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Abstract

Underactuated mechanisms provide low cost automation and can overcome actuator fail-

ures. These mechanisms are more suitable for space applications mainly because of their less

weight and lower power consumption. Typical examples of useful underactuated mechanisms

in space would be large space structures and robot manipulators. Such mechanisms are how-

ever difficult to control because of the fewer number of actuators in the system. In this paper

we formulate the dynamics of an underactuated mechanism using Hamilton's canonical equa-

tions. Next, we develop a theorem that provides us with some necessary and some sufficient

conditions for the asymptotic stability of autonomous systems. This theorem is more powerful

than LaSalle's theorem when higher order derivatives of the Liapunov function can be easily

computed. Finally, we use a Liapunov function approach to develop a control strategy that will

stabilize an underactuated mechanism in space to an equilibrium manifold. The effectiveness

of such control is verified using our asymptotic stability theorem.

1. Introduction

Structures in space are mostly required for high precision tasks, like in the case of the

orbiting interferometer telescope, or in the case of the space station that needs to point its

antenna in a specific direction. These space structures are made up of trusses that are designed

to have a light weight. The motivation behind this is to minimize the payload of the rocket

that sends it in orbit. Light weight members have lower structural rigidity. Therefore while

designing structural elements for space, much attention is paid to the geometric shape of the

members so as to maximize their structural rigidity. Nevertheless, these trusses still posses

a significant amount of structural flexibility. This is a serious disadvantage for large space

structures because they easily pick up vibrations due to their flexibility. Vibrations could be

thermally induced by differential heating of the structure or could be induced by differential

gravitational forces. In the case of structures like the space station where robots are expected to

perform routine tasks, vibrations could be easily induced through dynamic interaction between

the robot and the structure. A free-flying multidegree of freedom system in space is a non-

holonomic system (Nakamura and Mukherjee, 1990, 1991). Such systems have a noninvolutive

property and they will experience a change in orientation under periodic motion (Kane, Head-

rick and Yatteau, 1972; Vafa, 1987; Vafa and Dubowsky, 1987). Naturally, space structures

will disorient themselves with time if vibrations persist. Though piezoelectric actuators may

be used to damp out the vibrations in space structures, the system performs oscillations and

1



undergoes an undesirable change in orientation over a prolonged period of time.

We now consider the prospect of replacing a single large flexible space structure with a chain

of concatenated light weight members. Each of the members of the chain can be considered

rigid due to their smaller dimension and can be assumed to be concatenated with revolute

joints. In order to achieve control over the system, we intend to use motors at some of these

joints (instead of piezoelectric actuators). The other joints would be left unactuated. We intend

to control such an underactuated mechanism such that it would be possible to configure the

system in any desired way. If such control can be established, underactuated mechanisms would

provide a meaningful alternative to large flexible space structures.

Though the control of underactuated systems pose difficulties, in general they have a num-

ber of advantages. Underactuated manipulators have lower power consumption and also weigh

less. Therefore these manipulators will be very suitable for space applications. Besides space,

underactuated systems will find applications for low cost automation, hyper-redundant manip-

ulators, and manipulators with actuator failures. The range of tasks that can be performed by

underactuated manipulators are however limited since these systems are usually incapable of

exerting forces. This limitation can be overcome by the use of brakes at the unactuated joints.

These brakes need not be used to stop the motion of the unactuated joints. Instead they may be

used as clamps to maintain a fixed configuration of the unactuated joints over certain periods

of time. These brakes would then enable the manipulator to perform tasks like force control.

They would also allow the manipulators to behave as reconfigurable actuated systems. In the

absence of brakes, underactuated manipulators may be used with proper control to pick and

place objects, and to perform non-contact tasks like spray painting, arc welding, etc.

Underactuated terrestrial robot manipulators were studied by Arai and Tachi (1990, 1991).

In their studies, they assumed that the unactuated joints had brakes that could be used to

stop the motion of the unactuated joints instantaneously. This simplification was used to

eliminate the coupling between the actuated and unactuated links as and when desired. In

1991, Arai and Tachi proposed a PID control law to control the trajectory of the actuated

joints only. They verified the effectiveness of their control law through experiments on a 2DOF

manipulator with one passive joint. Jain and Rodriguez (1991) studied the kinematics and

dynamics of underactuated manipulators. They adopted the spatial operator algebra to develop

an algorithm for the inverse dynamics. Papadopoulos and Dubowsky (1991) proposed the failure

recovery control of space robotic systems. They showed in their formulation that it may be

possible to control the joint whose actuator has failed when there exists a dynamical coupling

between this joint and a joint whose actuator is functioning properly. Furthermore, in order

that the passive joint can be controlled, the system inertia has to be invariant with respect to



the passive joint.

In this paper we model our underactuated space mechanism with an open link tree structure

consisting of (m+ n) rigid links mounted on a free-flying space vehicle n links of this mechanism

are actuated while the rest m are unactuated. In the next section we use Hamilton's canonical

equations (Goldstein, 1980; Nijmeijer and van der Schaft, 1990) to formulate the dynamics of

this system. In section 4 we state and prove a theorem that provides us with some necessary and

some sufficient conditions for the asymptotic stability of autonomous systems. This theorem is

more powerful than LaSalle's theorem (LaSalle and Lefschetz, 1961) and gives us a systematic

way to sort out the maximum invariant set from the set where the derivative of the Liapunov

function (Liapunov, 1892) vanishes. Finally we use this theorem in section 5 to develop a

control strategy for the stabilization of our underactuated mechanism in space to an equilibrium

manifold

2. Dynamics of free-flying underactuated systems

- A Hamiltonian formulation

In this section we formulate the dynamical equations of free-floating underactuated multi-

body systems in space. We assume without any loss of generality that the system is of the form

of a manipulator mounted on a space vehicle, as shown in Fig. 1 . We assume that the manipu-

lator has a total of (m 4- n) joints, only n of which are actuated. The generalized coordinates

of the system consist of q\ £ Re representing the position and orientation of the space vehicle.

q? € Rm representing the unactuated joint variables, and q3 € Rn representing the actuated

joint variables. Due to the absence of gravitational potential energy in space, the Lagrangian

Lo{q,q) is equivalent to the kinetic energy of the system, and is given as

U{q.q) = \q
TMq. q^(qj q\ qj f € *W-+"> (1)

where, M € /?<
6+ r"+ r" x ' 6+m + n

) is the inertia matrix of the system. It is a function of the joint

variables ^2 and <73> but not a function of the vehicle variables q\. This is true because the

kinetic energy of the system is independent of the position and orientation of the space vehicle.

Consequently, the Lagrangian is not a function of (71 and therefore the dynamics of the system

is represented by the following vector equations:

d (dL

dt [dq,

d ( dLo\ fdLo

dt \dq2J \dq2

(2)

= (3)



where. T G Rn represents the vector of the joint torques at the actuated joints. The right hand

side of Eq.(2) is zero because we do not use the reaction jets or momentum wheels of the space

vehicle. By refraining from using reaction jets, we can minimize the usage of jet fuel on board

the spacecraft which is limited in quantity, and therefore we can maximize the useful lifespan

of the system.

When the Lagrangian is not a function of a set of generalized coordinates, like q\ in

our case, we call these coordinates cyclic or ignorable coordinates. In the presence of cyclic

coordinates, some physical quantity of the system is conserved. In our case, the linear and

angular momentum of the whole system is conserved. This conservation law is expressed by

Eq.(2) and can be simplified to the form

M x q = c (5)

where A/i G /?
6x ' 6+m+n) includes the top six rows of the inertia matrix in Eq.(l), and C G

R6 represents the initial linear and angular momentum of the system. The above equation

represents six velocity constraints on the motion of the system; three of these are holonomic

while the other three are nonholonomic (Nakamura and Mukherjee, 1990, 1991). On the other

hand, Eq.(3) represents m nonintegrable constraints that include second order derivatives of the

generalized coordinates, and are therefore second order nonholonomic constraints. The degrees

of freedom of our system are n, and is equal to the dimension of the control variable T.

We now use the transformation

L(q,q,T)- L (q.q) + qjr (6)

to define the input dependent Lagrangian function L(q,q,T) (Nijmeijer and van der Schaft,

1990). Under this transformation, we have the following relations

dL \ ( dLo\ ( dL \ ( dLo\ _j-,+T 1
(7)

By substituting Eqs.(6) and (7) into Eqs.(2), (3), and (4), we obtain the following homogeneous

dynamical equations

Ki'



d ( dl\ ( dL \

d ( 3L\ ( dl\ n

«{WJ-WJ =0 (10)

We define the generalized momentum p £ ^is+m+n)
correSp0n djng to the generalized

coordinates q by the relation

P=(f^) eRi6+m+n)
(ii)

We next define the input dependent Hamilionian function H(q ,p, T) for the system, with

the help of a Legendre transformation, as follows

H(q.p.r) = p
Tq-L(q.q.r) (12)

Using the Legendre transformation in Eq.(12), the homogeneous dynamical equations given

by Eqs.(8), (9), and (10) can be simply represented by Hamilton's canonical equations

(dH \
T

(dH \
T

Additionally, by substituting Eq.(6) in Eq.(12) we get the relation

H(q.p.r) = H (q.p)-qjr, H (q.p) = p
T
q - L {q,q) (14)

which on differentiation yields

H(q.p.T) = H (q,p)-qJr-qjT

T
By substituting the relation (OH/Ot) — q^, and the canonical expressions of Eq.(13) in the

above equation, we finally get

Ho{q,p) = qlr (16)

We now go back to Eq.(14) for the definition of the Hamiltonian function H - Using

Eqs.(l), (6), and (11) we can show that

- (i£\
T
- (^i\

T
-*>=(%) =

(^f)
- M" (»



Therefore, from the definition of Ho,

H = q
TMq -L = -qTMq = L Q (18)

In other words, the Hamiltonian function Ho of our system represents the kinetic energy or

equivalently the total internal energy of the system. Although Ho is equivalent to Lo, it is a

function of q and p only, and therefore the correct expression for Ho would be

H =
l

-pTM- 1

p (19)

which was obtained by substituting the relation q = Kt~ lp from Eq.(17) into Eq.(18).

3. Issues of stability and controllability

In this section we first consider the stabihty of our nonlinear system from a linearization of

the dynamics in the neighborhood of an equilibrium point. From Eqs.(13) and (14), our affine

nonlinear system can be expressed by the form

x - f(x) + Br (20)

*=(*), f = {dH /dp dHo/dq)
T

, B=(jeJ (2D

where X € fl
2 < 6+™+") is the state vector. / € R?(6+m+n\ B € fi

2(6+ra+,1)xn
, and En repre-

sents the identity matrix of size n. Therefore a linearization of Eq.(20) around the equilibrium

point (<7o.Po,f )
= (0.0,0) gives

x = Ax + Bt (22)

A ±( (d'H/dpdq) M- 1 \ /?2(6+m+n)x2(6+m+n)A ~\-(d2H/dq 2
) -{d2H/dqdp))^

n

From the definition of the matrix A it is clear that

2(6+m+n)

J2 (dx i /dx t ) = tr(A) = (23)

Equation (23) is the mathematical statement of Liouville's Theorem (Goldstein, 1980). The

above equation implies that the linearized system has as many eigenvalues in the open left half

plane as those in the open right half plane. Therefore in the absence of the control vector T,

we can conclude that the actual system is not exponentially stable.



The simplest approach to study the controllability of a nonlinear system as in Eq (20) is

to consider its linearization. If the linearized system is found to be controllable, the nonlinear

system is controllable in the neighborhood of the equilibrium point. However the lineariza-

tion approach is often unsatisfactory. In the process of linearization the nonlinear system

may loose much of its structure. Therefore a nonlinear system may be controllable though

its linearization may not. In our case, it can be easily verified that the rank of the matrix

( A — sE2(m+n+6) B ), where Et is the identity matrix of size i, is at most 2(m -f n) + 6.

Therefore the linearization of our system is not completely controllable.

The controllability of a number of simple nonholonomic systems like the rolling contact

(Li and Canny, 1990) and the single and multibody car systems (Laumond, 1987) have been

individually studied by constructing the control Lie algebra. The control Lie algebra is defined

as the smallest involutive distribution containing the span of the vector fields of the system and

closed under Lie bracket operations. For these systems the local controllability was ascertained

by showing that the rank of the control Lie algebra is equal to the dimension of the state space.

It should be emphasized that unlike most of these nonholonomic systems, our system has a drift

term (/ in Eq.(20)) due to the formulation of the problem at a dynamical level. Therefore the

analysis based on the control Lie algebra cannot be performed on our system.

In general our system may be asymptotically stabilizable by means of a linear or a non-

linear feedback. However, Brockett (1983) has established some necessary conditions for the

existence of smooth (infinitely continuously differentiable) stabilizing feedback laws for the gen-

eral nonlinear system

X = f(X.U), X e Rs , U € Z?
w

, f(x t ,0) = (24)

with /(,) continuously differentiable in the neighborhood of the equilibrium point (x ( .0).

One of the three conditions require the mapping

7 : R'
w

x RM — /?
A'

defined by 7 : (X,u) h* f(x,U)

to be onto an open set containing the origin, where X = 0. When q = 0, (dHo/dq) = since

Hq is quadratic in q, and therefore from Eqs. (20) and (21) we arrive at

l)r (25)

This clearly implies that the mapping 7 is not onto an open set containing the origin. Hence

there does not exist a smooth feedback law that can stabilize the system to an equilibrium point.

This fact should however not perturb us for we can always consider the problem of stabilizing



the system to an equilibrium manifold, or stabilizing the system to an equilibrium point via

a non-smooth feedback. In this paper we consider only the problem of stabilizing the system

to an equilibrium manifold. In our next paper we shall address the problem of stabilizing our

system to an equilibrium point via a non-smooth feedback.

4. Theorem on Asymptotic Stability

The Liapunov stability theorems provide sufficient conditions for proving the asymptotic

stability of dynamical systems. For autonomous systems these theorems are easy to apply

when we can show that the derivative of the Liapunov function is negative definite. When the

derivative of the Liapunov function is negative semidefinite, we often face problems. In such

situations it may be possible to conclude the asymptotic stability of the system using LaSalle's

theorem provided we can show that the maximum invariant set contains only the equilibrium

point. It is always possible and easy to identify the set of points where the derivative of the

Liapunov function vanishes but the maximum invariant set is only a subset of this set. The

main challenge of LaSalle's theorem is therefore to sort out the maximum invariant set. More

importantly, LaSalle's theorem is inapplicable to nonautonomous systems. In the event where

the derivative of the Liapunov function vanishes, there exists no readily applicable result for

proving the asymptotic stability of nonautonomous systems.

In this section we develop sufficient conditions for proving the asymptotic stability of

autonomous systems when the first derivative of the Liapunov function is negative semidefinite.

These sufficient conditions involve higher order derivatives of the Liapunov function that contain

information of the higher order dynamics of the system. Consequently, it becomes easier to

identify the maximum invariant set. In this section we also provide some necessary conditions

for the asymptotic stability of autonomous and nonautonomous systems. Before stating our

asymptotic stability theorem, we state the following Lemmas.

Lemma 1. A real function f(t) G C 2 defined in (a, 6) is concave iff f"(t) < 0, Vi 6 (a, 6).

Lemma 2. Let /(f) be a nonpositive function such that /(<o) = and f(t) < for some values

of i. If the function /(<) is analytic, then f(t) is concave is some open neighborhood of t .

The proofs of the two Lemmas stated above have been provided in the Appendix for reference.

Using these two lemmas we can conclude that if /(<) is a smooth nonpositive function and

f(t ) = 0, then f'{t ) = because /(<) is locally maximum at to, and /"(<) < in some open

neighborhood of < If /"(to) = also, then we can apply our lemmas to /"(<) In such a case

/"'(*o) = 0, and f""(t) < in some open neighborhood of t - Our lemmas can therefore be

8



applied recursively. When some even derivative of /(/) vanishes at t , the next higher derivative

which is an odd derivative also vanishes at <o, and the second next derivative is nonpositive in

some open neighborhood of to-

Let us now consider the nonautonomous system

x = f(t,x) (26)

where / : R+ x D —
* Rn

is a smooth vector field on R+ x D, D C Rn
is a neighborhood of

the origin JE = 0. Let X = be an equilibrium point for the system described by Eq.(26). We

then have

/(r,0) = 0. V/ > (27)

We next state and prove our theorem on asymptotic stability.

Theorem 1. Let \'(t.x) : R+ x D —< R+ be locally positive definite and smooth on R+ x D,

such that

V{t,x) = dV/dt + (dV/dx) f(t,x) (28)

is locally negative semidefinite. Then whenever an odd derivative of V vanishes, the next

derivative necessarily vanishes and the second next derivative is necessarily negative semidefi-

nite. Furthermore, a sufficient condition for an autonomous system to be asymptotically stable

is that there exists a positive integer k such that

y(a*+i)(aj) < o Vx:V(x) = ,

2q
\A*>(X) = for t = 2,3,--,2Jfc

where \
ft-' ] (X) denotes the (*) — th time derivative of V with respect to time.

Proof: The necessary conditions of this theorem can be proven very easily with the help of

Lemmas 1 and 2.

To prove that Eq.(29) provides sufficient conditions for asymptotic stability, we first realize

that X = is stable by standard argument since V is locally positive definite and V < 0.

Next, since V is bounded from below by zero and V
r

is nonincreasing (V < 0), V —
» a,

a > 0, as t — oo.

Since V is smooth, V is uniformly continuous. Hence when V —+ a, V — as r — oo, by

Barbalat's lemma (Slotine and Li, 1991).

Since V is locally positive definite, \
r — => x —< as t — oo. Therefore if we can

show that a = we can conclude asymptotic stability. We prove a = by contradiction. Since

y



V — q 7^ and V is locally positive definite, 3 an open neighborhood A' of X = such that

the trajectory of X{t) lies outside Ar

Vf > T, and for some T > 0.

Let S = < X : Y(X) = >. Since X(t) converges to S but lies outside N for large r, the set

\Y = S — N is nonempty and is the limit set for X(t). Then let U be an open neighborhood of

W whose closure U c does not contain X = 0. Now let us denote

-7 = max Y (2k + 1 \x) (30)

Then -7 < 0. Since X(t) ->Wast->oo,3Ti such that x(t) € Uc Vr > Tx
. Now integrating

y(2k+i)^ w jtn reSpec t to time to get V, we have

V(t)-V(Tl )= f .. f V^
JT, JTy

(t)dt

(2t+i;

-ydt

(2t+l)

= ' 7
(2t.fl)!

(31)

Hence V{t) < V^) - -,{t - Ti)
2t+1

/(2)t + 1)!. Since V(7\) < V'(/ = 0), V'(r) - -00 as

^ — 00. This contradicts the fact that Y > 0. Hence a = and that implies that the system is

asymptotically stable.

5. Stabilization to an equilibrium manifold

The state variables of a free-flying underactuated mechanism in space was shown in Eq.(21

)

as X -
( q

T pT
)

T
, where q = (qf qj qj )

T
6 R6+m+n denote the generalized coordi-

nates and p 6 R6+m+n denote the generalized momentum corresponding to these generalized

coordinates. We intend to control the system in such a way that p — and ^3 — q^d at the

final point of time, q^ denotes the desired configuration of the actuated joints of the system.

If such a control can be established, the underactuated system would come to a complete rest

and the actuated joints of the system would converge to their desired values simultaneously.

We therefore define a Liapunov function (Liapunov, 1892) v as

v = ff + -AqjAq3 , Aq3 = (q3d-q3) (32)

where Ho is the Hamiltonian of the system defined by Eqs.(18) and (19). Since the Hamiltonian

Hq represents the total kinetic energy of the system, H = is attained only when p = or

10



alternatively q = 0. If we now define an equilibrium manifold Mt = {x : q3 — q3 d P — 0}.

then the Liapunov function v defined by Eq.(32) is zero only on the equilibrium manifold and

positive everywhere else. The derivative of v is next computed as

v = Ho - Agjg3

= qJr-AqJq3 = ql(T-&q3 ) (33)

where Ho = q3 T was substituted from Eq.(16). We now choose T in Eq.(33) as

T = Sq3 -0q3 (34)

where is a positive scalar quantity. Substitution of Eq.(34) in Eq.(33) yields

f = -/?ll93||
2

(35)

Clearly, r is negative semidefinite and is equal to zero when q3 = 0. At this point LaSalle's

theorem (LaSalle and Lefschetz, 1961) could be used to conclude the asymptotic stability of the

system to the equilibrium manifold provided we could show that q3 = is attained only when

q3 = q3d and p = 0. Since LaSalle"s theorem does not provide us with any systematic way to

sort out the maximum invariant set from the set of all X : v = 0, we refer to our theorem that

was stated and proved in the earlier section.

By computing the second and the third derivatives of the Liapunov function v from Eq.(35)

we can show that when v = or equivalently q3 — 0, v — tr 2) = and r (3) = — 2/?|| q3 ||
< 0.

Additionally if r'
3

' = then ^3 = 0. Then we can show by computing the higher order

derivatives of v that t
,f4) = and r (5} = — 6/?|| q3 < 0, where q3 is the third derivative of

(73 with respect to time. In other words whenever an odd derivative of the Liapunov function 1

vanishes, the next derivative also vanishes and the second next derivative is found to be negative

semidefinite. This is in complete agreement with Lemmas 1 and 2. Furthermore this satisfies

the necessary conditions of our asymptotic stability theorem.

From the above discussion it follows that the choice of the control vector T in Eq.(34)

results in

v
(7k+l) = -0k \\q3

k+l)
\\

7

(oT0k >O, andfor k = 1,2, ••,00 (36)

when i/*) = for i = 1,2, • • • , 2k. Therefore when v = or equivalently q3 = 0, if <73 ^0

for some positive integer k, then the sufficient conditions of our theorem given by Eq.(29) are

11



satisfied and we can conclude asymptotic stability of our system to the equilibrium manifold

Me .

6. Conclusion

We have discussed in our paper the dynamics and control of underactuated mechanisms

in space. The dynamics of the system was formulated using Hamilton's canonical equations.

To prove the stability of our system we have developed a general asymptotic stability theorem.

It is an elaboration of LaSalle's theorem and it provides us with a systematic way to sort out

the maximum invariant set from the set where the dervative of the Liapunov function vanishes.

Similar to LaSalle's theorem, the limitation of our theorem is that it is applicable only to

autonomous systems. Using a Liapunov function approach we have developed in this paper a

control strategy that brings an underactuated mechanism to rest and converges the actuated

joints to their desired configuration simultaneously. We show that our control law is effective

provided all the derivatives of the actuated joint velocities are not zero simultaneously. Hence

the observability of the system, when we take the velocity of the actuated joints as the output,

is going to play an important role in the stabilization. This part is going to be worked out

using a geometric nonlinear control approach and will be appended to the paper by the time it

is due. We will also include examples of situations where observability is lost, and provide the

physical meaning of such situations.
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7. Appendix

Lemma 1. A real function f(t) G C 2 defined in (a. 6) is concave iff f{t)" < 0. Vx £ (a, 6).

Proof:

(a) Necessity

Let x 6 (a,b). Then for h small enough, x - /i, x + h £ (a, 6). From the definition of concavity

(Rudin), /(*) > I (/(x - />) + /(x + /i)). Therefore, since / € C2
,

f (x) - limft_ r-
2

< (.4 - 1)

(b) Sufficiency

Let x, y £ (a, 6), and x < y. For A £ [0, 1], and t = Ax + (1 — A)y, the first order Taylor's series

approximation of f(x) and f(y) are respectively

/(x) =/(<) + /'(*)(* - t) + AcTi )(x - r)
2

, fi € [x. t] (A - 2)

/(y) = fit) + /'(*)(» - + /"(6)(y -
2

, b e [t,y] (A - 3)

Therefore it follows that

A/(x) + (1 - A)/(y) = f(t) + A/"(6)(x - r)
2 + (1 - A)/"(6)(y - tf

<f(t) since r(6)<0, f'(&)<0 (.4-4)

Therefore the function is concave by definition.

Lemma 2. Let f(t) be a nonpositive function such that /(to) = and f(t) < for some values

oft. If the function f(t) is analytic, then f(t) is concave is some open neighborhood of to-

Proof: Since the function /(/) is analytic, all derivatives of the function exist and the function

can be expanded using Taylor's series as

/(o =E L-^ (
'" lo)n {A - n)

n =

Let us next assume that our function f(t) is not concave in any open neighborhood of r This

implies from Lemma 1 that the condition /"(<) < does not hold good in any open neigh-

borhood of t . Therefore either f"(t) > 0, or f"(t) changes sign in every open neighborhood

14



of «c If /(f) > i„ every open ne.ghborhood of «„ then we can show f,om ,he ccollarv oflem™
1 that /<«, fa convex everywhere. Th,s is no, true because /«, j. „onpos , t , ve Md „„

a maX ,mum value a,
« = <

. The othe, possibility Is that /»(,) change, siga in every open
neighborhood of t . Then /' (n)

('n for n — 9 ^ ~. u/ UJ lor „ _ 2, 3, • • •
,
oc changes sign in every open neighborhood

of t c This implies that /
(n)

(< n ) = for n - 9 1 ~ ajjv .,j UJ uiorn_2,3,-.,oc. Additionally, since /(.) is nonposit.ve
and f(t

) = 0, /(<) achieves a local maximum at t . Therefore /'( <0 ) = 0. Substituting these
results in Ec,(A-12), we have /(f) = 0. This cannot be true because /(*) is strictly negative for
some values oft. We have therefore proved by contradiction that /(,) * concave in some open
neighborhood of t .
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Position and orientation of the vehicle q

Fig.l. A free-flying under-actuated mechanism in space
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