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ABSTRACT 

During launch of aircraft off of a carrier deck, steam leakage is sometimes 

ingested into the aircraft’s engine and may cause a compressor stall or “pop-stall”.  As 

the US Navy prepares to field the single engine F-35C Joint Strike Fighter, it becomes 

necessary to investigate the phenomenon known as “pop-stall”. In the present study, 

steady-state as well as transient measurements prior to and during a steam induced 

rotating stall were taken.  Changes to the honeycomb altered the performance 

characteristics of the Transonic Compressor Rig and needed to be remapped in order to 

determine a new stall line as well as a peak performance criterion.  Data was taken at 90 

percent design speed as well as during a 70 percent steam induced stall with the aide of 9 

Kulites at varying positions along the case wall. Data was reduced and analyzed through 

the use of a data acquisition and data reduction system.   
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I. INTRODUCTION 

As the United States Navy begins to transition to the F-35C Joint Strike Fighter 

(JSF) it becomes necessary that the phenomenon known as a “pop-stall” be resolved. A 

“pop-stall” occurs when the catapult-launch system on an aircraft carrier releases steam 

during a launch cycle.  The steam is than ingested into the intakes of the aircraft, causing 

a fan or compressor stall and a possible total engine stall or “pop-stall”.  Experiments 

conducted at Naval Air Engineering Station Lakehurst with an F-18 demonstrated the 

relative susceptibility of the aircraft to “pop-stall” events.  This susceptibility of the dual 

engine F-18 is of significant interest because as the Navy begins to transition to the single 

engine F-35C, the probability of a “pop-stall” occurring and causing a catastrophic loss of 

an aircraft increases. 

The work done at the Turbopropulsion Laboratory (TPL) at the Naval 

Postgraduate School (NPS) focuses on the “pop-stall” problem with the use of the 

Transonic Compressor Rig (TCR).  The transonic compressor fan stage was specifically 

designed for the Naval Postgraduate School to be used in the TCR by Sanger (1996) at 

the NASA Glenn Research Center (Ref. 1 and 2).  These investigations conducted on the 

TCR are intended to improve the understanding of steam-induced stall. 

The performance characteristics of the compressor in both the fan-stage as well as 

the rotor-only configurations were mapped with the data that was collected by Gannon, 

Hobson and Shreeve.  This data was used to establish performance characteristics at 70%, 

80%, 90% and 100% design speed prior to and during stall. (Ref 3-4). Unsteady pressure 

measurements at 60%, 70%, and 80% design speed were reestablished by Rodgers in 

2003 (Ref. 5).  Inlet and exit surveys at 70%, 80%, 90% and 100% design speed with a 

three-hole probe were conducted by Villescas (Ref. 6).  Villescas determined the 

spanwise distributions of the rotor diffusion factor at choke, peak efficiency and stall 

while Brunner repeated the surveys with a 5-hole probe and determined the pitch angle 

and Mach number distributions in the inlet of the rotor (Ref 7).  Payne took performance 

data at 95 percent speed, with a hot-film probe as well as Kulite pressure transducers in 

the case wall. He also took transient data from both the hot film and Kulite pressure 

transducers during steam induced stall at 70% speed (Ref 8). 
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Changes to the inlet and honeycomb have altered the performance characteristics 

of the Transonic Compressor Rig.  The compressor performance was remapped in order 

to determine a new stall line as well as the peak performance criterion.  In the current 

study, unsteady pressure measurements were established, with the installation of 9 

Kulites at varying positions along the case wall. Data were taken at the 90% design speed 

as well as prior to and during a steam induced stall. Steam induced stall measurement 

were also taken at 70% speed to reestablish previously taken data to reflect alterations in 

the honeycomb. The data was then reduced and analyzed through the use of a data 

acquisition and data reduction system.   
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II. TRANSONIC COMPRESSOR 

A. SANGER STAGE 
The Sanger compressor stage was specifically designed for testing and assessment 

at the TCR using CFD techniques, while minimizing conventional empirical design 

methods.  Figures 1 and 2 show a sectioned drawing and the rotor installed into the test 

rig, respectively.   

 

 
Figure 1.   Transonic compressor sectioned view 
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Figure 2.   Rotor-only configuration of the transonic compressor rig (From Ref. 8) 

 

The rotor had 22 blades and was made from a high strength aluminum alloy 

(7075-T6).  For the present experiment, the rotor was tested with a parabolic spinner, 

which replaced the conical spinner used by O’Brien (Ref. 9).  

For most of the previous studies the entire stage was evaluated.  However, for the 

current study, the stator was removed and only the rotor was present to ensure the 

simplest configuration tested during steam ingestion. The design specifications for the 

Sanger Stage are given in Table 1. 
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Table 1.   Sanger Stage Parameters 

 
 

The Sanger stage represents characteristic of a first stage of a modern fan.  The tip 

inlet relative Mach number is lower than most modern transonic compressors, however 

the blade loading is higher, which allows a pressure ratio of 1.56. 

 
 

B. TRANSONIC COMPRESSOR TEST RIG 
The Transonic Compressor Rig (TCR) test rig, as shown in Figure 3, was driven 

by two opposed-rotor air turbine stages, supplied by a 12 stage Allis-Chalmers axial 

compressor.  The Allis-Chalmers compressor supplied three atmospheres of air pressure 

at a mass flow rate of 5 kg/s.  Air was drawn into the TCR from the atmosphere through a 

throttle valve as shown in Figure 4.  A five-meter long 46cm diameter pipe connected the 

settling chamber to the test compressor.  The air would then flow through a nozzle, which 

was used for flow rate measurements and was exhausted back to the atmosphere. The 

rig’s schematic is also shown in Figure 5. 
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Figure 3.   Transonic Compressor in test cell with inlet piping removed (From Ref. 8) 
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Figure 4.   Transonic Compressor Rig Schematic 
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C. STEAM INJESTION SYSTEM 

The compressor rig and steam ingestion system is shown in Figure 5.  Steam was 

generated by the SVS600 steam boiler and was directed through a 7.62 cm diameter pipe 

and vented to the intake plenum as can be seen in Figure 6.  The SVS600 was capable of 

producing saturated steam up to a maximum working pressure of 1000 kPa or 1.4 kg/sec 

at 100 0C and can be seen in Figure 7 (Ref. 9).  In order to monitor the transient response 

of the steam pressure, a pressure transducer was installed into the steam pipe and can be 

seen in Figure 5.  Two remotely-operated fast acting solenoid valves were used for 

releasing the steam into the intake plenum as well as for venting the pipe.  Figure 7 shows 

the orientation of the steam pipe with respect to the intake plenum.  

 

 
Figure 5.   Transonic compressor rig with steam ingestion system  
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Figure 6.   SVS600 steam boiler system 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.   Steam pipe with intake plenum orientation (From Ref. 8) 
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III. INSTRUMENTATION 

A. KULITE PRESSURE TRANSDUCER 
A Kulite miniature silicon pressure transducer, model XCQ-080-25, was used to 

obtain time-resolved pressure data.  The probe was a miniature, semiconductor, strain 

gauge transducer which incorporated a fully active four-arm Wheatstone bridge 

dielectrically isolated silicon-on-silicon diaphragm.  A diagram of the probe is given in 

Figure 8 and the specifications are given in Table 2. 

 

 

 

 

 

 
Figure 8.   Kulite XCQ-080 series transducer (From Ref. 5) 
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Table 2.   XCQ-080-25 Factory Specifications (From Ref. 5) 
Input     
Pressure Range 1.7 atm 25 PSI 
Over Pressure 3.4 atm 50 Psi 
Burst 5.1 atm75 Psi 
Rated Electrical Excitation 10VDC/AC 
Maximum Electrical Excitation 15VDC/AC 
Input Impedance 800Ohms 
Output     
Output Impedance 1000Ohms 
Full Scale Output 100mV 
Residual Unbalance +-3% FSO 
Non-Linearity and Hysterisis 0.1% FS BFSL 
Hysteresis 0.1% 
Repeatability 0.1% 
Resolution Infinite   
Natural Frequency  300kHz 
Perpendicular Accel Sensitivity 0.0003% FS/g 
Transverse Accel Sensitivity 0.00004% FS/g 
Insulation Resistance 100Megohm 
Environmental     

Operating Temp Range -53.8 to 121.1 deg C 
(-65 to 250 
deg F) 

Compensated Temp Range 26.7 to 82.2 deg C  
(80 to 180 deg 
F) 

Thermal Zero Shift +- 1% FS/100 F 
Thermal Sensitivity Shift +- 1% FS/100 F 

 

For the current study, 9 Kulite transducers had to be installed in the casing of the 

TCR.  The full bridge Kulite Pressure Transducers were connected to the Hewlett-

Packard E1529A Remote Strain Conditioning Unit, via a RJ-45 cable (Ref. 10).  Figure 

19 shows the correct set up of the Kulite wires and their corresponding RJ-45 pin 

assignments. 
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Figure 9.   Kulite Connection to RJ-45 Plug (From Ref. 5) 

 

 

The Kulite Pressure Transducer had four wires, a black, white, green, and red 

wire.  The black wire was connected to pins 2 and 7, and the white was connected to pin 

6.  Pin 3 was connected to the green wire and pins 1 and 8 were connected to the red 

wire.  Pins 4 and 5 were not connected to any wires.   

 

B. INSTALLATION OF KULITE PRESSURE TRANSDUCER  
Nine Kulites were connected to RJ-45 cables and were installed into aluminum 

slugs.  The aluminum slug was originally designed by Vavra for unsteady pressure 

measurements of the Vavra stage, and can be seen in Figure 10 (Ref. 11).   

RJ-45 Plug 
 

 
Pin 

 1    2   3    4 5    6    7   8 
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Figure 10.   Kulite Mounting Design  

 

 

Once the nine Kulite pressure transducers were installed into the aluminum slugs 

they were mounted flush with the casewall.  Figures 11 and 12 show the positioning of 

the Kulites relative to the casewall.  The Kulite pressure tap locations were spaced one 

blade spacing apart and their corresponding locations across the blade were at 10.5%, 

37%, 63%, and 89.5% axial chord.  In addition a once-per-revolution speed pickup was 

used. 

 
Figure 11.   Relative positions of Kulite pressure transducer and blades. (From Ref. 5) 
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Figure 12.   Relative positions or Kulite pressure transducers in case wall (From Ref. 5)  

 
 
C. DATA ACQUISITION 

The Kulite pressure transducers were connected to a Hewlett-Packard E1529A 

Remote Strain Conditioning Unit via an RJ-45 LAN cable.   An adjustable power supply 

would provide the necessary excitation voltage of 5 Volts and was input into the bridge 

excitation port of the HP E1529A.  An Remote Channel Multi-Function DAC Module 

(HP E1422A), (Ref. 12), controlled and set the HP E1529A to a full bridge configuration, 

calibration, and self test functions via a program written in HP Vee Pro, (Ref. 13).  The 

HP E1529A provided a wideband amplified output from each strain bridge signal, via a 

37-pin connector, to a HP E1433A high-speed digitizer, capable of taking samples up to 

196 kSa/sec (Ref. 14).  A tachometer signal was also connected to the HP E1433A to 

provide speed reference data.  The tachometer signal came in via standard coax cables 

and a break-out box was used as an adapter to route these signals into the 27 pin 

connection of the HP E1433A.  The HP E1433A and HP E1422A were addressed 

through the HP E8404A VXI Mainframe and interfaced to a PC.  The data was stored on 

an Agilent N2216A VXI/SCSI Interface Module, containing two internal 50 Gbyte drives 

(Ref. 15).  The VXI Mainframe was interfaced to a PC, with a ‘firewire’ interface.  DAC 

 1 
3 
7 

4 2 
5 

6 

8 9 
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Express, an Agilent program, was used to acquire data.  Figure 13 shows the connection 

of the Kulite transducers to the data acquisition system. 

 

 
Figure 13.   Data Acquisition System (From Ref. 5) 

 

1. DAC Express 
The Hewlett-Packard DAC Express was used to monitor the digitized signal in 

real time (Ref. 16).  DAC Express set the sampling rate of the HP E1433A and recorded 

the digitized data to the Agilent N2216A.  DAC Express can analyze up to 16 channels at 

a time, with the option of recording for any given amount of time.  Figure 14 shows an 

example DAC Express setup screen showing 12 channels in real-time, nine individual 

Kulites, Kulites 2,7 and 8, the hotwire and the once per rev signal.  For the purposes of 

this experiment, the length of time for the transient pre-stall was .2 seconds, while the 

two stall cases were 45 seconds.  However, for ease of data analysis the stall cases were 

later reduced to four seconds; two seconds before stall and two seconds after stall.  Once 
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the start button had been pushed and the data recorded, the data had to be exported from 

the N2216A to the PC as a .csv file.  The .csv files were entered into MATLAB, for data 

processing (Ref. 17).  

 

 
Figure 14.   DAC Express GUI screen 
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IV. EXPERIMENTAL PROCEDURE 

A. KULITE CALIBRATION 
Calibration of the Kulite was conducted while the compressor was running, to 

alleviate any temperature dependence of the Kulite.  Four sets of data were taken for the 

specified throttle and speed setting and each set of data was applied to a reference 

pressure.  The reference pressures were 0, 5, 10 and 15 inches of mercury (0, 2.456, 

4.912, 7.368 psig).  The applied reference pressure was manually recorded from a 

Wallace and Tiernan gauge with a mirrored scale graduated in .2 inches of mercury.  For 

the steady state analysis, the DAC Express would record the voltages for .2 seconds, at all 

four reference pressures.  However, for the two stall cases only the reference pressure of 

10 psig was recorded into the DAC Express for 45 seconds.  Once the data had been 

recorded as a .csv file it was calibrated and reduced in MATLAB (Ref. 17).  The 

calibration constants calculated in MATLAB from the run closest to stall were used for 

data analysis and data reduction of the stalled data. 

 

B. COMPRESSOR OPERATION 
During testing the Transonic Compressor Rig’s rotor was kept at a constant speed 

and measurements were taken at different throttle settings.  By closing the throttle, the 

mass flow rate was reduced and the rig operating point could be determined by the 

procedures described by Gannon et al. (Ref. 4).  For this experiment the mass flow rate 

was varied by actuating the throttle (Fig. 15) while the rotor RPM was set at a particular 

speed. 
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Figure 15.   Electric throttle 

 

Mass flow rate, inlet and exit total temperatures and pressures were measured and 

recorded.  This data was used to calculate total-to-total pressure ratio and isentropic 

efficiency which was used to determine position on the compressor map.  Measurements 

were taken from open throttle to a throttle position near stall.  Measurement and 

calibration procedures were described in more detail by Gannon et al. (Ref. 3).   

   

C.  STEAM-INDUCED STALL RUNS 
For the current study the compressor was set at either 70% or 90% speed.  The 

throttle was closed incrementally, pausing only to take the necessary steady state 

measurements.  The process of reducing the mass flow by closing the throttle was done to 

determine the point at which the rotor would stall before moving on to steam induced 

stall test.   

Once the throttle setting just prior to stall was established, and steady state 

measurements were taken, the compressor was ingested with steam by the following 
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procedure.  The steam vent solenoid valve and the boiler isolation valve were opened to 

allow the steam pipe to heat up.  Once fully heated, the vent valve was closed and the 

data trace from the pressure transducer and thermocouple were started.  The steam 

pressure was monitored and once it reached its intended pressure, the isolation valve was 

closed.  At this point a three second countdown to steam ingestion would occur and the 

Kulite data acquisition system was initiated.  Once the end of the countdown had been 

reached, the fast-acting solenoid valve was opened and the steam was dumped into the 

plenum of the compressor.  After several seconds, the Kulite data acquisition was 

stopped.  If the steam ingestion did not cause a “pop-stall” event, the procedure was 

repeated at a reduced throttle setting until a “pop-stall” was achieved. 

Post processing of the data was conducted with MATLAB (Ref. 17).  The 

procedure for the use of the MATLAB files is presented in Appendix A.  Specific M-files 

that were used with the steady-state data are given in Appendix B and the procedure for 

the stall tests are presented in Appendix C. 
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V. RESULTS AND DISCUSSION 

A. STEAM-INDUCED STALL AT 70% SPEED 
Given that changes to the honeycomb and pressure ports on the flow rate nozzle 

were altered the performance characteristics of the Transonic Compressor Rig, transient 

data using Kulite pressure transducers during steam induced stall at 70% speed needed to 

be re-established.  Figure 16 shows previous data taken on the rotor with a pneumatic 

temperature and pressure probes, torque, flow, and speed instrumentation, and represents 

time-averaged information.  Figure 16 also shows the single point near stall at 70% speed 

that was measured prior to steam ingestion (Ref. 18).  The green dot was established by 

Payne and the blue dot demonstrates shift along the stall line due to the changes in the 

honeycomb and pressure ports (Ref. 8).   
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Figure 16.   Pressure ratio versus mass flow rate with shift in stall line 
 

The transient pressure measured in the steam line was used to calculate the mass 

flow rate of the ingested steam.  Figure 17 shows the pressure change in the steam pipe as 

well as the temperature change in the inlet of the compressor over time during the steam-

induced stall experiment.  A pressure of 480 kPa was reached in the steam pipe prior to 
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releasing steam into the compressor.  A steam-induced stall of the rotor was observed at 

70 percent speed at a mass flow rate of 0.045 kg/s. 
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Figure 17.   Steam pressure and inlet temperature change during steam-induced stall at 70 

percent speed  
 

Figure 18 shows the raw-voltage of the Kulite signal going into stall at 70 percent 

speed.  The change in speed of the compressor going into stall is shown in Figure 19. 
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Figure 18.   Raw-voltage Kulite signal going into steam induced stall at 70 percent speed 

 
 

 
Figure 19.   Change in compressor speed during steam-induced stall 
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Figure 20 represents a waterfall FFT contour plot of the data taken during stall at 

70 percent speed.  The stall cell frequency, once per revolution, and the blade-passing 

frequency, can be seen in this contour plot.  The stall cell frequency was approximately 

60 percent of rotor speed and there was indication of a precursor to stall at 4.3 seconds.  

Stall occurred at 4.34 seconds. 

 

 
Figure 20.   Power spectrum contour plot of Kulite data at 70 percent speed through stall  

 
 

B. PRESSURE CONTOURS 70% SPEED OPEN THROTTLE 
Figure 21 shows the pressure contours derived from the nine Kulite transducers at 

70% speed.   
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Figure 21.   Pressure contours 70% speed with open throttle 

 

C.  STEADY-STATE PRESSURE CONTOURS AT 90% SPEED 
The process of reducing the mass flow by closing the throttle while keeping the 

compressor at a constant speed of 24375 RPM, was done to determine the point at which 

stall would occur.  During this process, the reduction of the mass flow rate resulted in a 

reduction of axial velocity into the fan and for constant rotational speed, this yielded an 

increase in incidence.  This increase in incidence increased the force on the blades, which 

yielded an increase in static pressure rise (Ref. 19).  Table 3 shows the pertinent 

measurements while closing the throttle.  Run 4 does not include efficiency, or ∆P 

measurements because this was the run that was closest to stall and steady state data was 

not able to be taken.   

Figures 22-25 are the graphical pressure contours of Table 3.  Note the shock 

wave which moved forward as the mass flow is decreased. 

 

Run Efficiency (η) Mass flow  ∆P Pressure ratio 
1 86.55 7.56 6.54 1.25 
2 89.85 7.23 5.25 1.38 
3 83.12 6.24 3.76 1.47 
4 - 5.98 - 1.49 

Table 3.   Measurements during transient analysis  
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Figure 22.   Pressure Contours 90% speed and a Pressure Ratio of 1.25 (Open throttle) 
 
 

 
 

Figure 23.   Pressure Contours 90% speed and a Pressure Ratio of 1.38 (Peak Efficiency) 
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Figure 24.   Pressure Contours 90% speed and a Pressure Ratio of 1.47 
 
 
 
 

 
 

Figure 25.   Pressure Contours 90% speed and a Pressure Ratio of 1.49 (closest to stall) 
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B. TRANSIENT MEASUREMENTS DURING AT 90% SPEED 
In order to gather data during a stall event, the compressor was run as close to 

stall as possible.  Once the high speed data acquisition system was activated, the 

upstream throttle was closed until stall occured.  As soon as stall occurred the upstream 

throttle was reopened and stall stopped as soon as possible to reduce the adverse loading 

on the compressor.   Figure 26 shows the raw-voltage of the Kulite signal going into stall 

at 90 percent speed. 

 

 

 
 

Figure 26.   Raw Kulite data through 90% speed stall 
 
 

In order to post-process the data the stall speed cell needed to be determined.  

This speed was acquired through the use of three pressure probes at the same axial 

location but just upstream of the blades.  Figure 27 shows the simultaneous raw voltages 

at 90% speed.    
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Figure 27.   Simultaneous signal obtained from 3 probes at 90% speed 
 
 
 

The stall cell size increased with each revolution but was separated by a region of 

regular cyclic flow.  A full investigation into this phenomenon at different speeds is given 

by Gannon et. al. (Ref. 20).  The change in speed of the compressor going into stall is 

shown in Figure 28.  A fast Fourier transform was also used to create a waterfall power 

spectrum of the Kulite data as seen in Figure 29 plotted in contour format. 
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Figure 28.   Change in compressor speed during a rotating stall event 
 

 

 
 

Figure 29.   Power spectrum contour plot of Kulite data at 90 percent speed at through stall  
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Figure 29 represents data taken during stall at 90 percent speed.  The stall cell 

frequency, once per revolution, and the blade-passing frequency, can be seen in this 

contour plot.  There was no indication of a stall precursor as measured by the Kulite 

transducers. 

 
C. 90% SPEED STALL CELL GROWTH 

Figure 30 represents the development of the stall cell at 90% speed.  The first strip 

corresponds to the undistributed rotation before the formation of the stall cell. Each 

subsequent strip corresponds to the stall cell as it passed under the pressure probes on the 

subsequent rotation.  Figure 30 shows the formation of only one stall cell rotating at 60% 

rotor speed, 

         
 

Figure 30.   90% speed stall cell growth 
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Once the stage was stalled it needed to be returned to the original flow conditions.  

Note that because the speed of the machine was not held at a constant speed during the 

stall event, the un-stalling of the stage was much less controlled than the entry into stall.  

As covered by Gannon, when the required pressure ratio across the stage decreases the 

flow through the rotor, the flow begins to return to its axi-symmetric pattern (Ref. 20).   
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VI. CONCLUSION 

Changes in the honeycomb altered the performance characteristics of the 

Transonic Compressor Rig. As a result, a steam induced stall at 70 percent speed and new 

stall line were successfully determined. The transient pressure was measured in the steam 

line and the mass flow of the steam was established.  Kulite pressure transducers 

recorded the pressures prior to and during steam induced stall.  The stall cell induced by 

the steam rotated at 60 percent of rotor speed with slight precursor for 0.04 seconds. 

Performance measurements were carried out at 90 percent speed from open 

throttle to stall.  This data followed previous trends with respect to peak efficiency and 

total pressure ratio.  A graphical analysis of the data was used to better visualize the 

structure of the flow as well as the stall cell and its growth.  The measured stall cell also 

rotated at 60 percent rotor speed with little or no indication of any precursor.  

A steam induced stall at 90 percent speed is planned.  With the aid of the 

graphical techniques presented, insight could be gained into the formation and 

propagation of the steam induced stall. 
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APPENDIX A: PROCEDURE FOR USE OF MATLAB M-FILES 

Stall case 
 
Directory that contains all the files: 
 
C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Stall 
 
load_data_90      is the file which calls all of the others  
 
 
On line 14 in load_data_90 reads: 
 
%Raw_data = dlmread('Dx2004_0914_1001_90_stall.csv',',','A187500..M200000'); %  
 
'Dx2004_0914_1001_90_stall.csv' is the csv file will be read and needs to be altered to 
accommodate a new set of data 
 
 A187500..M200000 corresponds to the cells and time of the stall event 
 
The timed can be determined by trial and error or can be determined by using the DAC 
Express to find the exact time of the stall event.  And given that each cell corresponds to 
.00001 seconds one can determine which cells are at the inception of stall.  For example, 
the exact time that was determined using the DAC Express was 5.861 seconds.  Given 
that the data starts at 3.5 seconds.  The difference between the two is subtracted and than 
divided by .00001.   
 
*Note 
Because there is no calibration procedure for the stall case the calibration constants 
closets to stall will be used in the stall case.  Run the steady state programs for the case 
closest to stall.  The calibration constants will be created in: 
 
C:\Bill_Levis\Kulite_Rotor_Only 
 
under the file name “Kulite_calibrate”   
 
for the 90% speed case rename Kulite_calibrate   to  Kulite_calibrate_90 
 
and place the newly renamed file into 
 
C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Stall    
directory 

load_data_90 can now be run 
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*Note 

If color scheme isn’t working the contour map needs to be reset to within tolerance.  This 

can be accomplished in load_data_90  line: 

contourf(PR_X,PR_Y,PR_Z,[0.4752:(1.4619-0.4752)/35:1.4619]) 

 

steady state 
 
There should be 4 csv files for dictated percent speed as well as mass flow corresponding 
to the different back pressures.  As default they need to be saved in this directory: 
 
C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Run11 
 
*Note: this directory can be changed but alterations to the code need to be made 
 
The following directory contains the necessary files to run the steady state calculations: 
 
C:\Bill_Levis\Kulite_Rotor_Only 
 
kulite_rotor_only     is the file which calls all the others 
 
In kulite_rotor_only  line 12 needs to be changed: 
 
Kulite_constants = 'Kulite_constants_90_PR_1_49'; % 90% speed near stall 
 
Kulite_constants_90_PR_1_49.m   dictates which directory will be used 
 
Again unless one wants to alter the code the following directory needs to be used: 
 
C:\Bill_Levis\Kulite_Rotor_Only\90%\90%2004_09_14_Rot_only_0.00%\Run11 
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APPENDIX B: MATLAB M-FILES (STEADY STATE) 

Kulite_constants_90_PR_1_49.m 
 

M function file to store all the constants required 

 

function 

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,Kul_ax_c

ho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n,Kul_order,Ps_chan] = 

Kulite_constants(); 

 

% Put this section in a gui to make it simpler for someone else to use 

% The names of the subdirectory to be analysed and the run numbers involved 

 

Kulite_Subdir = strvcat('90%\90%2004_09_14_Rot_only_0.00%'); % Grouping of Run 

 

Kulite_Run_no = strvcat('Run11');                     % Individual Run 

 

Run_nos       = [11 12];                              % Run numbers from notes 

text file 

 

% Constants 

Kul_no     = [1 2 3 4 5 6 7];                        % Kulite Channel plot order 

 

% In one of the tests the Kulites were mixed up so this step was introduced in 

case it happens again 

Kul_order  = [1 9 2 3 4 5 6]; 

 

colours    = ['b' 'g' 'r' 'c' 'm' 'k' 'y'];           % Colours to be used in 

Kulite plotting 

Avg_size   = 150;                                      % Approximate number of 

points wanted in each bin, bins are a constant time size based on this number. 
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% Static pressure channels that are used to calibrate the Kulite channels are 

listed as with the rest in order from front to back 

Ps_chan = [46 39 7 8 9 10 43]; 

 

% Kulite offsets and plotting of results along a blade chord 

Kul_ax_cho = [-80.44 mean([-80.44 -17.62]) -17.62 8.27 34.17 60.06 144.72]+17.62; 

% Kulite axial positions as a percentage of axial chord starting at the blade leading 

edge 

%Kul_ax_cho = [-63.33 -0.51 25.39 51.28 77.18 161.84]; % Kulite axial positions as 

a percentage of axial chord starting at the blade leading edge 

 

Kul_offset = [4 5 3 2 1 0 4];                        % Amount of Kulite offset in 

order from 1 to 6 in terms of number of blades (Kulites at 360/Blade_num apart) 

Blade_no   = 22;                                     % Number of rotor blades 

%Blade_th   = 19.1;                                   % Angle in theta coordinates 

from blade leading edge to trailing edge 

Blade_th   = 20.;                                   % Angle in theta coordinates 

from blade leading edge to trailing edge 

Blade_th   = pi*Blade_th/180;                        % Converted to radians 

 

% Physical constants 

Rho_Hg  = 13550; % Density of mercury [kg/m^3] 

g       = 9.81;  % Gravitational constant [m/s^2] 

gam_gas = 1.4;   % Gas constant 

 

% Rotor dimensions 

Diameter = 11;      % Rotor diameter in inches 

Chord    = 0.88824; % Axial Chord in inches 

 

% Contour plot constants 

pitch_plot_n = 1;  % Number of pitches to plot 

pitch_time_n = 50; % Number of axial lines along the pitch plot 

pitch_tang_n = 40; % Number of tangential lines in the axial direction  
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Kulite_rotor_only.m 
 

% m-file to plot the Kulite contours for the rotor only case with 7 Kulites 

 

clear all 

 

% Kulite data filename 

% 100% Speeds 

%Kulite_constants = 'Kulite_constants_PR_1_32_open';   % Full open throttle 

without honeycomb PAPER 

%Kulite_constants = 'Kulite_constants_PR_1_51';        % Near peak efficiency for 

PAPER 

%Kulite_constants = 'Kulite_constants_PR_1_66_stall';  % Near stall with honeycomb 

PAPER 

 

% 90% Speeds 

Kulite_constants = 'Kulite_constants_90_PR_1_49'; % 90% speed near stall 

%Kulite_constants = 'Kulite_constants_90_PR_1_38'; % 90% speed near peak 

efficiency 

%Kulite_constants = 'Kulite_constants_90_PR_1_26'; % 90% speed near choke 

 

% 80% Speeds 

%Kulite_constants = 'Kulite_constants_80_PR_1_38'; % 80% speed near stall 

%Kulite_constants = 'Kulite_constants_80_PR_1_28'; % 80% speed near peak 

efficiency 

%Kulite_constants = 'Kulite_constants_80_PR_1_20'; % 80% speed near choke 

 

% 70% Speeds 

%Kulite_constants = 'Kulite_constants_70_PR_1_28'; % 70% speed near stall 

%Kulite_constants = 'Kulite_constants_70_PR_1_18'; % 70% speed near peak 

efficiency 

%Kulite_constants = 'Kulite_constants_70_PR_1_15'; % 70% speed near choke 

 

%Kulite_constants 
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% Kulite constant file is initialised 

%eval(Kulite_constants) 

 

% Raw data is loaded in a seperate function file and also calibrated to make the 

analysis function neater 

[time,tach,samples,P_PR,m_dot_REF,PR_REF,RPM_sample] = 

Load_Kulite_Data(Kulite_constants); 

 

% Function to find the position of the trigger signal, the trigger level and the 

Hz frequency of revolution 

[Loc,Hz,Trig] = Process_Kulite_Data(tach,samples,time); 

 

% Function to correct the times to phase the Kulites over the blades and correct 

for errors in the triggers 

[time_phase,time_err,time_angle,P_PR] = 

Phase_Kulite_Data(Kulite_constants,Loc,Hz,tach,time,P_PR); 

 

% Function to put all the data into single time traces over ONE ROTATION and also 

ONE PASSAGE as if it was sampled at very high speed 

[time_rev,P_PR_rev,time_passage,P_PR_passage] = 

Rot_Kulite_Data(Kulite_constants,Hz,Loc,time,time_err,time_phase,P_PR); 

 

% Function to find the moving averages of the data to smooth it out (quadratic 

function is used to ensure that peak clipping does not occur) 

[P_PR_bin,P_PR_bin_DELTA,time_bin] = 

Avg_Kulite_Data(Kulite_constants,time_rev,P_PR_rev,Hz,0); 

 

% Function to find the moving averages of the data to smooth it out but for one 

averaged blade passage 

[P_PR_bin_passage,P_PR_bin_passage_DELTA,time_bin_passage] = 

Avg_Kulite_Data(Kulite_constants,time_passage,P_PR_passage,Hz,0); 

 

% Function to interpolate in the axial direction over a single blade passage 

[contour_z_passage,contour_th_passage,contour_PR_passage] = 

Contour_Kulite_Data(time_bin_passage,P_PR_bin_passage,Hz,time_angle,Kulite_constants); 

 

% Function to interpolate in the axial direction over the entire rotor 
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%[contour_z_rotor,contour_th_rotor,contour_PR_rotor]       = 

Contour_Kulite_Data(time_bin,P_PR_bin,Hz,time_angle,Kulite_constants); 

 

% Data is saved and then loaded so that the whole thing does not have to be run 

again 

save Kulite 

 

%Save_Kulite_Data(Kulite_Subdir,Kulite_Run_no,'save') % Data is saved in raw data 

directory 

Save_Kulite_Data('save',Kulite_constants) % Data is saved in raw data directory 

 

Kulite_figures_rotor_only(Kulite_constants) 

 
Load_Kulite_data 
 

% M-function-file to load and calibrate the raw Kulite data 

% This does not use the Kulites around the bottom of the case as they will be used 

for the stall cases later 

 

function [time,tach,samples,P_PR,m_dot_REF,PR_REF,RPM_sample] = 

Load_Kulite_Data(Kulite_constants); 

 

[Kulite_Subdir,Kulite_Run_no,Run_nos,fred1,Kul_no,fred2,fred3,fred4,fred5,fred6,Rh

o_Hg,g,gam_gas,fred7,fred8,fred9,... 

        fred10,fred11,Kul_order,Ps_chan] = eval(Kulite_constants); 

 

% For some reason the Constants file will not spit out more than 20 outputs so 

this is inserted here 

Kul_ord_rot_stall = [7 8 9];    % Kulite order of ones installed around the casing 

to capture stall cell speed 

Ps_chan_rot_stall = [39 39 39]; % Static pressure channels, the same as all three 

Kulites at the same location 

 

old_dir = pwd;                                           % Current directory is 

stored to be returned to later 

new_dir = [old_dir '\' Kulite_Subdir '\' Kulite_Run_no]; % New directory in which 

all the data is stored is defined 
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cd(new_dir)                                              % Directory is changed to 

one specified 

 

% File names in the directory are found 

file_info = dir; 

 

% File names are listed and stored 

Kulite_filenames = []; 

count = 0; 

for j = 1:length(file_info) 

    temp = file_info(j).name; 

    if file_info(j).isdir == 0 & temp(1) ~= 'K' 

        count = count + 1; 

        Kulite_filenames = strvcat(Kulite_filenames,file_info(j).name); 

        temp = 

(max(find(Kulite_filenames(count,:)=='_'))+1):(find(Kulite_filenames(count,:)=='.')-1); 

        H_in_Hg(count,:) = str2num(Kulite_filenames(count,temp)); 

    end % if file_info(j).isdir == 0 

    clear temp4 

end % for j = 1:length(file_info) 

 

% The Kulite files are read in and the mean voltages calculated 

% This is where out of order probes are reordered as the data is streamed in 

for j = 1:size(Kulite_filenames,1) 

    if j == 1 % Kulite exposed to atmosphere is used for the data reduction 

        Kulite_RawData        = dlmread(Kulite_filenames(j,:),',',5,0); % File is 

read in 

        Kulite_Rot_Stall      = Kulite_RawData(:,Kul_ord_rot_stall+1);  % Here are 

the three Kulites capturing stall 

        Kulite_RawData(:,2:8) = Kulite_RawData(:,Kul_order+1);          % Here the 

data is sorted into the correct order 

        temp                  = Kulite_RawData(:,2:8);                  % Kulite 

raw voltage data 

        volts_mean            = mean(temp); 

        volts_mean_Rot_Stall  = mean(Kulite_Rot_Stall); 
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    else % if j == 1 

        temp_raw                  = dlmread(Kulite_filenames(j,:),',',5,0); % File 

is read in 

        volts_mean(j,:)           = mean(temp_raw(:,Kul_order+1)); 

         

        % Rotating stall data from the three Kulites are stored to use in the 

calibration 

        volts_mean_Rot_Stall(j,:) = mean(temp_raw(:,Kul_ord_rot_stall+1)); 

         

    end % if j == 1 

    clear temp 

end % 

%volts_mean 

%H_in_Hg 

 

% Static pressures are read in 

cd ..             

file_info = dir; % Get file information of files in the directory 

 

% Find the largest file 

for j = 1:length(file_info) 

    temp(j) = file_info(j).bytes; 

end % for j = 1:length(file_info) 

[Y_max,I_max]    = max(temp);                                % Largest file is 

assumed to be the spreadsheet 

Static_RawData   = dlmread(file_info(I_max).name,'\t',1,0);  % File is read in 

m_dot_REF        = mean(Static_RawData(Run_nos,6));          % referred mass flow 

rates are pulled out 

PR_REF           = mean(Static_RawData(Run_nos,7));          % referred pressure 

ratios are pulled out 

Pressure_RawData = Static_RawData(:,29:76);                  % Pressures are 

stripped out 

 

% Static pressures for the Kulites are inserted using all available runs 
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for i = 1:length(Ps_chan) 

    Kulite_P_Static(:,i) = Pressure_RawData(Run_nos,Ps_chan(i)); 

end 

Kulite_P_Static  = mean(Kulite_P_Static); 

 

% Static pressures for the Kulites for the three rotating stall probes 

for i = 1:length(Ps_chan_rot_stall) 

    Kulite_P_Stat_rot_stall(:,i) = Pressure_RawData(Run_nos,Ps_chan_rot_stall(i)); 

end 

Kulite_P_Stat_rot_stall  = mean(Kulite_P_Stat_rot_stall); 

 

% Atmospheric pressure is also required in the calibration 

P_atmos = mean([Pressure_RawData(Run_nos,2)]); 

 

% P infinity at the compressor inlet 

Pt_inf = mean([mean([Pressure_RawData(Run_nos,5)]) 

mean([Pressure_RawData(Run_nos,6)])]); 

 

cd(old_dir)   % Directory is changed back to the old one 

 

% All data is now read in, directory is restored and the calibration is performed 

% Mean pressures are calculated 

for j = 1:size(Kulite_filenames,1) 

    dP_mean(j,:)           = Kulite_P_Static - (P_atmos + 

Rho_Hg*g*(25.4/1000)*H_in_Hg(j)); 

    dP_mean_rot_stall(j,:) = Kulite_P_Stat_rot_stall - (P_atmos + 

Rho_Hg*g*(25.4/1000)*H_in_Hg(j)); 

end % for j = 1:size(Kulite_filenames,1) 

 

for j = 1:size(volts_mean,2) % Calibration is performed using a linear fit 

    [P S MU]     = polyfit(volts_mean(:,j),dP_mean(:,j),1); 

    P_dP_v(:,j)  = P'; 

    S_dP_v(j).S  = S; 

    MU_dP_v(:,j) = MU; 
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end % for j = 1:size(volts_mean,2) 

clear P S MU 

 

for j = 1:size(volts_mean_Rot_Stall,2) % Calibration is performed using a linear 

fit for the rotating stall probes 

    [P S MU]     = polyfit(volts_mean_Rot_Stall(:,j),dP_mean_rot_stall(:,j),1); 

    P_dP_v_rot_stall(:,j)  = P'; 

    S_dP_v_rot_stall(j).S  = S; 

    MU_dP_v_rot_stall(:,j) = MU; 

end % for j = 1:size(volts_mean_Rot_Stall,2) 

clear P S MU 

 

% Data is sorted into meaningful groups 

time       = Kulite_RawData(:,1);   % Kulite time data 

volts      = Kulite_RawData(:,2:8); % Kulite raw voltage data 

tach       = Kulite_RawData(:,12);  % Kulite trigger voltage 

RPM_sample = Kulite_RawData(:,13);  % RPM stated in the data file 

samples    = length(time);          % Number of samples 

 

% Pressure signal is processed 

for j = 1:size(volts_mean,2) 

    P_diff(:,j) = polyval(P_dP_v(:,j)',volts(:,j),S_dP_v(j).S,MU_dP_v(:,j));  % 

Differential pressure relative to atmosphere 

    P_abs(:,j)  = P_diff(:,j)+P_atmos;                                        % 

Absolute pressure 

    P_PR(:,j)   = P_abs(:,j)/(gam_gas*Pt_inf);                                % 

Pressure as a ratio relative to inlet 

end % for j = 1:size(volts_mean,2) 

 

% Polyfit is tested 

%for j = 1:size(volts_mean,2) 

%    [(polyval(P_dP_v(:,j)',volts_mean(:,j),S_dP_v(j).S,MU_dP_v(:,j))) 

dP_mean(:,j)] 

%    pause 

%end % for j = 1:size(volts_mean,2) 
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%dP_mean 

%P_dP_v 

%S_dP_v 

%MU_dP_v 

 

% The pressure calibration is saved so that it can be used in the stall 

calculations or elsewhere 

save Kulite_calibrate P_dP_v S_dP_v MU_dP_v P_dP_v_rot_stall S_dP_v_rot_stall 

MU_dP_v_rot_stall Pt_inf P_atmos 

 
 
test_no_outs.m 
 

% m-function file to test the number of outputs possible 

 

function [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z] = test_no_outs(a) 

 

a = 1 

b = 1 

c = 1 

d = 1 

e = 1 

f = 1 

g = 1 

h = 1 

i = 1 

j = 1 

k = 1 

l = 1 

m = 1 

n = 1 

o = 1 

p = 1 

q = 1 
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r = 1 

s = 1 

t = 1 

u = 1 

v = 1 

w = 1 

x = 1 

y = 1 

z = 1 

 
 
Contour_Kulite_data.m 
 

% m-funtion to interpolate onto a regular grid from the smoothed data 

 

function [contour_z,old_contour_th,contour_PR] = 

Contour_Kulite_Data(time_bin,P_PR_bin,Hz,time_angle,Kulite_constants) 

 

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

% Axial grid for the Kulite data is created and scaled to same dimensions as the 

pitch 

z_bin = ones(size(P_PR_bin,1),1)*Kul_ax_cho; 

z_bin = Chord*(z_bin/100)/(pi*Diameter/Blade_no); 

 

% The passage interpolation is performed first 

% Grid for the interpolation 

contour_z = (min(Kul_ax_cho):(max(Kul_ax_cho)-

min(Kul_ax_cho))/Avg_size:max(Kul_ax_cho)); 

contour_z = Chord*(contour_z/100)/(pi*Diameter/Blade_no); 

contour_z = ones(size(P_PR_bin,1),1)*contour_z; 

 

% The raw data is grouped in larger sections to make sure the edges are correctly 

interpolated 
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temp          = max(time_bin(:,1))-min(time_bin(:,1)); 

[time_bins I] = unique([time_bin-temp; time_bin; time_bin+temp],'rows'); 

z_bins        = [z_bin; z_bin; z_bin];          z_bins    = z_bins(I,:); 

P_PR_bins     = [P_PR_bin; P_PR_bin; P_PR_bin]; P_PR_bins = P_PR_bins(I,:); 

 

%contour_th = time_bin(:,1)*ones(1,size(P_PR_bin,1)); 

contour_th = time_bin(:,1)*ones(1,size(contour_z,2)); 

 

% Interpolation favouring blade 

contour_PR_blade = 

griddata(z_bins,time_bins,P_PR_bins,contour_z,contour_th,'cubic'); 

disp('1') 

 

% Interpolation along the passage shock is performed 

% Data is skewed to the actual shape 

time_angle = Blade_no*Hz*time_angle; % Time to physical domain 

time_bin = time_bin + ones(size(P_PR_bin,1),1)*time_angle; % Angle along blades 

 

% Theta grid is also skewed 

TH_skew    = interp1(z_bin(1,:),time_angle,contour_z)-min(min(time_bin))*0; 

contour_th = contour_th + TH_skew; 

 

% The raw data is grouped in larger sections to make sure the edges are correctly 

interpolated 

temp          = max(time_bin(:,1))-min(time_bin(:,1)); 

[time_bins I] = unique([time_bin-temp; time_bin; time_bin+temp],'rows'); 

z_bins        = [z_bin; z_bin; z_bin];          z_bins    = z_bins(I,:); 

P_PR_bins     = [P_PR_bin; P_PR_bin; P_PR_bin]; P_PR_bins = P_PR_bins(I,:); 

 

% Interpolation favouring the passage 

contour_PR_passage = 

griddata(z_bins,time_bins,P_PR_bins,contour_z,contour_th,'cubic'); 

disp('2') 
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% Interpolation along the inlet shock 

% Data is skewed along the lines of the inlet shock 

temp   = find(Kul_ax_cho<=0); 

%time_bin(:,1)+1; 

for i = temp 

    temp_2               = find(time_bin(:,i)<=(time_bin(1,i)+1)); 

    [D_PR_max(i) I_max(i)] = min(diff(P_PR_bin(temp_2,i)));   % Doing it with 

maximum decrease, better for choke 

    %[D_PR_max(i) I_max(i)] = max(diff(P_PR_bin(temp_2,i)));   % Max increase of 

gradient better for stall 

    %[D_PR_max(i) I_max(i)] = max(P_PR_bin(temp_2,i)); 

    Z_max(i)             = z_bin(I_max(i),i); 

    TH_max(i)            = time_bin(I_max(i),i); 

end 

 

TH_max 

TH_max(find(TH_max>0)) = TH_max(find(TH_max>0))-1 

 

TH_max                 = [TH_max(1) TH_max(end)] 

Z_max                  = [Z_max(1)  Z_max(end)]; 

 

%TH_max                 = [TH_max(end-1) TH_max(end)] 

%Z_max                  = [Z_max(end-1)  Z_max(end)]; 

 

if TH_max(1) < TH_max(2) 

    TH_max(1) = TH_max(1)+1 

end 

 

Shock_gradient         = polyfit(Z_max,TH_max,1) 

 

old_time_bin           = time_bin; 

time_bin               = time_bin - z_bin*Shock_gradient(1); 

 

old_contour_th         = contour_th; 
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contour_th             = contour_th - contour_z*Shock_gradient(1); 

 

% The raw data is grouped in larger sections to make sure the edges are correctly 

interpolated 

temp          = max(time_bin(:,1))-min(time_bin(:,1)); 

[time_bins I] = unique([time_bin-temp; time_bin; time_bin+temp],'rows'); 

z_bins        = [z_bin; z_bin; z_bin];          z_bins    = z_bins(I,:); 

P_PR_bins     = [P_PR_bin; P_PR_bin; P_PR_bin]; P_PR_bins = P_PR_bins(I,:); 

 

% Interpolation favouring the upstream shock 

contour_PR_shock = 

griddata(z_bins,time_bins,P_PR_bins,contour_z,contour_th,'cubic'); 

disp('3') 

 

% Output contour is composed 

temp = find(contour_z(1,:)<0); 

contour_PR(:,temp) = contour_PR_shock(:,temp); 

 

% The blade section is separated out 

temp = find(Kul_ax_cho==0); 

[Y I] = max(P_PR_bin(:,temp)); 

 

% Magic number to place the blade relative to the peak pressure on the leading 

Kulite 

% This changes from max flow to near stall 

%offset = 0.05; % Offset for peak efficiency  

%offset = 0.2; % Offset for full open throttle  

offset = 0.125; % Offset for full open throttle  

%offset = -0.125; % Offset for full open throttle  

 

%temp_relax = abs(cos(2*pi*(-offset+old_contour_th(:,temp)-

old_contour_th(I,temp)))); 

temp_relax = (cos(pi*(-offset+old_contour_th(:,temp)-old_contour_th(I,temp)))).^4; 

%temp_relax = (sin(pi*(-offset+old_contour_th(:,temp)-

old_contour_th(I,temp)))).^4; 
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%[temp_relax old_contour_th(:,temp)-old_contour_th(I,temp)] 

%pause 

temp = find(contour_z(1,:)>=0); 

temp_relax = temp_relax*ones(size(temp)); 

 

temp = find(contour_z(1,:)>=0); 

contour_PR(:,temp) = (1-

temp_relax).*contour_PR_passage(:,temp)+(temp_relax).*contour_PR_blade(:,temp);  % Method 

using passage and blade 

 

if 0 

    max(max(contour_PR_blade)) 

    max(max(contour_PR_passage)) 

    max(max(contour_PR_shock)) 

    max(max(contour_PR)) 

end 

 

%contour_PR(:,temp) = (1-

temp_relax).*contour_PR_shock(:,temp)+(temp_relax).*contour_PR_blade(:,temp);  % Method 

using the shock and blade 

%contour_PR(:,temp) = contour_PR_shock(:,temp);  % Method using only the shock 

%contour_PR(:,temp) = contour_PR_blade(:,temp);  % Method using only the blade 

%contour_PR(:,temp) = contour_PR_passage(:,temp);  % Method using only the passage 

 
fig_contours.m 

% m function file to produce the moving averages figures plot 

 

function [] = fig_contours(fig_no,contour_z,contour_th,contour_PR,repeat) 

 

%[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,

Kul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

%        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

figure(fig_no);close;figure(fig_no); 
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[max(max(contour_PR)) min(min(contour_PR))] 

 

% Contour matrix is constructed to avoid getting lines between each balde row 

temp_z = []; temp_th = []; temp_PR = []; 

temp = max(contour_th(:,1))-min(contour_th(:,1)); 

contour_th = contour_th+(-2)*temp; 

for i = 1:repeat 

    temp_z  = [temp_z;  contour_z]; 

    temp_th = [temp_th; contour_th+(i-1)*temp]; 

    temp_PR = [temp_PR; contour_PR]; 

end % for i = 2:repeat 

 

1.41*[min(min(temp_PR)) max(max(temp_PR))]  % correction for gamma 

%contourf(temp_z,temp_th,temp_PR,[.4:.01:1.04]) 

%contourf(temp_z,temp_th,temp_PR,[.4017:.01:1.0563]) % Peak efficiency 

%shading flat 

TRI = delaunay(temp_z,temp_th); 

trisurf(TRI,temp_z,temp_th,temp_PR*1.41); 

shading interp 

view(2) 

 

hold on 

 

axis equal 

grid on 

 

save_mov_avg.m 
% m-function file to save the raw averaged kulite data 

 

function [] = 

save_mov_avg(PR_REF,time_bin_passage,P_PR_bin_passage,Kulite_constants) 

 

% Constants are loaded 
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[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

Datafile = [[0 Kul_ax_cho]; [time_bin_passage(:,1) P_PR_bin_passage]]; 

temp = num2str(PR_REF); 

filename   = [Kulite_Subdir(1:(min(find(Kulite_Subdir=='%'))-1)) '_1_' temp(3:4) 

'.txt']; 

 

% Directory is changed 

old_dir = pwd;                                           % Current directory is 

stored to be returned to later 

if filename(1) == '1' 

    new_dir = [old_dir '\' filename(1:3) '%']; % New directory in which all the 

data is stored is defined 

else 

    new_dir = [old_dir '\' filename(1:2) '%']; % New directory in which all the 

data is stored is defined 

end 

cd(new_dir)                                              % Directory is changed to 

one specified 

 

eval(['save ' filename ' Datafile ' '-ascii ' '-double ' '-tabs ']) 

 

% Directory is changed back 

cd(old_dir)   % Directory is changed back to the old one 

Kulite_figures_rotor_only 
 

% Kulite figures 

 

function [] = Kulite_figures_rotor_only(Kulite_constants) 

 

%clear all 

 

% Kulite data filename 
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%Kulite_constants = 'Kulite_constants_PR_1_32_open';  % Full open throttle without 

honeycomb 

%Kulite_constants = 'Kulite_constants_PR_1_49';  % Full open throttle with 

honeycomb 

%Kulite_constants = 'Kulite_constants_PR_1_51_open'; 

%Kulite_constants = 'Kulite_constants_PR_1_56';  % Full open throttle with 

honeycomb 

%Kulite_constants = 'Kulite_constants_PR_1_60';  % Near 85% efficiency 

%Kulite_constants = 'Kulite_constants_PR_1_66_stall';  % Near stall with honeycomb 

 

%Save_Kulite_Data(Kulite_Subdir,Kulite_Run_no,'load') % Processed data file is 

loaded from raw data directory 

Save_Kulite_Data('load',Kulite_constants) % Processed data file is loaded from raw 

data directory 

load Kulite 

 

% Figure of time signal is plotted 

fig_tach_signal(1,time,tach,Loc) 

 

% Figure of Kulite signals is plotted 

fig_kulite_signal(2,time,P_PR,Loc,Hz,time_err,time_phase,Kulite_constants) 

 

% Repeating plot of time signals 

figure(3);close;figure(3); 

for i = 1:(length(Loc)-1) % Last incomplete cycle left out 

    temp = Loc(i):(Loc(i+1)-1); 

    plot((time(temp,1)-time(temp(1),1)-time_err(i)),tach(temp,1),'-b'); 

    if i == 1 

        hold on 

    end % if i = 1 

end % for i = 1:(length(Loc)-1) 

clear temp 

 

% Single trace plots, as if the data was sampled at a very high rate 

fig_mov_avg(4,time_rev,P_PR_rev,[],Hz,Kulite_constants) 
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% Moving averages plot over entire row 

fig_mov_avg(5,time_bin,P_PR_bin,[],Hz,Kulite_constants) 

 

% Contour plot of passage 

fig_contours(6,contour_z_passage,contour_th_passage,contour_PR_passage,6) 

temp = axis 

axis([-0.5 1 0 2]) 

 

% Contour plot of entire rotor 

%fig_contours(7,contour_z_rotor,contour_th_rotor,contour_PR_rotor,1) 

 

% Plot of all pressures over 1 blade passage 

fig_mov_avg(8,time_passage,P_PR_passage*1.41,[],Hz,Kulite_constants) 

 

% Moving averages plot over single average blade row 

fig_mov_avg(9,time_bin_passage,P_PR_bin_passage,[],Hz,Kulite_constants) 

 

% The raw data is saved into text files for comparison with CFD results 

save_mov_avg(PR_REF,time_bin_passage,P_PR_bin_passage,Kulite_constants) 

 
Avg_Kulite_Data.m 

% Function to find the moving averages over the entire rotor and then over a 

single averages passage 

 

function [P_PR_rev_avg,P_PR_rev_avg_DELTA,time_bin] = 

Avg_Kulite_Data(Kulite_constants,time_rev,P_PR_rev,Hz,fred2) 

 

[fred,fred,fred,Blade_no,Kul_no,fred,Avg_size,fred,fred,fred,fred,fred,fred,fred,f

red,fred,fred,fred,fred,fred] = eval(Kulite_constants); 

 

Avg_time_factor = 1/(max(max(time_rev))*Hz); 

 

if max(max(time_rev)) > Blade_no  % An entire passage 

    bins = 0:1/Avg_size:Blade_no; 
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else % if max(max(time_rev)) > Blade_no 

    bins = 0:1/Avg_size:1; 

end  % if max(max(time_rev)) > Blade_no 

 

% Memory is assigned 

time_bin           = zeros(length(bins),length(Kul_no)); 

P_PR_rev_avg       = time_bin; 

P_PR_rev_avg_DELTA = time_bin; 

 

% Moving average over all the passages 

for j = Kul_no 

    home 

    j 

    % Data bin ends, this method is an attempt to be faster than using the brute 

force 'find' function (save huge amounts of time) 

    Data_i_low  = 1; % Initial bin beggining 

    Data_i_high = 2; % Initial bin end 

     

    tic 

    for i = 1:length(bins) 

        

        % Start and end times of each bin 

        %bin_start = bins(i)-(1/Avg_size)/2;   bin_end   = bins(i)+(1/Avg_size)/2; 

        bin_start = bins(i)-6*(1/Avg_size);   bin_end   = bins(i)+6*(1/Avg_size);   

% Use a bigger bin 

         

        Data_i_low_old = Data_i_low; Data_i_high_old = Data_i_high; % Old bin 

borders to check if polyfit needs to be done (eliminates repeating of calculations) 

         

        % Index of lower side of the bin 

        while time_rev(Data_i_low,j) < bin_start 

            [time_rev(Data_i_low,j) bin_start]; 

            Data_i_low = Data_i_low + 1; 

        end 
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        % Index of high side of the bin 

        while time_rev(Data_i_high,j) < bin_end 

            [time_rev(Data_i_high,j) bin_end]; 

            Data_i_high = Data_i_high + 1; 

        end 

         

        Data_i = (Data_i_low:(Data_i_high-1))'; 

         

        % Check to make sure that a sufficient number of points is available for 

the interpolation 

        if length(Data_i) < 4 

            Data_i = ((Data_i_high-4):(Data_i_high-1))'; 

        end 

 

        % A quadratic moving average is fitted through the data, this smoothes the 

data without clipping the peaks (0 = mean, 1 = linear) 

        if length(unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)) > 2 

            [P,S,MU] = polyfit(time_rev(Data_i,j),P_PR_rev(Data_i,j),2); % Fit is 

only performed if the bin has changed 

             

            [P_PR_rev_avg(i,j) P_PR_rev_avg_DELTA(i,j)] = polyval(P,bins(i),S,MU); 

% Quadratic moving average and 50% certainty interval 

            time_bin(i,j)                               = bins(i);                 

% Time of bin 

        elseif length(unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)) == 2 

            [P,S,MU] = polyfit(time_rev(Data_i,j),P_PR_rev(Data_i,j),1); % Fit is 

only performed if the bin has changed 

             

            [P_PR_rev_avg(i,j) P_PR_rev_avg_DELTA(i,j)] = polyval(P,bins(i),S,MU); 

% Quadratic moving average and 50% certainty interval 

            time_bin(i,j)                               = bins(i);                 

% Time of bin 

             

        else % length(unique_cmtfm(time_rev(Data_i,j),'rows',1e-10)) > 2 

            [P,S,MU] = polyfit(time_rev(Data_i,j),P_PR_rev(Data_i,j),0); % Fit is 

only performed if the bin has changed 
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            [P_PR_rev_avg(i,j) P_PR_rev_avg_DELTA(i,j)] = polyval(P,bins(i),S,MU); 

% Quadratic moving average and 50% certainty interval 

            time_bin(i,j)                               = bins(i);                 

% Time of bin 

        end  % if (max(time_rev(Data_i,j))-min(time_rev(Data_i,j)))>1e-10 

        if fred2 

            [i j] 

            [time_rev(Data_i,j) P_PR_rev(Data_i,j)] 

            unique_cmtfm(time_rev(Data_i,j),'rows',1e-10) 

            P_PR_rev_avg(i,j) 

            pause 

        end 

             

         

    end % for i = 1:size(time_rev,1) 

end % for j = Kul_no 

Rot_Kulite_Data.m 
% m function file to place the long sample into a single short very high speed 

sample 

 

function [time_rev,P_PR_rev,time_passage,P_PR_passage] = 

Rot_Kulite_Data(Kulite_constants,Hz,Loc,time,time_err,time_phase,P_PR) 

 

[fred,fred,fred,Blade_no,Kul_no,fred,fred,fred,fred,fred,fred,fred,fred,fred,fred,

fred,fred,fred,fred,fred] = eval(Kulite_constants); 

 

% Time and pressures from hair plots are stored and sorted too 

time_rev = []; P_PR_rev = []; 

for j = Kul_no 

    temp_time_rev = []; 

    temp_P_PR_rev = []; 

    for i = 1:(length(Loc)-1) % Last incomplete cycle left out 

        temp      = Loc(i):(Loc(i+1)-1);                                      % 

Indicies of elements in the relevant cycle 
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        % A small amount of data is added to the beggining and end of the sample 

to make the moving averages correct (1 blade pitch) 

        temp_nose = temp(1)-round(length(temp)/Blade_no); 

        temp_tail = temp(end) + round(length(temp)/Blade_no); 

        temp2     = temp_nose:temp_tail; % Total data 

         

        temp_time = (time(temp2,1)-time(temp(1),1)-time_err(i)-time_phase(j)); % 

Actual time elements  

        temp_P_PR = P_PR(temp2,j);                                             % 

Actual pressure elements 

        % Time and pressure ratios on a single time axis are stored 

        temp_time_rev = [temp_time_rev; temp_time]; 

        temp_P_PR_rev = [temp_P_PR_rev; temp_P_PR]; 

    end % for i = 1:(length(Loc)-1) 

     

    % Continuous signal 

    time_rev(:,j) = temp_time_rev; clear temp_time_rev; 

    P_PR_rev(:,j) = temp_P_PR_rev; clear temp_P_PR_rev; 

         

    % Signals are now sorted as if they all stream in one after another 

    [time_rev(:,j) I_time_rev] = sort(time_rev(:,j));    % Sorted time signal and 

indicies 

    P_PR_rev(:,j)              = P_PR_rev(I_time_rev,j); % Sorted PR signal using 

the time indicies 

end % for j = Kul_no 

 

% Data grouped over one blade passage 

Passage_times = 0:(1/Hz)/Blade_no:(1/Hz); 

time_passage = []; P_PR_passage = []; 

 

for j = Kul_no 

    temp_time_passage = []; 

    temp_P_PR_passage = []; 
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    % Each blade passage is done 

    for k = 1:Blade_no 

        half_passage_time = (Passage_times(k+1)-Passage_times(k))/10;  % 1/10 a 

passage length to be added to each side of the sample 

        temp              = find(time_rev(:,j)>=(Passage_times(k) - 

half_passage_time) & time_rev(:,j)<(Passage_times(k+1)+half_passage_time)); % Times in 

passage 

        temp_time_passage = [temp_time_passage; time_rev(temp,j)-

Passage_times(k)]; % Times are added to the passage 

        temp_P_PR_passage = [temp_P_PR_passage; P_PR_rev(temp,j)]; 

    end % for k = 1:Blade_no 

     

    % Data is sorted 

    [temp_time_passage I_temp_time_passage] = sort(temp_time_passage); 

    temp_P_PR_passage                       = 

temp_P_PR_passage(I_temp_time_passage); 

    [j length(temp_P_PR_passage)] 

     

    % Data is grouped in seperate Kulite columns but all kept to the same length 

but clipping is actually very very small 

    if length(time_passage) ~= 0 

        min_length   = min([length(time_passage) length(temp_time_passage)]); 

         

        time_passage      = time_passage(1:min_length,:); 

        time_passage(:,j) = temp_time_passage(1:min_length); 

         

        P_PR_passage      = P_PR_passage(1:min_length,:); 

        P_PR_passage(:,j) = temp_P_PR_passage(1:min_length); 

         

    else % first time around 

        time_passage(:,j) = temp_time_passage; 

        P_PR_passage(:,j) = temp_P_PR_passage; 

    end 

end % for j = Kul_no 
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% Time data is non-dimensionalised so that each blade passage is unity long 

time_rev     = Blade_no*Hz*time_rev; % Total revolution 

time_passage = Blade_no*Hz*time_passage;      % One average passage 

fig_mov_avg.m 
% m function file to produce the moving averages figures plot 

 

function [] = 

fig_mov_avg(fig_no,time_rev,P_PR_rev_avg,P_PR_rev_avg_DELTA,Hz,Kulite_constants) 

 

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

figure(fig_no);close;figure(fig_no); 

 

for j = Kul_no 

%for j = 5 

    temp      = find(P_PR_rev_avg(:,j)~=0); 

    temp_time = time_rev(temp,j)+0*Hz*Blade_no;              % Non dimensionalised 

according to the pitch 

    plot(temp_time,P_PR_rev_avg(temp,j),['-' colours(j)]);  

    if j == Kul_no(1) 

        hold on; grid on 

    end % if j == Kul_no(1) 

    if isempty(P_PR_rev_avg_DELTA) 

    else % if isempty(P_PR_rev_avg_DELTA) 

        plot(temp_time,P_PR_rev_avg(temp,j)+P_PR_rev_avg_DELTA(temp,j),[':' 

colours(j)]); 

        plot(temp_time,P_PR_rev_avg(temp,j)-P_PR_rev_avg_DELTA(temp,j),[':' 

colours(j)]); 

    end % if isempty(P_PR_rev_avg_DELTA) 

end % for j = Kul_no 

 

temp = axis; 

if temp(2) < 22 
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    axis([0 1 temp(3) temp(4)]) 

end % if temp(2) < 22 

fig_cont_raw.m 
% m function file to produce the moving averages figures plot from the raw data 

 

function [] = 

fig_contours(fig_no,time_passage,time_angle,P_PR_passage_avg,Hz,Kulite_constants) 

 

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

figure(fig_no);close;figure(fig_no); 

 

% At this point the data is set out as if the Kulites are set in a line, only some 

of the points are needed as the data is so fine 

 

% Data needs to be trimmed, trimming starts and ends at the same points 

for j = Kul_no 

    temp_start(j) = max(find(P_PR_passage_avg(1:round(end/2),j)==0)); 

    temp_end(j)   = 

min(find(P_PR_passage_avg(round(end/2):end,j)==0))+round(length(P_PR_passage_avg(:,j))/2)

-2; 

    %interp1(time_passage(:,j),P_PR_passage_avg(:,j),[time_start time_end]) 

end % for j = Kul_no 

temp_start = max(temp_start(Kul_no)); temp_end   = min(temp_end(Kul_no)); 

 

P_PR_passage_avg = P_PR_passage_avg(temp_start:temp_end,:); 

time_passage     = time_passage(temp_start:temp_end,:); 

 

% Conversion of data from the time to the physical domain 

time_passage_pitch   = 

Blade_no*(time_passage+ones(size(time_passage,1),1)*time_angle)*Hz; % Also offset of 

chord passages is added 

Kul_ax_cho_pitch     = Chord*(Kul_ax_cho/100)/(pi*Diameter/Blade_no);                      

% Scaling 
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Kul_ax_cho_pitch     = ones(length(time_passage_pitch),1)*Kul_ax_cho_pitch;                

% Rectangular grid for plotting contours 

 

temp_x = time_passage_pitch; 

temp_y = Kul_ax_cho_pitch; 

temp_z = P_PR_passage_avg; 

 

Red_fact = Blade_no; % factor by which the number of points in reduced, based on 

the number of blades for simplicity 

 

% Points are reduced by some skilled and cunning coding 

temp = temp_x(1:Red_fact:end,:); temp_x = [temp; temp_x(end,:)]; 

temp = temp_y(1:Red_fact:end,:); temp_y = [temp; temp_y(end,:)]; 

temp = temp_z(1:Red_fact:end,:); temp_z = [temp; temp_z(end,:)]; 

 

temp = 1; 

%for i = -2:3 

for i = 1 

    contour(temp_y(:,Kul_no),temp_x(:,Kul_no)+i,temp_z(:,Kul_no)) 

    if temp 

        hold on; temp = 0; 

    end 

end 

axis equal 

 

% Blade leading and trailing edges are drawn in 

axis([-1 2 0 3]) 

temp   = axis; 

temp_x = [temp(3:4); temp(3:4)]'; 

temp_y = [0 0; Chord*(100/100)/(pi*Diameter/Blade_no) 

Chord*(100/100)/(pi*Diameter/Blade_no)]'; 

plot(temp_y,temp_x) 
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fig_kulite_signal.m 
% m function file to plot the tach signal and Loc points 

 

function [] = 

fig_kulite_signal(fig_no,time,P_PR,Loc,Hz,time_err,time_phase,Kulite_constants) 

 

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

% Repeating plot of kulite signals 

% Also time and pressures from hair plots are stored and sorted too 

figure(fig_no);close;figure(fig_no); 

for j = Kul_no 

    for i = 1:(length(Loc)-1) % Last incomplete cycle left out 

        temp      = Loc(i):(Loc(i+1)-1);                                      % 

Indicies of elements in the relevant cycle 

        temp_time = (time(temp,1)-time(temp(1),1)-time_err(i)+time_phase(j)); % 

Actual time elements  

        temp_P_PR = P_PR(temp,j);                                             % 

Actual pressure elements 

        plot(temp_time,temp_P_PR,['-' colours(j)]); 

        if j == Kul_no(1) 

            %        axis([0 1.4e-4 -.15 .3]) 

            hold on 

            grid on 

        end % if i = 1 

    end % for i = 1:(length(Loc)-1) 

     

    % Mean pressure from Kulite is plotted 

    temp = axis; 

    plot([temp(1) temp(2)],[mean(P_PR(:,j)) mean(P_PR(:,j))],['-' colours(j)]); 

     

    % Offset is plotted 
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    plot([Kul_offset(j)/(Blade_no*Hz) Kul_offset(j)/(Blade_no*Hz)],[0 1],['-' 

colours(j)]) 

end % for j = Kul_no 

clear temp 

 

% Figure is modified 

title(['Kulite ' num2str(Kul_no)]) 

axis auto 

temp = axis; 

axis([0 temp(2) 0.4 1.1]) 

clear temp 

Phase_Kulite_Data.m 
% m-function to calculate the amount the Kulite probes need to be phased in order 

to lie along a blade. 

 

function [time_phase,time_err,time_angle,P_PR] = 

Phase_Kulite_Data(Kulite_constants,Loc,Hz,tach,time,P_PR) 

 

% Kulite constants are loaded 

[fred,fred,fred,Blade_no,Kul_no,fred,fred,Kul_offset,Kul_ax_cho,Blade_th,fred,fred

,fred,fred,fred,fred,fred,fred,fred,fred] = eval(Kulite_constants); 

 

Trig = mean([min(tach) max(tach)]); 

 

% Kulites are now lined up as if they sample along the blade chord, this will 

reduce the amount of signal clipping needed 

%[(Kul_ax_cho*Blade_th/100)/(2*pi*Hz); Kul_offset/(Blade_no*Hz); 

+Kul_offset/(Blade_no*Hz)+(Kul_ax_cho*Blade_th/100)/(2*pi*Hz)] 

 

time_angle = (Kul_ax_cho*Blade_th/100)/(2*pi*Hz); % Time that needs to be trimmed 

from the samples to line them over blade 

time_trim  = Kul_offset/(Blade_no*Hz);            % Time to line the Kulites up 

along a straight line 

time_trim  = time_trim + time_angle;              % Two times are combined to make 

it simpler to work with 

time_trim  = time_trim - min(time_trim); 
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% Kulite signals are trimmed to get all the signals in phase. RPM is assumed 

constant over sample period 

for j = Kul_no 

    temp          = find(time>=time_trim(j)); % Number of points that are before 

the correct sampling time 

    time_phase(j) = [time(temp(1))-time_trim(j)]; % There is a slight error 

associated with the chop off 

    P_PR(:,j)    = [P_PR(temp,j); zeros(length(P_PR(:,j))-(length(temp)),1)]; 

end % for j = Kul_no 

 

% RPM from each trigger pulse is calculated and error according to the deviation 

from the mean RPM is calculated 

time_err        = -[time(Loc)-[time(Loc(1)):(time(Loc(end))-

time(Loc(1)))/(length(Loc)-1):time(Loc(end))]']; 

Save_Kulite_Data.m 
% M-file to save the processed data into the raw data file so that the whole 

process does not need to be repeated 

 

function [] = Save_Kulite_Data(load_or_save,Kulite_constants) 

 

[Kulite_Subdir,Kulite_Run_no,Run_nos,Blade_no,Kul_no,colours,Avg_size,Kul_offset,K

ul_ax_cho,Blade_th,Rho_Hg,g,gam_gas,Diameter,Chord,... 

        pitch_plot_n,pitch_time_n,pitch_tang_n] = eval(Kulite_constants); 

 

if load_or_save == 'save' 

    load Kulite                                              % Data from current 

directory is loaded into the present function 

    old_dir = pwd;                                           % Current directory 

is stored to be returned to later 

    new_dir = [old_dir '\' Kulite_Subdir '\' Kulite_Run_no]; % New directory in 

which all the data is stored is defined 

    cd(new_dir)                                              % Directory is 

changed to one specified 

     

    % Data is saved in the raw data directory 

    save Kulite 
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    cd(old_dir)   % Directory is changed back to the old one 

end % if load_or_save == 'save' 

 

if load_or_save == 'load' 

    old_dir = pwd;                                           % Current directory 

is stored to be returned to later 

    new_dir = [old_dir '\' Kulite_Subdir '\' Kulite_Run_no]; % New directory in 

which all the data is stored is defined 

    cd(new_dir)                                              % Directory is 

changed to one specified 

     

    load Kulite                                              % Data from raw data 

directory is loaded into the present function 

     

    cd(old_dir)                                              % Directory is 

changed back to the old one 

    save Kulite                                              % Data is saved into 

the current directory 

     

end % if load_or_save == 'load' 

Process_Kulite_Data.m 
% m-function file to process the Kulite raw data 

 

function [Loc,Hz,Trig] = Process_Kulite_Data(tach,samples,time); 

 

Trig = mean([min(tach) max(tach)]); 

 

% Location of trigger points and correction to exact trigger timing point 

Loc = find( tach(2:samples)<Trig & tach(1:samples-1)>Trig ); %location of time of 

start of rev 

 

% If Loc (location) if at the beggining of the sample it is discarded 

if Loc(1) < 3 

    Loc = Loc(2:end); 

end 
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% Last trigger is discarded to ensure trailing zeros resulting from probe lining 

up do not effect the calculations. 

Loc = Loc(1:(end-1)); 

 

% Frequency of rotor revolution over the sample period 

Hz = (length(Loc)-1)/(time(Loc(end))-time(Loc(1)));  

unique_cmtfm.m 
function [b,ndx,pos] = unique_cmtfm(a,flag,tol) 

% This also finds points that are within a certain tolerance of each other 

%UNIQUE Set unique. 

%   UNIQUE(A) for the array A returns the same values as in A but 

%   with no repetitions.  A will also be sorted.  A can be a cell 

%   array of strings. 

% 

%   UNIQUE(A,'rows') for the matrix A returns the unique rows of A. 

% 

%   [B,I,J] = UNIQUE(...) also returns index vectors I and J such 

%   that B = A(I) and A = B(J) (or B = A(I,:) and A = B(J,:)). 

%    

%   See also UNION, INTERSECT, SETDIFF, SETXOR, ISMEMBER. 

 

%   Copyright 1984-2000 The MathWorks, Inc.  

%   $Revision: 1.21 $  $Date: 2000/06/01 04:40:02 $ 

 

%   Cell array implementation in @cell/unique.m 

 

if nargin == 2 

    tol = 0; 

end 

 

if nargin==1 | isempty(flag), 

  % Convert matrices and rectangular empties into columns 

  if length(a) ~= prod(size(a)) | (isempty(a) & any(size(a))) 
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     a = a(:); 

  end 

  b = a; 

  ndx = (1:length(a))'; 

  %  [b,ndx] = sort(a); 

  % d indicates the location of matching entries 

  %%d = b((1:end-1)')==b((2:end)'); 

  d = abs(b((1:end-1)')-b((2:end)') < tol); 

  b(find(d)) = []; 

  if nargout==3, % Create position mapping vector 

    pos = zeros(size(a)); 

    pos(ndx) = cumsum([1;~d(:)]); 

  end 

else 

  if ~isstr(flag) | ~strcmp(flag,'rows'), error('Unknown flag.'); end 

  b = a; 

  ndx = (1:size(a,1))'; 

  %  [b,ndx] = sortrows(a); 

  [m,n] = size(a); 

  if m > 1 & n ~= 0 

    % d indicates the location of matching entries 

    %%d = b(1:end-1,:)==b(2:end,:); 

    d = abs(b(1:end-1,:)-b(2:end,:)) < tol; 

  else 

    d = zeros(m-1,n); 

  end 

  d = all(d,2); 

  b(find(d),:) = []; 

  if nargout==3, % Create position mapping vector 

    pos(ndx) = cumsum([1;~d]); 

    pos = pos'; 

  end 

end 
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ndx(find(d)) = []; 

fig_tach_signal.m 
% m function file to plot the tach signal and Loc points 

 

function [] = fig_tach_signal(fig_no,time,tach,Loc) 

 

figure(fig_no);close;figure(fig_no); 

plot(time(:,1),tach(:,1)); hold on; 

plot(time(Loc,1),tach(Loc,1),'+r') 
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APPENDIX C: MATLAB M-FILES (STALL CASES) 

calibrate_data.m 
 
 

% m-file to calibrate the pressure data from volts to a pressure ratio 

% The last measured inlet pressure is used which may not be correct. 

% Look at the upstream static pressure as this may lead to some clues about the 

mass flow rate. 

 

function [PR,PR_rot_stall] = calibrate_data(volts) 

 

% Constants are read in 

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,fred,fred,fred,fred,fred,Kul_ord_r

ot_stall] = ... 

    Kulite_constants_stall_90; 

 

% Kulite calibration data from the run closest to stall is read in 

% This is in the order of the Kulites from the front to the rear 

load Kulite_calibrate_90_stall 

 

% Pressure signal is processed 

for j = 1:length(Kul_order) 

    P_diff(:,j)        = 

polyval(P_dP_v(:,j)',volts(:,Kul_order(j)),S_dP_v(j),MU_dP_v(:,j)); % Differential 

pressure relative to atmosphere 

    P_abs(:,j)         = P_diff(:,j)+P_atmos;                                                  

% Absolute pressure 

    %PR(:,Kul_order(j)) = P_abs(:,j)/(gam_gas*Pt_inf);                                         

% Pressure as a ratio relative to inlet 

    PR(:,Kul_order(j)) = P_abs(:,j)/(1*Pt_inf);                                                

% Pressure as a ratio relative to inlet 

end % for j = 1:length(Kul_order) 

clear P_diff P_abs 
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% Pressure signal for the three transducers that captured the rotating stall speed 

for j = 1:length(Kul_ord_rot_stall) 

    P_diff(:,j)        = 

polyval(P_dP_v_rot_stall(:,j)',volts(:,Kul_ord_rot_stall(j)),... 

        S_dP_v_rot_stall(j),MU_dP_v_rot_stall(:,j));   % Differential pressure 

relative to atmosphere 

    P_abs(:,j)         = P_diff(:,j)+P_atmos;          % Absolute pressure 

    %PR(:,Kul_order(j)) = P_abs(:,j)/(gam_gas*Pt_inf); % Pressure as a ratio 

relative to inlet 

    PR_rot_stall(:,Kul_ord_rot_stall(j)) = P_abs(:,j)/(1*Pt_inf);         % 

Pressure as a ratio relative to inlet 

end % for j = 1:length(Kul_ord_rot_stall) 

 
 
 
countour_data.m 
 

% m-function file to interpolate the Kulite data onto a finer grid and perform the 

required transforms 

% to get a smooth picture of the pressure through the rotor. 

 

function [PR_X,PR_Y,PR_Z] = 

contour_data(PR,time,N_RPM,N_pitch,N_grid,pitch_offset) 

 

% Constants are read in 

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,Kul_ax_cho,Diameter,Chord,shock,SC

F] = Kulite_constants_stall_90; 

 

Blade_no_SCF = ceil(Blade_no/SCF);  % The number of blade pitches needed to 

complete the interpolation. 

 

% The axial Kulite positions are scaled to the size of the pitch 

Cho_pit    = Chord/(pi*Diameter/Blade_no); % Axial chord / Physical size of blade 

pitch 

Kul_ax_pit = Cho_pit*(Kul_ax_cho/100);     % Non-dimensional Kulite axial chord 

relative to pitch length 

 

% Underlying Kulite grid is set up 
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for j = 1:length(Kul_order) 

    K_Z(:,j) = PR(:,Kul_order(j));                % Pressure ratio grid 

    K_X(:,j) = Kul_ax_pit(j)*ones(size(K_Z(:,j))); % Axial chord grid 

    K_Y(:,j) = time(:,Kul_order(j));              % Tangential grid 

end % for j = 1:length(Kul_order) 

 

% Refined grid over the required rotation is set up 

PR_X = [Kul_ax_pit(1) Kul_ax_pit(end)];                           % X or axial 

coordinates 

PR_X = PR_X(1):(PR_X(2)-PR_X(1))/(N_grid-1):PR_X(2); 

PR_X = ones(Blade_no_SCF*N_grid,1)*PR_X; 

 

% Y or tangential coordinates at desired rotation 

PR_Y = N_pitch+[(N_RPM-1)*Blade_no ((N_RPM-1)*Blade_no+Blade_no_SCF)]; 

PR_Y = (PR_Y(1):(PR_Y(2)-PR_Y(1))/(Blade_no_SCF*N_grid-1):PR_Y(2))'; 

PR_Y = PR_Y*ones(1,N_grid); 

 

% This is the first interpolation with the blades in their normal positon 

PR_Z_passage = griddata(K_X,K_Y,K_Z,PR_X,PR_Y,'cubic'); 

 

% This is the second interpolation with the grid skewed axially along the blades 

% Both the interpolation and underlying grid are skewed and then the interpolation 

grid is skewed back 

 

% Arc of blade as fraction of pitch and non-dimensionalised wrt to pitch 

temp = ((Blade_th)/(2*pi/Blade_no))/Cho_pit; 

 

% Grids are skewed 

PR_Y_blade = PR_Y - temp*PR_X; 

K_Y_blade  = K_Y  - temp*K_X; 

 

% Interpolation along the blade is performed 

PR_Z_blade = griddata(K_X,K_Y_blade,K_Z,PR_X,PR_Y_blade,'cubic'); 
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% This is the 3rd part of the interpolation along the bow shock upstream of the 

rotor 

PR_Y_shock = PR_Y + PR_X*tan(shock); 

K_Y_shock  = K_Y  + K_X*tan(shock); 

 

% Interpolation along the shock is performed 

PR_Z_shock = griddata(K_X,K_Y_shock,K_Z,PR_X,PR_Y_shock,'cubic'); 

 

% Different parts of the three interpolations are now pieced together 

PR_Z = PR_Z_shock; 

 

% Upstream of rotor 

temp         = find(PR_X(1,:) >= 0); 

 

% A cos function is used for the combining of the two sets 

relax = PR_Y_blade-PR_Y_blade(1,1)-pitch_offset; relax = cos(pi*(relax)).^4; 

 

% Within the rotor row 

temp         = find(PR_X(1,:) >= 0); 

PR_Z(:,temp) = relax(:,temp).*PR_Z_blade(:,temp) + (1-

relax(:,temp)).*PR_Z_passage(:,temp); 

 

% Downstream of the rotor the normal passage interpolation is used but this is 

probably not 

% physically realistic as a wake does exist 

%temp         = find(PR_X(1,:) >= Cho_pit); 

%PR_Z(:,temp) = PR_Z_blade(:,temp); 

 

%figure(6); close; figure(6) 

%contourf(PR_X,PR_Y,relax) 

 

count = 1; 

for i = PR_Y(1,1):(PR_Y(1,1)+Blade_no) 
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    temp_1 = find(floor(PR_Y(:,1))==i);              % Data points that fall in 

the local pitch set 

 

    % This is where the stall cell is at the end of the pitch 

    temp_2  = i+(1-SCF)*count;                          % Pitch that the stall 

cell data should come from 

     

    temp_3  = find(floor(PR_Y(:,1)) == floor(temp_2));  % Data points from leading 

pitch set 

    temp_4  = temp_3+length(temp_3);                    % Data points from 

trailing pitch set 

     

    fract_1 = 1-(temp_2-floor(temp_2));                 % Fraction from the 

leading pitch set 

     

    % This is where the stall cell is at the beggining of the pitch 

    temp_5  = i+(1-SCF)*(count-1);                      % Pitch that the stall 

cell data should come from 

     

    temp_6  = find(floor(PR_Y(:,1)) == floor(temp_5));  % Data points from leading 

pitch set 

    temp_7  = temp_6+length(temp_6);                    % Data points from 

trailing pitch set 

     

    fract_2 = 1-(temp_5-floor(temp_5));                 % Fraction from the 

leading pitch set 

     

    % Linear distribution between leading and trailing edge 

    spread = (0:1/max([1 (length(temp_1)-1)]):1)'*ones(1,length(PR_Y(1,:))); 

     

    if size(temp_1) == size(temp_3) 

        PR_Z(temp_1,:) = spread.*(fract_1*PR_Z(temp_3,:) + (1-

fract_1)*PR_Z(temp_4,:)) +...% Trailing edge of pitch 

            (1-spread).*(fract_2*PR_Z(temp_6,:) + (1-fract_2)*PR_Z(temp_7,:)); % 

Leading edge of pitch cell 

    end 
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    count = count+1; % Internal counter to tell which cell is being modified in 

the local set 

     

end % for i = PR_Y(1,1) 

 

% Grid is trimmed to one revolution 

temp  = (find(PR_Y(:,1) <= ceil(Blade_no + min(PR_Y(:,1)) )) ); 

temp  = [temp; max(temp)+1 ]; 

PR_X = PR_X(temp,:); 

PR_Y = PR_Y(temp,:); 

PR_Z = PR_Z(temp,:); 

 
Kulite_constants_stall_90.m 
 

% m-function file to store the Kulite constants 

 

function 

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,Kul_ax_cho,Diameter,Chord,shock,SCF,Kul_o

rd_rot_stall] = ... 

    Kulite_constants_stall_100() 

 

% In one of the tests the Kulites were mixed up so this step was introduced in 

case it happens again 

Kul_order  = [1 9 2 3 4 5 6]; 

 

% These are the Kulites arranged to be able to capture the speed of the rotating 

stall 

Kul_ord_rot_stall = [7 8 9]; 

 

% Amount of Kulite offset in order from 1 to 6 in terms of number of blades 

(Kulites at 360/Blade_num apart) 

Kul_offset = [4 5 3 2 1 0 4];      

 

% Kulite offsets and plotting of results along a blade chord 
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Kul_ax_cho = [-80.44 mean([-80.44 -17.62]) -17.62 8.27 34.17 60.06 144.72]+17.62; 

% Kulite axial positions as a percentage of axial chord starting at the blade leading 

edge 

                                   

Blade_no   = 22;                  % Number of rotor blades 

%Blade_th   = 19.1;               % Angle in theta coordinates from blade leading 

edge to trailing edge 

Blade_th   = 20.;                 % Angle in theta coordinates from blade leading 

edge to trailing edge 

Blade_th   = pi*Blade_th/180;     % Converted to radians 

 

% Physical constants 

gam_gas = 1.4;   % Gas constant 

 

% Rotor dimensions 

Diameter = 11;      % Rotor diameter in inches 

Chord    = 0.88824; % Axial Chord in inches 

 

% The angle of the shock in radians relative to axial 

shock = 10; 

shock = shock*(pi/180); 

 

% Stall cell frequency as a fraction of the RPM 

%SCF = 0.82;  % Pre-stall 

%SCF = 0.82;  % 1 Rev 

%SCF = 0.82;  % 2 Rev 

%SCF = 0.75;  % 3 Rev 

%SCF = 0.70;  % 4 Rev 

%SCF = 0.70;  % 5 Rev 

%SCF = 0.66;  % 6 Rev 

SCF = 0.66;  % 50 Rev 

%Stall90 
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Load_data_90.m 
 

% 90% speed 

% M-file to pull in stall data and plot it out 

 

clear all 

close all 

pack 

 

% Constants 

RPM_design = 27085;         % Design RPM in RPM 

RPM_Hz     = RPM_design/60; % Design RPM in Hz 

N_mov_avg  = 5;             % Number of times the moving average is performed 

 

% Stall data is loaded 

%Raw_data = dlmread('Dx2004_0914_1001_90_stall.csv',',','A187500..M200000'); % 

Stall cell inception figure 

Raw_data = dlmread('Dx2006_0403_1143.csv',',','A203000..M219000'); % Contour plot 

data 

 

% The data is seperated and initial processing is done 

[time,volts,tach,Loc,RPM,time_err] = Process_data(Raw_data,N_mov_avg); 

 

% Data needs to be normalised, each blade pitch is equal to unity 

[time] = time_to_pitch(time,Loc,time_err); 

 

% Data needs to be phased to correct for Kulite offset, this function puts them 

all in a straight line 

% The time vector becomes a matrix 

[time,volts] = phase_data(time,volts); 

%[time] = phase_data(time,volts); 

 

% Data needs to be calibrated to pressure 

[PR,PR_rot_stall] = calibrate_data(volts); 
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% Data is interpolated from the Kulites onto a finer grid 

%N_RPM   = 3;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 5;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 6;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 7;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 9;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 10;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 12;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 13;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 15;  % Rotation number that the data will be interpolated from, INTEGER 

%N_RPM   = 16;  % Rotation number that the data will be interpolated from, INTEGER 

N_RPM   = 50;  % Rotation number that the data will be interpolated from, INTEGER 

 

%N_pitch = 0;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = -5;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = 0;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = 7;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = -7;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = 2;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = -9;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = 2;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = -10;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

%N_pitch = 0;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 

N_pitch = 0;   % Blade pitch number, basically the fraction of rotation that is 

needed, INTEGER 
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pitch_offset = 0.1; % Amount of offset to use to ensure that the interpolation 

function lies along the blade, 0-1 REAL 

N_grid  = 100; % Number of grid points in each blade pitch, INTEGER 

 

% The RPM is plotted 

Plot_rpm(4,RPM,RPM_Hz) 

 

[PR_X,PR_Y,PR_Z] = contour_data(PR,time,N_RPM,N_pitch,N_grid,pitch_offset); 

 

% A particular column of the data is plotted 

% Upstream probes 

offset = -60; % Offset to start count at zero 

offset = [offset offset-7-(1/3) offset-12-(2/3)]; % offsets to get same blades 

passing at the same time 

Plot_data(1,1,'k',offset(1)+time,PR_rot_stall,Loc,time_err,0,7,1,3) 

Plot_data(1,0,'b',offset(2)+time,PR_rot_stall,Loc,time_err,0,8,2,3) 

Plot_data(1,0,'r',offset(3)+time(:,7)*ones(1,size(time,2)),PR_rot_stall,Loc,time_e

rr,0,9,3,3) % The time offset is not needed 

 

% Blade passage probes 

Plot_data(2,1,'b',time,volts,Loc,time_err,0,2,0,0) 

%Plot_data(2,0,'g',Raw_data,-1,2+1) 

%Plot_data(2,0,'r',Raw_data,-2,2+2) 

%Plot_data(2,0,'c',Raw_data,-3,2+3) 

Plot_data(2,0,'m',time,volts,Loc,time_err,-0.75,6,0,0) 

 

% Data is overlaid to see if the phasing is correct 

Plot_data(3,1,'b',time,PR,Loc,time_err,0,1,0,0) 

Plot_data(3,0,'g',time,PR,Loc,time_err,0,9,0,0) 

Plot_data(3,0,'r',time,PR,Loc,time_err,0,2,0,0) 

Plot_data(3,0,'c',time,PR,Loc,time_err,0,3,0,0) 

Plot_data(3,0,'m',time,PR,Loc,time_err,0,4,0,0) 

Plot_data(3,0,'y',time,PR,Loc,time_err,0,5,0,0) 
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Plot_data(3,0,'k',time,PR,Loc,time_err,0,6,0,0) 

 

% A contour plot is plotted and a file outputed 

figure(5); close; figure(5) 

[min(min(PR_Z)) max(max(PR_Z))] 

contourf(PR_X,PR_Y,PR_Z,[0.4752:(1.4619-0.4752)/35:1.4619]) 

%contourf(PR_X,PR_Y,PR_Z,35) 

shading flat 

axis equal 

temp = axis; 

axis([-.5 1 temp(3) temp(4)]) 

 

% Single blade passage is plotted 

figure(7); close; figure(7) 

temp_X = PR_X(1:2*floor(size(PR_X,1)/22),:);  

temp_Y = PR_Y(1:2*floor(size(PR_X,1)/22),:);  

temp_Z = PR_Z(1:2*floor(size(PR_X,1)/22),:); 

contourf(temp_X,temp_Y,temp_Z,75) 

shading flat 

axis equal 

 

%print fred -depsc2 

 
 
mov_avg.m 
 

% m-function file to calculate the moving averages at a particular point 

% x,y data 

% points ahead and behind central one ie 0 return same data, 1 = 3 points, 2 = 5 

points 

% n, polynomial to fit, 0 = average, 1 = linear, 2 = parabolic etc 

 

function [y_avg] = mov_avg(x,y,points,N) 

 

y_avg = y; 
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x_poly = zeros(1,(2*points+1)); 

y_poly = zeros(1,(2*points+1)); 

 

for i = (points+1):((length(x)-points)-1) 

    for j = -points:points 

        x_poly(j+points+1) = x(i+j); 

        y_poly(j+points+1) = y(i+j); 

    end 

    y_avg(i) = mean([max(y_poly) min(y_poly)]); % Most effective method, just take 

the mean of the max and min 

end 

 

% Leading points 

if points > 0 

    % Leading few points 

    for j = 1:(2*points+1) 

        y_poly(j) = y(j); 

    end 

     

    % Leading moving average 

    for i = 1:points 

        y_avg(i)  = mean([max(y_poly) min(y_poly)]); 

    end % for i = 1:points 

     

    % Trailing few points 

    for j = (2*points+1):-1:1 

        y_poly(j) = y(length(x)-j+1); 

    end 

     

    % Trailing moving average 

    for i = (length(x)-points):length(x) 

        y_avg(i)  = mean([max(y_poly) min(y_poly)]); 
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    end % for i = 1:points 

end % if points > 0 

 
phase_data.m 

% m-function file to phase the Kulite data into a single line 

 

function[time,volts] = phase_data(time,volts); 

 

% Constants are read in 

[Kul_order,Kul_offset,Blade_no,Blade_th,gam_gas,Kul_ax_cho,Diameter,Chord,shock,SC

F] = Kulite_constants_stall_90; 

 

% A matrix of the time vector is made 

time = time*ones(1,size(volts,2)); 

 

% Offset to ensure that each Kulite gives data from the same blade 

for i = 1:length(Kul_order) 

    time(:,Kul_order(i)) = time(:,Kul_order(i))-Kul_offset(i); 

end % for i = Kul_order 

 

% The stall cell moves slower than the RPM. 

M   = Blade_no - (1/SCF)*Blade_no; % Number of blade passages that stall cell 

moves per revolution 

M_N = M/Blade_no;              % Fraction of a blade that the stall cell moves per 

pitch 

 

% A different offset is needed to make the data from the same position within the 

stall cell 

for i = 1:length(Kul_order) 

    % Fraction of offset of stall cell 

    temp  = M_N*Kul_offset(i); 

    fract = temp-floor(temp); % Fraction between blades 

    %[time(1,Kul_order(i)) time(end,Kul_order(i))] 

    %[i Kul_offset(i) temp floor(temp) temp-floor(temp) ceil(temp)] 

     



86 

    % Temporary floor and ceiling time 

    time_floor  = time(:,Kul_order(i))+floor(temp); 

    time_ceil   = time(:,Kul_order(i))+ceil(temp); 

     

    % Intepolation of time before the stall cell 

    %I               =find(time(:,Kul_order(i))>time(1,Kul_order(i))+ceil(temp));     

     

    I               = 

find(time(:,Kul_order(i))<(time(end,Kul_order(i))+floor(temp))); % There is an offset 

    volts_floor        = zeros(size(time(:,Kul_order(i)))); 

    volts_floor(I(end):end) = volts(I(end):end,Kul_order(i));  

    volts_floor(1:I(end))   = 

interp1(time_floor,volts(:,Kul_order(i)),time(1:I(end),Kul_order(i)),'cubic'); 

     

    % Intepolation of time after the stall cell 

    volts_ceil        = zeros(size(time(:,Kul_order(i)))); 

    volts_ceil        = volts(:,Kul_order(i));  

    volts_ceil(1:I(end)) = 

interp1(time_ceil,volts(:,Kul_order(i)),time(1:I(end),Kul_order(i)),'cubic'); 

     

    % Final interpolation trying to match the speed of the stall cell 

    %I = find(time(:,Kul_order)>time(1,Kul_order(i))+ceil(temp)); 

    I = find(time(:,Kul_order(i))<(time(end,Kul_order(i))+floor(temp))); % There 

is an offset 

    volts(1:I(end),Kul_order(i)) = fract*volts_floor(1:I(end)) + (1-

fract)*volts_ceil(1:I(end)); %Thought to be correct 

    %volts(1:I(end),Kul_order(i)) = (1-fract)*volts_floor(1:I(end)) + 

(fract)*volts_ceil(1:I(end)); % Cowboy thing again 

 

    if 0 

        figure(6); close; figure(6); 

        %plot(time_floor,volts(:,Kul_order(i)),'r') 

        plot(time(:,Kul_order(i)),volts_floor,'r') 

        hold on 

        %plot(time_ceil,volts(:,Kul_order(i)),'g') 
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        plot(time(:,Kul_order(i)),volts_ceil,'g') 

        plot(time(:,Kul_order(i)),volts(:,Kul_order(i)),'b') 

    end % if 0 

     

end % for i = 1:length(Kul_order) 

 
Plot_data.m 

% m-file to plot a certain time part of the stall data file 

 

function [fred] = 

Plot_data(fig_no,bool_new_fig,fig_colour,time,volts,Loc,time_err,offset,Data_column,... 

    subplot_no,subplot_tot) 

 

% Time period is defined 

time_start = time(1,Data_column);   % Start time of sample 

time_end   = time(end,Data_column); % End time of sample 

%time_start = 16.3            % User defined start time 

%time_end   = 17              % User defined end time 

 

% Time period entry points are found 

temp = find(time(:,Data_column)>time_start & time(:,Data_column)<time_end); 

 

% figure is plotted and trimmed 

if bool_new_fig 

    figure(fig_no); close; figure(fig_no); 

else 

    figure(fig_no); 

end 

 

if subplot_no ~= 0 

    subplot(subplot_tot,1,subplot_no) 

end % if subplot_no ~= 0 

 

plot(time(temp,Data_column),volts(temp,Data_column)+offset,fig_colour) 
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hold on 

xlabel('Time [s]'); ylabel('Raw Voltage signal [V]') 

grid on 

 

temp = axis; 

h = line([time(Loc(1:end),Data_column) 

time(Loc(1:end),Data_column)]',(ones(size(Loc(1:end)))*([temp(3) temp(4)]))'); 

set(h,'Color',[0 0 0]);  % Makes colour of line black 

h = line([time(Loc(2:end),Data_column)-time_err time(Loc(2:end),Data_column)-

time_err]',(ones(size(Loc(2:end)))*([temp(3) temp(4)]))'); 

set(h,'Color',[0 0 0]);  % Makes colour of line black 

 

%axis([temp(1) temp(2) 0 0.7]) 

 

if subplot_no ~= 0 

    axis([0 120 0.5 1.3]) 

end % if subplot_no ~= 0 

 
Plot_rpm.m 

% mfile to plot RPM through the stall 

 

function [fred] = Plot_rpm(fig_no,RPM,RPM_Hz) 

 

%temp = find(Raw_data(:,9)>0); 

 

figure(fig_no);% close; figure(fig_no); 

%plot(Raw_data(temp,1),Raw_data(temp,9)) 

%plot(RPM(:,1),RPM(:,2),'k'); 

plot(1:length(RPM(:,1)),RPM(:,2)/RPM_Hz,'k'); 

hold on 

xlabel('Revolutions'); ylabel('rpm'); title('RPM through stall at 100% speed') 
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Process_data.m 
 

% m function file to organise the data of the Raw data file 

 

function [time,volts,tach,Loc,Hz,time_err] = Process_data(Raw_data,N_mov_avg) 

 

% Data is sorted into simpler to use groups 

time    = Raw_data(:,1);    % Kulite time data 

volts   = Raw_data(:,2:10); % Kulite raw voltage data 

tach    = Raw_data(:,12);   % Kulite trigger voltage 

samples = length(time);     % Number of samples 

 

% Trigger level is calculated 

Trig = mean([min(tach) max(tach)]); 

 

% Location of trigger points and correction to exact trigger timing point 

Loc = find( tach(2:samples)<Trig & tach(1:samples-1)>Trig ); %location of time of 

start of rev 

Hz = (length(Loc)-1)/(time(Loc(end))-time(Loc(1))); % Frequency of rotor 

revolution over the sample period 

 

% If Loc (location) if at the beggining of the sample it is discarded 

if Loc(1) < 3 

    Loc = Loc(2:end); 

end 

 

% Last trigger is discarded to ensure trailing zeros resulting from probe lining 

up do not effect the calculations. 

Loc = Loc(1:(end-1)); 

 

% Timing correction to ensure that each sample begins at the correct time 

d_time_Loc(:,1) = time(Loc+1)-time(Loc);  % Time interval between trigger and next 

time interval 
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d_tach_Loc(:,1) = tach(Loc+1)-tach(Loc);  % Ramp slope between trigger and next 

time interval 

m               = d_tach_Loc./d_time_Loc; % Slope 

c               = tach(Loc);              % Intercept 

time_err        = (Trig - c)./m;          % Error in trigger timing 

 

% Error in trigger timing is converted to be directly subtracted from the period 

time_err = (time_err(2:end)-time_err(1:end-1)); 

 

% The RPM based on each trigger is calculated 

Hz = time(Loc(2:end)) - time(Loc(1:end-1)); 

Hz = Hz + time_err; 

%RPM = 60./RPM; 

 

Hz_old = Hz; 

Hz     = [time(Loc(2:end)) Hz]; % First column is time signal and the second is 

the Hz 

 

% Data is moving averaged a few times to remove the wiggle 

for i = 1:N_mov_avg 

    [Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1); 

end % for i = 1:,N_mov_avg 

%[Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1); 

%[Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1); 

%[Hz(:,2)] = mov_avg(Hz(:,1),Hz(:,2),1,1); 

 

% This is to correct the RPM 

time_err = time_err + (Hz(:,2)-Hz_old); 

%[1./Hz_old 1./Hz(:,2) 1./(time(Loc(2:end))-time(Loc(1:end-1))+time_err)] 

 

% Data is converted to Hz or RPM 

Hz(:,2) = 1./Hz(:,2); 
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Time_to_pitch.m 

% m-function file to normailise the Kulite data from time to physical domain 

% each blade pitch is considered to be unity 

 

function [time_norm] = time_to_pitch(time,Loc,time_err) 

 

[fred,fred,Blade_no,fred] = Kulite_constants_stall_90; 

 

% Tempory time variable vs pitch is set up as the trigger position is known 

temp_time  = [time(Loc(1)); time(Loc(2:end))-time_err]; 

temp_pitch = Blade_no*(0:(length(temp_time)-1))'; 

 

% Interpolation along the time is performed 

time_norm = interp1(temp_time,temp_pitch,time,'cubic','extrap'); 
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