel('Revolutions'); ylabel('rpm'); title('RPM through stall at 100% speed')

89

Process_data.m

% m function file to organise the data of the Raw data file

function [time,volts,tach,Loc,Hz,time_err] = Process_data(Raw_data,N_mov_avg)

% Data is sorted into simpler to use groups

time = Raw_data(:,1); % Kulite time data

volts = Raw_data(:,2:10); % Kulite raw voltage data

tach = Raw_data(:,12); % Kulite trigger voltage

samples = length(time); % Number of samples

% Trigger level is calculated

Trig = mean([min(tach) max(tach)]);

% Location of trigger points and correction to exact trigger timing point

Loc = find(tach(2:samples)<Trig & tach(1:samples-1)>Trig); %location of time of

start of rev

Hz = (length(Loc)-1)/(time(Loc(end))-time(Loc(1))); % Frequency of rotor

revolution over the sample period

% If Loc (location) if at the beggining of the sample it is discarded

if Loc(1) < 3

 Loc = Loc(2:end);

end

% Last trigger is discarded to ensure trailing zeros resulting from probe lining

up do not effect the calculations.

Loc = Loc(1:(end-1));

% Timing correction to ensure that each sample begins at the correct time

d_time_Loc(:,1) = time(Loc+1)-time(Loc); % Time interval between trigger and next

time interval

90

d_tach_Loc(:,1) = tach(Loc+1)-tach(Loc); % Ramp slope between trigger and next

time interval

m = d_tach_Loc./d_time_Loc; % Slope

c = tach(Loc); % Intercept

time_err = (Trig - c)./m; % Error in trigger timing

% Error in trigger timing is converted to be directly subtracted from the period

time_err = (time_err(2:end)-time_err(1:end-1));

% The RPM based on each trigger is calculated

Hz = time(Loc(2:end)) - time(Loc(1:end-1));

Hz = Hz + time_err;

%RPM = 60./RPM;

Hz_old = Hz;

Hz = [time(Loc(2:end)) Hz]; % First column is time signal and the second is

the Hz

% Data is moving averaged a few times to remove the wiggle

for i = 1:N_mov_avg

 [Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1);

end % for i = 1:,N_mov_avg

%[Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1);

%[Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1);

%[Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1);

% This is to correct the RPM

time_err = time_err + (Hz(:,2)-Hz_old);

%[1./Hz_old 1./Hz(:,2) 1./(time(Loc(2:end))-time(Loc(1:end-1))+time_err)]

% Data is converted to Hz or RPM

Hz(:,2) = 1./Hz(:,2);

91

Time_to_pitch.m

% m-function file to normailise the Kulite data from time to physical domain

% each blade pitch is considered to be unity

function [time_norm] = time_to_pitch(time,Loc,time_err)

[fred,fred,Blade_no,fred] = Kulite_constants_stall_90;

% Tempory time variable vs pitch is set up as the trigger position is known

temp_time = [time(Loc(1)); time(Loc(2:end))-time_err];

temp_pitch = Blade_no*(0:(length(temp_time)-1))';

% Interpolation along the time is performed

time_norm = interp1(temp_time,temp_pitch,time,'cubic','extrap');

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

LIST OF REFERENCES

1. Sanger, N.L., “Design of Low Aspect Ratio Transonic Compressor Stage Using
CFD Techniques,” ASME Journal of Turbomachinery, July 1996, Vol. 118 pp
479 – 491.

2. Sanger, N.L., “Design Methodology for the NPS Transonic Compressor,” TPL

Technical Note 99-01, Naval Postgraduate School, Monterey, California, August
1999.

3. Gannon, A.J., Hobson, G.V. and Shreeve ,R.P., 2004, “A Transonic Compressor

Stage Part 1: Experimental Results, “ASME GT2004-53923, Turbo Expo,Vienna,
Austria.

4. Gannon, A.J., Hobson, G.V. and Shreeve ,R.P., “Measurement of the Unsteady

Casewall Pressures Over a Rotor of a Transonic Fan and Comparison with
Numerical Predictions”, ISABE 2005, 17th International Symposium on
Airbreathing Engines, Munich, September 2005.

5. Rodgers, M. W. Unsteady Pressure Measurements on the Case Wall of a

Transonic Compressor, Master’s Thesis, Naval Postgraduate School, Monterey,
California, June 2003.

6. Villescas, I., Flow Field Surveys In a Transonic Compressor Prior To Inlet
Steam Ingestion Tests, Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 2005.

7. Brunner, M.D., Experimental and Computational Investigation of Flow in a
Transonic Compressor Inlet, Master’s Thesis, Naval Postgraduate School,
Monterey, California, September 2005.

8. Payne, T.A., Inlet Flow-Field Measurements of a Transonic Compressor Rotor
Prior to and During Steam-Induced Rotating Stall, Master’s Thesis, Naval
Postgraduate School, Monterey, California, December 2005.

9. Sussman Automatic Corporation. “SVS600 Electric Steam Boiler

Specifications.”, 2004, Long Island City, New York.

10. Hewlett-Packard Operating Manual, HP E1422A Remote Channel Multi-function

DAC Module, Edition 1, E1422-90000, May 1999.

11. Erwin, J. R., A Review of the Design of the NPS/TPL Transonic Compressor,

Contractor Report No. NPS67-83-004CR, Naval Postgraduate School, Monterey,
California, 1983.

94

12. Hewlett-Packard Operating Manual, HP E1422A Remote Channel Multi-function
DAC Module, Edition 1, E1422-90000, May 1999.

13. HP VEE Pro (version 6.01), August 2000.

14. Hewlett-Packard Operating Manual, HP E8402A, E8404A C-Size Mainframes,

Edition 1, E8402-90000, May 1998.

15. Agilent Technologies Operating Manual, N2216A VXI/SCSI Interface Module,

N2216-90001, July 2000.

16. HP DAC Express (version 2.01), September 2000.

17. MATLAB (version 5.3.0 R11), January 1999.

18. Hobson, G.V., (Unpublished) Department of Aeronautics and Astronautics, Naval

Postgraduate School, Monterey, Calfornia, May 2003.

19. Cumpsty, N.A., Jet Propulstion: A simple guide to the aerodynamic and

thermodynamic design and performance of jet engines ,Cambridge University
Press, New York, 1997.

20. Gannon, A.J., Hobson, G.V. and Shreeve ,R.P., “Experimental Investigation

During Stall and Surge in a Transonic Fan Stage and Rotor-Only Configuration”,
TURBO EXPO 2006, ASME TURBO EXPO 2006: Land, Sea and Air,
Barcelona, Spain, May 2006.

95

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Distinguished Professor and Chairman Anthony Healey
Department of Mechanical and Aeronautical Engineering
Naval Postgraduate School

 Monterey, California

4. Professor Garth Hobson

Department of Mechanical and Aeronautical Engineering
Naval Postgraduate School
Monterey, California

5. Dr. Anthony Gannon
Department of Mechanical and Aeronautical Engineering
Naval Postgraduate School
Monterey, California

6. Naval Air Warfare Center
Propulsion and Power Engineering
ATTN: Mark Klien

 Patuxent River, Maryland

7. ENS William Levis
Monterey, California

