
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1990-12

Rapid production of graphical user interfaces

King, David Maurice; Prevatt, Richard M., III
Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/28489

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NPS ARCHIVE
1990.12
KING, D.mval POSTGRADUATE SCHOOL

Monterey, California

THESIS

RAPID PRODUCTION OF
GRAPHICAL USER INTERFACES

by

David Maurice King

and

Richard Montgomery Prevatt HI

December 1990

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited.

UNCLASSIFIED
RITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
SECURITY CLASSIFICATION AUTHORITY 5. D ISTRIBU TION/AVAILABILITY OF REPOR1

Approved for public release;

distribution is unlimited

5. MOnITORiNg ORGANIZATION REPORT KIUM5ER(S)

!>ECUS5IFICATI0N/d0WNgRadING SCHEDULE

=RFORMiNg ORGANISATION REPORT nUMBER(S)

mfe OF PERFORMING ORGANISATION

Naval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

CS/ZK

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

kDDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000

JAME OF FUNDINS7SPONSORIN5
JRGANIZATION

8b. OFFICE SYMBOL
(if applicable)

PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ib. SOURCE OF FUNDING NUMBERSkDDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO.

PROJECT
NO.

TOJT
NO.

WORK UNIT
ACCESSION NO.

"ITLE (Include Security Classification)

RAPID PRODUCTION OF GRAPHICAL USER INTERFACES (unclassified)

PERSONAL AUTHORS
King, David Maurice, and Prevatt, Richard Montgomery, in
TYPE OF REPORT
Master's Thesis

15b. TIME COVERED
from 04/89 to 1 2/90

15. PAGE COUNT

'221

14. DATE OF REPORT (Year, Month, Day)

December 1990
SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the authors and do not reflect the

fficial policy or position of the Department of Defense or the United States Government.

COSATI CODES

ELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Graphics, Graphical User Interface, User Interface, Simulation, Computer

Aided Software Generation, DoD Software Development

ABSTRACT (Continue on reverse if necessary and identify by block number)

There is a growing demand within the military for effective, flexible and configurable command and control

kstations suiting the diversity of experience and working style that commanders bring to the decision making
cess. This need motivates development of real-time three-dimensional simulators at the Naval Postgraduate

iooI. Our work concentrates on the graphical user interface and presents a study of information display, interface

nan factors, and underlying implementation efficiency considerations so as to enhance real-time simulation

tems with minimal degradation in performance.

High quality interface software is costly in time and money, and it is essential for effective system performance.
• research culminated in the implementation of the NPS Panel Designer and ToolBox (NPSPD), an automated

elopment environment that enables design, implementation, modification, and testing of customized graphical

r interfaces. NPSPD includes automatic generation of compilable source code which can stand alone or be

:grated quickly into a developer's application. NPSPD was developed using Silicon Graphics Inc. IRIS 4D/70GT
4D/GTX workstations, relatively low-cost systems which are commercially available. Methodology used and

iniques developed provide a foundation applicable to any hardware capable of a windowing and graphics display.

MSTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED fj SAME AS RPT. fj DTIC USERS

21. ABSTRACT SECURITY CLASSI FICATION
UNCLASSIFIED

NAME OF RESPONSIBLE INDIVIDUAL

lichael J. Zyda
22c. OFFICE SYMBOL
CS/ZK

22b. TELEPHONE (Include Area Code)

(408) 646-2305

ORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

RAPED PRODUCTION OF
GRAPHICAL USER INTERFACES

by

David Maurice King

Lieutenant, United States Navy
B.S., North Dakota State University, 1984

and

Richard Montgomery Prevatt HI

Lieutenant Commander, United States Navy
B.S.E., Duke University, 1977

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1990

li

ABSTRACT

There is a growing demand within the military for effective, flexible and configurable

command and control workstations suiting the diversity of experience and working style

that commanders bring to the decision making process. This need motivates development

of real-time three-dimensional simulators at the Naval Postgraduate School. Our work

concentrates on the graphical user interface and presents a study of information display,

interface human factors, and underlying implementation efficiency considerations so as to

enhance real-time simulation systems with minimal degradation in performance.

High quality interface software is costly in time and money, and it is essential for

effective system performance. Our research culminated in the implementation of the NPS

Panel Designer and ToolBox (NPSPD), an automated development environment that

enables design, implementation, modification, and testing of customized graphical user

interfaces. NPSPD includes automatic generation of compilable source code which can

stand alone or be integrated quickly into a developer's application. NPSPD was developed

using Silicon Graphics Inc. IRIS 4D/70GT and 4D/GTX workstations, relatively low-cost

systems which are commercially available. Methodology used and techniques developed

provide a foundation applicable to any hardware capable of a windowing environment and

graphics display.

in

|N

I

TABLE OF CONTENTS

I. INTRODUCTION 1

A. USER INTERFACE DESIGN 2

B. USER INTERFACE DEVELOPMENT SYSTEMS 3

1. Conman . 3

2. MIKE 4

3. Sassafras 5

4. GROW 5

5. Layered User Interface 6

C. PREVIOUS NPS SIMULATOR INTERFACES 6

1. Menu Systems 7

2. Button and Dial Boxes 7

3. Colors 8

D. FOCUS -- NPS PANEL DESIGNER AND TOOLBOX 8

E. THESIS ORGANIZATION 8

H. HUMAN FACTORS AND USER INTERFACE DESIGN 10

A. DESIGN PRINCIPLES 1

1

1. Guidelines and References 11

2. The Development Process 1

1

3. Consistency, Flexibility and the User Model 12

4. Informative Feedback and Help 13

5. Dialogues that Yield Closure 14

6. Shortcuts for Expert Users 14

7. Internal Locus of Control 14

8. Reversal of Actions 15

9. Simple Error Handling 15

10. Minimal Short Term Memory Load 15

IV

B. ASPECTS OF THE USER INTERFACE 16

1. Data Entry 16

2. Data Display 17

3. Sequence Control 18

4. User Guidance 20

5. Data Protection 21

EI. NPSPD FUNCTIONAL MODEL 22

A. Model of the User Interface 22

B. Development Process 24

C. NPS Panel Designer 25

1. Palette and Actuators 26

2. Workspaces and Panels 27

D. Interaction with NPSPD 28

1. Mouse 28

a. Left-mouse 28

b. Middle-mouse 29

c. Right-mouse 29

2. Keyboard 29

3. Menu 30

4. Current Workspace and Actuator 30

5. Workspace Tools 31

6. Customization and Layout Tools 31

E. Addition, Deletion, Modification of Panels and Actuators 31

F. Intermediate File 32

G. Source Code Generation and Application Linking 33

H. Compilation 33

TV. NPSPD DESIGN TOOLS 35

A. Panel Manager 35

B. Actuator Manager 36

C. Color Manager 38

D. Intermediate File Manager 39

E. Source Code Manager 39

F. Information Manager 39

G. Help Manager 40

V. NPSPD TOOLBOX LIBRARY 41

A. Initialization Procedures 41

B. Creation Procedures 42

C. Insertion Procedures 43

D. Modification Procedures43

1. Set_attribute() 44

2. Set_detail() 44

3. Binding Modifications 44

E. Processing Cycle 45

F. Processing Techniques 45

G. Display Considerations 47

H. Efficiency Considerations 47

VI. NPSPD INTERMEDIATE FILE 49

A. INTERMEDIATE FILE LAYOUT 49

1. REGULARITY 50

2. SYNTAX 50

a. File Header and Footer 50

b. Panels 50

c. Actuators 52

d. Custom Colors 52

e. Comments ...52

B. PARSER 53

1. Lexical Analyzer 53

2. Reserved words 53

3. Numbers 54

4. Comments 54

VI

5. Errors 54

C. MODIFICATIONS TO VALUES 54

VTX NPSPD SOURCE CODE GENERATION 55

A. Code Manager , 55

B. Generated Code 56

1. User_Panel.c 56

2. User_Panel_fn.c 57

a. user_init_queue() 57

b. user_init_menu() 57

c. user_init_cursor() 57

d. user_init_overlay() 57

e. user_init_main() 57

f. user_process_queue() 57

g. user_4)rocess_menu() 57

h. user_display() 58

i. user_exit() 58

j. Entry Point Modification 58

3. User_Panel.h 58

C. Compiling and Linking 58

VIE. COMPLETE NPSPD APPLICATION 63

A. Building an Interface 63

1. Starting NPSPD 63

2. Creating the Panels 64

3. Customizing the Panels 64

4. Placing the Actuators 65

a. Viewing_Control Panel 65

b. Instrument_Panel 67

c. Button_Control Panel 70

d. Control_Surfaces Panel 72

e. Welcome Screen Panel 73

vu

B. Generating Code 74

C. Editing the Generated Source Code 75

1. Verifying the Panel and Actuator Creation Calls 75

2. Customizing the Code 75

D. Editing the Application Code 75

1. Header Files 75

2. Modifying the Main Program 76

a. Initialization 76

b. Main Control Loop 77

E. Linking the Application Code to the NPSPD Library 80

1. Including the ToolBox header file tbx.h 81

2. Compiling the Interface Code 81

F. Testing and Enhancing the Interface 82

LX. NPSPD LIMITATIONS AND FUTURE DIRECTIONS 84

A. Limitations 84

1. Interactive user specification of actuator detail 84

2. UNDO key for the last action 84

3. Complete help 84

4. Identify a grouping of actuators 84

5. Continued development of basic actuators 85

6. Smart Exit/Overwrite 85

7. Additional actuators partially implemented 85

B. Future Directions 85

1. Efficiency Considerations 85

2. NPSPD Design Considerations 86

3. Portability Considerations 86

X. CONCLUSIONS 87

viu

APPENDIX A

NPS PANEL DESIGNER AND TOOLBOX
USER'S GUIDE 89

APPENDIX B

NPS PANEL DESIGNER AND TOOLBOX
REFERENCE MANUAL 105

APPENDIX C

NPS PANEL DESIGNER AND TOOLBOX
RESERVED WORDS 190

APPENDIX D

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE GENERATED CODE 191

APPENDIX E

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE INTERMEDIATE FILE 203

LIST OF REFERENCES 204

INITIAL DISTRIBUTION LIST 206

IX

LIST OF FIGURES

Figure 3.1 Sample Interface Developed using NPSPD 23

Figure 3.2 Opening Layout of PD 25

Figure 3.3 NPSPD Palette 26

Figure 3.4 NPSPD Actuator Move/Resize Areas 32

Figure 3.5 NPSPD Source Code Compilation 34

Figure 4.1 Panel Manager 35

Figure 4.2 Actuator Manager 37

Figure 4.3 Color Manager 38

Figure 4.4 Information Manager 39

Figure 4.5 Help Manager 40

Figure 5.1 Creation and Modification Example 41

Figure 5.2 NPSPD Initialization Sequence 42

Figure 5.3 NPSPD Processing Functions 46

Figure 6.1 File Manager 49

Figure 6.2 Sample intermediate file 51

Figure 7.1 Code Manager 55

Figure 7.2 User_Panel.c main loop 56

Figure 7.3 User_Panel_fn.c before modifications 59

Figure 8.1 Initial Layout of panels for the AUV interface 65

Figure 8.2 Initial Viewing_Control panel 66

Figure 8.3 Final layout of the Viewing_Control panel 68

Figure 8.4 Instrument_Panel intermediate file (Meters) 69

Figure 8.5 Final Layout of the Instrument_Panel 71

Figure 8.6 Final layout of the Button_Control panel 72

Figure 8.7 Final layout of the Control_Surfaces panel 73

Figure °.8 Final layout of the Welcome_Screen panel 74

Figure 8.9 Modified Globals.h File 77

Figure 8.10 Original Main Control Loop for the AUV Simulator 78

Figure 8.11 Modified Main Control Loop 79

Figure 8.12 Update_Panel_Values Function 81

Figure 8.13 Modified Makefile for the AUV Simulator 82

Figure B.l Label Locations 124

Figure B.2 Value Locations 131

XI

LIST OF TABLES

Table I ToolBox Actuators 27

Table II NPSPD Keyboard Functions 29

Table III NPSPD Menu Selections 30

Table IV ToolBox Actuator Initialization Functions 43

xu

ACKNOWLEDGEMENTS

NPS Panel Designer and ToolBox was in all respects a team effort by both authors,

each contributing to the details of the others work. Lieutenant King developed the panel,

actuator, and color editing modules and designed the intermediate file format including the

lexical analyzer and parser central to saving and recalling panel design files. His major

focus was the development of the Panel Designer interface control, information prompts

and the help system. Lieutenant Commander Prevatt designed the data structures and

functions used in the Panel Designer and ToolBox, designed the attributes of panels and

actuators, implemented the processing and drawing routines, and developed the source

code generation module. He provided the overall program design including the format for

the generated source code and the means to link it to users' applications.

During our design and development of the NPS Panel Designer and ToolBox, we

depended on the support and advice ofmany individuals. Their assistance made this project

possible. We would like to thank the following people for their contributions.

David A. Tristram provided a significant and foundational contribution of the concepts

and techniques within the NASA Panel Library, without which this project would not have

been conceived. His work provided needed answers to tough design questions.

Lieutenant Commander John M. Yurchak provided his expertise in the tactical use of

fleet command and control stations, his amazing knowledge of the C programming

language and the UMX operating system, and his proven and effective approach to

software development. Many of the concepts implemented in this design tool have their

origin in discussions with John.

Commander Rachel Griffin provided her clear grasp of technical yet readable English

to keep this thesis reasonable and her thorough understanding of diverse programming

languages to broaden the design considerations.

Lieutenant Andy Anderson, Commander Tom Jurewicz, and Lieutenant John Lyon,

bravely chose to use the Panel Designer and ToolBox during its development and before its

completion as part of their thesis research and development. Their ALPHA testing of the

xiu

Designer software revealed many elusive bugs and identified improvements to overall

design that have been incorporated into the final version.

Rosaleen and Tina patiently endured and faithfully encouraged our work. Matthew

provide an often needed and refreshing diversion.

Most significantly, we thank our principle advisor, Dr. Michael Zyda, who provided

vision, critical advice and guidance during the year comprising this project's development.

xiv

L INTRODUCTION

The continually growing need within the military for effective, flexible and

configurable command and control workstations motivates research into real-time

information presentation. One fruitful area of this research explores development of real-

time three-dimensional simulators having advanced user interfaces. During the past six

years, several such simulators have been implemented on Silicon Graphics Inc. (SGI)

workstations at the Naval Postgraduate School (NPS), Monterey, California. NPS

simulator applications span a diversity of tasks including flight control, ground-based

vehicle control, and surface and subsurface ship control.

The complexity of the tactical environment and the three-dimensional and real-time

nature ofNPS simulators increases the need for advanced user interfaces. The effectiveness

of an entire system depends extensively on the interface, its ability to transform data into

information, and its ability to clearly and simply provide the user a means to control system

operation (Smith and Mosier, 1986, p.296). And as emphasized by Smith, information

rather than merely data must be presented.

When we examine the process of man-computer communication from the human
point of view, it is useful to make explicit a distinction which might be described as

contrasting "information" with "data". Used in this sense, information can be regarded

as the answer to a question, whereas data are the raw materials from which information

is extracted.

What the computer can actually provide the man are displays of data. What
information he is able to extract from those displays is indicated by his responses. How
effectively the data are processed, organized, and arranged prior to presentation will

determine how effectively he can and will extract the information he requires from his

display. Too frequently these two terms data and information are confused, and the

statement, "I need more information," is assumed to mean, "I want more symbols."

The reason for the statement, usually, is that the required information is not being

extracted from the data. Unless the confusion between data and information is

removed, attempts to increase information in a display are directed at obtaining more

data, and the trouble is exaggerated rather than relieved. (Smith, 1963, pp.296-297)

A. USER INTERFACE DESIGN

Deve^pment of a successful user interface for any application is an expensive and

time consuming process, and often the final product does not lend itself to easy

modification. One study estimates that user interface design comprises an average of 30 to

35 percent of the time used to produce operational software (Smith and Mosier, 1984). The

users' view of a system is "conditioned chiefly by experience with its interface. If the user

interface is unsatisfactory, the users' view of the system will be negative" (Smith and

Mosier, 1986, p.4).

Recent hardware and software developments significantly affect design and

implementation of user interface software. Powerful workstations with bitmapped screens

and pointing devices provide a sophisticated technological base for new interface designs.

Computer processor speeds support interactive applications that are increasingly

innovative. And the increasing complexity of application software mandates a clear

communication between user and computer (Fischer, 1989). But as Foley points out, "we

are only beginning to understand what constitutes a good user interface and the

management processes required to create such interfaces. ...there has been an insufficient

software foundation upon which to build the interfaces" (Foley, 1986).

To reduce the high cost of implementing user interfaces, many research efforts explore

development of improved tools for construction of user interfaces. The more advanced of

these tools are referred to as User Interface Management Systems (UIMSs) (Pfaff, 1985).

A UIMS implements some or all of the interface between the user and the application's

action routines. Input to a UIMS typically includes screen designs, menu organizations,

dialogue syntax, help files, and prompt messages. Interactive design tools are often

provided so that the designer can specify these user interface elements graphically (Foley,

1986). Hill introduces the designation User Interface Development System (UIDS) to more

accurately reflect the emphasis of current integrated environments in which to design,

implement and test user interface software (Hill, 1986).

Graphical interfaces can ease the process of learning, using, and understanding

applications, yet many applications do without a graphical interface because it is too

difficult to construct. Even with the aid of a sophisticated graphics package, interfaces are

typically closely tied to their applications and therefore difficult to modify or reuse in

different applications (Barth, 1986). Most user interfaces are implemented using traditional

programming languages. Object-oriented programming provides a different, more

powerful programming paradigm that enhances programmer productivity and encourages

reuse of existing software modules (Foley, 1986).

A direct-manipulation interface presents its user with a set of visual representations on

a graphical display for the internal objects and a repertoire of generic manipulations that

can be performed on any of them. The user has no command language to remember beyond

the standard set of manipulations and a continuous reminder on the display of the available

objects and their states. Direct manipulation represents a powerful model for designing user

interfaces (Jacob, 1986).

Traditional user interfaces are highly moded, that is the same input operations map to

several different meanings. A moded interface requires that the user remember (or the

system remind him) which mode the system is in at any given time and which different

commands or syntax rules apply. Modeless systems do not require this (Jacob 1986).

Direct-manipulation user interfaces appear to be modeless. Available objects are visible on

the screen and the user can apply any of a standard set of commands to any object The

system remains in the same "universal" or "top-level" mode.

B. USER INTERFACE DEVELOPMENT SYSTEMS

The following sections discuss several User Interface Development Systems that have

been implemented. Each demonstrates some of the principles that are important to user

interface development. Other commonly known graphical user interface systems in use

today include DECwindows, Motif, NewWave, NeXTStep, Open Look, Presentation

Manager, SunViews, ViewPoint, and X Window System. Most of these provide tools and/

or a development environment for designing and implementing graphical user interfaces.

1. Conman

Conman is a graphical Data-Flow Manager based on the UMX principle of

connecting simple tools that each do one thing well. After individual tools are started

separately, the data-flow manager connects the output of one to the input of another. The

Conman environment facilitates creation of a user interface that translates user actions into

higher level commands. It suggests an end to monolithic integrated applications in favor of

dis-integrated functional fragments with protocols for communication of objects between

fragments (Haeberli, 1987).

Conman runs under the Silicon Graphics Inc. IRIS window manager and presents a

graphical representation of the input and output terminals of each active process as the user

points to its window on the screen. The user completes a connection by selecting an output

terminal, then selecting an input terminal using the mouse. After the connection is made, a

displayed line connecting the output terminal to the input terminal indicates the connection

is made. Connections may be broken later if required.

2. MIKE

MIKE is Menu Interaction Kontrol Environment, a UIMS developed by Brigham

Young University Interactive Software Systems Laboratory. MIKE is implemented on a

DEC/Vaxstation II and DEC VT240 graphics terminal and has a complete graphical layout

facility within the interface editor for drawing the viewport and icon definitions. MIKE has

the capability to generate a working prototype of the user interface with appropriate entry

points for application specific procedures. The interface in development can be prototyped

before application implementations are complete.

The development of MIKE was guided by five major goals applicable to UIMSs:

• A UIMS should be based on a simple conceptual model for designing user interfaces

that is readily understood by both programmers and nonprogrammers alike.

• It should be possible to generate a working prototype of the user interface

immediately on the basis of the basic definition alone.

• It should be possible to refine and enhance the default-generated interface

continuously, using tools that are appropriate for the nonprogramming professionals

who become involved in the design process.

• Where possible, all device dependencies, including those of a particular interactive

style, should be isolated in the UIMS rather than in the dialogue description or the

application.

• User interfaces generated by the system should be extensible in the sense that new
commands and capabilities can be added without modifying the application code.

(Olsen, 1986)

3. Sassafras

Sassafras is a HDDS consisting of five modules: an icon builder and library, an

interaction module builder and library, a dialogue specification, an application interface

specification, and an interface assembler. The icon builder and library construct and

manage the symbols, icons and elements of user interface diagrams. The interaction

module builder and library implements an interaction technique. The dialogue specification

details the syntax of the language to be used between the user and the interface. The

application interface specification describes the semantics of the system as a set of

application routines implemented in some traditional programming language. The interface

assembler compiles the pieces of the user interface, linking the dialogue specification with

appropriate interaction techniques, icons, and application routines. Sassafras example

applications include a simple paint program and a computer aided room layout program

(Hill, 1986).

Sassafras supports an iterative design approach to user interface development.

Using this approach, a designer first roughs out a user interface design and develops a

prototype. On the basis of user performance using the prototype, the designer modifies the

interface and implements a new prototype. The design-prototype-evaluate cycle repeats

until the user interface is better than some standard specified by the designer. Hill points

out that despite recommendations for this approach, it is rarely used because of its high

cost. Time and money are usually exhausted during the first cycle (Hill, 1986).

4. GROW

GROW, the GRaphical Object Workbench, supports the development of graphical

user interfaces that are highly interactive (including direct manipulation and animation).

GROW simplifies the process of creating icons, linking the interface and application, and

adding interactivity and animation. Interfaces can be modified and reused in other

applications. Three techniques form the basis of GROW: object-based graphics with

taxonomic inheritance, inter-object relationships such as composition and graphical

dependency, and separation of the interface and application. Object-oriented programming

and separation of the interface and application facilitate specializing and reusing interfaces.

Messages defined by GROW and the application provide interaction between the interface

and the application program (Barth, 1986).

GROW is written in Interlisp-D, uses the object-oriented language Strobe and

runs on Xerox 1100 series workstations. Applications using a GROW graphical interface

include a data-flow program simulator, a Petri net editor and simulator, a program

configuration editor, a constructive geometry editor, and an analog computer simulator.

5. Layered User Interface

The Layered User Interface (LUI) is a framework for generating consistent

graphical interfaces composed of buttons, menus, sliders, and dialog windows. LUI is part

of an image processing environment used at the Northrop Research and Technology

Center. It is a series of programs coupled with a design methodology, rather than a single

program. LUI allows incremental addition of user interfaces to graphics tools (Wilson,

1987).

An LUI "button" is a process with a small window attached. Pressing the button

(with the mouse) causes a specific program to execute. Similar to a simple button, a "menu

button" presents a menu of programs rather than a single choice. A "slider" is a process that

translates the location of a slider bar into a UNIX command with a corresponding input

value. LUI provides the "glue" for connecting tools together in ways that create new, more

complex tools.

C. PREVIOUS NPS SIMULATOR INTERFACES

User interfaces developed to date for NPS 3D applications are similar in several ways,

including the use of a mouse to make selections from menus and the use of the SGI button

and dial box to control object selection and orientation. The menu facility provides pull-

down, roll-off style menus supplied as a standard feature of the SGI operating system. The

button and dial box controls are separate hardware devices that sit beside the display

monitor and are linked to the application using operating system calls. These devices are

optional equipment that must be purchased separately. Users that don't have this equipment

are forced to either obtain the hardware or abandon those applications that require it.

1. Menu Systems

Using the standard menus on the Silicon Graphics hardware has several

advantages, as well as a few disadvantages. The biggest advantage is ease of

implementation: designing and implementing a menu system is a simple exercise with most

of the effort spent designing the layout of the menu tree. Another advantage of the standard

menu system is the ease of modification: adding a selection involves only inserting the

selection into the appropriate location in the menu tree and specifying the associated action,

while an item to be deleted is simply removed.

The major disadvantage of the SGI supplied menu system exists because a

displayed menu receives the CPU as a dedicated resource, suspending all other operations.

Thus applications suspend processing when a choice is being made from a menu. This is

inconvenient at best, and unacceptable for real-time applications.

A second disadvantage is inherent to all pull-down menu systems: applications

that require a large number of menu choices force the designer to use "roll-off or

"walking" menus. These menus incorporate a hierarchical design using sub-menus that are

opened when a general menu item is selected. Each sub-menu opens to the right or left of

its parent menu, and more than one sub-menu is possible. The problem occurs because the

menu opens where the mouse is located at the time of the call (right mouse actuation),

except when the mouse is located close to the borders of a window. At the edge of a

window, the operating system will move the mouse away from the border far enough for

the menu to be displayed. If there isn't enough room for the roll-off menus to be normally

displayed, they will stack on top of one another rather than alongside the parent menu. The

inconsistency of menu location and layout distracts the user's attention away from the

application and violates basic user-interface guidelines.

2. Button and Dial Boxes

Button and dial boxes have other problems in addition to the question of

availability. Poor feedback from the dials and difficulty setting a precise value because of

the nature of their design commonly frustrate users. The mechanical rheostat device

routinely produces inconsistent values. The button box offers immediate feedback by way

of an LED display on each button, but as a mechanical device it is also subject to failure.

3. Colors

Another important feature of the interfaces for the NPS simulators is the use of

color. In all of the simulators the colors are hard-coded, that is they can not be changed

interactively by the user. This includes colors for the information and control panels, the

terrain and objects (airplanes, ships, etc.), and the menus. In most cases these colors would

never need to be changed. However the user interface should include the ability to

customize the colors of a minimal set of things, including the simulator's controls and the

information screens that define the look and feel of the application.

D. FOCUS -- NPS PANEL DESIGNER AND TOOLBOX

High quality interface software is costly in time and money, and it is essential for

effective system performance. Our work concentrates on the graphical user interface and

presents a study of information display, interface human factors, and underlying

implementation efficiency considerations so as to enhance real-time simulation systems

with minimal degradation in performance. Our research culminated in the implementation

of the NPS Panel Designer and ToolBox (NPSPD), an automated development

environment that enables design, implementation, modification, and testing of customized

graphical user interfaces. NPSPD includes automatic generation of compilable source code

which can stand alone or be integrated quickly into a developer's application. NPSPD was

developed using Silicon Graphics Inc. IRIS 4D/70GT and 4D/GTX workstations, relatively

low-cost systems which are commercially available. Methodology used and techniques

developed provide a foundation applicable to any hardware capable of a windowing

environment and graphics display.

E. THESIS ORGANIZATION

Chapter II presents human factors principles and guidelines indicated for successful

user interface design. Chapter HI presents the abstract functional model comprising

NPSPD, including a description of its components, capabilities and terminology. Chapter

IV presents the NPSPD design tools, including detailed descriptions of how they can be

most effectively utilized. Chapter V describes the NPSPD ToolBox library of actuators and

functions, including examples of programming level usage. Chapter VI describes the

NPSPD File Manager and the intermediate file with its format, flexibilities and

modification techniques. Chapter VII describes the NPSPD Code Generation feature with

suggested entry points and instructions for linking panel code to target applications.

Chapter VHI presents the development of a complete graphical user interface for an

existing application. Chapter DC presents capabilities and limitations of NPSPD with

suggestions for further research and possible system enhancement. Chapter X presents

conclusions. Appendix A presents the NPSPD User's Guide and Appendix B presents the

NPSPD Reference Manual. Appendix C lists reserved words for the NPSPD intermediate

file parser. Appendix D presents sample generated code. And Appendix E presents a

sample intermediate file.

NPS Panel Designer and ToolBox was in all respects a team effort by both authors,

each contributing to the details of the others work. Both authors wrote and reviewed all

aspects of this work. Lieutenant King developed the panel, actuator, and color editing

modules and designed the intermediate file format including the lexical analyzer and parser

central to saving and recalling panel design files. His major focus was the development of

the Panel Designer interface control, information prompts and the help system. His writing

focused in Chapters I, IV, VI, VH, Vm, DC, and X. Lieutenant Commander Prevatt

designed the data structures and functions used in the Panel Designer and ToolBox,

designed the attributes of panels and actuators, implemented the processing and drawing

routines, and developed the source code generation module. He provided the overall

program design including the format for the generated source code and the means to link it

to users' applications. His writing focused in Chapters I, II, IE, V, DC, and X.

n. HUMAN FACTORS AND USER INTERFACE DESIGN

"A part of the purpose of the user interface is to transform data into information

and present it in a fashion that makes it easily absorbed and used" (Smith, 1963,

p.297).

The user interface is the method used by an application program to interact with the

operator (Goodwin, 1989, p.viii). Its main function is communication. The user interface

must convey to the user all the instructions on the program's use, must allow the user to

control the program as naturally as possible, and must provide the program's results to the

user. If the interface gives unclear instructions, or complicates the control of the task, then

the communication, the interface, and ultimately the software are unsuccessful (Brown and

Cunningham, 1989, p.6). Users may compensate for a poor design with extra effort, and

probably no single user interface design flaw, in itself, will cause system failure. But there

is a limit to how well users can adapt to a poorly designed interface (Smith and Mosier,

1986, p.3).

Software is not the only significant factor influencing user performance. Other aspects

of user interface design are also important, including workstation design, physical display

characteristics, keyboard layout, environmental factors such as illumination and noise,

written documentation, and training (Smith and Mosier, 1986, p.2). It is useful to

distinguish between the physical and conceptual aspects of the interface. The hardware

(keyboard, display screen, mouse, etc.) affect the way in which the system behind the

interface may be used, but they do not affect its conceptual power. Conceptual limitations

arise because the machine representation of the world is minimal and rigid, and usually

only just sufficient to achieve the task in hand (Thimbleby, 1985, p. 168).

We will focus on design features of the user interface that are implemented via

software. "The 'design' in the program establishes the contents of processed data available

to the operator and the visual relationships among the data. It can also establish the

sequence of actions which the operator must use and the feedback to the operator

concerning those actions" (Parsons, 1970, p. 169). The developer must distinguish between

10

what the computer will do and what the human will and can do. He makes assumptions

about what the user will want to do, remembering that each user is an individual, with his

or her own talents, goals, knowledge and preferences (Fischer, 1989).

A. DESIGN PRINCIPLES

1. Guidelines and References

As formal human-computer interface theories are fully developed, researchers

propose applicable methods and principles of interface design (Fischer, 1989). Ramsey and

Atwood completed a comprehensive survey of user-computer interaction literature as early

as 1979. MIL-STD-1472D, revised in 1989, provides minimal guidance for the interface

developer in a relatively small section, "User-Computer Interface". Several organizations,

including those listed below, have developed helpful in-house guidelines for user interface

design.

• Guidelinesfor Designing User Interface Software, by MITRE Corporation for

Electronic Systems Division, U. S. Air Force.

• Spacelab Experiment Computer Application Software (ECAS) Display Design and
Command Usage Guidelines. NASA (National Aeronautics and Space

Administration).

• Human Factors in Office Automation. Life Office Management Association.

• Human Factors Engineering Standardsfor Information Processing Systems.

Lockheed Missiles and Space Company.

• Design guidelinesfor user transactions with battlefield automated systems:

Prototypefor a handbook. US Army Research Institute.

2. The Development Process

User interface guidelines vary depending on the application and the target users'

skill levels. Even the most careful design will require testing with actual users in order to

confirm the value of good features and discover what bad features may have been

overlooked (Smith and Mosier, 1986, p. 10). "Neither the Designer nor the User have a clear

idea of what is required until they have a working system" (Thimbleby, 1985, p. 169).

Testing is so essential for ensuring good design that some experts advocate early creation

of an operational prototype to evaluate interface design concepts interactively with users,

11

with iterative design changes to discover what works best (Gould, 1983). But prototyping

is no substitute for careful design. Prototyping will allow rapid change in a proposed

interface, but unless the initial design is reasonably good, prototyping may not produce a

usable final design (Smith and Mosier, 1986, p. 10).

We have seen the design-prototype-test-redesign principle practiced in current

NPS Computer Science research as thesis students use NPSPD to work out an initial user

interface design for their system, then evaluate it in the context of the application, and

subsequently return to NPSPD to redesign and improve the interface.

3. Consistency, Flexibility and the User Model

The interface should be consistent throughout the program supporting a single

model of the problem and its solution. The user needs a concise, memorable and accurate

maxim which conveniently expresses the rules of system interaction. Together with

training in explicit reasoning about interaction, the maxim provides a sure foundation on

which to build the user model. The designer then uses the same maxim (plus equivalent

reasoning processes) to constrain system behavior to be compatible with it (Thimbleby,

1985, p.171). One successful interface technique provides that 'what you see is what you

get'. This phrase specifies certain properties of a user interface which, with a little

explanation, may be used for the user to develop hypotheses about system behavior

(Thimbleby, 1985, p. 175).

Consistency includes two aspects—consistency in the mental model a user has of

an application, and consistency in the way the user controls the application (Brown and

Cunningham, 1989, p.9). Consistent sequences of actions should be required in similar

situations, identical terminology should be used in prompts, menus, and help screens, and

consistent commands should be employed throughout. Exceptions should be

comprehensible and limited in number (Shneiderman, 1987, p.61).

The interface must be flexible to work with a wide range of users without

sacrificing consistency (Brown and Cunningham, 1989, p.7). A flexible interface provides

multiple ways to accomplish the task and allows the user to choose aspects of the

interaction style which he or she prefers (e.g. menu versus function key selection). To some

12

extent, the user should be able to establish the interaction method and to customize the

interface.

4. Informative Feedback and Help

The interface must keep the user aware of what is going on in the task (Brown and

Cunningham, 1989, p.8). For each action there should be appropriate system feedback. For

frequent and minor actions the response can be very modest, and for infrequent and major

actions the response should be more substantial. Visual presentation of the objects of

interest provides a convenient environment for explicitly showing changes (Shneiderman,

1987, p.61). The computer should provide suitable cues to allow the user to select the next

action, e.g. a confirmation for important processing such as deleting an object or file. The

system must provide timely confirmation that desired actions are in progress or completed

(Fischer, 1989).

The user interface should include access to help. A well-constructed interface can

almost totally eliminate the need for an external manual. A multi-faceted help facility

appears to be best at providing incrementally more assistance as may be needed by expert

to novice users. Quality manuals, online help, and tutorials have a profound effect on users'

success and their impressions of most interactive systems (Shneiderman, 1987, p.382).

In an interactive computing situation, immediate feedback by the system is important

in establishing the user's confidence and satisfaction with the system. A message that

indicates that the system is still working on the problem or a signal that appears while the

system is processing the user's input provides the user with the necessary assurance that

everything is all right. Predictability of computer response is related to system response

time. Timely response can be critical in maintaining user orientation to the task. Some

experts argue that consistency of system response time may be more important in

preserving user orientation than the absolute value of the delay, even suggesting that

designers should delay fast responses deliberately in order to make them more consistent

with occasional slow responses (Engel, 1975, p. 13).

13

5. Dialogues that Yield Closure

Sequences of actions should be organized into sequences with a beginning,

middle, and end. The interface should provide informative feedback at the end of a group

of actions (closure). This feedback gives the operator the sense of completion or

accomplishment and suggests that he prepare for the next sequence of actions

(Shneiderman, 1987, p.61).

6. Shortcuts for Expert Users

Humans begin as novices and progress with experience to higher levels of user

classification (Fischer, 1989). As frequency of use increases, so does the desire to reduce

the number of interactions and increase the pace of interaction. Abbreviations, special keys,

hidden commands, and macro facilities assist frequent and knowledgeable users. Shorter

response times and faster display rates improve productivity and the feeling of system

responsiveness (Shneiderman, 1987, p.61). However, consistency of control is more

important than shortcuts. The user depends on consistent interface design to set practical

limits on what must be learned and remembered about the system (Smith and Mosier, 1986,

213).

Two forms of human memory affect user interface design. Recognition memory

connects command choices to displayed options, as in a menu. Recall memory enables

selection of an invisible command choice or option for the desired action when the user

already knows the commands (Brown and Cunningham, 1989, p.22). Experienced users are

more able to rely on recall memory as is needed for command systems. Recognition

memory is preferable for novice users.

7. Internal Locus of Control

Operators desire the sense that they are in charge of the system and that the system

responds to their actions. Surprising system actions, tedious sequences of data entries,

difficulty in obtaining desired information and inability to produce the desired action all

build anxiety and dissatisfaction. Users should be the initiators of actions rather than the

responders (Shneiderman, 1987, p.62). And the interface should keep the computer from

coming between the user and the work (Brown and Cunningham, 1989, p.7).

14

8. Reversal of Actions

As much as possible, actions should be reversible. This relieves user anxiety since

errors are easily correctable, and it encourages exploration of unfamiliar capabilities and

options (Shneiderman, 1987, p.62). A user may not know what he wants to do as he begins

his work. The interface can supply the freedom to experiment and then "UNDO" a mistake.

9. Simple Error Handling

An effective interface design ensures the user cannot make a serious error. If an

error is made, the system detects it and offers simple, comprehensible mechanisms for

handling the error. The user should not have to retype the entire command or entry, but only

repair the faulty part. Erroneous commands should leave the system state unchanged or

produce instructions about restoring the correct system state (Shneiderman, 1987, p.61).

Error messages should be clear, concise and without accusation in tone. Help when needed

should be available.

"The program must not crash" (Brown and Cunningham, 1989, p.8).

10. Minimal Short Term Memory Load

Humans can rapidly recognize approximately seven plus or minus two "chunks"

of information at a time and hold them in short-term memory for fifteen to thirty seconds.

The size of the chunk depends on familiarity with the information. This has been found to

be the case for a number of different scales, for example, color, size, brightness, loudness

and so on (Miller, 1956, pp.8 1-97).

The limitation of human information processing and recall in short-term memory

requires that interfaces be simple. Reduced window motion and sufficient training time for

codes, mnemonics and sequences of actions improve user performance. Online access to

command syntax forms, abbreviations, codes, and other information should be provided

(Shneiderman, 1987, p.62). Even an experienced user will spend time away from the

application. The interface can assist while he returns to his former level of expertise.

Another difficulty stems from confusion between functionality and ease of use. A

system becomes easier to use for a designer as more capability is added. But the designer

has a higher threshold for complexity than the user, especially when the user is learning.

15

The system becomes harder to use for the user the more that needs to be learned and the

more that can be done accidentally (Thimbleby, 1985, p. 169).

B. ASPECTS OF THE USER INTERFACE

1. Data Entry

Data entry refers to user actions involving input of data to a computer, and

computer responses to such inputs—selecting an object, designating a position, text entry,

actuator control, etc. On-line data entry provides the opportunity for immediate system

validation of user inputs, with timely feedback so that the user can correct errors. Another

important design concept is flexibility—the interface should adapt to the users needs. Pacing

of input should be dictated by the user rather than the system. General objectives for data

entry design are consistency of data entry transactions, minimizing input actions and

memory load on the user, ensuring compatibility of data entry with data display, and

providing flexible user control of data entry. Data entry guidelines as adapted from Smith

and Mosier follow (Smith and Mosier, 1986, pp.1 1-90).

• Data entry in context—depth values for submarines, altitudes for airplanes.

• Data entered only once—system should reference original input values.

• Entry via primary display—entered data should appear on primary display.

• Feedback during data entry—display feedback for all user actions.

• Fast response—system feedback should not exceed 0.2 sec (Engel and Granda, 1975)

• Single method for entering data—one consistently available method of data entry.

• Defined display areas for data entry—clear visual definition of entry fields.

• Consistent method for data change—display previous data allowing type-over/insert.

• Explicit Enter action—require user to explicitly accept entry for processing.

• Explicit Cancel action—allow user to explicitly cancel entry before processing.

• Feedback for completion of data entry—system acknowledgment of success or error.

• Distinctive cursor—movable cursor with distinctive visual features.

• Non-obscuring cursor—cursor should not obscure other data on display.

• Precise pointing—cursor includes precise designation for accurate position selection.

• Explicit activation—explicit action separate from cursor positioning to accept entry.

16

• Fast acknowledgment of entry-feedback should not exceed 0.2 sec.

• Large pointing area for option selection-allow area for pointing and selection to be

as large as consistently possible.

• Pointing—when graphic data entry involves pointing, design the user interface so

that actions for display control and sequence control are also accomplished by

pointing, i.e. single method of entry, single entry device.

2. Data Display

Data display refers to computer output of data to a user, and assimilation of

information from such outputs. Display is particularly critical in control tasks involved in

simulation. Avoid overfilling the screen. Twenty-five percent full is considered to be the

maximum above which the background "noise" reduces the ability of the user to locate and

recognize information (Reid, 1985, p.l 14). Use the upper right hand quadrant of the screen

for exceptional information. Danchak (1977) reports that users are more sensitive to

changes in the upper right hand quadrant than either of the left hand quadrants. Users are

least sensitive to changes in the lower right hand quadrant. Objectives of data display

include consistency of data display, efficiency of information assimilation by the user,

minimal memory load on user, compatibility of data display with data entry, and flexibility

for user control of data display. Data display guidelines as adapted from Smith and Mosier

follow (Smith and Mosier, 1986, pp.91-209).

• Display all and only necessary data—do not overload displays with extraneous data.

• Consistent display format-display data consistently from one screen to the next.

• User control of data display—allow users to control the amount, format and

complexity of displayed data as necessary to meet task requirements.

• Standard symbols—establish standard meanings for graphic symbols and use them
consistently within a system and among systems with the same users.

• Provide overview position of visible section—when user pans over extended display,

provide some graphic indicator of position of visible section within overall area.

• Aid distancejudgment — provide computer aids to distance judgment within graphic

display when accurate distance perception is important.

• Consistent format— adopt a consistent organization for the location of various

display features from one display to another.

• Distinctive display elements - make different elements of a display distinctive from

one another.

17

• Spacing to structure display - use blank space to structure a display. Do not over-

crowd data.

• Page crowded displays-when a display contains too much data, separate into

selectable pages.

• Related data on same page ~ keep functionally related data on the same display

page.

• Conservative use of color — employ color coding conservatively, using relatively

few colors and only to designate critical categories of displayed data. Limit the

number of colors to seven in the entire sequence of screens and choose color

combinations carefully.

• Tonal coding—where users must make relativejudgments for different colored areas

of a display, consider employing tonal codes (different shades of one color) rather

than spectral codes (different colors) (Phillips, 1982).

• Ordered color coding—where different areas of a map are coded by texture patterns

or tonal variation, order the assigned code values so that the darkest and lightest

shades correspond to the extreme values of the coded variable. Darkest blue for

deepest ocean depth and lightest blue for shallowest.

• Highlighting—if one area of map is of particular interest, highlight that area.

• Color coding to support task-color tailored to task speeds recognition.

• Color coding under user control—allow user to select and set color coding.

• Redundant color coding — make color coding redundant with some other display

feature such as symbology and do not code only by color.

• Unique assignment of color codes — when color coding is used, ensure that each

color represents only one category of displayed data consistently.

3. Sequence Control

Sequence control refers to user actions and computer logic that initiate, interrupt

or terminate transactions (Smith and Mosier, 1986, p.21 1). One of the critical determinants

of user satisfaction and acceptance of a computer system is the extent to which the user

feels in control of an interactive session. If users cannot control the direction and pace of

the interaction sequence, they are likely to feel frustrated, intimidated or threatened by the

computer system. Their productivity may suffer, or they may avoid using the system at all

(Brown, 1983, p.4-1).

A fundamental decision in user interface design is selection of the dialogue

types(s) that will be used to implement sequence control. And an important aspect of

18

dialogue choice is that different types of dialogue imply differences in system response

time for effective operation. Menu selection, function key selection, and graphic interaction

all require fast system response (Smith and Mosier, 1986, p.212). Menus have been

recommended for occasional and novice users as they reduce the amount of information the

user needs to remember. They also serve the useful function of limiting, to a well defined

set, the responses the user can make. Their disadvantage is that, particularly for the more

experienced user, they may be ungainly. As well as being frustrating this can lead to

problems navigating through complex systems (Reid, 1985, p.l 1 1).

Consistency of control is more important than shortcuts. The user depends on

consistent interface design to set practical limits on what must be learned and remembered

about the computer tools. Objectives of sequence control include consistency of control

actions, minimizing control actions by the user, minimizing memory load on the user,

ensuring compatibility with task requirements, and providing flexibility of control.

Sequence control guidelines as adapted from Smith and Mosier follow (Smith and Mosier,

1986, pp.21 1-290).

Minimize user actions — ensure that control actions are simple, particularly for real-

time tasks requiring fast user response.

Match control to user skill ~ simple step by step control for novice users and short-

cut or complex interaction for experienced users.

Compatibility with user expectations — ensure that the results of any control entry

are compatible with user expectations and do not confuse the user.

Supplementary verbal labels for icons ~ if icons are used to represent control actions

in menus, display a verbal label with each icon to help convey its intended meaning.

Direct manipulation ~ provide a capability for direct manipulation of objects as a

means of sequence control.

General list of control options — provide a general list of basic control options that

are always available to user to serve as a consistent foundation for system control.

Indicate appropriate control options ~ make available a list of options that are valid.

Prompt for control entry — guide control entries in sequence as needed by user.

Display most likely options first ~ except as dictated by consistency of control.

Appropriate response to all entries — design the interface to deal appropriately with

all possible control entries, correct and incorrect.

19

• Warn of potential data loss or irrevocable change — prompt user to explicitly

confirm actions that result in loss or change to data.

• Provide an UNDO function - allow easy reversal of actions.

4. User Guidance

User guidance refers to error messages, alarms, prompts and labels, as well as to

more formal instructional material provided to guide the user's interaction with the

computer. Goals are to permit efficient system use (quick and accurate use of full system

capabilities), with minimal memory load on the user and minimal time required to learn the

system. User guidance should be regarded as a pervasive and integral part of interface

design that contributes significantly to effective system operation. Good user guidance

results in faster task performance, fewer errors and greater user satisfaction. Goals of user

guidance include consistency of operational procedures, efficient use of full system

capabilities, minimal memory load on user, minimal learning time, and flexibility in

supporting different users (Smith and Mosier, 1986, p.291).

Much of the information commonly provided in paper documentation, such as

user manuals, should also be available on line (Brown 1983, p.6-1). Further, on-line

documentation offers a potential cost savings of 70 to 80 percent over more traditional

paper documentation (Limanowski, 1983). User guidance guidelines as adapted from

Smith and Mosier follow (Smith and Mosier, 1986, pp.291-336).

• Standard procedures — design standard procedures for similar, logically related

transactions.

• Explicit user actions ~ require user to take explicit actions to initiate processing.

• Affirmative statements ~ adopt affirmative rather than negative wording for user

guidance messages.

• Active voice — rather than passive voice in user guidance messages.

• Temporal sequence ~ preserve temporal sequence of steps in wording of user

guidance about that sequence.

• Consistent grammatical structure

• Flexible user guidance — provide means for experienced user to by-pass standard or

ler. Tthy guidance procedures.

20

• Informative error messages - when the system detects an error, display an error

message to the user stating what is wrong and what corrective action can be taken.

• Brief error messages — be clear, concise and informative. Extra words are not

helpful.

5. Data Protection

Data protection attempts to ensure the security of computer-processed data from

unauthorized access, from destructive user actions, and from computer failure. Goals of

data protection include effective data security, minimal entry of wrong data, minimal loss

of needed data, and minimal interference with information handling tasks. If data loss from

machine failure and data loss from faulty system operation are minimized through careful

design, then the most serious threat to data protection is the system user (Smith and Mosier,

1986,p.371).

21

HI. NPSPD FUNCTIONAL MODEL

NPS Panel Designer provides a powerful environment for rapid design, development

and testing of graphical user interfaces. NPSPD customization tools enable the developer

to tailor an interface to the exact needs and specifications of an application. This chapter

presents the abstract functional model comprising NPSPD including a description of its

components, capabilities and terminology. Chapters IV and V, close companions to this

chapter, describe the NPSPD Design Tools and the NPSPD ToolBox of actuators and

functions. The NPSPD User's Guide, Appendix A, and the NPSPD Reference Manual,

Appendix B, provide complete details of the structures, functions and usage procedures.

Although an object oriented language such as C++ was not available during the design

and implementation of the NPS Panel Designer and ToolBox, an object oriented approach

was used. Distinct abstract data types for the basic actuator and all detailed actuators are

defined. Object related functions provide access to panel and actuator attributes, details and

values.

A. Model of the User Interface

The Panel ToolBox provides customized windows called panels and pre-designed,

customizable, mouse-sensitive controls called actuators. A graphical user interface

implemented using NPSPD consists of one or more panels each having zero or more

actuators positioned and functionally connected according to application needs. NPSPD

itself was developed and finalized using earlier versions of NPSPD. Figure 3.1 presents an

example interface developed using NPSPD.

The ToolBox enables the user to control the interface via the mouse or optional user-

defined keyboard equivalent keys. As the user presses the left-mouse button with the

mouse-cursor inside the boundary of an actuator, the ToolBox records the actuator as

selected and active, and it records the host panel associated with that actuator as selected

and active. A panel can be selected even without the direct selection of one of its actuators

22

'» ihrrc*vnw/^^i ' ..'-. . ,.;,...,,,,... . .., ,.:...... ...,...:•:&

Figure 3.1 Sample Interface Developed using NPSPD

by pressing the left-mouse button with the mouse-cursor on the panel but outside of all of

the actuators. A panel and actuator remain selected until the left-mouse button is released.

Positioning the mouse-cursor while the left-mouse button is pressed controls the value

of an actuator depending on the nature and function of that actuator. The actuator's

displayed appearance reflects its state and value at all times. While the value or state is

changing, the ToolBox redraws the actuator. Once the panel or actuator is de-selected, the

ToolBox updates the display one final time and not again until the user initiates some other

control action.

NPSPD provides key-equivalents for activation of actuators. A key-equivalent is an

optional, user-defined key that is associated with an actuator. Pressing the defined key

causes the same processing as activation with the left-mouse button. Key-equivalents apply

primarily to buttons.

Any time a panel or an actuator is selected, the ToolBox selectively executes several

optional, user defined functions. Pointers provided within the data structures of each panel

and each actuator reference a processing function, a new value function, a left-mouse

button down function, an active function, and a left-mouse button up function. During each

interface processing cycle for a selected actuator, processfunc^ (if defined) performs

23

internal processing that must occur every cycle, newvalfunc computes the actuator state and

value based on the X and Y coordinates of the mouse-cursor relative to the actuator, and

downfunc, activefunc and upfunc connect user defined functionality to the actuator. The

NPSPD Reference Manual provides details of these functions and their uses.

B. Development Process

Development of an effective interface requires a thorough consideration of the

application to which it will be applied. Five basic phases make up the development process:

preliminary design of the interface content and layout, development of the interface in the

NPSPD environment, generation of compilable source code, modification of the interface

and application source code to include appropriate communication links, and finally,

compiling and linking the NPSPD interface code with the application code.

Once the application needs are defined, a careful layout sketch clarifies the user

interface and speeds the development process using NPSPD. Most interfaces are laid out in

screen relative units (pixels). For the SGI standard 19 inch display screen, 100 pixels span

approximately one inch. Quarter inch ruled graph paper is well suited to preliminary

graphical layout of the user interface panels.

After the initial analysis and design, NPSPD is executed and used to create the required

panels and actuators for an interface. The panels and actuators are customized as to

location, size, label, value display, colors, etc. At convenient times during the development,

the NPSPD interface layout can be saved to an intermediate file for later recall and

modification. We recommend saving the interface during development because this

provides backup versions in case the computer malfunctions or some of the design

modifications are deemed inappropriate and the developer decides to return to an earlier

version of the design.

Once the design is sufficiently implemented within NPSPD to warrant testing, code

generation produces compilable C-language source code in three files: User_panel.h,

User_panel.c and User_panel_fn.c. The developer introduces the interface modules into

*• In the text of this thesis, italicized text refers to procedures, variables or statements

from NPS Panel Designer and ToolBox source code.

24

the application or the application code into the interface control module or both. Chapter 7

presents a detailed discussion of the code generation and application linking.

The developer compiles and links the user interface and application. He tests the user

interface in the context of the application and feeds the results back into a redesign of the

interface. NPSPD may be used repeatedly to refine and expand the interface design. Most

initial NPSPD interface implementations can be produced in a matter of a few minutes.

Then time may be devoted to the details of the application and the fine points of the user

interface. Refinements and improvements are easily implemented.

C. NPS Panel Designer

The NPSPD environment, shown in Figure 3.2, consists of a Palette of actuators and

one or more workspace panels. The opening NPSPD copyright panel remains displayed

during the initialization sequence, approximately 3 seconds.

Figure 3.2 Opening Layout of PD

25

1. Palette and Actuators

The Palette, depicted in Figure 3.3, presents all of the actuators provided by the

Panel ToolBox for development of user interfaces. The representations for the Buttons,

Dials and Sliders are default versions of each of those actuators. All other actuators are

made available via labeled selection buttons.

rpg^wgjBggg5^^^^?^

Figure 3J NPSPD Palette

In the lower portion of the Palette, the Workspace Status Display presents the

name and size of the current workspace, the status of workspace auto-alignment and layout

grid size, the location in panel coordinates of the mouse cursor, and the location and size of

26

the current actuator on the current workspace. These fields provide continual readouts of

layout information useful to the developer.

ToolBox actuators include: momentary buttons, toggle buttons, horizontal and

vertical sliders, dials, menus, file-views, list-views and directory-views, custom frames,

outline boxes, type-in and type-out fields, meters and stripcharts. Table I presents a

complete list of the basic types of ToolBox actuators. The NPSPD Reference Manual

provides a detailed description of each actuator.

box meter

button scroll

cycle slider

dial slideroid

dirview stripchart

fileview title

frame typein

listview typeout

menu

Table I ToolBox Actuators

A basic actuator abstract data-type provides the foundation for all of the diverse

ToolBox actuators. Attributes are properties common to all actuators and are recorded in

the actuator base structure. Attributes include location and size, value, minimum and

maximum values allowed, label, value display format, etc. Each actuator adds unique

details to the basic attributes. Details are recorded in a detail structure specific to each

different actuator and allow for variation of appearance and function within types of

actuators. As an example, the details associated with a Dial include the shape (CIRCLE or

RECTANGLE), the number of major and minor tics on the Dial face, and the fine control

factor. The NPSPD Reference Manual presents a complete description of actuator

attributes.

2. Workspaces and Panels

Within NPSPD, a workspace is any one of the set of panels onto which the

developer positions actuators. It is the blank slate on which the developer designs the user

27

interface. Other panels such as the Palette, Actuator Editor, Color Editor, Panel Editor, etc.

are a part of NPSPD but are not available as workspaces.

When NPSPD is initiated, a single workspace panel is presented. Any number of

additional workspace panels may be created and modified to participate in the interface

under development. All workspaces may be cleared or deleted according to the developer's

desires. Each workspace panel exactly represents the user interface panel generated by the

code generator. Functionality must be included by the application developer.

D. Interaction with NPSPD

NPSPD supports three means of interaction control: direct manipulation using the

mouse, feature selection using the keyboard and feature selection using pop-up menus. The

mouse provides control of interface layout, actuator placement and actuator modification.

Function keys and selected special keys of the keyboard provide the primary means for

selection of design tools, editors and managers. Pop-up menus provide an alternate means

of selection.

1. Mouse

The mouse consists of the on-screen cursor and the mouse control unit with its

optical sensor, reference pad and three selection buttons. The mouse-cursor is displayed as

an arrow in the Palette and as a cross inside all workspace panels. "Left-mouse", "middle-

mouse" and "right-mouse" refer to the left, middle and right mouse buttons, respectively,

in conjunction with the mouse-cursor position. The location of the mouse determines the

current panel and current workspace.

a. Left-mouse

The left-mouse controls the operation of actuators (e.g., toggle buttons, slide

sliders, or set dials). Left-mouse down activates an actuator and its associated host panel,

or the panel only if the mouse-cursor is not on an actuator. Left-mouse up de-activates the

actuator and/or the associated panel. The left-mouse functions both within NPSPD and

within generated user interfaces.

28

b. Middle-mouse

The middle-mouse selects an actuator as current within an NPSPD workspace

or the Palette. Pressing and releasing the middle-mouse selects an actuator. Pressing and

holding the middle-mouse moves or re-sizes an actuator. The middle-mouse functions only

within the NPSPD environment and NOT within generated user interfaces.

c. Right-mouse

The right-mouse controls menu selections. Pressing the right-mouse within

any workspace pops up the NPSPD main menu of tools, editors and managers. Positioning

and releasing the right-mouse while the desired choice is highlighted activates NPSPD

processing associated with that menu choice. The right-mouse functions both within

NPSPD and within generated user interfaces.

2. Keyboard

NPSPD provides direct access to all of its tools, editors and managers via function

keys as described in Table II. Experienced developers speed the development process by

Fl On-line Help Manager
F2 Actuator Auto-alignment

F3 Layout Grid Display

F4 Layout Grid Size

F5 Create New Workspace
F6 Clear Current Workspace
F7 Delete Current Workspace
F8 Panel Editor

F9 Actuator Editor

F10 Color Editor

Fll Intermediate File Manager
F12 Source Code Generation Manager
Insert Copy the current workspace actuator if any

Delete Delete the current workspace actuator if any

Backspace Delete the current workspace actuator if any

Ctrl Fine control of actuator value

Esc Exit NPS Panel Designer

Table II NPSPD Keyboard Functions

29

use of the function keys rather than the pop-up menu system. NPSPD includes both in

keeping with the flexibility requirements of an effective user interfa e. The insert, delete

and backspace keys are active to provide direct actuator copy and aelete functions on a

workspace. The control key (Ctrl) modifies the behavior of some actuators to yield a fine

control operation. Escape provides direct exit from the Panel Designer.

3. Menu

NPSPD provides alternate access to design tools and features via pop-up menus.

Table III presents the NPSPD menu selection hierarchy. Upon pressing the right-mouse

button within any workspace, NPSPD presents the main menu. Sub-menus appear as the

developer makes a roll-off selection.

Main Menu Selections: Sub-menu Selections:

Layout Tools...

Auto Align On/Off

Layout Grid On/Off
Set Grid Size

Workspace Tools...

Create new Workspace
Clear Current Workspace
Delete Current Workspace

Panel Editor

Actuator Editor

Color Editor

File Manager
Code Generation

Quit

Table HI NPSPD Menu Selections

4. Current Workspace and Actuator

NPSPD denotes the workspace on which the mouse-cursor is located as the

current panel and the current workspace. Design tool and editor actions take effect in the

current workspace. If the mouse-cursor is on the Palette or outside of all of the panels, there

is no current panel or current workspace.

30

Each NPSPD panel may have one actuator selected and designated as the current

actuator. Selection via the middle-mouse button displays a white highlight outline around

the body of the actuator. NPSPD references the current actuator of the Palette when adding

new actuators to a workspace using the middle-mouse button.

5. Workspace Tools

NPSPD provides three tools for managing the workspace environment. They are

create a new workspace, clear an existing workspace and delete an existing workspace.

Workspace tools are available directly using function keys as described in Table II or via

the NPSPD pop-up menu using the right-mouse.

6. Customization and Layout Tools

NPSPD provides customization tools to support detailed design of panels and

actuators. These tools include the Panel Editor, Actuator Editor and Color Editor. Chapter

4 describes each tool. NPSPD also provides selectable auto-alignment of the actuators on

a workspace panel. When auto-alignment is on, NPSPD moves all actuator origins (lower

left corner) to the nearest layout grid intersection. New actuators also align to the grid. Grid

size is selectable from a sub-menu as 5, 10, 25, 50, 75 or 100 panel units. The layout grid

may be displayed independently of the auto-alignment feature.

E. Addition, Deletion, Modification of Panels and Actuators

A workspace may be positioned anywhere on the screen using the left-mouse on the

panel's window border. The panel is resized by pressing the left-mouse while the cursor is

on any one of the corner resize handles, then dragging the window outline to a desired

shape. If the border has been de-selected for a particular panel, that panel may not be moved

or resized. The Panel Editor discussed in Chapter IV enables modification of all of the panel

attributes. NPSPD workspace tools enable addition and deletion of workspace panels

providing a confirmation prompt before the action is finalized.

Actuators may be added to a workspace in two ways, from the Palette using the

middle-mouse or from the current workspace using the NPSPD copy tool. The left-mouse

button is used to select an actuator icon on the Palette as current. The mouse-cursor is

positioned on the workspace at the location for the origin of the new actuator and the

31

middle-mouse button is pressed and released. NPSPD creates and positions a new actuator

at the specified location. The origin of each actuator is its lower left corner. The alternate

way to add actuators to a workspace panel is to select an actuator on the workspace as

current using the left-mouse button. Pressing the Insert key or selecting the copy option

from the Layout Tools sub-menu causes NPSPD to create an exact duplicate of the current

actuator. The new actuator is positioned above and to the right of the original one.

Actuators may be moved and resized on a workspace by placing the mouse-cursor

on the actuator and holding the left-mouse button down. Figure 3.4 maps the selection areas

associated with each actuator body to the resulting NPSPD modification.

c B C

B A B

C B C

A - move the actuator.

B - resize by moving the selected side.

C - resize by moving the two selected sides.

Figure 3.4 NPSPD Actuator Move/Resize Areas

F. Intermediate File

The File Manager feature of the NPSPD, discussed in Chapter VI, enables the user to

save and recall workspace designs. NPSPD writes all of the pertinent information for a

workspace to an ASCII file called the intermediate file. This highly structured file enables

the user to store and recall uncompleted work, combine two or more separate designs, and

modify designs manually (outside of the NPSPD environment) by using any text-based

editor. Appendix E presents a sample intermediate file.

32

G. Source Code Generation and Application Linking

One of the most powerful features of the NPSPD is its ability to generate source code

that corresponds to an interface design. Using the Code Manager as described in Chapter

VII, the developer generates source code for the current workspace or all workspaces. The

code may then be modified to communicate with the application using clearly defined entry

points. The modified code is compiled and linked with the application, providing a custom

interface.

There are two methods of integrating an interface designed with the NPSPD into an

application. The first method uses the framework of the code generated by the NPSPD and

integrates the target application's control features using the NPSPD provided entry points.

We recommend this technique for users that are designing an application from the

beginning.

The second method involves integrating an interface designed with the NPSPD into an

existing application by discarding the bulk of the NPSPD code generated for the interface

and using only those functions necessary to initialize, control and draw it. This technique

integrates a graphical user interface into applications that either don't have one, or have one

that is considered inadequate. Chapter Vm presents a complete NPSPD application.

Appendix D presents sample code generated by the NPSPD.

H. Compilation

Figure 3.5 presents an example of the instructions required to compile the interface

source code produced by NPSPD. The Panel ToolBox library, npspanel.a, must be

available to the developer via an appropriate directory path as shown.

33

cc -o user_name User_Panel.c User_Panel_fn.c /nps_path/lib/npspanel.a

-I/nps_path/include -02 -align 16 -G -lc_s -lgl_s -lfm -lm

/nps_path must be defined as the proper path to the NPS Panel ToolBox.

/nps_path = /n/gravyl/work/zyda/npspanel in the current release.

The resulting file 'user_name' may be executed.

Figure 3.5 NPSPD Source Code Compilation

34

IV. NPSPD DESIGN TOOLS

A. Panel Manager

The Panel Manager enables the user to interactively customize workspace panels. This

tool is opened either by pressing the F8 key or selecting Panel Manager from the pull down

menu. Figure 4. 1 is an example of the Panel Manager window.

E} Partett&mger" \ * * / -

mmnmett n i nr i r < r mM***mmnM***m44^mtmM*mm**dmt^d*ik

Figure 4.1 Panel Manager

The first typein across the top of the window is used to attach a comment to the panel.

This comment will be saved in the intermediate file when the workspace is saved. The

35

second typein is used to change the title of the panel. Changes to this field will be reflected

in the title bar of the workspace that is being edited.

The next group of typeins on the left side of the window are used to set the location

and size of the panel. Changes to any of these parameters are immediately reflected in the

panel. Below the panel location inputs are six typeins that are used to modify the world

coordinates of the panel. These values only take effect if the panel is drawn in Screen

Relative mode. Across the bottom of the window are three typeins that enable the user to

set the panel's color table, scale factor and grid size.

On the right side of the window are nine sets of radio buttons. These buttons, which

can be either ON or OFF, are used to set various flags for the panel. Refer to the User's

Manual for a complete explanation of each flag and its meaning.

Finally in the bottom right corner of the window are two buttons. The Accept button is

used to make any changes to the panel's parameters permanent. The Cancel button is used

to undo any changes made to the panel in the current editing session and restore it to its

previous state. Pressing either of these buttons completes the panel editing session and

closes the window.

B. Actuator Manager

The Actuator Manager enables the user to interactively customize actuators. This tool

is opened either by pressing the F9 key or selecting Actuator Manager from the pull down

menu. Figure 4.2 is an example of the Actuator Manager window.

The first typein across the top of the window is the actuator comment field. Comments

entered in this typein will be saved in the actuator's permanent comment field in the

intermediate file when the actuator's host panel is saved. Below the comment typein is the

label typein. This field is used to specify the label for the actuator.

Directly below the label typein are two buttons. The first is marked Label and it is used

to control the location of the label string. The second is marked Value and it controls the

location of the value output string. The position of these strings is determined by selecting

one of the 16 position buttons direcdy below these two buttons. The 13 relative position

buttons surrounding the box are defined as default positions. If a fixed postion is desired,

either the Fixed button or the Fixed - Center button is selected. The fixed position is then

36

set by entering the appropriate x and y coordinates in either the Label Location typeins or

the Value Location typeins.

& A cwttar Manager >,,, , ' ;- . ' ";„--'./, * »* v f**ii*!* < \, -i a ,
' »<

Figure 4.2 Actuator Manager

The actuator's position and size are set with the Actuator Location typeins. The initial,

minimum and maximum values associated with the actuator are set with the appropriate

typeins in the lower left side of the window.

The format of the value output string is set by entering the appropriate Unix format

string in the Value Format typein. The font factor for the label and value strings is set with

the Label and Value Font Factor typeins, respectively. Finally, the color table for the

actuator is set with the Color Table typein.

The Accept button in the lower right side of Figure 4.2 is used to make any

modifications to the actuator permanent. The Cancel button is used to undo any changes

37

made to the actuator in the current editing session and restore it to its previous state.

Pressing either of these buttons completes the editing session and closes the window.

C. Color Manager

The Color Manager enables the user to interactively customize colors for actuators and

their host panels. This tool is opened either by pressing the F10 key or selecting Color

Manager from the pull down menu. Figure 4.3 is an example of the Color Manager window.

no*

Figure 4.3 Color Manager

The NPSPD allows users to define up to eight custom color tables. Within each color

table are 24 pre-defined panel and actuator colors. The first eight colors in the table are the

basic colors, such as black, white, red, etc. These colors can not be changed by the user.

The remaining 16 colors, defined as Panel Background, Actuator Body, etc. can be

modified using the Red, Green and Blue sliders. As these sliders are moved, the resulting

RGB color is displayed in the Color Box in the lower left corner of the window. The

38

corresponding color in the actuator or panel is also drawn, if applicable. When the desired

color is obtained, pressing the Store Current Color button will make the modification

permanent. This must be done for each modified color. Colors can be restored to their

default values at any time using the two Reset buttons as appropriate. The functionality of

the Accept and Cancel buttons is the same as the Actuator and Panel Managers.

D. Intermediate File Manager

The Intermediate File Manager tool enables the user to save and recall panel designs.

Refer to Chapter VI and Figure 6. 1 for a description of its use.

E. Source Code Manager

The Code Manager tool enables the user to generate source code that corresponds to

an interface design. Refer to Chapter VII and Figure 7.1 for a description of its use.

F. Information Manager

The Information Manager displays to the user various messages during the NPSPD

session. It is opened by the system when an action by the user either causes an error or can

not be completed. It is closed by pressing the Continue button. Figure 4.4 is an example of

the Information Manager window.

Z3 information Manager
lYiyiYViYlYiYiYiiYiYiYiYiY

i-nYnn-riYiYiWi-ii *,s*M*+*J**M*MMM***JJ**J**,*+s**. m**js****J;s*M.-**^,.-J--ss*j^.-.-.-s.-s,.-sss.

Figure 4.4 Information Manager

39

G. Help Manager

The Help Manager provides the user on-line NPSPD manual pages. This tool is opened

by pressing the Fl key. Figure 4.5 is an example of the Help Manager window.

The desired set of manual pages is selected by pressing the appropriate button. The

user can scroll through the text using either the up and down arrow buttons or the scroll bar

on the typeout. The Help Manager window is closed by either pressing the Fl key or the

Close key.

&:J^:MM4t&::
; W^^M^^^^^^^^^^M^^^M^^^MM^M.

Figure 4.5 Help Manager

40

V. NPSPD TOOLBOX LIBRARY

The NPSPD ToolBox provides a library of panel and actuator structures with the

access and control functions necessary to implement graphical user interfaces. The

ToolBox is designed so that default settings for the panels and actuators are sufficient to

build a basic interface. Modifications tailor the interface to the needs of the application.

This chapter describes the contents of the ToolBox including examples of programming

level use. The NPSPD Reference Manual provides a complete description of the Panel

ToolBox and its use. Figure 5.1 presents an example of the creation and modification of a

panel with a single Dial actuator.

{

Panel *p; /* Temporary panel pointer */

Actuator *a; I* Temporary actuator pointer */

p = create_panel 0;
set_panel_location(p, 20, 56);

set_panel_size(p, 720, 534);

set_attribute(p, visible, TRUE);
set_attribute(p, fixed, FALSE);
set_panel_title(p, "User_Panel");

set_attribute(p, color_table, 1);

append_panel(p, Panel_List);

a = create_actuator(dial);

set_actuator_location(a, 77.5, 1 19.5);

set_actuator_size(a, 75, 75, 2);

set_actuator_label(a, BOTTOM, 10, "Object Rotation Control");

set_attribute(a, activefunc, rotate_object);

set_detail(Dial, a, major_tics, 4);

set_detail(Dial, a, minorjics, 1);

set_detail(Dial, a, winds, 1);

set_detail(Dial, a, finefactor, 0.1);

insert_actuator(a, p);

Figure 5.1 Creation and Modification Example

A. Initialization Procedures

The Panel ToolBox requires several initialization steps to ensure proper operation.

Initialize_ToolBox() sets up the ToolBox environment, initializing global state variables,

41

panel management linked lists, the event queue, keyboard buffers, color tables, and fonts.

Panel and actuator creations and modifications follow. There is no initialization constraint

on either panels or actuators except that the host panel for each actuator must exist before

that actuator may be added. Figure 5.2 presents the initialization code generated by NPSPD.

void initialize main()

(

1* initialize panel environment */

initialize_ToolBoxO; f* initialize NPS Panel ToolBox */

initialize_panelsO; 1* Initialize the control panels */

initialize_actuatorsO; /* create the actuators */

initialize_colorsO; 1* initialize user defined colors */

1* initialize all other aspects of main program. */

user_init_queueO;

user_init_menu();

user_init_cursor();

user_init_overlayO;

1* initialize event graphics queue
1* initialize PanelDesigner menus
1* initialize special cursors

/* initialize overlay planes & color

*/

*/

*/

*/

1* User define initializations are called via user_init_main. */

user ink mainO;

}

1* user defined main initializations */

Figure 5.2 NPSPD Initialization Sequence

B. Creation Procedures

The Panel ToolBox provides two functions for creation of default panels and default

actuators. Create_panel(), which requires no arguments, allocates and initializes a panel

data structure. Create_actuator() t requires an initialization function as its single argument

and allocates an actuator basic data structure and unique detail structure as required by the

initialization function. Both create functions return a pointer to the new object. Table IV

presents a list of the initialization functions that may be used as an argument for

create actuator().

42

basic dirview scroll

box fileview slider

buffer_act frame vbar_slider

button list_act vstrip_slider

simple_button listview hbar_slider

toggle_button menu hstrip_slider

radio_button arc_meter slideroid

arrow_button filled_arc_meter stripchart

double_arrow_button dial_meter dual_stripchart

label_button filled_dial_meter hstripchart

cycle vbar_meter vstripchart

dial vstrip_meter title

square_dial hbar_meter typein

round_dial hstrip_meter typeout

Table IV ToolBox Actuator Initialization Functions

(J. Insertion Procedures

Once a panel is created, it must be inserted into Panel_List, the linked list of panels

maintained by the ToolBox. Insert_panel() places the new panel at the head of the list.

Append_panel() places the new panel at the tail of the list. The order of Panel_List

determines the order of panel processing and display. The linked list is traversed from head

to tail.

Likewise after an actuator is created, it must be attached to a panel or in some cases to

a parent actuator. Insert_actuator() and append_actuator() add the new actuator to a

panel's actuator list, at the head and tail respectively. Add_sub_actuator() inserts a

specified actuator into another actuator's sub-actuator list (sa). Sub-actuators are used by

several compound actuators including the Dirview, Fileview and Frame.

D. Modification Procedures

The Panel ToolBox provides a broad compliment of functions for modifying the

attributes and details of panels and actuators. The designer directly controls the appearance

and function of an interface by way of these modification functions. Modifications may be

made both before and after the panel or actuator is added to the interface.

Set_panel_location() and set_panel_size() position and size a panel.

Set_actuator_location() and set actuator_size() position and size an actuator.

43

Set_minvalue() and set_maxvalue() set limits on the value range for an actuator. The

NPSPD Reference Manual lists and discusses all of the ToolBox functions, their arguments

and their use. Two other general modification functions, set_attribute() and set_detail(),

are discussed below.

1. Set_attribute()

Each of the attributes maintained in a panel or an actuator base structure may be

modified using the set_attribute() function. As depicted in Figure 5. 1, the arguments for the

function call are the panel or actuator pointer, the attribute field name (e.g., visible and

activefunc), and the value to be assigned to that attribute. Although some attributes are

normally accessed and set by specialized functions such as set_actuator_size(), they may

also be set using the set_attribute() function. An exception applies to the string attributes,

title, label and valueJmt. These attributes must be set using the specialized functions

provided by the ToolBox, set_panel_title(), set_actuator_label() and set_yalueJormat().

2. Set_detail()

Set_detail() provides the means to modify actuator detail parameters. The function

call requires four arguments: the actuator detail data-type, the actuator pointer, the detail

field name (e.g., majorities and minor_tics), and the value to be assigned to that detail field.

A specialized string function, set_detail_string()t provides the means to set an actuator

detail string field (e.g.,the Typein buf field).

3. Binding Modifications

Modifications made to panels and actuators may affect several other aspects of the

object. Fix_panel() andfix_actuator() ensure that all inter-related aspects of the object are

adjusted after modifications are completed. Fix functions are specific to each panel and

actuator, and they are automatically executed by the ToolBox when any of the insertion

functions are called. Normally modifications are made immediately following creation and

prior to insertion, thus binding is automatically ensured by the ToolBox. However,

modifications may be needed at other points in an application program, possibly in

response to user actions. After changes to the attributes of a panel, fix_panel() should be

44

explicitly called, and after changes to the attributes or details of an actuator,fix_actuator(

)

should be called.

E. Processing Cycle

A graphics application is normally structured with a main program loop that repeatedly

calls several functions. These functions typically include input processing, followed by

interface display update, followed by applications calculations and display update. Figure

5.3 presents the main function and processing support functions generated by NPSPD and

supported by the Panel ToolBox.

Control of the interface consists of processing the mouse, keyboard and other device

inputs in process_program_queue() and processing the interface panels and actuators

based on those inputs in process_panels(). The ToolBox manages the necessary state

variables for mouse position, button action and keyboard action. Reset ToolBoxQO and

process_ToolBox_Q() manage the event queue with respect to the interface. Event tokens

are also passed to the application program via user_process_queue(). Process_panels()

manages the selected panel and selected actuator ensuring that actuator state and value

reflect the user mouse and keyboard inputs.

F. Processing Techniques

The Panel ToolBox supports optional, developer defined action functions that are

executed during user activation of a panel and/or actuator. Panels and actuators have three

pointers that may be set to reference the developer defined functions. These three attributes

are downfunc, activefunc and upfunc. If they are assigned application functions, downfunc

executes once when the left-mouse button transitions down, upfunc executes once when the

left-mouse button transitions up, and activefunc executes each time process_panels() is

called in the application main loop. These function references provide a powerful control

link for the interface developer.

The state of each panel and the state and value of each actuator is available to the

application program. State testing functions including is_active(), is_yisible(),

is_selectable() and test_flag() return a Boolean result. State flags may be altered under

45

mainO

{

initialize_mainO; /* initialize main program */

forever {
1* Panel main loop */

control_program(Panel_List);

draw_control_panels(Panel_List);

user_displayO;

1* process controls and queue

/* draw user control panels & acts

1* handle to call user functions

*/

*/

*/

i

void controLprogram

(

PanelList *panel list

)

1* Control program operation */

1* specified panel hst */

{

process_program_queueO;

process_panels(panel list);

}

1* Process the graphics event queue
1* Control panels based on user input

*/

*/

void process_program queue
r

1* Process graphics event queue */

l

short TOKdevice,
TOKvalue;

f* Graphics event queue device token
/* Graphics event queue token value

*/

*/

reset_ToolBox_QO; 1* Prepare ToolBox for input process */

while (qtestO) {
1* Process all tokens available */

TOKdevice = qread(&TOKvalue);
1* Standard ToolBox input processing

process_ToolBox_Q(Panel_List, TOKdevice, TOKvalue);
V

switch(TOKdevice) {
/* User Program specific Q processing V

case RIGHTMOUSE:
if (TOKvalue= DOWN

)

user_process_menuO;
break;

/* Right Mouse Controls Menus
1* on TransitionDown process menu
1* User defined menu processor

*/

*l

V

} /* end switch */

1* User defined queue function receives all TOKENs processed. */

user_process_queue(TOKdevice, TOKvalue);

} I* end while qtestO */

}

Figure 5.3 NPSPD Processing Functions

46

application control using the set_attribute() function or the more specific setjlagi) and

clear_flag() functions. Set_value() and get_value() modify and access an actuator's value.

Special effects may be produced by selectively controlling a panel's or actuator's state,

particularly the visible and selectable flags. Set_panel_invisible() and set_panel_visible()

provide the means to build an effective multi-panel interface.

G. Display Considerations

The Panel ToolBox manages the display of all interface panels and actuators. Drawing

occurs only when a change of state or value necessitates an update of the appearance.

Actuators are drawn in the reverse order of the host panel's actuator linked list. Thus if two

actuators overlap, the one inserted closest to the head of the panel's list is drawn on top.

The ToolBox provides eight modifiable color tables to support multi-color interface

designs. Each panel and actuator references one of the color tables as specified by the

colorjable attribute. Changing the colorjable index or directly modifying the color tables

using define_color_table() under application control can produce useful effects in the

interface.

H. Efficiency Considerations

The Panel ToolBox optimizes processing and drawing algorithms so as not to degrade

real-time applications. Panels and actuators each have their own set of specific variables

that allow them to be customized for a particular use. For example, panels can be designed

so that they are only visible when they are needed, saving screen space and CPU cycles.

Similarly actuators can be designed so that they are not selectable, effectively making them

output devices (e.g., a Dial, which is normally an input device, can be configured to display

the output of a function or operation).

A panel is re-drawn completely only when required by a move or re-size action. During

other processing and drawing cases, only those actuators which have been altered and those

which have been specifically designated for redraw are drawn. The ToolBox determines

visibility and need for redraw at high levels within its hierarchical program flow and

prevents excess low level processing when it is not required. The ToolBox processes only

47

the selected panel, if any. While processing panels, the selected actuator on each panel, if

any, and the actuators requiring automatic processing are processed.

48

VI. NPSPD INTERMEDIATE FILE

The File Manager feature of the NPSPD, as shown in Figure 6.1, enables the user to

save and recall workspace designs. This is done by writing all of the pertinent information

for a workspace to an ASCII file that we call the intermediate file. This highly structured

file enables the user to store and recall uncompleted work, combine two or more separate

designs, and modify designs manually (outside of the NPSPD environment) by using any

text-based editor.

Q m Manager jilt

Figure 6.1 File Manager

A. INTERMEDIATE FILE LAYOUT

The intermediate file contains all of the information necessary to re-create a

workspace(s) designed with the NPSPD. The basic layout of the file consists of panel

parameters followed by actuator parameters for each panel, with at least one panel structure

and zero or more actuator structures required as a minimum. The intermediate file also can

be used to save and recall customized color table information.

49

1. REGULARITY

The layout of the intermedia > file follows as closely as possible the structure of

the type definition, with basic parameters listed first followed by zero or more lines of type-

specific detail. Related parameters, such as location and size, are logically grouped together

to improve readability. All panels have the same basic information listed with no detail

necessary (panels have no type-specific detail). Actuators have the same basic information

and detail based on the type. A simple actuator type, such as a box, has very little detail,

while complex types, such as dials, have considerably more. The number of parameters

needed to accurately re-create a panel or actuator is smaller than the complete set as

specified in the type definition. This is because any of the variables in the type definitions

are related only to the editing environment and can be set with defaults when panels and

actuators are created.

2. SYNTAX

Figure 6.2 contains an example of an intermediate file produced by the NPSPD

that contains one workspace and two actuators. The language for NPSPD intermediate files

is case-insensitive, and white space is ignored.

a. File Header and Footer

The first line in the file is the reserved word header "Panel_Designer_File",

identifying the file as an NPSPD intermediate file. During a read operation, if this line is

not found by the parser, the file will be closed, the operation will be aborted and an

informative message will appear. The last line in the file contains the reserved word

"File_End". This signifies the end of the file.

b. Panels

Each panel saved to the intermediate file consists of a panel header containing

the reserved word "Panel" followed by the title of the workspace, the parameters for the

panel, zero or more actuator structures, and a panel footer consisting of the reserved word

"Panel_End". An NPSPD intermediate file can have one or more panels.

50

Panel_Designer_File

Panel Box_Dial

/C This is an example of an optional permanent comment line C/
/* panel x, y, w, h */ 1010 980 700
1* auto_align, grid_on, grid_size */ 25.0

1* visible, selectable, fixed, popable */ 1 100
/* border, screen_relative, zbuffer */ 1 10
1* wl, wr, wb, wt, wn, wf */ 0.0980.0 0.0 700.00.0 0.0

/* scale_factor, color_table */ 1.00

Actuator BOX
/* type, group_id, key_equivalent */ KM10
/* active, visible, selectable*/ 011
/* x, y, w, h, bw */ 469.5 208.5 85.0 25.0 0.0

/* color_table */

1* Mocation, label, label_font */ -13 "Box" 12.0

1* lx, ly, lw, lh, lbx, lby */ 24.2 1.7 36.6 21.64.8 5.8

/* v_location, value_fmt, value_font, val */ "%-+#4.2r 12.0 0.0

/* initval, minval, maxval */ 0.0 0.01.0

1* vx, vy, vw, vh, vbx, vby */ 21.2-27.642.6 21.64.8 5.8

/* line_width, frgnd_clr, bkgnd_clr */ 20-1

Actuator DIAL
1* type, group_id, key_equivalent */ 40 -23

/* active, visible, selectable*/ 01 1

/* x, y, w, h, bw */ 671.5 402.5 75.0 75.0 2.0

1* color_table */

/* Llocation, label, label_font */ 2 "Dial" 10.0

r be, ly, lw, lh, lbx, lby */ 22.5-24.0 30.0 18.04.0 5.0

/* v_location, value_fmt, value_font, val */ "%-+#4.2f 12.0 0.0

1* initval, minval, maxval */ 0.0 0.01.0

/* vx, vy, vw, vh, vbx, vby */ 16.2-27.642.6 21.64.8 5.8

/* mode, shape, r, major_tics, minor_tics */ 2 1 33.8 4

/* tl, tw, ml, mw */ 11.8 2.7 32.12.7

/* theta, winds, finefactor */ 0.01.00.1

Panel_End

Custom_Colors

File_End

Figure 6.2 Sample Intermediate File

51

The title for the panel must be a legal Unix file name. Following the title is an

optional permanent comment line. Next are six lines containing all of the information

needed to create a workspace. Following the panel information is the actuator data.

c. Actuators

Each actuator contains an actuator header and the parameters for the actuator.

The actuator header consists of the reserved word "Actuator" followed by a reserved word

identifying the actuator's basic type (Dial, Box, etc.). Next is another optional permanent

comment line followed by nine lines of information basic to all actuators, including size

and location, label string and location, and value location and format. Following this

information are a variable number of lines containing detailed information unique to each

type of actuator. For the first actuator in Figure 6.2, a Box, there is only one additional line.

For the second actuator, a Dial, five additional lines are needed because of the added

complexity.

d. Custom Colors

After the last line of the last actuator (in this example, the Dial) is a line

containing the reserved word "Custom_Colors". The File Manager window contains a

toggle button for saving and recalling custom colors (see Figure 6.1). If this option is

selected, any colors that are modified during the current NPSPD session will be written to

the intermediate file immediately after this line. When the file is read back in, the color

tables in the working environment of the NPSPD will be modified with these colors.

e. Comments

The File Manager generates the same standard comments each time a workspace

is saved. These standard C programming language comments desrcibe the parameters listed

on each line of the file, making editing easier. They are discarded by the parser when the

file is read. They can be modified and additional comments can be added anywhere in the

file, but they will be lost the next time the file is read and then saved. Permanent comments

that will be retained from session to session are allowed, but they are limited to one line in

length, they must be bracketed by the characters "/C — C/", and they must immediately

52

follow the title line for panels or actuators. The sample intermediate file in Figure 6.2

contains a permanent comment for the panel, but not for the actuators.

B. PARSER

A syntax-directed, recursive descent parser is used to read the intermediate file. The

parser reads and acts on tokens created by a lexical analyzer while moving through the file

recursively, following the syntax described above. It has a limited error analysis capability

in that if it encounters an unexpected token, it will immediately abort the read operation and

report to the user the general area of the problem. The parser currently has no error recovery

capabilities, and we recommend this be added in future revisions.

1. Lexical Analyzer

The lexical analyzer reads a line of the file at a time and breaks it down into blocks

of character strings. Blank lines, standard C programming language comments and white

space (tabs, spaces, carriage returns, line feeds, control characters) are discarded. Each

string is defined by a token identifier: GEN_ID for alpha-numeric strings,

T_DEdMAL_LITERAL for numbers, T_COMMENT_TEXT for permanent comments

and T_STR_LITERAL for alpha-numeric strings enclosed in double quotes. If an illegal

character is encountered, the token T_ERROR is generated internally, a warning message

is sent to the console, the string is discarded and the next string is read.

2. Reserved words

When a GEN_ID token is generated by the lexical analyzer, a function is called to

check if the string is a reserved word (file header, panel header, etc.). A very efficient hash

function that is an implementation of the reserved word table uses the first letter of the

string to enter an array holding all of the reserved words for the NPSPD. It then uses a

predefined offset to check if the string is among those strings starting with the same first

character. If the string matches a reserved word, its unique token identifier (T_FTLE_HDR,

T_PANEL_HDR, etc.) is returned, otherwise the general identifier GEN_ID is returned.

Appendix C lists reserved words for the NPSPD.

53

3. Numbers

In the case ofT_DECIMAL_LITERAL tokens, the lexical analyzer builds a string

in the form of a number, including a leading '-' sign for negative numbers and a decimal

point for decimal numbers. If a '+' sign is encountered and the next character is a digit, the

'+' sign is read and discarded. Spaces within the digits of the number are not allowed.

4. Comments

Standard C programming language comment strings are discarded by the

lexical analyzer. Permanent comments optionally associated with each panel and actuator,

as denoted by a leading 7C and a trailing 'C/\ will return the T_COMMENT_STR token.

5. Errors

The tokens returned by the lexical analyzer are used to create panels and actuators,

so the order in which they are received is important. If the proper order of tokens in the

intermediate file is not maintained, the parser will fill fields in the panel or actuator

structures with erroneous data, and then either have extra tokens or not enough tokens at

the end of the file. For this reason error messages produced by the parser will not always

indicate the exact location of the problem. However they will indicate that a problem exists

if it is not immediately obvious. The result of parsing an erroneous intermediate file is

unpredictable since the panel and actuator structures are created as they are read.

C. MODIFICATIONS TO VALUES

The layout of the intermediate file lends itself to easy modification. The majority of

editing tasks can be done interactively using the Actuator, Panel and Color Editing features

of the NPSPD. However some types of modification, such as rearranging the order of

panels and/or actuators, must be accomplished using a text-based editor.

54

VII. NPSPD SOURCE CODE GENERATION

One of the most powerful features of the NPSPD is its ability to generate source code

that corresponds to an interface design. Using the Code Manager, the user is able to

generate source code for the current workspace or all workspaces, and then modify that

code using clearly defined entry points. The modified code can then be compiled and linked

with an application, providing a custom interface in a minimum amount of time.

A. Code Manager

The F12 key in the NPSPD opens the Code Manager, as shown in Figure 7.1. The

Current Workspace typein contains the title of the workspace that was current when the F12

key was pressed. Any valid workspace title can be entered in this field. The default

generation mode is for the current workspace only. This can be changed by pressing the

appropriate button (either Current or All). If Current is selected, code will be generated for

the workspace corresponding to the Current Workspace field. If All is selected, code will

be generated for all of the workspaces on the screen regardless of the contents of the

Current Workspace field. The name of the output files can be any legal Unix file name, and

does not have to be the same as one of the workspaces.

£}; ;€*><*? Gs^rttpfttflm^r
-»r'-' *>•'-**

r
-'i

:^J*± ^J f
:*MS53* \,.,^J

:•:'<•:• :•'.'•:•:•:•.'•.*<•:-•>>."•••.'• :•::'•*

%&-:
:&*::8:&&::'::< :t>:

:->:-yy:y»: ::' ':::"••': :-.-.-'-.v.v"•.•:•>••••.•:

^ViVfififfi^y-V:-: .
:yyy :yyy. :yy::

:
: :#'.••'y-yy-yy:::'.< ':: : ::

- y. :
: •

•"• WVfVAVyAi.
-: £»«*«!«$.:' .

•

••:-•••
.- • ; :•

••••

i n 'iii h i nV mimi ni in in "y.y<y..y^.y^yy^.:yyyy^y^.

'

! .. ,.
:

... s L^ssaJ'i c»*

miimtiaitttm&m*m**t**i*t&tM^

Figure 7.1 Code Manager

55

B. Generated Code

The NPSPD Code Generator generates three files that are then modified for use in an

application. If the tide of the file name in the Code Manager is 'User_Panel\ the three

generated files will be User_Panel.c, User_Panel_fn.c, and User_Panel.h. The first file

contains all of the functions needed to initialize, display and control the user defined

panel(s) created within NPSPD using the NPSPD ToolBox. The second file contains the

user modifiable functions needed in support of the panel(s) generated by the NPSPD. The

third file is the header file for the two source files. Refer to Appendix D for a complete

listing of these three files. Refer to the NPSPD User's Manual in Appendix A for detailed

instructions on modifying the generated code.

1. User_Panel.c

This file is complete as generated, but can be modified by the user. The most likely

area of modification is in the creation of the panels and actuators in initialize_panels() and

initialize_actuators() and the modification of colors in initialize_colors(). Any parameter

for a panel or actuator can be changed, taking care to maintain the proper structure and

function. Figure 7.2 is an example of the main loop in User_Panel.c.

mainO
{

initialize_main(); 1* initialize panel environment */

forever { /* Panel main loop */

control_program(Panel_List); /* process controls and queue */

draw_control_panels(Panel_List); /* draw control panels & actuators */

/* User designed calculations and 2D or 3D drawing functions are
1* accessed via user_displayO; User must manage any extra
1* windows required

*/

*/

*/

user_displayO; /* handle to call user functions

}

}

*/

Figure 7.2 UserPanel.c main loop

56

2. User_Panel_fn.c

This file is where the user ties the interface to the application. The template of the

file provides the user entry points to initialize all aspects of the interface and the

application, process the event queue, and process and display the application itself. Figure

7.3 at the end of this chapter presents an example of User_Panel_fn.c before modifications.

a. user_init_queue()

This function allows the user to add queue devices to the standard devices

initialized by the NPSPD (e.g., RIGHTMOUSE and ESCKEY). Refer to the Reference

Manual for information on additional devices queued in the NPSPD ToolBox.

b. user_init_menu()

The NPSPD generates a standard generic menu. This function allows the user

to customize the menu system.

c. user_init_cursor()

This function allows the user to customize the cursor for the application.

d. user_init_overlay()

This function allows the user to customize the overlay planes for the

application.

e. user_init_main()

This function is called from the function main() in User_Panel.c and allows

the user to perform initializations specific to the application.

/. user_process_queue()

This function is called after the ToolBox has processed the queue and allows

the user to do any additional processing of queue event tokens.

g. user_process_menu()

This function allows the user to process the menu system.

57

h. user_display()

This is where the user will do the bulk of the processing for the application.

It is called each time through the drawing loop after the processing of the ToolBox control

functions is completed.

i. user_exit()

Customized application exit procedures are placed in this function.

j. Entry Point Modification

Each of the source code entry points can be modified individually. However, in

some cases, changes to one function require changes to one or more others. For example,

if user_process_queue() refers to a non-standard queue device, that device must first be

queued in user_init_queue(). Each function is clearly documented and provides the

designer guidelines for modifying values or structures.

3. User_Panel.h

This header file contains the forward function declarations for all of the functions

in the file User_Panel_fn.c, as well as the arrays holding the control panels and actuators

and global variables and constants. Any application files that reference these functions and/

or variables must include this file.

C. Compiling and Linking

Instructions for compiling and linking these files are included at the top of each file.

Refer to Chapter VIII for a detailed example of this procedure.

58

y* ***********************»*»**»**»****»***».**»******************************

* File: User_Panel_fn.c User defined calculations and *

* Version: 1.0 drawing functions *

* date: 90/12/01 *

* Author Richard M. Prevatt *

* David M. King *

* Notes:

* 90/08/13 Created.

* This file contains the User modifiable functions needed in support of

* the control panel generated by PanelDesigner. Changes and additions may
* be added to all files taking care to manage any extra windows.
* It is used in conjunction with User_Panel.c
*

* The actual name of this and the related files was derived from the

* name of the current workspace when it was produced by PanelDesigner.

*
(Substitute the actual name for 'User_Panel' in these instructions. }

* If a file by that name already existed, the PanelDesigner saved the

* the original version in a backup file as follows:

* User Panel fn.c —> User Panel fn.c.bak

Compile as follows:

cc -o user_name User_Panel.c User_Panel_fh.c /nps_path/lib/npspanel.a

/nps_path/include -02 -align 16 -G -lc_s -lgl_s -lfm -lm

/nps_path must be defined as the proper path to the NPS Panel ToolBox.

/nps_path = /n/gravyl/work/zyda/npspanel in the current release.

* The resulting file 'user_name' may be executed. *

#define EXTERN extern

#define INIT(x)

/* declarations are external

I* and not initialized here

V
*/

#include

#include

"gl.h"

"device.h"

/* Graphics Library declarations

/* Device declarations

*/

*/

#include

/*

"tbx.h" /* Panel Toolbox Declarations */

-*/

Figure 7.3 User_Panel_fn.c before modifications

59

/* User defined and modifiable constants and declarations */

#include "User_Panel.h"

I* -*/

I* User modifiable function definitions */

I* */

void user_init_queue(3 I* User defined queue init */

{

/* Place user needed event queue device initializations here. */

}

void user_init_menuO I* User defined menus here */

{

/* Place user defined menu initializations here. */

main_menu = defpup(" Sample Main Menu %t ");

addtopup(main_menu," Place menu choices here %xl00 ");

addtopup(main_menu," Quit Program %x999 ");

}

void user_init_cursorO /* User defined cursor init */

{

I* Place user defined cursor initializations here. */

}

I* */

void user_init_overlayO /* User defined overlay init */

{

/* Place user defined overlay initializations here. */

I* */

Figure 7.3 User_PaneI_fn.c, cont.

60

I* */

void user_init_main() /* User defined main initializations */

{

I* Place user defined inidalizations here. */

I* This is called after all panel and actuator setup initializations. */

}

/* */

void user_process_queue /* User defined queue functions */

(

short TOKEN, /* Graphics event Q device token */

short TOKvalue /* Graphics event Q token value */

)

{

I* Place user defined queue processing here. */

I* All queued tokens will be passed to this function after they are */

/* processed by the Panel ToolBox functions. They may be used by */

/* the User's program to specify additional actions, etc. */

)

f* */

void user_process_menuO /* User defined menu processor */

{

long choice;

choice = dopup(main_menu);

switch (choice

)

I* Include other menu selection processing here. */

case MENU_QUIT: I* exit the program */

user_exitO;

break;

default:

break;

}

Figure 7.3 UserPanelfn.c, cont.

61

void user_displayO /* All user calc & drawing functions */

{

I* Place user defined calculations and display control here. */

/* This is called during each drawing loop after control panel */

I* processing is completed. */

void user_exitO I* Clean up and exit the program */

{

I* Place user defined exit procedures here. */

panelExitO; /* Qear and close all Panel windows */

}

/***

* EOF: User_Panel_fn.c { lines: 85

}

*

******* ***/

Figure 7.3 User_Panel_fn.c, cont.

62

VIH. COMPLETE NPSPD APPLICATION

Designing and implementing a user interface with NPSPD is a simple process that can

take as little as 15 minutes. Chapter III discusses in detail the five basic phases that make

up the development process: preliminary design of the interface content and layout,

development of the interface in the NPSPD environment, generation of compilable source

code, modification of the interface and application source code to include appropriate

communication links, and finally, compiling and linking the NPSPD interface code with

the application code.

A. Building an Interface

We have chosen the NPS Autonomous Underwater Vehicle simulator (AUV) as the

example application. This simulator controls a submersible vehicle in three dimensions as

it navigates in various bodies of water. The application's user interface currently includes

standard pull-down menus and the IRIS Spaceball. The Spaceball controls the motion of

the AUV, and its eight buttons toggle environment flags and other choices. Currently, the

AUV simulator does not use the mouse.

The example interface to be designed will include both input and output actuators and

will utilize the keyboard, the mouse and the Spaceball. It will have five basic panels: a

viewing control panel, a button control panel, two instrument panels and a welcome screen.

The panels will contain several different types of actuators, and one of the panels will be

hidden unless called for.

1. Starting NPSPD

NPSPD is invoked by typing 'npspd' and requires no command line arguments.

The user should ensure that the NPSPD ToolBox library is accessible by their application

for compiling and linking.

Upon invocation NPSPD presents a welcome screen which remains visible while

the Palette and workspace panels are being initialized, and closes when initialization is

completed. The Palette of standard actuators is on the right side of the screen and the

63

workspace is on the left. The title bar for each panel reflects that panel's current title. The

lightning bolt icon, normally on the right side of the title bar and used to close a panel, is

not present. Figure 3.2 in Chapter in illustrates the opening layout.

2. Creating the Panels

The first step is to create the five panels. We position and re-size the first

workspace to become the first panel. We create new workspaces by pressing the F5 key.

The remaining four panels are placed using this function and the Panel Editor. The final

panel layout will be three panels across the bottom of the screen, each approximately 250

pixels high with the two end panels 300 pixels wide and the middle panel 580 pixels wide.

The fourth panel will be above the lower left panel and will be 400 pixels wide by 250 high.

The fifth panel will measure 500 X 250 pixels and will be centered in the middle of the

screen.

Next we want to set the environment tools for each panel. We want to draw an

alignment grid in each panel, and we also want to have the actuators snap to the grid when

they are placed or moved. To accomplish this we place the mouse in each panel

consecutively and press the F2 (AutoAlign) and F3 (GridDraw) keys. The default grid size

is 25 pixels. It may be changed if needed using the F4 key and menu to pick a standard size,

or the Panel Editor to set any size. For now we'll leave all panels at 25 pixels. Checking the

status box on the bottom of the Palette confirms that AutoAlign is now on for each panel

and the grid size is 25.

3. Customizing the Panels

After all of the panels are placed and sized, we open the Panel Editor and

customize the attributes for each panel. For all panels, we want to set the Fixed flag 'ON'

and the Border flag 'OPT'. This will prevent the user from moving or resizing the panels.

Next we want to name each panel with a descriptive title. In our interface, these titles will

not be visible because the panels will be drawn without borders. However it is still

advisable to do this for two reasons. First, if we later go back and turn the borders on, the

tide will be displayed. Second, when we save our work to an intermediate file, a tide for

each panel will help us to keep track of individual panels and their purpose. Finally we can

64

attach a comment to each panel for documentation purposes in the intermediate file. This

is optional but also recommended. The initial layout of the panels is shown in Figure 8.1.

Figure 8.1 Initial Layout of panels for the AUV interface

4. Placing the Actuators

Each of the four panels contains unique actuators so we will step through their

design separately. The design of some of the panels can be completed interactively, while

others require that we leave the NPSPD environment in order to edit the intermediate file.

a. ViewingjControl Panel

The first panel is the Viewing_Control panel. This panel will have four

actuators: three sliders that will control inclination, azimuth and distance, and a dial that

will control the twist. To place the first slider, we move the mouse-cursor over the standard

vertical slider on the Palette and press and release the middle-mouse button. This actuator

then becomes the current actuator on the Palette as denoted by the surrounding white box.

We then move the mouse to the location on the Viewing_Control panel where we want to

place the lower-left corner of the slider and press and release the middle-mouse button

again. This places a copy of the current Palette actuator (a standard vertical slider) on the

panel. The slider will appear to jump, or 'snap' to the nearest grid intersection on the panel

65

because the AutoAlign tool is on. Whenever we place or move an actuator, the origin of the

actuator (lower left corner) will move to the nearest grid intersection point, in this case a

multiple of 25.

We need another vertical slider so we press the insert key on the keyboard and

an exact duplicate of the current workspace actuator is created to the right of the original

(alternatively we could have moved the mouse to the location of the second slider and

pressed and released the middle-mouse button again to place a second copy).

To move an actuator on a workspace, we place the mouse over it, press and

hold the middle-mouse button, and drag it to its new position. We now do this to the copy

of the original slider we just created. Next we place a horizontal slider above the two

vertical sliders using the same procedure. Finally we place a dial in the middle of the sliders

(see Figure 8.2).

Figure 8.2 Initial Viewing_Control panel

Now that we have placed all of the actuators, we need to edit them. We set the

left-most slider as the current workspace actuator and press the F9 key. This opens the

Actuator Editor dialogue window. Using this tool, we will give the actuator a label, set its

location and size, and attach a comment to it for the intermediate file.

66

First we will initialize the label. In the upper-left side of the dialogue window

is a typein labeled "Actuator Label". We place the mouse over this typein and press and

release the left-mouse button, activating the typein. The label of this actuator is

"Inclination" so we type that in and press return. In the middle of the Actuator Editor is a

representative box surrounded by nine small buttons with one in the center. We want to

center the label under the bottom of the actuator so we place the mouse over the bottom

center button and press and release the left-mouse button. The label now appears in the

selected position. We want the label to have a white background so we won't change that.

Next we change the font of the label from the default 10.0 point to 12.0 point by placing

the mouse over the Label Font typein, activating it and entering the desired size.

We change the width and height dimensions of the slider from the standard

25 X 200 pixels to 20 X 150 by entering the new dimensions in the appropriate Actuator

Dimensions typeins. Finally we add a comment to this slider to record its purpose in the

intermediate file. We do this by entering a descriptive statement in the Actuator Comment

typein at the bottom-left of the Actuator Editor.

If, after verifying all of the parameters for the actuator, we want to make them

permanent, we place the mouse over the Accept button in the lower right of the window and

press and release the left-mouse button. If we make changes to the actuator or open the

window and decide to not make any changes, we can press Cancel instead, and the actuator

will be restored to its original state. Figure 8.3 illustrates the final layout of the

Viewing_Control panel.

b. Instrument_Panel

The next panel to design is the Instrument_Panel. This panel will have three

different types of meters: vertical and horizontal strip meters, dial meters and an arc meter.

We select the meter icon on the Palette and drop it in the appropriate panel. The actuator

that appears is a standard arc meter. We have no way to interactively change this meter to

a different type so we'll have to place it in its approximate final location and change the

type in the intermediate file. We have the same situation with the remaining meters so we'll

create standards by using the insert key to copy the first meter and place them in their

approximate locations using the mouse. Our panel now contains ten standard meters,

67

E Viewlng_Control

Azimuth

a
Twist

Inclination Distance

Figure 8.3 Final layout of the Viewing_Control panel

placed in their approximate final locations. Before we leave NPSPD to edit the intermediate

file, we need to assign a label to each of the meters so that we can identify them later. We

do this using the Actuator Editor. The meters will be labelled "Speed", "Pitch", "Depth",

"RPM", Roll", "Heading", "Bow Rudder", "Stern Rudder", "Bow Planes" and "Stern

Planes". For now we will place all of the labels below the actuators.

We now have to save our work and temporarily leave NPSPD environment

so that we can edit the intermediate file. First we press the Fl 1 key to open the File Manager

window. We want to save all of the workspaces so we press the SAVE button and the ALL

button. Next we need to enter a name for the file: this is an AUV interface so we enter

AUV_panels. When we press return, the panels are saved and the window closes. Our

workspaces have now been saved.

To edit the intermediate file, we exit NPSPD and open the file for editing

using any text-based editor. Once in the file, we move to the panel labeled

"Instrument_Panel" and locate the first actuator, which is the speed output. This is the

meter that will display the speed of the AUV. We need to change its mtype detail field from

1 1 1 (METER_ARC) to 1 17 (METER_HBAR). Similarly we change the remaining meters

68

to their appropriate types. The modified intermediate file is illustrated in Figure 8.4 (only

the first meter is listed). Refer to the NPSPD User's Manual in Appendix A for a complete

description of actuator detail parameters and their modification.

Panel_Designer_File

Panel Instrument_Panel

/* panel x, y, w, h */ 424 9 522 230

1* auto_align, grid_on, grid_size */ 00 25.0

/* visible, selectable, fixed, popable */ 1 1 10
1* border, screen_relative, zbuffer */ 110
1* wl, wr, wb, wt, wn, wf */ 0.0 522.00.0 230.0 0.0 0.0

1* scale_factor, color_table */ 1.00

Actuator METER
1* type, group_id, key_equivalent */ 110-2400
/* active, visible, selectable*/ 011
/* x, y, w, h, bw */ 15.5 177.5 123.0 16.1 2.0

/* color_table */

1* l_location, label, label_font */ 9 "Speed" 12.0

1* lx, ly, lw, lh, lbx, lby */ 0.0 22.150.6 21.64.8 5.8

/* v_locauon, value_fmt, value_font, val */ 7 "%-+#4.2T 12.0 0.0

1* initval, minval, maxval */ 0.00.01.0

1* vx, vy, vw, vh, vbx, vby */ 80.4 22.142.6 21.64.8 5.8

/* mtype, r, major_tics, minor_tics */ 117 31.9 1 1

1* tl, tw, ml, mw */ 8.1 2.0 8.1 4.0

1* mcolor, display_limits, limits_fmt */ 16 0"%-+#3.ir
1* damping_factor, history_ndx */ 10

Panel_End

File_End

Figure 8.4 Instrument_Panel intermediate file (Meters)

At this point, we could change other attributes of the meters, such as location

and size, but this is more easily done in the NPSPD environment where the changes can be

seen immediately. We can now verify the changes we have made and exit the file.

Re-entering NPSPD, we press the Fl 1 key to open the File Manager window

and press the OPEN button. In the Filename typein we enter "Instrument_Panel" and press

69

return. The four panels we created earlier open, with the Instrument_Panel now containing

the correct types of meters. We now need to customize each meter, setting its size and

location, specifying a value location and format if necessary, and adding a comment. We

select the first actuator, the "Speed" meter, and press F9 to open the Actuator Editor

window. The label string is correct so we'll leave that. The location of the label and its font

size need to be changed however, so we'll do that. We want to place the label above the

meter and left-align it, so we press the top-left button on the location square. Next we want

the label to be 12 point font instead of the default 10 so we enter the new font size in the

Label Font Factor typein. We want a value to be displayed for this meter so we press the

VALUE button near the top center of the window. For this meter, we want to place the

value on the top of the meter and right-align it, so we press the top-right button on the

location box. The default font for values is 12 point, so we'll leave that. However we need

to change the value format string in the upper right of the window from the default "%-

+#7. If' to "%6.1f ', which will give us a floating point number with six digits of precision

and 1 digit to the right of the decimal point Next we need to change the size and location

of the meter. Using a rough sketch, we determine we want this meter to be 150 pixels wide

by 20 pixels high, and the reference point should be at 14, 180 (x & y). Using the Actuator

Location typeins, we enter these parameters. Finally, we add a comment for this meter,

describing it as the speed output meter.

The remaining actuators on this panel are modified in the same fashion.

Figure 8.5 illustrates the final layout of the Instrument_Panel.

c. ButtonjControl Panel

Before we begin placing actuators, we can make an adjustment that will save

us some time. The current grid size for the Button_Control panel is 25 pixels. We want the

buttons that we place on this panel to be 15 pixels apart. If we change the grid size to 5, it

will be much easier to place the buttons exactly where we want them using the mouse rather

than explicitly entering the coordinates. We can change the grid size for the panel using the

Panel Editor and the Grid Size typein. As we do this, the grid on the Button_Control panel

and the status box on the Palette reflect the change.

70

D Instrument Pane/

Speed +0.00 Bow Rudders

r
- *

+0.1.HI

Depth

+0.00

-n.no

RPM
J t.

Stern Rudders

+0.00

Rolluo >0.00

+0.00

Headlng |i BowPlanes

+0.00

Stern Planes

Figure 8.5 Final Layout of the Instrument_Panel

The standard toggle buttons are on the top-left side of the Palette. We have a

choice of either square or round. We select the square button and place it on the

Button_Control panel. We want the first button to be located at 20, 200. We can either use

the mouse to move the button or open the Actuator Editor and enter the location explicitly.

Since the grid size allows us to move 5 pixels at a time, using the mouse is probably faster,

so we move the button to its final position using the mouse. The default size of buttons is

25 X 25 pixels, which is the size we want, so we don't change that. We need five more

standard toggle buttons so we place the remaining copies in the appropriate locations: we

need two columns of five buttons each, with 15 pixels separating buttons in the y direction

and 170 pixels in the x direction. Column one (x = 20) will consist entirely of standard

toggle buttons, while the first two and last two buttons in the second column (x = 190) will

be radio buttons and momentary-action buttons, respectively. The middle button in the

second column will be a standard toggle button. Accordingly we move the six standard

buttons to their positions.

The radio buttons are placed next. Select the square radio button from the

Palette and place it on the top of the right column (y = 200) on the Button Control panel.

71

When a radio button is placed from the Palette, two copies will be created, so we move the

second button down to the second position in the column using the mouse.

Finally we need two momentary-action buttons. These are located in the cross

on the top of the Palette. We don't need a symbol on our buttons so we select the middle

button in the cross and place copies in the fourth and fifth positions in the second column

on the Button_Control panel.

Now that our buttons are in place, we need to edit them. Each button will have

a label on its right side using a 12 point font factor, and each should have a descriptive

comment. Using the Actuator Editor, we edit each button, entering its label and a comment.

The final layout for the Button_Control panel is illustrated in Figure 8.6.

D Contwl_Buttons

] 1
CockpU View]

]
| Pool

] |
AUV Center

a Data a Grid

] [
Dynamics

|]
|Exlt|

Figure 8.6 Final layout of the ButtonControl panel

d. ControlJSurfaces Panel

The next panel to design is the Control_Surfaces panel. This panel will

contain 4 stripcharts, one each for the bow and stern rudders and the bow and stern planes.

We select the Stripchart icon from the Palette and place the first stripchart at 25-25. The

remaining three are placed at 25-150, 250-25, and 250-150. Opening the Actuator Editor,

we enter a label for each stripchart, positioning it on the top center of the actuator. We want

a value to be displayed on the right side of each stripchart so we press the VALUE button

72

on the editor and then the right middle button on the location box. We also need to change

the value format string to "%7.1f ' for each stripchart. Finally we add a comment to each

one. We don't want to display the limits for the stripcharts but we'll have to change that in

the intermediate file. Once we are done editing what we can on the stripcharts, we save our

work (we can re-use the file name AUV_Panel) and exit NPSPD.

Using an editor to open the intermediate file, we move to the

Control_Surfaces panel and locate the first stripchart actuator. First we change the

displayJimits flag from 1 (TRUE) to (FALSE). Next we change the BindHigh and

BindLow flags from to 1. Finally, we change the minval and maxval values to -40.0 and

40.0, respectively. We make these changes to all four stripcharts. The Final layout of the

Control_Surfaces panel is shown in Figure 8.7.

D Contml_Surfaces

|
Bow Planes

j
|
Stern Planes

|

FTol
|

+i.o|

l+o.o
|

l+o.o |

|
Bow Rudders

| |
Stern Rudders

|

F"H 1*1.0
|

|*0.0
|

1*0.0
|

Figure 8.7 Final layout of the Control_Surfaces panel

e. Welcome_Screen Panel

The final panel to create is the Welcome_Screen. This panel will consist of

two Title actuators, and will only be visible in our application momentarily while the data

is initialized. We select the Title actuator from the Palette and place two copies on the

Welcome_Screen panel, one above the other. Opening the Actuator Editor we enter the

73

label "NPS AUV" for the upper actuator. Next we change the width and height to 230 and

50, respectively. We then change the location of the actuator to 140, 180. Finally we change

the Label Font Factor to 28 point. The second Title actuator is modified in the same fashion.

The final layout of the Welcome_Screen is shown in Figure 8.8.

O Welcome_Screen

Figure 8.8 Final layout of the Welcome_Screen panel

B. Generating Code

Once we finish creating and editing the panels and actuators, we generate the source

code that will be integrated into the AUV application. We open the Code Manager window

by pressing the F12 key. First, we want to generate code for all five panels so we press the

"All Workspaces" button. Next, we have modified at least one color table so we also press

the "Save/Recall Custom Colors" button. Finally, we enter the name of the file to hold the

generated code. We enter "AUV_Panel_Code" and press return. Three files have now been

generated: AUV_Panel_Code.c, AUV_Panel_Code_fn.c and AUV_Panel_Code.h. The

next step is to edit these files, compile them and link them with our application.

74

C. Editing the Generated Source Code

For our application, the only file we need to edit is "AUV_Panel_Code.c'\ This file

contains the function calls to create the panels and actuators, the ToolBox initialization

calls, and the user interface main control loop. First we will verify the panel and actuator

creation calls.

1. Verifying the Panel and Actuator Creation Calls

The code generated for the creation of each panel consists of the following default

lines: panel location and size, visible flag, fixed flag, border flag, popable flag, and the title

for the panel. We specified the values for all of these parameters except the visible flag

interactively earlier when we were in the NPSPD environment. For our application we only

need to change one parameter on one panel. We only want the Control_Surfaces panel to

be visible at certain times so we set its visible flag to FALSE. This means that when the

application starts all panels except for Control_Surfaces will be visible.

2. Customizing the Code

Next we need to edit the function main(). Since we are integrating the NPSPD

code into an existing application that has its own main() function, we need to rename ours.

We thus change it to unused_main(). We will however have to move some of its calls to the

existing main() function. We will do this in the next section.

D. Editing the Application Code

The application's header files and source code need to be modified in order to use the

NPSPD interface. This can be accomplished using any text-based editor.

1. Header Files

The "globals.h" file in the AUV directory contains all of the global variable

definitions and forward function declarations for the AUV simulator, and is included by all

of its source files. This is where we include the NPSPD file "tbx.h", and the header file for

the generated code, "AUV_Panel_Code.h". The file "tbx.h" contains the variable

definitions and function declarations for the ToolBox library, and "AUV_Panel_Code.h"

contains the variable definitions and function declarations for the interface code. When we

75

compile the AUV code, we will be linking to the NPSPD panel library so we can simply

include these files as though they were local (in fact "AUV_Panel_Code.h" is local, but

"tbx.h" is not).

Next we will define manifest constants for the names of the interface controls.

This will make the AUV source code much more readable, thus making editing easier. In

the file "AUV_Panel_Code.c" are all of our control structures in the form Control[0][0],

Control[0][l], etc., and panel structures in the form Control_Panel[0], Control_Panel[l],

etc. We want to define constants with more descriptive names that will be substituted for

these variables in our AUV code. For example, we can reference the interface panels by

using Control_Panel[x], where x is the index of the desired panel, but then we have to

remember the index number for all of the panels. By using descriptive names, such as

\OEWING_CONTROL for Control_Panel[0], we improve the readability of our code

immensely and make editing much easier. The disadvantage of this is that if the order of

the panels or actuators in the file "AUV_Panel_Code.c" changes we have to also change

our definitions. But if we exercise a little care in modifying this file, we can avoid this

problem. Figure 8.9 shows the modified "globals.h" file.

2. Modifying the Main Program

Since we are integrating the NPSPD interface into an existing application, we

have to ensure several things happen when the application is initialized and each time

through the control loop.

a. Initialization

The function main() in the AUV simulator makes a call to an initialization

function, initialize_auv(). This function then makes calls to initialize each aspect of the

AUV simulator: databases, devices, etc. We need to add several calls to this function to

initialize the interface. These include: initialize_main(), initialize_panels()f and

initialize_actuators(). The function initialize_main() initializes the interface panel

environment, including default settings, colors, the event queue, the menus, the cursor and

the overlay planes. Some or all of these calls may be unnecessary in the AUV simulator,

but including them is a minor expense and ensures all necessary initializations are

completed. The function initialize_panels() creates the interface control panels

76

/* File: globals.h *

* Description: Header file for NPS AUV Simulator */

1* General Include Files */

#include <stdio.h>

#include <gl/gl.h>

#include <gl/device.h>

#include <gl/spaceball.h>

#include "sys/types.h"

/* NPSPD & ToolBox Include Files •/

#include "tbx.h"

#include "AUV_Panel_Code.h"

1* NPSPD & ToolBox Manifest Constant Declarations • Panels */

#define VTEWING.CONTROL Control_Panel[0]

#define INSTRUMENT_PANEL Control_Panel[l]

#define BUTTON_CONTROL Control_Panel[2]

#define CONTROL_SURFACES Control_Panel[3]

#define WELCOME_SCREEN Control_Panel[4]

/* NPSPD & ToolBox Manifest Constant Declarations • Actuatorss */

#define INCLINATION Control[0][0]

#define AZIMUTH Control[0][l]

#define DISTANCE Control[0] [2]

#define TWIST ControlfO] [3]

Figure 8.9 Modified Globals.h File

{Control_Panel[07, Control_Panel[l\, etc.). Finally initialize_actuators() creates the

actuators on the control panels.

b. Main Control Loop

The AUV application has a function called main_loop(). This function

contains the main control loop for the AUV simulator. While in a forever loop, this function

looks for events on the queue, processes them and draws any changes. Figure 8.10 is a

simplified code segment depicting the order of events in this loop.

77

main_loop(Sub_ptr auv)

{

while(TRUE) I* loop forever */

{

if(qtestO)

{

while (qtestO)

{

sbdevice = qread(&value); I* read spaceball */

switch(sbdevice)

{

/* Spaceball functionality omitted ... */

case REDRAW:
reshapeviewportO;

break;

} /* end switch */

} /* end while qtestO */

} /* end if qtestO*/

I* update the simulator values */

display_environment(auv); f* contains OFF display routines */

swapbuffersOl

} I* end while(TRUE) */

} I* end main loop */

Figure 8.10 Original Main Control Loop for the AUV Simulator

The NPSPD interface needs to process queue events and draw any changes to

controls each time through this loop. This can be done by adding five lines of code, as

illustrated in Figure 8.11.

In order to process queue events so that the NPSPD interface can follow the

action of the mouse, we need to add calls to reset the ToolBox queue and then process the

ToolBox queue, in that order.We add our function reset ToolBoxQO to the top of the

loop, just before we check if QTEST is true. This function resets mouse transition flags and

other events that the ToolBox monitors. Next we add our call to process the latest queue

event. We do this with the function process_ToolBox_Q(Panel_List, sbdevice, value),

inserted right after the queue event is read. This function takes the queue event and

processes it according to where it occurred. For example, if the left-mouse button is

78

main_loop(Sub_ptr auv)

{

while(TRUE)

{

reset_ToolBox_QO;

if(qtestO)

{

while (qtestO)

{

sbdevice = qread(&value); /* read spaceball */

process_ToolBox_Q(Panel_List, sbdevice, value);

switch(sbdevice)

(

I* Spaceball functionality omitted ... */

case REDRAW:
reshapeviewportO;

break;

} I* end switch */

} I* end while qtestO */

}/* end if qtestO*/

/* update the NPSPD interface values */

update_panel_values(auv);

I* update the simulator values */

display_environment(auv); /* contains OFF display routines */

swapbuffersO;

I* process and draw the NPSPD interface controls */

process_panels(Panel_List)

;

draw_control_panels(Panel_List);

} I* end while(TRUE) */

}
/* end main loop */

Figure 8.11 Modified Main Control Loop

depressed on the Viewing_Control panel, the sbdevice will be the left-mouse, the value will

be the transition down value of a mouse button, and the process_ToolBox_Q() function will

run through the list of interface panels {Panel List) and determine that the event occurred

on the Viewing_Control panel. The process_ToolBox_Q() function does not alter the queue

events, so any references made to these events subsequent to this call will be correct.

79

After the queue event is processed, we need to process the interface panels

and their associated actuators. This is done by calling the function

process_panels(Panel_List). This function runs through each interface panel (PanelList)

and processes the latest queue event. The AUV simulator interface is about evenly divided

between input devices (sliders, dials, etc.) and output devices (meters, stripcharts, etc.). We

chose to process the values of the interface control devices first, then update the AUV

variables and interface. If the application interface consisted primarily of output devices, it

would be more efficient to update their values first and then process the changes to the

interface controls. However in either order the difference will be transparent to the user.

Next we need to update the status of the auv environment and the interface.

This is done in a function called update_panel_values(auv), where auv is a data structure

containing the parameters for the vehicle and its environment. This function, illustrated in

Figure 8.12, is called at the bottom of the main control loop, shown in Figure 8.11. Notice

in some cases the auv variable takes the value of the interface control (e.g. auv-

>sys.Cockpit_view = COCKPIT_VIEW), while in other cases the opposite is true (PITCH

= auv->pitch). In the first case the interface control is an input device, while in the second

case it is an output device. All processing of controls and environment variables is done in

this fashion.

The last thing to do in the loop is draw the changes to the interface panels and

controls. This is done by calling the function draw_control_panels(Panel_List). This

function checks each panel and actuator, determines if they need to be redrawn, and draws

them, swapping buffers as necessary. If panels are not visible they are not processed or

drawn, saving CPU cycles.

E. Linking the Application Code to the NPSPD Library

Once the interface and application code has been modified, we need to compile and

link it. The AUV application utilizes a make file to do this. We need to modify it to include

the ToolBox header file tbx.h, compile the interface code and link all of the object code to

the NPSPD library. The modified Makefile is shown in Figure 8.13

80

void update_panel_values(Sub_ptr auv)

{

I* Interface Panel Input Devices (sliders, dials, & buttons)

auv->obs.inclination = (Coord)INCLINATION;
auv->obs.azimuth = (Coord)AZIMUTH;
auv->obs.twist = (Angle)TWIST;

auv->obs.distance = (Coord)DISTANCE;

I* Interface Panel Output Devices (meters & stripcharts)

BOW_PLANES = auv-xleflect[0];

STERN_PLANES = auv->deflect[l];

BOW_RUDDER = auv->deflect[2];

STERN_RUDDERS = auv->deflect[3];

RPM = auv->rpm[0];

PITCH = (float)auv->pitch;

ROLL = (float)auv->roll;

HEADING = (float)auv->heading;

DEPTH = (float)auv->depth;

if(is_visible(CONTROL_SURFACES) {

set_stripchart_value(Control[3][0], (float)auv->deflect[0]);

set_stripchart_value(Control[3] [1], (float)auv->deflect[1]);

set_stripchart_value(Control[3] [2], (float)auv->defIect[2]);

set_stripchart_value(Control[3] [2], (float)auv->deflect[3]);

}

Figure 8.12 Update_Panel_Values Function

1. Including the Toolbox header file tbx.h

The file tbx.h is included by defining the variable INCLUDE to be the path to the

NPSPD library, and adding the statement "-I${INCLUDE}" to the compilation line. This

effectively makes that entire directory visible to the application's files.

2. Compiling the Interface Code

In order to compile the interface code (AUV_Panel_Code.c and

AUV_Panel_Code_fn.c), we need to add their object file equivalents to the OBJS

specification and their source file equivalents to the CODES specification. We also have to

81

define their dependencies, which in both cases is simply the corresponding source code and

the AUV Panel Code.h header file

SHELL = /bin/sh

C = cc-I$ {INCLUDE}
LDCC = cc

CFLAGS = -g -00 -w -G

LDFLAGS = -g

TBX = /n/gravyl/work/zyda/npspanel/lib/npspanel.a

INCLUDE = /n/gravyl/work/zyda/npspanel/include

LIBES = -lspaceball -lgl_s -lc_s -lmpc -lfm -lm

OBJS = dauv.o AUV_Panel_Code.o AUV_Panel_CcxIe_fii.o ...

CODES = dauv.c AUV_Panel_Code.c AUV_Panel_Code_fti.c ...

HDRS = globals.h

all: dauv

dauv: $(OBJS)

cc $(CFLAGS)-alignl6-I$ {INCLUDE} -o$@ $ {OBJS}${TBX} $(LIBES)

dauv.o: $(HDRS) $(CODES)

AUV_Panel_Code.o: AUV_Panel_Code.c AUV_Panel_Code.h

$(C) -c -g -w $*.c -G

AUV_Panel_Code_fii.o: AUV_Panel_Code_fh.c AUV_Panel_Code.h

•

$(C) -c -g -w $*.c -G

Figure 8.13 Modified Makefile for the AUV Simulator

F. Testing and Enhancing the Interface

Nearly always, an initial interface design undergoes extensive testing and some

enhancement before it becomes the final version. NPSPD simplifies and speeds the

enhancement process. The designer may change panels and actuators directly in the

AUV_Panel_Code.c file or using NPSPD as described. Minor changes, such as moving or

re-sizing an actuator, can most easily be accomplished by editing the source code files.

Major changes, such as introducing a new panel or adding several actuators to an existing

82

panel, should be accomplished in the NPSPD environment. In either case, the procedures

outlined in this chapter must be followed in order to maintain the proper communication

between the interface controls and the application.

83

IX. NPSPD LIMITATIONS AND FUTURE DIRECTIONS

This represents version 1.1 of the NPS Panel Designer and ToolBox. Several important

areas of functionality have been designed into the foundational toolbox structures and

modules, but have not been fully implemented. This section discusses limitations and

suggested future enhancements of NPSPD.

A. Limitations

1. Interactive user specification of actuator detail

All aspects of an actuator should be accessible to the user without having to leave

the NPSPD environment. Currently only the parameters common to all actuators (size,

label, etc.) can be customized using the Actuator Manager. Future versions of NPSPD

should have an editor that is detail-specific, i.e. one that displays different parameters

depending on the basic type of the actuator.

2. UNDO key for the last action

All actions, with a few minor exceptions, should be reversible. Major actions that

cannot be reversed, such as deleting or clearing a workspace, should prompt the user for

confirmation. Currently the NPSPD prompts the user prior to deleting or clearing a

workspace. However it does not have an UNDO capability.

3. Complete help

On-line, case sensitive help is essential for even the simplest applications. NPSPD

currently provides the user on-line help, but it is not case sensitive and it is general in

content. An improved help facility should be developed in future versions.

4. Identify a grouping of actuators

It is frequently necessary to modify two or more actuators in the same way.

Examples include moving, sizing, changing color schemes, etc. Currently NPSPD has no

84

such capability, and incorporating it would greatly simplify the designer's task. Grouping

could be temporary or permanent, depending on the purpose.

5. Continued development of basic actuators

This version of NPSPD provides a multitude of basic actuators, but work should

be continued to develop more. Additional types might include a text editor incorporated

within the fileview actuator, an expanded listview actuator that provides more

functionality, etc.

6. Smart Exit/Overwrite

The user should be protected from losing work. This currently can occur if the user

exits NPSPD without saving the current workspace(s). It can also occur when workspaces

are opened or read from an intermediate file into an existing workspace that has not been

saved. Future versions of NPSPD should prompt the user before such actions are

completed.

7. Additional actuators partially implemented

Frame, scroll, and cycle actuators have only been partially implemented. Further

development work is needed to complete these versatile, but complex controls.

B. Future Directions

This thesis documents many general aspects of user interfaces. It also discusses in

detail our attempt to simplify interface design, implementation and testing. The following

describes several applicable topics that should be explored in more detail.

1. Efficiency Considerations

The logic of the NPSPD was designed with efficiency as the major goal. Panels

and actuators are only drawn when needed due to a change in their appearance, and the time

taken to process panels and actuators was minimized as much as possible. The goal was to

make the CPU time needed to process and draw the interface panels insignificant as

compared to the processing time of the application.

Future work should include benchmark tests for each of the different types of

actuators. These tests would provide designers with general guidelines as to the relative

85

time needed to process and/or draw each of the different actuators. Interfaces could then be

designed with these times in mind.

2. NPSPD Design Considerations

The decisions we made in designing the look and feel of the NPSPD were not

discussed in detail. Topics such as the default color scheme, the standard size of actuators,

the functionality of individual actuators, etc., should be explored in depth. We made design

decisions based on our experiences and our research. Future students will undoubtedly

bring with them many new experiences and could very well improve upon our work.

3. Portability Considerations

The NPSPD was designed for a specific hardware. An object-oriented

programming style was used to modularize the code, but all of the graphics system calls

were targeted for the IRIS Window Manager operating system on the SGI workstations.

Future work might include looking into porting it to other platforms such as Sun

workstations.

86

X. CONCLUSIONS

The need within the military for effective, flexible and configurable command and

control workstations will continue to motivate research into real-time information

presentation. The effectiveness of an entire system depends on the user interface's ability

to transform data into information and its ability to clearly and simply provide a means to

control system operation. Because high quality interface software is costly in time and

money, designers will rely on automated development environments that speed and

simplify user interface implementation.

The NPS Panel Designer and ToolBox represents the fruit of two man-years of

research. Beginning as a tool to assist in the design of a new command and control

workstation, it quickly developed into a project of its own. Features and enhancements

added during the implementation phase helped to make NPSPD a useful and powerful

automated development environment.

Interfaces designed with NPSPD are being used in the development and testing of the

Autonomous Underwater Vehicle simulator as well as other simulation projects at the

Naval Postgraduate School. Also, NPSPD will be used to support interface design and

testing in graphics courses taught at NPS. The applications that are using interfaces

developed with the NPSPD have been a tremendous aid in finalizing this version. They

have demonstrated many of the capabilities of NPSPD and have identified a few

shortcomings.

Students utilizing NPSPD have found it to be easy to use and very flexible. Interface

designs can be quickly developed and tested, and then just as quickly fine-tuned. The code

generated by the NPSPD is well documented and provides all of the necessary entry points

for integration of the interface into an application. The ToolBox functions available to the

designer are also well documented and provide a wide range of options for manipulating

the interface panels and actuators. Most importantly, processing of the interface panels and

actuators is very efficient, saving precious CPU cycles for the target application.

87

Another strength of the Panel ToolBox is the ease with which additional details may

be added to existing actuators or entirely new actuators may be added to the ToolBox. The

modular design of the initialization, processing and drawing functions allows easy

modification. For example, the single pen stripchart was converted to allow an optional

second pen by adding the mode constant for a dual pen mode, the second chart array, and

the few lines of code in the stripchart processing and drawing functions.

We hope that the maintenance and improvement of the NPS Panel Designer and

ToolBox will continue. If so, it is a tool that can and will be used for a long time. The cost

of software development makes NPSPD a valuable tool.

88

APPENDIX A

NPS PANEL DESIGNER AND TOOLBOX
USER'S GUIDE

Introduction and Purpose

The NPS Panel Designer and ToolBox (NPSPD) is an automated development
environment that enables design, implementation, modification and testing of customized
graphical user interfaces. Pre-designed controls called actuators are provided in the Panel

ToolBox and can be placed on a workspace panel, then sized and moved as desired until a

final interface layout is developed. The layout can be saved in an intermediate ASCII file

for later editing. NPSPD includes automatic generation of compilable source code which
can stand alone or be integrated quickly into a developer's application.

Although an object oriented language such as C++ was not used in the design and
implementation of the Panel ToolBox, an object oriented approach was used. Distinct

abstract data types for the basic actuator and all detailed actuators are defined. Functions

are provided to access actuator parameters, details and values.

User

The user is expected to be a systems designer/programmer concerned with application

user interfaces. The user should be familiar with the Silicon Graphics Inc. (SGI) IRIS/4D
series graphics workstations, operating system and graphics language library as well as the

C programming language.

Environment

NPS Panel Designer and ToolBox is designed for use during implementation of

application software for SGI IRIS workstations. NPSPD produces compilable C-language

source code which can be used in any appropriate application or as a stand-alone program.

User's Guide Organization

Following this introduction, we provide six sections. The Getting Started section

discusses in general terms the NPSPD environment and its various components. The
Control section describes how to move around the screen and control the functions and

operations available in the NPSPD. The Tools section describes in detail how to effectively

use each tool and operation available in the design environment. The Modifying Panels and

Actuators section discusses the panel and actuator parameters that can be customized. The

Source Code Generation and Application Linking section discusses methods of integrating

an interface designed with the NPSPD into graphical applications. Finally, the Compilation

section presents an example of the instructions required to compile the interface source

code produced by NPSPD. In several places in this User's Guide, the reader is referred to

the NPSPD Reference Manual for further information.

89

Suggestions, questions and identification of bugs within the NPS Panel Designer and

ToolBox are welcomed. Send such comments to:

Dr. Michael J. Zyda

Naval Postgraduate School

Department of Computer Science

Code CS/Zk
Monterey, CA 93943
zyda@cs.nps.navy.mil

General NPS Panel Designer Usage -- Getting Started

Several files support the operation of NPSPD: npspd, npspd.code and npspd_man.*.

The developer should include the Panel ToolBox directory in his working directories path.

NPS Panel Designer is started by typing "npspd" at the UNIX system prompt or selecting

the npspd executable icon in the IRIS Workspace. The NPSPD copyright notice is

displayed while the Palette and workspace are initialized. When NPSPD is ready for the

developer's use, the copyright notice will be removed.

The NPSPD environment, shown in Figure A.l, consists of a Palette of actuators and

one or more workspace panels. The opening NPSPD copyright panel remains displayed

during the initialization sequence, approximately 3 seconds.

Figure A.l Opening Layout of NPSPD

90

Palette and Actuators

The Palette, depicted in Figure A.2, presents all of the actuators provided by the Panel

ToolBox for development of user interfaces. The representations for the Buttons, Dials and
Sliders are default versions of each of those actuators. All other actuators are made
available via labeled selection buttons.

[;.HHHffil

ISUt. &
x> » v> • si

Figure A.2 NPSPD Palette

In the lower portion of the Palette, the Workspace Status Display presents the name
and size of the current workspace, the status of workspace auto-alignment and layout grid

size, the location in panel coordinates of the mouse cursor, and the location and size of the

current actuator on the current workspace. These fields provide continual readouts of layout

information useful to the developer.

ToolBox actuators include: momentary buttons, toggle buttons, horizontal and vertical

sliders, dials, menus, file-views, list-views and directory-views, custom frames, outline

boxes, type-in and type-out fields, meters and stripcharts. Table 1 presents a complete list

91

box meter

button scroll

cycle slider

dial slideroid

dirview stripchart

fileview title

frame typein

listview typeout

menu

Table I TooIBox Actuators

of the basic types of TooIBox actuators. The NPSPD Reference Manual provides a detailed

description of each actuator.

A basic actuator abstract data-type provides the foundation for all of the diverse

TooIBox actuators. Attributes are properties common to all actuators and are recorded in

the actuator base structure. Attributes include location and size, value, minimum and

maximum values allowed, label, value display format, etc. Each actuator adds unique

details to the basic attributes. Details are recorded in a detail structure specific to each

different actuator and allow for variation of appearance and function within types of

actuators. As an example, the details associated with a Dial include the shape (CIRCLE or

RECTANGLE), the number of major and minor tics on the Dial face, and the fine control

factor. The NPSPD Reference Manual presents a complete description of actuator

attributes.

Workspaces and Panels

Within NPSPD, a workspace is any one of the set of panels onto which the developer

positions actuators. It is the blank slate on which the developer designs the user interface.

Other panels such as the Palette, Actuator Editor, Color Editor, Panel Editor, etc. are a part

of NPSPD but are not available as workspaces.

When NPSPD is initiated, a single workspace panel is presented. Any number of

additional workspace panels may be created and modified to participate in the interface

under development. All workspaces may be cleared or deleted according to the developers

desires. Each workspace panel exactly represents the user interface panel generated by the

code generator. Functionality must be included by the application developer.

Control

NPSPD supports three means of interaction control: direct manipulation using the

mouse, feature selection using the keyboard and feature selection using pop-up menus. The
mouse provides control of interface layout, actuator placement and actuator modification.

Functions keys and selected special keys of the keyboard provide the primary means for

selection of design tools, editors and managers. Pop-up menus provide an alternate means
of selection.

92

Mouse

The mouse consists of the on-screen cursor and the mouse control unit with its optical

sensor, reference pad and three selection buttons. The mouse-cursor is displayed as an

arrow in the Palette and as a cross inside all workspace panels. "Left-mouse", "middle-

mouse" and "right-mouse" refer to the left, middle and right mouse buttons, respectively,

in conjuction with the mouse-cursor position. The location of the mouse determines the

current panel and current workspace.

Left-mouse: The left-mouse controls the operation of actuators (e.g., toggle buttons,

slide sliders, or set dials). Left-mouse down activates an actuator and its associated host

panel, or the panel only if the mouse-cursor is not on an actuator. Left-mouse up de-

activates the actuator and/or the associated panel. The left-mouse functions both within

NPSPD and within generated user interfaces.

Middle Mouse: The middle-mouse selects an actuator as current within an NPSPD
workspace or the Palette. Pressing and releasing the middle-mouse selects an actuator.

Pressing and holding the middle-mouse moves or re-sizes an actuator. The middle-mouse

functions only within the NPSPD environment and NOT within generated user interfaces.

Right-mouse: The right-mouse controls menu selections. Pressing the right-mouse

within any workspace pops up the NPSPD main menu of tools, editors and managers.

Positioning and releasing the right-mouse while the desired choice is high-lighted activates

NPSPD processing associated with that menu choice. The right-mouse functions both

within NPSPD and within generated user interfaces.

Keyboard

NPSPD provides direct access to all of its tools, editors and managers via function keys

as described in Table n. Experienced developers speed the development process by use of

the function keys rather than the pop-up menu system. NPSPD includes both in keeping

with the flexibility requirements of an effective user interface. The insert, delete and

backspace keys are active to provide direct actuator copy and delete functions on a

workspace. The control key (Ctrl) modifies the behavior of some actuators to yield a fine

control operation. Escape provides direct exit from the Panel Designer.

Menu

NPSPD provides alternate access to design tools and features via pop-up menus. Table

HI presents the NPSPD menu selection hierarchy. Upon pressing the right-mouse button

within any workspace, NPSPD presents the main menu. Sub-menus appear as the

developer makes a roll-off selection.

Current Workspace and Actuator

NPSPD denotes the workspace on which the mouse-cursor is located as the current

panel and the current workspace. Design tool and editor actions take effect in the current

workspace. If the mouse-cursor is on the Palette or outside of all of the panels, there is no
current panel or current workspace.

Each NPSPD panel may have one actuator selected and designated as the current

actuator. Selection via the middle-mouse button displays a white high-light oudine around

the body of the actuator. NPSPD references the current actuator of the Palette when adding

new actuators to a workspace using the middle-mouse button.

93

Fl On-line Help Manager
F2 Actuator Auto-alignment

F3 Layout Grid Display

F4 Layout Grid Size

F5 Create New Workspace
F6 Clear Current Workspace
F7 Delete Current Workspace
F8 Panel Editor

F9 Actuator Editor

F10 Color Editor

Fll Intermediate File Manager
F12 Source Code Generation Manager
Insert Copy the current workspace actuator if any

Delete Delete the current workspace actuator if any

Backspace Delete the current workspace actuator if any

Ctrl Fine control of actuator value

Esc Exit NPS Panel Designer

Table II NPSPD Keyboard Functions

Main Menu Selections: Sub-menu Selections:

Layout Tools...

Auto Align On/Off
Layout Grid On/Off

Set Grid Size

Workspace Tools...

Create new Workspace
Clear Current Workspace
Delete Current Workspace

Panel Editor

Actuator Editor

Color Editor

File Manager
Code Generation

Quit

Table HI NPSPD Menu Selections

94

Workspace Status Display

The lower quarter of the palette, as illustrated in Figure A.2, presents workspace status

information concerning the NPS Panel Designer environment.

File: The File field identifies the current workspace by the title associated with it. This
is especially useful when multiple workspace panels are in development.

Panel Width and Height: The Panel Width and Height fields present the width and
height of the current panel in screen relative units (pixels).

Align: The Align field presents the status ('ON' or 'OFF') of Auto- alignment for the

current workspace.

Grid Size: The Grid Size field presents the grid interval spacing in panel relative units.

Mouse X and Y: The Mouse X and Y fields present the X and Y coordinates of the

mouse cursor in panel relative units. The reference point (0,0) is the origin of the current

panel, the lower left corner.

Actuator X and Y: The Actuator X and Y fields present the X and Y coordinates of the

origin of the current actuator in panel relative units. The origin of each actuator is its lower

left corner and the reference point for this position is the host panel origin. These fields are

useful to position actuators in the same location on separate workspaces or to line up
actuators along a common axis within a workspace.

Actuator W and H: The ActuatorW and H fields present the width and height of the

current actuator in panel relative units.

Tools

The NPSPD provides the user several tools to aid in customizing interface designs.

They are broken down into Workspace Tools, Actuator Tools, Environment Tools and

Editing and Management Tools. Tools can be invoked by using the specified key or by
using the pull down menu.

Workspace Tools

Create New Workspace (F5 key) enables the user to place and size a new workspace

panel. Clear Workspace (F6) clears (deletes) any actuators from the current workspace and

resets the environment tools to their default values. Delete Workspace (F7) deletes the

current workspace. The Clear Workspace and Delete Workspace operations prompt the

user to confirm the action before it is completed.

Actuator Tools

Copy Actuator (Insert key) copies the current actuator in the current workspace. The
copy is placed to the right of and above the original a distance equal to the original's width

and height, respectively. This tool is especially useful for producing copies of customized

actuators. It can also be used to add to a group of radio buttons. Delete Actuator (Delete

key) deletes the current actuator on the current workspace. Actuators may be moved and

resized on a workspace by placing the mouse-cursor on the actuator and holding the left-

mouse button down. Figure A. 3 maps the selection areas associated with each actuator

body to the resulting NPSPD modification.

95

c B C

B A B

C B C

A - move the actuator.

B - resize by moving the selected side.

C - resize by moving the two selected sides.

Figure A.3 NPSPD Actuator Move/Resize Areas

Environment Tools

AutoAlign (F2) aligns the reference position of all actuators on the current workspace

to the current grid. When this tool is enabled, as indicated in the Workspace Status Display,

the reference point of actuators will be moved to the nearest grid intersection corresponding

to the current grid size. All subsequent actuators created, moved or resized on the

workspace will be aligned similarly. The default state is disabled. Grid Display (F3)

displays a grid in the current workspace to help in positioning actuators visually. The
default state is off. Grid Size (F4) enables the user to set the size of the grid in the current

workspace. The default grid size is 25 pixels. The Grid Size selected for each workspace
applies to both AutoAlign and Grid Display. AutoAlign and Grid Display are independent

of each other in each workspace, and the environment tools for each workspace are

independent of other workspaces.

Editing and Management Tools

The Panel Editor (F8 key) enables the user to interactively modify workspace panels.

Figure A.4 is an example of the Panel Manager window. The first typein across the top of

the window is used to attach a comment to the panel. This comment will be saved in the

intermediate file when the workspace is saved. The second typein is used to change the title

of the panel. Changes to this field will be reflected in the title bar of the workspace that is

being edited.

The next group of typeins on the left side of the window are used to set the location

and size of the panel. Changes to any of these parameters are immediately reflected in the

panel. Below the panel location inputs are four typeins that are used to modify the world
coordinates of the panel. These values only take effect if the panel is drawn in Screen

96

Figure A.4 Panel Editor

Relative mode. Across the bottom of the window are three typeins that enable the user to

set the panel's color table, scale factor and grid size.

On the right side of the window are nine sets of radio buttons. These buttons, which

can be either ON or OFF, are used to set various flags for the panel. Refer to the User's

Manual for a complete explanation of each flag and its meaning.

Finally in the bottom right corner of the window are two buttons. The Accept button is

used to make any changes to the panel's parameters permanent. The Cancel button is used

to undo any changes made to the panel in the current editing session and restore it to its

previous state. Pressing either of these buttons completes the panel editing session and

closes the window.

The Actuator Editor (F9 key) enables the user to interactively modify the basic

attributes of actuators. Figure A.5 is an example of the Actuator Manager window.

The first typein across the top of the window is the actuator comment field. Comments
entered in this typein will be saved in the actuator's permanent comment field in the

intermediate file when the actuator's host panel is saved. Below the comment typein is the

label typein. This field is used to specify the label for the actuator.

97

jR-frctoivtor Manager ''•**' *" • ' -f***~-?

i„.MiWMh.m»i l

.-^-.^.-..^..^--^^^.

Figure A.5 Actuator Editor

Directly below the label typein are two buttons. The first is marked Label and it is used
to control the location of the label string. The second is marked Value and it controls the

location of the value output string. The position of these strings is determined by selecting

one of the 16 position buttons directly below these two buttons. The 13 relative position

buttons surrounding the box are defined as default positions. If a fixed position is desired,

either the Fixed button or the Fixed - Center button is selected. The fixed position is then

set by entering the appropriate x and y coordinates in either the Label Location typeins or

the Value Location typeins.

The actuator's position and size are set with the Actuator Location typeins. The initial,

minimum and maximum values associated with the actuator are set with the appropriate

typeins in the lower left side of the window.

The format of the value output string is set by entering the appropriate Unix format
string in the Value Format typein. The font factor for the label and value strings is set with
the Label and Value Font Factor typeins, respectively. Finally, the color table for the

actuator is set with the Color Table typein.

The Accept button in the lower right side of Figure A.5 is used to make any
modifications to the actuator permanent. The Cancel button is used to undo any changes

98

made to the actuator in the current editing session and restore it to its previous state.

Pressing either of these buttons completes the editing session and closes the window.

The Color Editor (F10 key) enables the user to interactively modify the color of panel

backgrounds and individual actuator parts. Figure A.6 is an example of the Color Manager
window. The NPSPD allows users to define up to eight custom color tables. Within each

Figure A.6 Color Editor

color table are 24 pre-defined panel and actuator colors. The first eight colors in the table

are the basic colors, such as black, white, red, etc. These colors can not be changed by the

user. The remaining 16 colors, defined as Panel Background, Actuator Body, etc. can be

modified using the Red, Green and Blue sliders. As these sliders are moved, the resulting

RGB color is displayed in the Color Box in the lower left corner of the window. The

corresponding color in the actuator or panel is also drawn, if applicable. When the desired

color is obtained, pressing the Store Current Color button will make the modification

permanent. This must be done for each modified color. Colors can be restored to their

default values at any time using the two Reset buttons as appropriate. The functionality of

the Accept and Cancel buttons is the same as the Actuator and Panel Managers.

The File Manager feature of the NPSPD enables the user to save and recall workspace

designs. NPSPD writes all of the pertinent information for a workspace to an ASCII file

called the intermediate file. This highly structured file enables the user to store and recall

uncompleted work, combine two or more separate designs, and modify designs manually

99

(outside of the NPSPD environment) by using any text-based editor. Figure A.7 is an

example of the File Manager window.

£> fti* Manager lHHf

Figure A.7 File Manager

The desired operation (Open, Read or Save) is selected by pressing the appropriate

button. Save is the default operation. Open Workspace deletes the Current Workspace and
creates all of the panels listed in the named intermediate file. Read Workspace adds the

contents of the first panel in the intermediate file to the Current Workspace and creates any
subsequent panels listed in the file. Save Workspace saves the contents of the Current

Workspace, if Current is selected, or all workspaces to the file specified in the Filename

typein. Save/Recall Custom Colors specifies whether to save custom color information to

the intermediate file during Save operations, or read custom color information during Open
and Read operations. The Current Workspace is specified using the Current Workspace
typein. The filename to open, read or save is specified using the Filename typein. Refer to

Appendix E for a sample intermediate file.

The Source Code Generation Manager (F12 key) enables the user to generate

compilable source code that corresponds to an interface design. Figure A.8 is an example
of the Code Manager windowThe Current Workspace typein contains the title of the

workspace that was current when the F12 key was pressed. Any valid workspace title can
be entered in this field. The default generation mode is for the current workspace only. This
can be changed by pressing the appropriate button (either Current or All). If Current is

selected, code will be generated for the workspace corresponding to the Current Workspace
field. If All is selected, code will be generated for all of the workspaces on the screen

regardless of the contents of the Current Workspace field. The name of the output files can
be any legal Unix file name, and does not have to be the same as one of the workspaces.

100

Figure A.8 Code Manager

The Information Manager displays to the user various messages during the NPSPD
session. It is opened by the system when an action by the user either causes an error or can
not be completed. It is closed by pressing the Continue button. Figure A.9 is an example of

the Information Manager window.

Figure A.9 Information Manager

The Help Manager (Fl key) is an extensive help facility. Figure A. 10 is an example of

the Help Manager window. The Help Manager contains a Fileview actuator which enables

the user to read the on-line manual. The manual is divided into sections as indicated by the

index on the first page of section one. The Help Manager panel may be moved to any

location on the screen and opened or closed as often as necessary. When the window is

closed its contents will be retained so that when it is next opened, the same page will be

displayed. The desired set of manual pages is selected by pressing the appropriate button.

101

Figure A.10 Help Manager

The user can scroll through the text using either the up and down arrow buttons or the scroll

bar on die Fileview. The Help Manager window is closed by either pressing the Fl key or

the Close button.

Modifying Panels and Actuators

Most actuator and panel attributes can be modified to produce a custom interface.

Basic parameters, such as location, colors, label, etc., can be interactively changed using

the tools covered previously in this manual. Detail parameters for actuators must be

changed in either the intermediate file or in the generated source code. Refer to the

Reference Manual for detailed explanations of this procedure.

Source Code Generation and Application Linking

One of the most powerful features of the NPSPD is its ability to generate source code
that corresponds to an interface design. Using the Code Manager, the developer generates

source code for the current workspace or all workspaces. The code may then be modified

to communicate with the application using clearly defined entry points. The modified code
is compiled and linked with the application, providing a custom interface.

There are two methods of integrating an interface designed with the NPSPD into an

application. The first method uses the framework of the code generated bv the NPSPD and
integrates the target application's control features using the entry points provided by the

NPSPD. This technique is recommended for users that are designing an application from
the beginning.

The second method involves integrating an interface designed with the NPSPD into an
existing application by discarding the bulk of the NPSPD code generated for the interface

102

and using only those functions necessary to initialize, control and draw it. This technique

integrates a graphical user interface into applications that either don't have one, or have one
that is considered inadequate.

Compilation

Figure A. 1 1 presents an example of the instructions required to compile the interface

source code produced by NPSPD. The Panel ToolBox library, npspanel.a, must be

available to the developer via an appropriate directory path as shown.

cc -o user_name User_Panel.c User_Panel_fn.c /nps_path/lib/npspanel.a

-Vnps_path/include -02 -align 16 -G -lc_s -lgl_s -lfm -lm

/nps_path is defined as the proper path to the NPS Panel ToolBox library.

/nps_path = /n/gravy 1/work/zyda/npspanel in the current release.

The resulting file 'user_name' may be executed.

Figure A.ll NPSPD Source Code Compilation

103

APPENDIX B

NPS PANEL DESIGNER AND TOOLBOX
REFERENCE MANUAL

Introduction

This manual is the reference manual for the data structures and functions of the NPS
Panel Designer TooLBox.

Reference Manual Organization

Following this introduction, we provide five sections. The General ToolBox Usage
section describes the essential information necessary to integrate the Panel ToolBox into an

application. The Panel and Abstract Data-type Definition section describes completely the

structure and purpose of the foundational data-types used in the ToolBox. The Actuator

Detail Specifications section describes each actuator provided by the ToolBox and the

specific access and processing functions related to the actuator. The ToolBox Function

Specifications section describes the general access, processing and control functions

provided by the ToolBox. Finally, the ToolBox Constants, Global Variables and Support
Structures section summarizes the constants, global interface support variables and
auxiliary structures provided by the ToolBox.

104

General ToolBox Usage

The NPSPD ToolBox provides a library of panel and actuator structures with the

access and control functions necessary to implement graphical user interfaces. The current

C implementation provides no object oriented method of isolating the support data

structures from the main program, but it is recommended that the provided access functions

be used rather than direct reference to the structures themselves. Both high level and low
level creation and management functions are provided for all of the actuators in the

ToolBox.

The ToolBox is designed so that default settings for the panels and actuators are

sufficient to build a basic interface. Modifications tailor the interface to the needs of the

application. Figure B. 1 presents an example of the creation and modification of a panel with

a single Dial actuator.

{

Panel *p; /* Temporary panel pointer */

Actuator *a; I* Temporary actuator pointer */

p = create_panel 0;
set_panel_location(p, 20, 56);

set_panel_size(p, 720, 534);

set_attribute(p, visible, TRUE);
set_attribute(p, fixed, FALSE);
set_panel_title(p, "User_Panel")*,

set_attribute(p, color_table, 1);

append_panel(p, Panel_List);

a = CTeate_actuator(dial);

set_actuator_location(a, 77.5, 119.5);

set_actuator_size(a, 75, 75, 2);

set_actuator_label(a, BOTTOM, 10, "Object Rotation Control");

set_attribute(a, activefunc, rotate_object);

set_detail(Dial, a, major_tics, 4);

set_detail(Dial, a, minor_tics, 1);

set_detail(Dial, a, winds, 1);

set_detail(Dial, a, finefactor, 0.1);

insert_actuator(a, p);

Figure B.l Creation and Modification Example

ToolBox data structure types and functions listed in the Panel and Abstract Data-type

Definition section are available to the programmer within the main routine. Several global

variables are made available for management of a panel based system.

105

A. Initialization Procedures

The Panel ToolBox requires several initialization steps to ensure proper operation.

Initialize_ToolBox() sets up the ToolBox environment, initializing global state variables,

panel management linked lists, the event queue, keyboard buffers, color tables, and fonts.

Panel and actuator creations and modifications follow. There is no initialization constraint

on either panels or actuators except that the host panel for each actuator must exist before

that actuator may be added. Figure B.2 presents the initialization code generated by

NPSPD.

void initialize mair>0

{

/* initialize panel environment */

initialize_ToolBoxO; 1* initialize NPS Panel ToolBox 7

initializejsanelsO; f* Initialize the control panels 7

initialize_actuatorsO; 1* create the actuators 7

initialize_colorsO; 1* initialize user defined colors 7

/* initialize all other aspects of main program. 7

user_init_queue();

user_init_menu();

user_init_cursorO;

user_init_overlayO;

f* initialize event graphics queue
/* initialize PanelDesigner menus
r initialize special cursors

1* initialize overlay planes & color

7
7
7
7

1* User define initializations are called via user_init_main. 7

user init mainO;

}

/* user defined main initializations 7

Figure B.2 NPSPD Initialization Sequence

B. Creation Procedures

The Panel ToolBox provides two functions for creation of default panels and default

actuators. Create_panel() t which requires no arguments, allocates and initializes a panel

lata structure. Create_actuator{), requires an initialization function as its single argument
jid allocates an actuator basic data structure and unique detail structure as required by the

initialization function. Both create functions return a pointer to the new object. Table I

presents a list of the initialization functions that may be used as an argument for

create_actuator().

C. Insertion Procedures

Once a panel is created, it must be inserted into PanelList, the linked list of panels
maintained by the ToolBox. Insert_panel() places the new panel at the head of the list

Append_panel() places the new panel at the tail of the list. The order of Panel List

106

basic dirview scroll

box fileview slider

buffer_act frame vbar_slider

button list_act vstrip_slider

simple_button listview hbar_slider

toggle_button menu hstrip_slider

radio_button arc_meter slideroid

arrow_button fiUed_arc_meter stripchart

double_arrow_button dial_meter dual_stripchart

label_button filled_dial_meter hstripchart

cycle vbar_meter vstripchart

dial vstrip_meter title

square_dial hbar_meter typein

round_dial hstrip_meter typeout

Table I ToolBox Actuator Initialization Functions

determines the order of panel processing and display. The linked list is traversed from head

to tail.

Likewise after an actuator is created, it must be attached to a panel or in some cases to

a parent actuator. Insert_actuator() and append_actuator() add the new actuator to a

panel's actuator list, at the head and tail respectively. Add_sub_actuator() inserts a

specified actuator into another actuator's sub-actuator list (sa). Sub-actuators are used by
several compound actuators including the Dirview, Fileview and Frame.

D. Modification Procedures

The Panel ToolBox provides a broad compliment of functions for modifying the

attributes and details of panels and actuators. The designer directly controls the appearance

and function of an interface by way of these modification functions. Modifications may be

made both before and after the panel or actuator is added to the interface.

Set_panel_location() and set_panel_size() position and size a panel.

Set_actuator_location() and set_actuator_size() position and size an actuator.

SetminvalueO and set_maxvalue() set limits on the value range for an actuator. The
NPSPD Reference Manual lists and discusses all of the ToolBox functions, their arguments

and their use. Two other general modification functions, set_attribute() and set_detail(),

are discussed below.

1. Set_attribute()

Each of the attributes maintained in a panel or an actuator base structure may be

modified using the set_attribute() function. As depicted in Figure B.l, the arguments for

the function call are the panel or actuator pointer, the attribute field name (e.g., visible and

activefunc), and the value to be assigned to that attribute. Although some attributes are

normally accessed and set by specialized functions such as set_actuator_size(), they may
also be set using the set_attribute() function. An exception applies to the string attributes,

107

title, label and valueJmt. These attributes must be set using the specialized functions

provided by the ToolBox, set_panel_title(), set_actuator_label() and set_value_format().

2. Set_detail()

Set_detail() provides the means to modify actuator detail parameters. The function call

requires four arguments: the actuator detail data-type, the actuator pointer, the detail field

name (e.g., majorjtics and minorjtics), and the value to be assigned to that detail field. A
specialized string function, set_detail_string(), provides the means to set an actuator detail

string field (e.g.,the Typein buf field).

3. Binding Modifications

Modifications made to panels and actuators may affect several other aspects of the

object. Fix_panel() andfix_actuator() ensure that all inter-related aspects of the object are

adjusted after modifications are completed. Fix functions are specific to each panel and

actuator, and they are automatically executed by the ToolBox when any of the insertion

functions are called. Normally modifications are made immediately following creation and

prior to insertion, thus binding is automatically ensured by the ToolBox. However,

modifications may be needed at other points in an application program, possibly in

response to user actions. After changes to the attributes of a panel, fix_panel() should be

explicitly called, and after changes to the attributes or details of an diCXMdXOT,fix actuator()

should be called.

E. Processing Cycle

A graphics application is normally structured with a main program loop that repeatedly

calls several functions. These functions typically include input processing, followed by

interface display update, followed by applications calculations and display update. Figure

B.3 presents the main function and processing support functions generated by NPSPD and

supported by the Panel ToolBox.

Control of the interface consists of processing the mouse, keyboard and other device

inputs in process_program_queue() and processing the interface panels and actuators

based on those inputs in process_panels(). The ToolBox manages the necessary state

variables for mouse position, button action and keyboard action. Reset ToolBox_Q() and

process_ToolBox_Q() manage the event queue with respect to the interface. Event tokens

are also passed to the application program via user_process_queue(). Processjpanels()
manages the selected panel and selected actuator ensuring that actuator state and value

reflect the user mouse and keyboard inputs.

F. Processing Techniques

The Panel ToolBox supports optional, developer defined action functions that are

executed during user activation of a panel and/or actuator. Panels and actuators have three

pointers that may be set to reference the developer defined functions. These three attributes

are downfunc, activefunc and upfunc. If they are assigned application functions, downfunc
executes once when the left-mouse button transitions down, upfunc executes once when the

left-mouse button transitions up, and activefunc executes each time process_panels() is

108

mainO

{

initialize_main(); 1* initialize main program */

forever { /* Panel main loop */

control_program(Panel_List);

draw_control_panels(Panel_List);

user_displayO;

)

/* process controls and queue
/* draw user control panels & acts

/* handle to call user functions

*/

*/

*/

i

void controLprogram

(

PanelList *panel list

)

1* Control program operation */

1* specified panel Ust */

{

process_program_queueO;

process_panels(panel list);

}

/* Process the graphics event queue
/* Control panels based on user input

*/

*/

void process_program_queue /* Process graphics event queue */

l

short TOKdevice,
TOKvalue;

1* Graphics event queue device token
/* Graphics event queue token value V

reset_ToolBox_QO; /* Prepare TooIBox for input process */

while (qtestO) {
/* Process all tokens available •/

TOKdevice = qread(&TOKvalue);
1* Standard TooIBox input processing

process_ToolBox_Q(Panel_List, TOKdevice, TOKvalue);
*/

switch(TOKdevice) (
/* User Program specific Q processing */

case RIGHTMOUSE:
if (TOKvalue= DOWN

)

user_process_menuO;
break;

/* Right Mouse Controls Menus
/* on TransitionDown process menu
/* User defined menu processor

*/

*/

*/

} /* end switch */

/* User defined queue function receives all TOKENs processed. */

user_process_queue(TOKdevice, TOKvalue);

} 1* end while qtestO */

}

Figure B.3 NPSPD Processing Functions

109

called in the application main loop. These function references provide a powerful control

link for the interface developer.

The state of each panel and the state and value of each actuator is available to the

application program. State testing functions including is_active(), is_yisible(),

is_selectable() and testjlagi) return a Boolean result. State flags may be altered under

application control using the set_attribute() function or the more specific setjlag() and

clearJlagO functions. Set_value() and get_yalue() modify and access an actuator's value.

Special effects may be produced by selectively controlling a panel's or actuator's state,

particularly the visible and selectable flags. Set_panel_invisible() and set_panel_visible(

)

provide the means to build an effective multi-panel interface.

G. Display Considerations

The Panel ToolBox manages the display of all interface panels and actuators. Drawing
occurs only when a change of state or value necessitates an update of the appearance.

Actuators are drawn in the reverse order of the host panel's actuator linked list. Thus if two
actuators overlap, the one inserted closest to the head of the panel's list is drawn on top.

The ToolBox provides eight modifiable color tables to support multi-color interface

designs. Each panel and actuator references one of the color tables as specified by the

colorjable attribute. Changing the colorjable index or directly modifying the color tables

using define_color_table() under application control can produce useful effects in the

interface.

H. Efficiency Considerations

The Panel ToolBox optimizes processing and drawing algorithms so as not to degrade
real-time applications. Panels and actuators each have their own set of specific variables

that allow them to be customized for a particular use. For example, panels can be designed

so that they are only visible when they are needed, saving screen space and CPU cycles.

Similarly actuators can be designed so that they are not selectable, effectively making them
output devices (e.g., a Dial, which is normally an input device, can be configured to display

the output of a function or operation).

A panel is re-drawn completely only when required by a move or re-size action. During
other processing and drawing cases, only those actuators which have been altered and those

which have been specifically designated for redraw are drawn. The ToolBox determines
visibility and need for redraw at high levels within its hierarchical program flow and
prevents excess low level processing when it is not required. The ToolBox processes only
the selected panel, if any. While processing panels, the selected actuator on each panel, if

any, and the actuators requiring automatic processing are processed.

110

Panel and Actuator Abstract Data-type Definition

Panel Abstract Data-Type Definition

The NPS Panel ToolBox provides two foundational abstract data types, Panel and
Actuator. This section specifies the attributes of a Panel object.

typedef struct panel_type {

long id;

long gid;

long redraw_cnt;

long act_redraw;

char comment;

Boolean visible;

Boolean selectable;

Boolean popable;

Boolean active;

Boolean fixed;

Boolean

Boolean
border,

screen_relative;

Boolean zbuffer,

Boolean autoalign;

Boolean griddraw;

long x, y, w, h;

Coord wl, wr, wb, wt, wn, wf;

Object vobj;

float ppu;

float scale_factor,

Coord gridsize;

char title[MAX_STR_LEN+l];
Link_list *keyboard_buffer,

long color_table;

/* Unique panel identifier

/* MEX window identifier for panel

/* Count of required redraws

/* True if any actuator needs redraw
/* Description of panel

/* Panel visible?

/* Panel selectable?

/* Panel popable when moused?
/* Panel active or not?

/* Panel fixed or variable size?

/* Include border?

/* World coords are screen relative?

/* Z-buffer is on?
/* Auto alignment to grid?

/* Panel grid displayed?

/* Origin of panel, width and height

/* World coordinate system
/* Object holding world coord trans

/* Pixels per unit of world distance

/* Scale factor for all actuators

/* Grid size for this panel

/* Panel title

/* Pointer to panel's keyboard buffer

/* Index of color table for panel

/* Function reference pointers

void (*initfunc)(struct panel_type*);

void (*delfunc)(struct panel_type*, struct panel_list_type*);

void (*fixfunc)(struct panel_type*);

void (*downfunc)();

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

111

void (*activefunc)();

void (*upfunc)();

void (*drawfunc)(struct panel_type*);

void (*bkgndfunc) (struct panel_type*);

void (*dumpfunc)(stmct panel_type*);

struct actuator_type

*al_head,

*al_tail,

*ca;

struct list_node_type

*al_auto;

struct panel_type

} Panel;

'prior,

'next;

/* Actuator list head
/* Actuator list tail

/* Current actuator for panel

/* List of acts with auto processing

/* Pointer to prior panel

/* Pointer to next panel

*/

*/

*/

*/

*/

112

Actuator Abstract Data-Type Definition

typedef struct actuator_type
{

long

long

long

long

Device

char

Boolean

Boolean

Boolean

Coord
float

float

long

char

float

Coord
long

float

float

char

float

Coord
long

void

void

void

void

void

Boolean

void

void

void

void

void

void

void

id;

group_id;

type;

redraw_cnt;

key;

comment;

active;

visible;

selectable;

x, y, w, h;

bw;

scale_factor;

color_table;

label[MAX_STR_LEN+l];
label_font_factor,

lx, ly, lw, lh, lbx, lby;

Llocation;

/* Unique actuator identifier

/* Group identifier number
/* Actuator type

/* Count of required redraws

/* keyboard equivalent if any

/* Description of actuator

/* Actuator active or not?

/* Actuator displayed or not?

/* Actuator selectable or not?

/* Location, size in world coords

/* Bevel width in world coords

/* Scale factor for sub-actuators

/* Index of color table for actuator

/* Actuator label

/* Scale factor for label font

/* Label loc, width, height & border

/* Relative location for label disp.

val, initval; /* Current value and reset value

minval, maxval; /* Minimum and maximum value for act

value_fmt[MAX_FMT_LEN+l];/* Format string for value display

value_font_factor, /* Scale factor for value font

vx, vy, vw, vh, vbx, vby; /* Value loc, width, height & border

v_location; /* Relative location for value disp.

/* Function reference pointers

initfunc)(struct actuatorjype);

addfunc)(struct actuator_type,struct panel_type*);

addsubfunc)(struct actuator_type,struct actuator_type*);

delfunc)(struct actuator_type);

fixfunc)(struct actuator_type);

pickfunc)(structactuator_type,Coord,Coord);

newvalfunc)(struct actuator_type,Coord,Coord);

processfunc)(struct actuator_type);

downfunc)(struct actuator_type);

activefunc)(struct actuator_type);

upfunc)(struct actuator_type);

drawfunc)(struct actuator_type);

dumpfunc)(struct actuatorjype*);

*/

*/

*/

*/

*/

*/

*/

*/

*/

•/

*/

*/

*/

*/

*/

*/

*/

*/

•/

*/

*/

*/

113

Void *detail;

long detail_size;

Void *user_data;

Panel *panel;

struct actuator_type

*pa,

*prior,

next,

*ga,

*sa,

*ca;

} Actuator,

/* Pointer to actuator detail data */

/* Size of actuator detail struct. */

/* Pointer to User specific data. */

/* Pointer to host panel */

/* Pointer to host {parent} actuator •/

/* Pointer to prior act of host list */

/* Pointer to next actuator of panel */

/* Pointer to group-actuator ring */

/* Pointer to sub-actuator list */

/* Pointer to current sub-actuator */

114

Panel and Actuator Attribute Field Definitions:

For each attribute field name, the following information is provided:

field name followed by attribute data type {in braces),

abstract data type to which the attribute field belongs,

attribute definition and use, and
additional references.

act_redraw {long}

Panel field:

Act_redraw records whether or not any of the Panel's Actuators needs to be

redrawn to bring the display up to date in both the front and back buffers. It is set

at the same time an Actuator's redraw_cnt is set by set_redraw(). It is cleared

when all of the Actuators are displayed correctly. This field permits the Panel

ToolBox to efficiently minimize overhead when no Actuator needs to be drawn.

see also:

redraw_cnt, set_redraw().

active {Boolean}

Actuator field:

Active is TRUE when the Actuator is selected with the left mouse button or a key

equivalent and for as long as the left mouse button or key equivalent is down.
When the button is release, active is reset to FALSE. Newvalfunc uses this state

variable to properly determine Actuator value or to reset it to its non-selected

appearance.

Panel field:

Active is TRUE when the left mouse button is pressed while inside the boundary

of the Panel. An Actuator need not be selected.

see also:

key_equivalent, newvalfunc.

activefunc {function pointer}

Actuator field:

Activefunc is one of three Actuator action function pointers. If defined by the

User, activefunc is called once each main processing cycle as long as the selected

Actuator is active. It is supplied with a pointer to the selected Actuator when it is

called.

Panel field:

Activefunc is one of three Panel action function pointers. If defined by the User,

activefunc is called once each main processing cycle as long as the selected Panel

is active. It is supplied with a pointer to the selected Panel when it is called.

see also:

downfunc, upfunc.

115

addfunc {function pointer}

Actuator field:

Addfunc is one of five Actuator modification function pointers. If defined for an

Actuator, addfunc is called to provide specialized initialization during the process

of adding the Actuator to a Panel.

see also:

addsubfunc, delfunc, fixfunc, initfunc, "Modification Functions".

addsubfunc {function pointer}

Actuator field:

Addsubfunc is one of five Actuator modification function pointers. If defined for

an Actuator, addsubfunc provides specialized initialization during the addition of

a sub-actuator to its parent. It is called by add_sub_actuator() after basic

initialization of the sub-actuator.

see also:

addfunc, add_sub_actuator(), delfunc, fixfunc, initfunc, "Modification

Functions".

al_auto { List_node*

}

Panel field:

Al_auto is the head pointer of the list of Actuators that require automatic

processing during each cycle of process_panels(). An Actuator is added to al_auto

by fix_actuator() if the Actuator has a defined processfunc.

see also:

fix_actuator(), processfunc.

al_head { Actuator*

}

Panel field:

Al_head is the head pointer of the doubly linked list of Actuators that belong to

the Panel. An Actuator is added to the head of the list by insert_actuator() or to the

tail of the list by append_actuator().

see also:

al_tail, append_actuator(), insert_actuator(), next, prior.

al_tail {Actuator*}

Panel field:

Al_tail is the tail pointer of the doubly linked list of Actuators that belong to the

Panel. An Actuator is added to the head of the list by insert_actuator() or to the tail

of the list by append_actuator().

see also:

aljiead, append_actuator(), insert_actuator(), next, prior.

116

autoalign {Boolean}

Panel field:

Autoalign is a special Panel field used by the Panel Designer to control auto

alignment of Actuators to the specified grid interval for that Panel. Autoalign is

TRUE when Actuators are to be aligned to the Panel Designer grid.

see also:

griddraw, gridsize.

bkgndfunc (function pointer}

Panel field:

Bkgndfunc is one of two Panel display function pointers. If defined for a Panel,

bkgndfunc provides a User designed background for the Panel. It is called by
draw_panel() after the background is cleared when the Panel has been marked for

redraw.

see also:

drawfunc.

border {Boolean}

Panel field:

Border controls whether the Panel is created with or without an IRIS window
manager border. Default setting is TRUE.

bw {Coord}

Actuator field:

Bw is the Actuator bevel width in Panel coordinates. Positive bw will cause the

Actuator to appear raised, negative bw will cause it to appear recessed, and zero

bw will produce no bevel. The displayed and pickable dimensions of the Actuator

are increased by the absolute value of bw.

see also:

pickfunc, PICKACTO, h, x, y, w.

ca {Actuator*}

Actuator field:

Ca is a reference pointer to an Actuator's current Actuator. Maintenance and use

of the ca field is the responsibility of each Actuator. It usually provides a reference

to the sub-actuator being operated with the mouse.

Panel field:

Ca is a reference pointer to a Panel's current Actuator. It provides a reference to

the Actuator being operated with the mouse.

117

color_tabIe {long}

Actuator field:

Color_table indicates which of the global color tables is to be used to draw the

Actuator. The default color table is 0.

Panel field:

Color_table indicates which of the global color tables is to be used to draw the

Panel. The default color table is 0.

see also:

set_actuator_color(), set_panel_color().

comment {char*}

Actuator field:

Comment is a special reference used by the Panel Designer to allow an optional,

User specified comment to be associated with each Actuator in the intermediate

file when it is saved.

Panel field:

Comment is a special reference used by the Panel Designer to allow an optional,

User specified comment to be associated with each Panel in the intermediate file

when it is saved.

delfunc {function pointer}

Actuator field:

Delfunc is one of five Actuator modification function pointers. If defined for an

Actuator, delfunc is called by delete_actuator() to provide specialized data

structure deletion during the process of deleting the Actuator from a Panel. It is

called prior to deletion of the detail and basic data structures.

Panel field:

Delfunc is one of three Panel modification function pointers. If defined for a

Panel, delfunc is called by delete_panel() to provide specialized data structure

deletion during the process of deleting the Panel from a list of Panels. It is called

after deletion of all of the Actuators associated with the Panel.

see also:

addfunc, addsubfunc, fixfunc, initfunc, "Modification Functions",

delete_actuator(), delete_panel().

detail {Void*}

Actuator field:

Detail provides a pointer to the Actuator's specific detail data structure. An
Actuator allocates memory and assigns values to the detail parameters during

execution of its initfunc. Each Actuator inherits all of the attributes of the base

118

class Actuator and adds specific details, if any. Values within the detail structure

may be referenced using the ACCESS () macro, the set_detail() macro, or by
declaring an auxiliary detail pointer.

example:

(three methods to set the same detail parameter)

Actuator *a = create_actuator(button);

Button *ad = (Button*)a->detail;

ACCESS (Button, a, shape) = RECTANGLE;
set_detail(Button, a, shape, RECTANGLE);
ad->shape = RECTANGLE;

see also:

ACCESSO, detail_size, initfunc, set_detail().

detail_size {long}

Actuator field:

Detail_size is the size in bytes of the Actuator-specific detail data structure. It is

set by initfunc and may be used to determine the amount of data to transfer when
copying an Actuator.

see also:

detail, initfunc.

downfunc {function pointer}

Actuator field:

Downfunc is one of three Actuator action function pointers. If defined by the User,

downfunc is called once when the left mouse button transitions down selecting the

Actuator. It is supplied with a pointer to the selected Actuator when it is called.

Panel field:

Downfunc is one of three Panel action function pointers. If defined by the User,

downfunc is called once when the left mouse button transitions down selecting the

Panel. It is supplied with a pointer to the selected Panel when it is called.

see also:

activefunc, upfunc.

drawfunc {function pointer}

Actuator field:

Drawfunc is a pointer to the Actuator's drawing routine which renders the

graphical representation of the Actuator in the IRIS bitplanes. It is initialized

during execution of initfunc and it is called by draw_actuator().

Panel field:

Drawfunc is one of two Panel display function pointers. If defined for a Panel,

drawfunc provides a User designed drawing algorithm for the Panel. It is called

119

by draw_panel() if the Panel is visible and if redraw is required or an actuator has

changed appearance. If drawfunc is not defined, a default drawing algorithm is

used which calls the drawfuncs for each Actuator.

see also:

draw_actuator(), draw_panel(), initfunc.

dumpfunc {function pointer}

Actuator field:

Dumpfunc is a pointer to an Actuator specific function that is called to dump the

values of the detail data structure. If defined, it is called in conjunction with the

generalize dump_actuator() function when saving all Actuator parameters to a

User specified file. [Note. None of the Actuator dumpfuncs have been defined in

this release.]

Panel field:

Dumpfunc is a pointer to a User defined, specialized function that is called to

dump the values of the user_data structure. If defined, it is called in conjunction

with the generalized dump_panel() function when saving all Panel parameters to

a User specified file.

fixed {Boolean}

Panel field:

Fixed controls whether or not the Panel is fixed (TRUE) or variable sized

(FALSE). Default setting is FALSE.

fixfunc { function pointer

}

Actuator field:

Fixfunc is one of five Actuator modification function pointers. If defined for an

Actuator, fixfunc is called by fix_actuator() to provide specialized correction to

the Actuator's size and appearance after changes have been made to any of its

parameters.

Panel field:

Fixfunc is one of three Panel modification function pointers. Ifdefined for a Panel,

fixfunc is called by fix_panel() to provide specialized correction to the Panel after

changes have been made to any of its parameters or to Actuator locations or sizes.

see also:

addfunc, addsubfunc, delfunc, fix_actuator(), fix_panel(), initfunc, "Modification

Functions".

ga {Actuator*}

Actuator field:

Ga is a pointer used to implement a ring of Actuators which are associated within

a group. Actuators are grouped to allow them to modify one another's value when
any of them are active, (e.g. Radio buttons use the group ring to unset any other
4

on' button within the group when one is selected. An Actuator is added to a group

120

on a Panel based on its group_id by either add_actuator_to_group() or

reset_groups(). It may be removed from its associated group using

remove_from_group ()

.

see also:

add_actuator_to_group(), group_id, remove_from_group(), reset_groups().

gid {long}

Panel field:

Gid is the IRIS window manager graphics id for the window within which the

Panel is drawn.

griddraw {Boolean}

Panel field:

Griddraw is a special Panel field used by the Panel Designer to control drawing of

the alignment grid in the background of the Panel. When Griddraw is TRUE the

alignment grid is drawn as part of the Panel background.

see also:

autoalign, gridsize.

gridsize {long}

Panel field:

Gridsize is a special Panel field used by the Panel Designer to control the size of

the alignment grid for the Panel. Gridsize may be set to any value. Panel Designer

provides gird size menu selections of 5, 10, 25, 50, 75 and 100 units.

see also:

autoalign, griddraw.

group_id {long}

Actuator field:

Group_id is used to associate Actuators on a Panel within a group ring. Actuators

are grouped to allow them to modify one another's value when any of them are

active. An Actuator is added to a group with matching group_ids by either

add_actuator_to_group() or reset_groups(). It may be removed from its associated

group using remove_from_group().

see also:

add_actuator_to_group(), ga, remove_from_group(), reset_groups().

121

h {Coord in Actuator, long in Panel field}

Actuator field:

H is the height of the Actuator in Panel relative coordinates. Bevel width (bw) is

outside of height. H may be changed at any time to alter the displayed height of

the Actuator. Fix_actuator() should be called after such a change.

Panel field:

H is the height of the Panel in screen relative units (pixels). H does not include

pixels used to draw the IRIS window manager border if one is included. H may be

changed at any time to alter the displayed height of the Panel. Fix_panel() should

be called after such a change.

see also:

x, y, w, bw, fix_actuator(), fix_panel().

id {long}

Actuator field:

Id is a unique identification number provided by the Panel ToolBox to each

Actuator at the time of its creation. Default id's are negative so that the User may
a use different meaningful constants if desired.

Panel field:

Id is a unique identification number provided by the Panel ToolBox to each Panel

at the time of its creation. Default id's are negative so that the User may a use

different meaningful constants if desired.

see also:

create_actuator(), create_panel().

initfunc {function pointer)

Actuator field:

Initfunc is one of five Actuator modification function pointers. It is called by
create_actuator() to provide initialization specific to each type of Actuator.

Initfunc is passed to create_actuator() as a parameter to facilitate easy addition of
new types of Actuators to the Panel ToolBox.

Panel field:

Initfunc is one of three Panel modification function pointers. If defined, it is called

by fix_panel() to provide User designed initialization related to that Panel.

see also:

addfunc, addsubfunc, create_actuator(), delfunc, fix_panel(), fixfunc,

"Modification Functions".

122

initval {float}

Actuator field:

Initval provides an optional, User specified initial value for each Actuator. It is

used by Actuator fixfuncs to reset the val field. Default value, which depends on
the particular Actuator, is usually the minval.

see also:

fixfunc, minval, maxval, val.

key {long}

Actuator field:

Key is an optional, User specified identifier for a device to be used as an Actuator

key equivalent. If key is defined, Insert_actuator() and append_actuator() queue
the appropriate device. Pressing the key is the same as mouse activation with the

left mouse button.

see also append_actuator(), insert_actuator().

keyboard_buffer {KeyList pointer}

Panel field:

Keyboard_buffer is a reference pointer to an optional linked-list character buffer

used by the Panel to accept input from the keyboard. If initialized by

initialize_keyboard_buffer() and activated by activate_keyboard(),

keyboard_buffer will receive all character input from the keyboard that is not

explicitly directed by cursor position into an active Typein Actuator. The
character input may be processed by test_list() and next_char().

see also:

activate_keyboardO, de_activate_keyboard(), initialize_keyboard_buffer(),

next_char(), test_list(), Typein.

Mocation {long}

(Actuator field} L_location is a constant which indicates the relative position of the

Actuator's label field as depicted in Figure A.l. If ljocation is positive, the label

is displayed with a background box and if Mocation is negative, the label is

displayed without a background box. Zero in Mocation prevents label display.

L_location may take on any of the following values:

LABEL.OFF

BOTTOM_LEFT 1 NB BOTTOM LEFT -1

BOTTOM 2 NB BOTTOM -2

BOTTOM RIGHT 3 NB BOTTOM RIGHT -3

RIGHT LOWER 4 NB RIGHT LOWER -4

RIGHT 5 NB RIGHT -5

RIGHT UPPER 6 NB RIGHT UPPER -6

TOP RIGHT 7 NB TOP RIGHT -7

TOP 8 NB TOP -8

123

TOP LEFT 9 NB TOP LEFT -9

LEFT UPPER 10 NB LEFT UPPER -10

LEFT 11 NB LEFT -11

LEFT LOWER 12 NB LEFT LOWER -12

CENTER 13 NB CENTER -13

FIXED 14 NB FIXED -14

FIXED CENTER 15 NB FDCED CENTER -15

000
221

13 m

00
Figure B.l Label Locations

FIXED and NB_FTXED are special constants that allow the User to explicitly

specify label position using lx, ly, lw, lh, lbx, and lby. The ToolBox will only

adjust lw and lh so that the background box will fully include the label.

FTXED_CENTER and NB_FIXED_CENTER arc similar to FIXED with the

added property that the text of the label will be centered within the User specified

label area.

see also:

compute_label_location(), compute_location(), set_actuator_label(),

set_label_location(), set_label_size(), lx, ly, lw, lh, lbx, lby.

label {string}

Actuator field:

Label is an optional, User specified string which appears near the Actuator in a
location specified by Mocation.

see also:

ljocation, set_actuator_label(), set_label_location(), set_label_size(), lx, ly, lw,

lh, lbx, lby.

label_font_factor { float

}

Actuator field:

Label_font_factor specifies the scaling factor which is applied to the Actuator's

label font. The scaling is approximately equal to an equivalent point size (e.g.

124

label_font_factor = 12.0 approximates display of label text in a 12 point font). Any
non-negative font_factor is allowed, although reasonably usable font_factors

range from 8.0 to 120.0.

lbx {Coord}

Actuator field:

Lbx is the x direction border offset in Panel relative coordinates of the Actuator's

label (i.e. the space between the label background box boundary and the text of

the label). It is recalculated after changes by fix_actuator().

see also:

lx, ly, lw, lh, lby, fix_actuator().

Iby {Coord}

Actuator field:

Lby is the y direction border offset in Panel relative coordinates of the Actuator's

label (i.e. the space between the label background box boundary and the text of

the label). It is recalculated after changes by fix_actuator().

see also:

lx, ly, lw, lh, lbx, fix_actuator().

lh {Coord}

Actuator field:

Lh is the height in Panel relative coordinates of the Actuator's label, including the

background box. It is recalculated after changes by fix_actuator().

see also:

lx, ly, lw, lbx, lby, fix_actuator().

Iw {Coord}

Actuator field:

Lw is the width in Panel relative coordinates of the Actuator's label, including the

background box. It is recalculated after changes by fix_actuator().

see also:

lx, ly, lh, lbx, lby, fix_actuator().

lx {Coord}

Actuator field:

Lx is the x location in Panel relative coordinates of the Actuator's label. The label

is positioned relative to the Actuator's origin (lower left corner).Lx is recalculated

after changes by fix_actuator().

see also:

ly, lw, lh, lbx, lby, fix_actuator().

125

ly {Coord}

Actuator field:

Ly is the y location in Panel relative coordinates of the Actuator's label. The label

is positioned relative to the Actuator's origin (lower left corner). Ly is recalculated

after changes by fix_actuator().

see also:

lx, lw, lh, lbx, lby, fix_actuator().

maxval (float)

Actuator field:

Maxval is the maximum value that an Actuator may take in its val field. For

continuous Actuators, such as Dials or Sliders, maxval is the upper limit on the

value of the Actuator. For discrete Actuators, such as Buttons, val is set to maxval

when the Actuator is selected or 'ON'.

minval (float)

Actuator field:

Minval is the minimum value that an Actuator may take in its val field. For

continuous Actuators, such as Dials or Sliders, minval is the lower limit on the

value of the Actuator. For discrete Actuators, such as Buttons, val is set to minval

when the Actuator is not selected or 'OFF'.

newvalfunc (function pointer)

Actuator field:

Newvalfunc is one of three Actuator control function pointers. If defined,

newvalfunc is called within process_actuator() when an Actuator is first selected

with the mouse or key-equivalent, and it is repeated called each processing cycle

as long as the Actuator is selected. Newvalfunc computes the Actuator's state and
value based on cursor position relative to Panel or Parent-Actuator's origin. When
the mouse button or key-equivalent is released, newvalfunc is called a last time to

return the Actuator to its in-active state and value.

see also:

pickfunc, processfunc, process_actuator(), val.

next (Actuator* in Actuator, Panel* in Panel field)

Actuator field:

Next provides the forward link in a Panel's list of Actuators (aljiead) or a Parent-

Actuator's list of Sub-Actuators (sa). When an Actuator is added to or removed

126

from a Panel or Parent-Actuator, next is appropriately managed by
insert_actuator(), append_actuator(), add_sub_actuator(), extract_actuator(), and
delete_actuator().

Panel field:

Next provides the forward link in a list of Panels (e.g. Panel_List which is

managed by the Panel ToolBox). A Panel is added to a specified list by
insert_panel() or append_panel() and removed by delete_panel().

see also:

al_head, al_tail, Panel_List, prior, sa, append_actuator(), insert_actuator(),

add_sub_actuator(), extract_actuator(), delete_actuator(), append_panel(),

insert_panel(), delete_panel().

pa {Actuator*}

Actuator field:

Pa provides a reference to the Parent-Actuator of each Sub- Actuator. Pa is NULL
is the Actuator is not a Sub-Actuator. Pa is managed by add_sub_actuator().

see also:

add_sub_actuator().

panel {Panel*}

Actuator field:

The panel field provides a reference to the host Panel for each Actuator. Sub-

Actuators reference the same host Panel as their Parent- Actuator.

see also:

append_actuator(), insert_actuator().

pickfunc {function pointer}

Actuator field:

Pickfunc is an optional one of three Actuator control function pointers. If defined,

pickfunc provides the algorithm for determining if the Actuator is selected by the

cursor position and left mouse button. If not defined, an efficient default algorithm

is used which compares cursor location to Actuator boundary. If the pick

algorithm returns TRUE then the Actuator becomes the Selected_Actuator.

see also:

newvalfunc, processfunc, Selected_Actuator

popable {Boolean}

Panel field:

Popable controls whether or not the Panel is "popped" by the Panel ToolBox when
it is selected using the cursor and left mouse button. Default setting is FALSE.

127

ppu {float}

Panel field:

Ppu is the number of pixels per unit dimension in the Panel relative coordinate

system. It is used to normalize pixel oriented dimensions (e.g. string widths) in

terms of Panel relative coordinates. Ppu is calculated by fix_panel().

see also:

fix_panel()

prior {Actuator* in Actuator, Panel* in Panel field}

Actuator field:

Prior provides the reverse link in a Panel's list of Actuators (al_tail or a Parent-

Actuator's list of Sub-Actuators (sa). When an Actuator is added to or removed

from a Panel or Parent-Actuator, prior is appropriately managed by

insert_actuator(), append_actuator(), add_sub_actuator(), extract_actuator(), and

delete_actuator()

.

Panel field:

Prior provides the reverse link in a list of Panels (e.g. Panel_List which is managed

by the Panel ToolBox). A Panel is added to a specified list by insert_panel() or

append_panel() and removed by delete_panel().

see also:

aljiead, al_tail, Panel_List, next, sa, append_actuator(), insert_actuator(),

add_sub_actuator(), extract_actuator(), delete_actuatorO, append_panel(),

insert_panel(), delete_panel().

redraw_cnt {long}

Actuator field:

Redraw_cnt records the number of times an Actuator must be drawn to bring the

display up to date. When an Actuator changes its state or value, redraw_cnt is set

to two (2) indicating that both the front and back buffers are incorrect with respect

to the Actuator. Redraw_cnt is set using set_redraw(), usually during execution of

the Actuator's newvalfunc or processfunc. Set_redraw() also sets the act_redraw

field for the host Panel to indicate that at least one Actuator on the Panel must be

redrawn. Drawing functions will draw the Actuator only if redraw_cnt is greater

than zero, and as the Actuator is drawn in each buffer, redraw_cnt is decremented.

Compound Actuators properly set the redraw_cnt for their Sub-Actuators to

ensure complete drawing. User code may force a redrawing of any Actuator by
using set_redraw().

Panel field:

Redraw_cnt records the number of times a Panel must be redrawn to bring the

display up to date after being reshaped or moved or when the background has been

disturbed. Redraw_cnt is set to two (2) indicating that both the front and back

buffers are incorrect with respect to the Panel and its background. As the Panel is

128

completely redrawn, redraw_cnt is decremented. If a Panel's redraw_cnt is greater

than zero, every Actuator on the Panel is also redrawn. User code may force a

redrawing of a Panel by using set_redraw().

see also:

act_redraw, drawfunc, newvalfunc, processfunc, set_redraw().

sa { Actuator*

}

Actuator field:

Sa is a reference pointer to an Actuator's optional list of Sub-Actuators. Sub-

Actuators are added to the head of an Actuator's sa list by add_sub_actuator() and

are linked through their prior and next fields.

see also:

prior, next, addsubfunc, add_sub_actuator()

scale_factor {float}

Actuator field:

Scale_factor is a scaling factor which is applied to all Sub- Actuators of an

Actuator when drawn. The default scale_factor is 1 .0.

Panel field:

Scale_factor is a scaling factor which is applied to all Actuators of a Panel when
drawn. The default scale_factor is 1.0.

screen_relative {Boolean}

Panel field:

Screen_relative controls whether or not the Panel is created with a coordinate

system that is screen relative. If screen_relative is TRUE, wl, wb, wn and wf equal

0.0, wr equals w and wt equals h for the Panel. If screen_relative is FALSE, then

the Panel coordinate system must be defined by the User. Screen_relative may be

changed during execution as long as fix_panel() is called after the change. Default

setting is TRUE.

see also:

wl, wr, wb, wt, wn, wf, fix_panel()

selectable {Boolean}

Actuator field:

Selectable controls whether or not the Actuator may be selected and controlled

using the mouse cursor and left button. Setting selectable FALSE causes the

Actuator to be drawn with a striped overlay. Default setting is TRUE.

Panel field:

Selectable controls whether or not the Panel and its Actuators may be selected and

controlled using the mouse cursor and left button. Setting selectable FALSE
causes the Panel to be drawn with a striped overlay. Default setting is TRUE.

129

title {string}

Panel field:

Title is an optional character string which appears in the title bar of the Panel's

window if border is set TRUE.

see also:

border

type {long}

Actuator field:

Type indicates what the Actuator is. Type is set by each Actuator's initfunc to one

of the following constant values:

BASIC 5

BOX 10

BUFFER ACT 60

BUTTON 20

CYCLE 30

DIAL 40

DIRVIEW 50

FILEVIEW 70

FRAME 80

LIST ACT 90

LISTVIEW 190

MENU 100

METER 110

SCROLL 120

SLIDER 130

SLIDEROID 140

STRIPCHART 150

TITLE 160

TYPEIN 170

TYPEOUT 180

see also:

"Actuator Descriptions".

upfunc {function pointer}

Actuator field:

Upfunc is one of three Actuator action function pointers. If defined by the User,

downfunc is called once when the left mouse button transitions up de-selecting the

Actuator. It is supplied with a pointer to the selected Actuator when it is called.

Panel field:

Upfunc is one of three Panel action function pointers. If defined by the User,

upfunc is called once when the left mouse button transitions up de-selecting the

Panel. It is supplied with a pointer to the selected Panel when it is called.

see also:

activefunc, downfunc.

130

user_data {Void*}

Actuator field:

User_data is a reference pointer to an optional, User defined data structure for the

Actuator.

v location {long}

(Actuator field} V_location is a constant which indicates the relative position of the

Actuator's value field as depicted in Figure A.2. If v_location is positive, the value

is displayed with a background box and if v_location is negative, the value is

displayed without a background box. Zero in v_location prevents value display.

V_location may take on any of the following values:

LABEL.OFF

BOTTOM LEFT 1 NB BOTTOM LEFT -1

BOTTOM 2 NB BOTTOM -2

BOTTOM RIGHT 3 NB BOTTOM RIGHT -3

RIGHT.LOWER 4 NB RIGHTLOWER -4

RIGHT 5 NB RIGHT -5

RIGHT UPPER 6 NB RIGHT UPPER -6

TOP RIGHT 7 NB TOP RIGHT -7

TOP 8 NB TOP -8

TOP LEFT 9 NB TOP LEFT -9

LEFT UPPER 10 NB LEFT UPPER -10

LEFT 11 NB LEFT -11

LEFT_LOWER 12 NB LEFT LOWER -12

CENTER 13 NB CENTER -13

FTXED 14 NB FIXED -14

FIXED CENTER 15 NB FIXED CENTER -15

000
Lo]

13

m
000

Figure B.2 Value Locations

131

FIXED and NB_FIXED are special constants that allow the User to explicitly

specify value position using vx, vy, vw, vh, vbx, and vby. The ToolBox will only

adjust lw and lh so that the background box will fully include the value.

FTXED_CENTER and NB_FIXED_CENTER are similar to FIXED with the

added property that the text of the value will be centered within the User specified

value area.

see also:

compute_value_location(), compute_location(), set_actuator_format(),

set_value_location(), set_value_size(), vx, vy, vw, vh, vbx, vby.

val {float}

Actuator field:

Val contains the current value of an Actuator. It is set by the Actuator's

newvalfunc or processfunc, or may be set directly by the User. Val is initially set

to initval by fix_actuator() and is limited by minval and maxval. For continuous

Actuators (e.g. Sliders), val will range any where between minval and maxval, and

for discrete Actuators (e.g. Buttons), val is set to maxval when the Actuator is

selected or 'ON' and to minval when it is de-selected or 'OFF'. Set_redraw()

should be called after val is directly changed by User code.

see also:

initval, maxval, minval, set_redraw(), newvalfunc, processfunc.

value_fmt {string}

Actuator field:

Value_fmt is a string which is use to format the display of an Actuator's value.

Format characters are standard as specified by the ANSI C printf function.

Value_fmt may be set using set_value_format(). Default value_fmt is "%-+#4.2f

'

which displays the value left justified with sign, decimal point and 2 digits after

the decimal point.

see also:

set_value_format().

value_font_factor { float

}

Actuator field:

Value_font_factor specifies the scaling factor which is applied to the Actuator's

value font The scaling is approximately equal to an equivalent point size (e.g.

value_font_factor = 12.0 approximates display of value numerals in a 12 point

font). Any non-negative font_factor is allowed, although reasonably usable

font_factors range from 8.0 to 120.0.

132

vbx {Coord}

Actuator field:

Vbx is the x direction border offset in Panel relative coordinates of the Actuator's

value (i.e. the space between the value background box boundary and the value
string). It is recalculated after changes by fix_actuator().

see also:

vx, vy, vw, vh, vby, fix_actuator().

vby {Coord}

Actuator field:

Vby is the y direction border offset in Panel relative coordinates of the Actuator's

value (i.e. the space between the value background box boundary and the value

string). It is recalculated after changes by fix_actuator().

see also:

vx, vy, vw, vh, vbx, fix_actuator().

vh {Coord}

Actuator field:

Vh is the height in Panel relative coordinates of the Actuator's value display,

including the background box. It is recalculated after changes by fix_actuator().

see also:

vx, vy, vw, vbx, vby, fix_actuator().

visible {Boolean}

Actuator field:

Visible controls whether or not the Actuator is drawn on the host Panel. Use
fix_actuator() after explicitly changing the visible field. Default setting is TRUE.

Panel field:

Visible controls whether or not the Panel is displayed. Setting visible FALSE or

calling set_panel_invisible() will close the Panel's IRIS window making the Panel

invisible. Setting visible TRUE or calling set_panel_visible() will create and

initialize an IRIS window for the Panel and draw the Panel. Use fix_panel() after

explicitly changing the visible field. Default setting is TRUE.

see also:

fix_actuator(), fix_panel(), set_panel_invisible(), set_panel_visible().

vobj {graphics object}

Panel field:

Vobj is a IRIS graphics object containing the viewing transformation in effect for

the Panel. It is used by the Panel ToolBox to map a screen relative mouse cursor

position into Panel relative coordinates.

133

vw {Coord}

Actuator field:

Vw is the width in Panel relative coordinates of the Actuator's value display,

including the background box. It is recalculated after changes by fix_actuator().

see also:

vx, vy, vh, vbx, vby, fix_actuator().

vx {Coord}

Actuator field:

Vx is the x location in Panel relative coordinates of the Actuator's value display.

The value display is positioned relative to the Actuator's origin (lower left corner).

Vx is recalculated after changes by fix_actuator().

see also:

vy, vw, vh, vbx, vby, fix_actuator().

vy {Coord}

Actuator field:

Vy is the y location in Panel relative coordinates of the Actuator's value display.

The value display is positioned relative to the Actuator's origin (lower left corner).

Vy is recalculated after changes by fix_actuator().

see also:

vx, vw, vh, vbx, vby, fix_actuator().

w {Coord in Actuator, long in Panel field}

Actuator field:

W is the width of the Actuator in Panel relative coordinates. Bevel width (bw) is

outside of width.W may be changed at any time to alter the displayed width of the

Actuator. Fix_actuator() should be called after such a change.

Panel field:

W is the width of the Panel in screen relative units (pixels). W does not include

pixels used to draw the IRIS window manager border if one is included. W may
be changed at any time to alter the displayed width of the Panel. Fix_panel()

should be called after such a change.

see also:

x, y, h, bw, fix_actuator(), fix_panel().

wb {Coord}

Panel field:

Wb specifies the Panel relative coordinate system value for the bottom edge of the

Panel (negative y axis). It is set to 0.0 by the Panel ToolBox if screen_relative is

TRUE, and it must be set by the User if screen_relative is FALSE.

see also:

wl, wr, wt, wn, wf, screen_relative, fix_panel()

134

wf {Coord}

Panel field:

Wf specifies the Panel relative coordinate system value for the far extent of the

Panel (positive z axis). It is set to 0.0 by the Panel ToolBox if screen_relative is

TRUE, and it must be set by the User if screen_relative is FALSE.

see also:

wl, wr, wb, wt, wn, screen_relative, fix_panel()

wl {Coord}

Panel field:

Wl specifies the Panel relative coordinate system value for the left edge of the

Panel (negative x axis). It is set to 0.0 by the Panel ToolBox if screen_relative is

TRUE, and it must be set by the User if screen_relative is FALSE.

see also:

wr, wb, wt, wn, wf, screen_relative, fix_panel()

wn {Coord}

Panel field:

Wn specifies the Panel relative coordinate system value for the near extent of the

Panel (negative z axis). It is set to 0.0 by the Panel ToolBox if screen_relative is

TRUE, and it must be set by the User if screen_relative is FALSE.

see also:

wl, wr, wb, wt, wf, screen_relative, fix_panel()

wr {Coord}

Panel field:

Wr specifies the Panel relative coordinate system value for the right edge of the

Panel (positive x axis). It is calculated by the Panel ToolBox if screen_relative is

TRUE, and it must be set by the User if screen_relative is FALSE.

see also:

wl, wb, wt, wn, wf, screen_relative, fix_panel()

wt {Coord}

Panel field:

Wt specifies the Panel relative coordinate system value for the top edge of the

Panel (positive y axis). It is calculated by the Panel ToolBox if screen_relative is

TRUE, and it must be set by the User if screen_relative is FALSE.

see also:

wl, wr, wb, wn, wf, screen_relative, fix_panel()

135

x { Coord in Actuator, long in Panel field}

Actuator field:

X is the x location of the Actuator's lower left corner in Panel relative coordinates

within the host Panel or Parent Actuator. X may be changed at any time to alter

the displayed location of the Actuator. Fix_actuator() should be called after such

a change.

Panel field:

X is the x location of the Panel's lower left comer in screen relative units (pixels).

X may be changed at any time to alter the displayed position of the Panel.

Fix_panel() should be called after such a change.

see also:

y, w, h, bw, fix_actuator(), fix_panel().

y {Coord in Actuator, long in Panel field)

Actuator field:

Y is the y location of the Actuator's lower left corner in Panel relative coordinates

within the host Panel or Parent Actuator. Y may be changed at any time to alter

the displayed location of the Actuator. Fix_actuator() should be called after such

a change.

Panel field:

Y is the y location of the Panel's lower left comer in screen relative units (pixels).

Y may be changed at any time to alter the displayed position of the Panel.

Fix_panel() should be called after such a change.

see also:

x, w, h, bw, fix_actuator(), fix_panel().

zbuffer {Boolean}

Panel field:

Zbuffer controls whether or not the Panel is drawn using the IRIS zbuffer and a

mode of MSINGLE or MVIEWING. Setting zbuffer to TRUE initializes the

zbuffer, and sets the drawing mode to MVIEWING. Setting zbuffer to FALSE sets

the drawing mode to MSINGLE. Set_panel() appropriately sets the drawing mode
before any Panel is drawn based on this flag. Fix_panel() must be called after a

change to zbuffer. Default setting is FALSE.

see also:

fix_panelO-

136

Actuator Detailed Specifications

The NPS Panel ToolBox provides a wide variety of pre-designed user interface objects

called Actuators. Each has a distinct function and corresponding appearance. Most
Actuators may be selected and controlled using the mouse cursor and left mouse button

(referred to as the left-mouse). Several Actuators provide only a display of data and are not

directly controlled using the mouse.

Actuators provided in the ToolBox:

box menu
buffer_act meter

button scroll

cycle slider

dial slideroid

dirview stripchart

fileview title

frame typein

list_act typeout

listview

Summary of Actuator Function and Appearance

Box

Box provides a rectangular box with a user defined line width, foreground color and

background color. It may be used to visually group related Actuators, bound display

areas, divide Panels, etc. A Box background may be color filled or clear.

Buffer_act

Buffer_Act is a sub-actuator which is used in two standard Actuators: Fileview and

Typeout. The Buffer_Act takes a character string, or buffer, and displays it using a

fixed font size of 12 point and non-proportional spacing. Carriage returns and line

feeds are treated as new lines, and the default width is 80 columns.

Button

Button is a basic Actuator which has two states: 'ON' or 'OFF'. The ToolBox provides

three functional sub-types of button: simple which is 'ON' only when selected with the

left-mouse, toggle which swaps state with each left-mouse selection, and radio which

forms into a group with only the most recently selected button 'ON' and the others

'OFF'.

137

Cycle

Cycle is a compound Actuator which displays one of a set of sub-actuators that have

been added to it The User may advance through the list of sub-actuators by selecting

the cycle body outside of the displayed sub-actuator.

Dial

Dial is a basic actuator that provides a means for 360 degree selection and control. Its

face can be customized in terms of radius, number of tics and tic size. Its control

characteristics can be modified in terms of control mode (wrap or block), winds and

fine factor.

Dirview

Dirview is a compound actuator that provides a means to view the contents of a

directory and select a file. The current directory is displayed at the top of the Dirview.

The accept button copies the currently selected item to the user-defined target if the

item is a file name, or changes directories if it is a directory name. The reset button

returns the Dirview to the current working directory of the user.

Fileview

Fileview is a compound actuator that provides a means to select and view a file. The

default dimensions of the text buffer are 15 lines and 80 columns, with lines exceeding

the width of the text buffer automatically wrapped. The width and height of the

Fileview actuator can be re-sized. A user specified size limits the buffer size of the

displayed file (see Buffer_Act). The accept button is used to copy high-lighted text to

the user-defined target.

Frame

Frame is a compound Actuator used to group and display a set of sub-actuators.

Actuators added to and displayed within a Frame have theirown origin and scalefactor.

Manipulations applied to the Frame are passed on to the sub-actuators. For example if

the Frame is set as invisible or non-selectable, all of the sub-actuators become invisible

or non-selectable.

List_act

List_Act is a sub-actuator which is used in two standard Actuators: Dirview and
Listview. The List_Act List pointer is a linked list of user-defined items that is

constructed with the ToolBox functions create_list() and create_node().

Listview

Listview is a compound actuator that provides a means to view a list of user-defined

items. The default dimensions of the Listview are 10 lines (items) and 25 columns. The
currendy selected item is displayed at the top of the Listview and is stored in the

disp_name field. The add_item typein is used to add a new item to the list. The accept

button is copies the currently selected item to the user-defined target.

138

Menu

Menu is a basic actuator that provides a means to make a selection. The default layout

of a menu is one row and six columns, and this can be modified as necessary. The cell

size as well as the font factor can be modified.

Meter

Meter is a compound actuator that provides a means to display output. Types include

an arc meter, a dial meter, a horizontal bar meter and a vertical bar meter. The face of

the meter can be customized in terms of the number of tics and their size, and the size

of the mark. The limits of the meter can be displayed, and their format can be specified.

The value for each type can be displayed as a filled meter or as a standard mark. A
damping factor can be specified for all meter types.

Scroll

Scroll is a compound Actuator that groups a set of sub-actuators and provides the

means to scroll a relatively small display area across a larger Frame containing the sub-

actuators. Internally, the Scroll behaves the same as a Frame with the addition of

controlling sliders.

Slider

Slider is a basic actuator that provides continuous control of a value between two user-

specified limits. The current value is indicated by the position of the slider bar within

the rectangular body. The two types sliders provided are bar and strip. Orientation of

the body and control axis can be vertical or horizontal.

Slideroid

Slideroid is basic Actuator which provides continuous control of a single numeric

value. It allows differential control and absolute control of the value based on the

region that is selected with the left-mouse. The value display includes five significant

figures in the mantissa and a two figure exponent. A reset region resets the value to the

User specified initval. A set target region copies the current value to a specified target

if defined.

Stripchart

Stripchart is a basic actuator that provides a means to display a running history of

values. Up to two pens can run simultaneously on each chart.

Title

Title is a basic actuator that provides a means to display a string of characters. The font

size scales proportionately to the height of the title. The width is adjusted automatically

to ensure uniformity. Foreground and background colors can be modified.

Typein

Typein is a basic actuator that provides a means to accept input from the keyboard.

Multiple typeins are allowed, with each typein operating independently.

139

Typeout

Typeout is a compound actuator that provides the user a means to view any text-based

output. The default dimensions of the text buffer are 5 lines and 80 columns, with lines

exceeding the width of the text buffer automatically wrapped. A user specified size

limits the buffer size of the displayed text (see Buffer_Act).

Specific Details of Each Actuator

The following sub- section describes each actuator including the detail structure,

method of creation, appearance, function and use. The descriptions summarize any special

functions provided to access or control an actuator.

140

Box

typedef struct box.type
{

/* BOX actuator detail */

long line_width; /* Box outline line width */

long frgnd_color; /* Box outline color */

long bkgnd_color; /* Box background color */

} Box;

Creation:

create_actuator(box);

Description:

Box provides a rectangular box with a user defined line width, foreground color and

background color. It may be used to visually group related Actuators, bound display

areas, divide Panels, etc.

Appearance:

A rectangular polygon drawn with the line width specified in pixels, line color as

specified by the frgnd_color index, and background fill color as specified by the

bkgnd_color index. Default line_width is 2. Default frgnd_color is ACT_BORDER
(black). Default bkgnd_color is CLEAR (no fill is drawn).

Function: not selectable.

Value: none.

Special Functions: none.

Notes: none.

see also: Frame.

141

BufferAct

typedef struct buffer_act_type { /•

long mode; /

char *buf; /

char delimstr; /

long start; /

long dot; /

long mark; /

long col, lin; /

long len; /

long size; /

Coord ch; /

Coord cw; /

Coord cd; /

float newval; /

} Buffer.Act;

Creation:

create_actuator(buffer_act);

* BUFFER.ACT actuator detail

* Buffer.Act mode of operation

* text to be displayed
* auto 'word' selection delimiters

* first char to display (in upper-left)

* insertion point

* other end of selection region

* columns & lines in char positions

* number of chars in buffer

* buffer size in bytes

* character height in pixels

* character width
* character descender
* most recently set value for buffer.act

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Description:

Buffer_Act is a sub-actuator which is used in two standard Actuators: Fileview and

Typeout. The Buffer_Act takes a character string, or buffer, and displays it using a

fixed font size of 12 point and non-proportional spacing. Carriage returns and line

feeds are treated as new lines, and the default width is 80 columns. The Buffer_Act

provides six modes of control: BUF_ACT_FDCED constrains the buffer to a maximum
size, BUF_ACT_FREE allows an unlimited buffer size, BUF_ACT_NORMAL
provides a cursor and allows text in the buffer to be high-lighted,

BUF_ACT_NOCURSOR allows text to be high-lighted but does not provide a cursor,

BUF_ACT_NOREGION provides a cursor but does not allow text to be high-lighted,

and BUF_ACT_NOCONTROL provides only the buffer with no cursor and no high-

lighting of text. The variable delimstr can be used to specify delimiting characters so

that the cursor moves automatically from string to string.

Buffer.Act functional modes specified may be combined using 'or':

BUF_ACT_FIXED 0x01

BUF_ACT_FREE 0x02
BUF_ACT_NORMAL 0x04
BUF_ACT_NOCURSOR 0x08
BUF_ACT_NOREGION 0x10
BUF_ACT_NOCONTROL
(BUF_ACT_NOCURSOR I BUF_ACT_NOREGION)

142

Appearance:

A Buffer_Act is rendered as a rectangle with a negative bevel. Text is black against an

off-white background. The cursor is dark-blue, with underlying text intense white.

High-lighted text is intense white on a light-blue background.

Function:

The left-mouse is used to place the cursor in the text region. Holding down the left-

mouse and moving it high-lights text in the region. If the left-mouse is held down and

moved out of the text region, either above or below, the text will scroll in the

corresponding direction.

Value: none.

Special Functions:

add_to_buffer(Actuator*, char*) - appends text referenced by second argument to end

of buffer.

buffer_window_down(Actuator*) - move the Buffer_Act viewing window down one

line of text at a time causing text to appear to scroll up.

buffer_window_up(Actuator*) - move the Buffer_Act viewing window up one line of

text at a time causing text to appear to scroll down.

copy_buffer_all(Actuator*, char*) - copy the entire contents of the Buffer_Act buffer

to the destination referenced by the second argument User must ensure that

destination memory allocation is large enough.

copy_buffer_block(Actuator*, char*) - copy the contents of the high-lighted block of

text from the Buffer_Act buffer to the destination referenced by the second

argument User must ensure that destination memory allocation is large enough.

load_buffer(Actuator*, char*) - load Buffer_Act buffer with text referenced by second

argument replacing any previously existing text in the buffer.

Notes: none.

see also: Fileview, Typeout.

143

Button

typedef struct button_type {
/* BUTTON actuator detail */

long btype; /* Button sub-type */

long shape; /* Button shape */

long symbol; /* Symbol if defined */

float orientation; /* Button symbol orientation */

} Button;

Creation:

create_actuator(button);

create_actuator(simple_button)

;

create_actuator(toggle_button);

create_actuator(radio_button);

create_actuator(arrow_button);

create_actuator(double_arrow_button);

create_actuator(label_button)

;

Description:

Button is a basic Actuator which has two states: 'ON' or 'OFF*. The ToolBox provides

three functional sub-types of button: simple which is 'ON' only when selected with the

left-mouse, toggle which swaps state with each left-mouse selection, and radio which

forms into a group with only the most recently selected button 'ON' and the others

'OFF'.

Button functional sub-types (btype) are specified:

BUTTON_SIMPLE 21

BUTTON_TOGGLE 22

BUTTON.RADIO 23

Appearance:

A Button may be rendered as a circle or a rectangle as specified in shape:

CIRCLE
RECTANGLE 1

A Button may display one of several symbols on its face as specified by symbol:

NO SYMBOL
TOGGLE 1

ARROW 2

SINGLE ARROW 2

DOUBLE ARROW 3

LABEL 4

TOGGLE presents a highlighted X for rectangular Buttons and 'spot' for circular

Buttons which appears only when the Button is 'ON'. SINGLE_ARROW and
DOUBLE_ARROW present a single or double triangle as a directional symbol which

appears in an inverse color scheme when the Button is 'ON'. LABEL presents the text

of the Actuator label centered on the face and highlighted when the Button is 'ON'.

144

Orientation applies only to a Button with SINGLE.ARROW or DOUBLE_ARROW
specified for its symbol.

ARROW_UP 0.0

ARROW_RIGHT 90.0

ARROW_DOWN 180.0

ARROW_LEFT 270.0

Function:

A simple Button functions as a momentary contact switch which is 'ON' while selected

with the left-mouse and 'OFF' at all other times. A toggle Button retains its state and swaps

it ('OFF' to 'ON' or vice versa) once per selection.

A radio Button must be combined with other radio Buttons all having identical

group_ids to form a group. After creating one or more sets of radio Buttons having

common group_ids and adding them to a Panel, call reset_groups() to properly link the

groups together. An additional radio Button may be added to an existing group by

setting its group_id to that of the group and calling add_to_group(). A radio Button can

be removed from its group by calling remove_from_group().

Value:

Button val is maxval when 'ON' and minval when 'OFF'.

Special Functions:

is_button_on(Actuator*) - returns state of the specified Button, TRUE if 'ON' and

FALSE if 'OFF'.

Notes: none.

see also: group_id, reset_groups(), add_to_group(), remove_from_group().

145

/* CYCLE actuator detail

/* Cycle surrounding frame
/* Cycle member list

/* reference to prior shift button

/* reference to next shift button

*/

*/

*/

*/

*/

Cycle

typedef struct cycle_type {

Actuator *frame,

*member_list,

prior,

*next;

} Cycle;

Creation:

create_actuator(cycle);

Description:

Cycle is a compound Actuator which displays one of a set of sub-actuators that have

been added to it The User may advance through the list of sub-actuators by selecting

the cycle body outside of the displayed sub-actuator.

Appearance:

The Cycle is rendered as a rectangular enclosure large enough to surround the current

sub-actuator. Only the current sub-actuator is displayed within the Cycle frame. The
Cycle adjusts to accommodate changes in current sub-actuator size as it is advanced.

Function:

Sub-actuators are selected in the normal fashion. The current sub-actuator is advanced

when the Cycle is selected with the left-mouse button while the mouse-cursor is

outside of the current sub-actuator.

Value: assigned the value of the most recently actuated sub-actuator.

Special Functions:

add_member_to_cycle(Actuator* sa, Actuator* parent) - Add the sub-actuator

specified in the first argument to the parent Cycle specified in the second

argument. Both the Cycle and sub-actuator are fixed after the addition.

Notes: none.

see also: Frame, Scroll.

146

Dial

typedef struct dial_type
{

long shape;

Coord
long

long

float

float

float

float

long

float

float

float

} Dial;

r;

major_tics;

minor_tics;

tl.tw;

ml, mw;
theta, thetaset;

mintheta, maxtheta;

mode;

winds;

reference;

finefactor,

/*

/*

/*

/*

/*

/*

/*

DIAL actuator detail

Shape {CIRCLE or RECTANGLE)
Dial Radius

Number of major tics

No. of minor tics between each major

Tic mark length and width

Indicator mark length and width

/* Theta current value and reset value

/* Theta min and max for dial

/* Mode: wrap values or block ends
/* Number of revolutions min to max
/* Reference position for fine control

/* Fine control factor

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(dial);

Description:

Dial is a basic Actuator which has two modes as specified in mode:

DIAL_WRAP 0x01

DIAL.BLOCK 0x02

Wrap mode allows the value mark to be moved freely around the dial and cross through

the minval and maxval end points. Block mode causes the value mark to be restricted

in movement to the endpoints. Winds specifies the number of revolutions

corresponding to the value range from minval to maxval. Default winds = 1. Finefactor

specifies the reduced sensitivity factor to be applies when FineAdjust is selected.

Default finefactor = 0.1.

Appearance:

A Dial may be rendered as a circle or a rectangle as specified in shape:

CIRCLE
RECTANGLE 1

The number and size of tics are specified by the user. The size of the mark is also

specified by the user. The standard diameter of the face is 0.8 times the minimum of

the width and height of the dial.

Function:

The dial is activated with the left-mouse. Fine control is achieved either by using the

left-mouse and middle-mouse buttons together, or by using the left-mouse with a

control key.

147

Value:

The value of a dial is determined by the mark position between the specified endpoints.

Special Functions: none.

Notes: none.

148

Dirview

typedef struct

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

char

char

char

char

char

char

} Dirview;

dirview_type
{

*dir_list;

*accept;

*reset;

*scroll_bar;

*scroll_up;

*scroll_down;

file_name[];

disp_file_name[];

dir_path[];

disp_dir_path[];

user_filename[];

target;

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

LISTVIEW actuator detail

Directory List_Act pointer

accept string actuator pointer

delete string actuator pointer

Scroll bar actuator pointer

Scroll up arrow actuator pointer

Scroll down arrow actuator pointer

File name currently chosen

Displayed filename

Full directory path currently chosen

Displayed (truncated) directory path

Complete filename for user

/* Target for entry accept transfer

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(dirview);

Description:

Dirview is a compound actuator that provides a means to view the contents of a

directory and select a file. The Dirview actuator controls three types of basic actuators:

a List_Act (dir_list), a scroll_bar (scroll_bar), and buttons (accept, reset, scroll_up and
scroll_down). The default dimensions of the Dirview are 10 lines (entries) and 25

columns. The width and height of the Dirview actuator can be re-sized. The accept

button copies the currendy selected item to the user-defined target if the item is a file

name, or changes directories if it is a directory name. The reset button returns the

Dirview to the current working directory of the user. Item names that exceed the width

of the display (e.g. filenames complete with path specification) are truncated for

display purposes only, the complete name is stored in the data structure.

Appearance:

A Dirview is rendered as a rectangle with the scroll buttons and scroll bar on the left,

the List_Act region in the middle, and the accept and reset buttons along the bottom.

The current directory is displayed in a high-lighted box at the top of the Dirview above

the List_Act. In the List_Act region, directory entries are black against an off-white

background, and the currendy selected entry is intense white on a light-blue

background.

Function:

The left-mouse is used to place the cursor in the text region, scroll through the items

using the scroll buttons and the scroll bar, send the selected item to a target using the

accept button if the item is a file name, or else change directories if it is a directory

name, and reset the Dirview to the current working directory using the reset button.

Holding down the left-mouse and moving it in the text region scrolls through the list.

149

If the left-mouse is held down and moved out of the text region, either above or below,

the text will scroll in the corresponding direction.

Value: The current entry selection is maintained in the user_filename field.

Special Functions:

copy_dirview_entry(Actuator*, char*) - copy the current entry selection from

user_filename to the destination specified by the second argument. User must
ensure that destination memory allocation is large enough.

Accept Button - copies the current entry selection from user_filename to the

destination referenced by target field if entry is a file name, and changes directory

if entry is a directory.

Reset Button - resets the Dirview to the current working directory of the user.

Notes: none,

see also: List_Act, Listview

150

Fileview

typedef struct fileview_type
{

float newval;

Actuator *f_buffer;

Actuator *filename;

Actuator * accept;

Actuator *scroll_bar;

Actuator *scroll_up;

Actuator *scroll_down;

char * target;

} Fileview;

Creation:

create_actuator(fileview);

/*

/*

/*

/*

/*

/*

FILEVIEW actuator detail

most recently set value for fileview

buffer for file listing

filename typein actuator pointer

accept string actuator pointer

Scroll bar actuator pointer

/* Scroll up arrow actuator pointer

/* Scroll down arrow actuator pointer

/* Target for entry accept transfer

*/

*/

*/

*/

*/

*/

*/

*/

*/

Description:

Fileview is a compound actuator that provides a means to select and view a file. The
Fileview actuator combines four types of basic actuators: a buffer_act (f_buffer), a

typein (filename), a scroll_bar (scroll_bar), and buttons (accept, scroll_up and
scroll_down). The default dimensions of the text buffer are 15 lines and 80 columns,

with lines exceeding the width of the text buffer automatically wrapped. The width and
height of the Fileview actuator can be re-sized. A user specified size limits the buffer

size of the displayed file (see Buffer_Act). The accept button is used to copy high-

lighted text to the user-defined target.

Appearance:

A Fileview is rendered as a rectangle with the scroll buttons and scroll bar on the left,

the buffer_act text region in the middle, and the typein and accept buttons along the

bottom. In the text region, text is black against an off-white background, the cursor is

dark-blue with underlying text intense white, and high-lighted text is intense white on

a light-blue background.

Function:

The left-mouse is used to place the cursor in the text region, scroll through the text

using the scroll buttons and the scroll bar, send selected text to a target using the accept

button, and load a file using the typein. Holding down the left-mouse and moving it

high-lights text in the region. If the left-mouse is held down and moved out of the text

region, either above or below, the text will scroll in the corresponding direction.

Value: none.

151

Special Functions:

copy_fileview_block(Actuator*, char*) - copy the contents of the high-lighted block

of text from the buffer to the destination referenced by the second argument User

must ensure that destination memory allocation is large enough.

load_fileview(Actuator*, char*) - load the Fileview buffer with text from the file

specified by the second argument.

Notes: none.

see also: Buffer_Act, Typeout.

152

Frame

typedef struct frame_type
{

long

Coord

Coord

Coord

} Frame;

mode;
offx, offy;

minx, maxx,
miny, maxy;

margin;

/* FRAME actuator detail

/* Mode of Frame operation

/* Origin offset of Frame display

/* Bounding box for all sub-actuators

/* within Frame.

/* margin for Frame bounding box

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(frame);

Description:

Frame is a compound Actuator used to group and display a set of sub-actuators.

Actuators added to and displayed within a Frame have their own origin and scalefactor.

Manipulations applied to the Frame are passed on to the sub-actuators. For example if

the Frame is set as invisible or non-selectable, all of the sub-actuators become invisible

or non-selectable.

Appearance:

The Frame is rendered as a rectangular enclosure with a negative bevel. Any actuators

visible within the limits of the Frame are drawn.

Function:

Sub-actuators are selected and controlled in a normal fashion. The Frame itself may be

assigned action functions which will be processed after those of the selected sub-

actuator.

Value: assigned the value of the most recently actuated sub-actuator.

Special Functions:

add_member_to_frame(Actuator* sa, Actuator* parent) - Add the sub-actuator

specified in the first argument to the parent Frame specified in the second

argument. Both the Frame and sub-actuator are fixed after the addition.

Notes: none.

see also: Cycle, Scroll.

153

List Act

typedef struct list_act_type {
/* LIST_ACT actuator detail */

Linkjist *List; /* Specified List */

List_node *selected_node; /* Pointer to selected entry node */

/* Name of selected item */

/* Sequential number of selected item */

/* Total number of items in list */

/* Number of entries displayed in list */

/* Most recently set value for list */

/* Font factor for item display */

char selected_name[];

long selected_item;

long total_items;

long display_lines;

float newval;

float font_factor;

} List_Act;

Creation:

create_actuator(list_act);

Description:

List_Act is a sub-actuator which is used in two standard Actuators: Dirview and

Listview. The List_Act List pointer is a linked list of user-defined items that is

constructed with the ToolBox functions create_list() and create_node().

Appearance:

A List_Act is rendered as a rectangle with a negative bevel. The font size of the

displayed items can be defined by the user (font_factor). The text is black against an

off-white background. The currently selected item is high-lighted in dark-blue, with

underlying text intense white.

Function:

The left-mouse is used to select an item in the text region. If the left-mouse is held

down and moved out of the text region, either above or below, the text will scroll in

the corresponding direction.

Value: none.

Special Functions:

add_to_list_act(Actuator*, long order, char *item) - insert the item specified by the

third argument into the List_Act list in the order specified by the second argument.

Order: HEAD 1, TAIL 2, ASCENDING 3, and DESCENDING 4.

copy_list_act_entry(Actuator*, char*) - copy the currently selected item from
selectcd_name to the destination specified by the second argument. User must
ensure that destination memory allocation is large enough.

initialize_list_act(Actuator*, Linkjist*) - initialize the List_Act with a user

constructed linked list of items specified by the second argument

remove_selected_entry(Actuator*) - remove the currently selected item from the

List Act linked list.

154

Notes: none.

see also: Dirview, Listview, create_node(), create_list().

155

Listview

typedef struct

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

Actuator

char disp.

char

} Listview;

listview_type {

*lv_list;

*add_item;

accept;

delete;

*scroll_bar;

*scroll_up;

*scroll_down;

_name[];

target;

/ LISTVIEW actuator detail

/ Listview list pointer

/ Add Item Typein actuator pointer

/ accept string actuator pointer

/ delete string actuator pointer

/ Scroll bar actuator pointer

/ Scroll up arrow actuator pointer

/ Scroll down arrow actuator pointer

/ Item name currently chosen

/ Target for entry accept transfer

/
/
/
/
*/

/
/
/
/
/

Creation:

create_actuator(listview)

;

Description:

Listview is a compound actuator that provides a means to view a list of user-defined

items. The Listview actuator combines four types of basic actuators: a List_Act

(lv_list), a typein (add_item), a scroll_bar (scroll_bar), and buttons (accept, delete,

scroll_up and scroll_down). The default dimensions of the Listview are 10 lines

(items) and 25 columns. The width and height of the Listview actuator can be re-sized.

The currently selected item is displayed at the top of the Listview and is stored in the

disp_name field. The add_item typein is used to add a new item to the list. The accept

button is copies the currently selected item to the user-defined target. Item names that

exceed the width of the display (e.g. filenames complete with path specification) are

truncated for display purposes only, with the complete name stored in the data

structure.

Appearance:

A Listview is rendered as a rectangle with the scroll buttons and scroll bar on the left,

the List_Act region in the middle, the typein above the List_Act, and the accept and
delete buttons along the bottom. The current item is displayed in a high-lighted box
above the List_Act. In the List_Act region, the listed items are black against an off-

white background, and the currently selected item is intense white on a light-blue

background.

Function:

The left-mouse is used to place the cursor in the text region, scroll through the items

using the scroll buttons and the scroll bar, send the selected item to a target using the

accept button, delete the selected item from the list, and add an item using the typein.

Holding down the left-mouse and moving it in the text region scrolls through the list

If the left-mouse is held down and moved out of the text region, either above or below,

the text will scroll in the corresponding direction.

156

Value: The currently selected item is also maintained in the disp_name field.

Special Functions:

add_to_listview(Actuator*, long order, char *item) - insert the item specified by the

third argument into the Listview linked list in the order specified by the second

argument. Order: HEAD 1, TAIL 2, ASCENDING 3, and DESCENDING 4.

copy_listview_entry(Actuator*, char*) - copy the currently selected item from

disp_name to the destination specified by the second argument. User must ensure

that destination memory allocation is large enough.

load_listview(Actuator*, Link_list*) - load the Listview with the user constructed

linked list specified by the second argument

Notes: none.

see also: List_Act, Dirview

157

Menu

typedef struct menu_type {

long

float

long

long

float

char

} Menu;

/* MENU actuator detail

/* Number of rows and columns in menu
/* Width and height of menu cells

/* Most recently selected menu choice

/* Label colors when on and off

/* Font factor for labels.

/* Array of menu labels

labels[MAX_MENU][MAX_STRING_LEN+l];

cols, rows;

cell_width, cell_height;

menu_choice;

on_color, off_color;

font_factor;

*/

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(menu);

Description:

Menu is a rectangular display of user-defined selections. The number of rows and

columns can be customized. The default dimensions are six rows and one column. The
size of the cells, as well as the font factor for the labels, can be customized.

Appearance:

If the left mouse is held down and moved over the cells, the cell beneath the cursor is

high-lighted, as specified by the on_color and off_color fields.

Function:

The left mouse is used to select a menu item. The cursor is placed over the desired

selection and the left mouse is pressed and released. The menu selection is returned on
the up transition.

Value:

The menu_choice field holds the index of the most recently selected menu item.

Special Functions: none.

Notes: none.

see also:

158

Meter

typedef struct

long

Coord
long

long

float

float

long

float

Actuator

Actuator

Boolean

char

long

long

float

} Meter;

meter_type
{

mtype;

r;

major_tics;

minor_tics;

tl, tw;

ml, mw;
mcolor;

thetaset;

*high_limit;

*low_limit:

display_limits;

limits_fmt[MAX.

damping factor;

history_ndx;

history;

/* METER actuator detail

/* Meter type

/* Dial and arc meter Radius
/* Number of major tics

/* No. of minor tics between major tics

/* Tic mark length and width
/* Indicator mark length and width

Indicator mark color

Relative zero position of meter

High limit tide actuator

Low limit title actuator

Display minval and maxval limits

_FMT_LEN+1]; /* limits display format str

/* Number of past values to average

/* Current beginning of history

/* Series of meter values for damping

/*

/*

/*

/*

/*

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(meter);

create_actuator(arc_meter);

create_actuator(filled_arc_meter);

create_actuator(dial_meter)

;

create_actuator(filled_dial_meter)

;

create_actuator(vbar_meter);

create_actuator(vstrip_meter);

create_actuator(hbar_meter);

create_actuator(hstrip_meter);

Description:

Meters are output devices designed to graphical display numerical data.

Appearance:

Standard arc meters are rendered as rectangles with a half-circle shaped inverted dial.

Arc dial meters are rendered as rectangles with a complete circle enclosed. Bar meters

are rendered as rectangles with the value mark moving along the length of the actuator.

Standard meters have a single mark to indicate the current value. Strip and filled meters

fill the meter from the initial value to the current value with a distinct color. The type

of meter is specified in the mtype field:

METER_ARC 111

METER_ARC_FILLED 112

METER_DIAL 113

METER_DIAL_FILLED 114

METER VBAR 115

159

METER_VSTRIP 116

METER.HBAR 117

METER_HSTRIP 118

Limits can be displayed in a specified format, and meter faces can be customized in

terms of the number and size of tic marks, the size and color of the mark, and the radius

of the dial for arc and dial meters.

Function:

The meter is driven by the application. Damping can be induced using the

damping_factor field.

Value: none (the meter is an output device).

Special Functions:

set_meter_value(Actuator*, float) - Record the value specified in the second argument

into the meter's history array and val attribute. Set the need for redraw.

Notes: none.

see also:

160

/* SCROLL actuator detail

/* Vertical scroll bar controller

/* Horizontal scroll bar controller

/* Surrounding cabinet frame
/* Display frame

*/

*/

*/

*/

*/

Scroll

typedef struct scroll_type
{

Actuator *v_scroll,

*h_scroll,

*cabinet,

*display;

} Scroll;

Creation:

create_actuator(scroll);

Description:

Scroll is a compound Actuator that groups a set of sub-actuators and provides the

means to scroll a relatively small display area across a larger Frame containing the sub-

actuators. Internally, the Scroll behaves the same as a Frame with the addition of

controlling sliders.

Appearance:

The Scroll is rendered as a cabinet Frame having a negative bevel with a display

window Frame inside also having a negative bevel. To the left and below the display

is a vertical and a horizontal slider respectively. Sub-actuators are rendered within the

display Frame.

Function:

Only those sub-actuators visible through the display Frame are selectable and

operational. The control Sliders may be used to adjust the location of the display

window relative to the larger Scroll area.

Value: Assigned the value of the most recently actuated sub-actuator.

Special Functions:

add_member_to_fscroll(Actuator* sa, Actuator* parent) - Add the sub-actuator

specified in the first argument to the parent Scroll specified in the second

argument. Both the Scroll and sub-actuator are fixed after the addition.

Notes: none.

see also: Cycle, Frame.

161

Slider

typedef struct slider_type {
/* SLIDER actuator detail */

long stype; /* Slider type */

long mode; /* Mode of operation */

float mw, mh; /* Indicator mark length and width */

float mbw; /* Indicator mark bevel width */

long mcolor; /* Indicator mark color */

float reference; /* Reference position for fine control */

float finefactor, /* Fine control factor */

} Slider;

Creation:

create_actuator(slider);

create_actuator(vbar_slider)

;

create_actuator(vstrip_slider);

create_actuator(hbar_slider)

;

create_actuator(hstrip_slider)

;

Description:

Slider is a basic actuator that provides continuous control of a value between two user-

specified limits. The current value is indicated by the position of the slider bar within

the rectangular body. The two types sliders provided are bar and strip. Orientation of

the body and control axis can be vertical or horizontal.

Appearance:

Sliders are long rectangles with a bar running perpendicular to the longer dimension.

The bar slides up and down the length of the slider. No highlighting is made when the

bar is selected. Orientation and type of mark is specified in the stype field:

SLIDER_VSTRIP 131

SLIDER_VBAR 132

SLIDER.HSTRIP 133

SLIDER_HBAR 134

The mode of the slider is specified in the mode field:

SLIDER_BLOCK 0x01

Function:

The slider is controlled using the left mouse. Fine control is achieved using the left and
middle mouse together, or by pressing the control key and left mouse key
simultaneously.

Value:

The value of the slider is the value of the endpoints, set by the user, linearly

interpolated by the position of the slider bar within the bounding rectangle of the slider.

162

Special Functions: none.

Notes: none,

see also:

163

Slideroid

typedef struct slideroid_type
{

/*

long mode; /*

Bcx)lean reset, /*

set_target; /*

float target; /*

float reference; /*

float finefactor, /*

float cw, ch, vir, we; /*

} Slideroid;

Creation:

create_actuator(slideroid)

;

SLIDEROID actuator detail

Mode of operation

Flag indicating to reset val to initval

Flag indicating to set target variable

Address of target variable

Reference position for fine control

Fine control factor

Char width & height, val w & expel w

*/

*/

*/

*/

*/

*/

*/

Description:

Slideroid is basic Actuator which provides continuous control of a single numeric

value. It allows differential control and absolute control of the value based on the

region that is selected with the left-mouse. The value display includes five significant

figures in the mantissa and a two figure exponent. A reset region resets the value to the

User specified initval. A set target region copies the current value to a specified target

if defined.

Appearance:

The Slideroid is a rectangular body displaying a floating point number in exponential

format with 5 significant figures. Two controlling regions at the top of the slideroid are

indicated by diamond icons, the left one open and the right one filled. The open
diamond marks differential control and the filled diamond marks absolute control.

Two small regions below the value and labeled with an
4

S' and 'R' indicate the set

target and reset controls. Selecting and operating any of the four control regions

displays that region with high-lighting.

Function:

Selection and actuation of the open icon on the top left of the Slideroid body changes

the value at a differential rate proportional to the distance the mouse-cursor is

vertically separated from the control region. If the mouse-cursor is above, the value

increases and vice versa. Selection and actuation of the filled icon on the top right of

the body changes the value by an absolute amount proportional to the distance the

mouse-cursor is separated from the control region. Above the region increases the

value and below decreases it. Selection of the *S' control region sends the current value

to the target location if one is specified. Selection of the
4

R' control region resets the

Slideroid to its developer specified initval.

Value:

A floating point value between the minval and maxval.

164

Special Functions: none.

Notes: none,

see also:

165

Stripchart

typedef struct stripchart ype {

long stype;

long mode;

Actuator *high_limit;

Actuator *low_limit:

Boolean display_limits;

char limits_fmt[MAX.

Boolean Bind_High, Bind.

long num_pts;

long flrstpt, lastpt;

float *chart_l;

float *chart_2;

} Stripchart;

/* STRIPCHART actuator detail

/* Stripchart type

/* Stripchart mode of operation

/* High limit title actuator

/* Low limit title actuator

/* Display minval and maxval limits

_FMT_LEN+1]; /* limits display format str

.Low; /* Bind the low and high values?

/* No. of points on stripchart

/* Index to first and last points

/* 1st array of stripchart values

/* 2nd array of stripchart values

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(stripchart);

create_actuator(dual_stripchart);

Description:

Stripcharts are rectangular plotting regions that are used to display a history of data

values. As data values are added to the stripchart, they are plotted along the ordinate.

The position along the abscissa reflects the order in which the data values are presented

to the stripchart. Stripcharts automatically scroll to display the most recently added

data.

Appearance:

Stripcharts are rendered with a light background and a black data pen. A optional

second pen is drawn in red. If the limits are displayed, they are placed on the right side

of the rectangle on the upper and lower comers. Stripcharts can have one or two pens.

The default colors for pens one and two are ALT1 and ALT2, respectively.

Function:

Stripcharts are output devices and thus don't respond to mouse action. If the

Bind_High and Low flags are inactive, the stripchart automatically adjusts its high and
low limits to maximize vertical resolution.

Value: none (the stripchart is an output device).

Special Functions:

clear_stripchart(Actuator*) - clear and reset the specified stripchart.

set_stripchart_value(Actuator*, float, float) - Add the values specified in the second

and third arguments to the chart arrays of the specified Stripchart. If the Stripchart

is a single pen Stripchart, the third argument is ignored. Set the need for redraw.

166

Notes: none,

see also: Meter

167

/* TITLE actuator detail

/* Title background color index

/* Title foreground color index

*/

*/

*/

Title

typedef struct title_type {

long bkgnd_color;

long frgnd_color;

} Tide;

Creation:

create_actuator(title);

Description:

Tides are displays of character strings. They can be static or dynamic, and the color of

both the characters and the background can be customized.

Appearance:

Tides are rendered as a character string in a scalable font. The color of the characters

is defined as the frgnd_color, and the background is defined as the bkgnd_color.

Function: none

Value: none.

Special Functions: none.

Notes: none.

see also:

168

Typein

typedef struct typein_type
{

/* TYPEIN actuator detail */

long mode; /* Termination mode selection */

long state; /* Typein current activation state */

Linkjist *keyboard_buffer, /* Typein keyboard buffer */

char str[TYPEIN_MAX_LEN+ 1] ;
/* Typein string buffer */

char reset_str[TYPEIN_MAX_LEN+l]; /* Typein reset string buffer */

long maxjen; /* Maximum buffer length */

float font_factor; /* Font for typein. Can be scaled */

char *target; /* Target for completed string */

void (*complete_func)(); /* fn called when typein complete */

} Typein;

Creation:

create_actuator(typein);

Description:

Typeins are used to accept input from the user. When a typein is active, it will accept

input if the cursor is over it and its buffer is not full. Multiple typeins can be active

simultaneously. When a typein is completed, its contents can be copied to a target

destination specified by the user.

Appearance:

Typeins are long rectangles with negative a bevel. When they are active a block cursor

is drawn immediately to the right of the last character. Typeins can be resized, and the

font size of the characters can be scaled.

Function:

Typeins are activated with the left mouse. They are terminated according to the

specified mode:

TYPEIN_MOUSE_ON 1

TYPEIN_MOUSE_OFF 2

TYPEIN_MOUSE_ON mode enables the user to complete a typein either by pressing

the return key or left mousing the typein. TYPEIN_MOUSE_OFF mode only allows

the user to complete a typein by using the left mouse. When completed, the typein will

call the complete_func() once. The user can utilize the target field to specify the

location to receive the completed string.

Value: The state field contains the current activation state of the typein:

TYPEIN_CANCEL -1

TYPEINJNACTIVE
TYPEIN.ACnVE 1

TYPEIN COMPLETE 2

169

Special Functions:

cancel_typein(Actuator*) - Cancel the specified Typein returning the buffer to the

contents it had on activation. Typein buffer is not copied to target and completion

function is not called.

complete_func(Actuator*) - Optional developer defined function to be called upon
completion of Typein entry. This is equivalent to the upfunc of other Actuators

and is provided because a Typein may be active for input without being the

Selected_Actuator for the panel.

get_typein_string(Actuator*, char*) - Gets the specified Typein's buffer string when
the Typein input is complete. Returns the status of the get operation after each call.

As long as the Typein is active for input, it returns PENDING. If the Typein is

cancelled, it returns CANCEL. If successful, it returns COMPLETE.

load_typein_string(Actuator*, char*) - Loads the specified Typein with the string

specified by the second argument.

Notes: none.

see also:

170

Typeout

typedef struct typeout_type

Actuator *t_buffer;

Actuator

Actuator

Actuator

long

} Typeout;

*scroll_bar;

*scroll_up;

*scroll_down;

buffer_size;

/* TYPEOUT actuator detail

/* Typeout buffer

/* Scroll bar actuator pointer

/* Scroll up arrow actuator pointer

/* Scroll down arrow actuator pointer

/* Size in bytes of typeout buffer

*/

*/

*/

*/

*/

*/

Creation:

create_actuator(typeout);

Description:

Typeout is a compound actuator that provides the user a means to view any text-based

output. The Typeout actuator combines three types of basic actuators: a buffer_act

(t_buffer), a scroll_bar (scroll_bar), and buttons (scroll_up and scroll_down). The
default dimensions of the text buffer are 5 lines and 80 columns, with lines exceeding

the width of the text buffer automatically wrapped. A user specified size limits the

buffer size of the displayed text (see Buffer_Act). The width and height of the Typeout

actuator can be re-sized.

Appearance:

A Typeout is rendered as a rectangle with the scrollbuttons and scroll bar on the left

and the buffer_act text region in the middle. In the text region, text is black against an

off-white background.

Function:

The left-mouse is used to scroll through the text using the scroll buttons and the scroll

bar. If the left-mouse is held down and moved out of the text region, either above or

below, the text will scroll in the corresponding direction. The default cursor control for

the t_buffer is no control. The default buffer size is 1024 bytes.

Value: none.

Special Functions:

add_to_typeout(Actuator*, char*) - appends text referenced by second argument to

end of buffer.

load_typeout(Actuator*, char*) - load typeout buffer with text referenced by second

argument replacing any previously existing text in the buffer.

Notes: none.

see also: Buffer_Act, Fileview, load_typeout().

171

ToolBox Function Specifications

The NPS Panel ToolBox provides a complete library of access, processing and control

functions related to both panels and actuators. The ToolBox uses no object oriented method
of isolating the panel, actuator and supporting data structures, so direct access to all

variables is possible. However, we recommend the disciplined use of ToolBox functions

rather than direct reference to the data structures themselves. This sections presents the

ToolBox functions alphabetized within functional group.

Panel Related Functions

activate(Panel*)

Activate the specified panel. Set the panel's active state flag to TRUE.

append_panel(Panel*, PanelList*)

Add the panel specified in the first argument to the tail of the PanelList specified

by the second argument. ToolBox calls fix_panel() after the new panel is added.

clear_flag(Panel*, state flag name)
Clear the specified panel's state flag to FALSE (0).

clear_panel_back(Panel*)

Clear the backbuffer of the window associated with the specified panel.

clear_panel_both(Panel*)

Clear both backbuffer and frontbuffer of the window associated with the specified

panel.

clear_panel_front(Panel*)

Clear the frontbuffer of the window associated with the specified panel.

clear_panel_overlay(Panel*)

Clear the overlay planes of the window associated with the specified panel.

close_panel(Panel*)

Close the window associated with the specified panel. Close_panel() does not

alter the attributes or state values maintained in the panel structure, so if visible is

not set to FALSE by the application program, the panel will be re-initialized

during the next drawing loop. Set_panel_invisible() is the recommended
procedure for temporarily hiding a panel under application program control.

create_panel()

Create and initialize a new panel setting all default parameters. Customization

may be applied to any attributes after creation. Append_panel() or insert_panel()

must be used to add the new panel to a PanelList for processing and drawing. If

modifications are made after the panel is added to the PanelList, fix_panel() must
be called to bind the changes to the panel. Returns a pointer to the new panel.

de_activate(Panel*)

De-activate the specified panel. Set the panel's active state flag to FALSE.

172

delete_panel(Panel*)

Remove the specified panel from its associated PanelList, deleting all actuators

contained on the panel and freeing all associated memory.

draw_all_panels(PanelList)

Traverse the specified PanelList, drawing each panel which is visible and either

has at least one changed actuator or has been set for redraw. Non-visible and
unchanged panels are not draw.

draw_panel(Panel*)

If the specified panel is defined, visible and either changed or set for redraw, the

ToolBox sets the associated window as active and draws those actuators which

have changed or have been set individually for redraw. If the panel is set for

redraw, then the background is redrawn first followed by all of the actuators. If the

panel is not selectable, a non-selectable cross-hatching is drawn over the panel and

its actuators.

draw_panel_background(Panel*)

If the specified panel is defined and visible, the ToolBox sets the associated

window as active, clears the panel background to the background color and calls

bkgndfunc, the developer defined background function, if specified.

dump_panel(Panel*)

If the panel is defined, the ToolBox dumps all of the attributes of the panel

followed by all of the attributes and details of all the actuators on that panel to a

ascii text file 'panel.txt'.

fix_panel(Panel*)

Bind changes to the specified panel. If it has been set to not visible, then the

ToolBox closes the associated window. If it is defined and visible, but no window
has been created, the ToolBox creates and initializes the window. If it is defined

and visible, the ToolBox calls the fixfunc referenced in the panel structure to bind

any attribute changes to the panel. Finally, the ToolBox sets the panel for redraw.

insert_panel(Panel*, PanelList)

Add the panel specified in the first argument to the head of the PanelList specified

by the second argument. ToolBox calls fix_panel() after the new panel is added.

is_active(Panel*)

Returns the state of the specified panel's active attribute, TRUE or FALSE. If

TRUE, the panel has been set active for processing the panel action functions.

is_border(Panel*)

Returns the state of the specified panel's border attribute, TRUE or FALSE. If

TRUE, the panel's associated window is rendered with a standard IRIS title bar

and border.

is_changed(Panel*)

Returns the state of the specified panel's act_redraw attribute, TRUE or FALSE.
The act_redraw attribute is set to TRUE whenever any of the actuators on the

panel change value or state requiring a redraw.

173

is_fixed(Panel*)

Returns the state of the specified panel's fixed attribute, TRUE or FALSE. If

TRUE, the panel's associated window may be moved but not re-sized.

is_popable(Panel*)

Returns the state of the specified panel's popable attribute, TRUE or FALSE. If

TRUE, the panel's associated window may be popped to the top of the displayed

set of windows.

is_redraw(Panel*)

Returns the state of the specified panel's redraw_cnt attribute, TRUE or FALSE.
If TRUE, the panel has been recorded as in need of complete redraw.

is_screen_relative(Panel*)

Returns the state of the specified panel's screen_relative attribute, TRUE or

FALSE. If TRUE, the panel's coordinate system is in screen relative units

(pixels). If FALSE, the panel's coordinate system is as specified in the panel

structure.

is_selectable(Panel*)

Returns the state of the specified panel's selectable attribute, TRUE or FALSE. If

TRUE, the panel and its actuators may be selected using the mouse or key-

equivalents.

is_visible(Panel*)

Returns the state of the specified panel's visible attribute, TRUE or FALSE. If

TRUE, the panel is visible for selection, processing and drawing. If FALSE, no
action is taken with respect to the panel.

is_zbuffer(Panel*)

Returns the state of the specified panel's zbuffer attribute, TRUE or FALSE. If

TRUE, the ToolBox initializes and draws the panel in 3 dimensions using the Z-

buffer. Advanced interface displays can be designed using this mode.

panelExitO

Graceful exit from ToolBox processing. All panels are properly closed and the

overlay planes cleared.

pop_panel(Panel*)

If the specified panel's window is not on top of the displayed set of windows, the

ToolBox pops it to the top.

process_panel_functions(Panel*)

Process the specified panel's User defined action functions, if any. If

TransitionDown is TRUE, the ToolBox calls downfunc. If the panel is active, the

ToolBox calls activefunc. If TransitionUp is TRUE, the ToolBox calls upfunc.

The functions are called in the above specified order.

process_paneIs(PanelList)

Process the selected panel and the selected actuator of that panel, if any.

Determines the effect ofmouse position, button actuation, and keyboard actuation

on the value and state of the selected objects. The actuator newvalfunc is called

first followed by the action functions if defined, then the panel action functions, if

defined, are called.

174

push_panel(Panel*)

Push the specified panel's window to the bottom of the displayed set of windows.

setPanel(Panel*)

If the specified panel is defined, an associated window exists and the window is

not set, the ToolBox sets the associated window as the current graphics window.

set_flag(Panel*, state flag name)
Set the specified actuator's state flag to TRUE (1).

set_panel(Panel*)

If the specified panel is defined and visible, the ToolBox ensures that the panel is

initialized and then calls setPanel() followed by the appropriate viewing matrix

initializations.

set_panel_attribute(Panel*, attribute field name, value)

For the specified panel, the ToolBox sets the attribute field specified in the second

argument to the value specified in the third argument.

set_panel_invisible(Panel*)

If the specified panel is defined and visible, the ToolBox sets its visible attribute

to FALSE and calls fix_actuator(), closing the associated window.

set_panel_location(Panel*, long, long)

Set the x and y coordinates of the specified panel's origin (lower left corner) to the

values specified in the second and third arguments respectively.

set_panel_redraw(Panel*)

Record the need for a complete redraw of the specified panel. The panel's

redraw_cnt is set to 2 so that it will be redraw once in each display buffer.

set_panel_size(Panel*, long, long)

Set the width and height of the specified panel to the values specified in the second

and third arguments respectively.

set_panel_title(Panel*, char*)

Set the specified panel's title to the string specified in the second argument.

set_panel_visible(Panel*)

If the specified panel is defined and not visible, the ToolBox sets its visible

attribute to TRUE and calls fix_actuator(), initializing an associated window and

setting the panel for redraw.

set_panel_world(Panel*, Coord left, right, bottom, top, near, far)

Set the world coordinate system of the specified panel to the values specified in

the second through seventh arguments as indicated in the function prototype.

swapbuffers_panel(Panel*)

If the specified panel is defined and visible, the ToolBox swaps the associated

window graphics buffer.

test_flag(Panel*, state flag name)

Returns the specified panel's state flag, TRUE or FALSE.

which_panel(PaneList, short)

Determine which panel is associated with the graphics identifier specified by the

second argument

175

Actuator Related Functions

ACCESS (Actuator type name, Actuator*, detail field name)

Access the specified detail field of the specified actuator. Actuator type name may
be any of the type definitions described in Detailed Actuator Specifications.

ACCESS may be used as the left-hand or a right-hand variable of an equation.

activate(Actuator*)

Activate the specified actuator. Set the actuator's active state flag to TRUE.

add_actuator_to_group(Actuator*, Actuator * list)

Add the actuator specified by the first argument to its corresponding group within

the actuator list specified by the second argument according to group_id. If the

new actuator does not match any of the actuator group_ids of the list, it begins a

new group ring by itself.

add_sub_actuator(Actuator* sub-act, Actuator* parent)

Add the specified sub-actuator to the specified parent actuator's sa list. The
ToolBox calls fix_actuator() on the parent actuator which binds the changes as

well as calling fix_actuator() on the new sub-actuator.

append_actuator(Actuator* , Panel*

)

Add the specified actuator to the tail of the specified panel's list of actuators.

ToolBox calls actuator() after the new actuator is added.

CENTER_X(Actuator*)
Return the x world coordinate of the center of the specified actuator.

CENTER_Y(Actuator*)
Return the y world coordinate of the center of the specified actuator.

clear_flag(Actuator*, state flag name)
Clear the specified actuator's state flag to FALSE.

create_actuator(specific actuator initialization function)

Create and initialize a new actuator setting all default parameters using the

specified initialization function. Customization may be applied to any attributes

after creation. Append_actuator() or insert_actuator() may be used to add the new
actuator to the desired panel for processing and drawing. Add_sub_actuator() may
be used to add the new actuator to a parent actuator instead. If modifications are

made after the actuator is added, fix_actuator() must be called to bind the changes

to the actuator. Returns a pointer to the new actuator.

create_standard_actuator(long actuator constant)

Create and initialize a new actuator setting all default parameters as specified by
the actuator constant. Returns a pointer to the new actuator.

de_activate(Actuator*)

De-activate the specified actuator. Set the actuator's active state flag to FALSE.

de_activate_all(Panel*)

De-activate all actuators linked to the specified panel.

delete_actuator(Actuator*)

Delete the specified actuator from its host panel or parent actuator. The ToolBox
ensures that group lists and auto-processing lists remain intact.

176

delete_all_actuators(Panel*

)

Traverse the specified panel's actuator list, deleting each actuator and freeing the

associated memory.

draw_actuator(Actuator*)

If defined, visible and in need of a redraw, draw the specified actuator. If it is not

selectable, a non-selectable cross-hatch is draw over it.

draw_all_actuators(Panel *

)

Traverse the specified panel's actuator list, drawing each actuator that is visible

and in need of redraw.

extract_actuator(Actuator*)

Extract the specified actuator from its host panel or parent actuator. The ToolBox
ensures that auto-processing lists and group lists remain intact. Returns a pointer

to the extracted actuator.

fix_actuator(Actuator*)

Bind changes to the specified actuator. All sub-actuators if any are also fixed. If

the actuator has a processfunc defined, then the actuator is inserted into its host

panel's automatic processing list. Both label and value display locations are

recomputed. Finally, the ToolBox sets the need for a redraw.

get_maxvalue(Actuator*)

Return the specified actuator's maxval.

get_minvalue(Actuator*)

Return the specified actuator's minval.

get_unique_ID()

The ToolBox provides a continuing series of unique object identification numbers
beginning with negative one and increasing in the negative direction.

Get_unique_ID() returns the next available identification number. This function

call is equivalent to the in-line MACRO UniquelD.

get_value(Actuator*)

Return the specified actuator's current value.

insert_actuator(Actuator*, Panel*)

Add the specified actuator to the head of the specified panel's list of actuators.

ToolBox calls actuator() after the new actuator is added.

is_active(Actuator*)

Returns the state of the specified actuator's active attribute, TRUE or FALSE. If

TRUE, the actuator is active.

is_actuator_on(Actuator*)

Returns whether or not the specified actuator is 'ON' (val != minval) or 'OFF' (val

= minval).

is_beveled(Actuator*)

Returns whether or not the specified actuator's has a bevel, TRUE or FALSE.

177

is_label_on(Actuator*)

Returns whether or not the specified actuator's label is set to be displayed, TRUE
or FALSE. Any value other than zero (0) in the Mocation attribute field indicates

the label will be displayed.

is_mbeveled(Actuator*)

Returns whether or not the specified actuator's has a mark bevel, TRUE or

FALSE.

is_redraw(Actuator*)

Returns the state of the specified actuator's redraw_cnt attribute, TRUE or

FALSE. If TRUE, the actuator has been recorded as in need of redraw.

is_selectable(Actuator*)

Returns the state of the specified actuator's selectable attribute, TRUE or FALSE.
If TRUE, the actuator may be selected using the mouse or key-equivalent.

is_value_on(Actuator*)

Returns whether or not the specified actuator's value is set to be displayed, TRUE
or FALSE. Any value other than zero (0) in the v_location attribute field indicates

the value will be displayed.

is_visible(Actuator*)

Returns the state of the specified actuator's visible attribute, TRUE or FALSE. If

TRUE, the actuator is visible for selection, processing and drawing. If FALSE, no

action is taken with respect to the actuator unless it is an automatic actuator which

is processed during each ToolBox processing cycle.

PICK(Coord x, y, xl, yl, x2, y2)

Determine if the given world coordinate location (x, y) is within the specified

rectangular area.

PICKACT(Actuator*. Coord x, y)

Determine if the pick rectangle of the specified actuator contains the given mouse
position (x, y). The pick rectangle includes any bevel defined. Returns a Boolean

TRUE or FALSE.

process_actuator_functions(Actuator*)

Process the specified actuator's newvalfunc followed by the User defined action

functions, if any. If TransitionDown is TRUE, the ToolBox calls downfunc. If the

panel is active, the ToolBox calls activefunc. If TransitionUp is TRUE, the

ToolBox calls upfunc. The functions are called in the above specified order.

process_newvalue(Actuator*)

Process the specified actuator after an application program has changed its value.

This function is used to ensure that a change in value is reflected by a

corresponding change in appearance and function.

RADIUS(Actuator*)
Return the radius of the specified actuator. The radius is computed as one-half the

minimum of the width and the height

remove_actuator_from_group(Actuator*)

Remove the specified actuator from its group ring ensuring the integrity of all

group ring links.

178

reset_groups(Actuator* list)

Traverse the specified linked list and reset all group rings according to matching
group_id fields. The ToolBox ensures that the group ring for each actuator in the

list is properly set.

set_actuator_label(Actuator*, long location, float label_font_factor, char* label)

Set the specified actuator's label to the string specified in the fourth argument. Set

the label location and label_font_factor as specified by the second and third

argument.

set_actuator_location(Actuator*, Coord x, y)

Set the x and y world coordinate location of the specified actuator's origin (lower

left corner).

set_actuator_size(Actuator*, Coord w, h, bw)
Set the width, height and bevel width of the specified actuator.

set_attribute(Actuator*, attribute field name, value)

For the specified actuator, the ToolBox sets the attribute field specified in the

second argument to the value specified in the third argument.

set_detail(Actuator type name, Actuator*, detail field name, value)

Set the specified actuator's detail field to the value specified in the fourth

argument. Actuator type name may be any of the type definitions described in

Detailed Actuator Specifications.

set_detail_string(Actuator type name, Actuator*, detail string field name, char*)

Set the specified actuator's detail string field to the string specified in the fourth

argument. Strcpy is used. Actuator type name may be any of the type definitions

described in Detailed Actuator Specifications.

set_flag(Actuator*, state flag name)
Set the specified actuator's state flag to TRUE.

set_label_location(Actuator*, Coord x, y)

Set the x and y location for the specified actuator's label as specified in the second

and third arguments respectively. Label location is relative to the actuator's origin.

set_label_size(Actuator*, Coord w, h, bx, by)

Set the width, height, border in x and border in y for the specified actuator's label

as specified in the second through fifth arguments respectively. Border values are

between the left or bottom of the bounding box and the label string.

set_maxvalue(Actuator*, float)

Set the specified actuator's maxval attribute to the value specified by the second

argument.

set_minvalue(Actuator*, float)

Set the specified actuator's minval attribute to the value specified by the second

argument.

set_redraw(Actuator*)

Record the need for a redraw of the specified actuator. The actuator's redraw_cnt

is set to 2 so that it will be redraw once in each display buffer. The ToolBox sets

the host panel's changed_act field to TRUE to ensure drawing of the changed

actuator.

179

set_redraw_all(Panel*

)

Set the need for redraw in all actuators of the specified panel.

set_size(Actuator*, Coord w, h, bw)
Set the width, height and bevel width of the specified actuator.

set_target_pointer(Actuator type name, Actuator*, destination pointer)

Set the specified actuator's target pointer to that specified in the third argument.

Actuator type name may be any of the type definitions described in Detailed

Actuator Specifications. The User must ensure that type of destination pointer and

required target correspond.

set_value(Actuator*, float value)

Set the specified actuator's val attribute to the value specified by the second

argument limited by the minval and maxval attribute values.

set_value_format(Actuator*, long location, float label_font_factor, char* format)

Set the specified actuator's value display format to the string specified in the

fourth argument. Set the value display location and value_font_factor as specified

by the second and third argument.

set_value_location(Actuator*, Coord x, y)

Set the x and y location for the specified actuator's value display as specified in

the second and third arguments respectively. Value display location is relative to

the actuator's origin.

set_value_size(Actuator*. Coord w, h, bx, by)

Set the width, height, border in x and border in y for the specified actuator's value

display as specified in the second through fifth arguments respectively. Border

values are between the left or bottom of the bounding box and the value string.

test_flag(Actuator*, state flag name)
Returns the specified actuator's state flag, TRUE or FALSE.

UniquelD
The ToolBox provides a continuing series of unique object identification numbers
beginning with negative one and increasing in the negative direction. UniquelD
returns the next available identification number. This in-line MACRO is

equivalent to the function call, get_unique_ID().

which_actuator(Actuator* list, Coord x, y)

Determine which if any actuator in the specified list is 'picked' by the location

specified by the second and third arguments. Returns a pointer to the picked

actuator and NULL if none is picked.

Color Management Functions

define_color_table(long table, entry_index, float r, g, b, a)

Define the specified entry of the specified color table using the r, g, b and alpha

values given by the third through sixth arguments.

set_actuator_color(Actuator*, long index)

Set the current graphics color using the specified actuator's color table and the

index specified by the second argument.

180

set_panel_color(Panel*, long index)

Set the current graphics color using the specified panel's color table and the index
specified by the second argument.

Error Handling Functions

FatalError(char*)

Print the specified error message to stderr and exits the program.

Perror(char*)

Print the specified error message to stderr and return to calling function.

Font Control Functions

get_strheight(char* string, fmfonthandle, float font_factor)

Returns the height of the specified string for the specified font and font scale

factor.

get_strwidth(char* string, fmfonthandle, float font_factor)

Returns the width of the specified string for the specified font and font scale

factor.

initializeFONTSO

Initialize ToolBox fonts.

set_current_font(fmfonthandle)

Set the ToolBox global font to that specified in the argument.

General Functions

ABS(x)
Returns the absolute value of its argument.

draw_string(char* string, Coord x, y, float font_factor, long color_table, color_ndx)

Draw the text string specified in the first argument at the specified location using

the specified font factor, color table and color table index.

INTERP(lower, upper, proportion)

Returns the specified proportional interpolation between first and second

arguments.

initialize_ToolBoxO

Initialize all aspects of the NPS Panel ToolBox. This function must be called

before creation, modification, processing or drawing of panels and actuators.

LIMIT(val, lower, upper)

Returns a value limited by the lower and upper bound.

MAX(x, y)

Returns the maximum of two arguments.

MIN(x, y)

Returns the minimum of two arguments.

PROPORTION_OF(val, min, max)

Returns the proportion that the value is of the range specified by the second and

third arguments.

181

List Management Functions

Bottom(Link_list*)

Returns the bottom data node of the specified linked list stack.

clear_list(Link_list*)

Remove all list nodes from the specified linked list, re-initializing the header

structure and freeing the associated memory.

count_nodes(Link_list*)

Returns the number of nodes in the specified linked list.

create_list()

Create the header and control structure for a double linked list.

create_node(Void data)

Create a linked list node with the specified data structure.

create_str(char*)

Create a new character string from the argument string.

Current(Link_list*)

Returns the current node of the specified linked list.

CurrentData(Link_list*)

Returns a pointer to the data of the current linked list node.

DATA(List_node*)
Returns a pointer to the data of a specified linked list node.

de_Q(Link_list*)

Removes the next node from a queue linked list and returns a pointer to its data.

empty_list(Link_list*)

Returns whether or not the specified linked list is empty. TRUE if empty.

en_Q(Void*)

Creates an entry in a linked list queue for the specified data item.

free_list(Link_list*)

Free the memory for all of the structures associated with a specified linked list.

Head(Link_list*)

Returns a pointer to the first node in a specified linked list.

insert(Link_list* list, long order, Void* data)

Insert the specified data item into the specified linked list in the specified order.

Next(List_node*)

Returns a pointer to the node following a specified linked list node.

pop(Link_list*)

Removes the top node from the specified stack linked list and returns a pointer to

its data.

push(Link_list* stack, Void* data)

Create an entry in the specified linked list stack for the specified data item.

Prior(List_node*)

Rtoirns a pointer to the node preceding a specified link list node.

182

Predecessor(List_node*)

Returns a pointer to the node preceding a specified link list node.

search(Link_list* list, char* string)

Search the specified linked list for a data node matching the specified search

string. Returns TRUE if found and FALSE otherwise.

Successor(List_node *

)

Returns a pointer to the node following a specified link list node.

Tail(Link_list*)

Returns a pointer to the last node in the specified link list.

Top(Link_list*)

Returns a pointer to the first node in the specified link list.

Mouse, Button and Keyboard Functions

activate_keyboard(Link_list)

Activate the keyboard and the specified keyboard buffer for input.

de_activate_keyboard(Link_list)

De-activate the keyboard and the specified keyboard buffer.

FineAdjust {Boolean}

The state of the ToolBox actuator fine-adjustment selection. Fine-adjustment is

selected by pressing and holding the middle-mouse button or the Control key

while controlling an actuator with the left-mouse button pressed and held.

is_MouseDown {Boolean}

The state of any of the mouse buttons, TRUE if pressed.

Keyboard_Active {Boolean}

The state of the keyboard, TRUE if active and FALSE otherwise.

Process Management Functions

process_actuator_functions(Actuator*)

Process the specified actuator's newvalfunc followed by the User defined action

functions, if any. If TransitionDown is TRUE, the ToolBox calls downfunc. If the

panel is active, the ToolBox calls activefunc. If TransitionUp is TRUE, the

ToolBox calls upfunc. The functions are called in the above specified order.

process_newvalue(Actuator*)

Process the specified actuator after an application program has changed its value.

This function is used to ensure that a change in value is reflected by a

corresponding change in appearance and function.

process_panel_functions(Panel*)

Process the specified panel's User defined action functions, if any. If

TransitionDown is TRUE, the ToolBox calls downfunc. If the panel is active, the

ToolBox calls activefunc. If TransitionUp is TRUE, the ToolBox calls upfunc.

The functions are called in the above specified order.

183

process_panels(PanelList)

Process the selected panel and the selected actuator of that panel, if any.

Determines the effect of mouse position, button actuation, and keyboard actuation

on the value and state of the selected objects, "he actuator newvalfunc is called

first followed by the action functions if defined, then the panel action functions, if

defined, are called.

process_ToolBox_Q(PanelList, short TOKdevice, TOKvalue)
Provides ToolBox processing of each event token. This function must be place

inside the event token processing loop and should be placed before the application

switch statement that process event tokens. The working PanelList is specified by

the first argument. The device id and value are passed to process_ToolBox_Q via

the second and third arguments.

reset_ToolBox_Q()

Prepare the ToolBox for each graphics device event queue processing cycle. This

function must be placed prior to the event token processing.

Screen Management Functions

clear_scTeen_overlay()

Clear the overlay planes for the entire screen display area.

System Level Support Functions

tbx_calloc(long size)

Returns a pointer to a memory allocation of the specified size. Sets all memory
locations to NULL. If unable to complete the allocation, the ToolBox prints an

appropriate error message and exits the program.

tbx_malloc(long size)

Returns a pointer to a memory allocation of the specified size. If unable to

complete the allocation, the ToolBox prints an appropriate error message and exits

the program.

tbx_realloc(void*, long size)

Returns a pointer to a memory re-allocation of the specified size. If unable to

complete the allocation, the ToolBox prints an appropriate error message and exits

the program.

184

ToolBox Constants, Global Variables and Support Structures

The NPS Panel ToolBox provides a complete library of access, processing and control

constants and global variables related to both panels and actuators. The ToolBox uses no
object oriented method of isolating the panel, actuator and support data structures, so direct

access to all constants and global variables is possible. However, we recommend the

disciplined use ofToolBox constants and global variables rather than direct reference to the

data structures themselves. This sections presents the ToolBox constants and global

variables alphabetized within functional group.

Panel Related Constants, Global Variables and Support Structures

Current_Panel { Panel*

}

Global pointer to current panel data structure.

mx_Current { Screencoord

}

Global reference to x screen coordinate for the current mouse position.

mx_Ref { Screencoord

}

Global reference to x screen coordinate for the mouse at most recent mouse button

actuation.

my_Current { Screencoord

}

Global reference to y screen coordinate for the current mouse position.

my_Ref (Screencoord)

Global reference to y screen coordinate for the mouse at most recent mouse button

actuation.

Panel_List {PanelList}

Global double linked list of all panels within a ToolBox supported application.

wx_Current {Screencoord}

Global reference to x coordinate for the current mouse position converted to Panel

coordinate system.

wx_Ref { Screencoord

}

Global reference to x coordinate for the mouse at most recent mouse button

actuation converted to Panel coordinate system.

wy_Current { Screencoord

}

Global reference to y coordinate for the current mouse position converted to Panel

coordinate system.

wy_Ref (Screencoord}

Global reference to y coordinate for the mouse at most recent mouse button

actuation convened to Panel coordinate system.

185

Actuator Related Constants, Global Variables and Support Structures

x_Ref {Coord}

Global reference to x coordinate (in Panel units) of the current actuator's origin.

y_Ref {Coord}

Global reference to y coordinate (in Panel units) of the current actuator's origin.

Current_Actuator { Actuator*

}

Global pointer to current actuator's data structure.

MAX_STR_LEN = 128

Maximum number of characters in ToolBox strings.

MAX_FMT_LEN = 16

Maximum number of characters in value format string.

MAX_BUF_LEN = 256
Maximum number of characters in default buffers.

Selected_Actuator {Actuator*}

Global pointer to currently selected actuator if any.

Color Management Constants, Global Variables and Support Structures

Color_Table[MAX_COLOR_TABLES][MAX_COLORS]
The ToolBox color tables.

Color Table Index Constants:

CLEAR = -1

PANEL CLEAR = CLEAR
ACT CLEAR = CLEAR
PANEL BKGND = 8

PANEL LIGHT = 9

ACT LIGHT = 9
PANEL NORM = 10

ACT_FACE = 10

PANEL ALT = 11

ACT BODY = 11

PANEL HI = 12

ACT DARK = 12

PANEL BORDER = 13

ACT BORDER = 13

BEVEL LIGHT = 14

PANEL DARK = 15

BEVEL DARK = 15

MARK LIGHT = 16

MARK DARK = 17

PANEL.LABEL = 18

ACT LABEL = 18

TYPEIN BKGND = 19

PANEL INPUT = 19

TYPEIN CURSOR = 20

186

PANEL.CURSOR = 20
ACT_CURSOR = 20
ALT_COLOR_l = 21

ALT_COLOR_2 = 22
ALT_COLOR_3 = 23

MAX_COLORS = 24
Defines the number of color entries in each color table.

MAX_COLOR_TABLES = 8

Defines the number of color tables.

Font Control Constants, Global Variables and Support Structures

Current_font

ToolBox reference to most recently selected font.

Current_Font_Factor { float

}

ToolBox reference to most recently font scale factor. Used to prevent repeat

application of the same scale factor thereby increasing ToolBox efficiency.

font_base = Times-Roman 1.0 point

Pointer to ToolBox basic font. ToolBox uses IRIS font manager scaling and

rendering functions.

font_base_bold = Times-Bold 1.0 point

Pointer to ToolBox basic bold font. ToolBox uses IRIS font manager scaling and

rendering functions.

General Constants, Global Variables and Support Structures

BEL = W7'
Bell character

Boolean = long

Type definition used for logical operations.

BS = *\010'

Backspace character

Colorndx = long

Type definition used to index color table.

CR = ^15'
Carriage return character

CTRL_C = ^003'

Control-C character

CTRL_U = *\025'

Control-U character

DEL = M77*
Delete character

EOS = ^000'

End of String character

187

ESC = *\033'

Escape character

HT =\)\V
Horizontal tab character

LF = ^012'

Line feed character

NUL = ^00'

Null character

Screen = short

Type definition alternate for Screencoord.

SPC
Space character

TBX_EOF =-1

End of Buffer/File flag

Void = char

Type definition for data structure pointers.

List Management Constants, Global Variables and Support Structures

Link_list

Linked list data structure type definition. Supports double linked lists of

List_nodes.

List_node

Data node structure definition. Supports any type of data within a linked list.

Order of Insertion Constants (used by insert() function):

HEAD 1

TAIL 2

ASCENDING 3

DESCENDING 4

Mouse, Button and Keyboard Related Constants and Global Variables

AltKey {Boolean}

Records the state of either Alt key pressed as TRUE.

ControlKey {Boolean}

Records the state of either Control key pressed as TRUE.

Keyboard_Buffer {Linkjist*}

Global pointer to ToolBox general keyboard buffer. May be used to accept input

from the keyboard if no Panel or Typein keyboard buffers are defined.

Keyboard_State { Boolean

}

Records whether or not the keyboard has been activated. Activated = TRUE.

KeyButton { Boolean

}

State of any keyboard button, UP or DOWN.

188

LeftMouse {Boolean}
State of the left-mouse button, UP or DOWN.

MiddleMouse {Boolean}

State of the middle-mouse button, UP or DOWN.
Mouse and Button position constants:

UP =0
DOWN =1

MouseButton {Boolean}

State of any mouse button, UP or DOWN.
RightMouse {Boolean}

State of the right-mouse button, UP or DOWN.
ShiftKey {Boolean}

Records the state of either Shift key pressed as TRUE.

TransitionDown { Boolean

}

Records any mouse button transition from UP to DOWN as TRUE.

TransitionUp { Boolean

}

Records any mouse button transition from DOWN to UP as TRUE.

189

APPENDIX C

NPS PANEL DESIGNER AND TOOLBOX
RESERVED WORDS

Reserved Words for the Intermediate File Parser

The following list of words are reserved for use by the intermediate file parser. They
may not be used as the title of a panel. The parser is case-insensitive.

box

buffer_act

button

comment
custom_colors

cycle

dial

dirview

fileview

file_end

frame

listview

menu
meter

panel

panel_end

panel_designer_file

scroll

slider

slideroid

stnpchart

title

typein

typeout

190

APPENDIX D

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE GENERATED CODE

The following three files are examples of the code generated by the Code Manager.

The filename specified was User_Panel.

191

I**

* File: User_Panel.c Prototype panel output code template *

* Version: 1.0
*

* date: 90/11/17 *

* Author: Richard M. Prevatt *

* David M. King *

* Notes:
* 90/08/13 Created.

* This file contains all the functions needed to display and control the

* User defined panel created within PanelDesigner using the Panel Toolbox.

* Appropriate declarations and function calls are included.

* It is used in conjunction with User_Panel_fn.c

* The actual name of this and the related files was derived from the

* name of the current workspace when it was produced by PanelDesigner.

*
{ Substitute the actual name for 'User_Panel' in these instructions. }

* If a file by that name already existed, the PanelDesigner saved the

* the original version in a backup file as follows:

* User Panel .c --> User Panel.c.bak

* Compile as follows:

* cc -o user_name User_Panel.c User_Panel_fn.c /nps_path/lib/ npspanel.a
* -I/nps_path/include -02 -align 16 -G -lc_s -lgl_s -lfm -lm
*

*

*

*

/nps_path must be defined as the proper path to the NPS Panel ToolBox

/nps_path = /n/gravyl/work/zyda/npspanel in the current release

* The resulting file 'userjiame' may be executed. *

****«***»»»***»•*** *****/

#define

#define

EXTERN
INIT(x) = (x)

t* declarations are not external

/* and initialized here

*/

*/

#include

#include

"glh"

"deviceJT
I* Graphics Library declarations

/* Device declarations

*/

*/

#include "tbx.h" I* Panel Toolbox Declarations 7

I* User defined and modifiable constants and declarations

•/

*/

#include "User Panel.h"

I* Function Prototypes used within user_panel.c

void initialize_main0;

void initialize_panelsO;

void initialize.actuatorsO;

void initialize.defaultsO;

void initialize_colorsO",

I* initialize panel environment
/* Initialize the control panels

I* Initialize the actuators

/* initialize default settings

/* initialize any user defined colors

*/

*/

*/

*/

*/

•/

*/

192

void initialize_queueO;

void initialize_menusO;

void inilialize_cursorO;

void initialize_overlayO;

void control_program

(

PanelList *panel_list

);

void process_program_queueO;

void draw_control_panels

(

PanelList *panel_list

);

/* Initialize the graphics queue

I* initialize menus here

/* Initialize cursors here

r Initialize overlay planes here

I* Control PanelDesigner operation

I* specified panel list

f* Process graphics event queue

/* Draw user panel and actuators

/* specified panel list

I*

I

*/

*/

*/

•/

•/

V

*/

*/

*/

mainO

initialize_mainO;

initialize_panelsO;

initialize_actuatorsO;

/* initialize panel environment

/* Initialize the control panels

I* create the actuators

/* User define initializations are called via user_init_main.

user_init_main(); I* user define initializations

forever {
/* Panel main loop

control_program(Panel_List); I* process controls and queue

draw_control_panels(Panel_List); /* draw user control panels & acts

I* User designed calculations and 2D or 3D drawing functions are

/* accessed via user_displayO; User must manage any extra

I* windows required.

user_displayO;

)

}

I* -
void

{

initialize_main()

initialize_ToolBoxO;

I* handle to call user functions

/* initialize panel environment

I* initialize NPS Panel ToolBox

/* initialize all other aspects of main program.

imualize_defaultsO;

initialize_colorsO;

iniualize_queue();

I* initialize default settings

f* initialize any user defined colors

/* initialize event graphics queue

•/

*/

*/

•/

•/

•/

/
•/

*/

*/
*/

•/

*/

*/

*/

193

initialize_menusO; /* initialize PanelDesigner menus */

initialize_cursorO; /* initialize special cursors */

iniualize_overlayO; I* initialzie overlay planes & color */

)

/* •/

void initialize_panelsO I* Initialize the control panels */

{

Panel *p; /* Temporary panel pointer */

/* Create each of the user's main control panels. User may alter */

I* any of the parameters of these panels as required, taking */

/* care to maintain proper structure and function. */

Control_Panel[0] = p
create_panel 0;
set_panel_location(p, 20, 56);

set_panel_size(p, 720, 534);

set_attribute(p, visible, TRUE);
set_attribute(p, popable, FALSE);
set_attribute(p, fixed, FALSE);
set_panel_tiUe(p, "User_Panel");

set_attribute(p, color_table, 1);

append_panel(p, Panel_List);

}

void initialize.actuatorsO /* Initialize the actuators */

{

Actuator *a; I* Temporary actuator pointer */

I* Create each of the actuators required on the control panel. User */

/* may alter the parameters of any actuators as required, taking */

I* care to maintain proper structure and function. */

Current_Panel = Control_Panel[0];

Control[0][0]=a =
create_actuator(dial);

set_actuator_location(a, 77.5, 1 19.5);

set_actuator_size(a, 75, 75, 2);

set_attribute(a, group.id, -23);

set_attribute(a, key, 0);

set_actuator_label(a, BOTTOM, 10, "Dial");

set_detail(Dial, a, major_tics, 4);

set_detail(Dial, a, minor_tics, 0);

set_detail(Dial, a, winds, 1);

set_detail(Dial, a, finefactor, 0.1);

insert_actuator(a, Current_Panel);

reset_groups(Control_Panel[0]->al_head);

Current_Actuator(Current_Panel) = NULL;

194

Selected.Actuator = NULL; /* No actuator selected */

}

r */

void initialize_defaultsO /* Initialize panel defaults */

}

I* */

void initialize_colors /* Initialize user defined colors */

(

I* Modify the color tables according to User specifications */

define_color_table(0, 8, 0.345, 0.525, 0.835, 0);

define_color_table(l, 8, 0.345, 0.525, 0.835, 0);

define_color_table(l, 10, 1, 0, 0, 0);

)

void initialize_queueO /* Initialize the graphics queue */

{

user_init_queue(); I* User defined queue ink */

)

void initialize_menus0 I* initialize menus here */

{

uscr_init_menuO; I* User defined menu ink */

}

void initialize_cursorO /* Initialize extra cursors here */

{

user_init_cursorO; /* User defined cursor init */

)

void initialize_overlayO /* Initialize overlay planes here */

{

user_init_overlayO; I* User defined overlay init */

}

void control_program /* Control PanelDesigner operation */

(

PanelList *panel_list I* specified panel list */

)

{

process_program_queue(); /* Process the graphics event queue */

195

process_panels(panel_list); I* Control panels based on user input

)

p —
void

(

short

*/
*/

*/

*/

•/

*/

process_program_queue

TOKdevice,

TOKvalue;

I* Process graphics event queue

I* Graphics event queue device token

I* Graphics event queue token value

reset_ToolBox_QO;

while (qtestO) {

TOKdevice = qread(&TOKvalue);

p P Standard ToolBox input processing

process_ToolBox_Q(Panel_List, TOKdevice, TOKvalue);

I* Prepare ToolBox for input process

I* Process all tokens available

switch(TOKdevice) {

case RIGHTMOUSE:

if (TOKvalue= DOWN

)

user_process_menuO;

break;

case ESCKEY:

if (TOKvalue= UP){
user_exit();

}

break;

default:

break;

I* User Program specific Q processing

I* Right Mouse Controls Menus

P on TransitionDown process menu
P User defined menu processor

P Esc key calls for exit

P execute when button comes up

P Define default processing here

] P end switch */

I* User defined queue function receives all TOKENs processed.

user_process_queue(TOKdevice, TOKvalue);

} P end while qtestQ */

•/

*/

•/

*/

•/

*/

)

196

/* +1

void draw_control_panels /* Draw user panel and actuators */

(

PanelList *panel_ust /* specified panel list */

)

{

Panel *p;

for (p = Head(panel_list); p; p = p->next) {

draw_panel(p); /* Draw all actuators of panel */

swapbuffers_panel(p); /* swapbuffers in specified panel */

}

}

/***»**

* EOF: User.Panel.c {lines: 310) *

**/

197

* File: User Panel fn.c User defined calculations and
* Version: 1.0 drawing functions
*

date: 90/12/01
* Author Richard M. Prevatt
* David M. King

!******************************•******************************•**************»
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4i

* Notes:

90/08/13 Created.

* This file contains the User modifiable functions needed in support of

* the control panel generated by PanelDesigner. Changes and additions may
* be added to all files taking care to manage any extra windows.
* It is used in conjunction with User_Panel.c
*

* The actual name of this and the related files was derived from the

* name of the current workspace when it was produced by PanelDesigner.

*
{ Substitute the actual name for 'User_Panel' in these instructions.

}

*

* If a file by that name already existed, the PanelDesigner saved the

* the original version in a backup file as follows:

* User_Panel_fn.c --> User_Panel_fn.c.bak

* Compile as follows:
*

* cc -o user_name User_Panel.c User_Panel_fn.c /nps_path/lib/ npspanel.a
* -I/nps_path/include-O2-alignl6-G0-lc_s-lgl_s-lfm -lm
*

* /nps_path must be defined as the proper path to the NPS Panel ToolBox

* /nps_path = /n/gravy 1/work/zyda/npspanel in the current release
*

* The resulting file 'user_name' may be executed. *

*********************************** ***/

#define

#define

#include

#include

EXTERN extern

rNIT(x)

n
gl.h"

"device.h"

#include "tbx.h"

I* User defined and modifiable constants and declarations */

#include "User PaneLh"

/* declarations are external

I* and not initialized here

I* Graphics Library declarations

/* Device declarations

I* Panel Toolbox Declarations

*/

*/

*/

/

*/

*/

I* User modifiable function definitions */

198

/* — . . */

void user_init_queueO I* User defined queue init */

{

I* Place user needed event queue device initializations here. */

}

I* ~ - ~ - */

void user_init_menuO /* User defined menus here */

{

/* Place user defined menu initializations here. */

main_menu = defpup(" Sample Main Menu %t ");

addtopup(main_menu," Place menu choices here %xl00 ");

addtopup(main_menu," Quit Program %x999 ");

}

I* _ */

void user_init_cursorO f* User defined cursor init */

{

I* Place user defined cursor initializations here. */

}

void user_init_overlayO /* User defined overlay init */

{

/* Place user defined overlay initializations here. */

}

void user_init_main() I* User defined main initializations */

(

I* Place user defined initializations here. */

I* This is called after all panel and actuator setup initializations. */

}

void user_process_queue I* User defined queue functions */

(

short TOKEN, /* Graphics event Q device token */

short TOKvalue /* Graphics event Q token value */

)

{

/* Place user defined queue processing here. */

I* All queued tokens will be passed to this function after they are */

I* processed by the Panel ToolBox functions. They may be used by */

I* the User's program to specify additional actions, etc. */

}

199

/* */

void user_process_menuO I* User defined menu processor */

{

long choice;

choice = dopup(main_menu);

switch (choice) {

/* Include other menu selection processing here. */

case MENU_QUIT: /* exit the program */

user_exit();

break;

default:

break;

)

}

void user_displayO /* All user calc & drawing functions */

{

I* Place user defined calculations and display control here. */

/* This is called during each drawing loop after control panel */

I* processing is completed. */

}

void user_exitO I* Clean up and exit the program */

{

I* Place user defined exit procedures here. */

panelExitO; /* Clear and close all Panel windows */

}

* EOF: User_Panel_fn.c { lines: 85)
*

200

* File: User_Panel.h User modifiable constants and decls *

* Version: 1.0 *

* date: 90/11/17 *

* Author: Richard M. Prevatt *

* David M. King *

* ...
*

* Notes: *

* 90/08/13 Created. *

* *

* This file contains header information as generated by PanelDesigner. *

* It is used in conjunction with User_Panel.c and User_Panel_fn.c *

* *

* The actual name of this and the related files was derived from the *

* name of the current workspace when it was produced by PanelDesigner. *

*
(Substitute the actual name for 'User_Panel' in these instructions. }

*

* *

* If a file by that name already existed, the PanelDesigner saved the *

* the original version in a backup file as follows: *

* User_Panel.h --> User_Panel.h.bak *

* *

* Compile as follows:
*

* *

* cc -o user_name User_Panel.c User_PaneI_fn.c /nps_path/lib/ npspanel.a *

* -I/nps_path/include -02 -align 16 -G -lc_s -lgl_s -lfm -lm *

* *

* /nps_path must be defined as the proper path to the NPS Panel ToolBox *

* *

* /nps_path = /n/gravyl/work/zyda/npspanel in the current release *

* »

* The resulting file 'user_name* may be executed.
*

#ifndef user PANEL
#define user_PANEL

r Global constants */

#define MAX PANELS 1

#define MAX.ACTUATORS 4

tdefine FONT_FACTOR i:

#define MENU.QUTT 999

/* Global reference variables */

/* Max number of panels defined */

I* Max number of actuators defined */

12.0 I* Scale factor for font manager */

/* Menu selections are define here */

EXTERN I* User control panel reference */

Panel *Control_Panel[MAX_PANELS];

EXTERN /* Actuator reference array */

Actuator *Control[MAX_PANELS][MAX_ACTUATORS];

201

EXTERN
long main_menu; I* Main menu reference

I* Function prototypes for user modifiable functions */

void

void

void

void

void

user_init_main();

user_init_cursorO;

user_init_overlayO;

user_init_queue();

user_init_menuO;

void

(

short,

short

);

user_process_queue

void

void

void

user_process_menu()

user_displayO;

user_exitO;

#endif user PANEL

I* User define main initializations

I* User defined cursor init

/* User defined overlay init

I* User defined queue init

I* User defined menu init

I* User defined queue functions

I* User defined menu processor

I* All user calc & drawing functions

I* Clean up and exit the program

*/

•/

*/

*/

*/

*/

*/

*/

*/

* EOF: User_Panel.h { lines: 84

}

*

»*»*«.*************»** *****»»/

202

APPENDIX E

NPS PANEL DESIGNER AND TOOLBOX
SAMPLE INTERMEDIATE FILE

Panel_Designer_File

Panel Box_Dial

/C This is an example of an optional permanent comment line C/

1* panel x, y, w, h */ 10 10 980 700

/* auto_align, grid_on, grid_size */ 25.0

1* visible, selectable, fixed, popable */ 1 100
1* border, screen_relative, zbuffer */ 110
1* wl, wr, wb, wt, wn, wf */ 0.0 980.0 0.0 700.0 0.0 0.0

/* scale_factor, color_table */ 1.0

Actuator BOX
/* type, group_id, key_equivalent */ 10-410

1* active, visible, selectable*/ 01 1

/* x, y, w, h, bw */ 469.5 208.5 85.0 25.0 0.0

1* color_table */

/* l_location, label, label_font */ -13 "Box" 12.0

r lx, ly, lw, lh, lbx, lby */ 24.2 1.7 36.621.64.8 5.8

/* v_location, value_fmu value_font, val */
M%-+#4.2r 12.0 0.0

/* initval, minval, maxval */ 0.00.01.0

1* vx, vy, vw, vh, vbx, vby */ 21.2-27.642.6 21.64.8 5.8

/* line_width, frgnd_clr, bkgnd_clr */ 20-1

Actuator DIAL
1* type, group_id, key_equivalent */ 40 -23

1* active, visible, selectable*/ 01 1

/* x, y, w, h, bw */ 671.5 402.5 75.0 75.0 2.0

I* color_table */

/* Mocation, label, label_font */ 2 "Dial" 10.0

f lx, ly, lw, lh, lbx, lby */ 22.5-24.0 30.0 18.04.0 5.0

1* v_locauon, value_fmt, value_font, val */ "%-+#4.2r 12.0 0.0

/* initval, minval, maxval */ 0.00.01.0

f* vx, vy, vw, vh, vbx, vby */ 16.2-27.642.6 21.64.8 5.8

/* mode, shape, r, major_tics, minor_tics */ 2 1 33.8 4

/* tl, tw, ml, mw */ 11.8 2.7 32.12.7

1* theta, winds, finefactor */ 0.01.00.1

Panel_End

Custom_Colors

File_End

203

LIST OF REFERENCES

Barth, Paul S. "An Object-Oriented Approach to Graphical Interfaces." acm Transactions

on Graphics. Vol 5 No 2, April 1986, pp. 142-172.

Brown, C. M., D. B. Brown, H. V. Burkleo, J. E. Mangelsdorf, R. A. Olsen, and R. D.

Perkins. Human Factors Engineering Standards for Information Processing Systems

(LMSC-D877141). Lockheed Missiles and Space Company, Sunnyvale, CA, 1983.

Brown, Judith R. and Steve Cunningham. Programming the User Interface. John Wiley &
Sons, Inc., New York, 1989.

Danchak, M. M. "Alphanumeric Displays for the Man-Process Interface. Advances in

Instrumentation." ISA Conference, Niagara Falls, New York, October 1977, pp. 197-213.

Engel, S. E. and R. E. Granda. Guidelines for ManlDisplay Interfaces (Technical Report

TR 00.2720). IBM, Poughkeepsie, NY, 1975.

Fischer, Gerhard. "Human-Computer Interaction Software: Lessons Learned, Challenges

Ahead." IEEE Software, January 1989, pp. 44-52.

Foley, James. "Guest Editor's Introduction: Special Issue on User Interface Software."

acm Transactions on Graphics. Vol. 5 No. 4, October 1986, pp. 279-282.

Gailtz, W. O. Human Factors in Office Automation. Life Office Management Association,

Atlanta, GA, 1980.

Goodwin, Mark. User Interfaces in C. Management Information Source, Inc., 1989.

Haeberli, Paul E. "a data-flow manager for interactive graphics." Iris Universe, Fall 1987,

pp. 3-5.

Hill, Ralph D. "Supporting Concurrency, Communication, and Synchronization in

Human-Computer Interaction—The Sassafras UIMS." acm Transactions on Graphics. Vol

5 No 3, October 1986, pp. 179-210.

Jacob, Robert J. K. "A Specification Language for Direct-Manipulation User Interfaces."

acm Transactions on Graphics. Vol 5 No 4, October 1986, pp. 283-317.

Limanowski, J. J. "On-line documentation systems: History and issues. Proceedings ofthe

Human Factors Society 27th Annual Meeting Human Factors Society, Santa Monica,

CA,1983, pp. 1027-1030.

MIL-STD-1472D, Revised 14 March 1989. Military Standard: Human Engineering

Design Criteria for Military Systems, Equipment and Facilities. Department of Defense,

Washington, DC, 1983, pp. 247-278.

204

Miller, G. A. "The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity For Processing Information." Psychological Review, Vol. 63, No. 2, 1956, pp 81-

97.

NASA (National Aeronautics and Space Administration). Spacelab Experiment Computer
Application Software (ECAS) Display Design and Command Usage Guidelines. (Report

MSFC-PROC-711). George C. Marshall Space Right Center. 1979.

Olsen, Dan R. Jr. "MIKE: The Menu Interaction Kontrol Environment." acm Transactions

on Graphics. Vol 5 No 4, October 1986, pp. 318-344.

Parsons, H. M. "The scope of human factors in computer-based data processing systems."

Human Factors, Vol. 12, 1970, 165-175.

Pfaff, G. (editor) User Interface Management Systems. Springer-Verlag, New York, 1985.

Phillips, R. J. "An experimental investigation of layer tints for relief maps in school

atlases." Ergonomics, Vol. 25, 1982, pp. 1143-1154.

Ramsey, H. R. and M. E. Atwood. Human Factors in Computer Systems: A Review of the

Literature (Technical Report SAI-79-111-DEN). Science Applications, Inc., Englewood.

CO, (NTIS No. AD A075 679), 1979.

Reid, Pete, "Work Station Design, Activities and Display Techniques", Fundamentals of

Human-Computer Interaction, Andrew Monk, editor. Academic Press, 1985, pp. 107-126.

Sidorsky, R. C, R. N. Parrish, J. L. Gates, and S. J. Munger. Design guidelines for user

transactions with battlefield automated systems: Prototypefor a handbook (ARI Research

Product 84-08). US Army Research Institute, Alexandria, VA, (NTIS No. AD A513 231),

1984.

Smith, Sidney L. "Man-computer information transfer." Electronic Information Display

Systems, J. H. Howard (Ed.), pp. 284-299. Spartan Books, Washington, DC, 1963.

Smith, Sidney L. and Jane N. Mosier. "The user interface to computer-based information

systems: A survey of current software design practice." Behaviour and Information

Technology, Vol. 3, 1984, 195-203.

Smith, Sidney L. and Jane N. Mosier. Guidelines for Designing User Interface Software.

MITRE, Bedford, Massachusetts, ESD-TR-86-278, Electronic Systems Division, AFSC,

1986.

Schneiderman, Ben. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. Reading: Addison-Wesley Publishing Company, 1987.

Thimbleby, Harold. "User Interface Design: Generative User Engineering Principles."

Fundamentals of Human-Computer Interaction. Andrew Monk, editor. Academic Press,

1985, pp. 165-180.

Wilson, Stephen H. "the layered user interface." Iris Universe, fall 1987, pp. 9-11.

205

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5002

3. Dr. Michael J. Zyda

Naval Postgraduate School

Code CS, Department of Computer Science

Monterey, CA 93943-5100

4. Dr. H. Loomis

Naval Postgraduate School

Code EC, Department of Electrical Engineering

Monterey, CA 93943-5100

5. Lieutenant David M. King

1 151 Aquidneck Avenue Suite 402

Middletown, RI 02840

6. Lieutenant Commander Richard M. Prevatt

6908 Conservation Drive

Springfield, VA 22153

7. David Pratt

Naval Postgraduate School

Code CS, Department of Computer Science

Monterey, CA 93943-5100

206

_E Y - R '

3 2768 00006270 7

