
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�6�R�Q�D�U���E�D�V�H�G���Q�D�Y�L�J�D�W�L�R�Q���R�I���D�Q���D�X�W�R�Q�R�P�R�X�V

�X�Q�G�H�U�Z�D�W�H�U���Y�H�K�L�F�O�H

�.�D�\�L�U�K�D�Q�����$�O�S��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�V�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

DU ,-, LIBRARY
NA GRADUATESCHOOL
MONTEREYCA 93943-5101

Approved for public release; distribution is unlimited

Sonar Based Navigation of an

Autonomous Underwater Vehicle

by

Alp Kayirhan
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTEROF SCIENCE IN ENGINEERING SCIENCE (EE!

from the

NAVAL POSTGRADUATESCHOOL
June 19 9 4

REPORTDOCUMENTATIONPAGE Form Approved OMBNo. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching

existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this

burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,

Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management

and Budget, Paperwork Reduction Project (0704-0188)WashingtonDC 20503.

1 . AGENCYUSE ONLY (Leave blank) 2. REPORTDATE
June 1994

3. REPORTTYPE ANDDATESCOVERED
Master's Thesis

4. SONARBASEDNAVIGATION OF AN AUTONOMOUSUNDERWATER
VEHICLE UNCLASSIFIED

AUTHOR(S) Alp Kayirhan

5. FUNDING NUMBERS

PERFORMINGORGANIZATIONNAME(S) ANDADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORTNUMBER

9. SPONSORING/MONITORINGAGENCYNAME(S) ANDADDRESS(ES) 10. SPONSORING/MONITORIN
G
AGENCYREPORT
NUMBER

li. supplementary NOTES The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b.

DISTRIBUTION CODE
A

13. ABSTRACT(maximum 200 words)

A navigation algorithm to navigate an AUV within a charted environment is presented. The algorithm

uses sonar range measurements and incorporates them with a potential function which defines the map of

the operation area. Extended Kalman filtering is used in the algorithm. Least squares techniques are used

in the estimation of system parameters. The algorithm is tested by both computer generated data and

actual data collected from the vehicle NPS AUVII during tests in a water tank. Fixed interval smoothing

is applied in order to smooth the estimates produced by the Kalman filter. The effects of currents in the

operation area are sought. An approach based on backpropagation neural networks for the navigation

algorithm is also presented. Throughout the simulation studies the algorithm yields a robust and reliable

solution to the navigation problem of AUV's.

14. SUBJECTTERMS AUV, Kalman Filter, Extended Kalman Filter, Fixed Interval Smoothing,

ARX Model, Least Squares Estimate, Potential Function, Neural Networks, Backpropagation

Adaptive Learning, Momentum

15. NUMBEROF
PAGES 93

16. PRICE CODE

17. SECURITY CLASSIFI-

CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-

CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-

CATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

ABSTRACT

A navigation algorithm to navigate an AUV within a

charted environment is presented. The algorithm uses sonar

range measurements and incorporates them with a potential

function which defines the map of the operation area. Extended

Kalman filtering is used in the algorithm. Least squares

techniques are used in the estimation of system parameters.

The algorithm is tested by both computer generated data and

actual data collected from the vehicle NPS AUVII during tests

in a water tank. Fixed interval smoothing is applied in order

to smooth the estimates produced by the Kalman filter. The

effects of currents in the operation area are sought. An

approach based on backpropagation neural networks for the

navigation algorithm is also presented. Throughout the

simulation studies the algorithm yields a robust and reliable

solution to the navigation problem of AUV's.

in

TABLE OF CONTENTS

I . INTRODUCTION 1

A. GENERAL 1

B. GOAL 2

C. METHODOF APPROACH 2

II. BACKGROUND 4

A. KALMAN FILTERING 4

B. EXTENDEDKALMAN FILTERING 8

C. SMOOTHINGALGORITHM 10

D. PARAMETERESTIMATION 12

E. SYSTEMMODELING 14

III. APPLICATION OF POTENTIAL FUNCTIONS 17

A. POTENTIAL FUNCTION THEORY 17

B. APPLICATION TO SYSTEMMODEL 21

C. SIMULATIONS IN A RECTANGULARPOOL 22

D. SIMULATIONS IN AN ENVIRONMENTWITHOUT BORDERS . 31

E. THE EFFECTS OF CURRENTS 3 7

F. STUDIES WITH ACTUAL DATA 42

IV. NEURAL NETWORKMODELS FOR POTENTIAL FUNCTIONS ... 51

A. GENERAL 51

IV

DUDLEYKNOXLIBRARY
NAVALPOSTGRADUATESCHOOL
MONTEREYCA 93943-5101

B. BACKPROPAGATIONNEURAL NETWORKS 5 3

C. MODELING OF POTENTIAL FUNCTIONS BY NEURAL

NETWORKS 55

V. SUMMARY, CONCLUSIONSAND RECOMMENDATIONS 62

APPENDIX 64

A. PROGRAMSTRUCTURE 64

B. PROGRAMLISTING 6 6

LIST OF REFERENCES 85

INITIAL DISTRIBUTION LIST 86

ACKNOWLEDGEMENTS

I would like to thank my advisor, Roberto Cristi for his

guidance and encouragement throughout this thesis, his expertise

and through knowledge made this thesis a great learning experience.

I would also like to thank my wife Yasemin for her unyielding

support and love.

VI

I. INTRODUCTION

A. GENERAL

Since the early 1960s the U.S Navy has been interested in

Unmanned Underwater Vehicles (UUV) , which include Autonomous

Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV) .

The latter are tethered to a supporting platform, where an

operator provides necessary control signals. In this case most

of the mission planning and on-line decision making is

accomplished by the operator. Increasing computer capabilities

have decreased the need to tether the vehicle to prove

guidance and navigational support. The improvements allowed

underwater vehicles to be autonomous. [Ref. 1]

Autonomous vehicles can go where humans cannot go and

do not want to go. Autonomous vehicles are capable of

receiving initial input, moving to another location, executing

a mission, and returning with the requested results and the

data. In addition to performing labor intensive and repetitive

tasks, these vehicles can perform their tasks faster and with

greater precision than humans, and can also proceed into

hostile or contaminated environments. [Ref. 2]

At the Naval Postgraduate School the interest in

autonomous underwater vehicles has manifested itself in

current research which supports development of a prototype

vehicle named NPS AUVII.

B. GOAL

If an autonomous underwater vehicle is to be completely

autonomous, it must have a navigation system capable of

estimating its own position at all times. The effort in this

thesis is mainly concerned with the navigation problem of the

AUV. Compared to autonomous land vehicles, AUVs have many

disadvantages, such as the presence of highly nonlinear

vehicle dynamics that are often uncertain and the presence of

currents whose effects cannot be detected by inertial

navigation systems. One possible solution to this problem is

the use of velocity measurements relative to the ocean floor,

using, for example, a doppler sonar. However, the cost, size

and the depth of the ocean often prevents use of doppler

sonar on standard AUV's. Visual information (sonar and

optical) seems a viable approach in environments having

landmarks as references, such as buoys, piers, rocks, and man

made structures.

C. METHODOF APPROACH

This thesis develops a short range navigation algorithm

for the planar motion of the NPS AUVII vehicle. The system

uses sonar returns and incorporates them with a potential

function which defines the map of the operation area. The

measurements obtained from sonar are filtered through a Kalman

estimator using extended Kalman filtering. The main feature of

the algorithm is the use of a potential function to define the

area of operation. By use of this potential function, the

system discriminates the objects which are not on the map
,

and yields a robust and reliable solution to the short range

navigation problem of the AUV. The algorithm is first applied

in a rectangular shaped pool and later applied to an

environment without any borders (e.g open sea)

.

This thesis consists of five parts. Chapter II discusses

the theory behind the navigator design and the modeling

assumptions in this study. Chapter III discusses the details

of the potential function approach in the implementation of a

navigation algorithm together with simulation results. The

results using the actual data collected in the water tank

are also discussed. Chapter IV discusses the implementation of

neural networks for the navigation of AUV. Consequently

Chapter V summarizes the results and conclusions of the study,

and provides recommendations for further investigation.

II. BACKGROUND

A. KALMAN FILTERING

Since it was derived by R.E. Kalman in I960, the Kalman

filter has been used extensively in the design of optimal

estimation algorithms. Its rapid acceptance and subsequent

success are due to the Kalman Filter's recursive nature and

optimality

.

The Kalman filter estimates the states of a system given

a set of inputs to the system and a set of measurements both

corrupted by noise [Ref . 3] . The system is assumed to be

driven by both a known input and a random input

:

x{k+l) =Qx{k) +A
l

u{k) +A
2
w(k) , (2.1)

where u(k) is the deterministic input, w(k) is plant driving

noise, <£ is the state transition matrix and x(k) is the state

vector. We also assume w(k) is a zero mean gaussian random

vector with covariance:

E[w{k) w(k+n)] =Q6 (n) ,
(2.2)

where Q is the covariance matrix of plant noise and 6 (n) is

impulse function. The measurement process can be modeled as:

y(k)=Hx(k)+v(k) , (2.3)

where v(k) is zero mean additive gaussian noise and H is the

measurement matrix. Measurement noise v(k) has covariance:

E[v{k) v(k+n)] =R6 (n)
, (2.4)

where R is the measurement error covariance matrix.

Using the orthogonality principle it can be shown that the

recursive solution to this problem has the following form:

£(ic+l|/c+l) =*(ic+l|/c) +G(ic+l) [y(k+l) -y(k+l\k)] . (2.5)

Given the current estimate we can predict ahead by simply

using the state equation:

J?(Jc+l|Jt)=^(Jt|Jt)+A 1 u(ic) l (2.6)

which yields the optimal predictor. We can reasonably estimate

y(k+l) by simply using the H matrix such that:

y(k+l\k) =Hx(k+l\k) . (2.7)

The Kalman gain G depends on the covariance matrix of

estimation error which is defined as:

P(k\k) = E[{x{k) -$(k\k) } [x(k) -£(k\k) }
T

] .
(2.8)

The Kalman gains G(k+1) are found by applying the

orthogonality principle as shown in [Ref. 3], which leads to

the following recursive equations:

G{k+1) = P(k+l\k)H T [HPH T + R]' 1 (2.9)

P(k+l\k+l) =[I -G(k+1)H] P{k+l\k) (2.10)

P(k+l\k) = 4>j£(jc|£)4> t + A 2 £)A 2
r (2.11)

The filter equations can be summed up as follows:

&{k+l\k) = $2{k\k) + A
x
u(k) (2.12)

?(k+i\k) = HX(k+i\k) (2.13)

X(k+i\k+i) =&{k+l\k) +G(k+l) [y(k+D -?{k+l\k)] (2.14)

As can be seen from the above equations, for a Linear Time

Invariant (LTD system, the Kalman gains can be computed off-

line and stored in the computer and used as look-up tables. In

order to start the filter algorithm, a priori values of the

state estimates and the error covariance are needed. The

proper choice for these estimates are:

*(0|0) = E[x(0)] ,
(2.15)

P(0|0) =Cov[x(0)] .
(2.16)

The Q matrix is the covariance of the state excitation

noise. If the disturbances to the system are uncorrelated,

the Q matrix is diagonal. The Q matrix accounts for the noise

processes in the system as well as modeling errors between

model and system dynamics.

R matrix is the covariance matrix of measurement error.

Large values of R means that the measurements are not

consistent with the dynamic model.

The matrices Q and R represent a trade-off between the

model and the observation accuracies. In particular if the

entries of R are larger than the entries of Q, it means that

the model is more reliable than the observations, and the

Kalman Filter will give less emphasis to the observation. Vice

versa, if the entries of R are small compared to Q , it means

that the observations are more reliable than the model, and

the Kalman filter puts more emphasis on the observations.

While the matrix R is in general determined by sensing

device, the determination of Q is more difficult due to its

lack of physical meaning, and it is usually set by trial and

error.

As mentioned above for the implementation of the filter

algorithm we need a priori information for both the states and

the error covariance. Large values in the initial estimate of

P means that the filter will not solely depend on the initial

conditions and gives more emphasis to the measurements.

B. EXTENDEDKALMAN FILTERING

The Kalman filter yields a statistically optimal estimate

for the states of a LTI system. Unfortunately many real

systems such as the model studied in this thesis are nonlinear

in nature. A general nonlinear system driven by both a

deterministic and random input is:

x(k+l) =f(x(k) ,u(k) ,w(k) ,k) ,
(2.17)

where w(k) is a random forcing function with covariance Q,

u(k) is a deterministic input and f(.) is a nonlinear

function. The measurement process can be modeled as:

y(k)=g(x(k) ,v(k) ,k) ,
(2.18)

where v(k) is measurement noise with covariance R and g(.) is

a nonlinear function.

Our task is to find the linear estimate of x(k), which

minimizes the mean square estimation error. Solution to this

problem is given by the conditional expectation. But

generating and maximizing the conditional expectation is a

formidable task which is not suitable to on-line

implementations

.

A simpler and of course mostly used approach is to use an

extension of the Kalman filter by using Taylor series

expansion. The resulting filter is suboptimal and does not

give a guaranteed convergence as the Kalman filter does. In

spite of this, the Extended Kalman Filter (EKF) is used in a

wide range of applications, especially in target tracking

8

systems where the nonlinearity stems form the geometry

involved in the measurement process.

The extended Kalman filter equations are similar to the

Kalman equations:

x(k+i\k) =f(x(k\k) ,u(k) ,Q,k) ,
(2.19)

y{k+l\k) =g(x(k+l\k) , , k) ,
(2.20)

x(k+l\k+l) =Jt(k+i\k) +G{k+1) [y(k+D -?{k+i\k)] (2.21)

As can be seen from these equations the states are

predicted ahead using the estimated current state and the

known input. Since the noise is unknown, it is set to its

expected value of zero. The Kalman gains are computed by using

the first order linear approximation of the nonlinear model

using Taylor series expansion. These approximations are as

follows

:

^_ df(x(k) ,u(k) ,w(k) ,k)
| , w . w irs _

<P 5—77I \x(k)=x(k\k) (2.22)
w(k) =0

A . df(x(k) ,u(k) ,w(k),k)
, fM „_, ##1 _ xA 5

—

m \x(k)=x(k\k) (2.23)
() =0

g8 W),y),*)
|
xW^ W (2.24)

D=—̂ —, ',
,

'———- x(Jt)=i?(icic) . (2.25)
cv^/c) v(jt)=o

These linearized values are used in the gain equations:

p./c+l|Jt) =4>P(k\k)$ T+AQ£LT (2.26)

G{k+1) =P(k+l\k) +H T [HPH T+DRDT
]

~ x (2.27)

P{k+l\k+l) = [I-G(k+1)H] P{k+l\k) (2.2 8)

It is easy to see, from these equations, that the Kalman

gains should be computed on-line since the linearized model

depends on the current state estimate.

C. SMOOTHINGALGORITHM

Smoothing is a procedure that uses all the state

estimates and associated error covariances produced by the

Kalman Filter and attempts to improve the accuracy of these

estimates

.

Let k be within the time interval to N, that is, OsksN,

for some fixed N. The Kalman filter estimate at time k denoted

by x(k+ljk) is based only on the measurements up to time k.

The smoothed estimate is based on the measurements that

occurred over the entire time interval. The smoothed estimate

is denoted by x(kJN) and the smoothed error covariance is

given by P (k|N)

.

Meditch, [Ref. 4], classifies the smoothing algorithms

into three categories:

10

Fixed interval smoothing, denoted by x(kJN) where

k=0 , 1 . .N- 1 ;N is a positive integer.

Fixed point smoothing, denoted by x(kjj) where

j =k+l , k+2 , . . k and k is a fixed integer.

Fixed lag smoothing, denoted by x(k|k+L), where

k=0,l,..N, is a positive integer, and L is the fixed time lag.

In this study we use a fixed interval smoothing algorithm

to smooth the estimates of the extended Kalman filter. The

equations used in the smoothing algorithm are given below:

A(k) =P(k+l\k+l) $ TP- 1 (k+l\k) (2.29)

x(k\N) = x(k+l\k+l) + A{k) [x(k+l\N) -x{k+l\k)] (2.30)

P(k\N) = P(k+l\k+l) +A(k) [P(k+l\N) -P(k+l\k) }A(k) T (2.31)

As can be seen from the above equations, the smoothed

estimate is the Kalman filter estimate x(k+l|k+l) , adjusted by

a weighted error term. This error is the difference between

the smoothed estimate and the predicted estimate calculated by

the Kalman Filter. The smoothed error covariance has no impact

in the smoothing algorithm but it is a measure of how well the

smoothing filter is working. If P (k j N) sP (k+1 J k+1) this means

the smoothed estimate is better than or equal to its filtered

estimate

.

The fixed interval smoothing algorithm is an off-line

procedure that operates backward in time. The smoothing filter

is initialized by the last filtered estimate, that is to say

11

the last filtered estimate becomes the first smoothed

estimate. It is also clear that, in order to apply the

smoothing algorithm, the values of x(k+ljk), x(k+ljk+l),

P(k+l|k), P(k+ljk+l) must be stored in computer prior to fixed

interval smoothing.

D. PARAMETERESTIMATION

In this section we present an algorithm to estimate the

system parameters using least squares method. System

identification is mainly concerned with fitting a dynamic

model to the measured input and output data. Trying all

possible dynamic models is certainly a formidable task,

therefore we restrict our models to a certain model structure.

We consider the following difference equation:

A{z- X)y{k) =B(z~ 1
) u(k) + C(z~ l

) e{k) , (2.32)

where e(k) is white noise and y(k) and x(k) are output and

input sequences respectively. A, B, C are polynomials in the

time delay operator expressed as:

Aiz' 1
) = l+a 1 z~ 1 + +a n z

~ n

Biz' 1)^ b^z~ x + +bn z
~ n (2.33)

C{z' 1
) =l+c

1
z" 1 + +c n z~ n

.

This input output model is called ARMAX, which stands for Auto

Regressive Moving Average Extended [Ref . 5] . A particular case

12

of this model is the ARX model which is used in this thesis.

It comes from the ARMAXmodel with the moving average part

removed and expressed as:

A{z-l)y(k) =B{z'l) u(k) +e(k) .
(2.34)

We can write this in regression form as:

y[k) =<J>
T (£)£+e(/c) ,

(2.35)

where

<J)

r =[-y(ic-i) ,-y(k-n) ,u(k-l) , u(k-n)}

§-[a
1

...a n b
1

...b n V.
(2.36)

The basic method to estimate the parameters is the least

squares method which minimizes the mean square estimation

error:

M
&=argminY \y(k) -<t>

r
fi|

2
,

(2.37)

with respect to .0. The solution to this problem is given by

pseudo inverse matrix:

£=(<& T
<I>) -Wy, (2.38)

where

13

*=[<|>(1) ,<j)(2) , <|)(M)]

y=[y(l) ,y{2) , . . .,y[M)] T
,

(2.39)

with M being the number of data points used in the parameter

estimation.

If we consider a first order difference equation of the

form:

y(k) +ay(k-l) =bu(k-l) + e(k) (2.40)

Then using Equations (2,38) and (2,39) the least squares

estimate of the parameters a and Jb are given as follows:

TTy(k-i) 2 -Ty(k-i)u(k-i)
Jc=l Jc=l

M M
-Vy(Jt-l)u(Jt-l) ^u(k-i) 2

-Ty(k-i)y{k)
k=l

H

Y, u(k-l)y(k)

(2.41)

Using either the pseudo inverse matrix form or the

summation form, the parameters a and b can be estimated using

the above equations.

E. SYSTEMMODELING

Our study in this thesis is concerned with the planar

motion of the AUV, therefore system modeling for the planar

motion is considered. The system model used in this study is

the same as in [Ref . 6]

.

14

In modeling the planar motion of the AUV we use a earth

fixed cartesian coordinate frame. We define the states of the

vehicle X e R5 as

:

X(t)

x(t)
y(t)
v(t)
0(t)
e(t)

(2.42)

The states x and y define the x and y position of the AUV. The

state v is the forward velocity of the AUV and the states 8

and 8 are the heading (yaw) and heading rate of the vehicle.

The differential equations describing the model are as

follows

:

x=vcos6

y^vsinQ

v=-a
1
v+a

2 u
l

(2.43)

where a,, a 2/ b, ; b ; are constants depending on the vehicle

dynamics and the inputs u 1; u 2
are the RPM and rudder commands

to the system respectively.

The system model can now be expressed in state space form

as

:

15

COS0
sinG

-*i

1

" '0 0'

x+ a 2 •

U
2.

\ b2

+ w, (2.44)

where W is zero mean gaussian noise which accounts for the

errors between the model and the actual system dynamics.

Notice that this model does not include side-slip since we

assume the velocity vector to be in line with the heading of

the vehicle. For simplicity, the error due to side slip is

taken into account by the noise term W.

In the next chapter we are going to use this model in

conjunction with the model of the environment to determine the

optimal state estimator.

16

III. APPLICATION OF POTENTIAL FUNCTIONS

A. POTENTIAL FUNCTION THEORY

Autonomous underwater vehicles must have the ability to

locate themselves in partially known environments using

sensors available to them. In this study, we address the

problem of navigating the Autonomous Underwater Vehicle (AUV)

using sonar returns. These sonar returns are incorporated with

a potential function and used as nonlinear measurements in

Kalman Filter. The potential function is a function which, in

a sense, defines the area where the vehicle operates. The

basic idea behind the potential function is the following:

i) it returns a value of zero at the boundaries of the

object and returns a value between one and zero elsewhere;

ii) its derivative is maximum at the boundaries of the

object

.

As an example, if we consider a pool of rectangular shape

with sides L, and L 2 we can define a function |8(x,y) such that:

P(x,y) =x(x-L
1
)y{y-L 2) , (3.1)

where we take the lower left-hand corner of the pool as the

origin of the reference frame. If the sonar return is from the

sides of the pool it returns a value of zero. We combine the

defining function with a squashing function to provide

boundedness and define the potential function as:

17

V(x,y) = Fk {$(x,y)) . (3.2)

The function F x (z) must be smooth, bounded and dif f erentiable

.

A possibility is to choose F x (z) to be a sigmoid function:

Fk (z) =
x e -

, (3.3)

with X being a strictly positive parameter.

The potential function must satisfy the following

requirements

:

i) V should be continuous and dif f erentiable

.

ii) V(Xo,y) should return a value of zero if the return is

from a reflecting surface.

iii) V should be uniformly bounded.

Note that the first and the third requirements are met by

the sigmoid function, while the second is met by the defining

function #. The plot of a sigmoid function for various values

of X is given in Figure (3.1) . The function is continuous and

bounded over the interval [-1, 1] and as the parameter X

decreases, the "sharpness" of the function increases.

If we consider a field of operation containing several

obstacles 0, , 2 , . . . , n , each of which has elliptical shape,

we can describe a defining function for each obstacle as:

P, =[*y] a, y-Cj, (3 * 4)

18

where A, e R2x2 and C, e R [Ref . 7] . The total defining function

is the product of each function:

PU,y) = JlPj(^y) • (3.5)
j

As an example, if we want to add a buoy of cylindrical shape

of radius r at point (a,b) in the pool the defining function

will be:

Pobst(^y) ={x-a) 2 *(y-b) 2 -z 2
,

(3.6)

and the total defining function will be:

P toC (x,y)= x(x-L
x
)y{y-L

2) ((x-a) 2 + (y-b) 2 -i 2
)) , (3.7)

where the overall potential function is:

V(x,y) = Fk (P tot (x,y)) . (3.8)

By following the above procedure, additional obstacles may be

added to the environment.

The parameter X has a vital role in shaping the potential

function, the small values in X result in a steeper potential

function surface while larger values result in a smoother

surface. In Figure (3.2) we see the 3D plot of a potential

function in the pool. It is easily seen that at the pool

borders it gives a value of zero, whereas at the other points

it returns a value between zero and one.

19

Figure 3.1 Sigmoid Function for various values of X

Figure 3.2 Potential function for the pool

20

B. APPLICATION TO SYSTEMMODEL

The system model in this study has the form of Equation

(2.44). The vehicle states are position in x and y

coordinates, velocity, heading (yaw) and heading rate

respectively. The navigation algorithm which is based on the

extended Kalman Filter uses the sonar range measurements.

Therefore we need to define a measurement equation which

relates the states of the vehicle to the sonar range

measurement. The measurements available to the system are

sonar ranges p at angles a with respect to the longitudinal

axis of the vehicle. We define the location of the "tip" of

the sonar range as

[xO,yO] = (x+pcos (6 + a),y+psin(6 + oO), (3.9)

where x, y, and 8 are the current position and heading of the

vehicle

.

We relate the sonar range measurement to the system model

via the potential function so that the measurement equation

becomes

:

y=g{X, p, a) = ^(x+pcos (6 + a) ,y+psin(0+a)) +W1, (3.10)

where the function g is a nonlinear function of the states and

the sonar measurement and Wl is zero mean gaussian measurement

noise. The function g is the potential function which defines

the area of operation. Apart from measurement noise the

21

measurement equation should have the value of zero if the

sonar return is consistent with the map of the area.

By defining the above measurement equation we can write

the overall model in the standard state space form as:

X=AX+Bu+W
(3.11)

y=g{X,p,a) +W1

The system has a nonlinear state equation and a nonlinear

observation equation. In order to apply extended Kalman

filtering we need to get the linearized observation matrix H

as in Equation (2 , 24) , which is:

g . agt*.p,a) .
t jg, jg, , |g ,], < 3 . 12)

dx dx dy do

The partial derivatives are found by application of the chain

rule

:

dg^^f\dz dg =
dF\dz

dx dz dx dy dz dy
(3.13)

dg _ dFk dz dx d&\ dz dy
ae dz dx ae dz dy ae

'

where the function F x (z) is the sigmoid function as in

Equation (3,3)

.

C. SIMULATIONS IN A RECTANGULARPOOL

The estimation algorithm was tested first in a pool of

size 12X12 feet. The Tritech ST725 high resolution sonar

onboard NPS AUVII was simulated. The sonar has a rotating head

22

with a scan rate of nine seconds and yields 400 sonar returns

per scan corresponding to 0.8 degrees per return. The data

from seven successive scans of the sonar head are processed by

the Kalman filter. At point (9,9) in the pool we placed a

buoy of radius 0.5 feet, and the potential function becomes:

V(x,y) =Fk ([x(x-12)y(y-12)] [(x-9)
2 + (y-9)

2 -0 . 25]) . (3.14)

In Figure (3.3) the position estimation with known initial

location is shown. The location of the sonar tip,

corresponding to the estimated borders of the pool is plotted

for each of the seven successive sonar scans and the contour

of the potential function is superimposed. In the last plot

the estimated trajectory of the vehicle is shown. The

estimated trajectory of the vehicle matches the actual

trajectory.

The parameter X plays an important role in the estimation

algorithm. Its value should be kept high enough to correct for

errors in the initial estimates and low enough to discriminate

objects which are not on the map. The filter uses a time

varying X which decreases with time so that the potential

function surface get steeper as the estimates converge to the

actual values. When there is not enough information in the

initial position of the vehicle the filter starts with a large

value of X to account for the errors in the initial estimates.

In Figure (3.4) result of the estimation with unknown

initial position is shown. The estimated trajectory converges

23

to the actual trajectory. The effects of the time varying X

can be seen by examining the contours of the potential

function. Figure (3.5) shows the result of estimation where we

have an error in the initial heading as well as the initial

position. The system is more sensitive to heading

perturbations, however, the estimation converges to the actual

trajectory. Figure (3.6) shows the result of simulation for

the case when the obstacle at point (9,9) is not defined in

the potential function. The uncharted obstacle is detected by

the algorithm and the actual trajectory is recovered from the

estimation.

In Figures (3.7) and (3.8) we repeat the experiment with

two cylindrical buoys placed at locations (2,2) and (9,9) in

the pool. In Figure (3.8) the obstacles are not defined in the

potential function. Results of estimation show that the

algorithm proves to be robust in the presence of uncharted

obstacles

.

24

POOL POOL

0)
0)

c

10

5

•
01

•4—

C

10

5

•

>? >^

5 10 5 10

X (in feet) X (in feet)

c

10

5

POOL POOL

4-»

0)

c

10

5

• *

X* >^

5 10 5 10

X (in feet) X (in feet)

*->

0>
>*-

c

10

5

POOL POOL

4^
0)
0)

c

10

5

• *

>^ >^

5 10 5 10

X (in feet) X (in feet)

4)
0)

10

5

POOL Estimated Trajectory of AUV

"5

0)

c

>-

10

5-

__

-

5 10 5 10

X (in feet) X (in feet)

Figure 3.3 Position estimation with known initial location,
one obstacle present.

25

10

0)

c

10

5

POOL
1

l, •
o

I

"

5 10

X (in feet)

POOL

5 10

X (in feet)

POOL
-#

^

5 10

X (in feet)

POOL

10 •

5 -

5 10

X (in feet)

POOL

v
0)

5 10

X (in feet)

POOL

10 -

5 -

>-

10

5

5 10

X (in feet)

Estimated Trajectory of AUV

5 10

X (in feet)

Figure 3.4 Estimation with unknown initial position, one
obstacle present.

26

POOL POOL

0)

4)

5 10

X (in feet)

POOL

5 10

X (in feet)

POOL

5 10

X (in feet)

5 10

X (in feet)

POOL

>-

10

5

5 10

X (in feet)

Estimated Trajectory of AUV

5 10

X (in feet)

Figure 3.5 Estimation with an error in initial position and
heading, one obstacle present.

27

POOL

c

0)

5 10

X (in feet)

POOL

5 10

X (in feet)

0)
0)

>-

0)
0)

>-

5 10

X (in feet)

POOL

^rsi jf^'i""

10
\w/ * f

5 1 -

JL_ A
^T/SH =5J^

5 10

X (in feet)

Estimated Trajectory of AUV

^ 101-
*->

0)
4)

4-

L

5 10

X (in feet)

Figure 3.6 Estimation with unknown initial position, the
obstacle is not defined by potential function.

28

POOL POOL

5 10

X (in feet)

POOL

c

POOL

5 10

X (in feet)

Estimoted Trajectory of AUV

5 10

X (in feet)

Figure 3.7 Estimation with unknown initial location, two
obstacles present.

29

POOL POOL

5 10

X (in feet)

POOL

X (in feet)

5 10

X (in feet)

POOL

5 10

X (in feet)

Estimated Trajectory of AUV

ym-

Qi
V

<*-

10

5

jIL %

•

>-

5 10

X (in feet)

Figure 3.8 Two obstacles present, unknown initial location,
the obstacles are not defined by potential function.

30

D. SIMULATIONS IN AN ENVIRONMENTWITHOUT BORDERS

After testing the algorithm in a pool we proceed further

to investigate its behaviour in an environment without

borders, such as the open sea. In this case the potential

function only defines the obstacles in the area of operation.

For the case when one obstacle of cylindrical shape is

present, the potential function will be:

V[x,y) - ix-a) z + {y-b) 2 -r 2 (3.15)

It returns a value of zero if the sonar range return is. from

the charted obstacles. A 3D plot of the potential function,

for the case of one obstacle is shown in Fiaure (3.9) .

Potential Function When One Obstacle is present

y(in feet)
x(\n feet)

Figure 3.9 Potential Function when one obstacle is oresent

31

In generating data for this simulation a high value of

sonar range is given unless the sonar return is from an

obstacle. We also processed the data from seven successive

sonar scans using a time varying A parameter. Figure (3.10)

shows the estimation when there is an obstacle of cylindrical

shape at point (5,5) in the environment. We also assume to

have exact information of the initial location of the vehicle.

As we notice, the actual and estimated trajectories coincide.

In Figure 3.11 we show the position estimation when there is

an error in the initial position of the vehicle. In this case

the estimated trc zctory eventually converges to the actual

trajectory. In the second simulation we included three

cylindrical buoys at locations (5,5), (15,15), (18,5) so that

the potential function description is:

$ x (x,y) =(x-5) 2 +(y-5) 2 -0.25

P 2 (x,y) =(x-15) 2 +(y-15) 2 -0.25

P 3
(x, y) = (x-18) 2 + (y-5)

2 -0
. 25

^(x,y)=F x (P 1
(x,y)p 2 (x,y)P 3

(x ; y))

(3.16)

A 3D plot of the potential function is shown in Figure

(3.12) . The result of the estimation is shown in Figure (3. 13) .

In Figures (3.14) and (3.15) we included two extra obstacles

at points (3,10) and (8,20) which are not included in the map

of the environment. In both cases the algorithm determines the

obstacles that are not on the map and marks them on the

subsequent plots.

32

Estimated Trajectory of AUV
15

Estimated Solid line

10

Actual : Dashed line

u
•a

c 5 o /%-• ^r
>- */

-

-5
5 5 10 15 20

X (in feet)

Figure 3.10 Position estimation with known initial locations,
one obstacle present.

Estimated Trajectory of AUV
15

Estimated :Solid line

10

Actual : Dashed line

u
«J2

c 5 - /"S. S\J X
>—* ^r
>

-

-5
5 5 10 15 2

X (in feet)

Figure 3.11 Position estimation with unknown initial position,
one obstacle present.

33

Potential Function When Three Obstacles are Present

y (in feet)
x in(feet)

Figure 3.12 3D plot of potential function

Estimated Trajectory of AUV
?ntu

Estimated :Solid line

Actual : Dashed line

15 o

10 -

c

>• 5 -o^x- .^y o ~

e

- -
•* -

'

-

""-5 5 10 15 20 25

X (in feet)

Figure 3.13 Estimation with unknown initial position, three
obstacles present.

34

V

25

20

15

10-

-5
-5

25

20

15-

u

.E 10

5

-5

Estimated Trajectory of AUV

Estimated :Solid line

Actual :Dashed line

10 15

X (in feet)

20 25

Estimated Trajectory of AUVwith Undefined Obstacles Marked

10 15

X (in feet)

20 25

30

30

Figure 3.14 Obstacles that are not on the map are marked,
known initial position.

35

25

20

15 h

V

t
«»-

>•

5-

0-

-5
-5

Estimated Trajectory of AUV

Estimated : Solid line

Actual -.Dashed line

o

10 15

X (in feet)

20 25

X (in feet)

30

Estimated Trajectory of AUVwith Undefined Obstacles Marked
25

20 f -

15 - _

c 10 1
s—

^

^^^0^^^^
>- ^f***

5 ^y^ --^^

-5

- -

5 5 10 15 20 25 30

Figure 3.15 Obstacles that are not on the map are marked,
unknown initial position.

36

E. THE EFFECTS OF CURRENTS

Currents present in the area of operation is one of the

main contributions to the uncertainty in the position of the

vehicle. The estimation algorithm should be modified to

accommodate the effects of currents in the navigation

algorithm. The inclusion of currents leads to the addition of

two extra states in the system model. We further assume the

currents to be constant or slowly varying. The two extra

states are Cx and C
y

which are associated to the components of

the currents in the x and y directions respectively, such

that:

c x =o

c y -o.
(3.17)

The system states becomes X e R7 and the system model is

represented as:

X =

cosG
sin6

-a,

1 o"

r

'

1

a 2

1 X +
ul

u2_

0. 0.

+ w. (3.18)

In Figure (3.16) the effects of currents which cause a

significant amount of offset in the final position of the

vehicle is shown. Figure (3.17) and Figure (3.18) show the

estimation for known and unknown values of the initial

37

position assuming the currents are known. We further tested

the algorithm for the case when we do not have any information

about the currents in the area of operation, which might

generally be the case. Figure (3.19) gives the results of

position estimation, which shows a reliable estimate in the

presence of unknown currents.

In Figures (3.20) and (3.21) we repeat the experiment for

the case when there are two obstacles in the area. For both

cases the navigation algorithm is able to recover the actual

trajectory.

20
Effects of Currents in the Position of AUV

15 with currents ^^-^

10 yS without currents

>»

5 _/L
I /

• 5
c > 5 10 15 20 25 30 3 5

X

Figure 3.16 The effects of currents in the trajectory of the
vehicle.

38

Estimated Trajectory of AUV
I Estimated : Solid line

Actual :Dashed line

15 h

~ 10
u

> 5^

0-

10 15 20 25 30 35

X fin feet)

Figure 3.17 Position estimation for known initial location,
three obstacles present.

Estimated Trajectory of AUV
20

15

10-

0-

hstimated IS5E3 line

Actual : Dashed line

10 15 20

X (in feet)

25 30 35

Figure 3.18 Position estimation with unknown initial location,
three obstacles present.

39

Estimated Trajectory of AUV
20

15-

c* 10

c

0-

Estimated .Solid line

Actual : Dashed line

10 15 20 25 30 35

X (in feet)

Figure 3.19 Position estimation with unknown initial position
and current, three obstacles present.

25

Estimated Trajectory of AUV

Estimated : Solid line

Actual : Dashed line
«,-

20 - °
15 .^r

>- 10 -
r
9^

<=» -

5 **+• ^>- -

"0246 8 10 12 14

X (in feet)

16 18 20

Figure 3.20 Position estimation with unknown initial position
and currents, two obstacles present.

40

Estimated Trajectory of AUV
25

20

O 15

.5
*

—

-

10

Estimated : Solid line

Actual : Dashed line

**•••»...

8 10 12

X (in feet)

14 16 18 20

Figure 3.21 Position estimation with unknown initial position,
two obstacles present.

For the simulations in this Chapter we have applied Least

Squares (LS) parameter estimation techniques to estimate

dynamic parameters a,, a 2 , b,, b 2 associated with Equation

(2.44) .

The results of the parameter estimation are given in Table

(3.1). The actual values are used in data generation for the

computer simulations. The table shows the mean of the

estimated parameters for six different simulations. The

percentage error made in the estimates are less than one

percent which is within acceptable limits.

41

Table 3.1 ESTIMATED DYNAMIC PARAMETERSBY LEAST SQUARES

Dynamic
Parameter

Actual Value Estimated
Value

Percentage
Error

a, 1.0000 0.9977 0.23 %

a 2 0.0010 0.0010 0.0 %

b, 1.0000 1.0002 0.02 %

b 2 1.0000 1.0001 0.01 %

F. STUDIES WITH ACTUAL DATA

In this section we apply the navigation algorithm using

actual data. The data is collected on a water tank of size 6x6

meter. The data consists of a set of sonar returns including

range p and bearing oi. The sonar measurements are taken by a

Tritech 725 high resolution sonar onboard the NPS AUVII. Five

successive sonar scans are processed by the Kalman filter.

Each sonar scan consists of 200 range measurements

corresponding to a sector of 1 . 8 degrees per sonar return. The

typical sonar scan of the pool is shown in Figure (3.22) . Due

to gain problems in the sonar, the range measurements are

excessively corrupted by noise. We see these effects in the

sonar scan of Figure (3.22) , even though there are no objects

inside the watertank we have sonar readings inside the tank as

42

well as the outside of it. In collecting data for the

experiment, no RPM or rudder command was given to the vehicle

and constant speed and heading was used. Therefore, we used a

simpler version of the system model. In this case our state

vector is X e R4
,

given by x and y position, velocity and

heading. This results in a state space form of :

cos0
sin0

x+w, (3,19)

where W is zero mean gaussian white noise. In this case we do

not have any obstacles in the tank so the potential function

will only define the borders of the pool such that:

V(x,y) =Fk (x{x-6)y(y-6)) (3,20)

The range and bearing values from each successive sonar

return are fed to the Kalman Filter and the parameter X is

reduced by 50 percent at each complete scan. The position

estimation for known initial location is given in Figure

(3.23) . In the subsequent plots, estimated borders of the pool

for each successive sonar scan are plotted along with the

contours of the potential function. Also the estimated

trajectory of the vehicle is shown. The readings inside the

pool are due to the gain problems associated with the sonar as

mentioned before. In Figure (3.24) the position estimation

with unknown initial condition is shown, where we have the

43

center of the tank, namely the point (3,3) as an initial

estimate. The estimation converges to the actual values.

The fixed interval smoothing, as explained in Chapter II,

is an off-line procedure that uses the state estimates and

associated error covariances to smooth the estimates produced

by the Kalman Filter. In order to overcome the transient

problems in the filter and get better estimates about the

position of the AUV we applied the smoothing algorithm to the

Kalman filter output. In applying the algorithm we stored the

state estimates and the error covariances for each scan and

fed these values to the smoothing filter. The smoothing filter

runs backwards in time and the final state estimate and the

error covariance of the Kalman filter become the a priori

estimate and the error covariance of the smoothing filter.

In Figures (3.25) and (3.26) results of the estimation

with a smoothing filter are shown. The smoothed trajectory is

given in the last plot. It is easily seen that fixed interval

smoothing provides better state estimates and does not suffer

the transient problems associated with the Kalman filter. In

Figure (3.27) we applied the Fixed Interval Smoothing

algorithm to the computer generated data. The main

disadvantage of the smoothing algorithm is having to store a

large amount of data, which may cause memory overflow in the

computer of the AUV studied in this thesis.

44

E
c

9:

8

7

6

5

4

3

2-

1 - -

0-

-1

Sonar Scan in the Water Tank

. £i%A \V"«i
•••••+»s»+.

J-.

..•

: /
•» •» 'i

3 4

x(in mt)

Figure 3.22 Typical sonar scan in the pool

45

E

E

E

POOL

POOL

1 s ••

* • j

i !

|

X (in mt)

E

>-

E

E
c

POOL

\8 Hk • ^»r
I V I "

1 . * n 1

X (in mt)

POOL

X (in mt)

Estimated Trajectory of AUV

Figure 3.23 Position Estimation with known initial location

46

Figure 3.24 Position estimation with unknown initial location

47

POOL

E

>-

E

>-

POOL

5

X (in mt)

Smoothed Trajectory of AUV

POOL

f V I

m&u\V * JIn r\\

X (in mt)

POOL

1

•J

p. • •• •

•
• a. 1

"

X (in mt)

Estimated Trajectory of AUV

Figure 3.25 Fixed interval smoothing, known initial location

48

POOL POOL

POOL

5
s • •

«

mK '

/ Tm»i *

•
* Jmtk

5

X (in mt)

Smoothed Trojectory of AUV

Estimated Trajectory of AUV

5

I • |

-

5

X (in mt)

Figure 3.26 Fixed interval smooching, unknown initial location

49

POOL POOL

>-

5 10

X (in feet)

POOL

5 10

X (in feet)

Estimated Trajectory of AUV

5 10

X (in feet)

POOL

5 10

X (in feet)

Smoothed Trajectory of AUV

5 10

X (in feet)

Figure 3.27 Fixed interval smoothing applied to computer
generated data.

50

IV. NEURAL NETWORKMODELS FOR POTENTIAL FUNCTIONS

A. GENERAL

A neural network consists of many simple elements

operating in parallel. It can be trained to perform complex

tasks involving system identification and classification,

control systems, vision and pattern recognition [Ref . 8]

.

Neural networks are composed of neurons . Each neuron in

the net is made of weighted inputs, a bias and a transfer

function. The input to a neural network is multiplied by its

weight and summed by the bias b. The role of the bias is to

shift the argument of the transfer function by a corresponding

amount. The model for a neuron is given in Figure (4.1)

.

Figure 4.1 Compact notation for the neuron model

51

In this representation R represents the number of inputs to

the neuron and Q is the number of input vectors which is

called batch. Two or more neurons can be combined in a single

layer and a neural network may contain one or more such layers

[Ref . 8]

.

When a neural network consists of multiple layers of

neurons, the layer whose output is the overall network output

is called output layer and other layers are called hidden

layers. An example of a two layer neural network is given in

Figure (4.2) . In the hidden layer there are SI neurons and in

the output layer there are S2 neurons

.

Figure 4.2 Two layer neural network

52

The output at the hidden layer is given by:

Al = Fl {W1*P+B1) . (4.1)

The overall network output A is given by:

A=F2{W2*A1+B2)
(4.2)

A=F2{W2*F1 {W1*P+B1) +B2)
,

where F2 is the transfer function of the output layer, W2 and

B2 are the weights and biases for the output layer

respectively.

B. BACKPROPAGATIONNEURAL NETWORKS

The backpropagation algorithm is designed to train multi

layered neural networks with different transfer functions to

perform function approximation and pattern recognition [Ref.

8] . It can be shown that a backpropagation neural network with

at least one sigmoid layer is capable of approximating any

smooth function.

The algorithm adjusts weights and biases so as to minimize

the sum squared error between the network's output and the

desired signal. This procedure is done in the direction of

the steepest descent with respect to the error which is called

gradient descent procedure.

Backpropagation neural networks give reasonable answers

when they are fed with inputs they have never seen. This

generalization property gives the convenience of training the

53

network with fewer input/output pairs instead of the whole

input/output data [Ref. 8].

In the backpropagation algorithm the parameters W are

updated as:

frjM = ^c-^L-^ (4.3)

where J is the square of the error between network's output

and desired signal, and \l is the learning rate. If the

learning rate is too high it causes unstable learning, in a

sense that the weights will diverge. If it is too small it

requires very long training times.

Another complication with backpropagation is the problem

of local minima. This is caused by the fact that the error

function is non quadratic in the weights. It is possible for

the estimated parameters to become trapped in one of the local

minima. This problem can be addressed by adding a momentum

term. Momentum makes the neural network insensitive to the

small variations in the error surface. Therefore it prevents

the neural network's solution to converge to a local minimum

which causes higher steady state error.

54

C. MODELING OF POTENTIAL FUNCTIONS BY NEURAL NETWORKS

In this thesis we use backpropagation neural networks in

the context of function approximation. The main idea behind it

is to get approximate values of the potential function and its

derivatives for use in the Kalman filter. As stated in Chapter

III, the nonlinear measurement equation is the potential

function. The linearized H matrix is therefore made of the

derivatives of the potential function with respect to the

states

:

*=[!?, |Y, 0, <£, 0], (4.4,
dx ay 3d

When the system detects a reflecting surface at point

(x,y) in the plane, the network is trained with a "zero"

output in accordance with the definition of the potential

function as in Chapter III.

The inputs to the neural network are the coordinates of

the tip of the sonar beam which is a two element input vector.

The potential function with its derivatives is a three element

output vector which we use to train the network. These input

and output pairs are nonlinearly related. We apply a

backpropagation algorithm for our network model. The network

architecture for this model is shown in Figure (4.3)

.

55

Input Neuron Layer #1 Neuron Layer #2
< < <- —

p

RXQ
Wi

SIXR

bl

SIXQ

S1X1

*

Fl

Al

SIXQ

W2

S2XS1

S2XQ

b2

RXQ S1X1
S2X1

F2

R=2 inputs(Sonar tip(Xo,Yo))

SI =9 Layer 1 Neurons

S2=3 Layer 2 Neurons

Q=Batch of Inputs

Fl=Tangent~Sigmoid Transfer Function

F2=Linear Transfer Function

A2=3 Outputs(Potential Function & Derivatives)

Figure 4.3 Neural Network architecture.

As the input to the network we have the coordinates of the

tip of the sonar beam. In layer one, nine neurons with a

tangent -sigmoid transfer function are used. In layer two,

since our output size is three, only three neurons are used.

The results of training for the potential function are

given in the following figures. In Figure (4.4) a two layer

plain backpropagation network is used. After 3 00 epochs the

sum squared error reaches a minimum value. Figure (4.5) shows

the results of training when backpropagation with added

56

momentum term is used. While the plain backpropagation

converges to a local minimum, the momentum makes the network

converge to a lower sum squared error.

The training time can also be decreased by using an

adaptive learning rate by optimizing the ji based on the error.

Figure (4.6) gives the results of training when an adaptive

learning rate with momentum is used. The learning process is

faster; while it takes 300 epochs to reach a minimum sum

squared error with momentum only, the same error level can be

reached within 120 epochs by adding an adaptive learning rate.

Consequently a two layer backpropagation neural network with

adaptive learning rate and momentum is used for our application.

10*
2-Layw Backpropagabon

I i I I I

to'

I

f

10'

(

I i i i l

» 100 200 300 400 500 600

Epoch

Figure 4.4 Results of training with two layer backpropagation

57

I
10

2-Layer Backpropagation with Momentum
1

10* -

Sum-Squared

Error

10 ^^
io"

1

c > 50
1 1 i

100 150 200
Epoch

250 300

Figure 4.5 Two layer backpropagation training with momentum
term.

2-Layer Backpropagation with Adaptive LB & Momentum

T

150 200 250 300

Epoch
2-Layer Backpropagation with Adaptive LR & Momentum

0.2

£3.1
co

cr
o>
c
E

200 250 300

Figure 4.6 Training with adaptive learning rate and momentum.

58

After training the neural network with input and output

data sets as explained before, the values of the weight and

bias matrices are stored. After this, the potential function

is computed using the neural network. During the estimation,

the coordinates of the sonar tip (Xo,y) , are fed to the neural

network. The values of the potential function and its

derivatives are taken as the network's output, and used by the

Kalman filter. However, the training of the neural network for

the case of unknown initial conditions of the vehicle was not

successful due to the uncertainties in the problem.

The results of the estimation based on the backpropagation

neural network are given in the following figures. In Figure

(4.7) there is one obstacle located at point (15,15) and in

Figure (4.8) there are two obstacles located at (5,10) and

(10,5) . In both cases the estimated position follows the

actual trajectory of the vehicle. Finally, in Figure (4.9),

the algorithm is applied to the actual data collected in the

water tank, which exhibits fairly good estimates about the

position of the vehicle.

59

20-

18
r

16 r

i~ 12-

Estimated Trajectory of AUV using Neural Networks

u
—

10-

>> 8-
!

6
I

Actual :
—

4-
Estimated : ...

2-

10 15

x (in feet)

20 25

Figure 4.7 Estimation using neural networks, one obstacle
present

.

Estimated Trajectory of AUVusing Neural Networks
**n

Actual :
—

18 Estimated : ... /

16 - /
14 - /

c 12 - /
w io
c o J
^ 8-

6-

/^
/^

4
s^ o

2 -

) 2 4 6 8 10 12 14 16 18 2 3

x (in feet)

Figure 4 .8 Estimation using neural networks, two obsta cles
present

60

Figure 4.9 Estimation using neural networks with data
collected in the water tank.

61

V. SUMMARY, CONCLUSIONSAND RECOMMENDATIONS

In this study the problem of navigating an Autonomous

Underwater Vehicle in a partially known environment was

investigated. In the navigation algorithm we made use of

potential functions to define the area of operation. The

potential function was combined with the vehicle dynamics in

an extended Kalman filter. Throughout the simulation studies

the algorithm proved to be robust even in the presence of

obstacles that are not included in the map.

The method was first tested in a rectangular pool

featuring several cylindrical buoys in the environment.

Simulation studies were performed assuming known and unknown

initial locations of the vehicle. Subsequently, the algorithm

was applied in an open environment, such as the open sea,

which included several obstacles. The obstacles that were in

the area but which were not included in the map were

identified by the algorithm. The effects of currents were also

sought. Simulation studies showed that even in the presence of

currents the algorithm gave a reasonable solution to the

problem.

Finally, the algorithm was applied to the actual data

collected in the water tank, The results with the experimental

data proved that the algorithm could be reliably used in the

implementation. A Fixed interval smoothing algorithm was also

62

used in order to smooth the estimates produced by the Kalman

filter. Throughout the simulation studies the dynamic

parameters were estimated by least- squares techniques and

these estimated parameters were used in the filter.

In Chapter IV a neural network was designed for use in the

navigation algorithm. Basically, the potential function was

replaced by a backpropagation neural network. This approach

was successful only in the case of a known initial location.

The simulation studies using both computer generated and

the actual data show that the navigation algorithm could be

used in NPS AUVII. Several topics might further be

investigated such as:

• Including more complex features in the potential

function so that a more precise map of the area could

be used;

• Training neural networks so that the neural network

can be used in the presence of uncertain initial

conditions; and

• Converting the navigator main program to C*

programming language for use in the NPS AUVII on board

computer.

63

APPENDIX

A. PROGRAMSTRUCTURE

The programming which covers an integral part of this

study is accomplished using the MATLAB software package. The

main program is NAVIGATE. M. This program reads the data file,

prompts the user for the values of the initial state

estimates, error covariance and the parameter \. There are

three subroutine calls in this program. PAREST.M estimates the

dynamic parameters associated with the system model using a

least-squares algorithm. EST12P.M is the function that

commands the estimator; it feeds the data to the Kalman

filter, adjusts the parameter X and does the plotting

routines. SCAN10.M is the function that applies extended

Kalman filtering. VP512.M is the function that calculates the

potential function and its derivatives in the rectangular

pool. SIGMOID. M and DSIG.M are the functions that gives the

value of the sigmoid function and its derivative. SHOW10.M is

the plotting routine. EST12P.M ,SCAN10.M , SIGMOID. M, DSIG.M

and SHOW10.Mare modified from Ref [6]

.

VP_CYL.M is the function that gives the potential function

for the rectangular pool when there is one cylindrical

obstacle present. EST_OPNP.M is the function that commands the

estimator when there are no borders. VP OPEN.M and VP 0PEN2.M

64

are the functions that give the potential function in an

environment without borders. PL0T_0PEN2.M is the plotting

routine for the potential function.

EST_CUR1.M and SCAN_CUR1.Mare functions used to model the

estimator in presence of currents. EST_ACT2.M and SCAN_ACT2.M

are the functions that are used with actual data collected in

the water tank. These functions also apply fixed interval

smoothing to Kalman filter estimates. SMOOTH.M is the

subroutine that accomplishes the fixed interval smoothing.

This routine must be provided previously stored state

estimates and predictions and associated error covariances

.

TRAIN2.M is the M file that applies backprogation with

adaptive learning rate and momentum using Neural Networks

Toolbox of MATLAB. The program trains the network given input

and target output sets and generates the weights and biases

for the neuron layers. EST_NEURO.M and SCNNEURO.Mare the

functions that are used in neural network approach.

PR_DATA6.M and RANGEH.M are the M files modified from

Ref [6] which are used to generate data for the simulations in

the rectangular pool. PR_OPEN.M is the program to generate

data for the simulations in an environment without borders.

65

B. PROGRAMLISTING

oo'o'o'^'o'o'^'o'o
%navigate .

m

% Modified April 3rd 1994
% This program is the main program for the navigator
% The program prompts the user for the values of state and
%error
% covariance estimates and initial value of the parameter
%lambda.

i='Y'
while i=='Y'

P=input (' Enter initial state estimate: ');
zhO=input (' Enter initial error covariance : ');
lambda=input (' Enter initial value of lambda : ');
% Estimate dynamic parameters.
prms=parest (data)

;

% Navigator algorithm
zhm=est_act4 (data, P, zhO , lambda, prms)

;

% Continue with another simulation
i=input('Do you want more simulations ? Y/N,'s');
if isempty(i)

i='Y'
end

end

OO
function zhm=estl2p (data, P, zhO , LI , L2 , lambda, prms)
% function zhm=estl2p (data, P, zhO , LI, L2 , lambda, prms)
% modified January 3rd 1994
% This program commands Kalman filter in the simulations for
%rectangular pool

.

% zhO is 5 x l matrix initial values of states
% P is 5X5 matrix a priori error covariance estimate.
% states= [x, y,v, heading, heading dot]
% LI and L2 are the sides of the pool.
% prms is dynamic parameters al,a2,bl,b2
% data file has form:
% data= [alpha, rho, v, x, y, , rpm, rudder, theta, thetadot] ;

clg; hold off;clc
n=length (data)

;

66

axis (

' normal '

)

subplot (221)
zhm= zeros (5,1)

;

ns=400;

for i= 0:n/ns-l

[zh, P, zs] =scanlO (zhO, P, data ((ns*i+l) : (ns* (i+1)) , :) , lambda, pr
ms , LI , L2) ;

axis (
[-1 Ll+1 -1 L2 + 1])

;

xm=zs(l,:); ym=zs(2,:);
zhm= [zhm, zh] ;

showlO (xm,ym, lambda, LI, L2) , title (
' POOL'

)

;

if i = = 3

meta alpl
end

hold off
lambda = . 5 * lambda;

nz=length (zh) ; zhO=zh (: , nz)

;

end
hold off
showlO (xm, ym, lambda, LI , L2)

;

hold on
plot (zhm(l, :) , zhm (2 , :)

, ' *g') , title (' Estimated Trajectory
of AUV'

)

meta
end %estl2p

function [zh, P, zs] = scan 10 (zhO , P, data, lambda
,
prms , LI , L2)

% modified 12 oct 93
% function [zh, P, zs] =scanl0 (zhO , P, data, lambda, prms, LI , L2

)

% This function applies Kalman filter algorithm to the given
%data
% returned is the state estimates zh, estimated borders of
%the map and final error covariance.
% P 5 x 5 matrix, initial covarience matrix
% zhO 5x1 matrix initial values of states
% states= [x, y, v, heading, heading dot]'
% LI and L2 are the sides of tthe rectangular pool.
% lambda initial parameter of potential function
% prms are the dynamic parameters al,a2,bl,b2

n=length (data!
zh(

:
, 1) =zh0;

67

R=l;
al=prms (1) ;a2=prms (2) ;b2=prms (3) ;bl=prms (4

Ts=0.0225;
for t=l:n-l

1)

rho=data (t , 2

,

alpha=data (t ,

1

headh=zh (4 , t)

;

RPM(t) =data(t, 6)

;

RUDDER(t) =data(t,7)
a=cos (headh*pi/180)
b=sin(headh*pi/180)

A= [0 a
b
-al

1

-bl]

;

B=[0 0;0 0;a2 0;0 0;0 b2]

;

[Phi, del] =c2d(A,B,Ts)

;

dx0=rho*cos ((alpha+headh) *pi/180)

;

dy0=rho*sin ((alpha+headh) *pi/l80)

;

x0=zh(l, t) +dx0;
y0=zh(2 , t) +dy0;
zs (: , t) = [x0;y0] ;

[v, dvx, dvy] =VP_cyl (xO
,
yO , lambda)

;

h= [dvx, dvy, 0, (-dvx*dy0+dvy*dx0) *pi/180, 0]
'

;

s=h'*P*h+l; K=Phi*P*h/s;
e=0-v;
zh(: , t+1) =Phi*zh(: , t) +del* [RPM(t) RUDDER(t)]

' +K*e;
P=Phi*P*Phi' -K*s*K'

;

end
end %scan

function prms=parest (data)

;

% this function estimates the dynamic parameters of the
% model using least squares estimates.
% the continous time parameters are returned.
oo

%estimation for velocity parameters
al=0 ; a2=0 ; a4=0 ; a5=0 ; a6=0

;

v=data (: , 3)

;

rpm=data (: , 6)

;

for t=2 : length (data)

;

al=al+ (v(t-l)

)

A
2;

a2=a2+ (v(t-l) *rpm(t-l))

;

68

a4=a4+ (rpm (
t

- 1))

A
2;

a5=a5+v(t-l) *v(t)

;

a6=a6 + rpm (
t

- 1) *v (t) ;

end
% discrete velocity parameters
thvelo=inv([al -a2;-a2 a4]) * [-a5 ; a6] ;

% estimation for heading parameters
thdot=data (: , 9)

;

rudder=data (: , 7)

;

bl=0;b2=0;b4=0;b5=0;b6=0;

for t=2 : length (data)

;

bl=bl+ (thdot (t-1)

)

A
2;

b2=b2+ (thdot (t-1) * rudder (t-1)) ;

b4=b4+ (rudder (t-1)

)

x
2;

b5=b5+ thdot (t-1) * thdot (t)

;

b6=b6 + rudder (t-1) * thdot (t)

;

end
eps=le-

6

% discrete heading parameters.
thhead=inv([bl -b2;-b2 b4]) * [-b5 ;b6]

;

phi= [-thvelo (1) ; -thhead(l)];
del= [thvelo(2) 0; thhead(2)];
% discrete to continuous transformation
[A,B] =d2c(phi,del, 0.022 5) ;

prms=[-A(l / l) ;B(1,1) ;-A(2,2) ;B(2,2)];

end % parest

function [v, dvx, dvy] =VP512 (x, y , lambda)

;

% [v,dvx, dvy] =VP (x,y, lambda)
% potential function for the pool.
% This function calculates potential function at a given
% point and its derivatives along x and y

v0=(x.* (x-12)) * (y.* (y-12))
'

;

z= (vO) / (lambda) ; v= sigmoid (z)

;

dvx=dsig(z) * ((x- 12) * (y . * (y- 12)

)
' +x* (y . * (y- 12)

)

')
/lambda;

dvy=dsig(z) *((x. * (x-12)) * (y-12) '+ (x. * (x-12)) *y'
)

/lambda;
end %potential

69

O00'«'0*0*0'ff'o*0'^' ,^"^'o' ,o*o'^*0

function y=sigmoid(x)
% y =sigmoid(x)
% value of sigmoid function
o o o, o, <J, o o o o ^^^20*3*2 r'^^^%*^^2*^^^B*^^2*^2*^^^3*3*2*^2*2*^^2*^^^^2' (}>' Q 9 9 9 9 ° ° ° 9 9 °oo'^'o'o'o'^"^

x=min (x, 100) ; x=max (x, - 100) ;

y= (1-exp (-x)) . / (1+exp (-x))

;

end % sigmoid

function d=dsig(x)
%derivative of sigmoid
% d=dsig(x)
'o'o'o'oo'o'ooo'o'oooooooooooooooooooooooooooo'oooooooooooooooooooooo
x=min (x, 100) ;x=max (x, -100)

;

temp=exp (-x)

;

d=temp ./ (1+2* temp + temp . * temp!
end

function x=showl0 (xm, ym, lambda, LI, L2)
%plottig routine for displaying the estimated borders of
%the map and contours of potential function.
% clg; hold off;

x=linspace (- 1, Ll + 1)

;

y=linspace (- 1 , L2 + 1) ;

[v, dvx, dvy] =VP_cyl (x' ,y' , lambda)

;

contour (v, x, y)
hold on
for t=l : length (xm)
plot(xm(t), ym(t), ' og'

) , xlabel (
' X (in feet)')

ylabel (
' Y (in feet) ')

,

end
end %show

2'9'*2-9* , 9*S-9'2-9-9-9-9-9^9-9-9*9-9-2-^'^S»4-9» 9 9 ° 9 S-9-9-S- 9 ^-Q-'3'9«9-2'9«9«'9'3'9«-9«-9«-5'5'5'9'S'&-9-2-2'9'2-S , '

o o o o o o*o"o*o^*o*o^o o o o^>oo'o'o*o''o^'t>'o^>"o^> , o^>^^>^>^ooooo 00 o 00 o 0000000 o o o 00

function [v, dvx, dvy] =vp_cyl (x,y, lambda)

;

% [v, dvx, dvy] =VP_cyl (x, y, lambda)
% potential function for the pool.
% this function defines a cylindrical buoy in the pool

70

Ll=12 ;L2=12;
a=9 ;b=9 ; c= . 04 ; % radius of the object is .2 ft.
v0= (x.* (x-Ll) . * (x-a) .*2)*(y.*(y-L2))'+(x.*(x-Ll))*(y.*(y-L2)

. . . * (y-b) ."2) ' -c* (x.* (x-Ll)) * (y.* (y-L2))
'

;

z= (vO) / (lambda) ; v=sigmoid (z) ; v=flipud(v);
dvx=dsig(z) * (((x-Ll) . * (x-a)

.

"2) * (y . * (y-L2)

)
' + (x. * (x-a)

.

"2

)

(y.(y-L2))'+(2*x.*(x- LI).*(x-a))*(y.*(y-L2))'...
+ (x-Ll) * (y.* (y-L2) . * (y-b)

.

A
2) ' +x* (y.*(y-L2).*(y-b)."2)'...

-c*(x-Ll)*(y.*(y-L2))' -c*x* (y . * (y-L2))

') /lambda;
dvy=dsig(z) * ((x. * (x-Ll) . * (x-a)

.

A
2) * (y-L2)

' . .

.

+ (x.* (x-Ll) . * (x-a)

.

A
2) *y' + (x.* (x-Ll)) * ((y-L2) . * (y-b) ."2)

' . .

.

+(x.*(x-Ll))*(y.*(y-b)

.

A 2) ' + (x. * (x-Ll)) * (2*y. * (y-L2) . * (y-b)

)

. .
. ' -c* (x.* (x-Ll)) *(y-L2) ' -c* (x.*(x-Ll)) *y') /lambda;

end %vp_cyl

function [zhm] =est_opnp (data , P , zhO , lambda
,
prms

)

% function zhm=est_opnp (data, P, zhO , lambda, prms)
% modified April 1 st 1994
% this function commands estimator for the case of open sea
OOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
c 1 g ; c 1 c ;

n=length (data)

;

ns=200;
for i= 0:n/ns-l

[zh, P, zs] =scn_opn (zhO , P, data ((ns*i+l) : (ns*(i+l)) , :) , lambda,

p

rms) ;

zhm= [zhm, zh]

;

zsm= [zsm, zs]

;

lambda= . 3* lambda
nz=length (zh) ; zh0=zh (: , nz)

;

end
clg
lambda, pause
axis ([0 25 -5 20]

)

plt_opn2 (25, 15)

;

hold on
plot (zhm(l, :) , zhm (2, :)

, ' *g' , data (: ,4) , data (: , 5) ,'-.')

,

title (' Estimated Trajectory of AUV'),grid
xlabelC X (in f eet)

'
) ,

ylabel ('Y (in feet)'),
gtext (' Estimated :Solid line'),
gtext ('Actual rDashed line'),
hold off
end % est_opnp

71

o o o 9^S*9^^S*^J^9*!^^J^^9^^9^^9*^^^9*^9*^9^9^J^9*5^ o o o o o o^^^^^oooooooooooooooooooooooooooooooooooo1i)^ooooooooo^^^*?>'?r' ,?)*?>'6

function [v , dvx, dvy] =vp_open (x, y, lambda)

;

%modified February 19th 1994
%This function calculates the potential function
% in a environment without borders
% [v, dvx, dv\ . =vp_open (x,y, lambda) ;

oooooooooooooooo
a=5; b=5; c=.25;
v0= (x-a)

.

A
2 + (y-b)

.

A 2-c;
z=vO/ lambda; v=sigmoid(z) ;

,

dvx=dsig (z) *2* (x-a) /lambda;
dvy=dsig (z) *2* (x-b) /lambda;
end % vp_open

function [v ,dvx, dvy] =vp_open2 (x, y, lambda)

;

%modified January 20th 1994.
% vp_open2.m
%function for computing potential function for two obstacles
% in open sea.
oo
a=10; b=20; c= . 25 ;d=16 ; e=10 ; f = . 25

;

v0=((x-a) .

A2)*((x-d) .

A
2) + ((y-b) . "2) * ((x-d) . "2) - (c* (x-d) .

A
2) +

((x-a) ."2)* (y-e) .

A2+((y-b) ."2)* (y-e) .

A 2-c*(y-e) ."2-. . .

f*(x-a)

.

A 2-f*(y-b) ."2+c*f;
z=v0/ lambda; v=sigmoid(z) ;

,

dvxx=2* (x-a) *((x-d)

.

A 2)+2*((x-a)

.

A
2) * (x-d) + . .

.

2* (x-d) * ((y-b) .

A
2) -2*c* (x-d) +2* (x-a) * ((y-e) .

A
2) -2*f* (x-a)

;

dvx=dsig(z) * dvxx/ lambda;
dvyy=2* (y-b) * ((x-d)

.

"2) +2* (y-e) * ((x-a)
.

"2) +2* (y-b) * . .

.

((y-e) ."2) +2* (y-e)* ((y-b)
.

"2) -2*c* (y-e) -2*f * (y-b)

;

dvy=dsig (z) *dvyy/ lambda ;

end % vp_open2

oo
function pi t_opn2 (limits , lambda)
% routine for plotting potential function
% when two obstacles are present.
%modified January 20th 1994
oo ooo'o'o'^'o'o'ooo o q'o'v'q'o*o*q1>*q'o^>'q^>'q'q*q*o'oooo*qo o o o o o ooooo o oooo oo o o o oo o

xx=linspace (0, limits) ; ,
yy=linspace (0 , limits)

;

[x, y] =meshdom(xx,yy)

;

a=10 ; b=2 ; c= . 2 5 ; d=16 ; e=10 ; f = . 25

;

u= ((x-a) ."2+ (y-b)

.

A 2-c) .*((x-d) ."2+ (y-e) ."2-f) /lambda;
z= (1-exp (-u)) . / (1+exp (-u)) ; , % mesh (z)

,
pause

%title (' Potential Function When Two Obstacles are present')
%meta alpl
contour (z, xx, yy)

;

end % plt_opn2

72

.o„o,o,o,o,o
i

,o,o
<
,o,o,o,o,o,o,o,o,o,o.o,o,o

- ,o o o o o o o o o o o o o o ooooooooooooooooooooooooo*o"o*o*^*^*o*^*^*o"o"o*o
n zhm=est_curl (data, P, zhO , lambda, prms)
% function zhm=est_curl (data, P, zhO , lambda, prms)
% modified 21 Nov 1993
% this function commands the estimator for the case of
^currents
% states= [x, y, v, theta, thetadot , currentx, currenty] 7X1
vector
% P=7X7 error covariance vector.
% zhO= initial state estimates 7X1 vector.

clg; hold off;clc
n=length (data)

;

ns=2 0;

for i= 0:n/ns-l

[zh, P, zs] =scn_curl (zhO,P,data((ns*i+l) : (ns* (i+1)) , :) , lambda

,

prms)
zhm= [zhm, zh]

;

lambda= . 5* lambda
nz=length (zh) ; zhO=zh (: , nz)

;

end

clg
axis ([0 20 25]

)

plt_opn2 (30,1)
hold on
plot (zhm(l, :) , zhm (2, :)

, ' *g' , data (: ,4) , data (: ,5) , ' -
.

'

)

title (' Estimated Trajectory of AUV'),grid
xlabelCX (in f eet)

'
) , ylabel (' Y (in feet)')

gtext (' Estimated :Solid line') ,

gtext ('Actual : Dashed line'),

end % est curl

OO00O"0*O*0'o'6'*O*0OOO0OOOOOOOOOOOOOOOOOO0OO0OOOOOOOOOOOOOOOOO0OO00
function [zh, P, zs] =scn_curl (zhO , P, data, lambda, prms)
% modified April 2nd 1994
% this function applies Kalman filter when there are
% currents present

73

n=length(data)

;

zh(:
, 1) =zhO;

R=l; ^Measurement error Covariance.
al=prms (1) ;bl=prms (2) ;b2=prms (3) ;bl=prms (4) ;Ts=0 .0225
for t=l:n-l

rho=data (t , 2)

;

alpha=data (t , 1)

;

headh=zh (4 , t)

;

RPM(t) =data(t, 6)

;

RUDDER(t) =data(t,7)
a=cos (headh*pi/180)
b=sin(headh*pi/180)
A= [a 1 ;

b 1;
-al 0;

10 0;
-bl 0;

0;
0];

B= [; ; a2 ; ; b2 ; ;] ;

[Phi, del] =c2d(A,B,Ts)

;

dx0=rho*cos ((theta+headh) *pi/l80)

;

dy0=rho*sin((theta+headh) *pi/l80)

;

x0=zh(l, t) +dx0;
y0=zh(2, t) +dy0;
zs (: , t) = [x0;y0] ;

[v, dvx, dvy] =vp_open2 (xO
,
yO , lambda)

;

h= [dvx, dvy, 0, (-dvx*dy0+dvy*dx0) *pi/180, 0,0,0]';
s=h'*P*h+R; K=Phi*P*h/s;
e=0-v;
zh(: ,t+l) =Phi*zh(: , t) +del* [RPM(t) RUDDER(t)]

' +K*e;
P=Phi*P*Phi' -K*s*K'

;

end

end % scan curl

00000000000000000000000*0^00000000000000000000000000000000000
function [zhm, zsmt] = est_act2 (data, Pklk, zhO , lambda)
% [zhm, zsmt] =est_act2 (data, P, zhO , lambda)
% Modified February 3 1994
% data file must contain: [bearing (relative) , range]
% estimated states are zhm= [x, y,v,theta]
% all angles are in degrees ranges are in meters.
oooooooooo'oo'o'oooooooo'o'o'o'o'o'o'o'o'ooooooooooooooooo'oooooooooooooo

74

! del tezgl.met
clg; hold off;
subplot (221)
n=length (data)

;

ns=200;
for i=0:n/200-l

[zh, Pklk, zs,xsmth] =scn_act2 (zhO , Pklk, data ((ns*i+l) : (ns* (i+1)
) , :) , lambda)

;

xm=zs(l,:); ym=zs(2,:);
zhm= [zhm ; zh]

;

zsmt= [zsmt, xsmth]

;

showll (xm,ym, lambda) ; title (
' POOL')

;

if i==3
meta

end
hold off
lambda=0 . 5*lambda;
nz=length (zh) ; zhO=zh (: , nz)

;

end
hold off
showlO (xm, ym, lambda)

;

hold on
plot (zhm(l, :) , zhm(2, :)

, ' *g') , title (' Estimated Trajectory
of
AUV')

hold off
showlO (xm, ym, lambda)

;

plot (zsmt (1 ,:), zsmt (2 ,:),' *r'), title (

' Smoothed Trajectory
of AUV'

)

,

hold off
meta
end % est act2

function [zh, Pklk, zs , xsmth] =scn_act2 (zhO , Pklk, data , lambda)
% [zh, Pklk, zs , xsmth] =scn_act2 (zhO , Pklk, data, lambda)
% Modified February 3rd 1994
% The estimation algorithm for navigation of AUV.
% This function works with actual data taken at Pool.
% Fixed interval smoothing is applied to the estimated
%states
oo
n=length (data)
zh(

: , 1) =zhO;

75

dt=0.0225;
R-l;
for t=l:n-l

headh=zh (4, t)

;

rho=data (t , 2) ; theta=data (t , 1)

;

A=[0 cos (headh*pi/180) 0;
sin(headh*pi/180) 0;

0;
0] ;

B= [0 0] '
;

[Phi del] =c2d(A,B,dt)

;

dx0=rho*cos ((theta+headh) *pi/180)

;

dy0=rho*sin ((theta+headh) *pi/180)

;

x0=zh(l ; t) +dx0;
y0=zh(2, t) +dy0;
zs (: , t) = [x0;y0] ;

[v.dvx, dvy] =VP (x0 ; y0, lambda)

;

%Kalman filter
H- [dvx,dvy, 0, (-dvx*dy0+dvy*dx0) *pi/l80]

;

KG=Pklk*H' * (H*Pklk*H # +R)
A

(-1) ;

Pkk= (eye (4) -KG*H) *Pklk;
Pkkc= [Pkkc Pkk] ;

Pklk=Phi*Pkk*Phi'

;

Pklkc=[Pklkc Pklk]

;

zhl (
:

, t)=zh(:,t) +KG* (0-v)

;

zhlc(: , t) =zhl (: ,t)

;

zh(: , t+1) =Phi*zhl (:
, t)

;

zhc= [zhc, zh (: , t+1)]

;

end

% smooth data points
[xsmth] =smooth ' zhc, zhlc, Pkkc, Pklkc, data)

;

end %scn act

Q, 0, Q, o.

function [xsmth] =smooth (zhc, zhlc, Pkkc, Pklkc, data)

;

% function [xsmth] =smooth (zhc, zhlc, Pkkc, Pklkc, data)

;

% Modified February 11th 1994;
% This Subroutine implements the Fixed interval smoothing
% to the previously stored error covariance and state
%estimates

.

%This function works in reverse time
oooooooooooooo'o'oooooooooo^'o''1)''o*^^>^>oooooooooooooooooooooooooooo
%Flip the Previously stored Matrices
Pkkc=fliplr (Pkkc)

;

76

Pklkc=f liplr (Pklkc)

;

zhlc=f liplr (zhlc)

;

zhc=f liplr (zhc)

;

%initial smoothed estimate is final estimate zh;
XS (: , 1) =zhc (: , 1)

;

%initial smoothed error covariance is final forward time
% error covariance
Psl=f liplr (Pkkc (: ,1:4))

;

for i = 1 : length (data) - 5

;

headh=xs (4 , i)

;

A=[0 cos (headh*pi/180) 0;
sin(headh*pi/180) 0;

0;
0] ;

B= [0 0] '
;

[Phi, del] =c2d(A,B,dt)

;

% Smoothing Filter.
Ak=f liplr (Pkkc (: , 4*i-3 :4*i)) *Phi' *. .

.

(f liplr (Pklkc (:,4*i-3:4*i)))"(-l);
xs (: , i+1) =zhlc (: , i) + Ak* (xs (: , i) - zhc (: , i))

;

Psl=f liplr (Pkkc (: ,4*i-3 :4*i)) +. .

.

Ak* (Psl-f liplr (Pklkc (: ,4*i-3 :4*i))
) *Ak'

;

end

% Flip the smoothed estimates to forward time
xsmth=f liplr (xs)

;

end % smooth

%Train2 .m
%modified December 17th 1993
%This m file applies momentum with adaptive learning rate
%algorithm to train input vectors.
% Input vector = [x0,y0] location of the sonar tip
% Output target vector = [v dvx dvy] potential function and
%its derivatives

clc
%load nrin2 . dat

77

%load nrout2.dat

P=nrin2
T=nrout2

;

% initialize network
[R,Q] =size(P)
Sl = 9;
[S2,Q] =size(T)
[W1,B1] =nwtan(Sl,R)
[W2,B2] =rands (S2,S1)
%Training parameters

disp_f req=25
max_epoch=4 00

;

err_goal= . 002

;

momentum= . 9 5

;

err_ratio=l . 04

;

lr=0.5
lr_inc=l . 05
lr dec=.7

% display frequency
% maximum iterations
% error level
% amount of momentum
% error ratio
%learning ratio
%increment
%decrement

%training parameters
TP= [disp_f req max_epoch err_goal lr lr_inc lr_dec momentum
err_ratio]

;

% Train Network

[Wl , Bl , W2, B2 , epochs , TR] =trainbpx (Wl , Bl ,
' tansig '

, W2# B2 ,

'
purel

in' , P,T,TP)

;

end

ooooooooooooooooooooooooooooooo'ooo'oo'oooooooooo'o'ooooo'oooooo^
function zhm=estneuro (data, P, zhO

,
prms , Wa, Wb, Ba, Bb)

% function zhm=estneuro (data, P, zhO
,
prms ,Wa,Wb ; Ba, Bb)

% modified 11 Nov 1993
%this function implements neural networks for estimation.

Wa,Ba are weights and biases for first (sigmoid) layer
Wb,Bb are weights and biases for second (linear) layer

ooooooooooooooooooooooooooooooooo"o*o*o*ooooooooooooooooooooooo

clg; hold off;clc
subplot (221)
n=length (data)

;

Ts=0.0225;

78

[zh, P, zs] =scnneuro (zhO , P, data, prms , Wa, Wb, Ba, Bb)

;

axis ([0 20 25]

)

plt_opn2 (25 , . 1) , hold on,
plot (zhm(l, :) , zhm(2, :)

,
' *g' , data (: ,4) , data (: , 5)

, '
-

.

'

]

title(' Estimated Trajectory of AUV using BNN'),grid
xlabel (

' X(in f eet)

') ,
ylabel (

' Y(in feet)'),
gtext (' Estimated :Solid line')

,

gtext (' Actual :Dashed line'),
end % estneuro

function [zh, P, zs] =scnneuro (zhO , P, data, prms , Wa, Wb, Ba, Bb)
%modified November 11th 1993
% this function applies the estimation algorithm using
% back propagation neural networks
%potential function is replaced by neural network.
% Wa,Ba are weight and biases for first (sigmoid) layer
% Wb, Bb are weight and biases for second (linear) layer
0000000000000000000000*00000000000000000000000000000000000000
n=length (data)

;

zh (:
, 1) =zhO;

R=l; %Measurement error Covariance.
al=prms (1) ;a2=prms (2) ;b2=prms (3) ;bl=prms (4) ;Ts = .022 5;
for t=l:n-l

rho=data (t , 2)

;

alpha=data (t , 1)

;

headh=zh (4 , t)

;

RPM(t) =data(t, 6)

;

RUDDER(t) =data(t,7)
a=cos (headh*pi/180)
b=sin (headh*pi/l80)
A= [0 a

b
-al

1

-bl] ;

B= [; ; a2 ; ; b2] ;

[Phi, del] =c2d(A,B,Ts)

;

dxO=rho*cos ((alpha+headh) *pi/180)

;

dyO=rho*sin ((alpha+headh) *pi/180)

;

xO=zh(l, t) +dxO;
y0=zh(2, t) +dyO;
zs (: , t) = [xO;yO] ;

% implementation of neural network.
Aa=tansig ((Wa* [xO ;yO]) , Ba) ; % sigmoid neuron layer

79

Ab=purelin (Wb*Aa ; Bb)

;

% linear neuro layer
v=Ab (1) ; dvx=Ab (2) ; dvy=Ab (3) ; % network output
h= [dvx

;
dvy, 0, (-dvx*dyO+dvy*dxO) *pi/180, 0]

'

;

s=h'*P*h+l; K=Phi*P*h/s;
e=0-v;
zh(: , t+1) =Phi*zh(: , t) +del* [RPM(t) RUDDER(t)]

' +K*e;
P=Phi*P*Phi' -K*s*K'

;

end

end %scnneuro

%PRDATA6.M
% modified November 18 1993
%this program simulates the motion of AUV in the rectangular
%pool
% several obstacles are added in the environment.
"5 o o^^^^^^^^^^^^'6'6'o'6'6'S'o'o'5''5'S'5"5'o'o'o'6'6'o'S'8'S'5''o'5'o'5'o"o'o'5'S''5 o o o o o o o o o o o o

clear, clg, clc
L1=12;L2=12;
Ts=0.0225;
Tf=7*9;
kmax=Tf /Ts+1;
x= zeros (5 , kmax)

;

x(:,l) = [2 4 3 0] '
;

t ime (1) = ;

RPM=150*ones (l,kmax)

;

RUDDER=zeros (1 , kmax)

;

%dynamic parameters
al-1;
a2=0. 001;
b2 = l;
bl=l;
for k=l:kmax-l

time (k+l) =time (k) +Ts

;

tetha=x(4 , k)

;

a=cos (tetha*pi/180)

;

b=sin(tetha*pi/180)

;

A= [a
b
-al

1

-bl]

;

B= [; ; a2 ; ; b2] ;

E=eye(5)

;

[phi, dell] =c2d(A,B,Ts)

;

80

[phi, del2] =c2d(A,E,Ts)

;

if time (k) >=10
RUDDER(k) =3;

end
if time (k) >=35

RUDDER(k) = ;

end

rand (

' normal '

)

ex=0. 01 * rand;
ey=0 . 01*rand;
ev=0 . 01*rand;
et=0 . 01*rand;
etd=0. 01*rand;
x(: ,k+l) =phi*x(: ,k) +dell* [RPM(k) RUDDER(k)]' +del2* [ex ey

ev
et etd]

'

;

head(k) =x(4,k)

;

shdg(k) =rem(head(k) +0.9*k,3 60)

;

shdgl (k) =rem(0.9*k, 360)

;

if shdg(k) > 180
shdg(k) =-360+shdg(k)

;

end
if shdgl (k) > 180

shdgl (k) =-360+shdgl (k) +0.01*rand;
end
angl (k) =180/pi*atan2 ((3-x(2,k)) , (9-x(l,k))) ; % obstacle

at (9,3)
ang2 (k) =180/pi*atan2 ((9-x(2,k)) , (3-x(l,k))) ; % obstacle

at (3,9)
[r,h] =rangeh(x(l,k) ,x(2,k) , shdg(k) , LI, L2)

;

if (shdg(k) >=angl (k) -3) &(shdg(k) <=angl (k) +3)

;

dist (k) =sqrt ((9-x(l,k)) A 2+(3-x(2,k))"2) +0.01*rand;
elseif (shdg(k) >=ang2 (k) -2) &(shdg(k) <=ang2 (k) +2)

;

dist (k) =sqrt ((3-x(l,k)) x 2+(9-x(2,k))"2) +0.01*rand;
else

dist (k) =r+0 . 01*rand;
end

end
temp(k, :)= [shdgl (k) dist(k) x(3,k) x(l,k) x(2,k) RPM(k)

RUDDER(k) . .

.

x(4,k) x(5,k)]

;

end
!del datalp5.dat
% save data in ascii code
save datalp5.dat temp /ascii

81

ooo"o*o"ooooooo'o'o*o*o'o"o'o*o'o'$
function [r, h] =rangeh (x,y, theta, Ll, L2)
% [r,h] =range (x,y, theta, Ll, L2

)

% this function computes sonar range rho
% and its gradient h
% at position (x,y) with heading theta
% in the Ll by L2 pool

.

% h= [dr/dtheta, dr/dx, dr/dy]
oooooo"booo

theta=theta*pi/180

;

thl=atan2 (-y, -x)

;

th2=atan2 (L2-y, -x)

;

th3=atan2 (L2-y, Ll-x)

;

th4=atan2 (-y, Ll-x)

;

while (theta >thl+2*pi)

,

theta=theta-2*pi

;

end
while (theta <=th4),

theta=theta+2*pi

;

end
c=cos (theta) ; s=sin (theta)

;

if (theta>=th2) &(theta<thl+2*pi)

,

r=-x/c;
h= [-x*s/c"2, -l/c,0]

;

end
if (theta>=th3) &(theta<th2)

,

r=(L2-y)/s;
h=[(y-L2)*c/s"2,0, -1/s]

;

end
if (theta>=th4) &(theta<th3)

,

r= (Ll-x) /c;
h= [(Ll-x) *s/c A

2, -l/c,0]

;

end
if (theta>=thl+2*pi) & (theta<th4+2*pi)

,

r=-y/s;
h=[-y*c/s A 2,0, -1/s]

;

end
end %range

ooooooo'oo'ooooooooooooooo'o'o'o'o'oooooooooooooooooooooooooooooooo
%pr_open.m
%This program simulates the motion of AUV
%in a environment without borders
%modified 25 oct 93
Iseveral obstacles in the environment can be added.
o o 000000000*00 00 o 00 o o o o'b'o'o'o'o'o'o'o'o'oo'o'o'o'o'oooo o o o o 000 o o o o o o o o o o 00

clear, clg, clc

82

Ts=0. 0225;
Tf=7*9;
kmax=Tf /Ts+1;
x=zeros (5 , kmax)

;

x(: ,1) = [3 3 3 45]
'

;

time (1) =0;
RPM=150*ones (l,kmax)

;

RUDDER=zeros (1 , kmax)

;

al = l;
a2=0.001;
bl-1;
b2=l;
for k=l:kmax-l

t ime (k+ 1) = t ime (k) +Ts

;

tetha=x (4 , k)

;

a=cos (tetha*pi/180)

;

b=sin (tetha*pi/180)

;

A= [0 a
b
-al

1

-bl] ;

B=[0 0;0 0, ; a2 ; ; b2]

;

E=eye(5) ;

[phi, dell]

«

=c2d(A,B,Ts) ;

[phi,del2] ==c2d(A, E,Ts)

;

if time (k) >=3 ; ;

RUDDER(k) =10;
end
if time (k) >=33

RUDDER(k) =0;
end

rand (

' normal '

)

W=0 . 01*rand* [11111]'
x(: ,k+l) =phi*x(: ,k) +dell* [RPM(k) RUDDER(k)]

' +del2*W ;

head(k) =x(4,k)

;

shdg(k) =rem(head(k) +0.9*k,360)

;

shdgl (k) =rem(0.9*k,360)

;

if shdg(k) > 180
shdg (k) =-360+shdg (k)

;

end
if shdgl (k) > 180

shdgl (k) =-360+shdgl (k) +0.01*rand;
end
angl (k) =18 0/pi*atan2 ((10-x (2 , k)) , (5-x(l,Jc))) ; %lst

obstacle at (5, 10)
ang2 (k) =180/pi*atan2 (

(5 -x (2 , k)) , (10 -x (1 , k))) ; % 2nd
obstacle at (10,5)

83

ang3 (k) =180/pi*atan2 ((5-x(2,k)) , (18-x(l,k))) ; % 3rd
obstacle at (18,5)

ang4 (k) =180/pi*atan2 ((10-x (2 , k)) ,
(2 -x (1, k))) ; % 4th

obstacle at (2, 10)
ang5 (k) =180/pi*atan2 ((20-x (2 , k)) , (8-x (1, k))) ; % 5th

obstacle at (8,20

if (shdg (k) >=angl (k) -2) &(shdg (k) <=angl (k) +2)

;

dist (k)=sqrt ((5-x(l , k)
) "2+ (10-x (2 , k)

)

"2) +0.01*rand;
elseif (shdg(k) >=ang2 (k) -2) &(shdg (k) <=ang2 (k) +2)

;

dist (k)=sqrt ((10-x (1, k)

)

A 2+ (5-x (2 , k)

)

A
2) +0.01*rand;

elseif (shdg(k) >=ang3 (k) -2) &(shdg(k) <=ang3 (k) +2)

;

dist (k)=sqrt ((18 -x (1 , k)

)

A 2+ (5 -x (2 , k)

)

A
2) +0.01*rand;

elseif (shdg (k) >=ang4 (k) -2) &(shdg (k) <=ang4 (k) +2)

;

dist (k) =sqrt (
(2 -x (1, k)

) "2+ (10-x (2 , k)
)

"2) +0.01*rand;
elseif (shdg (k) >=ang5 (k) -2) &(shdg (k) <=ang5 (k) +2)

;

dist (k) =sqrt ((8-x(l,k))"2+(20-x(2,k))"2) +0.01*rand;
else

dist (k) =500+0 . 01*rand; % add very large number
end

temp(k, :
) = [shdgl (k) dist (k) x(3,k) x(l,k) x(2,k) RPM(k:

RUDDER(k) x(4,k) x(5,k)];
end
del datalpl.dat
% save data in ascii format in a data file
save datfebl.dat temp /ascii

84

LIST OF REFERENCES

1. Friend, John R., Design of a Navigator for a Testbed

Autonomous Underwater Vehicle, Master's Thesis, Naval

Postgraduate School, Monterey, California, December 1989.

2. Zyda, Michael, and others, " Three Dimensional Visualization

of Mission Planning and Control for the NPS Autonomous

Underwater Vehicle, " IEEE Journal of Oceanic Engineering,

Vol 15, No 3, p. 217, July 1990.

3. Burl, J., B., " Derivation of Kalman Filter Equations,"

notes for the EC 3310 (Linear Optimal Estimation and

Control), Naval Postgraduate School, 1990, (unpublished).

4. Meditch, J. S., On Optimal Linear Smoothing Theory,

Technical Report 67-105, Information Processing and Control

Systems Laboratory, Evanston, Illinois, March 1967.

5. Ljung, L. , System Identification Theory for the User,

Prentice Hall Information and System Sciences series, 1987.

6. Percin, E. ; Sonar Localization of an Autonomous Underwater

Vehicle, Master's Thesis, Naval Postgraduate School,

Monterey, California, 1993.

7. Cristi, R., "Sensor Based Navigation of an Autonomous

Underwater Vehicle, " paper presented at the International

Symposium on Unmanned, Untethered Submersible Technology,

Durham, New Hampshire, August, 19 93.

8. Beale, M. and Demuth, H. , Neural Networks Toolbox, The

Mathworks Inc, 1992.

85

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2

.

Library Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code EC 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor R. Cristi, Code EC/Cx 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor H. Titus, Code EC/Ts 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Deniz Kuwetleri Komutanligi 1
Personel Daire Baskanligi
Bakanliklar, Ankara, TURKEY

7. Deniz Harp Okulu Komutanligi 2
Tuzla, Istanbul, TURKEY

8. Golcuk Tersanesi Komutanligi 1
Golcuk, Kocaeli, TURKEY

9. Taskizak Tersanesi Komutanligi 1
Taskizak, Istanbul, TURKEY

10. Alp Kayirhan 1

Lise Cad 92/4
Denizli, TURKEY

11. Ziya Kayirhan 1
Lise Cad 92/4
Denizli, TURKEY

86

'KNOX LIBRARY
NAV. 'ATE SCHOOL
MONTEREYCA 93943-5101

GAYLORDS

