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ABSTRACT

In order to continue to improve the usefulness of robots, it is becoming increasingly

important to have them act as autonomous agents. A significant step toward this object is

autonomous motion planning. This research was conducted as part of a broader effort to

empower Yamabico-1 1, a mobile robot under development at the Naval Postgraduate

School, with ability to move autonomously. We believe that this problem is best attacked

in layers.

This thesis is our proposal for the initial layer. Given a robot's current location and

its goal location, we use the homotopy relation to reduce the infinite set of path choices into

a more manageable and smaller set of path classes. Specifically, we solve the problem of

how to enable a robot to autonomously identify and label these classes of paths.

We begin by decomposing the robot's operating environment into a collection of

convex pieces called cells. The cells are transformed into a graph by adjacency. We show

that every simple path on the graph corresponds to a unique simple homotopy class in the

robot's world. We then search the graph to give each class a symbolic representation which

also provides intermediate path planning clues. Subsequent layers can use these clues to

form a more detailed plan.

We implement the cell decomposition, graph transformation, and path class

labeling as C programs, and preprocess them on a Unix workstation. The resulting data

structures are then compiled and linked into the robot's kernel. All implementation has

been integrated into the model-based mobile robot language (mml) used by Yamabico-1 1.
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I. INTRODUCTION

In order to improve the usefulness of robots, it becomes increasingly important to

have them act as autonomous agents. A significant subproblem of this objective is motion

planning. Autonomous motion planning is a broad area including a diverse set of topics.

Among these is the problem of enabling a mobile vehicle to relocate itself from one

configuration to another while avoiding obstacles along its path.

This research was conducted as part of a broader effort to empower Yamabico- 1 1

,

a mobile robot under development by students and faculty of the Naval Postgraduate

School, with the ability to move autonomously. We propose to simplify this difficult

problem by attacking it in layers. The highest and most abstract layer partitions the set of

paths into equivalence classes. A specific class is then selected and used by lower layers

where the detailed motion plan is formed. The lowest and final layer interprets the detailed

motion plan into specific control instructions for the mobile robot, where movement is

realized.

A. PROBLEM STATEMENT

Given an initial and goal configuration for a mobile robot, we want to partition the

infinite set of path choices into a more manageable and general set of path classes. Each

class must be uniquely and unambiguously identified in a manner consistent with its

topology. Additionally, the class names must provide useful motion planning information

for lower levels. Finally, the model used to represent the robot's world and the set of path

classes must be integrated into the global motion planner and the model-based mobile robot

language used by Yamabico.

B. ASSUMPTIONS

The first assumption is that the robot will be working in a familiar environment with

complete knowledge of the topology. It will not, however, use external references to guide

its motion, such as following marked or predescribed paths. We also assume that the robot



has perfect knowledge of its configuration (location and orientation). This is accomplished

through odometry control, and if necessary, self-correction using internal sensors.

All work will be done in two dimensions. We do not assume that the robot or its

operating environment are restricted to two dimensions, but we do assume that the problem

can be solved by considering the projection of the robot and its environment onto the

XY-plane.

The last assumption is that some of the work can be preprocessed. The

preprocessing includes representing the operating environment, representing the path

classes, and building the model used by the upper layers of the motion planning process.

This preprocessing frees the robot to perform the real-time calculations necessary to realize

motion and operate its internal sensors.

C. APPROACH

We begin by decomposing the world into a collection of path-connected convex

cells whose union is exactly the robot's free space. Information about the connectivity of

the cells is transformed into a graph which is searched to find path classes. The global

motion planner selects a class, and then uses the graph to determine the sequence of cells

through which the robot must move. This approach simplifies the task of motion planning

in two areas. First, by attacking the problem in layers, we decrease the number of choices

that must be considered by the global motion planner. Second, since the robot will move

from convex cell to convex cell, the computation required for intracell motion planning

should be reduced. This frees the processor for lower level tasks.

D. YAMABICO-11

Although the theory and essence of this work applies to autonomous motion

planning for any mobile robot, it will first be implemented on Yamabico-1 1. Yamabico-1

1

has a single axis with two fixed wheels which are independently driven by separate motors.

Additionally, it has four shock absorbing, free-moving, caster wheels for stability. Control

of the robot is accomplished by a single SPARC processor with 16 Mbytes of main



memory. Twelve 40KHz ultrasonic senors are used by the robot to verify odometry and

avoid unexpected obstacles.

Yamabico is currently located in the Computer Science Robotics Laboratory on the

fifth floor of Spanagel Hall at the Naval Postgraduate School. Spanagel Hall is a typical

academic building. The fifth floor consists of a long hallway with classrooms and offices

to either side, and a large computer lab at the east end. Most of the testing is conducted in

the hallway and foyer immediately outside of the lab. The hallway has no indigenous

obstacles, so wooden boxes are temporarily placed wherever an obstacle is desired.

All implementation programs are written in ANSI C and compiled using the GNU

Project C Compiler. User access to implementation programs is provided through the

model-based mobile robot language (mml), a high level language developed by students at

the Naval Postgraduate School. Specific details of the hardware and software systems of

Yamabico can be found in [Yama93] and [Yama94].

E. THESIS ORGANIZATION

The next chapter provides formal definitions used throughout the thesis. It

introduces the reader to some of the basic elements of topology, and describes the primary

tool we will use in the initial path planning layer. Chapter III is a discussion of two

properties of a robot's operating environment that have served as the basis for previous

motion planning methods. The chapter includes an introduction to the common data

structures and recent research of both properties. Although these properties are not strictly

related, we combine their discussion in this chapter to separate them from our proposal.

Chapter IV is a detailed presentation of our proposed method. Here we present the

underlying idea and provide examples of how we use the connectivity of the robot's world

to reduce the path planning problem. We also talk about a potential weakness in our plan

and offer two solutions. In Chapter V we describe the implementation of this method on

Yamabico- 1 1, to include the geometric model, data structures and algorithms. We end the



thesis by analyzing the method we have chosen, and by mentioning additional and

supplementary topics of research.



D. TOPOLOGY

Before we discuss the issue of motion planning, we need to give some precise

meaning to the concepts that provide the basis for our proposal. In accordance with the

previously stated assumptions, we will restrict the discussion in this chapter to the

Euclidean plane. Additionally, we consider a robot to be a point unless explicitly stated

otherwise. This chapter is not a complete lesson in topology, but rather a formal

introduction of those definitions needed later. The reader familiar with this area can skip

the chapter without loss of continuity.

A. TOPOLOGICAL SPACE

1. Definitions

From [Cr78] we take the standard definition of a topology for a set X as a family T

of subsets of X satisfying the following properties:

1

.

The set X and the empty set are in T.

2. The union of any family of members of T is in T

3. The intersection of any finite family of members of T is in T

A topological space is a pair (X,7) where X is a set ana 7" is a topology for X. If there

is no ambiguity, the topological space can be referred to simply as X. A space X is

connected if it is not the union of two disjoint, nonempty open sets. Intuitively, this means

that X can best be viewed as "one piece", and is in some sense indecomposable. A related

idea, and one which is more suitable to our purposes is that ofpath connectedness

[GaGr83].

Let X be a topological space, and let x and Xj e X. A path n in X from x to xj is

a continuous function/ [0,1] —> X such that^O) = x and^ 1) = xj. We say that X is path

connected if for every pair of points x and x
}
in X, there exists a path between them.

Additionally, If a space is path connected, then it is also connected [GaGr83].



Two characterizations of sets which are needed for later definitions are whether a

set is open or closed, and whether a set is bounded or unbounded. A set is closed if and only

if it contains its boundary. Additionally, the complement of a closed set is open which

implies that a set is open if and only if it contains none of its boundary. Since a set may

contain only a portion of its boundary, it may be neither open nor closed. We give the

definition of a bounded set by using the intuitive notion of distance. A set is bounded if the

distance between any two of its members is finite. A set that is not bounded is said to be

unbounded. [Ki89]

Finally, we introduce the concept of a hole. The Jordan Curve Theorem states that

a simple closed curve C in the Euclidean plane separates the plane into two open connected

sets with C as their common boundary. Exactly one of these sets is bounded. [Cr78] We

define a hole to be one of the open connected sets. We say that the hole is normal if it is

bounded, and inverted if it is unbounded. Sometimes it may be useful to consider the hole

along with its boundary, but generally we refer to them separately.

2. The Robot's Space

For this research, we consider the robot's space to be the Euclidean plane with

holes. We allow an unlimited, but finite, number of normal holes, which are obstacles for

the robot. We also allow one inverted hole, which if present, defines the robot's outer

limits. We assume that the boundary of all holes are simple polygons. Furthermore, we

consider the boundary of a hole to be directed curve which when traversed, puts the hole to

the left. This directed boundary naturally defines the neighbors of a vertex to be the next

vertex, and the previous vertex. The free space, or the robot's operating space, is the

complement of the union of all the holes. We call the free space, together with the set of

holes, the robot's world.

We also consider paths to be directed curves with natural direction from/(0) to/(l).

We say that/(0) and/(l) are the endpoints, and that the path joins them. We refer to/(0) as

the start or initial position, and/( 1 ) as the goal. Figure 1 , on page 7, is an example of a world



with two normal holes hj and h2 \ one inverted hole h3 ; and three paths Ttj, 7i2 , and 7t3 from

StoG.

Figure 1 : Topological Space with 3 holes and 3 paths

B. HOMOTOPY

It should be clear that, in any connected space, the set of paths between any two

points is infinite. In order to simplify the problem of choosing a path we want to group paths

that are, in some sense, alike. Before we give a formal definition, we present an intuitive

idea of what makes two paths similar. In Figure 1 , we see that paths TCj and xc2 are somewhat

similar in that they both go to the right of h 2 and to the left of h\. Another observation is

that there is no hole "between" them. Notice, however, that h2 is between paths Ttj and 7i3 .

Based on these observations we might conclude that %\ and 7t2 should be grouped together,

and 713 should be in a group by itself. The relation of homotopy provides a formal method

for making these groupings.



Consider two paths in the robot's world,/ [0,1] and g:[0,l], with common

endpoints. We say that/is homotopic to g, written/=g, provided there is a continuous

function //:[0,l]x[0,l]—»X which satisfies these equations:

ff(tf)) = /(t)Vf€[0,l] (Eq2.1)

//(U) = g(t)V/e[0,l] (Eq2.2)

H(0s)=f[0) = g(0) (Eq2.3)

tf(U) = /U) = *(D (Eq2.4)

In other words, H is a function that allows us to continuously deform one path into the other

without crossing an obstacle. Furthermore, homotopy defines an equivalence relation on

the set of paths which partitions them into a collection of homotopy classes. [Cr78] We will

use this relation to reduce the problem of path selection by considering a finite set of

homotopy classes rather than an infinite set of paths.



ni. PROXIMITY AND VISIBILITY

Two fundamental properties of the robot's operating environment are proximity

and visibility. Each has been used as a basis for previous path planning methods. In this

chapter we will introduce and discuss the common data structures used to capture these

properties, and we will briefly present some of the algorithms used to build and employ

them.

A. PROXIMITY

Proximity tells us the obstacle, or portion of an obstacle, to which the robot is

closest. This is important locally when trying to avoid obstacles since the closest one

presents the most immediate danger. However, proximity information is more commonly

used globally when planning for obstacle-avoiding paths. In this section we will focus on

the global aspects of proximity and how they can be used for autonomous path planning.

1. Voronoi Diagrams

The Voronoi diagram was first used in 1975 by Shamos and Hoey [ShHo75] as a

means of representing proximity for a finite set of points in the Euclidean Plane. It has since

become the elementary data structure for representing proximity, and continues to have

broad application in the field of computational geometry. Generally, the Voronoi diagram

VD{0) of a set O of n objects in a space W is a subdivision of this space into maximal

regions so that all points within a given region have the same nearest neighbor in O with

regard to a general distance measure d [PrSh85]. The Voronoi Diagram is divided into two

parts: Voronoi boundaries B{o
it
Oj) between two objects o

i
and o., and Voronoi regions V{o.)

of an object O;. They are described by the following equations:

B(o
r
Oj) = {pe W\\d(pt o

t
) = d(p,oj)} (Eq3.1)

V(Oj) = {P € W\\VjJ*i- dip^^Kdip.Oj)} (Eq3.2)



The first Voronoi diagram, often called the Euclidean Voronoi diagram (EVD), was

defined over a set of points 0={pj,...,pn }, using the Euclidean distance function in $£. In

this case, the Voronoi Boundary /?(/?,,/?,) is the perpendicular bisector of/?, and/?,-. When

only two sites are considered, B(p
itpj) separates the plane into three regions: all points

which are closer top, than to/?,, all points which are closer to/?, than to/?,, and the boundary

itself. If we denote the half-plane which contains the set of all points closer to/?, than to/?
y

as H(pj,pj), then the Voronoi Region V(/?,) is the polygon formed by the intersection of the

n-\ half-planes //(/?,,/?^), for all pk e 0\/?,. The EVD is the union of V(/?,) for all /?, e O.

Let us now consider the construction of the EVD. From its definition we

immediately see that one approach would be to build each polygon individually. In this

case, we can form the intersection of the n-\ half-planes in time 0(N ), which suggests that

the EVD can be constructed in time 0(N 3
). However, the construction of the polygons can

be improved to O(NlogN) by using a simple divide-and-conquer approach, lowering the

bound of constructing the EVD to 0(N 2
logN). In fact, the entire EVD can be attacked by

a divide-and-conquer strategy which yields an optimal ©(NlogN) algorithm presented by

Preparata and Shamos [PrSh85]. The idea behind this algorithm is to divide the set of

obstacles into roughly equal parts by median x-coordinate, construct the Voronoi Diagram

for both parts recursively, and then merge the two pieces to form the complete Voronoi

Diagram. The bound relies on the fact that the division and merge steps each take O(N).

We refer the reader to [PrSh85] for the details of the algorithm and a proof of its

correctness.

We now briefly mention two important properties of the EVD, but again refer the

reader to [PrSh85] or any other text on computational geometry for a complete catalog and

discussion. First, an embedding of the EVD yields a planar straight-line graph. This allows

for O(N) storage of the complete proximity information. Second, the straight-line dual of

the EVD is a triangulation of O. This dual, called the Delaunay triangulation, is obtained

10



by adding a line between two points if their Voronoi regions share an edge. This fact not

only implies that the Voronoi diagram can be used to solve other problems in the field, but

it is also used in some alternative construction algorithms.

By examining the definition of the Voronoi diagram, we see that the EVD can be

generalized in three areas: the space W, the objects O, and the distance measure d. A fourth,

but less common, generalization is to consider the set of points that are closer to any

k-subset of O.Voronoi diagrams used for motion planning are often generalized with

respect to O, since the obstacles in a robot's world are rarely points. However, Voronoi

diagrams defined for higher dimension or abstract distance functions have also been used.

An interesting generalization under our assumptions is constructed in ^7 using Euclidean

distance, with O being the set of edges and vertices of the polygonal obstacles. In this case,

the shape of the Voronoi boundary between two elements of O depends on the type of

objects considered. Let e
i
and e. be edges, and let v

t
and vm be vertices of O. As in the EVD,

B(V[,vm ) is the perpendicular bisector of v/ and vm , and Bie^ej) is the bisector(s) of e
i
and ey

However, l?(e,,v/) or 5(v/,e,) is the parabola defined by the focus v/ and the directrix e,-. The

Voronoi region V(e,) or V(v/) remains the intersection of the n-\ half-planes defined by the

Voronoi boundaries of e
{
or v

{
. More importantly, the Voronoi region of an obstacle is the

union of the Voronoi regions of its edges and vertices. The construction of this generalized

Voronoi diagram is not as straight-forward as the EVD, but is still optimally computed in

time O(NlogN). In the next section we present an alternative construction algorithm for the

generalized Voronoi diagram, and another generalization of the EVD with application to

robot motion planning.

2. Recent work

Although the divide and conquer algorithm is well-suited for constructing the EVD

and some basic generalized Voronoi diagrams, it may not be practical in all cases. Here we

examine a technique for constructing the Voronoi diagram by a randomized incremental

addition of the obstacles. First, we take the generalized definition of a Voronoi Diagram

11



from [K189]. For a set of obstacles 0={o\,...,on ), define J(ohOj) - J(puOj) to be a bisecting

curve separating sites o
i
and Oj. Let D(o

ifOj) and D(o,,o,) be the two domains separated by

J(o
iy
Oj) such that any point in Dio^Oj) is closer to o

t
than to Oj. Additionally, we must choose

exactly one of Dio^Oj) or D(Oj,Oi) to include J(oifOj). In the case of the EVD, J^o^oj) =

B(phpj) and D{ohoj) = Hip^pj). The Voronoi region of o, with respect to O, VR(o
itO), is the

intersection of the D(ohok), for all ok € 0\oh and the Voronoi diagram of 0, V(0), is the

union of the boundaries of the V/?(o,,0), for all o, € 0. This definition appears very similar

to that of the EVD, but, note that we have made no reference to the definition of distance

or the type of obstacles in O.

Mehlhorn, Meiser, and O'Dunlaing [MM091], propose to build V(O)

incrementally. Let R c O be the set of sites already added to V(O). They maintain two data

structures: The Voronoi diagram V(R) stored as a planar graph, and the conflict graph G(R).

The conflict graph consists of vertices which are the edges of V(R) and the obstacles in O-R.

There is an edge (conflict) in G(R) between vertices corresponding to an edge e of V(R) and

an obstacle o
{
e O-R if and only if e has a nonempty intersection with VR(o

it
R u o,). Now

for each obstacle o, added to R, they show that only those edges in conflict with o, need to

be changed when updating the V(R). The complexity of updating V(R) and G(R) combine

to produce an algorithm which runs in time O(NlogN).

To complete this section we want to mention an interesting generalization of the

EVD with application to robot motion planning. Chew and Kedem's [ChKe90] approach

to safe motion planning is based on the intuitive idea that motion along the Voronoi

boundaries provides maximal clearance. They construct a Voronoi diagram considering

polygonal obstacles in ^7, but use a convex distance function defined by the geometrical

shape of the polygonal robot. Since the shape of the robot is not a Euclidean circle, the

distance between two points changes as the robot rotates. They track the effect of these

changes by plotting the Voronoi diagrams in (x,y,8) space. They show that building the

12



initial diagram takes O(KNlogKN), where K is the number of sides of the robot. Updating

the Voronoi diagrams in three-space, however, raises the complexity to 0(K4NlogN).

B. VISIBILITY

Consider the robot's world W, and the associated free space F. We say that two

points, x and v, are visible if they can be connected by a line segment xy such that xy £ F.

In other words, xy cannot intersect any of the holes in W except possibly at a boundary. If

x and y are visible, we also say that one sees the other.Visibility is important to motion

planing for two reasons. First, if the robot can see its goal then, intuitively, the problem of

motion planning may be simplified. Second, the shortest path between a robot and its goal

can be found by examining the visibility relationship between the robot, the goal, and the

vertices of the polygonal holes. In this section we will examine a common data structure

used to represent visibility and its application to motion planning.

1. Visibility Graphs

The visibility graph of a polygon is a graph on its vertices such that two vertices are

joined by an edge if and only if they are visible. An upper bound for the number of edges

in the visibility graph occurs when the polygon is convex. In this case, the graph will have

f "
J
edges since every vertex in the polygon can see every other vertex. An immediate lower

bound for n is obtained by observing that the edges of the original polygon are also edges

in the visibility graph. O'Rourke [OR87], however, shows that a true lower bound is 2n-3,

as any polygon will have at least 3 convex vertices.

As a motion planning tool, we can extend the concept of the visibility graph to the

case of a polygon with holes. As before, the vertices of the graph are those of the polygons,

and the graph edges represent the pairs of vertices that are mutually visible. In this case,

however, we should include the initial and goal position of the robot as vertices in the

visibility graph, and connect them to other vertices as appropriate. We can conveniently use

this structure to determine the shortest obstacle-free path from the robot's current position

13



to its goal. For simplicity, we will assume that the robot is a point, and can therefore pass

between obstacles along a visible path. We first notice that if the start and goal positions

are joined by an edge in the visibility graph, then the shortest path is simply the straight line

joining the two. If they are notjoined by an edge, Alt and Welzl [AJWe89] show by a simple

geometric argument that the shortest path is a polygonal chain whose vertices are vertices

of the obstacles. Since the robot's path must be obstacle-free, the shortest path polygonal

chain must also avoid obstacles. Consequently, pieces of the polygonal chain correspond

to edges of the visibility graph. An assignment of Euclidean distance to the graph arcs

allows the shortest path to be computed using Dijkstra's algorithm in time 0(N ).

We now examine the complexity of building the visibility graph. Let Vbe the set of

obstacle vertices, and let E be the set of obstacle edges. A straightforward approach would

be to examine each pair of vertices in V to see if the line segment joining them intersects

an edge in E. If N=l VI=IEI, then the algorithm compares 0(N ) vertex pairs with O(N)

edges, and will run in time 0(N ). We observe that not all pairs in Vneed to be considered,

since vertices from the same obstacle will not be incident in the visibility graph unless they

are connected by an edge in E. Still, this algorithm is 0(N3
) in the worst case. We will

discuss in the next section how to first improve the algorithm to run in time 0(N2
logN),

and then how to improve it to run in 0(N 2
). We will also mention an interesting alternative

to the visibility graph which can be used to solve the shortest path problem.

2. Recent work

The definition of the visibility graph and its optimal construction have remained

fairly stable since the presentation by O'Rourke [OR87]. At that time, however, little was

known about their characterizations from a graph-theoretical viewpoint. Most of the recent

work concerning visibility graphs involves understanding these characterizations. We refer

the reader to [LMW87] or [An92] for these results.
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Still, it is worth noting the method used to improve the algorithm for constructing

the visibility graph. The original idea is attributed to [Lee78], but is presented in [AlWe891

along with an improvement. We will present the main ideas of both algorithms here. Let

p,q € V, the set of all obstacle vertices. Define visjp) to be the open ray emanating from

p in direction d, and assign it a value based on which obstacle edge it encounters first. Now,

pick an arbitrary direction d$ and initialize visjp) for all pe V. Next rotate d until d=K+d ,

while updating visjp). This continuous rotation is discretized by noting that visjp) is only

updated if d is the same orientation as a line determined by p and some other vertex q.

Additionally, the value of visjp) as it changes determines whether the edge/?g belongs in

the visibility graph. By sorting all pairs of vertices in V by the slope of their connecting

lines, visjp) is only updated ( 1 times. Determining the initial visjp) for all pe V is

accomplished easily in time 0(N 2
), but this can be improved to O(NlogN). Sorting the

vertex pairs takes 0(N 2
logN) time. Each update of visjp) for the 0(N 2

) pairs can be

processed in constant time. Therefore, the total running time of the algorithm is 0(N2
logN).

The final improvement comes from the idea that a complete sorting of the vertex pairs is

not necessary; a topological ordering is sufficient. Since this can be accomplished with

amortized complexity of 0(N ), the entire algorithm is reduced to 0(N ). This is optimal

as the visibility graph may have 0(N ) edges.

We close this section by mentioning a variation of the shortest path problem that

does not use the visibility graph. For a set of obstacles O and a point s, the shortest path

map, denoted SPM(0,5), is a partition of the robot's free space into regions such that any

two points p and q lie in the same region if and only if the shortest paths from s to p and

from 5 to q touch the same sequence of vertices. If the initial position of the robot is s, and

its goal is r, we can solve the shortest path problem as follows: Construct SPM(0,s), and

then locate the region containing t. For the case of polygonal obstacles it has been shown
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that this can be done in 0(N(K+logN)), where K is the number of obstacles. For large K

this is 0(N2
), otherwise it is O(NlogN).
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IV. CONNECTIVITY

Kanayama [Ka94] discusses the sensitivity of visibility, proximity, and

connectivity to small continuous changes of the robot's operating environment. It is his

conclusion that visibility is globally affected, proximity is locally affected, and

connectivity is unaffected. Because of this, we prefer path planning methods which rely

more on connectivity, and less on proximity and visibility. In the first part of this chapter

we present a means of labeling homotopy classes considering only connectivity, and using

minimal information. We then present a method of transforming the abstract problem of

identifying the classes into a straight-forward graph search problem by adding additional

information to the class names.

A. IDENTIFYING HOMOTOPY CLASSES

Consider a robot's world W with a finite number n of normal holes. If there is no

inverted hole, we assume the presence of one of sufficient size to minimize its influence on

the proximity information of W. We also assume that the robot's free space is path

connected. Define a fence L to be a loop free curve connecting two holes which does not

intersect a hole or another fence except at its endpoints. The idea is to add a maximal

number of fences to the world, while maintaining the connectedness of the free space, so

that we can use them to identify homotopy classes. If we consider the holes as nodes of a

planar graph, and the fences as arcs, we know by Euler's formula that we can add n fences

to the n+\ holes without dividing the freespace. We call this collection of holes and fences

a connected world. Clearly, if the world has n > 2 holes, then the construction of the

connected world is not unique. Figure 2, on page 18, is an example of a connected world

with two normal holes, and one inverted hole. Here, we have added the two fences a and b

indicated by the dotted lines. Figure 2 also shows three paths from S to G, indicated by the

solid lines. Each path represents a different path classes. Notice that two of the path classes

are labeled by naming the fence that they cross, and the third by e since it does not cross a

fence.
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Figure 2: Connected World without Fence Modes

If, however, we add a fourth path shown by the dashed line in Figure 3, then

labeling the paths by fence crossing alone is not sufficient. Our solution is to redefine a

fence so that it has two sides; a plus side and a minus side. If a path intersects a fence from

the plus side, we say that it has plus intersecting mode. Likewise, if a path intersects a fence

from the minus side, we say that it has minus intersecting mode. Now, we relabel each path

class by the fence and intersecting mode. We call this class name thefence crossing

sequence. Kanayama [Ka94] proves that two paths will have the same fence crossing

sequence if and only if they are homotopic.

Figure 3: Connected World with Fence Modes
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Although this labeling method relies solely on the connectivity of the world, it

provides very little path planning information. Our goal is a naming method which gives

intermediate motion clues in addition to unique path class labels. In this case, there are just

too many options for the robot to consider between fence crossings. Also, we want the robot

to be able to generate the class names automatically. Unfortunately, there are no obvious

rules which allow valid fence crossing sequences to be considered, and invalid sequences

to be rejected. In the rest of this chapter, we describe how to augment the fence crossing

sequence to meet these goals.

B. FREE SPACE DECOMPOSITION

Latombe [La91] proposes an approach to motion planning which he calls exact cell

decomposition. This method divides the free space of the operating environment into a

collection of non-intersecting regions, called cells. They are constructed so that intracell

motion planning is an easier problem than motion planning within the entire free space.

Since motion planning within a convex polygon eliminates the issue of visibility, and

minimizes the issue of proximity, convex cells are desired. A decomposition of the free

space in which all cells are convex, referred to as a convex polygonal decomposition, is

preferred. While the basis for the following method is certainly not new [Chz87], we

believe that its application extends beyond any presented in current literature.

Let Wbe the subset of 3^ which is the robot's world, or the space that we need to

decompose. Let H be the set of holes within W, and let V be the set of all vertices of //. An

efficient means of achieving a convex polygonal decomposition of W is to divide the free

space by a series of parallel lines placed at certain critical points along the holes of//. This

is accomplished by sweeping a line La of constant orientation a across W. At each convex

vertex of V, we extend the line in both directions (a and a+180) until it intersects a hole in

W. The extensions can be characterized by the geometry of the vertex.

We say that vertex v, is less than vertex v
y

, written v, < v., if La intersects v, before

Vt. In this case, we can also say that v
y
is greater than v, (v

;
> v,). We say that vertex v, equals
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v.-, written v
;
= v,, if La encounters both vertices simultaneously. Recall from a previous

discussion the definition of a vertex's next and previous vertices. Define a minimal

(maximal) extreme vertex ofh with respect to La to be a vertex which is less than (greater

than) both its next and previous vertices. Define an interior vertex of h with respect to La

to be any vertex that is not extreme. An interior vertex is called up if it is above the obstacle

to which it belongs, and down if it is below. Furthermore, classify an extension of La as up

if it is extended in the a direction, and down if it is extended in the a+180 direction.

Now consider v, a vertex of a hole h. If v is an extreme vertex of h y
then La will be

extended both upward and downward. If v is an interior vertex of h, then La will be

extended upward or downward, but not both. La is extended upward if v is up interior, and

downward if v is down interior. The sole upward or downward extension from interior

vertices is a consequence of La immediately intersecting h in the other direction.

Figure 4, on page 2 1 , illustrates the effect of sweeping La across a world with one

normal hole and one inverted hole. In this example, the leading edge defined by vertices Vy

and v6 is parallel to La ; therefore, vy and v6 are interior vertices even though they are at the

extreme of hj. When we extend La from vy, it intersects hj immediately in the downward

direction, and h2 in the upward direction. Conversely, the extensions from v6 intersect h
}

immediately in the upward direction, and h2 in the downward direction. Vertices vj and v5 ,

however, are exterior vertices, and have extensions in both directions. This example also

illustrates why we do not extend La from concave vertices. Note that vertices v2 and v4 are

concave with respect to hj, yet they are convex with respect to the free space of W. We can

save work by skipping these vertices with the realization that they already contribute to the

goal of obtaining convex polygonal cells. The result of sweeping La across Wis a collection

of convex polygonal cells, which we will simply call cells, and a collection of extensions,

which we will call fences.
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Figure 4: Results of sweeping La across W

A natural question to ask is whether the choice of orientation for La is significant,

and how changing the orientation affects the cell decomposition. Clearly, the number and

shape of the cells may differ significantly for various choices of a. Consider the simple

world in Figure 5, on page 22, which shows two separate decompositions; one produced by

sweeping L (thin dotted line) and the other by L90 (thick dashed line). The L , or

horizontal, decomposition contains five cells, while the L90, or vertical, decomposition

contains seven. This is intuitively explained by realizing that sweeps of different

orientations capture different spatial information about the world. The top and bottom cells

of the horizontal decomposition contain no vertical information about the holes hj and h2 ,

whereas the middle cell of the vertical decomposition contains no horizontal information.

By this we mean that knowing an object is located in the top (middle) cell of the horizontal

(vertical) decomposition is not sufficient to describe its location with respect to the left or

right (top or bottom) of holes hj and h2 .
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Figure 5: Effect of Changing Orientation of La

In general, any choice of La might create ambiguous cells, or those that lack

geometric information with respect to La's orthogonal axis. The solution is to be able to

identify these cells and then supplement them with additional information if necessary.

There are two situations which cause the generation of ambiguous cells. We will describe

both here, but defer the discussion of how they are treated until after we introduce the

appropriate data structure and its application.

The first form of ambiguous cell is that created between the trailing extreme vertex

(or parallel edge) of one hole, and the leading extreme vertex (or parallel edge) of another.

In a world with multiple holes, we can expect this situation to occur often. Two special

cases of this form are always present when La intersects the first normal hole, and when it

leaves the last normal hole. In a world with a convex inverted hole, these appear as the first

and last cell created. Fortunately, they are easy to detect and easy to fix. Figure 5, on page

22 contains multiple instances of this problem. The top and bottom cell of the horizontal

decomposition and the left-most and right-most cell of the vertical decomposition are

special cases. The middle cell of the vertical decomposition is a standard example.

22



The second form of ambiguous cells occurs when La encounters leading or trailing

extreme vertices (or parallel edges) from multiple holes simultaneously. The top and

bottom cells of the horizontal decomposition above are examples. In this case, however,

they are also ambiguous cells of the first form. We are mainly concerned, though, with

those cells that are only of the second form. These are less common, but still easy to

identify, and in most cases can be eliminated by carefully choosing La .

It is not immediately apparent, then, whether one choice for La is better than all

others. Clearly, we would like to reduce the number of ambiguous cells by making a good

choice for La , but we do not want to spend too much effort finding it. We believe that this

question requires further investigation. In the interim, we will always perform a vertical

sweep. Sweeps of other orientations can be achieved by rotating the world, performing a

vertical sweep, and then rotating the world back to its original position.

C. CONNECTIVITY GRAPH

The parallel cell decomposition induces a graph which we can use to extract some

motion planning information. Latombe [La9 1 ] defines the connectivity graph for a convex

polygonal decomposition by associating each cell with a node and connecting two nodes

with an edge if and only if the corresponding cells are adjacent. Two cells are adjacent if

they share a common fence. His use of the graph is restricted to determining the existence

of an obstacle-free path within the robot's world. We propose to expand its use and to apply

it as a tool for generating all simple homotopy classes.

Before we can use the connectivity graph, we must first assign labels to the nodes.

Although any arbitrary assignment of labels is sufficient, we will use a more orderly

approach. We will label each cell in the order of its inception. So for a vertical sweep, cells

are labeled from left to right, and if two or more cells are created simultaneously, they are

labeled from top to bottom. Additionally, there are two cells of special interest in every

world: the one where the robot is currently located, and the one which contains its goal.

They will be denoted by c
init

and cgoab respectively. In some cases, they may be the same.
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Figure 6 is an example of the vertical parallel cell decomposition of a world with four

normal holes and one inverted hole. Its associated connectivity graph is shown by the

overlayed dotted line.

Figure 6: Initial Cell Decomposition and Connectivity Graph

D. AUTOMATIC PATH CLASS GENERATION

We now describe how to use the connectivity graph to automatically generate

homotopy classes. It should be obvious that each hole in a world will have at least four

fences. As previously discussed, only one fence per hole is required to give the minimal

information homotopy classes representation. For consistency, we will always choose this

to be the downward fence from the leading extreme vertex. If the hole does not have such

a vertex, we will choose the downward fence extending from the leading parallel edge. We

will describe the fence and intersecting mode by naming the cell that the robot departs and

enters as it crosses the fence. We call this the cell movement sequence. For example, from

the graph in Figure 6, we see that the cell movement sequence describing the fence and
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crossing modes associated with hj are Cj-cj and c^-cj. It should also be obvious that any

path from the robot's initial configuration to its goal can be described by a chain of cell

movement sequences, c
init-C:-cii-...-cl

-cm-cgoa[, called the complete cell movement

sequence. Note that the complete cell movement sequence contains an embedded fence

crossing sequence, and can therefore be used to represent a homotopy class.

Since any complete cell movement sequence from c
init

to cgoa[ uniquely defines a

homotopy class, we can search the connectivity graph to find all possible paths and thus

generate all path classes. We must first, however, define some stopping criteria for the

search. Recall that we are only interested in evaluating simple paths. This means that, for

most cells in the decomposition, once the robot leaves it should not return. Unfortunately,

this is not true for some cells, specifically ambiguous cells. Consider a robot located at the

bottom of cell c6 in Figure 6, on page 24, which needs to move to the top of cell c4 . Suppose

the robot is too wide to fit through the gap between h
}
and h4 . If we do not allow the robot

to reenter a cell once it departs, the path class given by Cf>-c4-CyC]-Ci'c4 would not be

considered. Clearly, this should be one of the alternatives. At first we might consider

relaxing the "visit once" criteria for c4 , but this would lead to consideration of the class

given by c^-c4-C2-Cj-cyc4 , which clearly is not simple. We must, therefore, eliminate the

ambiguity in these cells in order to apply the stopping criteria uniformly.

The first step is to identify ambiguous cells created by the parallel decomposition.

Again, the connectivity graph provides a useful tool. From an earlier discussion, we know

that cells Cj and cjj are special cases of ambiguous cells, and can be identified immediately

without the graph. We can also see that cell c4 is a standard example of the first form, and

c5 is an example of the second. Additionally, we note that they correspond to nodes of the

connectivity graph of degree greater than three. It should be obvious that having degree

greater than three is sufficient for being an ambiguous cell by the very nature of their

construction. If it is also necessary, then identifying such cells is trivial.
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Unfortunately, it is not generally necessary for a cell of degree four or more to be

ambiguous. Consider, again, the example in Figure 6. Suppose that holes /12 and /13 were

connected by the fence between cells c8 and cj , and were really one large hole. The only

change to the connectivity graph would be the removal of the arc from c§ to Cjq. Now, cell

c5 still has degree four, but no longer falls under the definition of an ambiguous cell. We

would not want any path to enter c$ more than once. Nevertheless, we can use the

connectivity graph to identify candidate cells, and then examine how they were constructed

to verify if they are indeed ambiguous.

Since an ambiguous cell is one which does not contain geometric information about

La's orthogonal axis, it would seem natural to add this information with a supplemental

sweep by La = La+ gg. We conduct the sweep in much the same way as the initial

decomposition, except now we only sweep selected cells. At each extreme vertex defining

the ambiguous cell, we extend La in both directions until it intersects a hole or a fence. If

the cell was defined by one or more parallel edges, then we extend La from any point along

each edge. For consistency, we will use the midpoint. This divides the original cell into at

most n+\ convex pieces, where n is the number of holes which defined the cell. The new

convex pieces are called sub-cells. Figure 7 shows the results of the supplemental sweep.

The new fences are indicated by thin dotted lines.

We must now relabel the sub-cells and reconstruct the connectivity graph. In order

to preserve the information contained in the original graph, we will name the sub-cells in

the order in which they were created by adding a suffix to their old label. We also want to

add sub-cell adjacency arcs while maintaining the original adjacency information. We

preserve the original adjacency information by adding only one arc between cells that were

adjacent in the original decomposition. For example, c$q is adjacent to both c4A and c4B ,

yet we only add one arc from c5 to c4 . It does not matter which arc is added, as long as the

sub-cells within these cells are adjacent. Adding all sub-cell adjacency arcs would destroy

the bijection between homotopy classes and complete cell movement sequences.
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Figure 7: Supplemental Sweep of Ambiguous Cells

Now we see that we can define a simple path to be one that enters a sub-cell or cell

only once. A simple path for the robot, then, corresponds to a simple path on the graph.

Moreover, to find all simple path classes for the robot, we need only search the graph for

all simple paths. We propose using a depth first search starting at cinil
and terminating at

cgoai We can aPP'y a simple backtracking strategy to find all simple paths.

The complete set of path classes is passed to the next layer of the motion planning

algorithm, where a class is selected and a detailed motion plan is formed. We present the

specific decomposition and graph search implementations in the next chapter.
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V. IMPLEMENTATION ON YAMABICO

A. 2-DIMENSIONAL GEOMETRIC MODEL OF A ROBOT'S WORLD

We propose to represent the robot's world by specifying the vertices of the

polygonal holes. Each hole, then, becomes an ordered list of vertices such that traversing

the list corresponds to traversing the hole's boundary with the free space on the right. In

other words, vertices of regular holes are ordered counter-clockwise, while vertices of

inverted holes are ordered clockwise. Since information is commonly needed about a

vertex's neighbors, the specific data structure must be able to efficiently identify its next

and previous vertices. Storing the vertices in a doubly linked list is one alternative. In this

chapter we will describe the world of our robot, Yamabico, and provide specific details of

how we implement the model and theory discussed earlier.

B. ALGORITHMS AND DATA STRUCTURES

The code for the implementation discussed in this chapter is attached as an

appendix. It is also available in the yamabico account under the graduates subdirectory.

Currently, building and decomposing the world model is preprocessed on a Unix

workstation with the same architecture as Yamabico. We are investigating, however, the

possibility of creating these structures using the robot's processor. By processing them on

board, we gain the ability to relocate Yamabico without recompiling and redownloading

the entire kernel.

1. World Model

Yamabico's world is stored as a circularly linked list of polygons, where each

polygon is a doubly linked list of its vertices. Access to the world is gained through a

pointer to one of the polygons on the list. The file build, h contains the definitions for the

actual C structures used, while Figure 8 gives a graphical representation.
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Figure 8: Representation of World Model

Initially, the vertex information is stored as an ASCII file. The function buildWorld

in the file build.c reads the vertices one at a time, and constructs the linked structure

described above. This structure is then used for two purposes. The first is to create a file

which explicitly defines every polygon and every vertex variable, along with an

initialization function to assign them the correct value. This new file is compiled and linked

with the robot's kernel. The file worlddata.c is an example. The decomposition function

also uses the constructed world model to build the cells and connectivity graph. These

processes are described below.

2. Cell Decomposition

One of the goals of the data structure used to represent the decomposition of the

robot's free space is to answer these two questions efficiently: Whether an edge defines the

boundary of a hole, or whether it defines a fence crossing; and in which cell is the robot

currently located. Additionally, it is reasonable for the robot's global motion planner to

expect that different representations of the free space be consistent. Therefore, we propose
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to represent the decomposed world by specifying the vertices of the cells. Specifically, we

will model each cell as an inverted hole, with its boundary determined by a combination of

obstacles and fences. In this way, any intracell motion planning can be accomplished as if

the robot were located in an obstacle-free convex world. Intercell motion is permitted by

allowing the robot to cross cell boundaries which are defined by fences. The complete

representation of the decomposed world is a circularly linked list consisting only of cells;

obstacles are implicitly defined by a subset of the cell boundaries.

The decomposition is achieved by sweeping a vertical line across the original world

using the ideas presented in [La91]. Sweeps of orientations other than 90 degrees are

accomplished by rotating the world, conducting a vertical sweep, and then rotating the

world back to its original configuration. The continuous sweep is discretized by realizing

that cells are created or completed only at obstacle vertices, and that they are only affected

by obstacle edges which have non-empty intersection with the sweep line. This

immediately defines the need for two data structures: a list of events, which are the vertices

ordered by x-coordinate, and a list of those edges which intersect the sweep line. The event

list is static for a given world, but the edge list changes at each event. We can, therefore,

create the event list as we read in the initial world data. Events are maintained as pointers

to vertices, and are properly placed on the event list using a simple linear insertion. The

sweep is performed by the algorithms shown in Figures 9 through 13.

We refer the reader to the actual code for the precise implementation details, but

make some explanatory notes here. For simplicity, we show the main algorithm assuming

that the sweep line only encounters one event at a time. The actual program handles the

general case where the sweep line may encounter multiple events simultaneously. Also, the

active edge list is maintained so that edges are ordered by decreasing y-coordinate of their

intersection with the sweep line. This allows us to quickly locate the edge which first

intersects the fence as it is extended from the current event vertex. These algorithms are

implemented in the files decompose. c and decomposutil.c.
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ALGORITHM DECOMPOSE WORLD
INPUT: Event list sorted by x-coordinate; Model of robot's world

OUTPUT: Model of robot's world represented as convex cells

begin

while event list is not empty

currentEvent <- next Event from Event List

ADD EDGES TO ACTIVE LIST;

FINISH COMPLETED CELLS;

START NEW CELLS;

REMOVE EDGES FROM ACTIVE LIST;

end while;

end DECOMPOSE WORLD

Figure 9: Algorithm DECOMPOSE WORLD

ALGORITHM ADD EDGES TO ACTIVE LIST

INPUT: Event

OUTPUT: Updated Active Edge List

begin

currentVertex <- vertex pointed to by currentEvent

if x-coordinate of currentVertex's next vertex > x-coordinate of currentVertex then

add edge defined by currentVertex and currentVertex's next vertex

to Active Edge List in the proper order

if x-coordinate of currentVertex's previous vertex > x-coordinate of currentVertex

then

add edge defined by currentVertex and currentVertex's previous vertex

to Active Edge List in the proper order

end ADD EDGES TO ACTIVE LIST

Figure 10: Algorithm ADD EDGES TO ACTIVE LIST

32



ALGORITHM COMPLETE CELL
INPUT: Event

OUTPUT: Complete cell added to world model, Updated Cell in Progress List

begin

currentVertex <- vertex pointed to by currentEvent

if currentVertex is convex minimal extreme

complete cell UP/DOWN
elsif currentVertex is convex maximal extreme

complete cell UP
complete cell DOWN

elsif currentVertex is convex interior up

complete cell UP
elsif currentVertex is convex interior down

complete cell DOWN
elsif currentVertex is concave maximal extreme

complete ISOLATED cell

elsif currentVertex is concave interior

extend cell

end COMPLETE CELL

Figure 1 1 : Algorithm COMPLETE CELL

ALGORITHM START NEW CELL
INPUT: Event

OUTPUT: Updated Cells in Progress List

begin

currentVertex <- vertex pointed to by currentEvent

if currentVertex is convex minimal extreme

start new cell UP
start new cell DOWN

elsif currentVertex is convex maximal extreme

start new cell UP/DOWN
elsif currentVertex is convex interior up

start new cell UP
elsif currentVertex is convex interior down

start new cell DOWN
elsif currentVertex is concave minimal extreme

star new ISOLATED cell

end START NEW CELL

Figure 12: Algorithm START NEW CELL

33



ALGORITHM DELETE EDGES FROM ACTIVE LIST

INPUT: Event

OUTPUT: Updated Active Edge List

begin

currentVertex <- vertex pointed to by currentEvent

for each Edge on Active Edge List

if x-coordinate of currentVertex = x-coordinate of Edge's trailing vertex then

remove edge from Active Edge List

end for

end DELETE EDGES FROM ACTIVE LIST

Figure 13: Algorithm DELETE EDGES FROM ACTIVE LIST

3. Connectivity Graph

We generate the connectivity graph as a by-product of the decomposition sweep.

The graph is maintained as an adjacency list. Nodes of the graph are added when a cell is

started. As a cell is completed, the vertical fence which defines its rightmost boundary is

placed on a temporary holding list. Then, as the algorithm enters the start new cell phase,

the leftmost boundary of each new cell is compared with the boundaries on the holding list.

Two boundaries will match if the cells are adjacent. Once adjacency of two cells is

determined, both nodes on the graph are updated.

4. Determining Cell of Current and Goal Configurations

If the initial and goal configurations are known before the world is decomposed, the

cell in which they are located can be determined as part of the sweep. Since the world is

presently decomposed off line, however, we will assume that neither location is known.

The first step in identifying the homotopy classes, then, is to identify the cell containing the

robot's initial position and the cell containing the goal. Once the robot has this information,
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it should be able to keep its current cell location updated by using odometry control. Still,

it may be necessary for the robot to verify this information.

Preparata and Shamos [PrSh85] present two algorithms for determining whether a

point lies within the interior of a simple N-gon. Including preprocessing, each takes O(N)

time. Since we are concerned with only convex cells, we have adapted the more restrictive

convex inclusion algorithm. It is based on the fact that for any point p interior to a convex

polygon, and for any two vertices vj and v2 of that polygon, the angle formed by the two

rays pv
]

and pv2 is positive, if v2 is reached from Vj while traveling the polygon's border

in its natural direction. Now, if for each vertex Vj and its next vertex v2 , this angle is

positive, we know that/? lies within the polygon. We can use the algorithm in Figure 14, to

find the cell of the initial and goal configurations, and the algorithm in Figure 15, to verify

that the robot is located within a specific cell.

ALGORITHM FIND CELL
INPUT: Configuration, Decomposed Model of robot's world

OUTPUT: Cell which contains Configuration

begin

while all cells not checked

currentCell <- next cell not checked

if INSIDE CELL (currentCell)

Configuration is located within currentCell

end while

ERROR: Configuration is not located within robot's world

end FIND CELL

Figure 14: Algorithm FIND CELL
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ALGORITHM INSIDE CELL
INPUT: Configuration, Convex cell

OUTPUT: TRUE if Configuration is within Convex Cell, FALSE otherwise

begin

while all vertices not checked

currentVertex <- currentVertex's next vertex

if Configuration, currentVertex, and currentVertex's next Vertex make a right turn

continue;

else

return FALSE;

end if

end while

return TRUE;

end INSIDE CELL

Figure 15: Algorithm INSIDE CELL

5. Finding All Homotopy Classes

Once we know the cell containing the robot's configuration, and the cell containing

the goal configuration, we can apply a depth-first search with backtracking to the

connectivity graph to find all simply homotopy classes. We will use the algorithm in

Figures 16 and 17, to find all classes, and to give their complete cell movement sequence

representation.

We mention, here, an alternative to searching the graph for all homotopy classes,

but we neither develop it in this thesis nor presently implement it on Yamabico. We begin

by applying edge weights to the graph using a criteria based on the cost of moving from

one cell to the other. Then, we can use Dijkastra's algorithm to search the graph for the path

of minimal cost. Two possible cost factors to consider are the length of the path segment,

and the clearance between obstacles. Unfortunately, it appears to be a very difficult
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problem to find the exact cost for a cell movement sequence. We could use, instead, a good

approximation to find a near-optimal solution.

ALGORITHM FIND PATHS
INPUT: Connectivity Graph, Cell of Goal Configuration, Cell of Robot's Configuration

OUTPUT: Complete cell movement sequence of each homotopy class

begin

if Robot and Goal are in the same cell

return NULL path class

initialize all predecessors to NILL

CG <- Connectivity Graph

s <- Cell of Robot's Configuration

g «- Cell of Goal Configuration

DFS(CG, s, g)

end FIND PATHS

Figure 16: Algorithm FIND PATHS

ALGORITHM DFS
INPUT: Connectivity Graph, u, v vertices in Connectivity Graph
OUTPUT: Complete cell movement sequence of a homotopy class

begin

if u = v

return path class by tracing predecessors

else

for all vertices x which are adjacent to u do

if predecessor of x = NIL

mark predecessor of x = u

DFS(CG,x,v)

mark predecessor of x = NIL

end FIND PATHS

Figure 17: Algorithm DFS
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C. INTEGRATION WITH MML

Yamabico's global motion planner has been mentioned several times in this

chapter. Currently, the complete system is under development by Chien-Liang Chuang and

Joseph Kovalchick, PhD candidates at the Naval Postgraduate School. When completed, it

will provide the main interface as part of the model-based mobile robot language (mml).

The work done in this thesis will primarily be a subset of the inner workings of the global

motion planner. We can, however, provide some limited integration now.

We hide the details of the world model by providing access through a pointer to the

world structure. The world structure, then, is linked to one of the polygons. Multiple

representations of the same world can be present simultaneously. Each, though, are

independent and share no information. Presently, the only interface to the world models is

through the configuration-cell location functions. As the global motion planner evolves,

more interface functions must be provided.
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VI. CONCLUSION

A. RESULTS

Without the global motion planner, it is hard to test and validate the theory

described in this thesis. Fortunately, that work is underway. Still, we believe that the ideas

and implementation presented here will provide a solid framework for future work. We

have been able to graphically analyze the decomposition process, and evaluate the

generation of the connectivity graph. The functions that will provide the initial interface

between the global planner and the robot's world model have all been tested on board

Yamabico. The results are a reliable first layer to what will be a robust, multi-layer,

autonomous motion planner.

B. AREAS OF FURTHER RESEARCH

While the parallel cell decomposition provides a good beginning for the global

motion planner, it has left some questions unanswered, and raised others. We present three

of them here; two relating to the theory of our layered path planning paradigm, and one

relating to the implementation on Yamabico.

1. Orientation of La

We mentioned previously that the generation of some ambiguous cells could be

avoided by carefully choosing La . Furthermore, some worlds may be better suited for a

sweep by one orientation over another. This leads us to the question of whether we can

efficiently determine if one orientation of La is better than another for a given world.

Consider the world and the two decompositions in Figure 18, on page 40, which is similar

to a portion of the 5th floor of Spanagel Hall. We notice that the horizontal decomposition

creates many more cells than the vertical decomposition. On the one hand, we end up

further decomposing many of the classrooms which were already convex. On the other

hand, though, we get many more motion clues as we move along the long hallway. It seems

apparent that the two decompositions shown are better than any other, but we do not know

39



for sure. Also, how can we decide if the additional information provided in the hallway is

worth the extraneous information added to the classrooms. We leave this as an open

question, but use it to provide, perhaps, some insight into a solution to another problem.

Figure 18: A robot's world and two decompositions

2. Ambiguous Cells

While the generation of some ambiguous cells can be avoided with a particular

choice of La , we realize that generally some will still be created. This is inherent in the fact

that for a given sweep, we only preserve spatial information in one orientation. The method

we proposed of limiting a supplemental orthogonal sweep to the ambiguous cells is

acceptable, but this still raises some questions. Primarily, we are uneasy with the idea that

this method favors one orientation over another. We investigated the possibility of fully

decomposing the world using a set of orthogonal sweeps, and generating a corresponding

set of connectivity graphs. The idea was to independently find all homotopy classes with

both graphs, and provide the lower layers of the global motion planner a pair of cell

movement sequences for each class. This approach has two benefits. First, we end up

treating both orientations equally. Second, we provide additional motion clues that would

be missing from a single sweep. In the example from Figure 18, the second sweep would
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allow the global motion planner to use the additional cells in the hallway, while

disregarding them in the classrooms.

Unfortunately, we encountered a problem with this approach. For a world with

multiple homotopy classes, we are still unsure how to accurately make the pairings. It is

easy for a human to match a simple path on one graph with a simple path on the other, but

as of yet, we have not found a method to do it autonomously.

3. Downloading the World Model

Currently, the model for the robot's world and the decomposition are transformed

into C files, compiled, and linked into the robot's kernel. This method will cause us to

relink and redownload the kernel every time we want to change the robot's world. A better

solution would be to allow Yamabico to build and decompose the world on board. Then, it

needs only download the new vertex information when relocated. We are presently

investigating a method for storing the ASCII world information in RAM onboard

Yamabico, which will allow us to move the construction and decomposition from the

workstation to the robot.
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APPENDIX A

A. MAIN

1. main.c

/"*"*""* *••

FILE: main.c

PURPOSE: This file contains the main function which parses the command
line and then calls the decompose functions

** ****** * * "/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "util.h"

#include "build.
h"

#include "decompose.!")"

#include "worldfile.h"

int

main(int argc, char* argvQ)

{

FILE* plotFile;

FILE* worldFile;

world* testWorld;

world* decompWorld;

polygon* curPolygon;

vertex* curVertex;

event* eventList;

event* currentEvent;

node* cGraph;

int numberOfSweeps;

int counter;

double sweepAngle;

double cosRotlnv;

double sinRotlnv;

double rotX, rotY;

char worldTag[7];

charfilename[21];

eventList = NULL;

cGraph = NULL;
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decompWorld = NULL;

I* This block of code parses the command line to ensure it is correct*/

if (argc < 2){

printfCViYou must supply the name of the file containingW);

printffthe vertices of the robot's world\n");

return -1;

}else if (argc < 3){

numberOfSweeps = 1

;

sweepAngle = 90.0;

}else if ((numberOfSweeps = atoi(argv[2])) > 0){

if (argc != (numberOfSweeps + 3)){

printf("\n%d sweeps specified, but %d angles given\n",

numberOfSweeps,(argc - 3));

return -4;

}

for (counter = 1 ; counter <= numberOfSweeps; counter++){

sweepAngle = atof(argv[2+counter]);

if ((sweepAngle <= 0.0) II (sweepAngle > 180.0)){

printf("\n %Sweep angle must be in the range (0.0-1 80. 0]\n");

return -2;

}

}

}else{

printf("\nlnvalid commandline options. Correct format is:\n");

printffDecomposeWorld filename [# of sweeps] [sweep angles]\n");

return -3;

}

/* read in the world datafile, build the structures for the

original world model, and create the outputfile V

if((testWorld = buildWorld(argv[1], 90, &eventList)) == NULL){

return -3; /*file does not exist, or contains an error*/

}else{

createWorldFile(testWorld,NULL,
u
originalworld.c",90,0,"0");

}

r Decompose the world for every sweep angle specified as a

command line parameter*/

for (counter = 1 ; counter <= numberOfSweeps; counter++){

if (argc>2)

sweepAngle = atof(argv[2+counter]);

sprintf(worldTag,"%3.2f\sweepAngle);

(*strchr(worldTag,'.
,

))=
,

_';

freeWorld(&testWorld,&decompWorld,&eventList,&cGraph);

testWorld = buildWorld(argv[1],sweepAngle, AeventList);

decompWorld = decompose(eventList, &cGraph);

sprintf(filename,"decompworld_%s.c",worldTag);

createWorldFile(decompWorld,cGraph,filename,sweepAngle,counter,worldTag);

}
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r If only one decomposition was specified, create a file which can

be used by GnuPlot to graphically show the cells 7
if (argc <= 4){

cosRotlnv = cos((-(M_PI*(90.0-sweepAngle)))/180.0);

sinRotlnv = sin((-(M_PI*(90.0-sweepAngle)))/180.0);

curPolygon = decompWorld ->polygonl_ist;

plotFile = fopenCplot.dar,"w");

do{

fprintf(plotFiler#Cell %s vertices\n",curPolygon->name);

curVertex = curPolygon->vertexList;

do{

/*"*"re- rotate" the vertices /

rotX = ((curVertex->posit.X*cosRotlnv)-(curVertex->posit.Y*sinRotlnv));

rotY = ((curVertex->posit.X*sinRotlnv)+(curVertex->posit.Y*cosRotlnv));

fprintf(plotFile,"%4.2f %4.2f\n", rotX, rotY);

curVertex = curVertex->next;

}while (curVertex!= curPolygon->vertexList);

rotX = ((curVertex->posit.X*cosRotlnv)-(curVertex->posit.Y*sinRotlnv));

rotY = ((curVertex->posit.X*sinRotlnv)+(curVertex->posit.Y*cosRotlnv));

fprintf(plotFile,"%4.2f %4.2f \n\n", rotX, rotY);

curPolygon = curPolygon->next;

Jwhile (curPolygon != decompWorld->polygonList);

fclose(plotFile);

printf(
u
Your plot data is located in plot.dat\n" );

return 1

;

}

B. BUILD

1. build.h

r
FILE: build.h

PURPOSE: This file contains the definitions for the types used in

the world model.
*

/

#ifndef _build_h

#define build h

typedef struct point{

double X;

double Y;

Jpoint;

typedef struct vertex{
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point posit;

char bndry[5];

struct vertex* next;

struct vertex* prev;

}vertex;

typedef struct polygon{

char name[5];

int mode;

vertex* vertexList;

vertex* openl; /*used while constructing cells*/

vertex* open2; /*used while constructing cells*/

struct polygon* next;

}polygon;

typedef struct world{

char name[15];

polygon* polygonList;

}world;

typedef struct event{

vertex* eVertex;

struct event* next;

polygon* owner;

}event;

typedef struct arc{

struct node* Node;

struct arc* next;

double weight;

int visited;

}arc;

typedef struct node{

polygon* cell;

arc* arcList;

struct node* predecessor;

struct node* next;

arc* curArc;

}node;

/*****
***buildWorld(char*, double, event**)

This function reads the ASCII vertex information in the inputfile,

rotates the world by decompostion angle, and orders the

vertices to create the event list. It returns a pointer

to the world.
* * ***** ——«*/

world* buildWorld(char*. double, event**);

#endif
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2. build.

c

/******** * * *****

FILE: build.c

PURPOSE: This file contains the function which reads in the ASCII

vertex information and creates the linked list structure

defined by the world model.
* * *** —•«——••—/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#include "util.h"

#include "build, h"

#include "decompose.
h"

world*

buildWorld(char* fileName, double rot, event** eventList)

{

FILE* inputFile;

charch;

world* currentWorld;

polygon* currentPolygon;

vertex* currentVertex;

vertex* previousVertex;

double tempX;

double tempY;

double cosRot;

double sinRot;

event* newEvent;

event* currentEvent;

event* previousEvent;

/*We rotate the world to achieve sweeps other than vertical, here

we calculate the trig functions for the rotation transformation*/

rot = (M_PI * (90.0-rot))/180.0;

cosRot = cos(rot);

sinRot = sin(rot);

if ((inputFile = fopen(fileName, V)) == NULL){

printf("\nCould not open named file: %s\n",fileName);

return NULL;

}

currentWorld = (world*)malloc(sizeof(world));
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currentPolygon = currentWorld->polygonList =

(polygon*)malloc(sizeof(polygon));

getName(inputFile, currentWorld->name, 15);

while(1){/*loop until all polygons are read*/

getName(inputFile, currentPolygon->name,5);

fscanf(inputFile,'
,

%d(",&currentPolygon->mode);

currentVertex = currentPolygon->vertexList =

(vertex*)malloc(sizeof(vertex));

while(1){/*loop until all vertices for this polygon are read*/

fscanf(inputFile,"%lf,%lfr,&tempX,&tempY);

/* rotate vertices of world depending on sweep angle*/

(currentVertex->posit.X)= ((tempX*cosRot)-(tempY*sinRot));

(currentVertex->posit.Y)= ((tempX*sinRot)+(tempY*cosRot));

/*building event list*/

if (feventList) == NULL){

(*eventList) = (evenf)malloc(sizeof(event));

(*eventList)->eVertex = currentVertex;

(*eventl_ist)->owner = currentPolygon;

(*eventList)->next = NULL;

}else{

newEvent = (event*)malloc(sizeof(event));

currentEvent = (*eventList);

previousEvent = (*eventList);

while ((currentEvent) &&
((currentVertex->posit.X > currentEvent->eVertex->posit.X) II

((currentVertex->posit.X == currentEvent->eVertex->posit.X) &&
(currentVertex->posit.Y < currentEvent->eVertex->posit.Y)))){

previousEvent = currentEvent;

currentEvent = currentEvent->next;}

newEvent->next = currentEvent;

if(currentEvent == (*eventList))

(*eventList) = newEvent;

else

previousEvent->next = newEvent;

newEvent->eVertex=currentVertex;

newEvent->owner = currentPolygon;

}

Tend building event list */

do
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ch = getc(inputFile);

while(isspace(ch));

if (ch == ')')

break; /*last vertex read for this polygon*/

else if (ch != '('){

fclose(inputFile);

fprintfCViError in vertex data file\n
n
);

return NULL;
}else{ Tread in left paren of next vertex*/

currentVertex->next=(vertex*)malloc(sizeof(vertex));

previousVertex = currentVertex;

currentVertex = currentVertex->next;

currentVertex->prev = previousVertex;

}

}/*end vertex while loop*/

currentVertex->next = currentPolygon->vertexList;

currentPolygon->vertexList->prev = currentVertex;

do

ch = getc(inputFile);

while(isspace(ch));

if (ch == ')'){/*last polygon read*/

currentPolygon->next = currentWorld->polygonList;

fclose(inputFile);

return currentWorld;

}else {/* read in first character of next polygon name */

ungetc(ch.inputFile);

currentPolygon->next = (polygon*)malloc(sizeof(polygon));

currentPolygon = currentPolygon->next;

}

}/*end polygon while loop*/

}

C. DECOMPOSE

1. decompose.

h

r * ******** * *****

FILE: decompose.h

PURPOSE: This file contains the prototype for the function which

examines the the vertices of the world and determines what

action to take in the following areas:

adding edges, deleting edges, starting cells,

and finishing cells.
* * *** ****** /

#ifndef decompose_h
#define decompose_h
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#include "build, h"

world* decompose( event*, node**);

#endif

2. decomposer

r * * **

FILE: decompose.c

PURPOSE: This file contains the function which examines the the vertices

of the world and determines what action to take in the

following areas: adding edges, deleting edges, starting cells,

and finishing cells.
* * * *

/

#include <stdio.h>

#include <stdlib.h>

#include "build.
h"

#include "decompose.!-!"

#include "util.h"

#include "decomputil.h"

int cellCount;

world*

decompose(event* eventList, node** cGraph)

{

world* robotsWorld;

edge* activeEdges;

edge* cEdge;

event* currentEvent;

event* simulEvent;

polygon* cellList;

fence* activeFences;

robotsWorld = malloc(sizeof(world));

robotsWorld->polygonList = NULL;

activeEdges = NULL;

cellList = NULL;

cellCount = 0;

activeEdges = NULL;

activeFences = NULL;

currentEvent = eventList;

52



while(currentEvent){

/ ADD EDGES LOOP /

simulEvent = currentEvent;

do{

addEdge(simulEvent, &activeEdges);

simulEvent = simulEvent->next;

}while((simulEvent) &&
(currentEvent->eVertex->posit.X == simulEvent->eVertex->posit.X));

/•"""FINISH CELLS LOOP /

simulEvent = currentEvent;

do{

if (simulEvent->eVertex->bndry[0]=='v")/*convex vertex'/

{

if ((simulEvent->eVertex->posit.X > simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X <= simulEvent->eVertex->prev->posit.X))

/* this is an up interior convex vertex*/

{

if (simulEvent->eVertex->bndry[1]=='0')/*only vertex*/

finishCellUp(simulEvent, &cellList,

activeEdges.&robotsWorld, &activeFences);

}else

if ((simulEvent->eVertex->posit.X < simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X > simulEvent->eVertex->prev->posit.X))

r this is a down exterior convex vertex*/

{

finishCellDown(simulEvent, &cellList,

activeEdges.&robotsWorld,&activeFences, 0);

}else

if ((simulEvent->eVertex->posit.X <= simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X < simulEvent->eVertex->prev->posit.X))

{

/* this is a minimal exterior convex vertex*/

if (simulEvent->eVertex->bndry[1]=='0')/*only vertex*/

finishCellUpDown(simulEvent, &cellList,

activeEdges.&robotsWorld,&activeFences);

}else

if ((simulEvent->eVertex->posit.X >= simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X> simulEvent->eVertex->prev->posit.X))

{

r this is a maximal exterior convex vertex*/

if (simulEvent->eVertex->bndry[1]=='0')/*only vertex*/

finishCellUp(simulEvent, &cellList,

activeEdges.&robotsWorld, &activeFences);

finishCellDown(simulEvent, &cellList,
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activeEdges,&robotsWorld, &activeFences, 0);

}

}else{/* concave vertex*/

if ((simulEvent->eVertex->posit.X > simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X >= simulEvent->eVertex->prev->posit.X))

{

r this is a maximal extreme concave vertex*/

if (simulEvent->eVertex->bndry[1]='0')/*only vertex*/

finishCelllsolated(simulEvent, &cellList, &robotsWorld);

}else

if ((simulEvent->eVertex->posit.X < simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X > simulEvent->eVertex->prev->posit.X))

{

I* this is an interior concave vertex*/

if ((simulEvent->eVertex->bndry[1]=='0') && (cellList))

extendCell(simulEvent, &cellList);/*only vertex*/

}else

if ((simulEvent->eVertex->posit.X == simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X > simulEvent->eVertex->prev->posit.X)){

I* this is a lower right corner*/

finishCellDown(simulEvent, &cellList, activeEdges,

&robotsWorld, &activeFences, 1);

}

}

simulEvent = simulEvent->next;

}while((simulEvent) &&
(currentEvent->eVertex->posit.X == simulEvent->eVertex->posit.X));

simulEvent = currentEvent;

/ START CELLS LOOP /

do{

if (simulEvent->eVertex->bndry[0]=='V')/*convex vertex*/

{

if ((simulEvent->eVertex->posit.X >= simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X < simulEvent->eVertex->prev->posit.X))

/*this is an up interior convex vertex*/

{

if (simulEvent->eVertex->bndry[1]=='0')/*only vertex*/

startCellUp(simulEvent, &cellList, activeEdges,

&activeFences, cGraph);

}else

if ((simulEvent->eVertex->posit.X < simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X >= simulEvent->eVertex->prev->posit.X))

r this is a down exterior convex vertex*/
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{

startCellDown(simulEvent, &cellList,

activeEdges, &activeFences, cGraph);

}else

if ((simulEvent->eVertex->posit.X < simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X < simulEvent->eVertex->prev->posit.X))

{

/* this is an minimal exterior convex vertex*/

if (simulEvent->eVertex->bndry[1]=='0')/*only vertex*/

startCellUp(simulEvent, &cellList,

activeEdges, &activeFences, cGraph);

startCellDown(simulEvent, &cellList,

activeEdges, &activeFences, cGraph);

}else{

/*this is a maximal exterior convex vertex*/

if (simulEvent->eVertex->bndry[1]=='0')/*only vertex*/

startCellUpDown(simulEvent, ScellList,

activeEdges, &activeFences, cGraph);

}

}else{/*concave vertex*/

if ((simulEvent->eVertex->posit.X < simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X < simulEvent->eVertex->prev->posit.X))

{

/* this is a minimal extreme concave vertex*/

startCelllsolated(simulEvent, &cellList, cGraph);

}else

if ((simulEvent->eVertex->posit.X >= simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X < simulEvent->eVertex->prev->posit.X))

{

/* this is a maximal extreme concave vertex*/

if ((simulEvent->eVertex->bndry[1]=='0') && (cellList))

extendCell(simulEvent, &cellList);/*only vertex*/

}else

if ((simulEvent->eVertex->posit.X < simulEvent->eVertex->next->posit.X)

&&(simulEvent->eVertex->posit.X == simulEvent->eVertex->prev->posit.X))

{

/* this is an upper right corner */

startCellDown(simulEvent, AcellList,

activeEdges, &activeFences, cGraph);

}

}

simulEvent = simulEvent->next;

}while((simulEvent) &&
(currentEvent->eVertex->posit.X == simulEvent->eVertex->posit.X));
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r* DELETE EDGES LOOP •••••"•

simulEvent = currentEvent;

do{

deleteEdge(simulEvent, &activeEdges);

simulEvent = simulEvent->next;

}while((simulEvent) &&
(currentEvent->eVertex->posit.X == simulEvent->eVertex->posit.X) &&
(activeEdges));

currentEvent = simulEvent;

/*The decomposition is complete, link up the last and first polygons*/

cellList=robotsWorld->polygonList;

while(cellList->next)

cellList = cellList->next;

cellList->next = robotsWorld->polygonList;

return robotsWorld;

}

D. DECOMPOSE UTILITIES

1. decomputil.h

/ * * *

FILE: decomposutil.h

PURPOSE: This file contains the prototypes for the functions which

do the actual work for the decomposition.

7

#ifndef dcmputil_h

#define dcmputilji

#include "build.h"

typedef struct edge{

vertex* leadingVertex;

vertex* trailingVertex;

double xPoint;

struct edge* next;

}edge;

typedef struct fence{
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vertex* topVertex;

vertex* bottomVertex;

polygon* owner;

struct fence* next;

}fence;

/*****"****
intersect(edge*. vertex*)************"***"********

This function computes the y-coordinate of the intersection of the

extension of the sweep line and the current edge. The x-coordinate is

the same as the current event.

7
double intersect(edge* , vertex*);

/****"****"***"***""**addEdge(event*, edge**)****

This function adds edges to the active edge list

int addEdge(event*, edge**);

/****** *
**********deleteEdge(event* edge**)**

This function deletes edges from the active edge list

int deleteEdge(event*. edge**);

/**** startCellUp(event*, polygon**, edge*, fence**, node*)**

This function finds the vertices for the start of an up cell

*
/

void startCellUp(event*, polygon**, edge*, fence**, node**);

/**********startCellDown(event*, polygon*, edge*, fence**, node**)*

This function finds the vertices for the start of a down cell

****** /

void startCellDown(evenf, polygon**, edge*, fence**, node**);

/*"******startCellUpDown(event*, polygon*, edge*, fence*, node**)*

This function finds the vertices for the start of an up/down cell

***** ****** *
/

void startCellUpDown(event*, polygon**, edge*, fence**, node**);

/** startCelllsolated(event*, polygon**, node**)*
"*

ADD ISOLATED CELL TO WORKING LIST
"""**** ***** * «....../

void startCelllsolated(event*, polygon**, node**);

/* finishCellUp(event*, polygon**, edge*, world**, fence**)*********

This function locates which cell on the active list is completed by this
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event, adds the apprpriate vertices, and adds new cell to the world

" * * ——•*••/

void finishCellUp(event*, polygon", edge*, world**, fence");

/******finishCellDown(event*. polygon**, edge*, world**, fence**, int)"*"

This function locates which cell on the active list is completed by this

event, adds the apprpriate vertices, and adds new cell to the world

"**"
/

void finishCellDown(event*. polygon", edge*, world**, fence**, int);

/*****finishCellUpDown(event*. polygon**, edge*, world**, fence*)

This function locates which cell on the active list is completed by this

event, adds the apprpriate vertices, and adds new cell to the world

******** —*—•*—« *
/

void finishCellUpDown(event*, polygon**, edge*, world**, fence**);

/*""finishCelllsolated(event*, polygon**, world**)
*****

This function locates which cell on the active list is completed by this

event, adds the apprpriate vertices, and adds new cell to the world

***** * *
/

void finishCelllsolated(event*. polygon**, world**);

/** *extendCell(event* polygon")
..........*.«*.

This function locates which cell on the active list needs to be

extended by this concave vertex

void extendCell(event*, polygon**);

/"""putFence(fence", polygon*, vertex*, Vertex*)*******•*""*"**
,

This function puts an adjacency fence on a list to be matched later

* ****** **** *
/

void putFence(fence", polygon*, vertex*, vertex*);

/"""""updateAdj(fence", polygon*, vertex*, vertex*, node**)

This function matches an adjacency fence with one already on the list

to determine cell adjacency, and then updates the adjacency graph

*****"/

void updateAdj(fence**,polygon*. vertex*, vertex'.node**);

This function adds a node to the connectivity graph whenever a cell

is created

**** *** *** *
/
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void addNode(node", polygon*);

#endif

2. decomputil.c

r *

FILE: decomposutil.c

PURPOSE: This file contains the functions which do the actual work

for the decomposition.

7

#include <stdlib.h>

#include <stdio.h>

#include "build.
h"

#include "decomputil.h"

#include "util.h"

/* "*
addEdge(event*. edge")*"*

This function adds edges to the active edge list

int

addEdge(event* currentEvent, edge** activeEdges){

edge* currentEdge;

edge* previousEdge;

int edgesAdded = 0;

double delta = 1e-20;/*small number close to zero*/

currentEdge = (*activeEdges);

previousEdge= (*activeEdges);

while((currentEdge) &&
((currentEdge->xPoint = intersect(currentEdge, currentEvent->eVertex))

> (currentEvent->eVertex->posit.Y+delta)))
{

previousEdge = currentEdge;

currentEdge = currentEdge->next;

}

/•identify convex and concave vertices, and simultaneous vertices now too*/

if (order((currentEvent->eVertex->prev->posit),

(currentEvent->eVertex->posit),

(currentEvent->eVertex->next->posit)) > 0.0){

currentEvent->eVertex->bndry[0]='V;

if((currentEvent->eVertex->posit.X > currentEvent->eVertex->prev->posit.X)&&

(currentEvent->eVertex->posit.X <currentEvent->eVertex->next->posit.X))
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currentEvent->eVertex->bndry[1]='0';

else if ((previousEdge)&&

((previousEdge->leadingVertex->posit.X ==currentEvent->eVertex->posit.X)ll

(previousEdge->trailingVertex->posit.X ==currentEvent->eVertex->posit.X)))

currentEvent->eVertex->bndry[1]='N';

else

currentEvent->eVertex->bndry[1]='0';

}else{

currentEvent->eVertex->bndry[0]='C';

if(((currentEvent->eVertex->posit.X >=currentEvent->eVertex->prev->posit.X)&&

(currentEvent->eVertex->posit.X <= currentEvent->eVertex->next->posit.X)) II

((currentEvent->eVertex->posit.X >currentEvent->eVertex->prev->posit.X)&&

(currentEvent->eVertex->posit.X > currentEvent->eVertex->next->posit.X)) II

((currentEvent->eVertex->posit.X <currentEvent->eVerlex->prev->posit.X)&&

(currentEvent->eVertex->posit.X <currentEvent->eVertex->next->posit.X)))

currentEvent->eVertex->bndry[1]='0';

else if ((previousEdge)&&

((previousEdge->leadingVertex->posit.X ==currentEvent->eVertex->posit.X)ll

(previousEdge->trailingVertex->posit.X ==currentEvent->eVertex->posit.X)))

currentEvent->eVertex->bndry[1]='N';

else

currentEvent->eVertex->bndry[1]='0';

}

/*maximal vertex; no edges added*/

if ((currentEvent->eVertex->posit.X > currentEvent->eVertex->next->posit.X) &&
(currentEvent->eVertex->posit.X > currentEvent->eVertex->prev->posit.X)){

return edgesAdded;

}

/"examine edge defined by next vertex*/

if (currentEvent->eVertex->posit.X < currentEvent->eVertex->next->posit.X){

if (currentEdge == (*activeEdges)){

currentEdge = (edge*)malloc(sizeof(edge));

currentEdge->next = (*activeEdges);

CactiveEdges) = currentEdge;

}else{

currentEdge=(edge*)malloc(sizeof(edge));

currentEdge->next = previousEdge->next;

previousEdge->next = currentEdge;

}

currentEdge->leadingVertex = currentEvent->eVertex;

currentEdge->trailingVertex = currentEvent->eVertex->next;

currentEdge->xPoint = currentEvent->eVertex->posit.Y;

edgesAdded++;

}

/"examine edge defined by previouss vertex*/

if (currentEvent->eVertex->posit.X < currentEvent->eVertex->prev->posit.X){

if (edgesAdded && currentEvent->eVertex->prev->posit.Y <
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currentEvent->eVertex->next->posit.Y){

previousEdge = currentEdge;

currentEdge = currentEdge->next;

}

if (currentEdge == (*activeEdges)){

currentEdge = (edge*)ma!loc(sizeof(edge));

currentEdge->next = (*activeEdges);

(*activeEdges) = currentEdge;

}else{

currentEdge=(edge*)malloc(sizeof(edge));

currentEdge->next = previousEdge->next;

previousEdge->next = currentEdge;

} currentEdge->leadingVertex = currentEvent->eVertex;

currentEdge->trailingVertex = currentEvent->eVertex->prev;

currentEdge->xPoint = currentEvent->eVertex->posit.Y;

edgesAdded++;

}

return edgesAdded;

}

/ ******
******deleteEdge(event* edge**)**

This function deletes edges from the active edge list

int

deleteEdge(event* currentEvent, edge** activeEdges){

edge* currentEdge;

edge* previousEdge;

int edgesDeleted = 0;

currentEdge = (*activeEdges);

previousEdge = (*activeEdges);

while(currentEdge){

if (currentEvent->eVertex == currentEdge->trailingVertex){

if (currentEdge == (*activeEdges))

(*activeEdges)=(*activeEdges)->next;

else

previousEdge->next = currentEdge->next;

currentEdge->leadingVertex = NULL;

currentEdge->trailingVertex = NULL;

currentEdge->next = NULL;

free(currentEdge);

edgesDeleted++;

if(*activeEdges)
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currentEdge = previousEdge->next;

else

currentEdge = NULL;
}else{

previousEdge=currentEdge;

currentEdge=currentEdge->next;

}

}

return edgesDeleted;

}

/*"*" *"""intersect(edge*, vertex*)""
"""

This function computes the y-coordinate of the intersection of the

extension of the sweep line and the current edge. The x-coordinate is

the same as the current event.

7
double

intersect(edge* currentEdge, vertex* currentEvertex){

return(((((currentEdge->trailingVertex->posit.Y)-

(currentEdge->leadingVertex->posit.Y))*

((currentEvertex->posit.X)-(currentEdge->leadingVertex->posit.X)))/

((currentEdge->trailingVertex->posit.X)-(currentEdge->leadingVertex->posit.X)))

+ currentEdge->leadingVertex->posit.Y);

}

/****
startCellUp(event*, polygon**, edge*, fence**, node*)****"

This function finds the vertices for the start of an up cell

***** *
/

void

startCellUp (event* cEvent, polygon** cellList,

edge* activeEdges, fence** activeFences, node** cGraph){

edge* cEdge;

polygon* currentCell;

vertex* curVertex;

vertex* cellVertex;

extern int cellCount;

++cellCount;

I* put new cell on active list and make a node on the graph*/

currentCell=(*cellList);

(*cellList)=(polygon*)malloc(sizeof(polygon));

(*cellList)->next = currentCell;

currentCell=(*cellList);

addNode(cGraph, currentCell);

sprintf(currentCell->name,"C%d'\cellCount);

currentCell->mode = -1;
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r add current event vertex to this new cell */

curVertex = cEvent->eVertex;

cellVertex = currentCell->vertexList =(vertex*)malloc(sizeof(vertex));

cellVertex->posit.X = curVertex->posit.X;

cellVertex->posit.Y = curVertex->posit.Y;

sprintf(cellVertex->bndry,"\0");

r add another vertex 7
cellVertex->prev=(vertex*)malloc(sizeof(vertex));

currentCell->open2 =curVertex->prev;/*bottom open vertex of this cell7

cellVertex->prev->next = cellVertex;

cellVertex->prev->prev = NULL;
cellVertex->prev->posit.X = curVertex->prev->posit.X;

cellVertex->prev->posit.Y = curVertex->prev->posit.Y;

sprintf(cellVertex->prev->bndry,"%s",cEvent->owner->name);

Tfind appropriate edge which intersects the sweep Iine7

cEdge = activeEdges;

while((cEdge->next->xPoint

= intersect(cEdge->next,curVertex)) > curVertex->posit.Y)

cEdge = cEdge->next;

/* add this intersection point as a cell vertex 7
cellVertex->next=(vertex*)malloc(sizeof(vertex));

cellVertex->next->prev = cellVertex;

cellVertex->next->posit.X = curVertex->posit.X;

cellVertex->next->posit.Y = cEdge->xPoint;

sprintf(cellVertex->next->bndry,"\0");

/* this edge will also be a cell adjacency edge 7
updateAdj(activeFences, currentCeli,cellVertex->next,cellVertex,cGraph);

/* add another vertex 7
cellVertex = cellVertex->next;

cellVertex->next=(vertex*)malloc(sizeof(vertex));

currentCell->open1 = cEdge->trailingVertex;/*top open vertex of this cell7

cellVertex->next->prev = cellVertex;

cellVertex->next->next = NULL;
cellVertex->next->posit.X = cEdge->trailingVertex->posit.X;

cellVertex->next->posit.Y = cEdge->trailingVertex->posit.Y;

sprintf(cellVertex->next->bndry,"%s",cEvent->owner->name);

}

I** startCellDown(event*. polygon*, edge*, fence**, node**)***

This function finds the vertices for the start of a down cell

/

void

startCellDown (event* cEvent, polygon** cellList,

edge* activeEdges, fence** activeFences, node** cGraph){
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edge* cEdge;

polygon* currentCell;

vertex* curVertex;

vertex* nextVertex;

vertex* cellVertex;

extern int cellCount;

++cellCount;

r put new cell on active list and make a node on the graph*/

currentCell=(*cellList);

(*cellList)=(polygon*)malloc(sizeof(polygon));

(*cellList)->next = currentCell;

currentCell=(*cellList);

addNode(cGraph, currentCell);

sprintf(currentCell->name,"C%d", cellCount);

currentCell->mode = -1;

I* add current event vertex to this cell */

curVertex = nextVertex = cEvent->eVertex;

cellVertex = currentCell->vertexList=(vertex*)malloc(sizeof(vertex));

cellVertex->posit.X = curVertex->posit.X;

cellVertex->posit.Y = curVertex->posit.Y;

sprintf(cellVertex->bndry,"\0");

/* add another vertex */

cellVertex->next=(vertex*)malloc(sizeof(vertex));

currentCell->open1 = curVertex->next;/*top open vertex for this cell*/

cellVertex->next->prev = cellVertex;

cellVertex->next->next = NULL;

cellVertex->next->posit.X = curVertex->next->posit.X;

cellVertex->next->posit.Y = curVertex->next->posit.Y;

sprintf(cellVertex->next->bndry,"%s",cEvent->owner->name);

do{/* do this for all simultaneous vertices below the current one */

curVertex = nextVertex;

cEvent = cEvent->next;

nextVertex = cEvent->eVertex;

V find appropriate edge which intersects the sweep line */

cEdge = activeEdges;

while((cEdge->xPoint = intersect(cEdge.curVertex)) >= curVertex->posit.Y)

cEdge = cEdge->next;

I* add this intersection point as a cell vertex */

cellVertex->prev=(vertex*)malloc(sizeof(vertex));

cellVertex->prev->next = cellVertex;

cellVertex->prev->posit.X = curVertex->posit.X;

cellVertex->prev->posit.Y = cEdge->xPoint;
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I* will edge be an adjacency edge? 7
if((curVertex->prev == nextVertex)&&

(cellVertex->prev->posit.X == nextVertex->posit.X))

sprintf(cellVertex->prev->bndry,"%s",cEvent->owner->name);

else{

sprintf(cellVertex->prev->bndry,"\0");

updateAdj(activeFences, currentCell,

cellVertex.cellVertex^prev.cGraph);

}

cellVertex = cellVertex->prev;

}while (cEdge->trailingVertex->posit.X == curVertex->posit.X);

r add another vertex 7
currentCell->open2 = cEdge->trailingVertex;/*bottom open vertex of cell7

cellVertex->prev=(vertex*)malloc(sizeof(vertex));

cellVertex->prev->next = cellVertex;

cellVertex->prev->prev = NULL;

cellVertex->prev->posit.X = cEdge->trailingVertex->posit.X;

cellVertex->prev->posit.Y = cEdge->trailingVertex->posit.Y;

sprintf(cellVertex->prev->bndryr%s",cEvent->owner->name);

}

/"*******startCellUpDown(event*, polygon*, edge*, fence*, node**)
'

This function finds the vertices for the start of an up/down cell

* ****/

void

startCellUpDown (event* cEvent, polygon** cellList,

edge* activeEdges, fence** activeFences, node** cGraph){

edge* cEdge;

polygon* currentCell;

vertex* curVertex;

vertex* nextVertex;

vertex* cellVertex;

extern int cellCount;

++cellCount;

/*put new cell on active list and make a node on the graph*/

currentCell=(*cellList);

(*cellList)=(polygon*)malloc(sizeof(polygon));

(*cellList)->next = currentCell;

currentCell=(*cellList);

addNode(cGraph, currentCell);

currentCell->mode = -1;

sprintf(currentCell->name,"C%d", cellCount);

I* add current event vertex to this cell 7
curVertex = cEvent->eVertex;

cellVertex = currentCell->vertexList = (vertex*)malloc(sizeof(vertex));
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cellVertex->posit.X = curVertex->posit.X;

cellVertex->posit.Y = curVertex->posit.Y;

sprintf(cellVertex->bndry I
"\0");

r find appropriate edge which intersects the sweep line 7
cEdge = activeEdges; while((cEdge->next->xPoint

=intersect(cEdge->next,curVertex)) > curVertex->posit.Y)

cEdge = cEdge->next;

I* add this intersection point as a cell vertex 7
cellVertex->next=(vertex*)malloc(sizeof(vertex));

cellVertex->next->prev = cellVertex;

cellVertex->next->posit.X = curVertex->posit.X;

cellVertex->next->posit.Y = cEdge->xPoint;

sprintf(cellVertex->next->bndry,
n
\0");

r this edge will also be a cell adjacency edge 7
updateAdj(activeFences, currentCell,cellVertex->next,cellVertex,cGraph);

I* add another vertex 7
cellVertex = cellVertex->next;

cellVertex->next=(vertex*)malloc(sizeof(vertex));

currentCell->open1 = cEdge->trailingVertex;/*top open vertex for cell7

cellVertex->next->prev = cellVertex;

cellVertex->next->next = NULL;

cellVertex->next->posit.X = cEdge->trailingVertex->posit.X;

cellVertex->next->posit.Y = cEdge->trailingVertex->posit.Y;

sprintf(cellVertex->next->bndry,"%s",cEvent->owner->name);

curVertex= nextVertex = cEvent->eVertex;

cellVertex = currentCell->vertexList;

do{/* do this for all simultaneous vertices 7
curVertex = nextVertex;

cEvent = cEvent->next;

nextVertex = cEvent->eVertex;

I* find appropriate edge which intersects the sweep line 7
cEdge = activeEdges;

while((cEdge->xPoint = intersect(cEdge.curVertex)) >= curVertex->posit.Y)

cEdge = cEdge->next;

r add this intersection point as a cell vertex 7
cellVertex->prev=(vertex*)malloc(sizeof(vertex));

cellVertex->prev->next = cellVertex;

cellVertex->prev->posit.X = curVertex->posit.X;

cellVertex->prev->posit.Y = cEdge->xPoint;

I* will edge be an adjacency edge too? 7
if(curVertex->prev == nextVertex)

sprintf(cellVertex->prev->bndry,"%s",cEvent->owner->name);

else{
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sprintf(cellVertex->prev->bndry,"\0");

updateAdj(activeFences, currentCell,

cellVertex,cellVertex->prev,cGraph);

}

cellVertex = cellVertex->prev;

}while (cEdge->trailingVertex->posit.X == curVertex->posit.X);

/*add another vertex 7
cellVertex->prev=(vertex*)malloc(sizeof(vertex));

currentCell->open2 = cEdge->trailingVertex;/*bottom open vertex of cell*/

cellVertex->prev->next = cellVertex;

cellVertex->prev->prev = NULL;
cellVertex->prev->posit.X = cEdge->trailingVertex->posit.X;

cellVertex->prev->posit.Y = cEdge->trailingVertex->posit.Y;

sprintf(cellVertex->prev->bndry,"%s",cEvent->owner->name);

}

P startCelllsolated(event*, polygon", node")

ADD ISOLATED CELL TO WORKING LIST
""* * *

/

void

startCelllsolated (event* cEvent, polygon" cellList, node** cGraph){

polygon* currentCell;

edge* cEdge;

vertex* curVertex;

vertex* nextVertex;

vertex* cellVertex;

extern int cellCount;

++cellCount;

/* add new cell to active list */

currentCell=(*cellList);

(*cellList)=(polygon*)malloc(sizeof(polygon));

(*cellList)->next = currentCell;

currentCell=(*cellList);

addNode(cGraph, currentCell);

currentCell->mode = -1;

sprintf(currentCell->name,"C%d", cellCount);

r add current event vertex to this cell */

curVertex = cEvent->eVertex;

cellVertex = currentCell->vertexList = (vertex*)malloc(sizeof(vertex));

cellVertex->posit.X = curVertex->posit.X;

cellVertex->posit.Y = curVertex->posit.Y;

sprintf(cellVertex->bndry,"%s",cEvent->owner->name);

r add another vertex */

cellVertex->next=(vertex*)malloc(sizeof(vertex));
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currentCell->open1 = curVertex->next;/*top open vertex of cell*/

cellVertex->next->prev = cellVertex;

cellVertex->next->next = NULL;
cellVertex->next->posit.X = curVertex->next->posit.X;

cellVertex->next->posit.Y = curVertex->next->posit.Y;

sprintf(cellVertex->next->bndry,"\0");

r add another vertex */

cellVertex->prev=(vertex*)malloc(sizeof(vertex));

currentCell->open2 = curVertex->prev;/*bottom open vertex of cell*/

cellVertex->prev->next = cellVertex;

cellVertex->prev->prev = NULL;
cellVertex->prev->posit.X = curVertex->prev->posit.X;

cellVertex->prev->posit.Y = curVertex->prev->posit.Y;

sprintf(cellVertex->prev->bndry
I
"%s",cEvent->owner->name);

}

/******finishCellUp(evenf, polygon**, edge*, world**, fence**)
•••••«•

This function locates which cell on the active list is completed by this

event, adds the apprpriate vertices, and adds new cell to the world

*
/

void

finishCellUp (event* cEvent, polygon** cellList,

edge* activeEdges, world** decompWorld, fence** activeFences){

edge* cEdge;

polygon* currentCell;

polygon* prevCell;

vertex* curVertex;

vertex* cellPendVertex;

vertex* cellNendVertex;

fence* newFence;

prevCell = currentCell = fcellList);

curVertex = cEvent->eVertex;

cEdge = activeEdges;

while((cEdge->next->xPoint

=intersect(cEdge->next,curVertex)) > curVertex->posit.Y)

cEdge = cEdge->next;

r find cell on active list which is to be completed by this vertex*/

while (currentCell->open1 != cEdge->trailingVertex){

prevCell = currentCell;

currentCell = currentCell->next;

}

/* move a pointer to both open vertices 7
cellPendVertex = cellNendVertex = currentCell->vertexList;

while (cellPendVertex->prev)
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cellPendVertex = cellPendVertex->prev;

while (cellNendVertex->next)

cellNendVertex = cellNendVertex->next;

r link up open vertices 7
cellNendVertex->next = cellPendVertex;

cellNendVertex->next->prev = cellNendVertex;

cellNendVertex->posit.Y = cEdge->xPoint;

cellNendVertex->posit.X = curVertex->posit.X;

sprintf(cellNendVertex->bndry,"\0");

r this edge is an adjacency edge 7
putFence(activeFences, currentCell, cellNendVertex, cellPendVertex);

l* add completed cell to the world 7
if (prevCell != currentCell)

prevCell->next = currentCell->next;

else

(*cetll_ist) = currentCell->next;

currentCell->next = (*decompWorld)->polygonList;

(*decompWorld)->polygonList = currentCell;

}

/ finishCellDown(event*, polygon", edge*, world", fence**, int)"****

This function locates which cell on the active list is completed by this

event, adds the apprpriate vertices, and adds new cell to the world

*
/

void

finishCellDown (event* cEvent, polygon** cellList,

edge* activeEdges, world** decompWorld, fence** activeFences,

int concave){

edge* cEdge;

polygon* currentCell;

polygon* prevCell;

vertex* curVertex;

vertex* nextVertex;

vertex* cellPendVertex;

vertex* cellNendVertex;

prevCell = currentCell = (*cellList);

curVertex = nextVertex = cEvent->eVertex;

r find cell on active list which isto be completed by this vertex*/

while (currentCell->open1 != curVertex){

prevCell = currentCell;

currentCell = currentCell ->next;
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}

/* move a pointer to both open vertices*/

cellPendVertex = cellNendVertex = currentCell->vertexList;

while (cellNendVertex->next)

cellNendVertex = cellNendVertex->next;

while (cellPendVertex->prev)

cellPendVertex = cellPendVertex->prev;

do{/* do this for all simultaneous events*/

curVertex = nextVertex;

cEvent = cEvent->next;

nextVertex = cEvent->eVertex;

/* add simultaneous event vertices to this cell */

cEdge = activeEdges;

while((cEdge->xPoint = intersect(cEdge.curVertex)) >= curVertex->posit.Y)

cEdge = cEdge->next;

cellNendVertex->next=(vertex*)malloc(sizeof(vertex));

cellNendVertex->next->prev = cellNendVertex;

cellNendVertex->next->posit.X = curVertex->posit.X;

cellNendVertex->next->posit.Y = cEdge->xPoint;

/* is this added edge an adjacency edge too? 7
if((curVertex->next == nextVertex)&&

(cellNendVertex->next->posit.X == nextVertex->posit.X))

sprintf(cellNendVertex->bndry,"%s",cEvent->owner->name);

else{

sprintf(cellNendVertex->next->bndry,"\0");

putFence(activeFences,currentCell,

cellNendVertex,cellNendVertex->next);

}

cellNendVertex = cellNendVertex->next;

Jwhile ((concave && ((curVertex->posit.X == curVertex->next->posit.X)&&

(curVertex->next->posit.X < curVertex->next->next->posit.X)))ll

((cEdge->leadingVertex->posit.X == curVertex->posit.X) &&
((nextVertex->posit.X <= nextVertex->prev->posit.X)&&

(nextVertex->posit.X <= nextVertex->next->posit.X))));

/•link up open vertices */

cellNendVertex->next = cellPendVertex->next;

cellPendVertex->next->prev = cellNendVertex;

r add completed cell to the world */

if (prevCell != currentCell)

prevCell->next = currentCell->next;

else

(*cellList) = currentCell->next;

currentCell->next = (*decompWorld)->polygonList;
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(*decompWorld)->polygonl_ist = currentCell;

}

/*"**finishCellUpDown(event*, polygon", edge*, world**, fence*)*"****

This function locates which cell on the active list is completed by this

event, adds the apprpriate vertices, and adds new cell to the world

* * * ****** * *"****/

void

finishCellUpDown (event* cEvent, polygon" cellList,

edge* activeEdges, world** decompWorld, fence** activeFences){

edge* topEdge;

edge* bottomEdge;

polygon* currentCell;

polygon* prevCell;

vertex* curVertex;

vertex* nextVertex;

vertex* cellPendVertex;

vertex* cellNendVertex;

prevCell = currentCell = ("cellList);

curVertex = nextVertex = cEvent->eVertex;

topEdge = bottomEdge = activeEdges;

while((topEdge->next->xPoint

=intersect(topEdge->next,curVertex)) > curVertex->posit.Y)

topEdge = topEdge->next;

/* find eel on active list which is to be completed by this vertex*/

while (currentCell->open1 != topEdge->trailingVertex){

prevCell = currentCell;

currentCell = currentCell ->next;

}

/* move a pointer to both open vertices */

cellPendVertex = cellNendVertex = currentCell->vertexList;

while (cellNendVertex->next)

cellNendVertex = cellNendVertex->next;

while (cellPendVertex->prev)

cellPendVertex = cellPendVertex->prev;

/* add another vertex */

cellNendVertex->next = malloc(sizeof(vertex));

cellNendVertex->next->prev = cellNendVertex;

cellNendVertex->posit.X = curVertex->posit.X;

cellNendVertex->posit.Y = topEdge->xPoint;

sprintf(cellNendVertex->bndry,"\0");

71



I* update the top open vertex 7
cellNendVertex->next->posit.X = curVertex->posit.X;

cellNendVertex->next->posit.Y = curVertex->posit.Y;

sprintf(cellNendVertex->next->bndry,"\0
B
);

/* this edge is an adjacency edge 7
putFence(activeFences, currentCell, cellNendVertex, cellNendVertex->next);

do{/* do for all simultaneous vertices */

cellNendVertex = cellNendVertex->next;

curVertex = nextVertex;

cEvent = cEvent->next;

nextVertex = cEvent->eVertex;

bottomEdge = activeEdges;

while((bottomEdge->xPoint =

intersect(bottomEdge,curVertex)) >= curVertex->posit.Y)

bottomEdge = bottomEdge->next;

cellNendVertex->next=(vertex*)malloc(sizeof(vertex));

cellNendVertex->next->prev = cellNendVertex;

cellNendVertex->next->posit.X = curVertex->posit.X;

cellNendVertex->next->posit.Y = bottomEdge->xPoint;

/* is this edge an adjacency edge too? 7
if((curVertex->next == nextVertex)&&

(cellNendVertex->posit.X == nextVertex->posit.X))

sprintf(cellNendVertex->next->bndry,"%s'
,

,cEvent->owner->name);

else{

sprintf(cellNendVertex->next->bndry
1

'^0,,

);

putFence(activeFences,currentCell,

cellNendVertex,cellNendVertex->next);

}

}while ((bottomEdge->leadingVertex->posit.X == curVertex->posit.X) &&
((nextVertex->posit.X <= nextVertex->prev->posit.X)&&

(nextVertex->posit.X <= nextVertex->next->posit.X)));

I* link up open vertices 7
cellNendVertex->next->next = cellPendVertex->next;

cellPendVertex->next->prev = cellNendVertex->next;

r add completed cell to the world 7
if (prevCell != currentCell)

prevCell->next = currentCell->next;

else

(*cellList) = currentCell->next;

currentCell->next = (*decompWorld)->polygonl_ist;

(*decompWorld)->polygonl_ist = currentCell;

}

/*""finishCelllsolated(event*, polygon**, world**)"**""***"**"**

This function locates which cell on the active list is completed by this
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event, adds the apprpriate vertices, and adds new cell to the world

* — *
/

void

finishCelllsolated (event* cEvent, polygon" cellList.world** decompWorld){

polygon* currentCell;

polygon* prevCell;

vertex* curVertex;

vertex* cellPendVertex;

vertex* cellNendVertex;

prevCell = currentCell = (*cellList);

curVertex = cEvent->eVertex;

/* find cell on active list to be completed by this event */

while((currentCell->open1 != curVertex)

II (currentCell->open2 != curVertex)){

prevCell = currentCell;

currentCell = currentCell->next;

}

r move a pointer to both open vertices */

cellPendVertex = cellNendVertex = currentCell->vertexList;

while (cellPendVertex->prev)

cellPendVertex = cellPendVertex->prev;

while (cellNendVertex->next)

cellNendVertex = cellNendVertex->next;

r link up open vertices */

cellNendVertex->next = cellPendVertex->next;

cellPendVertex->next->prev = cellNendVertex;

sprintf(cellPendVertex->bndry,"%s
B
,cEvent->owner->name);

sprintf(cellPendVertex->next->bndryr%s",cEvent->owner->name);

cellPendVertex->next = cellPendVertex->prev = NULL;

free(cellPendVertex);

/* add completed cell to the world */

if (prevCell != currentCell)

prevCell->next = currentCell->next;

else

(*cellList) = currentCell->next;

currentCell->next = (*decompWorld)->polygonList;

(*decompWorld)->polygonList = currentCell;

}

/** ***extendCell(event* polygon**)
•••**•*••*«

This function locates which cell on the active list needs to be
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extended by this concave vertex

void

extendCell(event* cEvent, polygon** cellList){

polygon* currentCell;

vertex* cellVertex;

vertex* curVertex;

currentCell = (*cellList);

curVertex = cEvent->eVertex;

r find the correct cell */

while ((currentCell->open1 != curVertex)

&& (currentCell->open2 != curVertex))

currentCell = currentCell->next;

cellVertex = currentCell->vertexList;

/* is this the top of a cell VI
if ((curVertex->posit.X >= curVertex->next->posit.X)

&&(curVertex->posit.X < curVertex->prev->posit.X)){

while(cellVertex->prev)

cellVertex = cellVertex->prev;

cellVertex->prev = malloc(sizeof(vertex));

cellVertex->prev->prev = NULL;

cellVertex->prev->next = cellVertex;

cellVertex->prev->posit.X = curVertex->prev->posit.X;

cellVertex->prev->posit.Y = curVertex->prev->posit.Y;

currentCell->open2 = curVertex->prev;

sprintf(cellVertex->bndry,"%s",cEvent->owner->name);

sprintf(cellVertex->prev->bndry,"%s",cEvent->owner->name);

}else{/* or the botom? */

while(cellVertex->next)

cellVertex = cellVertex->next;

cellVertex->next = malloc(sizeof(vertex));

cellVertex->next->next = NULL;
cellVertex->next->prev = cellVertex;

cellVertex->next->posit.X = curVertex->next->posit.X;

cellVertex->next->posit.Y = curVertex->next->posit.Y;

currentCell->open1 = curVertex->next;

sprintf(cellVertex->bndry,"%s^Event->owner->name);

sprintf(cellVertex->next->bndry,"%s",cEvent->owner->name); }

}

/******putFence(fence**, polygon*, vertex*, vertex*)******************'

This function puts an adjacency fence on a list to be matched later

void

putFence(fence** fenceList, polygon* cell,
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vertex* topVertex, vertex* bottomVertex){

fence* newFence;

newFence = (fence*)malloc(sizeof(fence));

newFence->owner = cell;

newFence-MopVertex = topVertex;

newFence->bottomVertex = bottomVertex;

newFence->next = (*fencel_ist);

("fenceList) = newFence;

}

/****
updateAdj(fence**. polygon*, vertex*, vertex*, node**)

**

This function matches an aajacency fence with one already on the list

to determine cell adjacency, and then updates the adjacency graph

* **** /

void

updateAdj(fence** fenceList, polygon* curCell,

vertex* topVertex, vertex* bottomVertex, node** cGraph){

fence* curFence;

fence* prevFence;

node* firstNode;

node* secondNode;

arc* cArc;

/* find the matching fence */

curFence = prevFence = (*fencel_ist);

while((curFence->topVertex->posit.X != topVertex->posit.X)ll

(curFence->topVertex->posit.Y != topVertex->posit.Y)ll

(curFence->bottomVertex->posit.X != bottomVertex->posit.X)ll

(curFence->bottomVertex->posit.Y != bottomVertex->posit.Y)){

prevFence = curFence;

curFence = curFence ->next;

}

I* deleted the matched fence from the list */

if(curFence == ('fenceList))

(*fenceList)=(*fenceList)->next;

else

prevFence->next = curFence->next;

I* find the appropriate nodes of the graph */

firstNode = (*cGraph);

while(firstNode->cell != curCell)

firstNode = firstNode->next;
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}

secondNode = (*cGraph);

while(secondNode->cell != curFence->owner)

secondNode = secondNode->next;

I* add arcs to both nodes on the graph 7
cArc = (arc*)malloc(sizeof(arc));

cArc->next = firstNode->arcList;

firstNode->arcList = cArc;

cArc->Node = secondNode;

cArc->visited = 0;

sprintf(bottomVertex->bndry,"%s'',curFence->owner->name);

cArc = (arc*)malloc(sizeof(arc));

cArc->next = secondNode->arcList;

secondNode->arcList = cArc;

cArc->Node = firstNode;

cArc->visited = 0;

sprintf(curFence->topVertex->bndry
I
"%s",curCell->name);

/******"****"** addNode(node**, polygon**)
* *****'

This function adds a node to the connectivity graph whenever a cell

is created

** ** * *
/

void

addNode(node** cGraph, polygon* curCell){

node* newNode;

newNode = (*cGraph);

fcGraph) = (node*)malloc(sizeof(node));

(*cGraph)->next = newNode;
newNode = (*cGraph);

newNode->cell = curCell;

newNode->arcList = NULL;

newNode->predecessor = NULL;

newNode->curArc = NULL;

E. MISCELANEOUS UTILITIES

1. util.h

r ******* * * .............

FILE: util.h

PURPOSE: This file contains some small utility functions used

by other functions in this program
* »"««.. .............................
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#ifndef world_util_h

#define world_util_h

#include "build,h"

r
PURPOSE: returns 0.0 if the three points are colinear, < 0.0 if

they are clockwise, and > 0.0 if they are counterclockwise
/

double order(point, point, point);

r *

PURPOSE: frees memory allocated during world decompostion
* * * *

/

void freeWorld(world**, world", event", node**);

r * * *****

PURPOSE: reads either the world name or poygon name from the inputfile
* * * ****** *****/

void getName(FILE*. char*, int);

#endif

2. util.c

r
FILE: util.c

PURPOSE: This file contains some small utility functions used

by other functions in this program
* *

/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "util.h"

r getName(FILE*. char*)

This function reads the characters from the input file which correspond

to a world name, or a polygon name
*/

void

getName(FILE* inputjile, char* name, int length)

{

int counter!;

int counter2;

char letter;

char tempName[100];

counterl =0;

77



while(1){

if ((letter = getc(inputjile)) == '(')

break;

else if((letter > '!') && (letter < '-')){

tempName[counter1] = letter;

counter1++;

}

}

for (counter2=0;((counter2 < (length-1))&&(counter2 != counter1));counter2++)

name[counter2]=tempName[counter2];

name[counter2]= *\0';

}

^••..•••••••••••••••••••
orc|er^p jnti p j nti p in t)

••••••••••*••*••*•

This function computes whether the orientation of the points is colinear,

clockwise, or counter-clockwise. If the points are colinear, the function

returns 0. If the points are clockwise, the function returns a number < 0.

If the points are counter-clockwise, the function returns a number >
**** *

/

double

order (point first, point second, point third)

{

return ((((second.X - first.X)*(third.Y - first.Y))

-((third.X - first.XHsecond.Y - first.Y)))/2.0);

}

/**** **
freeWorld(world**, world**, event**, node**)

Thie function frees the allocated memory for one decomposition before

another decomposition is attempted
* * *

/

void

freeWorld(world** origWorld, world** decWorld,

event** eventList, node** cGraph)

{

polygon* curPolygon;

polygon* nextPolygon;

vertex* curVertex;

vertex* nextVertex;

node* curNode;

node* nextNode;

arc* curArc;

curPolygon = (*origWorld)->polygonList;

do{

curVertex = curPolygon->vertexList;

curVertex->prev->next = NULL;

do{

nextVertex =curVertex->next;
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free(curVertex);

curVertex = nextVertex;

}while (curVertex);

nextPolygon = curPolygon->next;

free(curPolygon);

curPolygon = nextPolygon;

}while(curPolygon != (*origWorld)->polygonList);

if (*decWorld){

curPolygon = (*decWor1d)->polygonList;

do{

curVertex = curPolygon->vertexList;

curVertex->prev->next = NULL;

do{

nextVertex =curVertex->next;

free(curVertex);

curVertex = nextVertex;

}while (curVertex);

nextPolygon = curPolygon->next;

free(curPolygon);

curPolygon = nextPolygon;

}while(curPolygon != (*decWorld)->polygonList);

}

if (*cGraph){

curNode = fcGraph);

do{

curArc = curNode->arcList;

do{

curNode->arcList = curArc->next;

free(curArc);

curArc = curNode->arcList;

}while(curArc);

nextNode = curNode->next;

free(curNode);

curNode = nextNode;

}while(curNode);

}

free((*origWorld));

free((*decWorld));

free((*eventList));
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free((*cGraph));

(*eventList) = NULL;

(•cGraph) = NULL;

}

F. CREATE WORLD FILES

1. worldfile.h

r """ *

FILE: worldfile.h

PURPOSE: This file contains a function prototype

#ifndef worldfile_h

#define worldfile.h

#include "build.h"

r createWorldFile(world\ node*, char*, double*, int'.char*)**'

This function makes the file which defines the cells and vertices of

the world, and the nodes and arcs of the graph. It also makes two

functions which intialize these values
* * 7

void createWorldFile(world*. node*, char*, double, int, char*);

#endif

2. worldfile.c

r *

FILE: worldfile.c

PURPOSE: This file contains the function which creates the C files

that are used to link the world representation into yamabico's

kernel.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "build.h"
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/********createWorldFile(world*. node*, char*, double*, int*,char*)***

This function makes the file which defines the cells and vertices of

the world, and the nodes and arcs of the graph. It also makes two

functions which intialize these values
***** * * ***/

void

createWorldFile(world* robotWorld, node* cGraph, char* fileName,

double sweepAngle.int worldNumber, char* worldTag){

FILE* worldCfile;

polygon* curPolygon;

vertex* curVertex;

node* curNode;

node* adjNode;

arc* curArc;

double cosRotlnv;

double sinRotlnv;

double rotX, rotY;

int counteM =1

int counter2 =1

int counter3 =1

cosRotlnv = cos((-(M_PI*(90.0-sweepAngle)))/180.0);

sinRotlnv = sin((-(M_PI*(90.0-sweepAngle)))/180.0);

worldCfile = fopen(fileName,"w'
1

);

fpr

fpr

fpr

fpr

fpr

fpr

fpr

fpr

fpr

fpr

fpn

fpr

ntf(worldCfile,T This file is generated from world informational");

ntf(worldCfile," and must be compiled and linked into Yamabico'sW);

ntf(worldCfile," kernel. The file Worlds. h\" contains the \n");

ntf(worldCfile,
n
declarations which allow access to the \n");

ntf(worldCfile," world model *An\n");

ntf(worldCfile,"#include <stdlib.h>\n");

ntf(worldCfile,"#include <stdio.h>\n");

ntf(worldCfile,"#include <string.h>\n
n

);

ntf(worldCfile,"#include\"build.h\"\n\n");

ntf(worldCfile,Tdeclaring structure for worid*An\n");

ntf(worldCfile,"world robotsWorld_%s;\n\n",woridTag);

ntf(worldCfile,Tdelcaring structures for polygons and vertices'An");

counterl = 1;

curPolygon = robotWorld->polygonl_ist;

do{

fprintf(worldCfile,'Vipolygon poly%d_%d;\n",worldNumber,counter1);

counter2 = 1;

curVertex = curPolygon->vertexList;

do{

fprintf(worldCfile,"vertex vert%d_%d_%d;\n",worldNumber,

counterl, counter2);

curVertex = curVertex->next;
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++counter2;

}while(curVertex != curPolygon->vertexList);

curPolygon = curPolygon->next;

++counter1

;

}while(curPolygon != robotWorld->polygonl_ist);

r variables for connectivity graph */

if (cGraph){

fprintf(worldCfile,"\n\n/*declaring first node for graph'AMn");

fprintf(worldCfile,"node*worldGraph_%s;\n\n"
I
worldTag);

fprintf(worldCfile,Tdelcaring structures for nodes and arcs*An
B
);

counteM = 1

;

curNode = cGraph;

do{

fprintf(worldCfile,'
,

\nnode n6de%d_%d;\n",worldNumber,counter1 );

counter2 = 1

;

curArc = curNode->arcList;

do{

fprintf(worldCfile,"arc arc%d_%d_%d;\n",worldNumber,

counterl, counter2);

curArc = curArc->next;

++counter2;

}while(curArc);

curNode = curNode->next;

++counter1

;

}while(curNode);

}

/"initialization function for world representation*/

fprintf(worldCfile,"\n/*assigning values for polygons and vertices'An");

fprintf(worldCfile,"\n\nlnitializeWorld_%s(){\n",worldTag);

fprintf(worldCfile,"\n robotsWorld_%s.polygonList = &poly%d_1 ; \n",

worldTag, worldNumber);

counterl = 1;

curPolygon = robotWorld->polygonl_ist;

do{

fprintf(worldCfile,"\n strcpy(poly%d_%d.name, \"%s\");\n",

worldNumber, counterl ,curPolygon->name);

fprintf(worldCfile," poly%d_%d.mode = %d;\n",worldNumber,

counterl ,curPolygon->mode);

fprintf(worldCfile," poly%d_%d.vertexList = &vert%d_%d_1 ;\n",

worldNumber.counterl , woridNumber.counteM );

if(curPolygon->next != robotWorld->polygonList)

fprintf(worldCfile I

" poly%d_%d.next = &poly%d_%d;\n",

worldNumber.counterl ,worldNumber,(counteM +1 ));

else

fprintf(worldCfile," poly%d_%d.next = &poly%d_1 ;\n",

worldNumber.counterl .worldNumber);

counter2 = 1;

82



curVertex = curPolygon->vertexList;

do{

rotX = ((curVertex->posit.X*cosRotlnv)-(curVertex->posit.Y*sinRotlnv));

rotY = ((curVertex->posit.X*sinRotlnv)+(curVertex->posit.Y*cosRotlnv));

fprintf(woridCfile," vert%d_%d_%d.posit.X = %6.5f;\n",

worldNumber.counterl ,counter2,rotX);

fprintf(woridCfile," vert%d_%d_%d.posit.Y = %6.5f;\n",

worldNumber,counter1,counter2,rotY);

fprintf(worldCfile," strcpy(vert%d_%d_ /od.bndry,Y'%sY');\n'\

worldNumber,counter1,counter2,curVertex->bndry);

if(curVertex->next != curPolygon->verlexList)

fprintf(worldCfile," vert%d_%d_%d.next = &vert%d_%d_%d;\n"

,worldNumber,counter1 ,counter2,

worldNumber.counterl ,(counter2+1 ));

else

fprintf(worldCfile," vert%d_%d_%d.next = &vert%d_%d_1 ;\n"

.worldNumber, counter"! ,counter2,

worldNumber.counterl );

if(curVertex != curPolygor»vertexList)

fprintf(worldCfile," vert%d_%d_%d.prev = &vert%d_%d_%d;\n"
.worldNumber.counterl ,counter2,

worldNumber.counterl ,(counter2-1 ));

curVertex = curVertex->next;

++counter2;

}while(curVertex != curPolygon->vertexList);

fprintf(worldCfile," vert%d_%d_1 .prev = &vert%d_%d_%d;\n",

worldNumber.counterl .worldNumber.counterl ,(counter2-1 ));

curPolygon = curPolygon->next;

++counter1;

}while(curPolygon != robotWorld->polygonList);

fprintf(worldCfile,"}\n");

/•initialization function for connectivity graph V
if (cGraph){

fprintf(worldCfile,'\nrassigning values for node and arcs*An");

fprintf(worldCfile,'Vi\nlnitializeGraph_%s(){\n'',worldTag);

fprintf(worldCfile,'Vi worldGraph_%s = &node%d_1 ; \n",

worldTag. worldNumber); counterl = 1;

curNode = cGraph;

do{

counter3=1;

curPolygon = robotWorld->polygonList;

while(curPolygon != curNode->cell){

counter3++;

curPolygon = curPolygon->next;

}

fprintf(worldCfile." node%d_%d.cell = &poly%d_%d;\n",

worldNumber.counterl , worldNumber.counter3);
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fprintf(worldCfile," node%d_%d.arcList = &arc%d_%d_1 ;\n",

worldNumber.counterl ,worldNumber,counter1 );

fprintf(woridCfile," node%d_%d.predecessor = NULL;\n", worldNumber.counterl );

fprintf(worldCfile," node%d_%d.curArc = NULL;\n", worldNumber.counterl);

if(curNode->next)

fprintf(worldCfile," node%d_%d.next = &node%d_%d;\n",

worldNumber.counterl ,worldNumber,(counter1 +1 ));

else

fprintf(woridCfile." node%d_%d.next = NULL;\n",

worldNumber.counterl );

counter2 = 1 ; curArc = curNode->arcList;

do{

counter3 = 1

;

/•which polygon number corresesponds to this cell?*/

adjNode = cGraph;

while(curArc->Node != adjNode){

counter3++;

adjNode = adjNode->next;

}

fprintf(worldCfile," arc%d_%d_%d.Node = &node%d_%d;\n",

worldNumber.counterl ,counter2, worldNumber,counter3);

fprintftworldCfile," arc%d_%d_%d.visited = 0;\n".

worldNumber.counterl ,counter2);

if(curArc->next)

fprintf(worldCfile." arc%d_%d_%d.next = &arc%d_%d_%d;\n",

worldNumber.counterl ,counter2,

worldNumber.counterl ,(counter2+1 ));

else

fprintf(worldCfile," arc%d_%d_%d.next = NULL;\n",

worldNumber.counterl ,counter2);

curArc = curArc->next;

++counter2;

}while(curArc);

curNode = curNode->next;

++counter1

;

}while(curNode);

fprintf(worldCfile,"}\n");

}

fclose(worldCfile);

printf(The world for the %3.2f degree sweep is in the file: %s\n",

sweepAngle, fileName);

printf(
uand has the varialble name of: robotsWorld_%s\n",worldTag);

3. sample world file

/* This file is generated from world information

and must be compiled and linked into Yamabico's

kernel. The file "worlds.h" contains the
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declarations which allow access to the

world model */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "build.h"

/"declaring structure for world*/

world robotsWorld_180_00;

/*delcaring structures for polygons and vertices*/

polygon poly2_1

vertex vert2_1_1

vertex vert2_1_2

vertex vert2_1_3

vertex vert2_1_4

vertex vert2_1_5

vertex vert2_1_6

polygon poly2_2;

vertex vert2_2_1

;

vertex vert2_2_2;

vertex vert2_2_3;

vertex vert2_2_4;

vertex vert2_2_5;

vertex vert2_2_6;

polygon poly2_3;

vertex vert2_3_1

;

vertex vert2_3_2;

vertex vert2_3_3;

vertex vert2_3_4;

polygon poly2_4;

vertex vert2_4_1;

vertex vert2_4_2;

vertex vert2_4_3;

vertex vert2_4_4;

polygon poly2_5;

vertex vert2_5_1;

vertex vert2_5_2;

vertex vert2_5_3;

vertex vert2_5_4;

polygon poly2_6;

vertex vert2_6_1

;

vertex vert2_6_2;
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vertex vert2_6_3;

vertex vert2_6_4;

vertex vert2_6_5;

vertex vert2_6_6;

vertex vert2_6_7;

polygon poly2_7;

vertex vert2_7_1

;

vertex vert2_7_2;

vertex vert2_7_3;

vertex vert2_7_4;

vertex vert2_7_5;

vertex vert2_7_6;

vertex vert2_7_7;

vertex vert2_7_8;

vertex vert2_7_9;

vertex vert2_7_10;

vertex vert2_7_1 1

;

polygon poly2_8;

vertex vert2_8_1;

vertex vert2_8_2;

vertex vert2_8_3;

vertex vert2_8_4;

polygon poly2_9;

vertex vert2_9_1

;

vertex vert2_9_2;

vertex vert2_9_3;

vertex vert2_9_4;

polygon poly2_10;

vertex vert2_10_1;

vertex vert2_10_2;

vertex vert2_10_3;

vertex vert2_10_4;

vertex vert2_10_5;

vertex vert2_10_6;

vertex vert2_10_7;

polygon poly2_1

1

vertex vert2_11_1

vertex vert2_11_2

vertex vert2_11_3

vertex vert2 11 4

polygon poly2_12;

vertex vert2_12_1;

vertex vert2_12_2;

vertex vert2_12_3;

vertex vert2_12_4;
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polygoii poly2_1 3;

vertex vert2_13_1;

vertex vert2_13_2;

vertex vert2_13_3;

vertex vert2_13_4;

vertex vert2_13_5;

polygon poly2_14;

vertex vert2_14_1;

vertex vert2_14_2;

vertex vert2_14_3;

vertex vert2_14_4;

vertex vert2_14_5;

vertex vert2_14_6;

polygori poly2_15;

vertex vert2_15_1;

vertex vert2_15_2;

vertex vert2_15_3;

vertex vert2_15_4;

vertex vert2_15_5;

polygon poly2_16;

vertex vert2_16_1;

vertex vert2_16_2;

vertex vert2_16_3;

vertex vert2_16_4;

vertex vert2_16_5;

polygoii poly2_17;

vertex vert2_17_1;

vertex vert2_17_2;

vertex vert2_17_3;

vertex vert2_17_4;

vertex vert2_17_5;

vertex vert2_17_6;

/"declaring first node for graph*/

node* worldGraph_180_00;

Tdelcaring structures for nodes and arcs*/

node node2_1

;

arc arc2_1_1;

node node2_2;

arc arc2_2_1

;
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node node2_3;

arc arc2_3_1

;

arc arc2_3_2;

node node2_4;

arc arc2_4_1

;

node node2_5;

arc arc2_5_1

;

arc arc2_5_2;

arc arc2_5_3;

node node2_6;

arc arc2_6_1

;

arc arc2_6_2;

node node2_7;

arc arc2_7_1

;

arc arc2_7_2;

arc arc2_7_3;

arc arc2_7_4;

arc arc2_7_5;

node node2_8;

arc arc2_8_1

;

arc arc2_8_2;

arc arc2_8_3;

node node2_9;

arc arc2_9_1

;

arc arc2_9_2;

node node2_10;

arc arc2_10_1;

arc arc2_10_2;

node node2_11;

arc arc2_11_1;

arc arc2_11_2;

node node2_12;

arc arc2_12_1;

arc arc2_12_2;

node node2_13;

arc arc2_1 3_1

;

arc arc2_13_2;

node node2_1 4;

arc arc2_14_1;

88



node node2_15;

arc arc2_15_1;

node node2_16;

arc arc2_16_1;

node node2_17;

arc arc2_17_1;

/•assigning values for polygons and vertices*/

InitializeWorfcM 80_00(){

robotsWorld_180_00.polygonl_ist = &poly2_1;

strcpy(poly2_1.name, "C17");

poly2_1.mode = -1;

poly2_1 .vertexList = &vert2_1_1;

poly2_1.next = &poly2_2;

vert2_1_1.posit.X = 5.60000;

vert2_1_1 . posit.Y = 3.80000;

strcpy(vert2_1_1 .bndry,"");

vert2_1_1 .next = &vert2_1_2;

vert2_1_2.posit.X = 5.60000

vert2_1_2. posit.Y = 6.00000

strcpy(vert2_1_2.bndry,"h1
n

)

vert2_1_2.next = &vert2_1_3;

vert2_1_2.prev = &vert2_1_1

;

vert2_1_3.posit.X = 8.40000

vert2_1_3.posit.Y = 6.00000

strcpy(vert2_1_3.bndry,"hr)

vert2_1_3.next = &vert2_1_4;

vert2_1_3.prev = &vert2_1_2;

vert2_1_4.posit.X = 8.40000

vert2_1_4.posit.Y = 3.80000

strcpy(vert2_1 _4.bndry,
n
h1 ")

vert2_1_4.next = &vert2_1_5;

vert2_1_4.prev = &vert2_1_3;

vert2_1_5.posit.X = 7.40000;

vert2_1_5.posit.Y = 3.80000;

strcpy(vert2_1_5.bndry,"C15");

vert2_1_5.next = &vert2_1_6;

vert2_1_5.prev = &vert2_1_4;

vert2_1_6.posit.X = 6.40000

vert2_1_6.posit.Y = 3.80000

strcpy(vert2_1_6.bndry,"h1 ")

vert2_1_6.next = &vert2_1_1

vert2_1_6prev = &vert2_1_5

vert2_1_1.prev = &vert2_1_6
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strcpy(poly2_2.name, "C16");

poly2_2.mode = -1;

poly2_2.vertexList = &vert2_2_1

;

poly2_2.next = &poly2_3;

vert2_2_1.posit.X = 0.00000;

vert2_2_1.posit.Y = 3.80000;

strcpy(vert2_2_1 .bndry,"");

vert2_2_1 .next = &vert2_2_2;

vert2_2_2.posit.X = 0.00000

vert2_2_2.posit.Y = 6.00000

strcpy(vert2_2_2.bndry,"h1")

vert2_2_2.next = &vert2_2_3;

verl2_2_2.prev = &vert2_2_1;

vert2_2_3.posit.X = 4.20000;

vert2_2_3.posit.Y = 6.00000;

strcpy(vert2_2_3.bndry,"");

vert2_2_3.next = &vert2_2_4;

vert2_2_3.prev = &vert2_2_2;

vert2_2_4.posit.X = 4.20000

vert2_2_4.posit.Y = 3.80000

strcpy(vert2_2_4.bndry,"hr)

vert2_2_4.next = &vert2_2_5;

vert2_2_4.prev = &vert2_2_3;

vert2_2_5.posit.X = 2.00000;

vert2_2_5.posit.Y = 3.80000;

strcpy(vert2_2_5.bndry,"C1 2");

vert2_2_5.next = &vert2_2_6;

vert2_2_5.prev = &vert2_2_4;

vert2_2_6.posit.X = 1.00000

vert2_2_6.posit.Y = 3.80000

strcpy(vert2_2_6.bndry,
n
hr)

vert2_2_6.next = &vert2_2_1

vert2_2_6.prev = &vert2_2_5

vert2_2_1 .prev = &vert2_2_6

strcpy(poly2_3.name, "C14");

poly2_3.mode = -1;

poly2_3.vertexList = &verl2_3_1

;

poly2_3.next = &poly2_4;

vert2_3_1 .posit.X = 4.40000;

vert2_3_1 .posit.Y = 3.60000;

strcpy(vert2_3_1 .bndry,"");

vert2_3_1 .next = &vert2_3_2;

vert2_3_2.posit.X = 4.40000;

vert2_3_2.posit.Y = 4.20000;

Strcpy(vert2_3_2.bndry,"h1 ");

vert2_3_2.next = &vert2_3_3;

vert2_3_2.prev = &vert2_3_1;

vert2_3_3.posit.X = 5.40000;

vert2_3_3.posit.Y = 4.20000;

strcpy(vert2_3_3.bndry,"");
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vert2_3_3.next = &vert2_3_4;

vert2_3_3.prev = &vert2_3_2;

vert2_3_4.posit.X = 5.40000;

vert2_3_4.posit.Y = 3.60000;

strcpy(vert2_3_4.bndry,"Cl 3");

vert2_3_4.next = &vert2_3_1

vert2_3_4.prev = &vert2_3_3

vert2_3_1 .prev = &vert2_3_4

strcpy(poly2_4.name, "C15");

poly2_4.mode = -1;

poly2_4.vertexList = &vert2_4_1;

poly2_4.next = &poly2_5;

vert2_4_1.posit.X = 6.40000;

vert2_4_1 .posit.Y = 3.60000;

strcpy(vert2_4_1 .bndry,"");

vert2_4_1 .next = &vert2_4_2;

vert2_4_2.posit.X = 6.40000;

vert2_4_2.posit.Y = 3.80000;

strcpy(vert2_4_2.bndry,
n
C1 T);

vert2_4_2.next = &vert2_4_3;

vert2_4_2.prev = &vert2_4_1;

vert2_4_3.posit.X = 7.40000;

vert2_4_3.posit.Y = 3.80000;

strcpy(vert2_4_3.bndry
1

"");

vert2_4_3.next = &vert2_4_4;

vert2_4_3.prev = &vert2_4_2;

vert2_4_4.posit.X = 7.40000;

vert2_4_4.posit.Y = 3.60000;

strcpy(vert2_4_4.bndry,"C1 3");

vert2_4_4.next = &vert2_4_1

vert2_4_4.prev = &vert2_4_3

vert2_4_1 .prev = &vert2_4_4

strcpy(poly2_5.name,
U
C12");

poly2_5.mode = -1;

poly2_5.vertexList = &vert2_5_1

;

poly2_5.next = &poly2_6;

vert2_5_1 .posit.X = 1 .00000;

vert2_5_1 .posit.Y = 3.60000;

strcpy(vert2_5_1 .bodry,"");

vert2_5_1 .next = &vert2_5_2;

vert2_5_2.posit.X = 1 .00000;

vert2_5_2.posit.Y = 3.80000;

strcpy(vert2_5_2.bndry,"C1 6");

vert2_5_2.next = &vert2_5_3;

vert2_5_2.prev = &vert2_5_1

;

vert2_5_3.posit.X = 2.00000;

vert2_5_3.posit.Y = 3.80000;

strcpy^en^.S.S.bndry,"");

vert2_5_3.next = &vert2_5_4;
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vert2_5_3.prev = &vert2_5_2;

vert2_5_4.posit.X = 2.00000;

vert2_5_4.posit.Y = 3.60000;

strcpy(vert2_5_4.bndry,"C1 1");

vert2_5_4.next = &vert2_5_1

vert2_5_4.prev = &vert2_5_3

vert2_5_1 prev = &vert2_5_4

strcpy(poly2_6.name, "C13");

poly2_6.mode = -1;

poly2_6.vertexList = &vert2_6_1

;

poly2_6.next = &poly2_7;

vert2_6_1 .posit.X = 2.00000;

vert2_6_1 .posit.Y = 3.60000;

strcpy(vert2_6_1 .bndry,"");

vert2_6_1 .next = &vert2_6_2;

vert2_6_2. posit.X = 4.40000;

vert2_6_2. posit.Y = 3.60000;

strcpy(vert2_6_2.bndry,"C1 4");

vert2_6_2.next = &vert2_6_3;

vert2_6_2.prev = &vert2_6_1

;

vert2_6_3.posit.X = 5.40000

vert2_6_3.posit.Y = 3.60000

strcpy(vert2_6_3.bndry,"h1 ")

vert2_6_3.next = &vert2_6_4;

vert2_6_3.prev = &vert2_6_2;

vert2_6_4.posit.X = 6.40000;

vert2_6_4.posit.Y = 3.60000;

strcpy(vert2_6_4.bndry,"C1 5");

vert2_6_4.next = &vert2_6_5;

vert2_6_4.prev = &vert2_6_3;

vert2_6_5.posit.X = 7.40000

vert2_6_5.posit.Y = 3.60000

strcpy(vert2_6_5.bndry,"h1 ")

vert2_6_5.next = &vert2_6_6;

vert2_6_5.prev = &vert2_6_4;

vert2_6_6.posit.X = 9.60000;

vert2_6_6.posit.Y = 3.60000;

strcpy(vert2_6_6.bndry,
m

');

vert2_6_6.next = &vert2_6_7;

vert2_6_6.prev = &vert2_6_5;

vert2_6_7.posit.X = 9.60000;

vert2_6_7.posit.Y = 3.60000;

strcpy(vert2_6_7.bndry,"C1

1

B
);

vert2_6_7.next = &vert2_6_1

vert2_6_7.prev = &vert2_6_6

vert2_6_1 .prev = &vert2_6_7

strcpy(poly2_7.name, "C1 1");

poly2_7.mode = -1;

poly2_7.vertexList = &vert2_7_1

;
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poly2_7.next = &poly2_8;

vert2_7_1 .posit.X = 4.00000;

vert2_7_1 .posit.Y = 2.50000;

strcpy(vert2_7_1 .bndry,"C1 0");

vert2_7_1 .next = &vert2_7_2;

vert2_7_2.posit.X = 0.00000;

vert2_7_2.posit.Y = 2.50000;

strcpy(vert2_7_2.bndry,
m
');

vert2_7_2.next = &vert2_7_3;

vert2_7_2.prev = &vert2_7_1;

vert2_7_3.posit.X = 0.00000;

vert2_7_3.posit.Y = 3.60000;

strcpy(vert2_7_3.bndry,"hr);

vert2_7_3.next = &vert2_7_4;

vert2_7_3.prev = &vert2_7_2;

vert2_7_4.posit.X = 1 .00000;

vert2_7_4.posit.Y = 3.60000;

strcpy(vert2_7_4.bndry,"C1 2");

vert2_7_4.next = &vert2_7_5;

vert2_7_4.prev = &vert2_7_3;

vert2_7_5. posit.X = 2.00000;

vert2_7_5.posit.Y = 3.60000;

strcpy(vert2_7_5.bndry,"C1 3");

vert2_7_5.next = &vert2_7_6;

vert2_7_5.prev = &vert2_7_4;

vert2_7_6.posit.X = 9.60000;

vert2_7_6. posit.Y = 3.60000;

strcpy(vert2_7_6.bndry,"");

vert2_7_6.next = &vert2_7_7;

vert2_7_6.prev = &vert2_7_5;

vert2_7_7.posit.X = 9.60000;

vert2_7_7.posit.Y = 2.50000;

strcpy(vert2_7_7.bndry,"h1 ");

vert2_7_7.next = &vert2_7_8;

vert2_7_7.prev = &vert2_7_6;

vert2_7_8. posit.X = 8.60000;

vert2_7_8. posit.Y = 2.50000;

strcpy(vert2_7_8.bndry,"C9");

vert2_7_8.next = &vert2_7_9;

vert2_7_8.prev = &vert2_7_7;

vert2_7_9.posit.X = 8.00000;

vert2_7_9.posit.Y = 2.50000;

strcpy(vert2_7_9.bndry,"hr);

vert2_7_9.next = &vert2_7_10;

vert2_7_9.prev = &vert2_7_8;

vert2_7_10.posit.X = 7.40000;

vert2_7_10.posit.Y = 2.50000;

strcpy(vert2_7_1 0.bndry,"C8");

vert2_7_1 0.next = &vert2_7_1 1

;

vert2_7_10.prev = &vert2_7_9;

vert2_7_1 1 .posit.X = 6.80000;
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vert2_7_1 1 .posit.Y = 2.50000;

strcpy(vert2_7_1 1 .bndry,"h1");

vert2_7_1 1 .next = &vert2_7_1

;

vert2_7_1 1 .prev = &vert2_7_10;

vert2_7_1 .prev = &vert2_7_1 1

;

strcpy(poly2_8.name, "C9");

poly2_8.mode = -1;

poly2_8.vertexList = &vert2_8_1

;

poly2_8.next = &poly2_9;

vert2_8_1.posit.X = 8.60000;

vert2_8_1 .posit.Y = 2.30000;

strcpy(vert2_8_1 .bndry,"C4");

vert2_8_1 next = &vert2_8_2;

vert2_8_2.posit.X = 8.00000;

vert2_8_2.posit.Y = 2.30000;

strcpy(vert2_8_2.bndry,
m

');

vert2_8_2.next = &vert2_8_3;

vert2_8_2.prev = &vert2_8_1;

vert2_8_3.posit.X = 8.00000;

vert2_8_3.posit.Y = 2.50000;

strcpy(vert2_8_3.bndry,"C1 1");

vert2_8_3.next = &vert2_8_4;

vert2_8_3.prev = &vert2_8_2;

vert2_8_4.posit.X = 8.60000;

vert2_8_4.posit.Y = 2.50000;

strcpy(vert2_8_4.bndry,
m
');

vert2_8_4.next = &vert2_8_1

vert2_8_4.prev = &vert2_8_3

vert2_8_1 .prev = &vert2_8_4

strcpy(poly2_9.name, "C8");

poly2_9.mode = -1;

poly2_9.vertexList = &vert2_9_1;

poly2_9.next = &poly2_10;

vert2_9_1 .posit.X = 6.80000;

vert2_9_1 .posit.Y = 2.30000;

strcpy(vert2_9_1 .bndry,"");

vert2_9_1 .next = &vert2_9_2;

vert2_9_2.posit.X = 6.80000;

vert2_9_2.posit.Y = 2.50000;

strcpy(vert2_9_2.bndry,
n
C1 1");

vert2_9_2.next = &vert2_9_3;

vert2_9_2.prev = &vert2_9_1

;

vert2_9_3.posit.X = 7.40000;

vert2_9_3.posit.Y = 2.50000;

strcpy(vert2_9_3.bndry,'
m

);

vert2_9_3.next = &vert2_9_4;

vert2_9_3.prev = &vert2_9_2;

vert2_9_4.posit.X = 7.40000;

vert2_9_4.posit.Y = 2.30000;
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strcpy(vert2_9_4.bndry,"C3");

vert2_9_4.next = &vert2_9_1

;

vert2_9_4.prev = &vert2_9_3;

vert2_9_1 .prev = &vert2_9_4;

strcpy(poly2_10.name, "C10");

poly2_10.mode = -1;

poly2_10.vertexl_ist = &vert2_10_1;

poly2_10.next = &poly2_1 1

;

vert2_10_1.posit.X = 0.00000;

vert2_10_1.posit.Y = 2.50000;

strcpy(vert2_1 0_1 .bndry,"");

vert2_10_1.next = &vert2_10_2;

vert2_10_2.posit.X = 0.00000;

vert2_10_2.posit.Y = 2.50000;

strcpy(vert2_1 0_2.bndry,"C1
1

");

vert2_10_2.next = &vert2_10_3;

vert2_10_2.prev = &vert2_10_1;

vert2_10_3.posit.X = 4.00000

vert2_10_3.posit.Y = 2.50000

strcpy(vert2_1 0_3.bndry,"h 1
")

vert2_10_3.next = &vert2_10_4;

vert2_10_3.prev = &vert2_10_2;

vert2_10_4.posit.X = 4.00000;

vert2_10_4.posit.Y = 2.50000;

strcpy(vert2_1 0_4.bndry,"C7*);

vert2_10_4.next = &vert2_10_5;

vert2_10_4.prev = &vert2_10_3;

vert2_10_5.posit.X = 3.20000;

vert2_10_5.posit.Y = 2.50000;

strcpy(vert2_10_5.bndry,"hr);

vert2_10_5.next = &vert2_10_6;

verl2_10_5.prev = &vert2_10_4;

vert2_10_6.posit.X = 1.40000;

vert2_10_6.posit.Y = 2.50000;

strcpy(vert2_1 0_6.bndry,"C5");

vert2_10_6.next = &vert2_10_7;

vert2_10_6.prev = &vert2_10_5;

vert2_10_7.posit.X = 0.80000

vert2_10_7.posit.Y = 2.50000

strcpy(vert2_1 0_7.bndry,"h1")

vert2_10_7.next = &vert2_10_1

vert2_10_7.prev = &vert2_10_6

vert2_10_1.prev = &vert2_10_7

strcpy(poly2_1 1 .name,
U
CT);

poly2_1 1 .mode = -1;

poly2_1 1 .vertexList = &vert2_1 1_1

;

poly2_1 1 .next = &poly2_12;

vert2_1 1_1 .posit.X = 4.00000;

vert2_1 1_1 .posit.Y = 2.30000;
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strcpy(vert2_1 1_1 .bndry,"C6");

vert2_1 1_1 .next = &vert2_1 1 _2;

vert2_1 1_2.posit.X = 3.20000;

vert2_1 1_2.posit.Y = 2.30000;

strcpy(vert2_1 1_2.bndry,'
m

);

vert2_1 1_2.next = &vert2_1 1_3;

vert2_1 1_2.prev = &vert2_1 1_1

;

vert2_1 1_3.posit.X = 3.20000;

vert2_1 1_3.posit.Y = 2.50000;

strcpy(vert2_1 1_3.bndry,"C10")

vert2_1 1_3.next = &vert2_1 1_4

vert2_11_3.prev = &vert2_11_2

vert2_1 1_4.posit.X = 4.00000;

vert2_1 1_4.posit.Y = 2.50000;

strcpy(vert2_1 1_4.bndry,"");

vert2_11_4.next = &vert2_11_1

vert2_1 1_4.prev = &vert2_1 1_3

vert2_1 1 _1 .prev = &vert2_1 1 _4

strcpy(poly2_12.name, "C5");

poly2_12.mode = -1;

poly2_12.vertexl_ist = &vert2_12_1;

poly2_12.next = &poly2_13;

vert2_12_1.posit.X = 0.80000;

vert2_12_1.posit.Y = 2.30000;

strcpy(vert2_1 2_1 .bndryr);

vert2_12_1.next = &vert2_12_2;

vert2_12_2.posit.X = 0.80000;

vert2_12_2.posit.Y = 2.50000;

strcpy(vert2_1 2_2.bndry,"C1 0");

vert2_12_2.next = &vert2_12_3;

vert2_12_2.prev = &vert2_12_1;

vert2_12_3.posit.X = 1.40000;

vert2_12_3.posit.Y = 2.50000;

strcpy(vert2_1 2_3.bndry,'
m

);

vert2_12_3.next = &vert2_12_4;

vert2_12_3.prev = &vert2_12_2;

vert2_12_4.posit.X = 1.40000;

vert2_12_4.posit.Y = 2.30000;

strcpy(vert2_1 2_4.bndry,"C1 ");

vert2_12_4.next = &vert2_12_1

vert2_12_4.prev = &vert2_12_3

vert2_12_1.prev = &vert2_12_4

strcpy(poly2_13.name, "C4");

poly2_13.mode = -1;

poly2_13.vertexList = &vert2_13_1;

poly2_13.next = &poly2_14;

vert2_13_1.posit.X = 8.00000;

vert2_13_1 .posit.Y = 0.00000;

strcpy(vert2_1 3_1 .bndry,"hr);
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vert2_13_1.next = &vert2_13_2;

vert2_13_2.posit.X = 8.00000;

vert2_13_2.posit.Y = 2.30000;

strcpy(vert2_1 3_2.bndry,"C9");

vert2_13_2.next = &vert2_13_3;

vert2_1 3_2.prev = &vert2_1 3_1

;

vert2_13_3.posit.X = 8.60000;

vert2_13_3.posit.Y = 2.30000;

strcpy(vert2_1 3_3.bndry,"");

vert2_13_3.next = &vert2_13_4;

vert2_13_3.prev = &vert2_13_2;

vert2_13_4.posit.X = 9.60000

vert2_13_4.posit.Y = 2.30000

strcpy(vert2_1 3_4.bndry,"h1")

vert2_13_4.next = &vert2_13_5;

vert2_13_4.prev = &vert2_13_3;

vert2_13_5.posit.X = 9.60000

vert2_13_5.posit.Y = 0.00000

strcpy(vert2_13_5.bndry,"h1")

vert2_13_5.next = &vert2_13_1

vert2_13_5.prev = &vert2_13_4

vert2_1 3_1 .prev = &vert2_1 3_5

strcpy(poly2_14.name, "C3");

poly2_14.mode = -1;

poly2_14.vertexList = &vert2_14_1

poly2_14.next = &poly2_15;

vert2_14_1.posit.X = 5.00000;

vert2_14_1. posit.Y = 0.00000;

strcpy(vert2_14_1.bndry,
n
hr);

vert2_14_1.next = &vert2_14_2;

vert2_14_2.posit.X = 5.00000;

vert2_14_2. posit.Y = 2.30000;

strcpy(vert2_1 4_2.bndry,"h1 ");

vert2_14_2.next = &vert2_14_3;

vert2_1 4_2.prev = &vert2_1 4_1

;

vert2_14_3.posit.X = 6.80000;

vert2_14_3.posit.Y = 2.30000;

strcpy(vert2_1 4_3.bndry,"C8");

vert2_14_3.next = &vert2_14_4;

vert2_14_3.prev = &vert2_14_2;

vert2_14_4.posit.X = 7.40000;

vert2_14_4.posit.Y = 2.30000;

strcpy(vert2_1 4_4.bndry,"hr);

vert2_14_4.next = &vert2_14_5;

vert2_14_4.prev = &vert2_14_3;

vert2_14_5.posit.X = 7.80000;

vert2_14_5.posit.Y = 2.30000;

strcpy(vert2_14_5.bndry,
m
');

vert2_14_5.next = &vert2_14_6;

vert2_14_5.prev = &vert2_14_4;
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vert2_14_6.posit.X = 7.80000

vert2_14_6.posit.Y = 0.00000

strcpy(vert2_1 4_6.bndry,"hr)

vert2_14_6.next = &vert2_14_1

vert2_14_6.prev = &vert2_14_5

vert2_1 4_1 .prev = &vert2_1 4_6

strcpy(poly2_15.name, "C6");

poly2_15.mode = -1;

poly2_15.vertexList = &vert2_15_1;

poly2_15.next = &poly2_16;

vert2_15_1.posit.X = 3.20000;

vert2_15_1.posit.Y = 2.30000;

strcpy(vert2_1 5_1 .bndry,"");

vert2_15_1.next = &vert2_15_2;

vert2_15_2.posit.X = 3.20000;

vert2_15_2.posit.Y = 2.30000;

strcpy(vert2_1 5_2.bndry ,"C7");

vert2_15_2.next = &vert2_15_3;

vert2_1 5_2.prev = &vert2_1 5_1

;

vert2_15_3.posit.X = 4.00000;

ver12_15_3.posit.Y = 2.30000;

strcpy(vert2_1 5_3.bndry,"");

vert2_15_3.next = &vert2_15_4;

vert2_15_3.prev = &vert2_15_2;

vert2_15_4.posit.X = 4.80000

vert2_15_4.posit.Y = 2.30000

strcpy(vert2_1 5_4.bndry,"hr)

vert2_15_4.next = &vert2_15_5;

vert2_15_4.prev = &vert2_15_3;

vert2_15_5.posit.X = 4.80000;

vert2_15_5.posit.Y = 2.30000;

strcpy(vert2_1 5_5.bndry,"C2");

vert2_15_5.next = &vert2_15_1

vert2_15_5.prev = &vert2_15_4

vert2_15_1.prev = &vert2_15_5

strcpy(poly2_16.name, "C2");

poly2_16.mode = -1;

poly2_16.vertexList = &vert2_16_1;

poly2_16.next = &poly2_17;

vert2_16_1.posit.X = 2.40000;

vert2_16_1.posit.Y = 0.00000;

strcpy(vert2_16_1.bndry,"hT);

vert2_16_1.next = &vert2_16_2;

vert2_16_2.posit.X = 2.40000;

vert2_16_2.posit.Y = 2.30000;

strcpy(vert2_1 6_2.bndry,"hr);

vert2_16_2.next = &vert2_16_3;

vert2_16_2.prev = &vert2_16_1;

vert2_16_3.posit.X = 3.20000;
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}

vert2_16_3.posit.Y = 2.30000;

strcpy(vert2_1 6_3.bndry,"C6");

vert2_16_3.next = &vert2_16_4;

vert2_16_3.prev = &vert2_16_2;

vert2_16_4.posit.X = 4.80000;

vert2_16_4.posit.Y = 2.30000;

strcpy(vert2_1 6_4.bndry,'
m

);

vert2_16_4.next = &vert2_16_5;

vert2_16_4.prev = &vert2_16_3;

vert2_16_5.posit.X = 4.80000

vert2_16_5.posit.Y = 0.00000

strcpy(vert2_16_5.bndry,"hr)

vert2_16_5.next = &vert2_16_1

vert2_16_5.prev = &vert2_16_4

vert2_16_1.prev = &vert2_16_5

strcpy(poly2_17.name, "CI");

poly2_17.mode = -1;

poly2_17.vertexList = &vert2_17_1

poly2_17.next = &poly2_1;

vert2_17_1.posit.X = 0.00000

vert2_17_1. posit.Y = 0.00000

strcpy(vert2_17_1.bndry,"h1")

vert2_17_1.next = &vert2_17_2;

vert2_17_2.posit.X = 0.00000

vert2_17_2.posit.Y = 2.30000

strcpy(vert2_1 7_2.bndry,"h1 ")

vert2_17_2.next = &vert2_17_3;

vert2_1 7_2.prev &vert2_1 7_1

;

vert2_17_3.posit.X = 0.80000;

vert2_17_3.posit.Y = 2.30000;

strcpy(vert2_1 7_3.bndry/
,

C5");

vert2_17_3.next = &vert2_17_4;

vert2_17_3.prev = &vert2_17_2;

vert2_17_4.posit.X = 1.40000

vert2_17_4.posit.Y = 2.30000

strcpy(vert2_17_4.bndry,"h1")

vert2_17_4.next = &vert2_17_5;

vert2_17_4.prev = &vert2_17_3;

vert2_17_5.posit.X = 2.20000;

vert2_17_5.posit.Y = 2.30000;

strcpy(vert2_1 7_5.bndry ,••");

vert2_17_5.next = &vert2_17_6;

vert2_17_5.prev = &vert2_17_4;

vert2_17_6.posit.X = 2.20000

vert2_17_6.posit.Y = 0.00000

strcpy(vert2_17_6.bndry,"hr)

vert2_17_6.next = &vert2_17_1

vert2_17_6.prev = &vert2_17_5

vert2_17_1.prev = &vert2_17_6
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/•assigning values for node and arcs*/

lnitializeGraph_1 80_00(){

woridGraph_180_00 = &node2_1;

node2_1 .cell = &poly2_1

;

node2_1 .arcList = &arc2_1_1;

node2_1 .predecessor = NULL;

node2_1 .curArc = NULL;

node2_1 .next = &node2_2;

arc2_1_1.Node = &node2_3;

arc2_1_1.visited = 0;

arc2_1_1.next = NULL;

node2_2.cell = &poly2_2;

node2_2.arcList = &arc2_2_1

;

node2_2.predecessor = NULL;

node2_2.curArc = NULL;

node2_2.next = &node2_3;

arc2_2_1.Node = &node2_6;

arc2_2_1 .visited = 0;

arc2_2_1.next = NULL;

node2_3.cell &poly2_4;

node2_3.arcList = &arc2_3_1

;

node2_3.predecessor = NULL;

node2_3.curArc = NULL;

node2_3.next = &node2_4;

arc2_3_1 .Node = &node2_1

;

arc2_3_1 .visited = 0;

arc2_3_1.next = &arc2_3_2;

arc2_3_2.Node = &node2_5;

arc2_3_2.visited = 0;

arc2_3_2.next = NULL;

node2_4.cell = &poly2_3;

node2_4.arcList = &arc2_4_1

;

node2_4.predecessor = NULL;

node2_4.curArc = NULL;

node2_4.next = &node2_5;

arc2_4_1.Node = &node2_5;

arc2_4_1 .visited = 0;

arc2_4_1.next = NULL;

node2_5.cell = &poly2_6;

node2_5.arcList = &arc2_5_1;

node2_5.predecessor = NULL;

node2_5.curArc = NULL;

node2_5.next = &node2_6;

arc2_5_1 .Node = &node2_3;

arc2_5_1 .visited = 0;

arc2_5_1 .next = &arc2_5_2;

arc2_5_2.Node = &node2_4;
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arc2_5_2.visited = 0;

arc2_5_2.next = &arc2_5_3;

arc2_5_3.Node = &node2_7;

arc2_5_3.visited = 0;

arc2_5_3.next = NULL;

node2_6.cell = &poly2_5;

node2_6.arcList = &arc2_6_1

;

node2_6.predecessor = NULL;

node2_6.curArc = NULL;

node2_6.next = &node2_7;

arc2_6_1 .Node = &node2_2;

arc2_6_1 .visited = 0;

arc2_6_1.next = &arc2_6_2;

arc2_6_2.Node = &node2_7;

arc2_6_2. visited = 0;

arc2_6_2.next = NULL;

node2_7.cell = &poly2_7;

node2_7.arcList = &arc2_7_1

;

node2_7.predecessor = NULL;

node2_7.curArc = NULL;

node2_7.next = &node2_8;

arc2_7_1.Node = &node2_5;

arc2_7_1 .visited = 0;

arc2_7_1.next = &arc2_7_2;

arc2_7_2.Node = &node2_6;

arc2_7_2.visited = 0;

arc2_7_2.next = &arc2_7_3;

arc2_7_3.Node = &node2_9;

arc2_7_3.visited = 0;

arc2_7_3.next = &arc2_7_4;

arc2_7_4.Node = &node2_10;

arc2_7_4. visited = 0;

arc2_7_4.next = &arc2_7_5;

arc2_7_5.Node = &node2_8;

arc2_7_5.visited = 0;

arc2_7_5.next = NULL;

node2_8.cell = &poly2_10;

node2_8.arcList = &arc2_8_1;

node2_8.predecessor = NULL;

node2_8.curArc = NULL;

node2_8.next = &node2_9;

arc2_8_1.Node = &node2_7;

arc2_8_1 .visited = 0;

arc2_8_1 .next = &arc2_8_2;

arc2_8_2.Node = &node2_1 1

;

arc2_8_2.visited = 0;

arc2_8_2.nex1 = &arc2_8_3;

arc2_8_3.Node = &node2_13;

arc2_8_3.visited = 0;

arc2_8_3.next = NULL;

node2_9.cell = &poly2_8;

101



node2_9.arcList = &arc2_9_1;

node2_9.predecessor = NULL;
node2_9.curArc = NULL;
node2_9.next = &node2_10;

arc2_9_1 .Node = &node2_7;

arc2_9_1 .visited = 0;

arc2_9_1.next = &arc2_9_2;

arc2_9_2.Node = &node2_14;

arc2_9_2.visited = 0;

arc2_9_2.next = NULL;
node2_10.cell = &poly2_9;

node2_10.arcList = &arc2_10_1;

node2_10.predecessor = NULL;

node2_10.curArc = NULL;

node2_1 0.next = &node2_1 1

;

arc2_10_1.Node = &node2_7;

arc2_10_1 .visited = 0;

arc2_10_1.next = &arc2_10_2;

arc2_10_2.Node = &node2_15;

arc2_10_2.visited = 0;

arc2_10_2.next = NULL;

node2_1 1 .cell = &poly2_1 1

;

node2_1 1 .arcList = &arc2_1 1_1

;

node2_1 1 .predecessor = NULL;

node2_1 1 .curArc = NULL;

node2_1 1 .next = &node2_1 2;

arc2_1 1_1 .Node = &node2_8;

arc2_11_1 .visited = 0;

arc2_1 1 _1 .next = &arc2_1 1 _2;

arc2_1 1_2.Node = &node2_12;

arc2_11_2.visited = 0;

arc2_11_2.next = NULL;

node2_12.cell = &poly2_15;

node2_12.arcList = &arc2_12_1;

node2_1 2.predecessor = NULL;

node2_12.curArc = NULL;

node2_12.next = &node2_13;

arc2_1 2_1 .Node = &node2_1 1

;

arc2_1 2_1 .visited = 0;

arc2_12_1 .next = &arc2_12_2;

arc2_12_2.Node = &node2_16;

arc2_12_2.visited = 0;

arc2_12_2.next = NULL;

node2_1 3.cell = &poly2_12;

node2_1 3.arcList = &arc2_13_1;

node2_13.predecessor = NULL;

node2_1 3.curArc = NULL;

node2_13.next = &node2_14;

arc2_13_1.Node = &node2_8;

arc2_1 3_1 .visited = 0;

arc2_1 3_1 .next = &arc2_1 3_2;
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arc2_13_2.Node = &node2_17;

arc2_13_2.visited = 0;

arc2_13_2.next = NULL;

node2_14.cell = &poly2_13;

node2_14.arcList = &arc2_14_1;

node2_14.predecessor = NULL;
node2_14.curAre NULL;
node2_14.next = inode2_15;

arc2_14_1.Node = &node2_9;

arc2_1 4_1 .visited = 0;

arc2_14_1 .next = NULL;
node2_15.cell = &poly2_14;

node2_1 5.arcList = &arc2_1 5_1

;

node2_1 5.predecessor = NULL;
node2_15.curArc = NULL;
node2_15.next = &node2_16;

arc2_15_1.Node = &node2_10;

arc2_15_1 .visited = 0;

arc2_15_1.next = NULL;

node2_16.cell = &poly2_16;

node2_16.arcList = &arc2_16_1;

node2_1 6.predecessor = NULL;

node2_16.curArc = NULL;

node2_16.next = &node2_17;

arc2_16_1.Node = &node2_12;

arc2_16_1 .visited = 0;

arc2_16_1.next = NULL;
node2_17.cell = &poly2_17;

node2_17.arcList = &arc2_17_1;

node2_17.predecessor = NULL;

node2_17.curArc = NULL;

node2_17.next = NULL;

arc2_17_1.Node = &node2_13;

arc2_17_1 .visited = 0;

arc2_17_1 .next = NULL;

}

G. HOMOTOPY CLASSES

1. cells.

h

r * "*"" *

FILE: cells.h

PURPOSE: This file contains the prototypes for the functions

which are used to determine the homotopy classes

7

#ifndef

.

#define

_cells_h

cells h
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#include "build.h"

/***** "*insideCell(polygon* point)*
.....*..........

This function determines whether the input point is inside of the

convex polygon. It can be used to verify a suspected location, or

called for every cell until a match is found.

***** ****** /

int insideCell(polygon*, point);

/*******
findCell(world*, point*)

* *«•"•• •

This function calls insideCell() for every cell in the world until

true is returned. It then returns a pointer to that cell

polygon* findCell(world*, point);

/******findHmtpClss(node*, world*, point, point)***"***************

This function finds all the homotopy class from one point to the

other by searching the connectity graph.

void findHmtpClss(node*. world*, point, point);

/**** dpthFstSch(node*. node*, node*)
*****'

This function performs a depth first search, and prints out the

path found. The function is called recursively.

void dpthFstSch(node*. polygon*, polygon*);

#endif

2. cells.

c

r * * *****

FILE: cells.c

PURPOSE: This file contains the functions which are used to

determine the homotopy classes

7

#include <stdlib.h>

#include <stdio.h>

#include "build.h"

#include "util.h"

static numberOfClasses;

/******
****insideCell(polygon* point)

...*....*......

This function determines whether the input point is inside of the
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convex polygon. It can be used to verify a suspected location, or

called for every cell until a match is found.

* * *
/

int

insideCell(polygon* cnvxCell, point robotl_ocation){

vertex* curVertex;

curVertex = cnvxCell->vertexList;

do{/*check all the vertices*/

if(order(robotLocation,curVertex->posit,curVertex->next->posit) < 0.0)

curVertex = curVertex->next;

else

return 0;/*made a left turn*/

}while(curVertex != cnvxCell->vertexList);

return 1;/*all right turns; inside cell*/

}

/* *****findCell(world*, point*)

This function calls insideCell() for every cell in the world until

true is returned. It then returns a pointer to that cell

polygon*

findCell(world* decompWorld, point robotl_ocation){

polygon* curPolygon;

curPolygon = decompWorld->polygonList;

do{/*check all cells*/

if (insideCell(curPolygon, robotLocation))

return curPolygon;

else

curPolygon = curPolygon->next;

}while(curPolygon != decompWorld->polygonList);

return NULL;/*point is outside of world*/

}

/*"***"***dpthFstSch(node*, node*, node*) •*•**••*.

This function performs a depth first search, and prints out the

path found. The function is called recursively.

7

void

dpthFstSch(node* cGraph, node* robNode, node* goalNode){

node* curNode;

node* printNode = NULL;
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extern int numberOfClasses;

if(robNode == goalNode){/* we are at the goal 7
printffThe cell movement sequence for homotopy class number %d is\n"

++numberOfClasses);

I* this block of code just prints out the path from the

start node to the goal node 7
curNode = goalNode;

while(curNode->predecessor != curNode)

curNode = curNode->predecessor;

printf(
u
%s",curNode->cell->name);

while(curNode != goalNode){

printNode = goalNode;

while(printNode->predecessor != curNode)

printNode = printNode->predecessor;

printf(
H
->%s",printNode->cell->name);

curNode = printNode;

printfOn");

}else{

while (robNode->curArc){/* for all nodes adj to this one */

if(!(robNode->curArc->Node->predecessor)){/*has not been checked 7

robNode->curArc->Node->predecessor = robNode;

dpthFstSch(cGraph, robNode->curArc->Node, goalNode);

/* these are reset to allow for backtracking 7
robNode->curArc->Node->curArc = robNode->curArc->Node->arcList;

robNode->curArc->Node->predecessor = NULL;

}

robNode->curArc = robNode->curArc->next;

}

}

}

/* findHmtpClss(node*. world*, point, point)
* *•••*«*•

This function finds all the homotopy class from one point to the

other by searching the connectity graph.

*** * ....................

void

findHmtpClss(node* cGraph, world* robWorld, point robLoc, point goalLoc){

polygon* robCell;

polygon* goalCell;

node* curNode;

node* robNode;
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node* goalNode;

robCell = findCell(robWorid, robLoc);

goalCell = findCelKrobWorld, goalLoc);

numberOfClasses = 0;

r initialize graph 7
curNode = cGraph;

while(curNode){

curNode->predecessor = NULL;
curNode->curArc = curNode->arcList;

curNode = curNode->next;

}

if(robCell == goalCell)

printffrobot and goal are in the same cell");

else{

Hind appropriate node on graph for robot's location*/

robNode = cGraph;

while(robNode->cell != robCell)

robNode = robNode->next;

robNode->predecessor = robNode;

/'find appropriate node on graph for goal's location*/

goalNode = cGraph;

while(goalNode->cell != goalCell)

goalNode = goalNode->next;

}

dpthFstSch(cGraph, robNode, goalNode);
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APPENDIX B

This appendix is a users guide for the decomposition programs implemented as part

of this thesis. It assumes that the user has a working knowledge of Yamabico's kernel.

A. CREATING VERTEX FILE

The vertex file must be of the following form:

world_name(polygon_name_l (mode(x
1 , ,y, i)(x 12,yi2)-(xin.ym))

(polygon_name_2(mode(x21 ,y2i)(x22.y22)-(x2m.y2m))

(polygon_name_k(mode(xk1 ,yk1 )(xk2 ,yk2)...(xk|,yk|)))

where:

world_name is a string of 15 or less characters.

polygon_name_i is a string of 5 or less characters.

mode is 1 for normal holes, and -1 for inverted holes.

(xii>yi2)(x i2'
vi2)"-(xirvyin) 's an ordered list of vertices

white space is ignored.

B. RUNNING DECOMPOSE PROGRAM

The command line for the DecomposeWorld program is:

DecomposeWo rid <inputfile> [number of sweeps] [sweep angle list]

where:

<inputfile> is the name of the file containing the world vertices and is of the form described

in the first paragraph. This entry is mandatory.

[number of sweeps] is the number of distinct decompositions desired for this world. This

default value is 1

.

[sweep angle list] is a list of sweep angles. The number of entries in this list must match the

number of sweeps desired. Each entry must be in the range (0.0.. 180.0]. Entries must be

separated by whitespace. The default value is 90.0.
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If only one sweep is performed, or the default values are used, then the program

creates a file named plot.dat which contains the cell vertices in a format that can be used

by GnuPlot.

C. DECOMPOSED WORLD MODELS

Each decomposition performed by DecomposeWorld creates a C file that is tagged

with the sweep angle. Each file contains the declarations for the robot's world and the

connectivity graph associated with the decomposition. Additionally, each C file contains

two functions which initialize these declarations when needed. In order to use these data

structures, the following steps must be performed:

1. Compile and link each decomposeworld_xxx_xx.c file as a part of building the kernel.

2. Include an extern declaration for the robot's world and the connectivity graph

for each representation. They should look like this:

extern world robotsWorld_xxx_xx;

extern node* worldGraph_xxx_xx;

3. Before using the world information, call the following functions for each representation:

lnitializeWorld_xxx_xx();

lnitializeGraph_xxx_xx();
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