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ABSTRACT

A great deal of controversy exists concerning the possible global warming trend

which may occur as a result of a documented increase in atmospheric "greenhouse" gasses.

The 1991 Heard Island Feasibility Experiment tested the feasibility of using transmissions

of acoustic energy through the major ocean basins of the world to monitor spatially

averaged global temperature trends. This thesis documents the Naval Postgraduate

School's reception of the phase encoded signal transmitted from the Southern Indian

Ocean, development of real-time signal processing software, and preliminary data analysis.

Data, received from a 32-channel vertical array suspended in the deep sound channel

off the coast of Monterey, CA, was processed using real-time capable software. Data

processing to reduce noise, determine SNR, and remove the m-sequence coding was found

to be quite sensitive to Doppler frequency shifts. Although the SNR of the raw data was

only about -27.5 dB for individual hydrophones, the transmitted signal was detected in

both the frequency and time domains. However, the maximum processed signal peak in

the time domain had an SNR of only +9 dB which is insufficient for use in a long term

global temperature monitoring project, as it provides inadequate arrival time resolution.
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I. INTRODUCTION

A. GLOBAL ACOUSTIC TRANSMISSIONS

The widely discussed theory of greenhouse warming suggests that increasing levels

of certain atmospheric gasses, such as carbon dioxide and methane, will ultimately lead

to climatological warming on a global scale. Well documented increases in atmospheric

carbon dioxide levels from air (Keeling and others, 1989) and ice core samples (Neftel

and others, 1985) are shown in Figure 1.1.
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Studies of global temperature trends, including extensive numerical modeling,

indicate a possible correlation between the increase of these gasses and planetary

warming. In one study (Hansen and Lebedeff, 1987) the historical atmospheric surface

temperature records over the last century were compiled with the averaged results

displayed in Figure 1 .2. In addition, the Carbon Dioxide Assessment Committee of the

National Research Council has surveyed the results of numerous global circulation models

to project a continued warming trend ranging from 1 to 5 degrees Celsius within the next

50 years (NRC, 1983). This magnitude of temperature change could have dramatic

consequences for the world ecosystem with significant environmental, economic, and
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political ramifications. Understandably, greenhouse warming is the subject of

considerable scientific and political debate, as numerous challenging questions remain

unanswered concerning the magnitude, localization, and rate of warming. However, since

addressing the problem of global warming could involve huge expenditures of human

resources, prudent planning and allocation of limited assets requires a more precise

understanding of the coupling between the "greenhouse" gas concentration and planetary

temperatures.

A reconstruction of global air temperature records over the past 108 years, shown

in Figure 1.2, indicates an overall temperature increase of 0.5 °C and a 1990 warming rate

of 0.02 °C per year. However, in order to statistically detect a trend in observed

temperature data at a 95% confidence level, a time series long enough to produce a

change in the actual mean of four times the standard deviation, a, is required (Munk and

Forbes, 1989). The Keeling C02 data shown in Figure 1.1 clearly shows this long term

trend with over 40 a over 33 years. Due to the inherent variability of atmospheric

temperatures, the 4 a statistical criteria would require approximately 100 years of air

temperature measurements to obtain a 95 percent certainty that the earth's climate is

indeed changing.

Munk and Forbes have suggested obtaining a time series of integrated ocean

temperatures which, because of their smaller variance and direct coupling with the

atmosphere, could produce the same degree of certainty in only 10 years. They have

proposed measuring the increase in sound speed through all major ocean basins using

global acoustic transmissions of low frequency sound. The highly efficient waveguide



which results from the oceanic sound speed minimum near a depth of 1 km at lower and

mid-latitudes gives reasonable expectation of global sound propagation from a strong

acoustic source. Since temperature is the dominant influence on the speed of sound in

seawater (increasing by 5 m/s/°C), the resulting travel time change would provide a

measure of the mean temperature change along the acoustic path.

Predicted oceanic warming of 0.02 °C/year at the surface and 0.004 °C at the sound

channel axis would decrease the travel time over a 15,000 km range by 0.25 seconds per

year (Munk and Forbes, 1989). This reduction of travel time would result in a 4 a

change (2.5 °C) in about 10 years. Figure 1.3 shows the expected decrease in travel time

from the Princeton model of greenhouse warming (straight line) and a multi-level

primitive-equation mode 1 output of mesoscale variability (Manabe and Stouffer, 1986 and

Semtner and Chervin, 1990). The planetary scale of the transmissions would smooth out

any localized temperature variations associated with mesoscale eddies to provide
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indications of gyre and basin scale warming. The average travel time of the acoustic

signal would thus provide an indication of the integrated temperature for each travel path.

B. THE 1991 HEARD ISLAND FEASIBILITY EXPERIMENT

1. Objectives

In January of 1991 scientists representing 9 nations and 13 universities and

research institutions embarked on a worldwide experiment to test the feasibility of using

acoustic transmissions to monitor the average planetary temperature. An array of

powerful acoustic transducers was suspended in the sound channel approximately 40 miles

east of Heard Island in the Southern Indian Ocean. The total output power of the array

was approximately 213 dB referenced to 1 uPa at 1 meter. Hydrophone receivers as

shown in Figure 1.4 were deployed at the following sites:

LOCATION
Ascension Island
Tasman Sea
Tasmania
Christmas Island
Mawson Station
Kerguelen Island
Indian Ocean
Capetown
Fiji
North Pacific
Monterey, CA

Florida
Bermuda
Atlantic Ocean
Pacific Ocean

TYPE
Bottom
Towed & Sonobuoy
Sonobuoys
Sonobuoys
Sonobuoys
Sonobuoys
Sonobuoys
Bottom
Sonobuoys
Towed Array
Vertical Array

Swade Array
Vertical Array
Navy
Navy

INSTITUTE, COUNTRY
NOAA, USA
U.Auk., N.Zealand
CSIRO, Australia
CSIRO, Australia
CSIRO, Australia
INSU-TAAF, France
NIO, India
South Africa
Japan
IOS, Canada
MBARI/NPS/WHOI/

MIT, USA
U. Miami, USA
SAIC, USA
U. Mich., USA
U. Mich., USA

The experiment addressed three major uncertainties underlying the use of

global acoustic transmissions:
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Figure 1.4: Axially Refracted Geodesies (drawn every 10° from the source) (Munk
1990).

1

.

The transmitted signal strength required to produce adequate signal-to-noise ratio

at the receiving stations, including the achievable accuracy of arrival time measurement,

2. The stability of the multipath arrival pattern, including the maximum coherent

integration times, and

3. The optimum receiver locations for a possible permanent follow-on installation.

2. Importance

Successful conclusion of the Heard Island Feasibility Experiment entails

demonstration of reliable propagation of low frequency acoustic energy along global-scale

transmission paths. Fruitful results could lead to the installation of a permanent climate

monitoring system which could provide early warning of upper ocean warming of the

Southern Ocean and interior wanning in other oceans. Such a capability could provide



definitive data on the question of global warming with apparent scientific, social, and

economic value.

Since the travel time of a basin-scale transmission is directly influenced by

the water characteristics along its path, the arrival structure would contain information on

the meso and gyre-scale processes through which the signal transited. A permanent

system could also provide statistical information on the variability of these processes

which could be used for calibration of operational eddy resolving global circulation

models to enhance their reliability.

Tactical employment of the marine environment requires a broadened

understanding of the effects of meso-scale effects on long-range, low-frequency acoustic

propagation. Mamtaining the tactical edge in an increasingly transparent ocean against

targets with decreasing acoustic signatures demands exploitation of every available feature

to optimum advantage. The spatial and temporal variability information contained in the

arrival pattern would enhance the tactician's effort to optimally employ his vessel. In

addition, the characteristics of a low-frequency three-dimensional wavefield which has

propagated through meso-scale features will provide valuable information for effective

development of future ASW systems.

C. THESIS OBJECTIVES

This thesis describes the United States Naval Postgraduate School's participation

in the 1991 Heard Island Feasibility Experiment with an emphasis on signal processing

and preliminary data analysis. The intent of this thesis was threefold:



1

.

The first goal was to deploy a vertical acoustic array and data collection hardware

during the at-sea reception phase of The Heard Island Feasibility Experiment to

digitize and store the received signal.

2. The second objective was to develop and implement signal processing software

modules in the C programming language which will interface with Laboratory

Workbench and the Concurrent 6400 real-time Unix data acquisition computer.

Laboratory Workbench is a proprietary signal processing software product of the

Concurrent Computer Corporation.

3. The third purpose of this thesis was to perform preliminary data analysis on the

data collected during the at-sea phase including arrival time accuracy estimation,

determination of signal to noise ratio, and arrival structure analysis.

D. THESIS ORGANIZATION

The organization of the remainder of this thesis is as follows:

Chapter II contains background information on the 1991 Heard Island Feasibility

Experiment, ocean acoustic wave propagation, maximal-length shift-register sequences,

Hadamard transforms, and acoustic Doppler processing.

Chapter III specifies the data collection techniques and signal processing utilized

to analyze the received signal, including filtering, demodulation, M-sequence removal,

data storage, and real time processing considerations.

Chapter IV details the results of the data collection phase, the software development

effort, and the results of preliminary data analysis, including resolution, signal to noise

ratio, maximum coherent integration time, multi-path arrival, and depth profile.

Chapter V summarizes the experimental results, presents the thesis conclusions and

suggests some further efforts in analyzing the collected data.



II. BACKGROUND

A. THE 1991 HEARD ISLAND FEASIBILITY EXPERIMENT

1. Scope and Objectives

The objectives of the Heard Island Feasibility Experiment were:

1. to determine the required transmitted signal strength of a permanent installation

which would be sufficient to overcome propagation losses and provide an adequate

signal-to-noise ratio at the receiving stations, and

2. to determine whether the arrival pattern has features which are sharp and stable

enough to determine the variable transmission time within the 10 millisecond

accuracy required to make statistically useful measurements of global temperature

trends.

The accuracy of ocean basin average temperature estimates derived from

acoustic propagation is dependent on the resolution of the signal's arrival time. The

arrival time resolution is in turn related to the bandwidth of the signal and the received

signal-to-noise ratio. Van Trees discusses the calculation of this type of non-linear

estimate with white Gaussian noise (Van Trees, 1968). The result is given as

(2.1)
B/SNR

with a, the arrival time uncertainty, B the bandwidth of the signal, and SNR the signal-to-

noise ratio (Spindel, 1985). Re-arranging equation 2.1, the SNR required to determine

the arrival time within <j, is given by



SM? = (-!-l
2

(2.2)
Bo,

Assuming a signal bandwidth of 11.4 Hz, the desired arrival time accuracy of 10

milliseconds would require a post-processed receiver SNR of at least 18.86 dB. The

Monterey effort of the 1991 Heard Island Experiment attempted to maximize the receiver

SNR by optimizing receiver locations, using phase-encoded pulse compression techniques,

and by using a multi-element vertical receiving array.

2. Transmission

It is desirable that the permanent source for long term global transmissions

be operated at less than 200 dB rel uPa@lm to allow reliable operation over a long

period of time. For the 1991 Heard Island Feasibility Experiment, a vertical transmitting

array of ten Hydroacoustics HLF4LL transducers with 12.5 foot spacing was deployed

from the R/V Cory Chouest between 26 January and 1 February 1991 at 53° 15' S, and

73° 40' E, in an area approximately 40 miles east of Heard Island in the Southern Indian

Ocean. The transmitter depth was operationally limited to 300 meters which mandated

high latitude positioning where the sound axis is shallower. The position near Heard

Island also allowed propagation through all major ocean basins. The array was deployed

such that its center point coincided with the deep sound channel axis near 200 meters.

The vessel was operated for minimal acceleration, generating minimum thrust to maintain

steerage, thus introducing linear vice second order Doppler components into the signal.

The operating radius of the R/V Cory Chouest was about 15 nautical miles which d;d not

10



affect the experiment since the objective was to measure the accuracy of arrival time and

not the time of arrival itself.

Under ideal conditions, the total output power of a linear array of projectors

is given by

Puotai) = p + 10 i°g( ^r ) <2 - 3 >

where NT is the number of active projectors and P is the output power of an individual

projector. Nominally, five transducers, alternately spaced, were operated simultaneously

and in phase to produce a broadside beam. The operating transducers were changed as

required to prevent overheating. Each of the five active transducers optimally produced

206 dB rel uPa@lm to produce a combined output of 213 dB rel 1 uPa@lm.

A variety of 57.0 Hz continuous wave (CW) and phase encoded signals were

transmitted on a fixed schedule consisting of one hour of continuous transmission

followed by two hours of silence repeated for the entire test period. The transmission

schedule is included in Appendix A. A carrier frequency of 57.0 Hz was chosen to avoid

excessive attenuation at higher frequencies and increased shipping noise at lower

frequencies. In addition, the resonance frequency of the transducers was close to 57.0 Hz.

Figure 2.1 shows the relation between predicted ambient noise spectra and the transmitter

frequency response.

The three types of transmitted signals, described in detail in Chapter HI, are

as follows:

• Continuous Wave at 57.0 Hz.

11



• 3/10 Pentaline. This is a phase encoded signal with five major spectral lines of

various amplitude which facilitates easy estimates of signal-to-noise ratio based

upon the observed frequency lines. However only minimal line resolution is

possible since the power is split evenly between the signal and the carrier.

• M-Sequences. Maximal length shift register sequences, sometimes called pseudo-

random noise, are phase encoded signals of various lengths which correspond to a

specific code. Like pentaline, only half the power is in the signal. However, pulse

compression techniques are used to provide excellent time resolution.

Figure 2.1: Average Ambient Noise Level and Transmitter Frequency Response

[Ref. 8].

12



3. Reception

Since the vertical array in Bermuda suffered a disabling casualty, the array

deployed jointly by the Naval Postgraduate School (NPS), Monterey Bay Aquarium

Research Institute (MBARI), Massachusetts Institute of Technology (MIT), and Woods

Hole Oceanographic Institute (WHOI) served as the only participating vertical array and

as such will be the sole domain of this thesis. Figure 2.2 illustrates the optimal

positioning of the vertical array, based on ray tracing (Ort and Chiu, 1990) utilizing a

global ocean mesoscale variability model (Semtner and Chervin, 1988). This computer

simulation demonstrated that acoustic rays emanating from the Heard Island transmission

source at angles greater than 127° true would pass to the east of New Zealand and that

rays less than 135° would escape interaction with Antarctica. In addition, these rays
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had five or less interactions with the ocean bottom. This band of rays, shown in Figure

2.2, intercepts the west coast of the United States in the Monterey coastal region between

San Francisco and Point Conception, making it the most likely area on the U.S. west

coast to receive the signal because of the convergence of rays in this vicinity.

The 32 hydrophone array was suspended vertically from RIV Point Sur at

approximately 36° 30' N and 122° 45' E, as shown in Figure 2.3. The hydrophones

were spaced 45 meters apart with the top one nominally positioned at a depth of 345

meters and the bottom one at 1740 meters. 3000 meters of kevlar core cable was used

to house 50 pair of #28 solid copper conductors. The inboard 100' of cable was shielded

with copper to minimize induced currents from the RIV Point Sur. The lower 2 km had

SAIC quiet cable coating over a 28" twist reversal pattern of 0.8" per side which reduced

strumming of the suspended cable. The 600 pound (submerged weight) array and its

suspended ballast weight of 300 lbs. were balanced by the buoyancy from a main

subsurface float and approximately half of the 30 "football" floats, spaced 2 meters apart,

which isolated the array from the surface gravity wave field. The main subsurface float

was a 37" sphere with 475 lbs. of buoyancy. The football floats measured 7.5" x 15" and

had a buoyancy of 6.25 lbs. each. The lower weight was a 55 gallon mass attached with

an acoustic release to facilitate release at recovery. The midpoint of the array was

positioned with about neutral buoyancy near the center of the deep sound channel at about

1100 meters. An instrument to record PSK telemetry, pressure, array tilt, temperature,

and conductivity was attached approximately 4 meters above the top hydrophone An

internally recording pressure and array tilt sensor was attached just below the lowest

14
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hydrophone. The submerged portion of the array was distanced from the vessel by about

1500 meters using 4 large surface floats spaced by 20 smaller floats.

B. ACOUSTIC SIGNAL PROPAGATION

1. Propagation Theory

Sound propagation in a fluid can be described by the linearized, lossless wave

equation (Kinsler and others, 1982). In a motionless medium, the equation is

V z p = — d 2 P (2.4)
c 2 a t 2

where c(x,y,z) is the sound phase speed field and p(x,y,z) is the fluid pressure disturbance

field. The linearized, lossless wave equation is a good approximation in a motionless

medium. Variations in the travel time due to current are generally an order of magnitude

less than the changes due to deviations in the sound speed and so can be ignored in a first

order treatment (Spindel, 1986). As an example, consider a mesoscale eddy in which a

typical 10 cm/s surface current diminishes to about 3 cm/s below the thermocline. A

corresponding temperature anomaly near the sound channel axis is approximately 1 degree

Celsius. This temperature perturbation results in a sound speed perturbation of

approximately 5 m/s which is 100 times the change due to current. Also note that a

change in the path length (which could occur due to mesoscale variability) can have an

even greater effect on the travel time, depending on the size of the change (Flatte and

others, 1979).

16



In discussing sound wave propagation, it is useful to define a propagation

vector

k = k
x
x + k

y
y + k

z
z *2,5)

that has a magnitude (or wave number) given by

K = sjk
2

x
+ k) + *

z

2
= «i (2.6)

c

where co is the radian frequency of the signal and c is the phase speed of the traveling

sound wave, and a position vector given by

- (2.7)
r = xx + yy + zz

that gives the location of the point (x,y,z) with respect to the origin (0,0,0) of a

rectangular coordinate system. We can let

t
c
o
k ' f

= ElL (2.8)

K

where c is a constant reference speed and *¥ has units of length. Note that if c = c , then

¥ = (lyt + k
y
y + kzz) / K which is the distance from the origin. Surfaces of constant

¥ will now correspond to surfaces of constant phase. That is, the locus of all points

(x,y,z) satisfying

i|r = constant + c
Q

t (2.9)

defines a surface of constant phase at each instant t, as it propagates through the acoustic

medium. V¥ is always perpendicular to surfaces of constant phase and is therefore the

local direction of propagation of the phase surface. Substitution into the wave equation

17



with A(x,y,z) representing the pressure amplitude field yields

V2A

\
C
0J

ViJ;-Vij; +
to*

V W
^2™-ViJ/ + V2

*
c \ A

= o <
2-10)

When the real part (the value within the first square brackets) is set equal to

zero, the result is the Eikonal equation. When the imaginary part (the value within the

second square brackets) is set equal to zero, the Transport equation results. If A and V*F

satisfy the inequalities

VM
|V

2 *|<- .
and

V2A
•V\|f

G) (2.11)

then all the terms in Eq. 2.10 except the second and third can be neglected and the

Eikonal equation can be approximated by

Vi|r -V\|f =

<„ \
2

\C/
= n 2 (2.12)

where n(x,y,z) is the refractive index as a function of position. This is known as the

plane wave approximation of the wave equation. The inequalities of Eq. 2.11 can be

described as (Kinsler and others, 1982)

1

.

The amplitude of the wave must not change appreciably in distances comparable

to the wavelength.

2. The speed of sound must not change appreciably in distances comparable to the

wavelength.

3. The channel thickness and source-receiver distance must be large in comparison

to a wavelength.
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The 57.0 Hz signal used in this experiment had a wavelength of about 26.3 meters which

satisfies all the above conditions and can thus be described using the plane wave

approximation. A solution to the plane wave equation can be expressed as

p = Ae J{wt ~ Rf) (2.13)

The essence of ray theory is that V¥ defines the direction of wave

propagation as a function of position. Therefore a point by point solution of V*P renders

the path traversed by the acoustic energy. This technique has been implemented with the

Hamiltonian raytracing program HARPO (Jones and others, 1986) and interfaced with

output from a global eddy resolving ocean general circulation model (Semtner and

Chervin, 1990), to predict the optimum receiver locations for the Heard Island Feasibility

Experiment (Chiu and Ort, 1990). Typical three dimensional results are illustrated

horizontally in Figure 1.4 and vertically in Figure 2.4. The rays emanating from the

Heard Island source at true horizontal angles between 127° and 135° were seen to avoid

significant interaction with the bottom, land masses, and seamounts that extend into the

sound channel. These propagating rays can be divided into two general classifications

depending on their behavior in the vertical plane.

Type 1 rays, shown in Figure 2.4(a), are trapped close to the surface by a

shallow surface duct until the duct weakens at ranges between 7500 and 8000 km. The

rays then enter the deep sound channel. Because the distance between the surface duct

and the deep sound channel is almost 1200 m, the rays enter the deep sound channel at

a relatively steep angle and then oscillate about the axis with a large spatial amplitude.
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Figure 2.4: Vertical Distribution of Type I and Type II Acoustic Ray Energy.
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Type 2 rays are also trapped near the surface in the half channel regime, but

less so than the Type 1 rays. At a range of about 5000 km, the Type 2 rays encounter

a stronger vertical gradient which refracts the acoustic energy downward toward the deep

sound channel. Also at about 5000 km, the deep sound channel axis gradually increases

depth to about 1000 m over a distance of about 600 km. This gradual entry angle into

the deep sound channel causes the Type 2 rays to have a much smaller vertical

fluctuations about the axis.

Since the Type 1 rays oscillate further from the minimum sound speed at the

channel axis, they traverse water with a higher sound speed during most of their path.

They can thus be expected to arrive sooner than the axially trapped Type 2 rays. In

addition, note that the upper portion of the Type 1 ray trajectory lies within the oceanic

thermocline where sound speed variability is the greatest. Therefore, although the Type

1 rays are more representative of the upper ocean (which is more closely coupled to the

atmospheric temperature), they will also exhibit more variability in arrival time.

The travel time for a specific ray %t
(the i

th
ray path) can be found by

integrating the sound slowness (inverse speed) over the path

t = f * (2.14)
J x, c

The perturbations in sound speed can then be viewed as deviations from some arbitrary

reference speed c^

r = c + 6 c
,

(2.15)

so that the total travel time becomes a constant travel time with a perturbation
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h + H-

= f
*

•
<2 -16)

j p, c + 6c

Since for our purposes, 5c is much smaller than c , an approximation from the binomial

expansion can be used

6c^

-o)

ds-f
(I 6c \

ds
(2.17)

The travel time perturbation is then given as

6c
6t - -I — ds

J r 2
(2.18)

2. Propagation Losses

Little prior experience exists with propagation losses over the 1 8 Megameter

ranges traversed in this experiment. However expanding the current theories to global

ranges can lend some insight to the order of magnitude losses that can be expected. The

most significant energy loss should be spreading losses due the expanding area of the

phase surface as the wave propagates from the source. A secondary loss due to

absorption and scattering can also be expected.

a. Spreading Losses

A worst case scenario involves totally lossy boundaries which can be

approximated by spherical spreading in an iso-velocity fluid (Birdsall, 1990). Invoking

energy conservation in a lossless medium on an acoustic phase surface propagating

outward from a point source gives the spherical wave solution at range r from the source
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p = go

4nr'
e
7(w< - kr) (2.19)

It follows that the energy contained on a sphere of unit diameter about the point source,

p , is conserved on the expanding phase surface as shown by

pQ
= 471^ =4*r

2

2
/
2

(2.20)

where I, and I2 are the phase surface intensities at ranges 1 and 2 respectively. The

transmission loss is then given by

TL = 10 log- = 101ogr
2

2 = 201ogr
2

(2.21)

which yields a loss of 145.1 dB over 18 Mm.

A best case scenario assumes totally reflective boundaries which can be

approximated by a flat earth similar to a right cylinder with an 18 Mm radius and 5 km

height (Birdsall, 1990). The cylindrical wave solution is

4nr
(2.22)

The transmission loss is then given by 10 times the log of the intensity on the cylindrical

phase surface relative to a unit sphere

TL = lOlog
(2Tir

2
H"

= lOlog
2 j

(2.23)

where r
t

is 1 m and H is the depth of water in meters. This formula yields a

transmission loss of 106.5 dB over 18 Mm. This flat earth model assumed 2k x 18 Mm

= 113.1 Mm as the cylindrical circumference although the circumference is physically

constrained to the 40 Mm circumference of the earth. Birdsall suggests using a
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convergence factor of 10 log( 113.1/40) = 4.5 dB to correct for this difference which

reduces the predicted transmission loss to 102 dB. If the depth is constrained to a

nominal 1000 m height of the sound channel, the predicted transmission loss is reduced

to 99.5 dB. Both models are pessimistic in that some of the observed intensities will be

greater than the average predicted intensity. However, both models are also optimistic

in that they assume no interaction with the surface, the bottom, or with oceanic fronts.

b. Absorption Losses

Absorption at 57 Hz is usually considered negligible, but over 18 Mm the

cumulative loss becomes significant. The 57 Hz carrier frequency falls below the peak

relaxation frequencies of both MgS04 and B(OH)
3

but is dominated by the B(OH)
3

relaxation process (Clay and Medwin, 1977). For a depth of about 1000 m and a

temperature of 4° C, we can find an absorption coefficient a from (Thorp, 1967)

a =
01^ + -^£— + 0.000275/ 2 + 0.0007 (2.24)

1 +/ 2
4.1 +/ 2

where f is the carrier frequency and a is in dB per kyd. The terms in the above equation

are due to boric acid ionization, magnesium sulphate relaxation, viscosity shear, and low

frequency scattering respectively. The last term is dominant at 57 Hz and is taken from

Figure 2.5 which compares the empirical values of low-frequency attenuation to the

extrapolated relaxation absorption. An absorption coefficient of 0.0007 dB per kyd or

0.758 dB per Mm gives an absorption loss of 13.6 dB over 18 Mm.
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Figure 2.5: Low Frequency Absorption Coefficient [Ref. 15].

3. Signal-to Noise Ratio

The signal level at the receiver hydrophones can be predicted by

Received Signal Level = Source Level - Transmission Loss (2.25)

where all levels are interpreted as band levels. This gives levels between 54.3 and 97.4

dB rel 1 uPa at the receiver hydrophones depending on the spreading model used.
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The predicted 57 Hz noise at the receiver, shown in Figure 2.1, is primarily

due to shipping and falls between 75 to 93 dB rel 1 uPa. The signal-to-noise level can

be predicted by

SNR = Receiver Signal Level - Receiver Noise Level (2.26)

which gives an SNR from -38.07 to 22.4 dB depending on the assumed scenario. Using

these values, between and 56.93 dB of array and/or processing gain is needed to meet

our arrival time resolution criteria of 18.86 dB. The method of maximizing the

processing gain will be described in the following section.

C. MAXIMAL LENGTH SEQUENCES

1. Introduction

Impulse excitation (a signal of infinitesimal length and infinite magnitude) is

a convenient and powerful method for measuring the response of a system and for

determining the travel time through a media. The oceanic acoustic medium can be treated

as a large, time-varying distortionless filter whose response to impulsive excitation is

simply the sum of delayed impulses traveling along the individual paths (Dees, 1989)

Paths

h(t) = 2>,»(f-x,) <2 -27)

1-1

where a
(
is the amplitude of the i

,h
path, and x, is the travel time along the i

th
path.

Unfortunately, ideal impulse transmissions are physically difficult to achieve.

The amplitude and length of a pulse are limited by the peak power and bandwidth,

respectively, of the transmitter. Impulsive acoustic signals can be generated by explosive
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or implosive sources but these have an uneven frequency distribution of energy, and are

generally not reproducible. Another solution is to use pseudorandom noise to provide a

means of pulse compression. In this method, a long coded signal is transmitted whose

period, frequency distribution, and energy are deterministic and can be tailored to meet

experimental requirements. The received signal can then be cross-correlated, through a

matched filter, with the original code to produce a single pulse with a much higher

amplitude and shorter length than the transmitted signal. In addition, the coded periodic

signal can be repeated for additional processing gain.

The pulse compression technique used for the Heard Island Feasibility

Experiment was to utilize a phase-modulated carrier signal to transmit a specific sequence

of ones and zeros known as a maximal length sequence or m-sequence (Ziemer and

Peterson, 1985). The most important characteristic of the m-sequence is its

autocorrelation, which is constant except at a shift of zero (corresponding to perfect

correlation with the transmitted code), making the sequence analogous to white noise.

The width of the correlated pulse is equal to the width of one individual digit of the code,

Tc , which was 0.087 seconds for this experiment. Details of the specific signal used in

this experiment are given in Chapter III.

The amplitude at the correlated zero-shift digit has an increase over amplitude

of the coded signal equal to the number of digits in the code, N. The ideal pulse

compression gain for a single sequence of code is given by 10 log(N). Processing gain

is thus dependent on the code length which is in turn limited by the length of tin '.^ the

ocean can be assumed stationary. One of the goals of this experiment was to determine
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the maximum effective sequence length. This experiment used sequence lengths of 255,

511, 1023, and 2047 digits, corresponding to 22.37, 44.8, 89.7, and 179.6 seconds

respectively. The ideal processing gain for these sequences was then 24.06, 27.08, 30.1,

and 33.11 dB respectively. In addition, if the m-sequence code is repeated L times, a

gain of 10 log(L) can be added to the single sequence gain under ideal conditions. The

amount of correlated repetition is dependent on the stability of the arrival structure which

is in turn influenced by the meso, gyre, and basin scale variability of the ocean

environment.

2. M-Sequence Generation

M-Sequences are generated using a simple binary shift register whose

structure is defined by a specified polynomial (Ziemer and Peterson, 1985). A general

shift register generator is shown in Figure 2.6. A deterministic and periodic sequence

of bits can be output from any one of the registers, with period NTC . Although an equally

valid m-sequence is generated in both the forward and reverse order, this experiment

i—n-JL' i Ln-2">
•

—

n-3 f '
—

—

r^KMrq

Figure 2.6: General sequence shift register generator of degree n.
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consistently used the sequential output from the
th

register, R , such that the consecutive

bits generated at the output comprised the m-sequence. In addition, although the initial

state of the shift register is arbitrary, this experiment consistently used an initial sequence

of all zeroes followed by a one.

The shift register structure is specified by a primitive polynomial such as

gD = b
n
D n + b

n _ x
D n -

x
+...+ b

x
D + b (2.28)

where n is the number of delays in (or degree of) the shift register generator, D is the unit

delay and bn are the feedback weighting coefficients. The weighting coefficients take on

values of one or zero indicating connection or no connection, respectively, to the n,h

register. Table 8-5 from Ziemer and Peterson lists octal representations (referred to as

the octal law) of the binary coefficients corresponding to particular generating

polynomials. M-sequences do not repeat a register state until after 2
n
-l delays. The

governing polynomial is known as a primitive polynomial since, for a specified number

of shift register stages, a sequence of maximal-length period is produced before the

sequence repeats. The signal specifications for the m-sequence code used in this

experiment are detailed in Chapter HI. In practice, the m-sequence digits are transformed

by mapping [1,0] to [-1,1] which enables use of faster correlation procedures. Because

many people are familiar with binary mathematics, however, all arithmetic operations for

polynomials in this thesis are performed using finite-field arithmetic (modulo two).

3. Characteristics

The output of an n-stage m-sequence shift register generator with digit length

Tc and length N = 2" - 1 can be represented as
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c = E «, v**. <2 -29)

|"= -OB

where aj = (-l)
b

', and U is a unit pulse beginning at and ending at T
c

. Its discrete two-

sided autocorrelation function Rk for k cyclic shifts of the generator is given by

** =

1.0 for k=mN

1

N
for k*mN

(2.30)

where m is any integer.

The non-discrete autocorrelation function of the m-sequence code for time

delay of T is given by

1 - -*
It \

** +

cj

where T
e
= x - (N - 1)TC

(Ziemer and Peterson, 1985)

If < t < Tc , then k = and x
e
= t so that

R
*+i

*c = 1 -
N T

e /

= 1 - -
L

c\

1 + —

If Tc
< x < (N-1)TC , then k * mN and (k+1) * mN for any integer m so

( *
"i

K = 1
-

e

c
T~

V <V
N T

If (N-1)TC < t < (NTC) , then k = N-landk + l = lso that

(2.31)

(2.32)

(2.33)
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*c = 1 - -1
T
c)

- — + —
N T

(2.34)

1 1

1 + - - -
N N

Now Eqs. 32, 33, and 34 define one complete cycle of the maximal length sequence

autocorrelation which is illustrated in Figure 2.7.

R
l.o --

-l
T

NT,
Figure 2.7: Autocorrelation function for a m-sequence of length N.

The Wiener-Khinchine theorem shows that the Fourier transform of an

autocorrelation function describes the frequency distribution of power and is referred to

as the power spectral density or power spectrum of the time series (Bendat and Piersol,

1986). The power spectrum of the baseband m-sequence is then

m

s
c

= EW-%) (2,35)

i = -e»

where A = 1/N2
, A, = [(N+l)/N

2
] sinc

2
(i/N), and fN = 1/NTC This spectrum appears as

a series of discrete impulse lines separated by the code repetition frequency 1/NTC with

the line amplitude envelope defined by
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A =
'iv+i^

N'
smc 2(/T) (2.36)

for all except the DC line which has an amplitude of 1/N2
.

If the phase shift angle is chosen such that

= tan"
1

(v/tf)
<2 -37>

then the spectrum of the carrier signal will fall exactly on the envelope of impulses and

result in the maximum signal-to-noise ratio after demodulation and sequence removal

(Spindel, 1985). The optimum phase shifts for pulse compression are then approximately

86.42°, 87.47°, 88.21°, and 88.73° for the 255, 511, 1023, and 2047 digit sequences

respectively. The transmitted signal for this experiment used a 90° phase change between

digits for all modulations which provided roughly half the power in the carrier. This

phase shift was chosen because it produces about 6 dB steps in the power spectrum of

the pentaline signal which facilitates graphical estimation of the signal-to-noise ratio as

discussed in the following Chapter.

When the m-sequence c is used to biphase modulate a carrier wave having

power Pc and frequency f the resultant signal is given by

s =
sJ2Fc ccos(2ic/ O <2 -38)

The power spectrum of the modulated carrier signal S
s

is then the convolution of the

carrier power spectrum Sc and the m-sequence power spectrum

S. = s
c *jW- /o) S

c * \ OCA +
/o>

(2.39)

and the effective result is a translation of the discrete spectrum S r
upward and downward

by a frequency f . The spectrum of the transmitted signal is then a band of impulses
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centered at f and separated by 1/NTC . Figure 2.8 illustrates the amplitude envelope of

the individual impulses from the transmitted signal.
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Figure 2.8: Envelope of Power Spectrum impulses in the Transmitted M-Sequence

Signal.

4. Autocorrelation Process

Maximal length sequences have several properties which make it attractive as

a pulse compression code. Its autocorrelation function has a large magnitude and short

duration which enhances arrival time estimates. It is also deterministic in that once the

polynomial is specified, all output parameters are known. Additionally, it produces a
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repeatable, periodic signal which can be easily implemented. The single major drawback

is that standard autocorrelation procedures are computationally intensive.

The sample autocorrelation function R^ of a stationary (ergodic) random

process with a zero mean can be estimated as (Spindel, 1985)

Rxx = -i- fxt
x

t„ dt s t <. t

o

for time t and time delay x. For N data values {x„}, n=l,2,...N, sampled at equally spaced

time intervals St from a stationary record x^, with a zero mean, R„ can be numerically

computed by

N-r

Jt = —— E x
i
x
t*r r = 0,l,2,...,m (2.41)

" n - r U '
' r

where T is the lag number and m is the maximum lag number (m < N). Since the arrival

time is not known in advance, standard correlation methods require the input signal to be

correlated with all N shifted versions of the original sequence. Thus N2
multiplications

are necessary for computing a standard FFT based cross-correlation. The following

paragraphs describe a less computationally intensive autocorrelation method which takes

advantage of the m-sequence structure.

Using a 3 register generator output as an example with an octal law of 13 and

a polynomial of degree 3, the forward signal code S is

S = [ 1 1 1 1 ]
<2 -42)

To correlate S with all seven shifted versions of itself, we can construct a matrix M of

all possible versions
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M =

10 1110
10 111

10 10 11

110 10 1

1110 10
1110 10
1110 1

(2.43)

When the digits of S and M are mapped [1,0] to [-1,1], multiplying the signal by the

correlation matrix will result in the autocorrelation,

R- = MS (2.44)

This product is the entire goal of the initial signal processing but requires a computer

intensive N2
add-multiply operations. A faster, more efficient algorithm, called the Fast

Hadamard Transform can be used to reduce the number of operations required to perform

the autocorrelation.

5. The Hadamard Matrix

To facilitate discussion of the Fast Hadamard Transform, it is necessary to

introduce the Hadamard matrix (Ziemer and Peterson, 1985). The Sylvester-type

Hadamard matrix has a recursive form for higher orders given by

H
x
= [1] ,

1 1

H7
=

2
1 -1

H.
i+l

H
i
H

i

H
t
-H

t

(2.45)

For our third order example, the matrix H is
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H =

1 1

-1 1

1 -1

-1 -1

-1 -1

1 -1

-1 1

1 1

(2.46)

It is useful to map the Hadamard matrix from [1,-1] to [0,1] as follows:

10 10 10 1

110 11
110 110

1111
10 110 10
11110

110 10 1

H = (2.47)

H can be factored into a binary counting (from 1 to 7 in this example) matrix A and its

transpose AT
, which is also a binary counting matrix as given by
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H = AA T =

1

1 r

1 1

1

1 1

1 1

1 1 1

1111
110 11

10 10 10 1

(2.48)

The correlation matrix M can be similarly factored into two matrices B and

C which contain all binary combinations, but not as simply. The first matrix B is

formed from the sequential output of the shift register, but bit reversed (from right to left)

and in the reverse order (from bottom to top). The original order is then preserved by

shifting the rows of the matrix to bring the 3x3 identity matrix to the top. For our third

order m-sequence example, the factor matrix B is given by

B =

1

1

1

1 1

1 1

1 1 1

1 1

(2.49)

The second matrix C is formed from any 3 shifted versions of the m-sequence, ie

C =

10 1110
10 111

10 10 11

(2.50)
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It is easily verified that

BC = M (2-5D

By adding a leading column of zeros to B, forming B', and adding a leading row of zeros

to C, forming C\ a new matrix M' can be formed by

M'^B'C <2 '52>

Note that M' contains all possible combinations of ones and zeros, as does A, albeit in

a different order. If mapping matrices can be found such that QA = B' and ATP = C\

then the same matrices will map the Hadamard matrix to the m-sequence matrix

M' = B'C = QAA TP = QHP (2.53)

6. The Fast Hadamard Transform

Recall that correlation of the received signal S with the m-sequence code M

was performed by the matrix product of S and M. By adding a leading zero to S,

forming S', equation (2.44) becomes

R' = M'S' = QHPS' (2-54)

Equation (2.54) shows that matrix M is not needed and the Hadamard matrix can be used

in its place. An efficient method of forming the matrix product of QHPS' is the Fast

Hadamard Transform (FHT). The FHT takes advantage of the fact that any vector PS'

which is multiplied by the unmapped Hadamard matrix (consisting of +l's and -l's),

results in a sum of all the terms of PS' with various + and - weighting. This summation

can be effectively utilized to cancel random noise amplitudes where a random sum of

positive and negative values will equal 0. In addition, non-random amplitudes contained

in the m-sequence code will sum coherently to a value equal to the sequence length times
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the absolute amplitude of a single value. For our third degree example an arbitrary vector

given by

PS 1 = (2.55)

after multiplication by the Hadamard matrix becomes

HPS' =

I

1

1

1

II

II

II

II

1

1

1

1

1

II

1

1

1

1

1

1

III

a

b

c

d

e

f

8

h

-

a+b+c+d+e+f+g+h

a-b+c-d+e-f+g-h

a+b-c-d+e+f-g-h

a -b -c +d+e -f-g +h

a+b+c+d-e-f-g-h

a-b+c-d-e+f-g+h

a+b-c-d-e-f+g+h

a-b-c+d-e+f+g-h

(2.56)

which, when permuted by Q, is the autocorrelation function R^. This technique is called

the Fast Hadamard Transform. When written in the form of a flow graph as in Figure

2.9, the product HPS' has the same form as the well known fast Fourier transform, where

the complex multiplications are set to one (Conn and others, 1976 and Borish and others,

1983). Note that there is no bit reversal or multiplication by a phase factor as is required

by the Fast Fourier Transform. Since the multiplication by P and Q has been replaced
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Basic FHT Element
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a+b+c+d+e+f+g+h

a-b+c-d + e-f+g-h

a + b-c-d + e + f-g-h

a-b-c + d + e-f-g+h

a + b + c+d-e-f-g-h

a-b+ c-d-e+ f-g+ h

a+b-c-d-e-f+g + h

a-b-c + d-e + f+g-h

Figure 2.9: The Basic Fast Hadamard Transform Element for Cascading

Additions and the Full Diagram for an 8 Point FHT.

by permuting the matrix positions, there is no multiplication required. The increase in

speed of execution is difficult to compare with the FFT since this method only requires

additions. During the correlation procedure, a=0 so no new information is added. The
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zeroth position result can be seen to be the sum of all the elements of the code and is

thus equal to the DC pedestal. This pedestal can be removed by subtracting the zeroth

position from all other positions. All that remains is to determine the permutation

matrices P and Q.

7. Vector Order Permutation

The permutation matrices P and Q must be found such that QA = B' and ATP

= C\ Matrices A, AT
, B\ and C contain all possible arrangements of ones and zeros

in 3 digit rows or columns. A natural index for each row or column is then its equivalent

octal value. The indices are important in that they allow 'multiplication' by the

permutation matrices by rearranging the order of the signal vector, rather than direct

multiplication. Note that no multiplications are required, only the reordering. For a given

code, the permutations can be evaluated once, prior to signal processing, and the result

stored as an index array to be applied to each vector.

8. Correlation Summary

The following is a summary of the autocorrelation procedure:

1. Augment the signal vector S with a zero in the zeroth position to form S'.

2. Permute the augmented input vector S' according to P.

3. Perform the Fast Hadamard Transform additions as indicated by the flow graph

in Figure 2.9.

4. Permute the vector resulting from the FHT according to Q.

5. Remove the zeroth entry and subtract it from all other elements to remove the DC
bias.
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III. SIGNAL PROCESSING

A. SIGNAL SPECIFICATION

1. Continuous Wave

The CW signal was a pure sinusoidal waveform transmitted at a nominal array

power level of 213 dB rel luPa@lm. This signal was useful in estimating the frequency

stability of the arrivals, and in comparing signal levels to noise in the frequency band of

interest. However, the extreme power levels at which the transducers were driven coupled

with severe weather conditions in the vicinity of Heard Island caused variability in the

output level performance of the transmitter.

2. 3/10 Pentaline

The 3/10 pentaline signal has five major spectral lines hence the name

pentaline. It consists of 3 digits of 10 carrier cycles each at 57.0 Hz, a total of 30 cycles

per period, repeated continuously for one hour. This produces a nominal bandwidth of

57.0 Hz / 10 cycles per digit = 5.7 Hz. The signal is specified by

s = A cos (2 nfc
t + b

n
B) ,

(3.1)

where bn
= II: -1, +1, +1 : II, corresponding to law 7octBl or digits of 1,0,0 in binary and n

is incremented once every 10 carrier cycles. The first digit is phase shifted by -45

degrees, the second and third are phase shifted by +45 degrees. There are 57.0 H: / 30

cycles per period = 1.9 periods per second, which produces a spectral line separation of
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Figure 3.1: Power Spectrum of the Pentaline Signal.

1.9 Hz. Figure 3.1 illustrates the power distribution in the frequency domain. The power

levels rel 57.0 Hz CW signal are tabulated below.

LOWER FREQ.
(Hz)

UPPER FREQ.
(Hz)

POWER
(Percent of CW)

POWER
(dB rel CW)

57.0 57.0 55.5 -2.5

55.1 58.9 14.7 -8.3

53.2 60.8 3.5 -14.5

51.3 62.7 0.0 -e>o

49.4 64.6 0.8 -20.8

47.5 66.5 0.5 -22 9
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Note that the power decreases in approximately 6 dB steps in line amplitude which

permits graphical estimation of received signal-to-noise ratios from the observed power

spectrum.

3. Maximal Length Sequences

The maximal length sequences each consist of a series of digits of 5 cycles

each at 57.0 Hz, producing a digit duration of 87.7 milliseconds and a bandwidth of 1 1.4

Hz. The signal is specified as

s = Acos(2nf
c

t + b
n Q) ,

(3.2)

where n is incremented once every 5 carrier cycles. Phase modulation is +/- 45 degrees

as it is for the 3/10 pentaline. The initial digits are 0,0, ...0,0,1 i.e., the maximum string

of 0's followed by a 1. The sequence lengths are 255, 511, 1023, or 2047 digits with

their characteristics tabulated below.

Digits LAW
(octal)

PERIOD
(seconds)

Periods/Hr

255 537 22.36 160.9

511 1473 44.82 80.3

1023 2033 89.82 40.0

2047 5747 179.56 20.0

B. DATA COLLECTION AND PRE-PROCESSING

1. Amplification

The receiving array of 32 hydrophones continuously collected 32 channels of

data measuring the acoustic field at depths between approximately 345 and 1740 meters.
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The hydrophones had a nominal sensitivity of -170 dB (rel lV/uPa) corresponding to 316

uPa/uV. Therefore, the data can easily be converted directly to pressure expressed in

micropascals. Received hydrophone data underwent a linear fixed gain of 20 dB at a

patch panel and then was linearly preamplified for a gain of 6 dB before processing

through a variable gain amplifier. The variable gain amplifier automatically switched gain

(1, 8, 84, 512, or 4096) depending on the input level to optimize the 10 volt dynamic

range of the analog to digital converter and thus the precision of the recorded signal data.

All data analyzed in this thesis has been normalized to the hydrophone output voltage

levels using the program convert.c (listed in Appendix B) which is an implementation of

the program normize.c written by Von der Heydt of Woods Hole Oceanographic

Institution (per E-mail communication dtd 17 April 1991).

2. Analog Filtering

As noted above, the maximum bandwidth for the transmissions is 1 1.4 Hz for

all of the m-sequence signals. It is desirable to bandpass filter the received data to

eliminate any out-of-band noise. Therefore, in addition to amplification, the signal

underwent bandpass filtering prior to recording. The highpass filter had a -6 dB point at

10 Hz with a rolloff of -30 dB/octave. The lowpass filter had a -3 dB point at 80 Hz

with a rolloff of -48 dB/octave.

3. Analog-to-Digital Conversion

Figure 3.2 illustrates the data collection and pre-processing apparatus aboard

RIV Point Sur. The acoustic signal was digitally sampled at 228 Hz for transmissions of
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Optical Disk

Figure 3.2 Data Preprocessing

26 January 1991 to January 1991 and then at 456 Hz from January to February 1991.

These sampling frequencies are 4 and 8 times the Nyquist frequency respectively and are

an integer multiple of the optimum carrier frequency f
c

. Sampling in this manner

simplifies processing and interleaving of data, since it produces an integer number of data

points per digit. The data was digitally recorded continuously during the 1 hour reception

intervals onto both 1 Gigabyte optical-disk and VHS tape media. After normalization to

hydrophone output levels, the data was stored in an array of binary single precision

floating point values. Real time processing and signal monitoring was conducted using
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both a Concurrent 6400 Real Time Unix processor and more conventional spectrum

analyzers.

4. Clipping

During postprocessing of the data, occasional broadband spikes of high

amplitude noise of undetermined origin were noticed which lasted approximately one

second. These noise transients tended to saturate the local time series to a degree that

attempts to recover the signal near the spike were futile. Since these spikes in the time

domain data had no relation to the transmitted signal but significantly raised the

background noise level, they can be clipped without significantly degrading the received

signal. During preprocessing, if the absolute value of a data point exceeded twice the

standard deviation from the mean of its local 10 second buffer it was clipped or limited

to that value. By clipping to a standard deviation from a localized mean, short term noise

anomalies are eliminated but the general characteristics of signal-to-noise in the slowly

varying ambient noise field are retained. Clipping was incorporated into the resampling

module but occurred prior to resampling.

5. Doppler Correction

Both the transmitting and receiving ships and arrays were acted upon by the

forces of tides, currents, winds, etc., which combined to produce some amount of relative

drift between them. In addition, the source array was towed during transmission periods

as required to maintain steerage of the source vessel with minimum thrust. Although both

vessels were operated to minimize array motion (especially accelerations), some relative

47



movement was unavoidable and because of this the received signal center frequency was

often Doppler shifted away from the transmitted center frequency. Since the motions

were slow and generally uniform, it is sufficient to make corrections for first order

Doppler shifts and neglect acceleration effects (Birdsall and others, 1987, 1988).

When the signal s incurs a Doppler frequency shift due to relative velocity,

v, the received signal experiences an expansion or compression in time. The Doppler

shifted signal sd can be expressed as

sd = s

K)'-
(3.3)

where c is the average phase speed of sound in water given in meters per second, and t,

is the delay of the i
,h

arrival from the transmitter to the receiver. Since the objective of

the Heard Island Feasibility Experiment was to examine the resolution of the arrival

structure and not to determine the travel time itself, T, is arbitrary and only important in

its relation to other arrival delays. Therefore it will be assigned a reference value of zero

for this discussion. The magnitude of the Doppler shifted power spectrum is given by

\

SA = S\
r

[(' *
;)l

(3.4)

When the Doppler shifted signal is digitally sampled at a frequency of f, the value of the

n
,h
sample is given by

Sdn =*/
-H)) (3.5)

If the sampling frequency f
5

is adjusted by the same Doppler shift a new sampling

frequency results and is given by
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which would produce a new n* sample

A=4/
1 +

v\ (3.6)

S
dn = S

± [ ft (3.7)

I h )

When Eq. 3.6 is substituted into Eq. 3.7, the resampled signal is

S
dn = s

ll\ (3.8)

which is identical to a signal with no Doppler shift and thus signal processing can

proceed as in the zero Doppler case.

Prior to signal processing, each data set was resampled at either 4 or 8 times

the Doppler shifted carrier frequency for the data originally sampled at 228 Hz or 456 Hz

respectively. The re-sampled values resulted from linear interpolation between actual data

points as if the desired sampling frequency had been used. The average received center

frequency was estimated by averaging repeated 32,768 point (140.35 second) power

spectrums of the data over the one hour transmission period. The resultant time-averaged

peak frequency nearest 57.0 Hz was used as the received center frequency. This value

agrees with subsequent estimations of Doppler shift using the drift of the source and

receiver ships from GPS data and the relative geodesic angle. Since changes in Doppler

were small, no correction was made for variations in received frequency during the

reception hour.
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C. SIGNAL PROCESSING PROCEDURE

1. General Considerations

Data processing was performed using a proprietary signal processing

applications software package named Lab Workbench which was developed by

Concurrent Computer Corporation. This software provides a shell interface between a 32

channel analog-to-digital converter, the Concurrent 6400 Real-Time Unix based computer

system, numerous signal processing software modules, and the optical disk data storage

medium. Most importantly, Lab Workbench allows optional user-defined data processing

modules which are, in effect, Fortran or C language subroutines which can operate real-

time on the data as it is being collected.

Because hardware difficulties prevented the use of the real-time capabilities

during the Heard Island Feasibility Experiment, all data was processed after the

conclusion of the experiment, using a playback module to read the data from the storage

media. The stored data was retrieved from the optical disk and processed in buffer

lengths of 1 second each. The 1 second buffers of data were passed sequentially through

a bandpass filter module, a demodulator module, two parallel low-pass filter modules, a

sequence removal module, and finally a module which writes the processed data onto the

storage media. Each of the signal processing modules as well as pre-processing steps are

described in sequential order below. Figure 3.3 illustrates the time domain processing

accomplished with the Lab Workbench modules. Listings of C language source code for

the processor modules are included in Appendix B. Modular design of the processing
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software allowed increased flexibility of implementation and operation in any one of the

following modes:

• Setup: Specification of all run-time variables, memory allocation, and preliminary

calculations. Performing routine calculations and 'housekeeping' functions in this

mode speeds operations during the run mode.

• Run: Actual real-time data processing which occurs in buffer lengths of one second

each until the entire one hour transmission has been processed.

• Stop: Halts the Run phase of data processing but maintains current data in the

transfer buffers to allow subsequent restart.

• Menu: Allows selection of variable values such as carrier frequency, m-sequence

code, phase shift, etc. during operation or execution of the Lab Workbench

software.

• Drop: Same function as Stop but drops the last data transfer buffer.

2. Bandpass Filter Module

The power spectrum of the phase encoded m-sequence is the convolution of

the carrier power spectrum and the m-sequence code power spectrum as developed in

Section 2.C.3. Therefore the retrieved data, which was hardware bandpass filtered 30

to 80 Hz prior to recording was again bandpass filtered. This second bandpass filter

passed the band from 45 to 69 Hz using a software implementation of a classical

Hamming windowed, 20
,h

order, linear-phase, finite impulse response (FIR) filter.

Received data was passed in a 24 Hz band corresponding to the power spectrum of the

biphase modulated 57 Hz carrier. The filter structure is the general tapped delay-line

filter described by the difference equation
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yn V* + 6lVl +
• •

+*2oV2
(3 *9)

for data vector x and weighting coefficients bn obtained using the firl function in Matlab.

Matlab is a proprietary software product developed by The MathWorks, Inc., South

Natick, MA. Although the C-language Lab Workbench implementation of this filter is

listed in Appendix B as bandpass. c, any other filter type can logically be substituted if

it maintains linearity in phase.

3. Demodulation

To retrieve the digital code from the biphase modulated carrier signal, the

received data must be demodulated. The object of complex or quadrature demodulation

is to isolate the real bandpass signal on the positive frequency axis and translate it to a

complex lowpass signal. If fd is the downshift frequency in Hz and t is time in seconds,

the demodulation can be accomplished by multiplying the input data by a complex rotator

given by (Birdsall and Metzger, 1990)

where s, represents the input signal and d
t
is the demodulated output signal. When the

sampling rate f, is precisely the fourth harmonic of the carrier frequency fc , as it is for the

re-sampled data, fdt changes by exactly one-quarter cycle with each successive sample and

the values of the downshifting complex rotator e
i2,t(fc/fs)n

being l,-i,-l,i;l, -i, -1, i; etc. The

complex multiplication then results in successive polarity changing and alternating

assignment to real and imaginary parts. The result is a real and imaginary train of pulses

corresponding to the m-sequence code at a baseband of to 11.4 Hz. Sino; the

demodulator is not synchronized with the transmitter, it must demodulate the signal
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without the benefit of phase information. Therefore, to recover all of the magnitude of

the signal in the baseband, the signal must be multiplied by both the cosine and sine at

the carrier frequency. The digital implementation of the real part of the demodulation is

given by

r„ - 5. cos (-Ml)

where rn is the n,h demodulated real data point. A listing of the C-language code is given

in Appendix B as demod.c. The digital formulation of the imaginary part, in , is similarly

i = s sin l-J-lZ)

\ '* )

Ideally, the downshifting frequency fd would be the received signal carrier frequency

which would translate the signal spectrum perfectly to it's baseband. However, since the

signal was re-sampled at 4 or 8 times the measured fc , we can use any combination of fc

and f
s

in equations 3.11 and 3.12 such that f
s
/fc=4 or 8 and still maintain correct

synchronization for the complex demodulation rotator. Since the transmitter design carrier

frequency was 57.0 Hz, the ideal sampling frequency of either 228 Hz or 456 Hz were

used for fc and f
s
respectively.

4. Low Pass Filter

Both the in-phase and quadrature components from the demodulator were low

pass filtered passing the band from to 12 Hz. The filters were a software

implementation of a classical Hamming windowed, 20th
order, linear-phase, finite impulse

response (FIR) filter. The passed band from to 12 Hz. corresponded to the power

spectrum of the baseband of the biphase modulated 57 Hz carrier. The filter structure is
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again the general tapped delay-line filter described by the difference equation (Eq. 3.9)

with vector x and coefficients bn obtained using the firl function in Matlab. Although

the software implementation of this filter is listed in Appendix B as lowpass.c, any other

filter type can logically be substituted if it maintains linearity in phase.

5. Sequence Removal

Correlation of the received data with the transmitted maximal length sequence

code is performed by a software adaptation of the Fast Hadamard Transform. The

permutation matrices discussed in Chapter II are calculated for the specific m-sequence

code and stored during the setup mode of the sequence removal module.

During run-time execution of the module, dual inputs of real and imaginary

data are input and multiplexed into a large storage array. Since the Hadamard processing

must be performed on an entire sequence, the storage array will hold 22.4, 44.8, 89.8, or

179.6 seconds of data prior to processing, depending on the specific m-sequence code.

Remember that the transmitted signal had 5 cycles per digit and the signal was sampled

at 4fc or 8fc so there were 20 data points collected per digit for the 228 Hz sampled data

and 40 points per digit for the 456 Hz sampled data. When the signal was demodulated

the number of data points per digit grew by a factor of two, since the demodulated signal

has real and imaginary parts. The incoming real r and imaginary i data buffers are

interleaved into the storage array by alternating r , i„, r„ i„ r39n , i39n for an n-digit

sequence sampled at 228 Hz.

Since the Fast Hadamard Transform only requires one data point per die it, by

the time a single m-sequence has been received the storage array actually contains 40 or
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80 interleaved m-sequences depending on the sampling rate. Each sequence is

sequentially permuted according to the scrambling array, processed by the FHT, and then

permuted again according to the unscrambling array. When the Fast Hadamard Transform

is performed successively on each interleaved sequence in the storage array, the result

from an ideal signal is 40 or 80 adjacent peaks at the 0-shift or correlated digit. This

oversampling causes a flat-topped, one digit wide correlation peak vice the 'pointy'

autocorrelation peak developed in Chapter II.

As shown in Figure 2.7, the autocorrelation function for an m-sequence has

a negative DC level for all digit positions except the first. Therefore, the zeroth position

of each sequence contains the average DC level and can be calculated and removed from

all other positions. The complex level adjustment C^,. is related to the average DC level

^ by

C = fx L (3.13)
cor J 1 avg

and f, is given by the relation

f
_
;

. (AM)tan(6) + 7 (W-tan
2
(6))

(3 14)
1

N 2 + tan
2
(6)

where N is the m-sequence digit length and is the phase modulation angle. All the

parameters of equation 3.15 are known and so f, is calculated only once during the setup

phase of the sequence removal module. Bias removal then requires one complex

multiplication per sequence during the run mode to calculate Ccor and the correction can

be subtracted from each value in the sequence.
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Since the processed data array is interleaved with real and imaginary parts of

the transformed signal, it is a trivial matter to compute the magnitude magn in the time

domain by

"MSn = ^n + l
n

(3 *15)

The ideal processed signal now is a time series which has zero values at all points except

the correlated digit. At the correlated digit, there will be a sequence of pulses whose

combined width is one digit wide (0.087 seconds) and whose amplitudes are equal to the

number of digits in the sequence. For real data, the model output is similar with the

addition of randomly distributed white noise present in all digits as shown in Figure 3.2.

Although a Doppler shifted input signal can be correctly demodulated without

resampling, the bandpass digit sequence would still be either expanded or compressed in

time. The Fast Hadamard Transform scheme used in this thesis assumes exactly 20 digits

per sample (40 for the 456 Hz sampled data) and only one sample per m-sequence digit

is transformed at a time. Thus any expansion or contraction of the time series greater

than one sample interval would cause a loss of a digit. A single output of the FHT

process would have a reduction in amplitude of 1/N for each shift of one sample length

where N is the number of digits in the sequence. Because the interleaved data produces

20 (or 40) adjacent output peaks, the reduction occurs first on the end peaks and then

successively toward the opposite end as the Doppler shift increases. The result is a

narrowing of the pulse at the top with increasing Doppler and an eventual decrease in the

pulse amplitude for Doppler time shifts exceeding one digit width Tc of 0.0877 seconds

over the length of the sequence. The Doppler frequency shifts required to cause the loss
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of one complete digit range from 0.028 Hz (1.43 kts) for the 2047 sequence to 0.2224 Hz

(11.5 kts) for the 255 sequence. Therefore, it is imperative that the data is resampled to

remove Doppler time alteration and preserve a constant number of samples per digit.

D. POST-PROCESSING ENHANCEMENTS

1. Time Averaging

The primary objective of time domain processing is to obtain a correlated

pulse whose amplitude is sufficiently greater than the average noise level to allow

confident detection. Since the m-sequence is transmitted repeatedly during the one-hour

transmission period, the repetitive sequences can be averaged incoherently by simply

summing the corresponding data points of successive sequences. As the number of

averages increases, a stable correlated signal pulse will remain at the same relative

position in the time series but the Guassian noise will tend toward an average value of

zero. The sequence removal module facilitates averaging by retaining leftover buffer data

when a full sequence has been received so that it can be used at the beginning of the

following sequence. In this way a continuous stream of data is processed as it was

received.

2. Visual Integration

Because the received signal is often very weak even after significant

processing to maximize gain, it is useful to display the resultant data in a manner

conducive to easy interpretation and recognition of the signal. It is particularly helpful

to display the graphical output of several time series such that corresponding timt s are
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aligned. In this way, any signal which may be marginally detectable in a single time

series may stand out as a trend among several sequential series.

The Fortran program hafton.f which is listed in Appendix B was written to

take advantage of this visual integration between sequential time series. It produces a

two-dimensional plot with m-sequence time series on the horizontal axis and successive

m-sequences 'stacked' above in sequential order. The amplitudes are represented by

halftones of various gray shades with higher amplitudes indicated by darker shading.

These plots can be further enhanced by plotting a function of the data such as log, sine,

cosine, etc. to accentuate the extreme or mean regions of data amplitudes.

An additional method of achieving visual integration is the use of a 'waterfall'

display where successive time or frequency domain plots are 'stacked' and recurring

peaks become apparent. The matlab program mesh.m was used to generate the waterfall

type displays included in this thesis.
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IV. RESULTS

A. DATA COLLECTION

The first objective of this thesis was to successfully deploy a vertical array in the

optimum reception zone and record the sampled acoustic environment at a rate higher

than the Nyquist frequency. This goal was met cooperatively between the Naval

Postgraduate School, the Monterey Bay Aquarium Institute, Woods Hole Oceanographic

Institution, and Massachusetts Institute of Technology. The output of the transducers was

sampled at either 228 or 456 Hz, bandpass filtered, and optimally amplified to maximally

utilize the dynamic range of the analog-to-digital converter as discussed in Chapter HI.

At 01261525 (1525 Greenwich Mean Time on 26 January 1991) RIV Point Sur was

on station near the northern edge of the predicted reception zone, recording all

transmissions until the array cable became entangled in the ships screw at 01300205

GMT. During this period the RIV Point Sur recorded 12 transmissions and steamed

between reception periods from 35° 41'N, 123° 01 'W, to 35° 30'N, 123°05'W in order

to sample a cross section of the predicted reception zone. Following a swift transit to

Monterey in order to free the fouled screw and an admirable cable splicing repair effort

led by K. Von der Heydt of WHOI and K. Lashkari or MBARI, RIV Point Sur returned

to a point further into the predicted reception zone at 34° 15'N, 122° 00'W by 01312108

GMT. Unfortunately, by this time the transmitting vessel, RV Cory Chouest, had become

encumbered by heavy seas and the reliability of it's overdriven transducers was
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deteriorating rapidly. Two abbreviated receptions were recorded between 01312108 GMT

and 02010039 GMT at the new location before untenable conditions near Heard Island

forced conclusion of the Experiment. The 32 channels of digitized data were sampled and

recorded to 1 Gigabyte Tahiti ZCAV optical disks at 58.386 kilobytes per second for the

228 Hz sample rate and 116.736 kilobytes per second for the 456 Hz sample rate.

Daily sound speed measurements were recorded using an XBT and representative

sound velocity profiles are shown in Figure 4.1. In addition array depth and tilt data was

( a ) SVP of 26 Jan 91
SVP of 30 Jan 91

800

O 400 h

14S0 1485 1490 1495 1500 1505 1510 1515

Sound Speed (m/s)

1480 1485 1490 1495 1500 1505 1510 1515

Sound Speed (m/s)
,

Figure 4.1: Sound Velocity Profiles.
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recorded from upper and lower instruments on the array. This data is used to determine

hydrophone location relative to the sgund channel axis located at the sound velocity

minima. The top hydrophone was nominally at 345 meters depth. Follow-on data

analysis will use the array depth and tilt data to implement modal beamforming with all

32 hydrophones. Beamforming can theoretically provide 10 log(32) or 15 dB of array

gain and a realistic expectation of between 6 and 10 dB. In addition, if the hydrophone

outputs are properly weighted, the array will act as a mode filter to discriminate between

various normal modes of propagation and more accurately depict the propagation method.

B. SIGNAL PROCESSING

1. Objective

The second goal of this thesis was to develop and implement signal processing

software capable of optimizing the characteristics of the transmitted signal. The software

was designed to operate in real time on an incoming data stream using a Concurrent 6400

data acquisition computer with Lab Workbench applications software. To this end, the

programs in Appendix B which were discussed in Chapter HI have been developed. All

processing was implemented with user function modules in the Lab Workbench

environment. All user function modules were written in the C programming language and

can be utilized real-time as the data is being collected. The 32 channel input data stream

can be demultiplexed with a channel selector switch to permit analysis of individual

channels or, if desired, arithmetically combined to sum individual channels. Piping data

between modules is facilitated by connecting the input and output boxes of appropriate
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modules on-screen with a click of the left mouse button. In addition, user interface with

the running program was enhanced with on-screen menus to permit selection of key

parameters for each function. The on-screen menus are activated by clicking the left

mouse button while the cursor is positioned on the module of interest.

2. Test Data

The signal processing programs were tested with an artificial data set which

was recorded onto audio cassette tape and then played back through a single channel of

the data collection system. Test data consisted of 66 consecutive sequences of 255 digit

m-sequence code (octal law 537). The inherent noise of the audio tape and variability of

the tape drive speed provided both a source of near-white noise and frequency wavering

similar to the Doppler shift of the drifting source and receiver. The results of the

performance, and sensitivity testing using the test data are demonstrated below.

3. Resampling and Clipping

Figure 4.2 compares the signal band power spectrum of the 01270005 m-

sequence raw data to the same data after resampling and clipping. The C function

resamp.c clips and resamples 32 channels of multiplexed data at a rate exacdy four times

the Doppler shifted carrier frequency as discussed in Chapter IE. The function clips the

data at a magnitude which is a user defined factor times the standard deviation (a) of a

local 10 second time series. It allows the user to define both the Doppler shifted

resampling frequency and the clipping factor from an on-screen menu. All
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Figure 4.2: Results of Clipping and Resampling 01270005 Raw Data.

data analyzed for this thesis was clipped at the default value of 2c and resampled at

exactly 4 times the median carrier frequency as determined by spectral analysis. A

32,768 point FFT was used in all spectral analysis in this thesis. Resampling simplifies

implementation of the demodulation procedure by minimizing the effects of relative

motion induced Doppler frequency shifts of the received carrier frequency. The clipping

of this particular time series resulted in approximately a 3 dB decrease in the m.-dian
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4. Bandpass Filtering

Figure 4.3 displays the filter response of the 20
th
order FIR bandpass filter for

both 228 and 456 Hz sample rates superimposed on the normalized magnitude envelope
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Figure 4.3: Magnitude and Phase Response of 20
th Order Bandpass Filter.

of the m-sequence signal. The filter passes frequency components between 45 and 79 Hz.

It is readily apparent that removal of unwanted out of band noise will significandy

improve the signal-to-noise ratio of the processed data since unwanted noise in the time

domain is comprised of a wide spectrum of frequencies. Bandpass filtering was

performed with the function bandpass. c. The program allows user selection of the sample

frequency (which determines the filter coefficients) from an on-screen menu.

5. Demodulation

The complex demodulation of the received signal into its quadrature and

cophase components at baseband frequency was also implemented with a Lab Workbench

user function module. It is listed in Appendix B as fdemodl.c. Both the real and

imaginary parts of the signal are produced as output streams for further manipulation,
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thereby preserving all of the signal information for maximum processing gain. The user

can select carrier frequency and sample frequency from an on-screen menu. Figure 4.4

shows a 1 second portion of the test data time series after processing with the

demodulator. This one second series contains 11.4 digits each of length 0.0877 seconds.

1.5'

c
I

IN Ml Pi

r
a5 -

!IIIl

< "

0.5 Pi

<—digit change from "1" to "0"

iii

0.4 0.5 0.6

Time (seconds)

Figure 4.4: Real Part of Demodulated 255 M-Sequence Test Data.

6. Lowpass Filtering

The output of the demodulator in Figure 4.4 exhibits some high frequency (57

Hz) ripple components in the time series. Since the m-sequence has been translated to

its baseband frequency (0 to 11.4 Hz), these higher frequency components can be

effectively removed without impairing the signal level by lowpass filtering. As with the

bandpass filter, removal of out of band noise will increase the SNR of the processed time

domain signal. The filter was designed to pass frequency less than 12 Hz, including the

1 1 .4 Hz. envelope of the demodulated signal. The program allows selection of the sample

rate from an on-screen menu Figure 4.5 displays the magnitude and phase respoi >e of

the lowpass FIR filter superimposed on the baseband envelope of the m-sequence.

66



(a) MAGNITUDE RESPONSE

0.8-

3 0.6-

i < .. Baseband Spectrum

< Low-Pass @456 Hz rate

\<—Low-Pass (5,228 Hz rate

0.4

0.2

—

-0.5-

? -1>

i, -1.5-

(b) PHASE RESPONSE

\

iiu
-2-

\\
-2.5; \

20 40 60 80

Frequency (Hz)

100 120 4 6 8 10

Frequency (Hz)

I

i

12

Figure 4.5: Magnitude and Phase Response of 20th Order Lowpass Filter.

Figure 4.6 shows the same 1 second portion of demodulator output as Figure 4.4 but after

processing through the lowpass filter. Note that this figure represents only one second

of a 23.368 second sequence which is comprised of a sequence of 255 ones and zeroes.

Additionally, note that Figures 4.4 and 4.6 show only the real part of the signal. Both

the real and imaginary demodulated streams are output for simultaneous subsequent

processing.
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Figure 4.6: Lowpass Filtered, Demodulated 255 Test Data.
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7. Sequence Removal

Both lowpass filtered outputs of the demodulator are piped into the sequence

removal function, fmet.c. The data is passed in one second buffers into a storage array

until an entire m-sequence has been accumulated for processing. The program then

performs the Fast Hadamard Transform on the 40 or 80 redundant and interleaved m-

sequences (both real and imaginary) as discussed in Chapter HL The real and imaginary

components are then combined to produce the magnitude squared (intensity) of the

processed signal. Figure 4.7 shows the sequence remover output for sequence number

58 of the 255 m-sequence test data. A closeup view of the same sequence illustrates the
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Figure 4.7: Sequence Remover Output for Sequence #58 of 255 M-Sequence Test

Data.
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contribution of the 40 sample points during the 0.087 second correlated digit. The
effectiveness of the sequence remover is dependent on the correct demodulation frequency

as discussed in Chapter m. The variation of the audio cassette tape speed as the test data

was digitized created a Doppler-like variation of signal frequency. Figure 4.8(a) is a plot

of the peak sequence remover output values for 66 consecutive sequences showing the

variation in amplitude with time. Figure 4.8(b) shows the deviation from demodulation

frequency (57.003 Hz) which can be visually correlated with the output magnitude in

Figure 4.8(a). As the actual carrier frequency deviates from the demodulation frequency,

0.1,

- o.os-

(a) OUTPUT OF SEQUENCE REMOVER WITH 255 TEST DATA

200 400 1200600 800 1000

Time (seconds)

(b) DEVIATION FROM DEMODULATION FREQUENCY (57.003 HZ)

1400 1600

V
400 600 800 1000

Time (seconds)

1200 1400 1600

Figure 4.8: Frequency Deviation and Sequence Remover Output vs Time.
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the energy which would ideally be correlated into a single digit is spread across the time

series as noise, which is illustrated in Figures 4.9(a and b). Note that time 1297 seconds

(sequence #58 in Figure 4.7) had a deviation of about 0.015 Hz (equivalent to .395 m/s

relative motion ) while time 962 seconds (sequence #43 in Figure 4.9) had a deviation of

over 0.03 Hz (0.789 m/s relative motion).

(a) Sequence Remover Output
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II II
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(b) Closeup of Sequence Remover Output
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Figure 4.9: Sequence Remover Output for 255 Test Data (Sequence #43).
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8. Averaging and Display

The C function spewrit.c performs several analytical functions on the data.

It scans the 30 frequency bins centered on 57.0 Hz to select the bin with the highest

amplitude. This corresponds to a frequency scan from 56.903 to 57.097 Hz which is the

Doppler frequency shift resulting from array velocities along the propagation path equal

to +/- 5.06 knots. The program writes an output file containing the peak amplitude of

the scanned bins, the corresponding frequency of the peak bin, and the average noise level

in a 24.8 Hz band centered at 57.0 Hz. Note that if the carrier signal level is lower than

a noise bin in this band an incorrect value will be selected which will produce errors in

both the carrier frequency and carrier amplitude estimation. Therefore, median values are

used in our estimates because the median is less sensitive to outliers than the mean.

These output files are in the form of a channel-time matrix and can be easily used to

estimate the signal-to-noise ratio and frequency stability of the carrier wave.

Figure 4.10 is a gray-scale plot of the same 66 255-digit m-sequences of the

test data, vertically stacked so that corresponding digits of separate sequences are

aligned. When a signal level is much smaller than the ambient noise level, as it was for

the Heard Island Feasibility Experiment, it is often advantageous to coherently average

several sequences or FFT's so that random uncorrected noise will tend to cancel and

correlated signal energy will stand out. The C function, writer.c, writes the repetitive m-

sequence outputs of the sequence removal module or the repetitive autospectral density

outputs of the power spectrum module to a file such that corresponding times or

frequencies are aligned. The values in the output file of writer.c can then be easily
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plotted as a three dimensional surface, averaged, and plotted as a two dimensional subset

of the file.
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C. PRELIMINARY DATA ANALYSIS

1. Objective

The goals of the preliminary data analysis was to determine the signal-to-noise

ratio of the received signal and determine whether it was sufficient (greater than 18 dB

post-processing) to permit arrival time estimation within the prescribed 10 millisecond

accuracy for use in a long term global warming experiment. Additionally, sequence

removal was conducted in an effort to directly analyze arrival structure and stability. In

particular, we desired to find the maximum coherent integration time of the reception

which, in turn, would determine the maximum processing gain.

2. Frequency Domain Processing

a. Autospectral Density

Autospectral density (or power spectrum) estimation was performed using

the modified parallelogram method [Reference 28]. The process yields the mean square

intensity or power of the signal as a function of frequency and is available as a packaged

module of Lab Workbench. All frequency domain processing utilized the maximum Fast

Fourier Transform input points (N=32768), Hamming windowing, and 50% overlap of

adjacent FFT's. The sample interval (At) was 4.386 and 2.193 milli-seconds for the 228

Hz and 456 Hz sample rates respectively and the corresponding FFT block lengths, given

by (N-l) At, were 143.715 seconds and 71.857 seconds respectively. The frequency

resolution or binwidth of the power spectrum, (B,) given by 1/A, is then 6.958 and 1 ^.916

millihertz, again dependent on the sample rate.

73



Analysis in the frequency domain provided a quick assessment of

equipment operation as well as an indication of relative signal and noise levels.

Performance of individual channels can be estimated from the deviation of their output

from the median levels. Channels 14-19, 21-23, 28, 29, and 31 had indications of

extremely high or low output. Only channels whose output was consistently within 3

standard deviations of the array median were used to estimate signal and noise values.

Figure 4. 1 1 shows the median peak spectral value (of all valid channels) for the 01270222
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Figure 4.11: Median 57.0 Hz Spectral Peak of 01270222 CW Signal.

CW signal in a 0.193 Hz band centered at 57.0 Hz (corresponding to +/- 5 kts Doppler)

as a function of time. The median channel spectral noise value in a band from 45 to 69

Hz is plotted in Figure 4.12. Although band noise is not strictly applicable for a CW

signal, using a 24 Hz band for noise summing provides a reasonable estimation of

expected noise levels for the m-sequences. The noise value was obtained for each power

spectrum by summing the values in each frequency bin of the 24 Hz band and then

dividing by the number of bins (862). Finally, the median value of all valid channels was

74



, xlO
1.6

10

1.4 H ,'
'.

§ 1.2 (- Channels 0-13, 20, 24, 27, 30 only l
\ A/

<
; \ /

| 0.8 j-
l\ , I

< [^ A /} / \ / \ A / V^-y/ _ .Median^....-^^ ,^~j , ^__:--^^^^ =6.3903e-ll
|

0.4;
1000 2000 3000 4000 5000 6000

Time (seconds)

Figure 4.12: Median 12 Hz Band Noise of 01270222 CW vs Time.

plotted as a function of time. Taking the median again (of the median channel values)

provides an overall median value of 1.18xl0"
13

volts
2/Hz for the signal level and 6.39x10"

11
volts

2/Hz for the noise value. These values can be converted to acoustic power levels

of 19 dB rel luPa for the signal and 46.4 dB rel luPa for the noise, as discussed below.

Transmission loss over the mean acoustic path would then be about 213dB-19dB =

194 dB.

b. Signal-to-Noise Ratio

The rms power in a given frequency bin is obtained by multiplying the

autospectral density G„ times the frequency binwidth, (Be). Since transducer output

voltages were recorded, the measured rms power is in units of volts squared per Hertz and

can be related to acoustic power by the sensitivity of the hydrophones (-170 Db rel luPa

or 3.162 x 10
8 uPa/V)- Acoustic power is the pressure force times the velocity of the

pressure wave (which is in phase with the force at large distances from the source).
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Therefore output of the autospectral density estimator can be converted directly to

acoustic power (P) if desired by

P = 10 log

^2G.16xHfyB
e G x

(f)

1 \xPa'

(4.1)

which yields P = 148.4 dB + lOIog G„ for the 228 Hz sample rate and P = 151.4 dB +

lOlog G,, for the 456 Hz sample rate in dB rel luPa2
.

Determining the SNR of the CW signals is simply a matter of measuring

the signal power in the correct Doppler shifted carrier frequency bin and then dividing

the result by the total noise power in the FFT band (summing the noise power in all bins).

This is accomplished by simply dividing the channel median of the spectral peak matrix

(Figure 4.11) by the channel median of the band noise matrix (Figure 4.12). Figure 4.13

illustrates the result. The overall median signal-to-noise ratio for the reception can then

be calculated as 10 log (median signal / median noise) which equals -27.6 dB. Recall

that the total noise is significantly reduced by clipping and filtering, increasing the SNR.
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Figure 4.13: Median SNR of 01270222 CW Signal.
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c. Arrival Structure

Continuous wave signals contain 100% of the power in the carrier and

are therefore the optimum waveform for resolving the spatial distribution of energy over

the water column. To analyze the arrival structure of the signal the matrix of carrier bin

autospectral density values was formed. The matrix dimensions are 32 channels by N

FFT periods, where N is the number of FFT periods in the reception, so that each matrix

element contains the autospectral density for the corresponding channel and FFT period.

This single arrival structure matrix contains both the temporal and spatial variability

information for a single reception. The median value of the 18 valid channels, plotted

in Figures 4.11 through 4.13, provides the temporal arrival pattern of the power level

during the entire reception. A median value of the N FFT's produces a plot of spatial

variability in signal power level over the depth of the array. The time averaged FFT is

shown in Figure 4.14. When compared to the sound velocity profile, this spatial

\
\

-29.5,
10 15 20 25 30

Channel Number

Figure 4.14: Median SNR (in 24 Hz band) vs Channel for 01270222 CW
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distribution of energy might provide a clue to the predominant modal composition of the

signal and thus the primary propagation means.

The median channel frequency of the 01270222 CW signal is indicated

in Figure 4.15. This figure demonstrates that the frequency was remarkably constant

considering that both arrays were subject to motion. Again, the large deviations from the

median are probably attributable to inaccurate spectral peak selection.
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Figure 4.15: Median Frequency of 01270222 CW Signal.

3. Time Domain Processing

A pessimistic estimate of the time domain signal-to-noise ratio is made by

finding the mean amplitude of all the points in a particular sequence, not trying to sort

out signal from noise. The peak magnitude can then be divided by this value to obtain an

estimate of the signal-to-noise ratio. However, if the post-processed signal has

insufficient amplitude to be reliably detected in the noise field, the effectiveness of peak-

picking is diminished. Unfortunately, this was the case for most m-sequences analyzed

in this thesis. Although there were peaks in the data which were stationary in time
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between several sequences, they rarely had sufficient amplitude or duration to distinguish

them from similar features in the noise field. In addition, if multiple arrivals are present

within the same sequence, the difficulty in discriminating the signal from noise will be

increased. Note also that cross-channel average values cannot be used effectively in the

time domain because of possible phase differences between hydrophones.

The 2047-digit m-sequence which was received at 01270005 GMT provided

maximum gain and a relatively stable frequency. Figure 4.16(a and b) depicts the highest
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Figure 4.16: Maximum Reasonable Peak of 01270005 2047-Digit M-Sequencc.
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peak detected in this reception that could be reasonably associated with the signal. The

peak was 9 dB above the median noise level in the 180 second sequence and occurred

at 112.6 seconds from the start of the 7
th
sequence. Figure 4.16(b) is a close-up view of

the same peak, depicting the width of one m-sequence digit (.0877 seconds or 20 sample

points). This particular peak, although higher than any others, was not repeated in other

sequences at a corresponding time from the sequence start. Occurring only 2 hours before

the 01270222CW signal, the 01270005 reception had similar noise levels. The coded

signal level is 3 dB less than the CW level and thus the expected pre-processed SNR is

approximately -30 dB. Since the maximum gain of the 2047 digit pulse compression is

33 dB, we can only expect a maximum output SNR of about 3 dB under ideal conditions.

If the maximum coherent integration time of the arrival exceeds the length of

two consecutive sequences (359 seconds in this case), additional gain can be achieved by

coherently summing adjacent sequences. In addition, more credence can be given to an

arrival peak that is repetitive. Sequence averaging was performed in 3 minute increments

from 6 minutes up to one hour in an effort to locate stable peaks. A peak was found in

sequence number 8 of channel 5 at 169.25 seconds from the beginning of the sequence

which also occurred in other sequences. Figure 4.17(a) and 4.17(b) illustrate this peak.

Note that this peak not only has a smaller amplitude than Figure 4.16 but is also

narrower, similar to the test data case in Figure 4.8. The peak was detectable above the

noise in sequences 7, 8, 9, 10, and 13. Figure 4.18 shows the mean amplitude of this

peak averaged over sequences 6 through 13. This mean peak is thus a coherent average

between 8 sequences (about 24 minutes) and is roughly 6.7 dB above the mean noise.
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Figure 4.17: A Persistent Peak in Sequence 8 of 01270005 2047-Digit M-Sequence.
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Further evidence that the peak in Figures 4.17 and 4.18 is actually an arrival

of 2047 m-sequence code is that they were not detected at all in sequences 1 through 6.

The predicted first arrival of each sequence was 3 hours and 20 minutes after the

transmission commenced due to acoustic propagation at a nominal 1500 m/s over 18 Mm.

Since this particular recording commenced 3 hours and 5 minutes after the transmission,

the first peak would be expected to occur 15 minutes into the recording after sequence

number 5. Figure 4.19 is a plot of the mean level in a 0.0877 second band around the

peak as a function of sequence number. The energy from the peak can be seen to

increase after sequence number 5, as expected.

Sequence Number

Figure 4.19: Mean Amplitude of 01270005 Peak vs Sequence Number.

The stability of an arrival determines its maximum coherent integration time

since any time shift due to Doppler effects or dispersion, or amplitude decrease will

diminish summing gains. A three dimensional perspective of the stability of the peak in

Figure 4.17 is shown in Figure 4.20. Note that the peak varies in both amplitude as a

function of sequence number and time position within any given sequence. In addition
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to a myriad of oceanic causes, the variation could be produced or compounded by

deviation of the received carrier frequency from the demodulation frequency, as discussed

in Section 4.B.7. A gray-scale plot of this same reception is shown in Figure

4.21.
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Figure 4.20: Variation of Amplitude and Position of 2047-Digit M-Sequence.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY OF RESULTS

The Naval Postgraduate School in conjunction with The Monterey Bay Aquarium

Institute, Woods Hole Oceanographic Institution, and Massachusetts Institute of

Technology successfully participated in 1991 The Heard Island Feasibility Experiment,

demonstrating the ability to receive global transmission of acoustic signals. The 18

Megameter transmission may have been the furthermost reception ever of an

electronically generated acoustic signal in an oceanic medium. Over 1.5 gigabytes of data

were collected from a 32 hydrophone array which intersected the deep sound channel in

a horizontal zone of optimum reception.

The Naval Postgraduate School has gained a real-time processing capability for

tomographic m-sequence signals using the Laboratory Workbench environment of the

Concurrent 6400 data acquisition system. The potential to process phase-encoded signals

as they are received will enhance the schools efforts in future acoustic tomography efforts.

Adjustments to experimental parameters can now be made in a timely manner to optimize

the result.

Only a very preliminary analysis of the Heard Island data has been performed in

order to provide an overview of signal levels, integration times, and stability. Detection

of the Heard Island was possible in both the frequency domain and the time domain.

Spectral analysis of CW signals indicated a relatively stable carrier frequency (+/- about
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0.01 Hz corresponding to about 0.5 kts of relative motion). The CW signal had a pre-

processed level of about -28 +/- 3 dB which would imply an approximate -31 dB level

for a coded signal in a similar noise field.

Time domain processing using pulse compression of the coded m-sequence enabled

identification and resolution of occasional arrivals of the 2047-digit m-sequence.

However the post-processed signal level was only about 9 dB for the maximum peak

found and most arrival peaks had characteristics so similar to the noise field that reliable

identification was not possible. The maximum coherent integration time found was 7

sequences or about 21 minutes of the 2047-digit sequence. The pre-processed levels were

so low that small increases in the ambient noise level cause the post-processed SNR to

fall below zero and prevent detection. Detection of the signal in both the frequency and

time domains was intermittent as the signal often fell below the detection threshold.

B. CONCLUSIONS

1. Signal Processing

The signal processing software functions satisfactorily as designed but is

sensitive to deviations of the carrier from the demodulation frequency, which occur as a

result of relative motion between the source and receiver. A deviation of .01 Hz lowered

the output amplitude by about 1.5 dB. A frequency deviation of more than 0.02 Hz is

generally sufficient to make the signal undetectable in the time domain. Resampling of

the signal may be necessary to minimize the effects of large Doppler frequency shifts
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during moving ship tomography experiments with low SNR. The signal processing

objectives of this thesis, as outlined in Chapter I have been fully met.

2. Heard Island Feasibility Experiment

Analysis of the Heard Island data has not been completed. The very cursory

processing conducted in thesis was performed in order to verify the validity of the

processing procedures and to begin to quantify gross characteristics of the data. Both

frequency and time domain processing are viable analysis tools for this data, each

possessing its own advantages.

The SNR calculations in Chapter IV using the median signal and noise levels

indicate that the maximum processing gain of the longest sequence used (33 dB) is barely

sufficient to make the signal detectable in the noise field. The average pre-processed

SNR of -28 dB is indicative of a 19 dB acoustic power level rel lpPa or in other words

a 194 dB transmission loss. Indeed, the processed signal is tenuous, at best, and often

undetectable in the noise field. Additional gain is required in order to reliably identify

and analyze the arrival structure.

The maximum observed processed SNR in the time domain was 9 dB which

corresponds to an arrival uncertainty of 29 milliseconds, using Eq. 3.1. This is

approximately 3 times the maximum uncertainty objective of the Heard Island Feasibility

Experiment. This maximum peak was not repetitive and was thus not reliably identifiable

or conducive to averaging gain. Arrival peaks had pulse widths on the order of 0.1

seconds. Typical peaks had levels on the order of 4 dB which corresponds to an arrival

time uncertainty of about 44 milliseconds. Therefore, without further processing gai 1i, the
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propagation from Heard Island to Monterey exhibits too much transmission loss to meet

the experiment objectives.

C. RECOMMENDATIONS FOR ADDITIONAL WORK

There is much work left to do in analysis of the Heard Island data and improving

the acoustic tomography capability at Naval Postgraduate School. Some recommendations

in this regard are listed below:

1

.

Additional software development should be pursued to facilitate real-time Doppler

frequency search and compensation. Automated phase correction would maximize the

efficiency of the entire sequence removal process. The effects of relative motion are

significant and must be removed in order to have persistent, high amplitude arrival

peaks.

2. Continued efforts in reducing the noise in the recorded data would improve the

output SNR. Pre-whitening of the noise using standard methods such as an auto-

regressive filter may improve the performance of the noise filters as well as enhance

coherent averaging. Also, the origin of the large noise transients that occurred in all

channels should be investigated.

3. Array beamforming can be implemented to obtain up to 15 dB gain ideally for all

32 hydrophones. Up to 12 dB of gain could be achieved for the 18 functional

hydrophones. In addition, modal beamforming would act as a modal filter and allow

discrimination of the predominant modes.

4. Complete the initial survey of the data by creating matrices of the output data and

identifying signal peaks. If sufficient gain can be realized, a detailed study of the

arrival structure should be undertaken to begin to quantify the effects of dispersion and

oceanic influences on the various propagation paths. Within the acoustic data from

this experiment lies the signature of every oceanic process between Heard Island and

Monterey for a period of 7 days. Further analysis could provide information on the

variability of the marine environment over this period. Again, Doppler effects must

be removed since they would mask any short term oceanographic effects on

propagation.

5. The Heard Island Feasibility Experiment did not utilize precise timing between the

source and the receivers because the objective was determining the accuracy of the

arrival time and not the arrival time itself. For future tomography work, a precision
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time synchronization system should be devised which could supplement the acoustic

data with clocking information.

6. The volume of stored data in a tomography experiment can be enormous.

However, since each digit is sampled numerous times, there is a redundancy in the

data that can be reduced by decimation to conserve storage space. The C function

fmetl.c has the ground work for a decimation scheme already installed in the form of

a decimation factor that is menu-selectable. This feature should be expanded upon in

future experiments.

7. Due to the oversampling described above, the top of the correlation peaks in the

m-sequence are flat vice 'pointy' as would be the case for a single sample per digit.

To more accurately resolve the actual arrival time, it would be advantageous to

implement a method of locating a particular feature of the peak such as its center or

forward edge. The center can be resolved by cross-correlating the peak with a square

pulse of the same width which results in a 'pointed' peak.

Finally, since the propagation path from Heard Island to Monterey exhibits too

much transmission loss to be useful for a long term study of global warming, it would

be useful to conduct ray tracing between alternate sites in the Pacific basin. The

Hamiltonian methods discussed in Chapter HI could be used to determine the optimum

locations of both a source and receiver to perform long term monitoring of global

temperatures.
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APPENDIX A

SCHEDULE OF RECORDED DATA

GREENWICH
MEAN
TIME

LOCAL
TIME
(PST)

SIGNAL
TYPE

DATA
LENGTH
(MIN)

DATA
SIZE

(MBytes)

SAMPLE
FREQ.
(Hz)

01261525 01260725 CW 121 106 228 Hz

01261800 01261000 3/10 107 93 228 Hz

01262058 01261258 255 M 38 33 228 Hz

01270005 01261605 2047 M 73 64 228 Hz

01270222 01261922 CW 85 75 228 Hz

10270608 01262208 3/10 75 66 228 Hz

01271207 01270407 511 M 80 70 228 Hz

01271505 01270705 CW 158 138 228 Hz

01271807 01271007 3/10 153 134 228 Hz

01292115 01291315 255 M 138 241 456 Hz

01300011 01291611 1023 M 72 126 456 Hz

01312108 01311308 255 M 28 49 456 Hz

02010011 01311611 2047 M 18 31 456 Hz

Notes: 1. GMT
(received)

= GMT
(tx)

+ 3hrs & 20min

2. PST
(received)

= GMT(m - 8 hrs + 3hrs & 20min

3. Acoustic Travel Time From Heard Island to Monterey is about 3

and 20 minutes.

hours
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Appendix B

SIGNAL PROCESSING PROGRAMS

The following programs are listed in this appendix:

A. RESAMP.C - Resampling for Doppler Correction and Clipping.

B. BANDPASS.C - 20,h
order bandpass filter (45-69 Hz).

C. FDEMOD1.C - Demodulator.

D. LOPASS.C - 20,h
order lowpass filter (0-12 Hz).

E. FMET1.C - Sequence Removal.

F. SPEWRJT.C - Writes spectral peak, frequency, and band noise files.
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/***********************************************************************

RESAMP.C
This program forms a Lab Workbench module which resamples an input data
stream at exactly four times a menu specified carrier frequency. It was
designed to be used with a buffer size of 10 seconds so the header file of

the data will have to be adjusted accordingly. The program also
calculates the mean and standard deviation of each input buffer and will

clip all data in the buffer to a menu specified factor times the standard
deviation from the mean (default is 2).
*************************************************************************/

static char SccsID[] = "@(#)uf test .c8. 1 (MASSCOMP) 2/5/90";
#include "lwbufunc.h"
#include "errors. h"

#include "math.h"
float *idata, *odata;
double nfc=57.0, clip=2.0, pres [2280] [32] , past [2280] [32] , futr [2280] [32]

;

int bufcount, omsg=0, links=0, state=0, itype=0, otype=LWBFLOAT,
dimension=0, sizes [3]={0, 0,0} , count=0, samples, rate=228.0, dx=0;
/************************************************************************

* » Entry point from LWB — must be first function defined in file << *

************************************************************************/

uftest( action, inA, inB, inC, inD, outX, outY, debug )

int *action, *inA, *inB, *inC, *inD, outX, outY, *debug;

{

int status;
dx = *debug;
switch ( *action )

{

case SETUPCMD: status = ufsetup( *inA, outX ); break;

case RUNCMD; status = ufrun( *inA, outX ); break;

case STOPCMD: status = ufstop( *inA, outX ); break;

case MENUCMD: status = ufmenu( *inA ); break;

case DROPCMD: status = ufdropQ ; break;
default: break;

}

return( status )

;

}
/************************** SETUP ************************/

ufsetup( in, out )

int in, out;

{

int i

;

bufcount = 0;

/* set up menu label and initial value */

if ( !lwblabelmenu( 1, "Clip Factor" ) ) return( );

if ( !lwbupdatemenu( 1, "%f", clip) ) return( );

if ( !lwblabelmenu( 2, "Received Freq." ) ) return( );

if ( !lwbupdatemenu( 2, "%f", nfc) ) return( );

/* get dimensionality and size of input message data */

lwbgetparam( in, 0, LWBMSGDIM, &dimension );
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if (dx) printf( "resamp di mens ion=%d\n" , dimension );

lwbgetparam( in, 0, LWBMSGSIZES, sizes );

if (dx) printf ("resamp si zes=%d,%d,%d\n", sizes [0] , sizes [1] .sizes [2])

;

if ( dimension = 2 )

{

count = sizes [0] * sizes [1];

samples = sizes [0];

}

else if ( dimension = 1 )

{

count = sizes [0]

;

samples= sizes [0]

;

}

if ( dx ) printf( "resamp samples=%d\n" , samples);
/* check input data type */

lwbgetparam( in, 0, LWBMSGTYPE, &itype );

if ( dx ) printf( "resamp itype=%d\n", itype );

if ( itype != 5 )

{

lwberror( ERROR, "Input message data type must be float" );

return ( )

;

}

/* create a new message for output data */

if ( !lwbnewmsg( &omsg ) ) return( );

/* initialize message */

if ( !lwbcopymsg( in, omsg ) ) return( );

if ( ! lwbsamerange( in, omsg ) ) return( );

if ( ! lwbsamedomain( in, omsg ) ) return( );

/* create a data buffer for output message */

if ( !lwbnewbuf( omsg ) ) return( );

if ( ! lwbgetdatbuf ( omsg, &odata ) ) return ( );

/* send message on its way and release the input */

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;

}
/*************************** run ********************** *********/

ufrun( in, out )

int in, out;

{

register int i,j,k;
int mi ,oi ,ci ,f i ,pi

;

double rise, run, lower, slope, delt,otime,ntime,diff , mean[32],
var[32], sigma[32], sum[32], num[32], max[32], min[32];

/* sanity check */

if ( ! in I! !omsg ) return( );

if ( !lwbgetparam( omsg, 0, LWBMSGLINKS, &links ) ) return( );

if ( links > )

{

lwbunget( in )

;

return ( 1 )

;
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}

if ( ! lwbgetdatbuf ( in, &idata ) ) return( );

/*** IF THIS IS THE FIRST BUFFER ***/

if(bufcount = 0) /* Note: 1st 10 sec buffer output is bogus */

{

/*** GET THE MEAN AND STD DEV FOR EACH CHANNEL OF THIS BUFFER ***/

for ( j=0; j<32; j++)

{

sum[j] = 0;

for(i=0; Ksamples; i++)

{

k=j+(32*i); /* index of idata[i] [j] */

sum[j] = sum[j] + (double) idata[k]

;

}

}

for(j=0; j<32; j++)

{

meanfj] = sum[j] / (double) samples;
diff = 0.0;
num[j] =0.0;
for(i=0; Ksamples; i++)

{

k=j+(32*i); /* index of idatafi] [j] */

diff = (double) idata[k] - meanfj];
num[j] = num[j] + (diff * diff);

}

var[j] = num[j] / (samples-1);
sigma [j] = sqrt(var[j])

;

max[j] = meanfj] + (clip * sigmafj]);
minfj] = meanfj] - (clip * sigmafj]);

}

/*** READ INPUT INTO PRESENT ARRAY & CLIP ***/

for ( i=0; Ksamples; i++)

{

for(j=0; j<32; j++)

{

k=j+(32*i); /* index of idatafi] [j] */

if ((double) idatafk] < maxfj] && (double) idata > minfj])

{

pres[i][j] = (double) idatafk] ;

odatafk] =idata[k];

}

else /* clip if input > clip * sigma */

{

if (idatafk] >= 0.0)

{

presfi] [j] = maxfj]

;

odatafk] = (f loat)max[j]

;

}

if(idatafk] < 0.0)
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{

pres[i] [j] = min[j] ;

odata[k] = (f loat)min[j]

;

}

}

}

}

}

/*** FOR ALL REMAINING BUFFERS ***/

else

{

/*** READ INPUT INTO FUTURE ARRAY ***/

for(i=0; Ksamples; i++)

{

for(j=0; j<32; j++)

{

k=j+(32*i); /* index of idatafi] [j] */

futr[i][j] = (double) idatafk] ;

}

}

/*** RESAMPLE THE 'PRESENT' ARRAY ***/

for ( i=0; Ksamples; i++)

{

mi=(bufcount *samples)+i ;
/* running index for new time scale */

ntime=(double)mi/(4.0*nfc) ;
/* new actual time for current i */

oi = ntime * rate; /*old index just lower than newtime*/
ci=oi-(bufcount*samples) ;

/* current index lower than newtime */

otime=(double)oi/rate; /* old actual time lower than newtime */

run = 1.0 / rate; /* time difference between old samples */

delt = ntime-otime; /* time shift for this sample */

for(j=0; j<32; j++)

{

k=j+(32*i); /* index of odata[i] [j] */

if (ci >= && ci+1 <= samples) /* both values in present */

{

lower = pres[ci] [j]

;

rise = pres [ci+1] [j] - lower;

}

else if (ci+1 = 0) /* values split pres/past */

{

lower = past [samples- 1] [j]

;

rise = pres[0][j] - lower;

}

else if (ci < && ci+1 = 0) /* both values in past */

{

pi = samples+ ci

;

lower = past [pi] [ j]

;

rise = past [pi+1] [j] - lower;

}

else if (ci = count-1) /* values split pres/futr */

95



{

lower = pres [samples-1] [j]

;

rise = futr[0] [j] - lower;

}

else if (ci > samples-1) /* both values in futr */

{

fi = ci - samples;
lower = futr [f i] [j]

;

rise = futr[fi+l] [j] - lower;

}

slope = rise / run;

odatafk] = (float) (lower + (slope * delt));

}

}

/*** GET THE MEAN AND STD DEV FOR EACH CHANNEL OF THE OUTPUT ***/

for ( j=0; j<32; j++)

{

sum[j] =0;
for(i=0; Ksamples; i++)

k=j+(32*i); /* index of odata[i] [j] */

sum[j] = sum[j] + (double) odata [k] ;

}

for(j=0; j<32; j++)

{

mean[j] = sum[j] / (double) samples;
diff = 0.0;
num[j] =0.0;
for(i=0; Ksamples; i++)

{

k=j+(32*i); /* index of odata [i] [j] */

diff = (double) odatafk] - mean[j];
num[j] = num[j] + (diff * diff);

}

avefj] = num[j] / (samples-1);
sigma[j] = sqrt(var[j])

;

max[j] = mean[j] + (clip * sigmafj]);
min[j] = mean[j] - (clip * sigmafj]);

}

/* CLIP OUTPUT */

for(i=0; Ksamples; i++)

{

for(j=0; j<32; j++)

{

k=j+(32*i); /* index of odata [i] [j] */

if ((double) odata [k] > max[j] || (double) odata [k] < min[j])

{

if (odatafk] >= 0.0)

odatafk] = (f loat)max[ j]

;

if(odata[k] < 0.0)

odatafk] = (f loat)minf j]

;

}
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}

}

/*** shift the data arrays toward the past ***/

for ( i=0; Ksamples; i++)

{

for(j=0; j<32; j++)

{

past[i] [j] = pres[i] [j] ;

pres[i] [j] = futr[i] [j] ;

}

}

}

bufcount++;
lwbwrite( orasg, out );

lwbrelease( in )

;

return( 1 )

;

}

/************************ STOP ******************************/

ufstop( in, out )

int in, out;

{

if ( ! in |j !out ) return ( );

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;

}
/it********************** MENU ft*******************************/

ufmenu( key )

int key;

{

int i

;

if ( key = 1 )

{

lwbgetdouble( "Enter Clip Factor" , 0.0, 500.0, &clip);
if ( !lwbupdatemenu( 1, "%f", clip) ) return ( );

}

if ( key = 2 )

{

lwbgetdouble( "Enter Received Frequency", 0.0, 500.0, &nf c)

;

if ( !lwbupdatemenu( 2, "%f", nfc) ) return( );

}

return ( 1 )

;

}
/*********************** DROP **********************************/

ufdropO
{

if ( ! lwbfreemsg( &omsg ) ) return( );

return ( 1 )

;

}
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/**t**t ***************************************** ************************

BANDPASS.

c

This function implements a 20th order Finite Impulse Response (FIR)
bandpass filter where the filter coefficients were computed using
the FIR1 routine in MATLAB. If W(n) denotes a window, where Kn<N,
and the impulse response of the ideal filter is h(n) , where h(n) is

the inverse Fourier transform of the ideal frequency response, then
the windowed digital filter coefficients are given by
b(n)= W(n)h(n) , Kn<N. The user can select either 228 or 456 hz sample
rate as appropriate for the Heard Island Data.

**********************************$*************************************/

static char SccsID[]
#include "lwbufunc.h"
#include "errors.

h"

float *idata, *odata;
int omsg=0, links=0,

sizes[3] = {0,0,0}
double b 228 [21]

"@(#)uftest.c8.1 (MASSCOMP) 2/5/90'

7

-4

1

-2

state=0, itype=0, otype=LWBFLOAT, dimension=0,
count=0, rate=228, dx=0;

{9 . 6791 2035 1 1 5705e-04 , 7 . 59486633 1 67777e-l 9

,

34078321 026075e-03, -8. 92845210001 374e-18,
2.42224318618152e-17,

-3.05358871759598e-17,
1. 428569141 19550e-17,
1. 428569141 19550e-17,

-3.05358871759598e-17,
2.42224318618152e-17,

9284521 000 1374e-l 8,

59486633167777e-19,

4637751 2008602e-02,
21524732772206e-01,
05919147191579e-01,

2. 430909953204 18e-01

-8,

7,

-2.05919147191579e-01,
1.21524732772206e-01,

-4 . 463775 1 2008602e-02

,

7.34078321026076e-03,
9. 679120351 15705e-04},

b_456[21] = {3. 01 38980851 7666e-07,
2.44744230763637e-02, 3

-1.25908275156001e-06,
-1.26039643870063e-01,
1.11960800803549e-06,
1.98959837606674e-01,
1.11960800803549e-06,

-1.26039643870063e-01,
-1.25908275156001e-06,
2.44744230763637e-02,

9.65884999452910e-03,
00 11 45454787 15e-02,
760841 23580341 e-02,

09389973461736e-01,
36893131470553e-01,
368931 31470553e-01,
09389973461736e-01,

-6.76084123580341e-02,
3.001 14545478715e-02,
9.65884999452910e-03,

-6
-1

1

1

-1

3. 01 38980851 7666e-07},
stor [20] = {1,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0},
B[21] , otemp[500]

;

/*************** *********************************************************

* >> Entry point from LWB — must be first function defined in file << *

************************************************************************/

uf test( action, inA, inB, inC, inD, outX, outY, debug )

int *action, *inA, *inB, *inC, *inD, outX, outY, *debug;

{

int status;
dx = *debug;
switch ( *action

{
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case SETUPCMD: status = ufsetup( *inA, outX ); break;

case RUNCMD: status = ufrun( *inA, outX ); break;
case STOPCMD: status = ufstop( *inA, outX ); break;

case MENUCMD: status = ufmenu( *inA ); break;

case DROPCMD: status = ufdropO ; break;

default: break;

}

return ( status )

;

}

ufsetup( in, out )

int in, out;

{

int i

;

/* set up menu label and initial value */

if ( !lwblabelmenu( 1, "Sample Rate" ) ) return( );

if ( !lwbupdatemenu( 1, "%d", rate) ) return( );

if (rate=228)
for(i=0; i < 21; i++) B[i] = b_228[i];

if (rate=456)
for(i=0; i < 21; i++) B[i] =b_456[i];

/* get dimensionality and size of input message data */

lwbgetparam( in, 0, LWBMSGDIM, &dimension );

if ( dx ) printf( "dimension=%d\n" , dimension );

lwbgetparam( in, 0, LWBMSGSIZES, sizes );

if ( dx ) printf( "sizes=%d,%d,%d\n" , sizes [0], sizes [1], sizes [2] );

if ( dimension = 2 )

count = sizes [0] * sizes [1];

else if ( dimension = 1 )

count = sizes [0]

;

if ( dx ) printf( "count=%d\n" , count );

/* check input data type */

lwbgetparam( in, 0, LWBMSGTYPE, &itype );

if ( dx ) printf( "itype=%d\n", itype );

if ( itype != 5 )

{

lwberror( ERROR, "Input message data type must be float" )

return ( )

;

}

/* create a new message for output data */

if ( !lwbnewmsg( &omsg ) ) return( );

/* initialize message */

if ( !lwbcopymsg( in, omsg ) ) return( );

if ( ! lwbsamerange ( in, omsg ) ) return ( );

if ( ! lwbsamedomain( in, omsg ) ) return( );

/* create a data buffer for output message */

if ( !lwbnewbuf( omsg ) ) return( );

if ( ! lwbgetdatbuf ( omsg, &odata ) ) return( )

/* send message on its way and release the input */

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;
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}

/******** ***************** py^ ****************x**********x************/

ufrun( in, out )

int in, out;

{

register int i, j, k;

/* sanity check */

if ( ! in !! !omsg ) return ( );

if ( !lwbgetparam( omsg, 0, LWBMSGLINKS, &links ) ) return( );

if ( links > )

{

lwbunget ( in )

;

return( 1 )

;

}

if ( ! lwbgetdatbuf ( in, &idata ) ) return( );
/**** PROCESS THE DATA ***/

for ( i = 0; i < 20; i++) /* process first 20 data points in buffer
V

{

otemp[i]=0.0; /* initialize otemp[i] */

for(j=0; j < i+1; j++)
otemp[i] = otemp[i]+B[j] * (double) idata[i-j]

;

for(j=i+l; j < 21 ; j++)

otemp[i] = otemp[i]+B[j] * stor [20-j+i]

;

odata[i] = (float) (otempfi])

;

}

for ( i = 20; i < count; i++) /* process remainder of buffer */

{

otemp[i]=0.0; /* initialize otemp[i] */

for(j=0; j < 21; j++)

otemp[i] = otemp[i]+B[j] * (double) idata[i-j]

;

odata[i] = (float) (otemp[i])

;

}

for ( i = 0; i < 20; i++) /* store values for next buffer */

stor[i] = (double) idata[count-20+i]

;

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;

}

/*********************** sxoP it***********************************

ufstop( in, out )

int in, out;

{

if ( Sin
!

! lout ) return( );

lwbwrite( omsg, out )

;

lwbrelease( in )

;

return ( 1 )

;

}

*********************** menjj *********»*************************/

ufmenu( key )

int key;
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{

int i

;

if ( key = 1 )

{

lwbgetint( "Enter Sample Rate(228 or 456)", 228, 456, &rate)

;

if ( !lwbupdatemenu( 1, "%d" , rate) ) return( );

}

if (rate=228)
for(i=0; i < 21; i++) B[i] = b_228[i];

if (rate=456)
for(i=0; i < 21; i++) B[i] = b_456[i];

return ( 1 )

;

}

/t ************************* DROP *********************************/

ufdropO
{

if ( !lwbfreemsg( &omsg ) ) return( );

return ( 1 )

;

}
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LOPASS.c
This is em implementation of a 20 order lopass filter whose coefficients
are produced by matlab "firl" function.

static char SccsID[] = "@(#)uf test .c8.

1

(MASSCOMP) 2/5/90";
#include "lwbufunc.h"
#include "errors.

h"

/* input and output data pointers */

float *idata, *odata;
int omsg=0, links=0, state=0, itype=0, otype=LWBFLOAT, dimension=0,

sizes [3]={0, 0,0} , count=0, rate=228, dx=0;
double b_228[21] = {-5.51905550574465e-04, 7. 85822093 157633e-04,

4 . 1 8562857927650e-03

,

1.1 8776604 1 47200e-02

,

2 . 545200475501 61 e-02

,

4.51 129392503578e-02

,

6. 929225487645 14e-02, 9.47857101643358e-02,
1 . 1 74 1 3 1 8500 1 872e-0 1

,

1 . 3303 1 630503429e-0 1

,

1 .38608237639420e-01

,

1 .33031630503429e-01

,

1 . 17413185001872e-01

,

9.47857101643358e-02,
6 . 929225487645 1 4e-02

,

4.511 29392503578e-02

,

2. 545200475501 61 e-02, 1 . 18776604147200e-02,
4 . 1 8562857927650e-03

,

7 . 85822093 1 57633e-04

,

-5.51 905550574465e-04}
b_456[21] = { 5.02260174274603e-03, 7. 15115484736450e-03,

1 . 28 1 3237 1 720883e-02

,

2 . 22206445774868e-02

,

3 . 4970 1 1 9546654 1 e-02

,

5 . 00555223943375e-02

,

6.59856590758503e-02, 8.09913198417360e-02,
9.32883970105506e-02, 1 .01352993037039e-01

,

1 .04161357873986e-01

,

1 .01352993037039e-01

,

9 . 32883970 1 05506e-02

,

8 . 099 1 3 1 984 1 7360e-02

,

6 . 59856590758504e-02

,

5 . 00555223943375e-02

,

3 . 49701 1 9546654 1 e-02

,

2 . 22206445774868e-02

,

1.281 3237 1720883e-02, 7. 151 15484736450e-03,
5.02260174274603e-03}

stor [20] ={1,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0},
B[21] , otemp[500]

;

* >> Entry point from LWB — must be first function defined in file << *

l.*.*i.t**.*.l*.tt**%tt**t**.ttt*ttt.t*******.*ti.t****t it************************

uf test( action, inA, inB, inC, inD, outX, outY, debug )

int *action, *inA, *inB, *inC, *inD, outX, outY, *debug;

{

int status;
dx = *debug;
switch ( *action )

{

case SETUPCMD: status = ufsetup( *inA, outX ); break;
case RUNCMI): status = ufrun( *inA, outX ); break;
case STOPCMD: status = ufstop( *inA, outX ); break;
case MENLJCMD: status = ufmenu( *inA ); break;
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case DROPCMD: status = ufdropO ; break;

default: break;

}

return( status )

;

}

ufsetup( in, out )

int in, out;

{

int i;

/* set up menu label and initial value */

if ( !lwblabelmenu( 1, "Sample Rate" ) ) return( );

if ( !lwbupdatemenu( 1, "%d", rate) ) return( );

if (rate=228)
for(i=0; i < 21; i++) B[i] =b_228[i];

if (rate=456)
for(i=0; i < 21; i++) B[i] =b_456[i];

/* get dimensionality and size of input message data */

lwbgetparam( in, 0, LWBMSGDIM, Adimension );

if ( dx ) printf( "dimension=%d\n" , dimension );

lwbgetparam( in, 0, LWBMSGSIZES, sizes );

if ( dx ) printf( "sizes=%d,%d,%d\n" , sizes [0], sizes[l], sizes[2] );

if ( dimension = 2 ) count = sizes [0] * sizes [1];

else if ( dimension = 1 )count = sizes [0];

if ( dx ) printf( "count=%d\n" , count );

/* check input data type */

lwbgetparam( in, 0, LWBMSGTYPE, &itype );

if ( dx ) printf( "itype=%d\n" , itype );

if ( itype != 5 )

{

lwberror( ERROR, "Input message data type must be float" )

;

return( )

;

}

/* create a new message for output data */

if ( !lwbnewmsg( &omsg ) ) return( );

/* initialize message */

if ( !lwbcopymsg( in, omsg ) ) return( );

if ( ! lwbsamerange( in, omsg ) ) return( );

if ( ! lwbsamedomain( in, omsg ) ) return( );

/* create a data buffer for output message */

if ( !lwbnewbuf( omsg ) ) return( );

if ( ! lwbgetdatbuf ( omsg, &odata ) ) return( );

/* send message on its way and release the input */

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;

}
/ft*********************** kun ****************************** t ********* /

ufrun( in, out )

int in, out;

{

register int i, j, k;
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/* sanity check */

if ( !in !| !omsg ) return( );

if ( !lwbgetparam( omsg, 0, LWBMSGLINKS, &links ) ) return( );

if ( links > )

{

lwbunget( in )

;

return ( 1 )

;

}

if ( ! lwbgetdatbuf ( in, &idata ) ) return( );
/**** PROCESS THE DATA ***/

for ( i = 0; i < 20; i++) /* process first 20 data points in buffer

V
{

otemp[i]=0.0; /* initialize otempfi] */

for(j=0; j < i+1; j++)

otemp[i] = otemp[i]+B[j] * (double) idata[i-j]

;

for(j=i+l; j < 21; j'++)

otemp[i] = otemp[i]+B[j] * stor [20-j+i]

;

odata[i] = (float) (otemp[i])

;

}

for ( i = 20; i < count; i++) /* process remainder of buffer */

{

otemp[i]=0.0; /* initialize otempfi] */

for(j=0; j < 21; j++)

otemp[i] = otemp[i]+B[j] * (double) idata[i-j]

;

odata[i] = (float) (otemp[i] )

;

}

for ( i = 0; i < 20; i++) /* store values for next buffer */

stor[i] = (double) i data [count-20+i]

;

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;

}

y
*********************** STOP ************************************/

ufstop( in, out )

int in, out;

{

if ( !in
! j

!out ) return( )

;

lwbwrite( omsg, out );

lwbrelease( in )

;

return ( 1 )

;

}
mittitiitutiutMiii MENU ***********************************/

ufmenu( key )

int key;

{

int i

;

if ( key = 1 )

{

lwbgetint( "Enter Sample Rate (228 or 456)", 228, 456, &rate)

;

if ( ! lwbupdatemenu( 1, "%d" , rate) ) return( );
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}

if (rate=228)
for(i=0; i < 21; i++) B[i] =b_228[i];

if (rate=456)
for(i=0; i < 21; i++) B[i] = b_456[i];

return( 1 )

;

}
/t ************************* DROP *********************************/

ufdropO
{

if ( !lwbfreemsg( «&omsg ) ) return( );

return ( 1 )

;

}
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FDEMODl.c
This program forms a user function in Lab Workbench to demodulate the

input data stream and send two output data streams at x and y consisting
to the real and imaginary parts, respectively. The user can select the

carrier and sample frequency via menu. Note: The data MUST be
demodulated at exactly the frequency of the received carrier frequency for
the sequence removal to function optimally.
***.*.**.*%****************************************************************/

static char SccsID[] = "@(#)uftest .c8. 1 (MASSCOMP) 2/5/90";

#include "lwbufunc.h"
#include "errors.

h"

#include <math.h>
/* input and output data pointers */

float *idata, *odataX, *odataY;
omsgY=0, linksX=0,

outsizes [3]

linksY=0, itype=0,

count=0,dx=0;

idimension=0,int omsgX=0,
odimension=l

,

insizes[3] = {0,0,0},
static n=0;

double fc=56.983, fs=228.0, theta=0.0, pi, doppler=0.0, doppler_bin=0.0,
snd_ve 1=1 500.0;

.J************************************************************ **********

* >> Entry point from LWB — must be first function defined in file << *

************************************************************************

uf test( action, inA, inB, inC, inD, outX, outY, debug )

*inD, outX, outY, *debug;
inA,

*inA, *inB, inC,int *action,

{

int status;
dx = *debug;
switch ( *action )

{

case SETUPCMD: status = ufsetup( *inA, outX, outY ); break;

case RUNCMD: status = ufrun( *inA, outX, outY ); break;

case STOPCMD: status = ufstop( *inA, outX, outY ); break;

case MENUCMI): status = ufmenu( *inA ); break;

case DROPCMD: status = ufdropQ ; break;
default: break;

}

return( status )

;

}
/****************************** SETUP *******************************/

ufsetup( in, outX, outY )

int in, outX, outY;

{

double asin()

;

n=0;
odimension=l

;

pi = 2 * asin(l .0)

;

/* set up menu label and initial value */

if ( !lwblabelmenu( 1, "Carrier Frequency" ) ) return( );

if ( !lwbupdatemenu( 1, "%f", fc ) ) return( );
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if

if

if

if

if

if

( !lwblabelmenu( 2, "Sample Frequency" ) ) return( );

!lwbupdatemenu( 2, "%f", fs ) ) return( );

!lwblabelmenu( 3, "Doppler (m/s) " ) ) return( );

!lwbupdatemenu( 3, "%f", doppler ) ) return( );

!lwblabelmenu( 4, "Sound Speed (m/s)" ) ) return( )

!lwbupdatemenu( 4, "%f", sndvel ) ) return( );

/* compute theta */

theta = 2 * pi * ( fc / f s )

;

if ( dx ) printf( "demod theta from setup =%f\n", theta );

/* compute doppler correction */

doppler_bin = pi

if ( dx ) printf( "demod doppler_bin from
doppler_bin )

;

/* check input messages
/* get dimensionality of input message data */

lwbgetparam( in, 0, LWBMSGDIM, &idimension );

if ( dx ) printf( "demod idimension=%d\n" , idimension );

/* get size of input message data */

lwbgetparam( in, 0, LWBMSGSIZES, insizes );

count = insizes [0];

if ( dx ) printf ( "demod count=%d\n", count );

/* check input data type */

lwbgetparam( in, 0, LWBMSGTYPE, &itype );

* doppler / (2 * snd_vel)

;

"demod doppler_binprintf

(

V

setup =%f\n"

,

if

if

{

}

dx ) printf ( "demod itype=%d\n", itype );

itype != 5 )

lwberror( ERROR,
return ( )

;

"Input message data type must be FLOAT" );

if (

/*

if

/* create a new message for output data */

!lwbnewmsg( &omsgX ) ) return( );

if ( !lwbnewmsg( &omsgY ) ) return( );

copy msg header info from input to output message */

( !lwbcopymsg( in, omsgX ) ) return( );

if ( !lwbcopymsg( in, omsgY ) ) return ( );

outsizes [0]=insizes [0]

;

out sizes [1]=1

;

outsizes [2]=0;

if ( !lwbsetparam( omsgX, 0, LWBMSGSIZES, outsizes ) ) return( )

if ( !lwbsetparam( omsgY, 0, LWBMSGSIZES, outsizes ) ) return( )

if ( !lwbsetparam( omsgX, 0, LWBMSGDIM, &odimension ) ) return ( )

if ( !lwbsetparam( omsgY, 0, LWBMSGDIM, &odimension ) ) return( )

/* set output range parameters */

if

if

if (

if

if

if

if (

if

( ! lwbnewrange( omsgX, 1 ) ) return ( );

( ! lwbnewrange( omsgY, 1 ) ) return( );

! lwbcopyrange ( in, omsgX ) ) return( );

( ! lwbcopyrange ( in, omsgY ) ) return( );

( ! lwbnewdomain( omsgX ) ) return( );

( ! lwbnewdomain( omsgY ) ) return( );

! lwbcopydomain ( in, omsgX ) ) return( );

( ! lwbcopydomain( in, omsgY ) ) return( );
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/* create a data buffer for output message */

if ( !lwbnewbuf( omsgX ) ) return( );

if ( !lwbnewbuf( omsgY ) ) return( );

if ( ! lwbgetdatbuf ( omsgX, &odataX ) ) return( );

if ( ! lwbgetdatbuf ( omsgY, AodataY ) ) return( );

lwbgetparam( omsgX, 0, LWBMSGDIM, Aodimension );

if ( dx ) printf( "demod odimension=%d\n", odimension );

/* send message on its way */

lwbwrite( omsgX, outX );

lwbwrite( omsgY, outY );

/* and release the input */

lwbrelease( in )

;

return ( 1 )

;

}

/t ************************* pujj **********************************/

ufrun( in, outX, outY )

int in, outX, outY;

{

register int i , j

;

static m;

double temp, cos(), sin()

;

/* sanity check */

if ( !in !! lorasgX I! ! omsgY ) return ( );

if ( !lwbgetparam( omsgX, 0, LWBMSGLINKS, AlinksX ) ) return( );

if ( !lwbgetparam( omsgY, 0, LWBMSGLINKS, &linksY ) ) return( );

if ( (linksX > 0) j |
(linksY > 0) )

{

lwbunget ( in )

;

return ( 1 )

;

}

if ( ! lwbgetdatbuf ( in, &idata ) ) return( );

for (i=0; i < count; i++)

{

temp = (double) idata[i]

;

odataX[i] = (float) (temp * cos(n*theta) )

;

odataY[i] = (float) (temp * sin(n*theta))

;

n=n+l

;

}

m-H-;

lwbwrite( omsgX, outX );

lwbwrite( omsgY, outY );

lwbrelease( in ) ;

return( 1 )

;

}
/it*************************** STOP *»*******************************/

ufstop( in, outX, outY )

int in, outX, outY;

{

if ( !in !! !outX || JoutY ) return( );

lwbwrite( omsgX, outX );

lwbwrite( omsgY, outY );
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lwbrelease( in )

;

return ( 1 )

;

}

/***t ************************ MENU *********************************/

ufmenu( key )

int key;

{

if ( key = 1 )

{

lwbgetdouble( "Enter Carrier Frequency", 1.0, 1000.0, &fc );

if ( !lwbupdatemenu( 1, "%f", (float)fc ) ) return( );

}

if ( key = 2 )

{

lwbgetdouble( "Enter Sample Frequency", 1.0, 1000.0, &fs

);

if ( !lwbupdatemenu( 2, "%f", (float)fs ) ) return( )

;

}

if ( key == 3 )

{

lwbgetdouble( "Enter Total Doppler (m/s) " ,-5.0,5.0,

&doppler)

;

if ( !lwbupdatemenu( 3, "%f", (f loat)doppler) ) return(

);

}

if ( key = 4 )

{

1 wbge tdoubl e
(

"

Ent er Sound Velocity
(m/s) ",1400.0, 1500. 0,&snd_vel);

if ( !lwbupdatemenu( 4, "%f", (f loat)snd_vel) ) return( );

}

theta = 2 * pi * ( f c / f s )

;

doppler_bin = pi * doppler / (2 * snd_vel)

;

return ( 1 )

;

}

/*t***************************** DROP *******************************/

ufdropO
{

if ( !lwbfreemsg( &omsgX ) ) return ( );

if ( !lwbfreemsg( &omsgY ) ) return( );

return ( 1 )

;

}
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^** *********************************************************************

FMETl.c
This is the sequence removal program which calls a subroutine developed by
Metzger to do the pulse compression. This program forms a user function
in Lab Workbench and allows menu selection of the sample freq. and law of
the code. Note that LWB doesn't let you enter octal so enter the decimal
law of the code and it will be converted and displayed as the octal law on
the menu.
*********************

t

************************************************* /

static char Sees ID [] = "«(#)uftest.c8.1 (MASSCOMP) 2/5/90";
#include "lwbufunc.h"
#include "errors.

h"

#include <malloc.h>
#include <stdio.h>
#include <math.h>
#define PI 3.1415926536

/* input and output data pointers */

float *indataA, *indataB, *outdata;
double iangle=45.0, angle, fact_r, fact_i

;

float slope,

baseline,
dfs=456,
dfc=57,
cycles_dig=5,
thresh fact=50;

/* sample freq (changable by menu) */

/* carrier freq */

/* carrier cycles per digit */

/* printout if output=thresh_fact*out_ave */

/* (global) variables
int law=351,

initial=l

,

counts,
dem_dig=20,
seq_len=l

,

degree,
outmsg=0,
links=0,
intypeA=0,
intypeB=0,
indimA=0,
indimB=0,
insizesA[3]

,

insizesB[3]

,

osizes [3] ,

gain,
conv_gain,
step=l

,

dx=0,
scram [2047]

,

unscram[2047]

,

dec data [83000]

(put these in a macrofile later) */

/* decimal law.. program converts to octal */

/* initial register load */

/* data points in one input buffer */

/* data points in one phase digit */

/* data points in one m-sequence. .computed */

/* number of registers in sequence generator */

/* LWB inputA data type (ie float=5) */

/* dimension of inputA buffer array */

/* array to hold input buffer size data */

/* value of least sig. bit of data */

/* decimation in time factor if used */

/* flag to execute debug statements */

/* array to hold scrambled input data */

/* array to hold unscrambled input data */

/* array to accumulate input data */
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seq_sum[80] ,

cbuf [4100];

static long k=0,
1=0,

mark_l

,

num_wrap

;

/* array to hold the 0th item of each sequence
passed to hadamard routine so bias can be
accumulated */

/* array to temporarily hold one seq_len of

data to be passed to hadamard routine */

/* data point counter */

/* buffer counter */

/* marks first excess data in k array */

/* number of exess data points in k array */

/*********** ****t************************************* *******************

* >> Entry point from LWB — must be first function defined in file << *

************************************************************************ /

uf test( action, inA, inB, inC, inD, outX, outY, debug )

int *action, *inA, *inB, *inC, *inD, outX, outY, *debug;

{

int status;
dx = *debug;
switch ( *action )

{

case SETUPCMD: status = ufsetup( *inA, *inB, outX ); break;
case RUNCMD: status = ufrun( *inA, *inB, outX ) ; break;
case STOPCMD: status = ufstop( *inA, *inB, outX ); break;
case MENUCMD: status = ufmenu( *inA, *inB ); break;
case DROPCMD: status = ufdropO ; break;
default: break;

}

return( status )

;

}

/»******************************* SETUP
ufsetup( inA, inB, out )

int inA, inB, out;

{

temp=law, rev_law=0, end_bit, i, j;

rev_initial, ss_contents, ms_contents;
chanhilim;

denomin, tanang, tansqr;

***************************

int

unsigned
float
double
initial=l

;

mark_l=0;
num_wrap=0

;

k=0;
1=0;

/*

/*
/*

/*

initialize excessdata marker */

initialize excess data counter */

initialize data counter */

initialize buffer counter */

/* menu label and initial value (note need 351 to get correct 537) */

if

if

if

if

if

if

lwblabelmenu( 1, "OCTAL LAW" ) ) return( );

lwbupdatemenu( 1, "%o", law ) ) return( );

lwblabelmenu( 2, "Initial Load" ) ) return( );

lwbupdatemenu( 2, "%d" , initial ) ) return( );

lwblabelmenu( 3, "Phase Angle" ) ) return( );

lwbupdatemenu( 3, "%f", iangle ) ) return( );
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if ( ! 1wblabelmenu ( 4, "Sample Freq" ) ) return( );

if ( !lwbupdatemenu( 4, "%f", dfs) ) return( );

/* compute demodulates per digit */

dem_dig = (int)((dfs / dfc)*cycles_dig)

;

if ( !lwblabelmenu( 5, "Threshold" ) ) return( );

if ( ! lwbupdatemenu( 5, "%f", thresh_fact) ) return( );

check input data */

/* get dimensionality and size of input message data */

lwbgetparam( inA, 0, LWBMSGDIM, &indimA );

lwbgetparam( inB, 0, LWBMSGDIM, &indimB );

lwbgetparam( inA, 0, LWBMSGSIZES, insizesA );

lwbgetparam( inB, 0, LWBMSGSIZES, insizesB );

if ( indimA = 2 ) counts = insizesA[0] * insizesA[l];
else if ( indimA = 1 )counts = insizesA[0];
/* check input data type */

lwbgetparam( inA, 0, LWBMSGTYPE, &intypeA );

if ( intypeA != 5 )

{

lwberror( ERROR, "Input A message data type must be FLOAT" );

return ( ) ;

}

lwbgetparam( inB, 0, LWBMSGTYPE, &intypeB );

if ( intypeB != 5 )

{

lwberror( ERROR, "Input B message data type must be FLOAT" );

return ( )

;

}

/* get gain, conv_gain, slope, and baseline data from msg header */

lwbgetparam( inA, 0, LWBCHANGAIN, &gain );

lwbgetparam( inA, 0, LWBCHANCONVGAIN, &conv_gain );

lwbgetparam( inA, 0, LWBCHANSLOPE , &slope );

lwbgetparam( inA, 0, LWBCHANBASELINE, &baseline );

compute sequence length (digits/seq.) and polynomial degree */

temp=law;
seq_len=l

;

rev_initial = 0;

degree = 0;

while (temp>>=l)

{

seq_len <<= 1

;

degree-H-;

}

compute scram and unscram arrays */

end_bit=seq_len—>>1

;

for (i=0; i < degree; i++)

{

rev_initial = (revinitial << 1) j
(initial&l) ;

initial >>= 1

;

}

ms contents = 1

;
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ss_contents = rev_initial;
for (i = 0; i < seq_len; i++)

{

scram [i] = ss_contents;
unscram[i] = ms_contents;
temp = sscontents & law;

ss_contents >>= 1;

do {if (temp &1) ss_contents~=end_bit;} while (temp >>=1);

if (ms_contents &1)

ms_contents = (ms_contents~law) >> 1;

else
ms_contents >>= 1;

}

/* compute dc bias removal factors to be used in run */

angle = iangle * PI / 180.0;

tanang = tan (angle)

;

tansqr = tanang * tanang;

denomin =
( (double) seq_l en * (double) seqL_l en + tansqr);

fact_r = (tansqr - (double) seq_l en) / denomin;
fact_i =

( (double) seq_l en + 1.0) * tanang / denomin;
/* prepare output message */

/* copy input general info to output message */

if ( !lwbnewmsg( &outmsg ) ) return( );

if ( !lwbcopymsg( inA, outmsg ) ) return( );

/* change output data size */

osizes[0]= seq_len * demdig;
osizes[l]= 1;

osizes [2]= 0;

lwbsetparam( outmsg, 0, LWBMSGSIZES, osizes )

;

/* copy input message range info to output message */

if ( ! lwbnewrange( outmsg, 1 ) ) return ( );

if ( ! lwbcopyrange ( inA, outmsg ) ) return( );

/* set new domain parameters */

if ( ! lwbnewdomain( outmsg ) ) return( );

if ( ! lwbcopydomain( inA, outmsg ) ) return( );

if (!lwbgetparam( outmsg, -1 , LWBCHANHILIM, &chanhilim)) return (0)

;

chanhilim *= seq_len;
if (!lwbsetparam( outmsg, -1 , LWBCHANHILIM, &chanhilim)) return (0)

;

lwbgetparam( outmsg, 0, LWBMSGSIZES, osizes );
/* create a data buffer for output message */

if ( !lwbnewbuf( outmsg ) ) return( );

if ( ! lwbgetdatbuf ( outmsg, &outdata ) ) return( );

/* send message on its way and release the input */

lwbwrite( outmsg, out );

lwbrelease( inA )

;

lwbrelease( inB )

;

return ( 1 )

;

}

/*t ********************************** PUN ****************************/

ufrun( inA, inB, out )
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int inA, inB, out;

{

int m,

hadamard()

,

*scram_ptr,
*unscram_ptr,
stp,

hz) V

/* index counter for stp */

/* hadamard transform routine */

pointer to scrambled data array */

pointer to unscrambled data array */

data items/digit since must do hadamard
correlation once for every data item
(ie 20*2 times for re & im parts @ 228

/*

/*

/*

i, /*

J. /*

cor_r

,

/*

cor i

,

/*

*ptr, /*

*data_ptr, /*

*move_ptr, /*

1st

general counter index */

general counter index */

real correction factor */

/* imag correction factor */

ptr to main data array (dec_data) */

ptr to current data item of digit
(ie 1st, or 2nd, etc) */

ptr to temp array of seq_len digits to be
passed to hadamard routine (ie all the

*sum_ptr; /'

or 2nd, etc data items of each digit */

ptr to seq_sum array which holds the 0th
item of each sequence passed to hadamard
to accumulate bias */

double xt , yt, sqrt(), r_data, i_data;
float out_sum, outave, pts_sum;
/* sanity check */

if ( ! inA |j !outmsg ) return( );

if ( !inB jj !outmsg ) return ( );

if ( !lwbgetparam( outmsg, 0, LWBMSGLINKS, &links ) ) return( );

if ( links > )

{

}

lwbunget ( inA )

;

lwbunget ( inB )

;

return( 1 )

;

if ( ! lwbgetdatbuf ( inA, &indataA ) ) return( );

if ( ! lwbgetdatbuf ( inB, &indataB ) ) return( );

/* enter demodulates into dec_data array one buffer at a time

(r0,i0, rl.il rl9 , i 19) until a full sequence is recieved
(dem_dig*seq_len*2 = 10200 data items for law537 g 228hz)

(r0,i0,...rl0199,il0199) */

if (k

sequence
< (seq_len * demdig * 2 /step)) /* ie if less than a full

has been recieved */

{

if ((numwrap >0) && (k=0)) /* if this is 1st buffer of a new seq

and there was a remainder from the

last sequence */

{

for ( i = 0; i < num_wrap; i += step)
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{

decdata [k++] = dec_data[mark_l++]

;

decdata [k++] = decdata [mark_l++]

;

}

}

for ( i = 0; i < counts; i += step)

{

dec_data [k++] = (long) (le7*indataA[i] ) ;
/* note: mult by number

to get large enough to

convert to long int */

dec_data [k++] = (long) (le7*indataB[i])

;

if(k = (seq_len * dem_dig * 2 / step))

{

mark_l = k; /* set marker for first data of next sequence */

num_wrap=((counts-i)-l) ;
/* number of data to wrap to next seq*/

}

}

}

if (k >= (seq_len * dem_dig * 2 /step)) /* after a full sequence
is received. . . */

{

ptr = dec_data; /* ptr to main data array (dec_data) */

sum_ptr = seq_sum; /* assign sum_ptr to seq_sum array */

move_ptr = cbuf; /* assign move_ptr to cbuf array */

stp = dem_dig * 2; /* define stp as data items per digit
(real & im) */

/* Take the nth data element of each digit in the m-sequence,
scramble them, perform hadamard transform, and then unscramble
them. Repeat for each successive element in the digits. */

for (m = 0; m < stp; m++)

{

*move_ptr =0; /* initial entry is zero */

data_ptr = ptr + m;

scram_ptr = scram;
for (i=0; i < seq_len; i++)

{

*(move_ptr + *scram_ptr++) = *data_ptr; /* get data values */

data_ptr += stp;

}

hadamard (degree , move_ptr)

;

*sum_ptr-H- = *move_ptr;
data_ptr = ptr + m;

unscram_ptr = unscram;
for (i=0; i < seq_len; i++)

{

*data_ptr = *(move_ptr + *unscram_ptr++) ;
/* put results back*/

data_ptr += stp;

}

}

for (i=0; i < dem_dig; i++) /* bias removal loop */

{
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xt = (double) seq_sum [i+i]

;

yt = (double) seq_sum [i+i+1]

;

cor_r = (long)(xt * fact_r - yt * fact_i)

;

cor_i = (long)(xt * fact_i + yt * fact_r)

;

data_ptr = ptr + i + i

;

for (j = 0; j < seq_len; j++)

{

*data_ptr++ -= cor_r;
*data_ptr— -= cor_i

;

data_ptr += (dem_dig << 1);

}

}

/* write to output buffer */

j=0;

for (i=0; i < seq_len * dem_dig; i++)

{

r_data = (double) (dec_data[j++] *le-7)

;

idata = (double) (dec_data[j++]*le-7)

;

outdata[i] = (float) ((r_data*r_data)+(i_data*i_data))

;

/* if ( dx ) printf( "decoder outdata[6]=%f\n" , outdata[6]) ;*/

out_sum += outdata[i];

}

pts_sum = (float) (seq_len * demdig)

;

out_ave = outsum / pts_sum;
if a point exceeds thresh_fact * out_ave, print buffer#, out_ave

seconds, and value
for (i=0; i < seq_len * dem_dig; i++)

{

if (outdata[i] > out_ave * thresh_fact)

{

printf( "buffer #%d \1);
printf ("ave=%4.4e v. ", out_ave)

;

printf("%4.3f sec. = %4.4e v.\n", i / dfs, outdata[i]);

}

}

/* write output data message */

lwbwrite( outmsg, out )

;

k = 0;

1=1+1;
}

/* release input message */

lwbrelease( inA )

;

lwbrelease( inB )

;

return ( 1 )

;

}

/ * HADAMARD FHT routine
#include <math.h>
hadamard(n, data)
int n, *data;

{
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int *ptrp, *ptrl, *ptr2, tempi, temp2;

unsigned int two_step, parts, part;
register unsigned int step, k;

step = (parts = 1) << n;

while ((step = (two_step = step) >> 1) != 0)

{

ptrp = data;
part = parts;
do

{

ptrl = ptrp;
ptrp += two_step;
k = step;

do

{

ptr2 = ptrl + step;

*ptrl = (tempi = *ptrl) + (temp2 = *ptr2)

;

*ptr2 = tempi - temp2;

ptrl++;

} while (—k);
} while (—part)

;

parts <<= 1;

}

return;

}

/********************* ***************** STOP *********************/

ufstop( inA, inB, out )

int inA, inB, out;

{

if ( !inA
j J

!out ) return( );

if ( !inB
j

| !out ) return( );

lwbwrite( outmsg, out );

lwbrelease( inA )

;

lwbrelease( inB )

;

return ( 1 )

;

}

/************** *********************** menu as**********************/

ufmenu( key )

int key;

{

if ( key = 1 )

{

lwbget int ( "Enter DECIMAL Law ( 1 1 , 351 , 827 , 1051 , 3047) ",11, 3047

,

&law )

;

if ( !lwbupdatemenu( 1, "%o", law ) ) return( );

}

if ( key = 2 )

{
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lwbgetint( "Enter Initial Register Load (not zero)", 1, 10000,
&initial )

;

if ( !lwbupdatemenu( 2, "%d", initial ) ) return( );

}

if ( key = 3 )

{

lwbgetdouble( "Enter Phase Angle", 0.0, 180.0, &iangle)

;

if ( ! lwbupdatemenu( 3, "%f", iangle ) ) return( );

}

if ( key = 4 )

{

lwbgetfloat ("Enter Sample Freq" , 1.0, 1000.0, &df s)

;

if ( !lwbupdatemenu( 4, "%f", dfs) ) return ( );

}

if ( key = 5 )

{

lwbgetfloat ("Enter threshold factor", 0.0, 100000.0,
&thresh_fact)

;

if ( ! lwbupdatemenu( 5, "%f", thresh_fact ) ) return( );

}

return ( 1 )

;

}

/*t*********t************************ DROP *****»*****************/

ufdropQ
{

if ( !lwbfreemsg( &outmsg ) ) return ( );

return( 1 )

;

}
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/*********************************************************************

SPEWRIT.C
This program takes output from the power spectrum module and finds the

highest peak, in a 5 knot doppler window. It writes the peak frequency and
amplitude (v /Hz) to a file. It also calculates the mean noise in a 24 Hz

band centered at 57 Hz and writes it to a file.
**********************************************************************/

static char SccsID[] = "@(#)uftest .c8. 1 (MASSCOMP) 2/5/90";
#include "lwbufunc.n"
#include "errors.

h"

#include <stdio.h>
FILE *outfilel, *outfile2, *outfile3;
char outfilenaml[15]="m", outf ilenam2[15]="f " , outf ilenam3[15]="n"

;

float *idata, thresh;
int itype=0, idimension=0, insizes [3]={0,0,0} , count=0, dx=0;
static int m;

* >> Entry point from LWB — must be first function defined in file << *

**************************************** **********************t* ********/

uf test( action, inA, inB, inC, inD, outX, outY, debug )

int *action, *inA, *inB, *inC, *inD, outX, outY, *debug;

{

int status;
dx = *debug;
switch ( *action )

{

case SETUPCMD: status = ufsetup( *inA ); break;
case RUNCMD: status = ufrun( *inA ) ; break;
case STOPCMD: status = ufstop( *inA ); break;
case MENUCMD: status = ufmenu( *inA ); break;
case DROPCMD: status = ufdropO ; break;
default: break;

}

return( status )

;

}

/************************% t**** SETUP ********************************/

ufsetup( in )

int in;

{

m=l

;

/* set up menu label and initial value */

if ( !lwblabelmenu( 1, "MAG filename" ) ) return( );

if ( !lwbupdatemenu( 1, "%s" , outfilenaml) ) return( );

if ( !lwblabelmenu( 2, "FREQ filename" ) ) return( );

if ( !lwbupdatemenu( 2, "Xs", outfilenam2) ) return( );

if ( !lwblabelmenu( 3, "NOISE filename" ) ) return( );

if ( !lwbupdatemenu( 3, "%s", outfilenam3) ) return( );

if ( !lwblabelmenu( 4, "Threshold" ) ) return( );

if ( !lwbupdatemenu( 4, "%f", thresh) ) return( );

/* check input messages */
/* get dimensionality of input message data */
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lwbgetparam( in, 0, LWBMSGDIM, &idimension );

if ( dx ) printf( "spewrit idimension=%d\n" , idimension );

/* get size of input message data */

lwbgetparam( in, 0, LWBMSGSIZES, insizes );

if (dx) printf ("demod insizes=%d,%d,%d\n" , insizes [0], insizes [1],

insizes [2] );

count = insizes [0];

if ( dx ) printf ( "spewrit count=%d\n" , count );

/* check input data type */

lwbgetparam( in, 0, LWBMSGTYPE, &itype );

if ( dx ) printf ( "demod itype=%d\n", itype );

if ( itype != 5 )

{

lwberror( ERROR, "Writer input data type must be FLOAT" );

return ( )

;

}

/* open output files */

if((outfilel = fopen(outfilenaml,"a+")) = NULL)

{

lwberror( ERROR, "Couldn't open the MAG file" );

return ( )

;

}

if((outfile2 = fopen(outf ilenam2, "a+")) = NULL)

{

lwberror( ERROR, "Couldn't open the FREQ file" );

return( )

;

}

if((outfile3 = fopen(outf ilenam3, "a+") ) = NULL)

{

lwberror( ERROR, "Couldn't open the NOISE file" );

return ( )

;

}

/* release the input */

lwbrelease( in )

;

return ( 1 )

;

}
/****t *********** ********** pjjN ************************************/

ufrun( in )

int in;

{

int i, bin;

float max =0.0, freq, noise=0.0, nave=0.0, snr=0.0;
if ( ! lwbgetdatbuf ( in, &idata ) ) return( );

/* process data */

for (i=8179; i < 8208; i++)

{

if(idata[i] > max) /* get max amplitude and it's freq in +/-

5kts band about 57.0 Hz */

{

max = idata[i]

;
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freq = (float) i * 0.0069585;
bin = i

;

}

}

for (i=6469; i < 9917; i++)

noise = noise + idata[i]; /* get noise power in 24 Hz passband */

nave=noise / 3447;
max = (max / 1167.40902475); /* convert from LWB to reality */

noise = (noise / 1167.40902475);
noise = noise - max;

snr = max / noise;
printf ("bin=%d %fhz m=%e n=%4.4f \n" , bin, freq, max, noise)

;

printf(" snr=%4.4f \snr);
fprintf (outfi lei, "%4.4e ",max);
fprintf(outfile2,"%4.4f ",freq);
fprintf (outfi le3,"%4.4e ", noise)

;

printf ("finished row number %d\n",m++);
lwbrelease( in )

;

return ( 1 )

;

}

/t **************************** STOP *********************************/

ufstop( in)

int in;

{

if ( ! in ) return ( )

;

lwbrelease( in ) ;

printf ("\n");

fprintf(outfilel,"\n");
fprintf(outfile2,"\n");
fprintf (outf ile3, "\n")

;

fclose(outf ilel)

;

fclose(outf ile2)

;

fclose(outf ile3)

;

printf ("number of rows =%d\n" ,m-l)

;

return( 1 )

;

}
/***********%* *************** menu **********************************/

ufmenu( key )

int key;

{

if ( key = 1 )

{

lwbgetstring( "Enter MAG Filename", 1, 15, outfi lenaml );

if ( ! lwbupdatemenu( 1, "%s", outfi lenaml) ) return( );

}

if ( key = 2 )

{

lwbgetstring( "Enter FREQ Filename", 1, 15, outfilenam2 );

if ( !lwbupdatemenu( 2, "%s", outfilenam2) ) return( );

}

if ( key = 3 )
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{

lwbgetstring( "Enter NOISE Filename", 1, 15, outfilenam3 );

if ( ! lwbupdatemenu( 3, "Xs", outf ilenam3) ) return( );

}

if ( key = 4 ) /* not currently used */

{

lwbgetfloat( "Enter Output Threshold", 1.0, 1000.0,

&thresh)

;

if ( !lwbupdatemenu( 3, "%f", thresh ) ) return( );

}

return ( 1 )

;

}
/******t ************************ DROP ft*******************************/

ufdropO
{

return ( 1 ) ;

}
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