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Abstract

We present easily computable bounds on the extreme generalized eigenvalues of Ilermitian pencils

(/?„ + i,Z?nfl ) with finite eigenvalues, and positive definite Bnn matrices. The proposed bounds are

derived in terms of the generalized eigenvalues of the subpencil of maximum dimension (/?„,/?„)

contained in (RnU , /?„,,)

Known results based on the generalization of the Gershgorin theorem and norm inequalities are

presented and compared to the proposed bounds. It is shown that the new bounds compare

favorably with these known results; they arc easier to compute, require less restrictions on the

properties of the pencils studied, and they arc in an average sense tighter than those obtained with

the norm inequality bounds.
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1.0 Introduction

The Ilermilian (regular or generalized) eigcnproblem occurs in a variety of applications in signal

processing. It is commonly encountered in array processing [1,2,3], in spectral estimation [4],

filtering [5], and other areas. Different bounds for the extreme eigenvalues of the regular Hermitian

problems have been presented in the literature [6,7]. Some of them have then been extended to

the generalized Hermitian eigcnproblem by either backtransforming the generalized problem into

the corresponding eigcnproblem, or by generalizing the results originally derived for the regular

eigcnproblem [8]. Classical bounds derived using norm inequalities can be extended to the

generalized positive definite eigcnproblem by backtransforming the pencil {R,B) into a regular

problem (C *RC',[) where B=CC. However, such a transformation requires the Choleski

decomposition of B. The generalization of the Gershgorin theorem proposed by Stewart [8] does

not have such a restriction, but the tightness of the bounds depends strongly on the characteristics

of the pencils under study.

Here we present new bounds for the extreme generalized eigenvalues based on an order-recursive

eigcnproblem decomposition. This work can be considered as an extension of the ideas of Slepian

ct al [9] and Dembo [10] who considered the regular eigcnproblem. The original idea behind the

following work is connected to the derivation of the order-recursive RTTF [1 1] and C-RITE [12]

algorithms. These algorithms take advantage of the interlacing property [6]:

^\,n+] - ^1." - ^2,/?-H - " - *Wl,«+1

where A,^., is associated with the (n + \)"' dimensional pencil (#n+I , Bn4} ) and X, n is associated with

the n-dimensional subpencil (Rn , Bn) contained in (/?„,,, /?„_,,). This property allows us to define

intervals in which A
2^nn — > ^,mi maY oc found via iterative search techniques [12,13]. However,

the interlacing property does not provide an upper bound on the largest generalized eigenvalue or

a lower bound on the smallest generalized eigenvalue. The proposed bounds on the extreme
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eigenvalues take advantage of the information available at the previous order (assumed to be

known), and are easy to compute.

Introduction



2.0 Derivation of the new bounds

Let (Rnil ,Bnl] ) be a (n + l)-dimcnsional Ilcrmitian pencil with finite eigenvalues. let us assume

that the generalized eigenvalues of (Rn , B„) arc known. The eigenvalues X associated with the pencil

satisfy the relation:

det(/?,?+1 -^ +I ) = (1)

which can be expressed as:

det
ro
_ ^o r - Xb

r-Xh Rn -XBn

= (2)

Therefore, using [6] the determinant of the extended pencil (R„,\,Bnl{ )
may he expressed as:

DET = dct[(/?„ - XBn)(r
- Xb - (s - Xq) (\ n

- Xf)~\s - Xq))]

(3)

= det[/?„ - ;.^]det[r - Xb - (s - Xq) (\ n
- kl)~\s - Xq)]

with s = i! ',r, and q = U'n b, where U„ = [uu ... , 14,] is the B-orthonormalizcd eigenvector matrix

associated with (/?„, Bn ). The eigenvalue search function h(X) is defined as:

DFT
dct[/?„ - XBn ]

Expanding (4) leads to:

h(X) = (r -Xb )-)_j
j^-— (5)

fc=l *-"

with pk
= (s

k
— Xqk ), where sk = u'

k
r and qh

— u\b. The zeros of (5) are the generalized eigenvalues

of the increased order pencil (/?„,,, Bni] ). The function h(X) is monotone decreasing between its

poles, as shown in Appendix A. Note that similarly to the regular eigenproblem [9,14], h(X) fails

to have (n+1) real roots only when it has less than n distinct poles. This happens when

(/?„,!, /?„,i) has multiple eigenvalues, or when v
A
= qk

= for some k. Slepian et al [6] indicated that

Derivation of the new bounds 4



three possible situations related to the multiple eigenvalue case can occur for the regular

eigenproblem. These comments can be extended to the generalized problem. I x^t I be an

eigenvalue of (/?„, Bn ) with multiplicity k. If (s
r , qp) = (0,0) for/) = m, ... ,m + k, and Xmjn is not a root

of h(X), then Xmn is an eigenvalue of multiplicity k for the (n+1) dimensional pencil. If

h• qp ) = (0,0) for/) = m, ... ,m 4- k, and Xm^ is a root of h(X), then Xmn is an eigenvalue of multiplicity

k+\ for the (n + \)'
h dimensional pencil. Finally, if (s

p , qp) ± (0,0) for some p where

m<p< m + k, then Xm<n is an eigenvalue of multiplicity k — 1 for (/?„,,, R„
{
\).

The idea now is to find a lower bound on X ]nl] and a higher bound on X nn „ n by approximating

the rational portion of the eigenvalue search function. To that end we note that:

/c=l *•'' k=]
'•"

and

|2

>r u^y !£'

Thus from (6) we get

h{X) > hmm {X) = r - /Mn - Cmm{X) for ( - co, X ln+] )
(la)

K^)^fhmxW = r -XbQ -Gm&x(X) for (*„.,«>) (lb)

As shown in Appendix A, the function hmi „{X.) is monotone decreasing in (
— oo, /I, „), and I^J^X)

is monotone decreasing in (^„„, co). Thus, hmin(X) has a root Amjn in the interval (
- co, X ln) such

that X min < X
l<n^, as illustrated in Figure 1. Similarly, h^^X) has a root Xmax in the interval

(^ntn , oo) such that X m3X > Xn+Uni] . The roots Xmin and Xm3X can easily be computed by solving for the

roots of the second order polynomials:

h
tl
(X) = (rQ -XbQ )(r1

-X)- \s-kq\
2

= X (mo - \q\ ) + <l(2rea1(.v q) - rn
- /tzq^) + r >j - I s\ =0

Derivation of the new bounds 5



for y\ — X in or rj = Xnn .

Note thai for the regular eigenproblem, where B — I, (8) becomes:

A
2
/rzo + X{ -r - m^n) +W - Ul

2 = (9)

which is the same expression as the one obtained by Slepian et al [9] and by Dembo [10].

Derivation of the new bounds



3.0 Comparisons with known bounds

This section first reviews two types of known bounds on the extreme generalized eigenvalues of

pencils, and next presents some comparisons of the proposed bounds with classical results based

on norm inequalities.

The generalized Gershgorin theorem

Stewart [R] derived a generalization of the Gershgorin theorem and showed that the generalized

eigenvalues of Rx — XBx he in the union of the neighborhoods G, defined as:

°i= {* :xi
lt'

A) - r
]

where

a \hPi- baa i\\] ,.m
Pi= i . F 0°)

ra \

2 +\b
ii \

1
Jr>\ + b'l

with

«; = (rn ,
... ,

r
iJ_ ]

,r
iJ+] ,

... , rin), pt
- (bn , ... , />,- ,_, ,bl/+l ,

... , bi>n)

/u = maxjO, \ra \
- ||a,-||,} (11)

6'
ft
. = max{0, \bn \ -\\p^}

x(A, X') is the chordal distance between X and X' . It is defined as the length of the chord joining the

points a and b located on the Riemann sphere [15,16], as shown in Figure 2.

Comparisons with known bounds



Several comments can be made here:

1

.

A tighter bound may be obtained by replacing in p t
norm 1 with norm 2, as shown in

Appendix B.

2. A finite value for p, is obtained only when (r
7

,,, b'h) = (0,0), or when (r„, b
ri )
= (0,0). Note that

if
1

m b'ii) ^ (0,0), requires that at least one of the matrices of the pencil (R,B) to be diagonally

dominant' . Thus, p k
may be infinite when at least one of the matrices of the pencil studied

(/?,/?) is not diagonally dominant and no restrictions on the diagonal elements of the pencil are

made. This indicates that the bounds obtained via the Generalized Gcrshgorin (G.G.) theorem

are not insured to be finite in all situations where the pencil has finite eigenvalues.

3. The chordal distance jf(A, ^') has a maximum value of 1 [16]. Thus, a finite Gershgorin

neighborhood is obtained only when p,< \. The value of the parameter p, defined in (10)

depends on the pencil (/?,/?), it can have values larger than 1 even when the pencil eigenvalues

are finite. In such a case, the regions (7, containing the eigenvalues cover the whole space, and

no new information is gained by applying the G.G. theorem.

The above comments indicate that, when dealing with pencils with finite eigenvalues, additional

information can be gained from the G. G. only when p, < 1 for all i. 'This further restricts the

usefulness of the G.G. theorem. By comparison, the proposed bounds arc limited only to

Hermitian pencils (R,B) with positive definite B matrices. Furthermore, the bounds are insured to

be finite when the origin;;' pencil has finite eigenvalues to start with. Therefore, the G.G. bounds

will not be used in the following statistical comparisons because they require too many restrictions

on the pencils studied in order to bring additional information.

Norm Inequality bounds

Bounds on the extreme eigenvalues of the regular eigenproblem Ax = Xx based on norm

inequalities have been proposed [6,7]. Recall that for such bounds, we have:

The matrix R is diagonally dominant if |r,,| > £|r«| f°r a" '•

Comparisons with known bounds



**HA+\*Wi
(]2)

The above inequalities can be extended to the generalized eigcnproblem by backtransforming the

pencil (R,R) into (C' XRC~\I) when B = CO is positive definite. It was not possible to perform an

analytical comparison of the new bounds with the norm inequality bounds. As a result, the

behavior of the bounds was studied statistically using simulations.

The errors between computed bounds and the true eigenvalue are defined as:

*1,n+l *min
PtT —min

,n<"

^
1 ,«+ 1 *-norm

inj
errmin

f„
1 *l,n+l 1 l^l,n+1 I

errmax,
v ,

= "•max An+],n+\
err =^"maX|

*norm
1

~ *-n+\,n+\

errmaxF
=

1 — )

(13)

where Xmin and J. m3X are the eigenvalue bounds proposed using the order-recursive technique.

&nermF
ar,d Karm, arc tne upper bounds respectively obtained using norm I

7 and norm 1, as defined

in (12). \„„m . is the lower bound obtained using norm infinity, as defined in (12).

We considered pencils in which the elements arc randomly generated from a uniform distribution.

Note that bounds derived using matrix norm inequalities are only valid with positive definite

pencils. Thus, in order to compare the proposed bounds with the matrix norm inequalities bounds,

the eigenvalues of (R,B) are shifted to insure that the pencils under study are positive definite. Table

1 presents the means and standard deviations obtained for the error measures defined in (13). 3000

randomly generated positive definite pencils were used to generate the results in each case. This

table shows that the proposed bounds are tighter than the norm inequality bounds in an average

sense only, i.e., the relative tightness of the bounds around the true eigenvalue depends upon the

pencil under consideration much more than the norm inequality based norms. Furthermore, the

results indicate that the larger the eigenvalues arc, the better the performance of the proposed X min

Comparisons with known bounds 9



is. Note that ?.mm is not bounded by 0, as is XBPrm , and can be negative. Therefore, the likelihood

of A min < increases when the true eigenvalues are close to to start with.

Table 1 . Bound error measures

average min &
max eigenv.

C^min err errmtx errmw,
err1

' maxp

mean (standard deviation
)

28.677

3079

0.5381

(2.1267)

0.7089

(0.0225)

0.2813

(0.4057)

0.3282

(0.1194)

0.5016

(0.3109)

219

10978

0.5730

(1.4311)

0.7913

(0.0156)

0.4356

(0.6020)

0.5005

(0.1383)

0.5730

(0.3724)

8407

3.6105

0.1631

(0.0771)

0.7884

(0.0166)

0.4356

(0.6450)

0.4771

(0.1486)

0.6485

(0.4410)

Comparisons with known bounds 10



ln— Iji

h(A): -

KM-

KM)-

Figure 1. Eigenvalue search function h(A), and bound search functions h (A), and h (A)
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oo

X{X, X') = d{a,b)

Figure 2. Definition of the Chordal distance: from Parlett [15]

Comparisons with known bounds 12



4.0 Conclusions

This report presents new bounds on the extreme eigenvalues of Hermitian pencils (/?,/?) with finite

eigenvalues, when B is positive definite. The bounds are based on an order-recursive

eigendecomposition of the pencil. Simulations indicate that the proposed bounds depend more

strongly on the pencil considered than those derived using norm inequalities. However, they are

not as restricted and are easy to compute.
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Appendix A, Monotone behavior of the eigenvalue

search function, and the bound search functions

This appendix shows that the generalized eigenvalue search function h(X), and the bound search

functions Amjn (/?), and /ttnax(A) are monotone decreasing between their poles.

Proof:

Recall from (5) that the eigenvalue search function is defined as:

M-*-»,-£±=^T (A.I)

Consider the following matrix equation:

o
- ;Ai

* *

s — Xq C 1

s — Xq A -XI X O
(A.2)

with A = diag(A, „, ... , X nJ. Solving equation (A.2) for C leads to:

C(X) = [r - Xb
()
- (s - Xq){\ - Uf\s - Xq)]

= [wr 1

(A.3)

C(X) may be rewritten as:

A A.

C(X) = ei(R-AB)~*e (A.4)

with

Appendix A. Monotone behavior of the eigenvalue search fund ion, and the bound search
functions 15



A

R
s

A

A

B g, =[1,0,... ,0]'

so that from (A.4) we get:

A A. . A , A A.

C(X) = e
l

(R- XB)
lB(R-XB) V, >0 (A.5)

Using (A. 3) and (A.5), h'(X) becomes:

h'(X)
dX L C(X) J C(X)

2
(A.6)

Therefore, /i(7) is monotone decreasing between its poles.

Next, note that /^(X) and h,n „(}.) arc functions similar to h(X) in which A has been respectively

replaced with d\ag(X Un , ... , X Kn ) and diag(A„, , Xnf). Thus, /jmm(i) and hmax(X) arc monotone

decreasing between their respective multiple poles X ln and X„ n .

Appendix A. Monotone behavior of the eigenvalue search function, and the bound search

functions 16



Appendix B. Generalized Gershgorin bounds

This appendix first reviews the generalized Gershgorin neighborhoods proposed earlier by Stewart

[8]. Next, it shows that further tightness of the eigenvalue bounds may be obtained by replacing

the norm 1 measure used by Stewart with the norm 2 measure.

Generalized eigenvalues and the Chorda! distance

Some insight into the properties of the pencil (R,B) can be gained by looking at the Generalized

Schur (G.S.) decomposition [7]. Recall that the G.S. decomposition leads to the following result:

Theorem: If R and B are in Cnv
", then there exists unitary Q and Z such that Q'AZ = T and

Q'BZ — S arc upper triangular. If for some k, thh and shk are both zero, then X(R,B) = C. Otherwise,

X(R,B) = {t
itlsu I % *0} (B.l)

Equation (B.l) shows that X(R,B) may be very sensitive to small changes if sn is small. However,

Stewart [7] noted that the reciprocal sfr\t(i
may be a well behaved (i.e., not sensitive to small changes

of its parameters) eigenvalue of the pencil (B,R), and pointed out that it may be better to treat the

eigenvalues as pairs (/.,., su) than as quotients. As a consequence, Stewart [8] identified the

eigenvalues X = tjs of pencils with the point in the projective complex line defined as:

[M] = {(t,s) * (0,0) : tjs = X)

The Chordal metric2
x is used to measure the eigenvalue separation. It is expressed as:

x([v] ,
0', n) t

Uf-J'/1
(B 2)

J\s\
2
+\t\

2
J\s'\

2
+\t'\

2

2 This mclric results from the introduction of the extended complex plane (complex plane + infinity) in

complex analysis [16]. The Riemann sphere is chosen to represent the cxtetidcd complex plane which is

not easy to visualize directly. The correspondence between the two geometric representations is then set

up with the aid of a stereographic projection [16].

Appendix B. Generalized Gershgorin bounds 17



For X = sjt and X' = s'jt' the chordal distance can be expressed as:

The distance %(X, X') is the length of the chord joining a and b, as shown in Figure 2.

Some useful properties of the Chordal metric [16]

1. The chordal metric is invariant under reciprocation; i.e., x(X, X') = xOM> '/^')

2. The chordal metric is bounded; i.e., < x(X, X') < 1.

Generalized Gershgorin bounds

Stewart [8, th. 2.1] showed that the generalized eigenvalues X of the pencil (/?,/?) lie in the union

of the regions G, defined by:

Gi = {[/-,. + a,x, bu + fix] : \\x\\^ < l}, (/ = 1 n) (B.4)

where a* = (ri<u ... , rUi_ x
riiM , ... , ri<n), fl] = (b,

til
... , b,^ bi<l+i , ... , b

it„),
and x is formed from the

eigenvalue x by deleting its /'"' component.

The sets (7, are not easy to work with. Thus, they are replaced with the following neighborhoods

defined in terms of the chordal metric x- This leads to:

i * *~
i

X(l>«> hlhi + «/*, h + /?,-*]) = p "
'

(B.5)

VIa-
//
+ «*.x|

2 + l^ + z?**!
2

Next, the sets G, are defined as follows:

O
i
={X: X (r

iilbih X)< ni } (B.6)

Appendix B. Generalized Gershgorin bounds 18



where p i
is an upper bound on the chordal distance defined in (B.5). These regions (7, contain the

eigenvalues of the pencil (/?,/?); they are called the Gershgorin regions. Stewart [8] showed that the

bound p (
introduced in (B.6) can be defined by:

A WiiPj - V*lli _ _
x

where

7̂
= max{0, \ra \

- |Wh}

b'a = m*x{Q,\ba \-\\n\ x }

Modified Gershgorin bounds

A bound y, on the chordal distance tighter than the one proposed by Stewart with (B.7) can be

derived by using the following vector norm inequality:

IWI 2 <Wi (B.8)

Using (B.8) in (B.5) leads to:

I (n/i - bua*)x I < ||r«/?; - VJ2IMI2 (R- 9 )

and

|r« + «*jc| >
I \rB \

- \a*x\
I (B.10)

Note that

lr
i7
|-| a^|>|r

/7 |-|K||2|M| 2 (B.ll)

Thus, (B.8), (B.9), (B.lOj, and (B.l 1) lead to:

* *

A WuPi — baa: \U

Xirafbih X) < n k ""'' "'" 2 < Pi (B.12)

\r
li \

2 +\ba \

2
J\r>ii \

2
+\b'

tt \

2
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where

r'a = max{0, | rH I

- ||a
f||2J

6',. = max{n, l^l-llftlb)

Note that the G.G. bound y, is tighter than p, but similar comments to those made on p, apply.
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