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ABSTRACT

The modeling of power systems has been primarily driven by the commercial power

utility industry. These models usually involve the assumption that system bus voltage and

frequency are constant. However, in applications such as shipboard power systems this

infinite bus assumption is not valid. This thesis investigates the modeling of a synchronous

generator and various loads in a modular fashion on a finite bus. The simulation presented

allows the interconnection of multiple state-space models via a bus voltage model.

The major difficulty encountered in building a model which computes bus voltage at

each time step is that bus voltage is a function of current and current derivative terms.

Bus voltage is also an input to the state equations which produce the current and current

derivatives. This creates an algebraic loop which is a form of implicit differential equation.

A routine has been developed by Linda Petzold of Lawrence Livermore Laboratory

for solving these types of equations. The routine, called DASSL (Differential/ Algebraic

System Solver), has been implemented in a pre-release version of the software ACSL

(Advanced Continuous Simulation Language) and has been made available to the Naval

Postgraduate School on a trial basis. An isolated power system is modeled using this

software and the DASSL routine. The system response to several dynamic situations is

studied and the results are presented.
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L INTRODUCTION

A. BACKGROUND

The modeling of synchronous generators has been primarily driven by the commercial

power utility industry. These simulations most frequently make the assumption that the

machine to be modeled is connected to a system bus in which voltage magnitude and

frequency are fixed values. This so called "infinite bus" assumption provides good results

for many studies, especially those involving huge power grids. However, in quite a few

applications, such as in shipboard, aircraft and isolated emergency power systems mis

assumption is not valid.

For such systems, some loads may be a significant percentage of the generator

capacity. When a large load is started on an isolated generator, neither voltage magnitude

nor frequency remain constant. In these situations the voltage will dip appreciably and

possibly cause other sensitive loads on the system bus to fail.

It is therefore important to be able to model accurately the behavior of a an isolated

power system. The design engineer interested in building the smallest, least expensive

machine that will do the job needs to know how the entire system will behave during

dynamic loading.

B. THESIS OVERVIEW

The most common methods for studying power systems and the interaction between

sources and loads involves use of the infinite bus model. The interaction between sources

and loads is done by load (power) flow analysis. When a load is changed in such a

simulation the power demand must be satisfied by increasing power supplied by a source.

1



This approach is fine, however, it still assumes each independent submodel is on an infinite

bus. So for example, fluctuations in voltage magnitude and frequency occurring in one

generator are considered negligible in the overall system.

The primary goal of this study is to develop a system model which allows sources and

loads to be connected to a bus voltage model which accurately reflects the bus voltage

behavior during transients and the effects of the transient bus voltage on the loads and

sources. The approach taken is to develop an overall system model which consists of

accepted accurate stand-alone source and load submodels. These submodels are then tied

together by a bus voltage model. In final form, the system model allows the simple

connection of multiple sources and loads.

Figure 1 represents the type of isolated power system studied in this thesis. The

system consists of a gas turbine prime mover, synchronous generator, a system bus and

system loads. Models for each element of the isolated system are presented independently

then all are tied together with closed loop control to produce the system model.

1. Synchronous Generator Model

Much work has been done to develop accurate models for rotating electrical

machinery. Krause [Ref. l,pp 211-2671 develops a state-space model for a synchronous

machine using the well known Park's transformation [Ref. 2]. Circuit voltage equations

are first developed in the three-phase a-b-c reference frame. The subsequent application of

Park's transformation has the advantage of referencing all state variables to an orthogonal

(q-d-0) reference frame. The reference frame transformation changes time varying winding

inductance values into constants. The state-space model may be developed with either

winding current or magnetic flux linkage as states. The model used in this presentation is

formulated with current states.



Figure 1. Isolated power system.



2. Load Models

Two load models are presented, a three-phase resistive-inductive (R-L) load and

an induction motor load. These models are developed in a similar manner to the

synchronous generator model. The equations describing load circuit behavior are

transformed into the same orthogonal reference frame as that used for the synchronous

generator. The load model state equations are presented with current states.

3. Bus Voltage Model

By formulating the submodel state equations in terms of current, a bus voltage

model may be developed based on satisfying Kirchoffs Current Law (KCL) at the

common node. Several possible models for the bus voltage are explored. Ultimately, a

routine for solving implicit state equations and algebraic loops will be introduced. This

routine allows a bus voltage model to be developed which supports the goals of

modularity and expandability.

4. Generator Closed Loop Control

Output voltage magnitude and frequency must be controlled so that bus voltage

will remain within specification. Voltage control is accomplished by a field exciter which

senses generator output terminal voltage and adjusts the field winding excitation voltage

to keep terminal voltage at the desired level. Frequency control is accomplished by

driving the generator with a prime mover which is under the control of a speed regulating

governor. Models for both regulation systems are presented.

5. Simulation Software

Speed, ease of use, quality of output and special capabilities were considered

when choosing the simulation software. Work was done in the programs MATLABand

SIMULINK from MathWorks [Ref. 31 and in ACSL (Advanced Continuous Simulation

Language) from Mitchell and Gauthier Associates [Ref. 4]. Both are excellent for



modeling systems of linear and non-linear differential equations. However, ACSL was

chosen for the power system simulation work presented here due to the special capabilities

of this package.

A pre-release version of ACSL, level 10F, was provided to the Naval

Postgraduate School on a trial basis. This version of ACSL contains an algorithm for

solving differential algebraic equations (DAEs) which is described in Chapter IV. This

algorithm allows systems of implicit differential equations to be solved. Specifically of use

is the ability to solve implicit systems formed by a system of state equations subject to an

algebraic constraint equation.

5. System Model Connection

The isolated power system simulation is modular in concept. It consists of

several submodels. Each submodel is a stand-alone model which is tied into the system by

the bus voltage submodel. The source and load models are well understood and have been

validated extensively by others. The bus voltage model is presented and validated as an

independent model in Chapter IV. After each piece of the system is presented, the total

isolated power system is developed from the available building blocks. The ACSL code

for the system model is described in detail.

6. System Model Response and Validation

After the system is connected and put under closed loop control, it is validated

by comparing it with a finite bus system model developed at Purdue University by Mayer

and Wasynczuk [Ref. 5]. This simulation scenario involves starting three induction

motors on a system bus supplied by a single generator. Plots of model response are

presented and discussed.

Additionally, the R-L model is modified for the case where the resistive part of

the load is unbalanced. The system model is exercised by operating it with an unbalanced



loading condition. Plots of the model response to this condition are presented and

discussed.

7. Conclusions and Future Work

Finally, conclusions about the usefulness of the finite bus model are presented.

Suggestions for expanding the system model to include winding saturation effects, more

loads and a parallel generator are made. The need for more effort in validating the

approach is also discussed along with some suggestions on how this could be

accomplished.



D. DEVELOPMENTOFTHESYNCHRONOUSGENERATORMODEL

The process used in developing the model for a synchronous generator is as follows.

First the differential equations describing the circuit behavior of each winding in the

machine are obtained. Unfortunately, because both the current and inductance terms in

the equations vary with time, these equations are complicated. Using Park's

transformation [Ref. 2], the equations describing the machine are changed to an

orthogonal reference frame which has the advantage of making all inductance terms

constant. This transformation from machine variables to reference-frame variables, along

with the assumption of a linear relationship between current and flux linkages, allows the

model state equations to be expressed with either current or flux linkages as the states.

For a synchronous generator the orthogonal reference frame used will be the rotor

reference frame.

A. SYNCHRONOUSGENERATOREQUATIONSIN MACHINEVARIABLES

The equations used to develop the synchronous generator model are derived from the

voltage equations for the windings of a three-phase machine. These equations, which

relate voltage to current and magnetic flux, are not enough to completely describe the

behavior of the machine. Additionally, an equation is needed which relates rotor

rotational speed to torque where electrical torque is described as a function of current or

flux linkage.

1. Machine Variable Voltage Equations

Figure 2 represents a two-pole, three-phase, salient-pole synchronous generator.

The as, bs, and cs windings are on the stator and spaced 120° apart. These stator windings

are identical, sinusoidally distributed and have N
s

equivalent turns. On the rotor, kq and

kd are damper windings while the fd winding is used for applying the field excitation. The



rotor windings are situated in an orthogonal q-d reference frame. Rotor windings are also

sinusoidally distributed but each may have a different number of equivalent turns; N. , Nu

and Nj d respectively. Note that the current direction is out of the stator windings

(generator convention). The series resistive-inductive pair in each stator and rotor circuit

represents the electrical characteristic of each winding. The rotor angular position and

speed are represented by r
and co r

respectively.

bs axis

qaxis

d axis

+ vkd

Figure 2. Two-pole, three-phase, salient-pole synchronous machine.



By summing voltages around each circuit loop, equations (1) through (6) are

obtained. Equations (1), (2) and (3) represent the stator windings while (4), (5) and (6)

model the rotor circuits. Voltage in the inductive elements is expressed by Faraday's law

where the induced voltage equals the rate of change of the flux linkages. The damper

windings are short circuited at the ends so that v^ and vw equal zero.

dk
v = -ri + ^-2-

(1)as s as j ^ '

at

v>, = -rj
bs + &*- (2)

dk*.--*+-£ (3)

o -nA+-j L
<4 >

dk
fd

V
fa = Wfd + — (5)

dt

dk
i+

dt
= ru i u + —^ (6)

In order to use equations (1) through (6) to develop a state-space model in

terms of current, the flux linkage derivative terms must be looked at in more detail. For a

linear magnetic system the flux linkage may be related to current via the relationship

X = Li (7)

where

X = [k^ k bs k a k^ X
fd

XWJ
(8)

I = [L hs L i* ijd iu] ( 9 )



The terms of the matrix L represent the mutual and self inductance terms

relating flux linkage to currents. In general L^ would relate x- winding flux to z- winding

current. So, for example, the expanded expression for the as-winding flux linkage is

written as

*"as ~ ^aa l as
+ ^ab l bs + ^ac l cs

"*" ^akq l kq + ^afd 1
fd

+
'~'akd l kd (10)

where, in general, both inductance and current are functions of time. Using equation (7),

the inductance-current product may be substituted for flux linkage in equations (1)

through (6).

Because access to the rotor windings is difficult, the machine parameters

(winding resistance, inductances, voltages etc.) are most commonly referred to the stator.

Referring values from the rotor to the stator is done in a manner similar to referring

variables from the primary to the secondary of a transformer (via the turns ratio). Krause

[Ref. l:pp. 167] uses a prime to denote referred variables. In this derivation all variables

may be assumed to be referred to the stator. In particular the inductance matrix which

follows as part of the compact voltage equations is written in referred quantities.

With flux linkage expressed in terms of currents and winding inductance, a

compact vector-matrix form of the voltage equations may now be written as

_ _

—abcs — ~r
s -abcs

+ P
l qdr _ *V_ iqdr (U L.

-i abcs

iqdr

(ID

where the operator p represents the derivative with respect to time, <vl. With the

equations expressed in the machine reference frame the derivative operator must be

10



applied to the inductance-current product, since both may vary with time. The constant,

y^ , is a function of referring variables.

In equation (11) the inductance matrix is made up of four smaller matrices. The

L
s

matrix relates stator winding flux linkage to stator current. The L
r

matrix relates rotor

winding flux linkage to rotor current. The L gr matrix relates rotor windings to stator

windings. These matrices have the following form:

L. =

-^L A -L
fl

cos2(9, -^) - l-L
2

,, L
fl

cos2(9, +-)I* + LA - LB cos 29,

| LA - LB cos 2(9, - |) L, + LA
- LB cos 2(9 r

- ^) - | LA
- LB cos 2(9, + 7i)

- LA
- LB cos 2(9, + -) - - LA

- LB cos 2(9, + n) l^ + LA
- LB cos 2(9, + —

)

(12)

L„ =

Kut cos e
, Kd sin e

, *W SU1
.

^ cos(9, - 2*) Lw sin(0
r

- 2p) Lw sin(6, - ~)

^cos(0
r +-y) LwSin(6 f +-^) L^sin(0, +

-^)

(13)

^Xkq + ^mq

L
r = hfd + Aru/ ^md

^W Luti + L, md _

(14)

The inductance terms in matrices (12), (13) and (14) are either self or mutual

inductances. Elements on the main diagonal of the L
s

and L
r

matrices are self inductances

and are made up of leakage and magnetizing inductance parts (L u + L^). Off diagonal

elements of L
s

and L r and all elements of L sr
represent mutual inductances and therefore

11



are assumed to have no leakage inductance part. The variables L^ and L^ represent the

total magnetizing inductance in the q and d axes respectively.

Because the rotor windings are wound on an orthogonal set of axes, the terms

of L r are easily determined. Orthogonal magnetic lines of flux do not combine so

orthogonal windings have zero mutual inductance. The mutual inductance for windings

which share a common axis is computed as for a transformer which is the product of the

number of turns divided by the common reluctance.

The situation is more complicated for the L
s

and L gr matrices The inductance

terms depend on rotor position. Because it will be shown that these matrices are greatly

simplified by the Park's transformation, a detailed explanation of these matrix elements will

not be made here . Figure 3 demonstrates how, in the case of a salient-pole machine,

rotor position (which changes the size of the air gap) will have an impact on the reluctance

path and therefore on the inductance.

magnetic lines of flux

rotor angle

-as-

Figure 3. Rotor position influence on winding inductance.
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For the as winding, minimum reluctance and maximum inductance (L A + LB )

occurs when 6
r

equals 90° and 270° while maximum reluctance and minimum inductance

{L A - LB) is experienced at 0° and 180°. For a machine with a round rotor LB is zero and

the L
s

terms are all constant. A complete description of the development of the 6
r

dependent matrix terms may be found in Krause [Ref. l:pp 21 1-227].

2. Machine Variable Torque Equation

The torque equation is developed based on the assumption of linearity in the X -i

relationship of an electromagnetic system. This allows the energy stored (W) in the

electromagnetic system to be expressed by

W= -Li 2
(15)

2

and in matrix-vector form

1W= -i T Li (16)
2"

Energy or work is also the product of force and displacement Using this basic

definition yields

W= 7B

T = ^ (17)
ae

ae 2- -

13



where T is torque and 6 is angular displacement From equation (17) Krause [Ref. l:p

217] goes on to fully develop the electrical torque equation in the machine reference frame

for a P-pole generator

T-f p
)l

l a r a
f
L

-
~ fefl 1 + a \T$hAi I fi«r

« ~ UJi 2
(Jato) ^ u- + 0*.)

ae r «^f
(18)

The electrical torque, Te , is positive for generator action when the stator current flows out

of the stator terminals.

One more differential equation is needed to develop a state-space model. Each

voltage equation is a function of currents, current derivatives and rotor position. Rotor

position must be related to the system states. The second derivative of rotor position may

be related to torque which in turn is a function of the system states. The final differential

equation is obtained by writing the relationship for the mechanical system with friction,

windage and other mechanical losses neglected

PUr = [{j}(T
l

-T e ) (19)

where J is the inertia, P is number of poles and T
t

is the prime mover input torque. It can

be seen that when input torque is greater than the produced electrical torque the rotor

acceleration is positive and the machine speeds up. A large load will cause current to rise

and from equation (18) electrical torque will also rise resulting in deceleration of the

machine.

14



B. SYNCHRONOUSGENERATOREQUATIONSTRANSFORMED

For the salient pole synchronous generator in the machine reference frame, most

inductance terms are highly dependent on 9 r
the rotor angle, which in turn is dependent

on time. This makes the flux linkage derivative term a complicated chain rule expression

(inductance and current are both time varying). If, howe _t, the terms of the inductance

matrix could be transformed into constants, the flux linkage derivative could be simply

expressed as

pi = Lpi (20)

The voltage equations may be rewritten in compact form by assuming that such a

transformation is possible and making the substitution suggested by equation (20). This

yields

v = r/ + Lpi (21)

Equation (21) then becomes the basis for a set of state equations describing the behavior

of the synchronous generator. The relatively simple form of equation (21) is not possible

when the voltage equations are expressed in the machine reference frame, in other words,

with stator voltages, currents and inductances expressed in the a-b-c reference frame.

Fortunately R. H. Park developed a transformation making equation (21) possible.

The Park's transformation eliminates time varying inductance terms and introduces a

reference frame speed term, co, which may be chosen to be rotor speed. Thus the Park's

equations put the voltage equations in the orthogonal q-d-0 reference frame of the rotor.

\5



1. Transformed Voltage Equations

The transformation changes variables from the a-b-c frame to the q-d-0 frame of

reference. For an arbitrary vector variable /, representing voltage or current, the

transformation matrix K^ operates as follows

L.qdOs
K

s Lobes
(22)

where the transformation matrix is

k: = -

cos 8
r

cos(6
r

) cos(6
r

+ —

)

sin0 r sin(6 r
) sin(0 + —

)

3 3
1 1 1

(23)

and rotor position is defined as

e r
= £©r (5)dg + e P (0) (24)

The transformation is now applied to the voltage equations (12) with the

following result:

YqdOs

Vadr

r
s

r

'IqdOs

iqdr

+

r\-lk>l
6

(k;)

r \-l

L

-p(Lj r (K:)

KpK
pK

-i qdOs

Iqdr

(25)

where the transformation applied to r
s

yields
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KXCK;)- 1 = K^KK;)- 1 = r
t K'

s I(K',r = r
s

\ = r, (26)

Because it has equal values on the main diagonal, r
s

is not altered.

Multiplying out the terras of the inductance matrix gives surprising results. By

carefully following the rules of matrix multiplication, applying the derivative operator in

the proper sequence and using the correct trigonometric identities the voltage equations

may now be expressed as

vv = -(1 + pL
q

)i v - L
rf

a>
r

/ A + pL^ + L^a,^ + L>jqj u (27)

v * = W*Am " U + PLd)*d, ~ Lm/BJkt + PL*J f d + PLnJu ( 28 )

v , = ~(r s + pl*)^ (29)

v /d
=-p^~ i* + (Z^ + pL^ iiL)t

M +p^-i kd (31)
r /d r

fd
r

fd

= -pKJds + PKJfd + ( rkd + P^w)*w ( 32 >

where all inductance terms are constants and the following definitions apply

L
q

= K + Lm (33)

Ld = K + L^ (34)

1^ = 1^ + ^ (35)

^ = ^ + A* ( 36 >

^ = Aw + *w < 37 )
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The voltage equations may be used in the form of equations (27) through (32),

but it is more common to see the inductances expressed as reactances. This is

accomplished by using the relationship co
6
L = X. The inductance is multiplied by a base

angular frequency (often 60 Hz). Machine parameters are usually provided in ohms.

Making this change and putting the state equations in matrix form gives

"v„"

Vds

V0s
=

vv

_ o
_

-r,

-r,

%
^md

-x a<?

G>6

-Xj' d

-Xu

-x, mq

®b

rfd®b
-x md

®b

co.

" \"
i*

b,
+

**

h*

rkd. Jkd.

~ Ad Amd Amd

e>i co
fc ®b

x, -x„
2.

®b to b

mq

CO*

®b

©6

X-mdXf d

r fd®b
Xmd

CO.

Xmd
"

P^s
'

®b Pids

Phs

p'%

X 2Amd Pifd

rfd®b .Pikd.

®b J

®rids

®rhs

GV*,

<*>rlfd

(38)

The right hand side of equation (38) is divided into three parts

v = AL i + ANco
r

/ + Bpi_ (39)
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a linear part (A^), a nonlinear part (A Nco
r i) and a current derivative part. This type of

equation is known as an implicit differential equation. This is because a particular state

equation, for example equation (27)

V = ~(r
t

+ pL
q

)i qs
- LjG},^ + pL^ + Lw0)

r
/

/(/
+ L^co^

cannot be written explicitly. That is with one state derivative isolated on the left and a

combination of states only on the right. This is a drawback to this development since most

simulation software prefers the explicit form for the differential equations of the model.

2. Transformed Torque Equation

The complete form of the final state equation takes shape in the trans formed

reference frame. The dependence on angular displacement has been eliminated and

replaced with a speed term u) r
. The torque- acceleration equation will provide this final

equation. Krause [ Ref. l:p 227] substitutes the reference frame transformation into

equation (18)

n,^-i; «\ i ^-y](K;r'
.. w; , r a[L sr ]

.

(4

Te
:: \~Z J[(K,) LqdOs]

| j ^o LqdOs + (Lbcs)' Vq

and after considerable work arrives at

T
e = j^-iX^i-i* + i

fd + i u )i v " X^C-V + »i,)'*] ^ 41 >
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Now when equation (19) is used for the final state equation, the speed derivative can be

expressed as a function of the other states.

C. CHOICEOFSTATES

Most developments of the Park's equations arrive at a set of state equations

expressed in terms of magnetic flux linkage. Krause [Ref. 2:pp. 177], Anderson [Ref.

6:pp. 85-88] and many others express a preference for the flux linkage expressions over

the current expressions because they have explicit form. The implicit set of equations

requires that a matrix inversion be performed or that some sophisticated, and often slow,

routine be used to solve the problem. The matrix inversion often involves a poorly

conditioned matrix and methods such as LU decomposition may introduce significant

error.

Sources and loads on a common system bus do not share flux linkage but do share

currents (and therefore current derivatives). Because the goal here is to develop a model

which allows an entire power system to be built up in a modular fashion, the system

submodels will be expressed in terms of current. Also, intuitively, bus voltage must have

some functional relationship to the bus current. Solution of the finite bus problem relies

on choosing to express system state equations in terms of current.

In order to put the system in explicit form, equation (39) is manipulated to isolate the

state derivative on the left hand side of the equation

pi = V(-A L )i + V(-A N )0) r £ + Vv (42)

where V = B 1
. This involves the matrix inversion mentioned above and therefore the

possibility of error.
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In order to minimize the possibility of error, the B matrix was inverted symbolically

so that the matrix terms of equation (42) could be expressed as functions of the given

machine parameters. MATHCAD4.0 [Ref. 7] was used to perform the matrix inversion

and surprisingly the terms were not terribly unwieldy. Appendix A contains the

MATHCADoutput showing the symbolically inverted matrix. These results were then

used to write the final form of the state equations for the simulation. The explicit form of

the system state equations may be seen in ACSL simulation code of Appendix B and are

described in Chapter VI.
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HI. DEVELOPMENTOFLOADMODELS

The next step in the process of modeling a finite bus power system involves modeling

the system loads. In order to have a system simulation in which loads and sources can be

put together in a modular fashion, the load model equations are developed with current

states.

Two load models are looked at, a simple R-L load and an induction motor. The final

simulation allows for either type load to be connected to the bus alone or for both type

loads to be connected in parallel.

The choice of load model was motivated by the fact that even in isolated systems,

such as a shipboard system, the system load can be looked at as a nearly constant power

factor load most of the time. An R-L load model, allowing for the time varying of its

resistive and reactive parts, adequately simulates many loading conditions.

The induction motor is a very common large load onboard ship. Fire pumps,

hydraulic pumps and large ventilation fans are some of the uses for induction motors. For

this reason an induction motor model was also chosen for a system load.

A. THER-L LOADMODEL

The three-phase R-L load is represented by Figure 4. The diagram may represent a

balanced or unbalanced system. That is the resistance and inductance of each phase may

or may not be equal. In practice considerable effort is made to balance the system load,

however, power systems are frequendy subjected to unbalanced loading conditions. The

model will be developed for a balanced load. Methods to handle the unbalanced case will

be discussed in Chapter VI.
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V/If +

v
bs +

-cs +

'cl

Figure 4. Three-phase R-L circuit

The mathematical development for the load parallels the generator model

development. First the voltage equations are written down as

vas = Vol + P^al

vbs = r lhl + Phi

V„ = Vcl + Phi

(43)

(44)

(45)

or in matrix form as

labcs = r lLabcl + L lPl abcl (46)

where the balanced resistance matrix is
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r. =
n

0"

n

r l_

(47)

and the balanced inductance matrix is

L> =
h

0"

A
u.

(48)

If the mutual inductance between phases is assumed negligible, the inductance matrix has

terms only on the main diagonal. It is a fairly simple matter to include off-diagonal

(mutual inductance) terms since the matrix still will have no time dependent terms. Note

also that the derivative operator in (45) applies only to the current since there are no time

varying terms in L,.

Next the load must be converted to the same reference frame (q-d-0) as the generator

model. The same transformation used in equation (25) is applied to the R-L load

equations. These equations may now be written as

VqdOs = r \iqdoi + K;[L,/?(K 5

r
) i_ qd0l ] (49)

Since both the transformation matrix and current vary with time the product rule for

differentiation yields

Vo. = Kr

MKri*,oi + (k;l iP (k;)-%„ 0/ + K^K^r P i qd0l <50)

Using the same approach as (26), the first and third term on the right hand side are easily

obtained. The second term illustrates how the speed term was introduced in equations
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(27) through (32). The p operator is applied to the transformation matrix inverse with the

following result

p(K;r = P

cos 0, sin 9. 1

cos(9
r

- —

)

sin(9
r

- —) 1

3 ' 3

cos(9
r

+ —

)

sin(9
r

+ —) 1

3 3

= co.

- sin 9. cos 9.

271 2n
-sin(9

f ) cos(9
r )

3 3

-sin(9+— ) cos(9 +—)

3 3

(51)

then

k;l,g),

-sin 0, cos 8,

-sin(0 - —

)

cos(0 - —)

3 3

-sin(6
r
+—

) cos(0+— )

3 3

"0
1

= L,G)
r

-1 (52)

Finally, after substituting reactance for inductance, the state equations for the load in q-d-0

reference may be written in expanded form as

V = ni q i
+ co

r

©i

x
l

.

hi + —pi
q i

co>

vds = -0),
CD,

ki + nui +
03,

pirf/

XI
v 5 = ^/'o/ + —Phi

(53)

(54)

(55)

Equations (53) through (55) represent an explicit form of the load model state

equations. These equations will easily "plug in" to the final system model.
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B. THEINDUCTION MOTORLOADMODEL

Unlike the simple R-L load, the induction motor model does not result in a set of

state equations which are explicit in current states. The induction motor model

development is somewhat like the synchronous machine model. The development here

will not be as detailed as the synchronous machine model was. However, key differences

in the equations based on machine geometry and operating theory will be explained before

the final set of equations is presented.

1. Voltage Equation Development

Figure 5 represents the two-pole, three-phase, induction motor load. The stator

windings of this machine are identical, sinusoidally distributed and spaced 120° apart. As

for the synchronous machine, these windings are designated as, bs and cs each having N
s

equivalent turns. The rotor arrangement, however, is considerably different from the

synchronous machine configuration.

For the model development, rotor windings are considered to be identical

sinusoidally distributed windings spaced 120° apart on the rotor with N
r

equivalent turns.

The rotor windings are designated ar, br and cr. The rotor displacement and speed are

represented by 6,^ and (a m respectively. The rotor windings are all shorted, although

machines are available which allow the rotor windings to be excited externally.

The assumptions are not entirely valid because many, if not most, induction

motors are of the squirrel-cage variety. In this type of machine the rotor windings consist

of metal bars laid into the rotor which are shorted at the ends. Krause points out that in

most cases uniformly distributed rotor bars are adequately described by the sinusoidal

assumption [Ref. l:p 167].

One obvious difference in the induction motor geometry from that of the

synchronous machine is the shape of the rotor. Because the rotor is round, none of the
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terms of the stator-stator inductance matrix depend on 0^. The only rotor position

dependence is seen in the inductance terms relating stator to rotor windings. Note that the

subscript for rotor position and speed is rm to differentiate it from the synchronous

machine rotor speed, co
r

.

bs axis

br axis

csaxis

<? ar axis

o as axis

>bl

Figure 5. Two-pole, three-phase, induction motor.
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Performing a Kirchoffs Voltage Law (KVL) sura around each loop allows the

voltage equations to be written in compact form as

—abcs „_
"r,

0"
Labcs

+ P
r r. _-abcr _

(Lj L.

labcs

-abcr

(56)

where all variables are referred to the stator via the turns ratio. The zero elements of the

voltage vector are due to the fact that the rotor windings are shorted on the ends.

The inductance matrix is made up of smaller matrices. In the expressions below,

the leakage inductances are Lb and L
lr

for the stator and rotor windings respectively. With

all variables referred to the stator windings, the only magnetizing inductance term

appearing in the matrices is Lw (the stator magnetizing inductance). The matrices consist

of

L, =

K + A*

~2 Lms

~2 Lms

- l-L m
2 2

Lms

(57)

L. = ~2 Lms

2

2
Lnu

2

"
2

Lms (58)
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L„ = L.

cos 9^ cosie^ + —
) cosO^ - —

)

cosce^ - y> cos e ™ cos ( ™ + -j)

cosO^, + -j ) cosCe^ - -y) cos e ™

(59)

The voltage equations must be transformed to the orthogonal reference frame.

Applying the transformation matrix, K^, results in

Y-qdOs =
>, o-

r r.

IqdOs

_LqdOr _

+ P
k^l.ck;)- 1 k^ck;)- 1

k{lj t (kx K;L
r (K:r iqdOr

(60)

and after performing the multiplication and making the reactance for inductance

substitution, the equations, in the separated form of equation (38) become

"V
v*

v o*
=

_ _

CO,

r
s

r
s

r
s

r
r

r
r

r.

'*

**

»0i

+

V
<<ir

L'Or.

ZlL

COi,

CO,

"jj

Wfc

Jf.,

u
Wfc

(0,

f2i

°VYM

-^

'
P'qs

'

pi*

Pht

Piqr

Pi*

*1L
.Phr.

<°b _

to*

"*•»"

<*

«o*

V
l<fr

()
d

.'Or.

(61)
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where the following definitions apply

XM = co^ (62)

X. = M** + 4J (63)

Xn =0,(1^ + 1^) (64)

« 6
= (co

r
- co^

)

(65)

It is interesting to note that the speed terra developed when the transformation is

applied to the Lsr
matrix (co 6 ), is the difference between the reference frame speed

(co
r
)and the motor's rotor speed(co m,). The reference frame speed usually chosen for

induction motor simulation is the bus voltage electrical angular frequency. For the system

model being developed here, electrical frequency is defined by the rotor speed of the

synchronous generator. This speed difference term, known as slip speed, is basic to the

operation of the induction motor. The rotor currents will be zero at steady state unless the

reference speed and rotor speed are unequal. Rotor current will be shown necessary to

produce torque in the next section.

One more equation is needed to complete the state-space model. As was the

case for the synchronous machine model, the speed term is related to the other states via

the torque equation.

2. Torque Equation Development

Using the argument based on energy stored in an electromagnetic system the

electrical torque developed by an induction motor can be shown to be

J-«=lfl(Uc,)
r ^Ucr W
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for a P-pole motor [Ref. l:pp 169-170]. Equation (66) does not involve L
s

or L
r because

only the L sr matrix is dependent on 0^. This equation shows that torque will be zero

when rotor current is zero.

Application of the transformation matrix to (66) yields

LXfK'rU i

d (L - K'
r)

Te = - [(K r

s rL d os]
' r " U (67)

rm

which in terms of currents may be expressed as

{^)^{i
q

,i dr -iJ qr) (68)Te
=

\

—

with T
e

positive for motor action. With an expression for torque as a function of current

states the final state equation may now be written.

The friction and windage losses are once again neglected and the differential

equation for the mechanical system is written down. In the case of a motor, electrical

torque will accelerate the rotor while applied load torque (7^) will slow the rotor down.

The equation describing this is

(

P^rm =

v24
\T e -Tt) (69)

where Jm is the inertia of the motor's rotor and P is the number of poles.

3. Explicit Form of the Induction Motor Model

The voltage equations (6 1 ) may be manipulated in the same manner as those for

the synchronous machine in order to put them in explicit form. MATHCADwas again
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used to symbolically invert the matrix associated with the state derivatives. The result of

the matrix inversion is contained in Appendix A and the full form of the state equation

may be seen in the ACSLcode of Appendix B and are described in Chapter VI.
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IV. THEBUSVOLTAGEMODEL

The next step in building a total system model based on Figure 1 involves connecting

the source model with the load model (or load models in parallel). The physical enuty

which joins load and source is the system bus. Figure 6 is a block diagram of the system

to be modeled without the field excitation or speed regulator loops closed.

bus voltage

current ,^_ Bus

Voltage

Model

current
Induction

Motor

Model

current

Synchronous

Generator

Model

field ex itation „_

rotor speedinput torque ^
R-L Load

Model
(electrical

frequency)

^

Figure 6. Isolated power system block diagram.

The source and load models have been discussed in some detail, now a model for the

system bus voltage must be developed. The simplest approach, and the approach most

frequently taken, is to assume the bus voltage is of fixed magnitude and frequency. This is

the so called infinite bus assumption.

Another method of modeling the bus voltage is to attempt to develop a dynamic

mathematical expression for bus voltage. The difficulty with this approach is that the

previously mentioned algebraic loop problem must be avoided. As a practical matter, the

simulation code cannot use bus voltage to solve for the current derivative terms if bus

voltage is described as a function of those current derivatives.
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Two methods are presented for dealing with the algebraic loop. The first uses

algebraic manipulation to eliminate current derivative terms from the equation describing

bus voltage. The second method involves treating the total system as a large implicit

model by using the DASSLalgorithm [Ref. 8].

A. INFINITE BUSMODEL

Use of the infinite bus model greatly simplifies the power system simulation.

Anderson [Ref. 2:p. 26] notes, "A major bus of a power system of a very large capacity

compared to the rating of the machine under consideration is approximately an infinite

bus". Simulations of this type have been done extensively and are well understood. The

generator and load models presented in Chapter II and EQ have been validated as infinite

bus models. Park [Ref. 2], Krause [Ref. 1], Anderson [Ref. 6] and many others have

demonstrated the validity of these models with both flux linkage and current states.

However, for reasons previously mentioned, the finite bus model will not be used for the

isolated power system.

B. PARALLELLARGERESISTANCEMODEL

Another method of modeling bus voltage so that it may be used as a varying input to

all the system submodels is to connect a large parallel resistance on the bus. Figure 7

shows this conceptually. The use of a very large resistance allows source current and load

current to be approximately equal. The bus voltage may be computed using Ohm's law

and then fed back as an input to the load and source models. This approach eliminates

voltage dependence on the current derivative but does not accurately model the system.
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Additionally, before any other computational errors are accounted for, some accuracy

is sacrificed because a small current is bled off by the resistor. While this small current

may not be significant in many applications, this solution method is not as satisfying as the

methods which follow.

bus voltage

fiel d exitaiion ^
inp ul torque

Synchronous

Generator

Model

Figure 7. Parallel resistor bus voltage model.

C. MATHEMATICALEXPRESSIONFORBUSVOLTAGE

One satisfying method of solving the bus voltage model dilemma is to develop a

mathematical expression based on well understood and accepted theory. At the node

connecting load and source the sum of the currents is zero by Kirchoff s Current Law

(KCL). It also follows, because differentiation is a linear operation, that the sum of

current derivatives is zero.

The algebraic loop difficulty is introduced when current derivative terms show up in

the mathematical expression for bus voltage. This is because bus voltage is an inpul to the

equations from which current derivatives are computed. Most simulation software will fail

when algebraic loops are encountered. This problem can be addressed by finding a way to

eliminate the current derivatives from the bus voltage equation.

35



In order to demonstrate this approach, a simplified system will be examined. Figure 8

represents a circuit containing a voltage source, Vs , and passive elements L y , L2 , /? ; and R2 .

A single current, i s , flows in the circuit and the differential equation describing the system

is

Vs = (L
l

+ Lz )^ + (R
1
+B2 )i s

(70)

Later in the chapter this circuit will be placed under closed loop control. For control

system work, the s-domain transfer function form of the system equation is

i.(s)
= !

V
s (s)

"
(L, + L2 )s + (*

1
+ R2 ) (71)

U Rj

X

Li

:R,

Figure 8. Simple circuit to demonstrate bus voltage equation representation.

Once the current is known it is possible to compute the dynamic voltage behavior at

the node. This voltage, V„, is the voltage appearing across the elements La and R2 . The

differential equation for this quantity is
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Vn = L, ^ + R2 i s
dt (72)

The transfer function from current to node voltage is

V (s)

-fyi = ^ + R2 (73)
Us)

and the transfer function relating source voltage to node voltage may now be written as

the product of (7 1) and (73)

V,(s) I,(s) =
V

B (s) =
L,s + R2

I
s

(s) V
s

(s)
' V

s (s)
"

(L, +I 2 )s + (/?
1

+ R2 ) (74)

The transfer function representation of the system for node voltage given source

voltage has no delay (the order of the numerator is not smaller than the order of the

denominator).- This is the way the algebraic loop phenomenon manifests itself in the s-

domain. Node voltage can not be properly fed back to contribute to the source voltage

without adding a controller delay. As an open loop transfer function, equation (74) may

be simulated in many software packages. The system current and node voltage may also

be computed using equations (70) and (72).

The ultimate goal of the system simulation being developed here is to be able to take

independent submodels and tie them together with a bus voltage model. This modular

approach has the advantage of not requiring the entire model to be redeveloped if one of

the sources or loads changes. It is not desirable in complicated systems to develop a new

system model each time a submodel changes. Figure 9 shows how the basic circuit of
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Figure 8 may be broken in two pieces, source and load, to demonstrate the modular

approach.

U Rj L2

12

V

load
submodel

:R,

Figure 9. Dividing the system into submodels.

The equations describing each submodel may then be obtained independendy. For

the source submodel

(75)

and for the load submodel

R2 . V,

Ph = ~ -r h + -r (76)

These submodels are accurate and it is easy to see that if terminal (bus) voltage, V,, is

a fixed value (infinite bus) both equations are easily solved. However, a solution which

models the source-load interaction and the terminal voltage dynamic behavior is desired.

In order to do this, terminal voltage must be solved at each time step of the simulation.
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The terminal voltage is then fed without delay to the set of equations describing source

and load. The previously derived expression for node voltage, equation (72), can not be

used. A current derivative term appears in this expression which will cause an algebraic

loop error.

One possible solution is to develop an expression which eliminates the derivative

terms. Based on KCL at the connecting node the current derivatives may be set equal.

The resulting equation for terminal voltage has no derivative terms

V. =
A + AA a- A A

(77)

This allows V
t

to be solved at each time step of the simulation and then fed into the

submodel equations. The system of Figures 8 and 9 was modeled in ACSL. The model

was formulated using both the single system approach and the modular system approach.

Appendix B contains the ACSLcode used for this simulation. The model parameters used

were

/?, = 1.0Q R2
= 5.0Q.

L, = 0.6H Li = 0. 2H

and the source voltage was a .5 duty cycle square wave pulse train with magnitude equal

to 1.0 and a period of 2.5 seconds.

Figure 10 compares the circuit response using the single loop model with the

response obtained from the submodel approach. The single loop solution for voltage,

VNODE, is computed from equation (72) after the differential equation for current (70) is

solved. The plot labeled VT is the solution for the terminal voltage using the
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Figure 10. Comparison of sing/* toop solution with solution obtained using the bus
voltage equation submodel approach.
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submodel approach and equation (77). A voltage is computed at each time step then fed

as an input to the source and load submodel equations (75) and (76). The difference

between the two solution methods is DELV.

Comparison of the current solution in each submodel is also significant. Ideally, the

two currents will be equal since the submodels share a common node. DELI is the

difference between i, and i
2

and DELID is the variation between pi
x

and pi 2 . Also plotted

is /j, representing current flowing in the system.

Figure 10 demonstrates that the bus voltage equation submodel yields good results.

The magnitude of error in voltage and current is extremely small and this approach

achieves the desired modularity of the system model. There are, however, some

disadvantages to this approach.

The current error variation (DELI), although small, is still growing at the end of the

run. This is due to the formulation of the bus voltage equation. The current derivatives

are set equal but nothing in the equation forces the currents to stay together.

Another problem is that the bus voltage equation is not simple for complex systems.

The equations for the synchronous generator with an R-L load are quite complicated and

with an induction motor load are more so. This approach also requires that the bus

voltage model be redeveloped for different source and load submodels. The addition of

submodels in parallel on the bus creates difficulties for the same reasons as just mentioned

for complex systems.

D. DASSLBUSVOLTAGEMODEL

In order to have a system model which is truly modular, a better solution than the bus

voltage equation must be found. The requirement to find a new and often complicated

expression for the bus voltage each time a submodel is altered becomes extremely
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unwieldy and inconvenient The previously mentioned DASSLalgorithm provides a more

satisfactory solution to the problem.

1. HowDASSLWorks

The basic idea of the DASSL routine is to replace the derivative in the implicit

equation with a difference approximation and then solve, using Newton's method, for the

derivative at the current time step. It has been implemented in the commercially available

simulation package ACSL. The class of problem DASSL is designed to solve are known

as differential algebraic equations (DAE). DAEs include systems of implicit differential

equations and systems of equations containing algebraic loops.

To show how the routine works the load-source-bus problem will be set up as a

DAE or implicit equation. One way to write the general DAE [Ref. 9:p. 41] which

applies to the case of the load, source and bus voltage models is to represent the load and

source model equations as a system of differential equations of the form

PL = /i(i,v,0 (78)

coupled to an algebraic constraint

= ft(i,v,0 (79)

If it is then assumed that voltage is some unknown function of the state and state

derivative vectors

v = h(pi_,i_,t)
( 80 )
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the system equations may be represented in a fully implicit form by substituting for voltage

in equations (78) and (79). Implicit equations of this type have been solved most

successfully using backward differentiation formulas (BDF) [Ref. 9:p.42].

The simplest BDF method involves replacing the derivative with a first order

backwards difference. DASSLextends the idea of the BDF. Rather than using the first

order difference, the derivative is approximated by the &* order difference and k ranges

from one to five. Order and step size are automatically selected based on the behavior of

the solution. Because of the flexibility of the routine, DASSLhas been shown to be highly

stable and robust [Ref. 9:pp. 115-116].

Two criteria must be met to successfully solve a DAEsystem. The system must

be solvable and implementable [Ref. 9:p. 16]. Solvable means that the states are

differentiable over the time interval of interest. The solution must be smooth enough to

make this possible. Implementable refers to the solution technique. The method used to

solve the nonlinear system of equations must provide a solution at each time step. In the

case at hand, as is often done, the solvability will be assumed. The current states are

relatively smooth functions. The implementability of the DASSLroutine is also assumed.

The routine as implemented in ACSL may be used to solve implicit differential

equations, algebraic loops and systems of differential equations with an algebraic

constraint. Conceptually the bus voltage problem may be looked at as a system of state

equations with an algebraic constraint based on Kirchoff s Current Law. In order to solve

for a node voltage in ACSLusing the implicit equation solver the constraint equation must

first be defined. Based on KCL at a connecting node, a residual, r, may be defined

r = lpi k +Hk (81)
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where it is desired to keep the residual at or near zero. The node voltage, which is

assumed implicitly related to this KCL equation, may then be found by using the DASSL

implicit solver. The operator in ACSL is MPLC, and the syntax is

V^ = IMPLC(r,V^) (82)

where Vnodeic is the node voltage initial condition [Ref. 10:pp. 1-4].

2. The Advantage of the DASSLBus Voltage Model

The fact that the constraint equation (81) for the system is simple regardless of

the complexity of subsystems connected at the node of interest gives the DASSL bus

voltage model a great advantage over the mathematical model presented in the previous

section. It is a simple matter to add or remove loads and sources from the larger system

model. No reformation of the bus voltage model is required. Additionally, the constraint

equation keeps the error between submodel currents close to zero. Even if a transient

occurs which makes the error grow momentarily, the implicit solver adjusts voltage to

move the current error back towards zero.

The simple system of figure 9 was simulated using the implicit feature of ACSL.

The same model parameters were used as in the simulation results presented in figure 10.

The code used may be seen in Appendix B. Figure 1 1 contains the simulation results using

the DASSL routine. As with the results of the bus voltage equation submodel, the

DASSL bus voltage submodel is in excellent agreement with the single loop solution.

Notice the improvement in current derivative error and current error, DELID and DELI

respectively.
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Figure 11. Comparison of single loop solution with solution obtained using the

DASSLbus voltage submodel approach
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E. THEBUSVOLTAGEMODELANDCLOSEDLOOPCONTROL

One final characteristic required of the bus voltage model is that its output be able to

be fed to a bus voltage control circuit. The power system model which is being developed

here requires that field excitation for the generator be controlled in order to maintain the

bus voltage at or near specification. To accomplish this, the bus voltage submodel must

accurately track the terminal voltage behavior during transients so that the control circuit

submodel responds correctly.

In order to demonstrate the behavior of the bus voltage submodel, the source-load

system of Figure 9 will again be used. The transfer function relating source voltage to

terminal voltage was developed and given as equation (74). Using this transfer function

form of the system model a control system may be developed. In this case a cascade

controller was designed using the root locus technique which produced a highly damped

response with a fast settling time and small steady state error. The transfer function

design is shown in Figure 12.

Voltage Reference

Figure 12. Transfer function form of the simple source-load system with bus voltage

control.

The closed loop response was modeled three ways using ACSL. The transfer

function form of the system model was compared with a closed loop form using both the
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bus voltage equation and the DASSL routine. In the simulation runs, system parameters

were initially set to the values given on page 39. The voltage reference was then step

changed from zero to one. All forms of the system model produced a similar step

response. Next the load parameters were step changed to R
2

= 0.01 and L2
= 0.001 . The

two submodel forms of the system exhibited similar behavior, a large increase in load

current and a large initial dip in bus voltage. This transient was followed by bus voltage

recovery to the commanded value.

Figure 13 shows the response of the closed loop system to a step change in the

voltage reference from zero to one. Results for both bus voltage submodels are shown.

The plot labeled DELV is the difference between the transfer function solution and the

indicated submodel. Both bus voltage submodels provide very good results and are in

excellent agreement with the transfer function model. Note the plot of DELI which is

moving away from zero in the bus voltage equation submodel.

Figure 14 is the response of the system to the step load change. The DASSL results

are in very good agreement with the bus voltage equation submodel. The difference to

note is again the DELI plot, Figure 14 (b). The simulation was allowed to continue to 100

seconds. The DASSL routine, while allowing some error between load and source

current, keeps forcing the error back toward zero. The bus voltage equation allows the

DELI error to grow 50 to 100 times larger than the DASSLroutine allows.

F. CHOICEOFBUSVOLTAGEMODEL

While the methods presented here are by no means exhaustive, several reasonable

possibilities for a bus voltage model have been looked at. Some advantages and

disadvantages of each have been discussed. Remember that modularity and simplicity are

desired characteristics of the total system model.
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Figure 13. System response of both voltage submodels to step change in reference

voltage. DELV compares model response to a transfer function form of the system.

48



DASSLsub-model Bus voltage equation sub-model

*WF^
'0.5 20.4 40.3 60.2 80.1

T

m

*

LU

IM-

100.0 '0.5

(b)

20.4 40.3 60.2
T

BO.

1

100.0
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response, (b) source and load current difference to 100 seconds.
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The only choice presented which allows both modularity and simplicity in

implementation as the total system model grows is the DASSLbus voltage model. The

routine accurately solves for bus voltage and then feeds that solution to all connected

submodels. Additional submodels may be included by simply adding the current and

current derivative terms from the new submodel into the KCL constraint equation. The

DASSLroutine is easy to use, fast, accurate and robust.
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V. SYSTEMMODELDESCRIPTION

Most of the pieces required to build an isolated power system operating on a finite

bus have been developed and presented. Validated submodels for source, loads and bus

voltage are available to be used as building blocks for a larger model. This section puts

the system model together by providing a means for closed loop control, a description of

the per-unit (pu) system and a detailed description of the ACSL code used in the final

system simulation.

A. SYSTEMCLOSEDLOOPCONTROL

In order to complete the system model and put it under closed loop control, two

more submodels must be developed. These are the field excitation system and the prime

mover and speed governor system. The field excitation system is a voltage regulator and

exciter which senses the magnitude of the bus voltage and then adjusts the voltage applied

to the field winding as necessary to maintain the bus voltage at or near the commanded

reference level. The speed governor senses the mechanical speed of the rotor and applies

a control signal to the prime mover which maintains rotor speed at or near the commanded

reference level.

1. Field Excitation System Model

There are many types of field excitation systems used for synchronous generator

voltage control. The IEEE Type 2 representation [Ref. 10] presented here is typical for

power systems used aboard US Navy ships. It is also the type of field excitation system in

the model which is used for comparison in the next chapter.

Figure 15 is a block diagram of the IEEE Type 2 regulator and exciter. The first

section, from the summing junction to V
re , is the regulator. From the second summing

junction to the output is the exciter section. There are two saturation functions, one
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associated with each part of the system. The details of implementing this model in the

simulation are discussed in the section describing the ACSLcode.

Voltage Reference K,

(1 +x As)

Kps

V„ Max

V„ Min

(1 + Xn S)(l +TG S)

AeBCVa)

1

(Ke+^e s)

-^ bus voltage

Field Excitatu

Figure 15. EEEEType 2 regulator and exciter system based of Ref. 10.

2. Prime Mover and Speed Governor Model

As for the excitation system, many models are available for prime mover and

speed governor. Steam turbines, hydro-turbines, diesel engines and gas turbines are a few

examples of the types of system used to drive synchronous generators. A simple transfer

function form for one of these systems might consist of two simple first order delays, one

for the speed governor and one for the prime mover. Choice of the prime mover and

governor model was driven by the desire to compare results of this system simulation with

other work

Mayer and Wasynczuk [Ref. 5] provide a model for an Allison 501 gas turbine

engine and governor. Figure 16 is the s-domain representation of this model. The model

is a per-unit model. A per-unit model references all model variables to some base value.
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Per-unit models are very common in power system simulation work and will be described

in more detail in the next section.

Per Unit

Speed Reference

^T

-< Per Unit RotorSpeed

Figure 16. Gas turbine and speed governor model based on Ref. 5.

B. THEPER-UNIT SYSTEM

The per-unit (pu) system was developed to simplify the calculation and interpretation

of results in power system simulation work. A pu quantity is defined as an actual quantity

(voltage, current, power etc.) divided by a base or reference quantity. The base values are

selected according to known characteristics of the machine being studied. The final

system simulation presented here is in the per-unit system.

The pu system is based on machine rated bus voltage, power and synchronous speed.

Machine parameters are usually supplied by the manufacturer in pu. The base quantities

used here are

Vbase : rated operating voltage

Pbase : rated volt-amperes for synchronous generator,

rated horsepower times 746 for induction motor
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COfcj^, : rated operating electrical frequency

With these defined, impedance and torque base quantities may be derived

'base
_ base

base
(83)

T = base
base

(VP)^base

Use of the pu system slightly changes the state equations for the synchronous

machine and induction machine. In the pu system the inertia (7) is replaced by the inertia

constant (H) which has units of seconds. The two inertia terms are related by

H = J
CObase

\

y ^base J

(84)

The electrical torque equations, (41) and (68), are altered in the pu system. For the

synchronous machine they are written as

*e - Xmd( ids + l
fd

+ ikd)iqs ^mq( iqs + ^kq^ds

pco r
= %>>-* (85)

and for the induction machine as

Te - XM(i qs i dr Wqr)

P®rm =
CO,

\^ Hm J

(Te -T
{ )

(86)
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Use of the pu system introduces a compatibility problem for the system model. Since

it is desired to build a model where sources and loads are interconnected, all submodels

must be referenced to the same base values. The generator and motor models share a

common base voltage and electrical frequency; however, base power is different in each

submodel. For the work presented here, the synchronous machine drives the selection of

base quantities. This requires that the other submodels be referenced to the synchronous

machine. By manipulation of (83) and (84), the machine parameters of the induction

motor may be put in the synchronous generator base as follows:

7pu ( sync _ mach)

pu{ sync _ mach

)

( p \
has e( sync _ mach)

p
i * base{ind _mach) J

( Pbase(ind _mach)

p
\ base (sync _ mach) J

7
pu(ind _mach)

LJn pu ( ind _ mach

)

(87)

C. SYSTEMMODELIMPLEMENTATIONIN ACSL

The ACSL program code is contained in Appendix B. The description of system

model implementation follows the layout of the program code. In order to make the

ACSL program easier to follow, throughout this section the variables will be referred to

by the same name used in the ACSLcode. The block diagram of Figure 17 represents the

system simulation as implemented in ACSL. The blocks labeled Synchronous Generator

Model (SGM) and Load 1 Model (L1M) through Load n Model (LnM) represent the

stand-alone state-space models developed in Chapters II and III. The models are
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Inverse Park's Transformation
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voltage and current

in a-b-c reference frame

Figure 17. Total system simulation block diagram as implemented in ACSL.
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implemented with current states. At each time step of the simulation, vectors representing

the model currents (is and i£) and current derivatives (isd and ild) are computed. Each of

these models requires bus voltage as an input. The bus voltage to the load may experience

a line loss.

The orthogonal bus voltage values, vqs and vds, are generated by the Bus Voltage

Model (BVM). For the system simulation presented here, the DASSLbus voltage model

is used. In order to set up the implicit solution, the BVMrequires all q and d axis source

and load current and current derivative terms as inputs. The model forms a residual from

these inputs based on KCL. The bus voltage is then computed, using the DASSLroutine,

at each step of the simulation. The DASSLroutine drives the residual close to zero.

The SGMrequires, in addition to bus voltage, an input torque (77) and field winding

voltage (Vfd). The SGMoutputs are currents (i£) current derivatives (isd ) and rotor

speed (wr). Speed control for the SGMis provided by the gas turbine and governor which

provides the input torque based on the behavior of wr. The voltage control is

accomplished by the regulator/exciter which uses the rectified magnitude of the bus

voltage to provide the appropriate level of Vfd.

L1M through LnM receive bus voltage inputs vql and vdl. These voltage quantities

are the BVM outputs modified by accounting for transmission line resistance and

reactance. Additionally, these load models require an input representing the electrical

frequency. For this system model, the electrical frequency is the wr output from the SGM.

The block labeled Inverse Park's Transformation (IPT) allows the system voltages

and currents, which are expressed in the orthogonal reference frame, to be changed to the

a-b-c reference. The IPT uses thtr, the variable representing rotor position, to perform

the transformation. This variable is obtained by integrating rotor speed with respect to

time.
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1. Program and Initial Sections

The first few lines of the program set simulation parameters. It is here that

things like integration algorithm, integration step size and communication interval for the

output file may be specified. The default integration algorithm is a Runge-Kutta fourth

order routine. The step size is selected, based on the Nyquist criteria, so that the dynamic

response transients can be computed and printed. Following the setting of simulation

parameters the machine parameters needed for each state-space submodel are entered.

The initial section of the code computes all coefficients needed for the source

and load submodels using the machine parameters. Starting with the synchronous

generator, the elements of the inverse B matrix are computed. The expressions for these

elements are obtained from the MATHCADoutput of Appendix A. After the inverse

matrix elements are computed, the terms for the linear and nonlinear matrices are

calculated. The procedure is repeated for each induction motor model. Finally initial

conditions for each integration in the simulation are entered. These are obtained by doing

steady state calculations or by running the model with initial conditions set equal to zero

until the model reaches steady state.

2. Dynamic Section

The dynamic section of the ACSL code is the heart of the simulation. This

section contains all the differential equations describing the models. It is this section of

the code which is executed at each time step of the simulation. The speed of execution is

a function of the number of integrations which must be performed, the integration

algorithm selected, integration step size and the total time which must be simulated.

Execution time is also affected by the DASSLroutine which slows the simulation down at

each time step by varying amounts in order to drive the bus voltage to a value that satisfies

the constraint equation.
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The constants vref and wref are the commanded inputs for voltage magnitude

and speed. The constants mot_onX and cbl represent circuit breakers for the loads. If

these are set to zero, no voltage is applied to the load. The induction motors each have a

speed square law load applied to them. This type of load is typical for a pump, a common

application for induction motors on board ship. The R-L load parameters are initially set

to large values so that, unless they are changed, the load will be very small even with bus

voltage applied (when cbl is set to one).

Next some quantities are derived so that they may be output. A ripple term is

added to the voltage magnitude to simulate the output of a rectifier. To make the output

more standard, torque quantities for the three motors are changed from the generator

torque base to the torque base for each induction motor.

The exciter and prime mover/governor models come from the s-domain models

of Figures 19 and 20. The following technique was used to convert the transfer function

form of the models to the form seen in the program:

B =
1̂ + v

B + Bxa s = AKa (88)

Bx a
= AKa -B

where A is the input, B is the output and B - Bs. Then this piece of the larger system

may be represented in ACSLas

D= AKa -B
(89)

B = [J A] + Bk
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This form, unlike the transfer function form, allows initial conditions to be input for each

integration if desired.

One of the states for the synchronous machine is wr, the rotor speed. This

quantity is also the basis for the reference frame chosen for the models. In order to use

the inverse Park's transformation to convert q-d-0 quantities to a-b-c quantities, the rotor

position (thtr) must be derived. This is done by integrating rotor speed with respect to

time.

Although it has less meaning in the case of an isolated generator than in an

infinite bus or multiple generator study, rotor angle (del) is computed. Figure 18 is a

partial phasor diagram which shows how these quantities are related. The rotor angle is

sometimes referred to as the torque angle to avoid confusion with thtr. The physical

position of the rotor, thtr, is constantly changing as the prime mover drives the generator;

however, for a given load on the machine del is a constant.

Figure 18. Relationship between Vqs> Vds, Vas and del.

The state equation section of th code contains the ACSL implementation of the

synchronous machine and induction machine equations in explicit form. The coefficients

on the right-hand side of the state equations are named so that they may be easily

identified. Coefficients beginning with L multiply with linear state terms Those with an N
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multiply with nonlinear terms (those involving a current-speed product). The number

appended to the name gives the position of the coefficient in its parent matrix. In the

induction motor equations there are two additional elements to the naming conventions

just described. Because there are multiple motor models, a third digit is added to the end

of the coefficient name to indicate the motor number. A distinction is also made between

the nonlinear coefficients. Those involving the electrical speed only begin with NE, and

those involving the slip speed or difference between electrical speed and motor rotor

speed begin with ND.

The DASSLbus voltage model is simply an expanded version of the model used

in the example of Chapter IV. A residual of the currents and current derivatives is formed

for each q-d-0 axis . Then the voltage value is obtained using the implicit system solver.

A line loss model based on the R-L model of Chapter III modifies the value of line voltage

applied to the motor loads.

The final few lines of code convert the voltage and current results to the a-b-c

reference frame for output and set a simulation stop time. The ACSLsystem compiles the

model in FORTRANfor execution. The executable FORTRANform of the model runs

faster than models produced in some other simulation software. The main model may be

linked to one or more command files which allow the user to more easily exercise the

model under a variety of conditions and then obtain the desired output. An command file,

which was used with this simulation, follows the system model code in Appendix B.
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VI. SYSTEMRESPONSEANDMODELVALIDATION

The model for the isolated power system has now been folly developed. The system

simulation is extremely modular and relies on accepted models for the source and load

submodels. These accepted models for a synchronous generator, induction motor and

resistive-inductive load have been extensively validated.

Other submodels were needed to complete the system. The DASSL submodel for

the bus voltage was demonstrated in Chapter IV. Chapter V added accepted field exciter

and prime mover/governor models to the system.

Although the separate pieces of the system have been validated to one degree or

another, the whole system must be tested against some standard for validation. Mayer and

Wasynczuk [Ref. 5.1 of Purdue University presented a simulation of a portion of the USS

Arleigh Burke (DDG-51) power distribution system which will be used as the standard for

comparison. This model will be referred to as the Purdue model.

A. DESCRIPTIONOFTHEPURDUEMODEL

The Purdue model is a systematic method for taking the differential algebraic

equations describing a power system and using them to establish a conventional state-

space model. On each bus of the system, one machine is designated as the root machine

and any other connected machine is a nonroot machine. A root machine has current and

current derivatives as its inputs and stator voltages as its outputs. The root machine

inputs are formed by summing the currents and current derivatives from all connected

nonroot models. After establishing forms for the root and nonroot models, an

interconnection procedure is established based on the KCL constraint

The interconnection procedure is conceptually similar to the bus voltage equation

development presented in Chapter IV. Based on the linearity of the derivative operator,
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expressions for the current derivatives for the root and nonroot models are set equal, thus

eliminating the derivative terms. Then, after complicated matrix algebraic manipulation,

an equation for determining stator voltages from the states only is produced.

Mayer and Wasynczuk validate their model by comparing it with the output produced

by the Power System Simulator at Purdue University. This facility has been used

extensively in system design work and provides detailed three-phase output based on

state-of-the-art representations of the power system components.

B. VALIDATION BY COMPARISONWITH THEPURDUEMODEL

Mayer and Wasynczuk describe the scenario and provide all the model parameters for

the results presented in their paper. The model parameters are contained in Table 1. The

generator and induction motor parameters are all per-unit values with a 450V rms, line-to-

line, base voltage. The base power for the generator is 3125 KVA, and for the motors is

determined by the horsepower rating.

For the comparison simulation, the generator is initially in a steady state unloaded

condition. It is under closed loop regulation, operating at rated voltage and speed with

stator currents zero. At an arbitrary time, a circuit breaker is closed energizing all three

induction motors. The three motors draw large start-up currents which cause bus voltage

to dip initially before the voltage regulator and exciter circuit can react and return the bus

voltage to the commanded magnitude. The initial large currents also produce a large

electrical torque in the generator which tends to slow rotor speed. The prime

mover/governor reacts to the speed change by applying more input torque to return the

system to commanded speed. Most of the system transient behavior is complete in three

seconds. Figures 19 and 20 compare the results of the DASSLbased simulation with the

results obtained by the Purdue model.
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TABLE 1. SYSTEMMODELPARAMETERS

Prime Mover/Governor

K. = 22.5 T„ = 0.55 Tpv = 0.01 ^ = 0.05

Wmn. = 0.23 *-?fiT = 0.251 CinT = 1.3523 Cr ,Nr,T = 0.5

Regulator/Exciter

KA = 400.0 TA = 0.01 VmMax = 8.4 V„,Min =

Kp = 0.01 TP1 =0.15 Tp, = 0.06 Kp=1.0

TF = 0.1 A = 0.1 B = 0.3

Synchronous Generator

r.= 0.00515 r, n = 0.0613 r fH = 0.001 11 r VH = 0.02397

Xk = 0.08 Xltn = 0.3298 XlfH = 0.13683 XIW = 0.33383

X^ = 1.0 X^= 1.768 H = 2.137

«

Induction Motors

IM1 IM2 IM3

Hp 200 150 40

r < 0.01 0.0051 0.005

XIo 0.0655 0.0553 0.0587

XL 3.225 2.678 2.952

x„ 0.0655 0.0553 0.0587

«"r 0.0261 0.0165 0.0165

H 0.922 1.524 1.054
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The DASSL based model is in excellent agreement with the Purdue model results.

Additionally it agrees well with the expected behavior of such a system. Bus voltage

transient behavior is tracked during dynamic loading of the system. During the simulation

the difference between generator current and the sum of the load currents stayed bounded

in the micro amp range.

Both simulations were implemented in ACSL using a fourth-order, Runge-Kutta

integration algorithm. Using an integration step size of 1.0 millisecond, the DASSLbased

model required 5.4 seconds of cpu time on a Sun SPARC10 Model 41 workstation. For

comparison, the generator and three induction motor simulation using an infinite bus

voltage model used 2. 1 seconds of cpu time on the same workstation.

C. DASSLMODELRESPONSEWITH UNBALANCEDLOAD

In three-phase power systems every effort is made by the system designers to keep

the phase loads equal. In practice this is impossible. All three phase systems experience

some degree of unbalanced loading. On board a ship this is a common problem,

particularly on older ships. Partial grounds, lighting alterations and equipment updates

are some factors that contribute to the problem. Behavior of the system presented in the

previous section to an unbalanced loading condition will be investigated.

An unbalanced R-L load in parallel with the three induction machines simulates a

situation which frequently occurs on board ship. Single phase lighting loads are served by

tapping a lighting circuit transformer primary into one phase of the three phase power

system. This often results in different loading conditions on the three phases.
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1. The Unbalanced Load

Unbalanced loading introduces significantly more complexity to the state

equations in the q-d-0 reference frame. In the R-L load development of Chapter EQ,

balanced loading was assumed. If the phase resistance values are allowed to be unequal

the resistance matrix becomes

*i
=

r
al

0"

r
bl

rcl.

The transformation to the orthogonal reference frame results in the K
g

r, (
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where
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= e.
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r
3

r
3
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This significantly complicates the state equations. All three states now appear in

each of the three equations describing the R-L load in the q-d-0 reference frame. Note

that an unbalanced inductance matrix will cause all three state derivative terms to appear

in all state equations (an implicit form). Putting such a system of equations in explicit

form will not be dealt with here.

2. Simulation Results with Unbalanced Loading

For the unbalanced load study, the model is started and loaded in an identical

manner to the simulation of Figures 19 and 20. Once the system is in steady state, a

circuit breaker is closed which connects an unbalanced R-L load in parallel with the motor

loads. The per-unit unbalanced load parameters used are

r
al

= 5.0

r
bl

= 30.

r
cl

=5.0

X, =3.0

After application of the unbalanced load, the system is again allowed to come to

steady state. The effect of this load on the phase currents may be seen in Figure 21. The

phase currents are visibly unequal. The magnitude of i bs is about half the magnitude of the

other phase currents. Of more interest is the manner in which other variables are affected.

Figure 22 is a plot of several variables affected by the unbalanced load. The

unbalanced load causes oscillations to occur in the generator electrical torque. These

variations in turn cause the rotor to oscillate. The field winding current also exhibits this

oscillatory behavior due to the motion of the rotor. Not only is the generator affected, but

the plot of torque produced by induction motor two shows oscillations. Such oscillations

can be potentially damaging to equipment
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D. DASSLBASEDMODELFLEXIBILITY

Many other types of studies may be done with the DASSLbased model. The system

is extremely flexible. For example, the load on one or more of the induction motors )uld

be suddenly changed. The full transient effect of this change could then be observed

throughout the system. The response of the generator, generator control systems and

other loads could all be studied. This type of capability is extremely valuable to the

designers of isolated power systems.
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VD. CONCLUSIONSANDFUTUREWORK

There is a need for power system simulations which do not rely on the infinite bus

voltage assumption. In the recent past, the limited capabilities of computer hardware and

software made the modeling of isolated power systems difficult. Designers relied on

questionable equations to approximate terminal voltage dip under various loading

conditions. Reduced order modeling was done which provided some data at the expense

of losing transient behavior results. It has been demonstrated that by treating the

equations for the power system as a set of differential algebraic equations and using a

proven DAEsolver, excellent results can be achieved.

A. ADVANTAGESOFTHEDASSLMODEL

The approach presented in this thesis has several advantages over methods that have

been used in the past. Some of the advantages are:

• the system model is highly modular in design (submodels)

• the DASSLbus voltage submodel constraint equation makes the model simple

to expand

• the model provides transient data

• the submodels are standard, well validated state-space models

• simulation speed is excellent

• the model uses a highly regarded, commercially available DAEsolving routine

B. DISADVANTAGES

There are some problems with the system model which still must be overcome.

Some of the possible disadvantages and limitation of the model are:
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• the source and load submodels need to be developed with current states and in

the q-d-0 reference frame (not always the most convenient form)

• the total system model has not been validated against hardware results

• the generator and motor models do not include saturation effects

• the generator and motor models assume sinusoidally distributed windings

The last disadvantage is really a disadvantage of the standard development of the

synchronous and induction machine models. The fact that the windings are actually not

perfectly distributed introduces harmonics on the system bus. Generally these effects are

minor and may be neglected; however, some types of loads (solid state power converters

for example) may be highly sensitive to these neglected harmonics.

C. FUTUREWORK

In order to realize a benefit from the DASSL model approach significant work

remains to be done. One of the most important tasks that could be accomplished is a

hardware validation of the model. Figure 23 is a block diagram of a possible hardware

configuration for accomplishing validation.

Prime Mover
(D C Motor)

Motor Control

field exitation

O

Exciter ^

input torque

ph—EH

Synchronous

Generator

rotor speed

bus voltage

R-LLoad

Figure 23. Possible hardware configuration for model validation.
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This configuration has the advantage of being complex enough to validate the

DASSLmodel and simple enough to build and test in the lab. Some other suggestions for

future work with this basic model are:

• addition of one or more parallel generators

• development of other types of load models

• include winding saturation effects

• try other DAE solution methods which offer the promise of improved

efficiency (for example, Halin [Ref. 12] reports a significant improvement over

DASSLwith his method)

This list is by no means conclusive and much work remains to be done in this area.

The process of engineering design involves trade-offs. The DASSLmodel, because it

involves multiple iterations at each simulation time step, requires more than double the cpu

time than that used by the infinite bus model. At one time this cost may have been

considered too great for the benefit derived. However, today's simulation capabilities

make the DASSL based finite bus model a practical design tool, worthy of continued

investigation.
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APPENDIXA: CONVERTINGSTATEEQUATIONSTOEXPLICIT FORM

In Chapters II and III the state equations for the synchronous machine and the

induction machine were developed as implicit equations with the currents as states. Those

equations had the form

v = AL / + ANco/ + Bp[

where AL is the linear terms matrix and AN is the nonlinear terms matrix.

In order to convert the equations to implicit form the B matrix must be inverted so

that the state derivative vector may be isolated on the left-hand side of the equation. Since

numerical matrix inversion can often lead to problems in the case of poorly conditioned

matrices, the matrix inversion for the two models was done using the MAPLEsymbolic

engine in MATHCAD4.0.

THESYNCHRONOUSMACHINE

B "' =

a

-k b b

-c

g

b
2

e b
2— - b —

d d d

-b b f

where the following definitions apply:

a = Xmq ; b = x md ;c = x u

d = R
fd ;e = X

fd
;f = Xk d

g = X kq ;h = X
q

;k = x d
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THESTATEEQUATIONSFORMEDEXPLICITLY FORACSL

The final form of the state equations isolates the current derivative vector on the left-

hand side. In the ACSL program code an equation is written for each current derivative.

In order to develop an equation for each state derivative, the matrix equations must be

multiplied out. This development will be demonstrated for the synchronous machine, the

induction machine is treated in an identical manner. Equation (42)describes the procedure

in compact from.

/?/ = L/ + Nco
r
/+ Vv

V=B"'

L = V(-A L )

N = V(-A N )

Using MATHCADagain, the state equations may be developed as seen in the ACSL

code of Appendix B. First the L and N matrices must be computed

L =

r

Vll V14
"

V22 V25 V26
r

i

V33 r

V41 V44 -r

V52 V55 V56 " X Hmd
V62 V65 V66

-r

VII r
1

-V14r.

V22r -V25X .md -V26t u
V33r

$
U

V41 r -V44r

V52r II -V55 X .md
-V56r M

V62r
i

(l - V65 - Xn*
-V66t m
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N =
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then the terms of the equation are multiplied out

U=
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Nco / =

N12 N15 N16

N21 N24

N42 N45 N46

N51 N54

N61 N64

i

'*

CO
t

Vd

V

N12 '°Y'di
^NlS-ffij-^-t-NW-o)^^,

N21co-i -hN24coi.
I qs ITU)

N42co
f

i
dt

I- N45o)
r

i
fd

+ N46(0
r

i

kd

N51u-i +N54coL
r qs r Ttq
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Vv =
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finally, the expression for the state derivative vector may be written as the sum of the

three terms
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APPENDIXB: ACSLCODE

A. BUSVOLTAGEEQUATIONMODEL

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!

!! Mark Kipps NPSMonterey

!! !!

!! Program to demonstrate validity of bus voltage equation model

!! Example circuit is solved using two methods and the results

!! are compared.
jj

!!!!!!!!I!!!!!!!!!l!!!!!!!l!!(!!!!!!!!!!!!!!!!!!!!!l!!!!!!!l!i!!!!!!!!!!!!!!!!!!!!!li!!!!l!llll!!!!!!!!!!!!!!!!!

PROGRAM
NSTEPS nstp = 1

CINTERVAL cint = 1e-2

MAXTERVAL maxt = 1e-3

DYNAMIC

DERIVATIVE

!—Circuit parameters
CONSTANT R1=1.0
CONSTANT R2=5.0
CONSTANT L1=0.6
CONSTANT L2=0.2

!--Source voltage

Vs =PULSE(0.0, 2.5, 1.25)

!--State equations for one loop solution

id = -(R1 +R2)/(L1 +L2)*i + Vs/(L1 +L2)

i = INTEG(id.O.O)

Vnode = L2*id + R2*i

!--State equations for the two sub-model solution

i1d =-R1/L1*i1 +VS/L1 -Vt/L1

h =INTEG(i1d,0.0)

i2d = -R2/L2*i2 + WL2
i2 = INTEG(i2d,0.0)
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!--Bus voltage equation for sub-models

Vt =(L1 *L2)*(-R1*i1/L1 + R2*i2/L2 + Vs/L1 )/(L1 + L2)

l-Differences for output

delv = Vt - vnode
deli = i1 - i2

delid = i1d - i2d

END ! of derivative

CONSTANTtstop = 20.

TERMT(t .GE. tstop)

END ! of dynamic
END ! of program
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B. DASSLBUSVOLTAGEMODEL

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

!! !

!! MarkKipps NPS Monterey !

!! !

!! Program to demonstrate validity of DASSLbus voltage model. !!

!! Example circuit is solved using two methods and the results !

!! are compared. !

!! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

PROGRAM
NSTEPS nstp = 1

CINTERVAL cint = 1e-2

MAXTERVAL maxt=1e-3

DYNAMIC

DERIVATIVE

!--Circuit parameters
CONSTANT R1=1.0
CONSTANT R2=5.0
CONSTANT L1=0.6
CONSTANT L2=0.2

!--Source voltage

Vs =PULSE(0.0, 2.5, 1.25)

!--State equations for one loop solution

id = -(R1 +R2)/(L1 +L2)*i + Vs/(L1 +L2)

i = INTEG(id.O.O)

Vnode = L2 #
id + R2*i

!--State equations for the two sub-model solution

i1d = -R1/L1*i1 +Vs/L1 - Vt/L1

i1 =INTEG(i1d,0.0)

i2d = -R2/L2*i2 + Vt/L2

i2 = INTEG(i2d,0.0)

I--DASSL bus voltage model sums current at the node

resi = i1d + i1 - i2d - i2

Vt = IMPLC(resi,0.0)
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!--Differences for output

delv = Vt - vnode
deli = i1 - \2

delid = i1d - i2d

END ! of derivative

CONSTANTtstop = 20.

TERMT(t GE. tstop)

END ! of dynamic
END ! of program
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C. BUSVOLTAGEEQUATIONMODELUNDERCONTROL

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

n

!! Mark Kipps NPSMonterey

!!

!! Program to demonstrate validity of bus voltage equation model. !!

!! Example circuit is solved using two methods and the results

!! are compared. System under cascade voltage control.

m

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PROGRAM
NSTEPS nstp = 1

CINTERVAL cint = 5e-3

MAXTERVAL maxt=1e-3

DYNAMIC

DERIVATIVE

•--Circuit parameters
CONSTANT R1=1.0
CONSTANT R2=5.0
CONSTANT L1=0.6
CONSTANT L2=0.2

Vref =STEP(0.2)

'.-Cascade voltage controller from root-locus design

verr =Vref-Vt

v01d =200*verr - 30*v01

v01 =INTEG(v01d,0.0)
Vsd =v01d + 10*v01 -.orVs
Vs =INTEG(Vsd,0.0)

!-State equations for two sub-model solution

i1d =-R1/L1*i1 +Vs/L1 - Vt/L1

i1 = INTEG(i1d,0.0)

i2d = -R2/L2*i2 + WL2
i2 = INTEG(i2d,0.0)

!-Bus voltage equation

resi = i1d + i1 - i2d - i2

Vt =(L1 *L2)*(-R 1*i1/L1 + R2*i2/L2 + Vs/L1 )/(L1 + L2)
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!--Transfer function form of the system

ve =Vref - Vb
DIMENSION p(3), q(4)

CONSTANT p= 1 .0, 35.0, 250.0, q= 1 .0, 37.51 , 225.375, 2.25

Vb =TRAN(2,3,p,q,50.0*ve)

-Differences for output

deli = i1 - i2

deltd =i1d-i2d
delv = Vt - Vb

END ! of derivative

CONSTANTtstop = 1 .0

TERMT(t .GE. tstop)

END ! of dynamic
END ! of program
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D. DASSLBUSVOLTAGEMODELUNDERCONTROL

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""!!!!

I!

!! MarkKipps NPSMonterey
!!

!! Program to demonstrate validity of DASSLbus voltage model. !!

!! Example circuit is solved using two methods and the results

!! are compared. System under cascade voltage control.

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PROGRAM
NSTEPS nstp = 1

CINTERVAL cint = 5e-3

MAXTERVAL maxt=1e-3

DYNAMIC

DERIVATIVE

!--Circuit parameters
CONSTANT R1=1.0
CONSTANT R2=5.0
CONSTANT L1=0.6
CONSTANT L2=0.2

Vref = STEP(0.2)

!--Cascade voltage controller from root-locus design

verr =Vref-Vt

v01d =200*verr - 30*v01

v01 =INTEG(v01d,0.0)
Vsd =v01d + 10*v01 -.01*Vs
Vs =INTEG(Vsd,0.0)

!--State equations for two sub-model solution

i1d = -R1/L1*i1 +Vs/L1 - Vt/L1

i1 = INTEG(i1d,0.0)

i2d = -R2/L2*i2 + Vt/L2

i2 = INTEG(i2d,0.0)

!--DASSL bus voltage model

resi =Md + i1 - i2d - i2
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Vt = IMPLC(resi.O.O)

!--Transfer function form of the system for comparison

ve =Vref - Vb
DIMENSION p(3), q(4)

CONSTANT p= 1 .0, 35.0, 250.0, q= 1 .0, 37.51 , 225.375, 2.25

Vb =TRAN(2,3,p,q,50.0*ve)

!--Differences for output

deli = i1 - 12

delid =i1d-i2d
delv = Vt - Vb

END ! of derivative

CONSTANTtstop = 1 .0

TERMT(t .GE. tstop)

END ! of dynamic
END ! of program
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E. TOTALSYSTEMMODEL

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!

!! Mark Kipps NPSMonterey
!!

!! Program to simulate a synchronous generator and loads on a finite !!

!! system bus. Bus voltage is computed using the implicit equation !!

!! solving routine DASSL.
m

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PROGRAM
NSTEPS nstp = 1

CINTERVAL cint = 1e-3

MAXTERVAL maxt=1e-3

INITIAL

pi = 4.0*atan(1.0)

wb = 120.*pi

Synchronous Machine Parametersiiiniiii-

H = 2.137

smpb = 3125.

zb = 1.0

Xs = .08*zb

Xmq = 1 .0*zb

Xmd = 1.768*zb

Xlkd = .33383*zb
Xlfd = .13683*zb

Xlkq = .3298*zb

Rfd = .00111*zb
Xkd = Xlkd+Xmd
Xfd = Xlfd+Xmd
Xkq = Xlkq+Xmq
Rs = .00515*zb

Rkd = .02397*zb

Rkq = .0613*zb
Xd = Xs+Xmd
Xq = Xs+Xmq

!!!!!!!!— Induction Motor Parameters 200hp machine-

impbl =149.14
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zb_im1 = smpb/impbl
Rs_im1 = 0.01*zb_im1

Xls_im1 = 0.0655*zb_im1

Xm_im1 = 3.225*zb_im1

Xlr_im1 = 0.0655*zbjm1
Rr_im1 = 0.0261 *zb_im1

H_im1 =0.992*149.14/3125.

Xss_im1 = Xls_im1+Xm_im1
Xrr_im1 = Xlr_im1+Xm_im1

!!!!!!!!!— Induction Motor Parameters 150hp machine-

impb2 = 1 1 1 .85

zb_im2 = smpb/impb2
Rs_im2 = 0.005 rzb_im2
Xls_im2 = 0.0553*zb_im2
Xm_im2 = 2.678*zb_im2

Xlr_im2 = 0.0553*zb_im2
Rr_im2 = 0.0165*zb_im2
H_im2 = 1.524*111.85/3125.

Xss_im2 = Xls_im2+Xm_im2
Xrr im2 = Xlr im2+Xm im2

!!!!!!!!!— Induction Motor Parameters 40hp machine-

impb3 =29.83
zb_im3 = smpb/impb3
Rs_im3 = 0.005*zb_im3
Xls_im3 = 0.0587*zb_im3
Xm_im3 = 2.952*zb_im3
Xlr_im3 = 0.0587*zb_im3
Rr_im3 = 0.0165*zb_im3
H_im3 =1.054*29.83/3125.

Xss_im3 = Xls_im3+Xm_im3
Xrr im3 = Xlr im3+Xm im3

!!!!!!!!!— Field Exciter Parameters-

Kae = 400.

Tae = 0.01

Kfe = 0.01

Tfe1 =0.15
Tfe2 = 0.06

Kee = 1 .0

Tee = 0.1

iiiiiiiii- -Prime Mover and Speed Governor Parameters-

Kc = 22.5

Tc = 0.55

Tfv = 0.01
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Tfl = 0.05

Wf10s = 0.23

C2gt = 0.251

C1gt = 1.3523

Cgngt = 0.5

MM!!!!!— Synchronous Machine model coefficients

!—Inverse matrix (obtained from MATHCAD)

V1 1 = wb*Xkq/(Xmq"2 - Xq*Xkq)
V14 = -wb*Xmq/(Xmq"2 - Xq*Xkq)
V22 = wb*(Xmd**2 - Xfd*Xkd)/ &

(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd**2)

V25 = wb*Rfd*(Xkd - Xmd)/ &
(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)

V26 = wb*Xmd*(Xfd - Xmd)/ &
(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)

V33 = -wb/Xs
V41 = wb*Xmq/(Xmq"2 - Xq'Xkq)
V44 = -wb*Xq/(Xmq**2 - Xq*Xkq)
V52 = wb*Xmd*(Xmd - Xkd)/ &

(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)
V55 = wb*Rfd*(Xd*Xkd - Xmd"2)/ &

(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd • Xfd)*Xmd"2)/Xmd
V56 = wb*Xmd*(Xmd - Xd)/ &

(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)
V62 = wb*Xmd*(Xmd - Xfd)/ &

(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)
V65 = wb*Rfd*(Xmd - Xd)/ &

(Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)
V66 = wb*(Xfd*Xd - Xmd"2)/ &

<Xd*Xfd*Xkd + (2*Xmd - Xkd - Xd - Xfd)*Xmd"2)

!—Linear terms matrix

L11 =V11*R
L14 = -V14*RKq
L22 = V22*Rs
L25 = -V25*Xmd
L26 = -V26*Rkd
L33 = V33*Rs
L41 =V41*Rs
L44 = -V44*Rkq
L52 = V52*Rs
L55 = -V55*Xmd
L56 = -V56*Rkd
L62 = V62*Rs
L65 = -V65*Xmd
L66 = -V66*Rkd

!—Nonlinear terms matrix
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N12 = V11*Xd/wb
N15 = -VirXmd/wb
N16 = -VirXmd/wb
N21 = -V22*Xq/wb
N24 = V22*Xmq/wb
N42 = V41*Xd/wb
N45 = -V41*Xmd/wb
N46 = -V41*Xmd/wb
N51 = -V52*Xq/wb
N54 = V52*Xmq/wb
N61 = -V62*Xq/wb
N64 = V62*Xmq/wb

!!!!!!!!!— Coefficients for Induction Motor Loads-

MACROimcoef (x)

i —inverse matrix

B1 1&x = Xrr_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B14&X = -Xm_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B22&X = Xrr_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B25&X = -Xm_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B33&X = 1/Xls_im&x*wb
B41&X = -Xm_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B44&X = Xss_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B52&X = -Xm_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B55&X = Xss_im&x/(Xss_im&x*Xrr_im&x - Xm_im&x"2)*wb
B66&X = 1/Xlr_im&x*wb

LM1 1 &x = -B1 1 &x*Rs_im&x
LM14&X = -B14&x*Rr_im&x
LM22&X = -B22&x*Rs_im&x
LM25&X = -B25&x*Rr_im&x
LM33&X = -B33&x*Rs_im&x
LM41&X = -B41&x*Rs_im&x
LM44&X= -B44&x*Rr_im&x
LM52&X= -B52&x*Rs_im&x
LM55&X= -B55&x*Rr_im&x
LM66&X = -B66&x*Rr_im&x

NE12&x = -B1 1 &x*Xss_im&x/wb
NE15&x = -B1 1 &x*Xm_im&x/wb
NE21&x= B22&x*Xss_im&x/wb
NE24&x= B22&x*Xm_im&x/wb
NE42&X = -B41&x*Xss_im&x/wb
NE45&X = -B41&x*Xm_im&x/wb
NE51&x= B52&x*Xss_im&x/wb
NE54&x= B52&x*Xm im&x/wb
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ND12&X= -B14&x*Xm_im&x/wb
ND15&X= -B14&x*Xrr_im&x/wb
ND21&x= B25&x*Xm_im&x/wb
ND24&x= B25&x*Xrr_im&x/wb
ND42&X= -B44&x*Xm_im&x/wb
ND45&X= -B44&x*Xrr_im&x/wb
ND51&x= B55&x*Xm_im&x/wb
ND54&x= B55&x*Xrr_im&x/wb

MACROEND !of imcoef

imcoef ("1")

imcoef ("2")

imcoef ("3")

!—sources and loads

iqsic = 0.0

idsic = 0.0

iosic = 0.0

ikqic = 0.0

ifdic = 1/Xmd
ikdic = 0.0

wric = 376.991

iqlpic = iqsic

idlpic = idsic

iolpic = iosic

vqsic = 1.0

vdsic = 0.0

vosic = 0.0

thtric = 0.0

!—exciter

vfdic = 1.

vreic = vfdic + .1*exp(.3*vfdic)

volic = 0.0113
vfbic = 0.00008
!—prime mover

—

Tiic = 0.0

wftic = (Tiic/C1gt) + C2gt
wfvic = wftic

werr3ic = wfvic- Wf10s

END ! of INITIAL

DYNAMIC

DERIVATIVE

CONSTANT vref = 1

.

CONSTANT wref = 376.991
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!—Load Parameters-

CONSTANTmot_on1=0.0 , mot_on2=0.0 , mot_on3=0.0
CONSTANTcb1=0.0

!—Square law pump loads -

tl1 =(wr1)"2
tl2 = (wr2)"2
tl3 = (wr3)**2

!—R-L load parameters -

CONSTANT rl = 5.,XI = 2.

!—Derive quantities for output -

zero =0.0*t

pelec = 3*vas * ias

pmech = 0.5*wr*Ti/wb

pdevl = 0.5*wr*Te

deliq = iqs - iqlp - iql

delid = ids - idlp - idl

iamag = sqrt(iqs**2 + ids"2 + ios**2)

IF (ABS(iqs) .LT. 0.0001) THEN
iaphs = 0.0

ELSE
iaphs = atan(ids/iqs)*1 80.0/pi

END IF

vrip = ABS(.07*cos(wr*t)) - .035 !to simulate rectifier

vamag = sqrt((vqs**2 + vds"2 + vos"2)) + vrip

frq = (wr - wb)/wb
(—Convert to ind motor base -

t1 = te_im1 *smpb/impb1

12 = te_im2*smpb/impb2
t3 = te_im3*smpb/impb3
wr1 = wr_im1/wb
wr2 = wr_im2/wb
wr3 = wr_im3/wb

l!lllllll...oYrfor rr»™-i«l

verr = vref - vamag - vfb

vred = (verr'Kae - vre)/Tae

vre = LIMINT(vred,vreic,0.0,8.5)

sat = vre- .1*exp(.3*vfd)

vfdd = (sat - vfd*Kee)/Tee

vfd = INTEG(vfdd.vfdic)

void = (vre*Kfe-vo1)/Tfe1

vol = INTEG(vo1d,vo1ic)
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vfbd = (vo1d-vfb)/Tfe2

vfb = INTEG(vfbd.vfbic)

IIIIIMII nrimp r

CONSTANTGp=1.
werrl = Gp*(wref - wr)/wb

werr2 = Kc*werr1/Tc - Kc*wrd/wb
werr3 = INTEG(werr2,werr3ic)

werr4 = werr3 + Wf10s
Wfvd = (werr4 - wfv)/Tfv

Wfv = INTEG(Wfvd,Wfvic)
Wftd = (Wfv - Wft)/Tft

Wft = INTEG(Wftd,Wftic)

Wft2 = (Wft-C2gt)*C1gt
Ti = Wft2 + Cgngt*werr1

!—derive angles-

thtrd = wr
thtr = INTEG(thtrd.thtric)

del = atan(vds/vqs)*180.0/pi

!!!!!!!!!— state equations for synchronous machine-—

iqsd = L11*iqs + N12*wr*ids + L14*ikq + N15*wr*ifd &
+ N16*wr*ikd + V11*vqs

iqs = INTEG(iqsd.iqsic)

idsd = N21*wr*iqs + L22*ids + N24*wr*ikq + L25*ifd &
+ L26*ikd + V22*vds + V25*vfd

ids = INTEG(idsd.idsic)

iosd = L33*ios + V33*vos
ios = INTEG(iosd.iosic)

ikqd = L41*iqs + N42*wr*ids + L44*ikq + N45*wr*ifd &
+ N46*wr*ikd + V41*vqs

ikq = INTEG(ikqd.ikqic)

ifdd = N51*wr*iqs + L52*ids + N54*wr*ikq + L55*ifd &
+ L56*ikd + V52*vds + V55*vfd

ifd = INTEG(ifdd.ifdic)

ikdd = N61*wr*iqs + L62*ids + N64*wr*ikq + L65*ifd &
+ L66*ikd + V62*vds + V65*vfd

ikd = INTEG(ikdd.ikdic)

!—GENERATORelectrical torque equation in terms of currents
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Te = (Xmd*(-ids+ifd+ikd)*iqs)-(Xmq*(-iqs+ikq)*ids)

!—final state equation

wrd = wb*(Ti-Te)/2.0/H

wr = INTEG(wrd,wric)

!—Speed of generator rotor determines electrical frequency

we = wr

!!!!!!!!— state equation macro for the induction motor loads

MACROimstateqn (x)

iqd_&x = LM1 1&x # iq_im&x + NE12&x#we*id_im&x + &
ND12&x*wd_im&x*id_im&x + LM14&x*iqr_im&x &
+ NE15&x*we*idr_im&x + ND15&x*wd_im&x # idr_im&x &
+ B11&x*(vqs+vqll)*mot_on&x

iq_im&x = INTEG(iqd_&x,0.0)

idd_&x = NE21&x*we*iq_im&x + ND21&x*wd_im&x*iq_im&x &
+ LM22&x*id_im&x + NE24&x*we*iqr_im&x + &
ND24&x*wd_im&x*iqr_im&x + LM25&x*idr_im&x &
+ B22&x*(vds+vdll)*mot_on&x

id_im&x = INTEG(idd_&x,0.0)

iod_&x = LM33&x*io_im&x + B33&x*(vos+voll)*mot_on&x

io_im&x = INTEG(iod_&x,0.0)

iqrd_&x = LM41 &x*iq_im&x + NE42&x*we*id_im&x + &
ND42&x*wd_im&x*id_im&x + LM44&x*iqr_im&x + &
NE45&x*we*idr_im&x + ND45&x*wd_im&x*idr_im&x &
+ B41&x*(vqs+vqll)*mot_on&x

iqr_im&x = INTEG(iqrd_&x,0.0)

idrd_&x = NE51&x*we*iq_im&x + ND51&x*wd_im&x*iq_im&x &
+ LM52&x*id_im&x + NE54&x*we*iqr_im&x + &
ND54&x*wd_im&x*iqr_im&x + LM55&x*idr_im&x &
+ B52&x*(vds+vdll)*mot_on&x

idr_im&x = INTEG(idrd_&x,0.0)

iord_&x = LM66&x*ior_im&x
ior_im&x = INTEG(iord_&x,0.0)

Te_im&x = Xm_im&x*(iq_im&x*idr_im&x - id_im&x*iqr_im&x)

wrd_im&x = wb*(Te_im&x - (TI&x*impb&x/smpb))/2.0/H_im&x

wr_im&x = INTEG(wrd_im&x,0.0)
wd im&x = we - wr im&x
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MACROEND !of imstateqn

!!!!!!!!--- call induction motor model macro

imstateqn ("1")

imstateqn ("2")

imstateqn ("3")

!!!!!!!!— sum of motor currents and current derrivatives for

!—-constraint equation

iqkj = (iqd_1 + iqd_2 + iqd_3)

iql = (iq_im1 + iq_im2 + iq_im3)

idkJ = (idd_1 + idd_2 + idd_3)

idl = (id_im1 + id_im2 + id_im3)

iold = (iod_1 + iod_2 + iod_3)

iol = (io_im1 + io_im2 + io_im3

)

!!!!!!!— state equations for the parallel R-L load-

iqlpd = (-wb*rl/XI)*iqlp - wr'idlp + (wb/XI)
#
(vqs+vqll)*cb1

iqlp = INTEG(iqlpd,iqlpic)

idlpd = wr'iqlp - (wb*rl/XI)*idlp + (wb/XI)*(vds+vdll)*cb1

idlp = INTEG(idlpd.idlpic)

iolpd = (-wb*rl/XI)*iolp + (wb/XI)
#vos*cb1

iolp = INTEG(iolpd,iolpic)

!!!!!!!!— DASSLbus voltage model based on implict relation

resiq = iqsd + iqs - iqlpd - iqlp - iqld - iql

vqs = IMPLC(resiq
)
vqsic)

resid = idsd + ids - idlpd - idlp - idld - idl

vds = IMPLC(resid,vdsic)

resio = iosd + ios - iolpd - iolp - iold - iol

vos = IMPLC(resio,vosic)

!!!!!!!!!— line loss model-

CONSTANTrll = .005

CONSTANTxll = .001

vqll =(- rIPiqs - xll*iqsd/wb - wr*xll*iqs/wb)

vdll =(- rll*ids - xJHdsd/wb + wr*xll*iqs/wb)

voll =(- ririos - xiriosd/wb)
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!!!!!!!!!— convert currents to a-b-c reference for output

ias = iqs*cos(thtr) + ids*sin(thtr) + ios

ibs = iqs*cos(thtr-2.0*pi/3.0) + ids*sin(thtr-2.(Tpi/3.0) + ios

ics = iqs*cos(thtr+2.0*pi/3.0) + ids*sin(thtr+2.0*pi/3.0) + ios

ial = iqrcos(thtr) + idrsin(thtr) + iol

ibl = iqrcos(thtr-2.0*pi/3.0) + idrsin(thtr-2.0*pi/3.0) + iol

id = iqrcos(thtr+2.0*pi/3.0) + idl*sin(thtr+2.0
#

pi/3.0) + iol

!!!!!!!!!— convert voltages to a-b-c reference for output

vas = vqs*cos(thtr) + vds*sin(thtr) + vos
vbs = vqs*cos(thtr-2.0*pi/3.0) + vds*sin(thtr-2.0*pi/3.0) +vos
vcs = vqs*cos(thtr+2.CT pi/3.0) + vds*sin(thtr+2.0*pi/3.0) + vos

END ! of DERIVATIVE
CONSTANT tstop = 6.25

TERMT(t .GE. tstop)

END ! of DYNAMIC
END ! of PROGRAM

!!!!! —COMMANDFILE FORDASSLSYSTEMMODEL—!!!!!!!

prepare t,iqs,iq_im1 ,vqs,vds,vtd,Te,wr,del,ias,vfb,vre,verr,werr1 ,ti,frq &
deliq,delidjqsdjqld,zero,vamag,iamag,iaphs,vas,t1 &
iq_im2,iq_im3,iqlp,t2,wr1,wr2,pelec,pmech,vql,vdl

set calplt=.f.,strplt=.t.,alcplt=.f.

set nrwitg=.t.

proced mot
start

s mot_on1 =1 . mot_on2=1 . mot_on3=1 . tstop=9.0

cont

show2
end

proced mot2
s mot_on1 =1 . mot_on2=1 . mot_on3=1 . tstop=3.0

start

end

proced stpld

start

s mot_on1 =1 . mot_on2=1 . mot_on3=1 . tstop=9.0

cont
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s rl=2. xql=2. xdl=2. xol=2. cb1=1. tstop=12.

cont

show2
end

proced short

srl=.0001 xdl=.0001 xql=.0001 xol=.0001 cb1=1. tstop=6.5

cont

s rl=15. xdl=10. xql=10. xol=10. cb1=0. tstop=8.0

cont

plot ias deliq vas vamag/xlo=6.2/xhi=tstop

pause
plot frq ti vfd

end

proced show
plot wr2 t2/lo=-5/hi=5 wr1 t1/lo=-5/hi=5/xlo=6.0/xhi=tstop

pause
plot ias/lo=-1 .5/hi=1 .5 deliq vas vamag
pause
plot frq/lo=-.01/hi=.01 ti/lo=-.2/hi=.4 vfd/lo=0.0

end

proced savplt

s xtispl=. 16667 ytispl=.2 grdspl=.t. satspl=.t.

s devplt=4 plt=1

1

plot wr2/hi=1 7xlo=6.0/xhi=tstop

splt=12

sytispl=. 16667
plot t2/lo=-6/hi=6

splt=13

s ytispl=.2

plot wr1/hi=1.

splt=14
plot t1/lo=-5/hi=5

splt=15
s ytispl=.1 6667 yinspl=1 .6667

plot ias/lo=-1 .25/hi=1 .25

splt=16

s ytispl=.25 yinspl=2.

plot vas/lo=-2./hi=2.

splt=17

plotfrq/lo=-.01/hi=.01

splt=18

s ytispl=.2

plot ti/lo=-.5/hi=.5

splt=19

plot vfd/lo=0.0

s plt=20

s ytispl=.2 yinspl=1 .4

plot vamag/hi=1 .4/lo=0.0
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s yinspl=2.

end

proced show2
s xtispl=. 16667 ytispl=2 grdspl=.t. satspl=.t.

s devptt=6

plot wr2/hi=1 7lo=0./xlo=6.0/xhi=tstop

pause
sytispl=. 16667
plot t2/lo=-6/hi=6

pause
s ytispl=.2

plot wr1/hi=1.

pause
plot t1/lo=-5/hi=5

pause
sytispl=.25yinspl=2.5

plot ias/lo=-1 25/hi=1 .25

pause
s ytispl=.25 yinspl=2.

plot vas/lo=-2./hi=2.

pause
plot frq/lo=-.01/hi=.01

pause
sytispl=.2

plot ti/lo=-.5/hi=5

pause
plot vfd/lo=0.0

s ytispl=.2 yinspl=1 .4

pause
plot vamag/hi=1 .4/lo=0.0

s yinspl^2.

end
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