

Calhoun: The NPS Institutional Archive DSpace Repository

Bounds on the extreme generalized eigenvalues of Hermitian pencils

Fargues, Monique P.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/28872

NPS-62-90-016
 NAVAL POSTGRADUATE SCHOOL Monterey, California

BOUNDS ON THE EXTREME GENERALIZED EIGENVALUES OF HERMITIAN PENCILS
by
Monique P. Fargues
December 1990

Approved for public release; distribution is unlimited
Prepared for: Naval Postgraduate School
Monterey, CA 93943
FedDocs
D 208.14/2
NPS-62-90-016

Rear Admiral R.W. West, Jr.
Superintendent
Dr. Harrison Schull Provost

This report was prepared in conjunction with research funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93343-5101

REPORT DOCUMENTATION PAGE

12 REPORT SECURITY CLASSIFICATION		1b RESTRICTIVE MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited			
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE					
4 PEPT. RMING ORGANIZATION REPORT NUMBER(S) NPS62-90-016		5. MONITORING ORGANIZATION REPORT NUMBER(S) NPS62-90-016			
6a. NAME OF PERFORMING ORGANIZATION NAVAL POSTGRADUATE SCHOOL	6b OFFICE SYMBOL (If applicable) EC	7a. NAME OF MONITORING ORGANIZATION NAVAL POSTGRADUATE SCHOOL			
6c. ADDRESS (City, State, and ZIP Code) MONTEREY, CA 93943		7b ADDRESS (City, State, and ZIP Code) MONTEREY, CA 93943			
8a. NAME OF FUNDING /SPONSORING ORGANIZATION NAVAL POSTGRADUATE SCHOOL	8b. OFFICE SYMBOL (If applicable)	$\begin{gathered} 9 \text { PROCUREME } \\ 0 \& M N, ~ D ~ \end{gathered}$	INSTRUM CT FU	ENTIFIC	
8C. ADDRESS (City, State, and ZIP Code)		10 Source of funding numbers			
		$\begin{aligned} & \hline \text { PROGRAM } \\ & \text { ELEMENT NO } \end{aligned}$	$\begin{aligned} & \text { PROJECT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { WORK UNIT } \\ & \text { ACCESSION NO. } \end{aligned}$

11. TITLE (Include Security Classification)

Bounds on the Extreme Generalized Eigenvalues of Hermitian Pencils
12. PERSONAL AUTHOR(S)

Monique P. Fargues

16 SUPPLEMENTARY NOTATION

COSATI CODES		
FIELD	GROUP	SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Generalized eigenproblems, generalized Gershgorin theorem eigenvalue bounds

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
We present easily computable bounds on the extreme generalized eigenvalues of Hermitian pencils (R,B) with finite eigenvalues and positive definite B matrices. The bounds are derived in terms of the generalized eigenvalues of the subpencil of maximum dimension (R_{n}, B_{n}) contained in (R, B).

Known results based on the generalization of the Gershgorin theorem and norm inequalities are presented and compared to the proposed bounds. It is shown that the new bounds compare favorably with these known results; they are easier to computer, require less restrictions on the properties of the pencils studied, and they are in an average sense tighter than those obtained with the norm inequality bounds.

O. DISTRIBUTION/AVAILABILITY OF ABSTRACT UUNCLASSIFIED/UNLIMITED SAME AS R	\square DTIC USERS	21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
2a. NAME OF RESPONSIBLE INDIVIDUAL Monique P. Fargues		$\begin{aligned} & \text { 22b TELEPHONE (Include Area Code) } \\ & \text { (408)646-2859 } \end{aligned}$	22c. OFFICE SYMBOL EC/Fa

Bounds on the Extreme Generalized Eigenvalues of Hermitian Pencils

December 1990

Monique P . Fargues
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, C^ 93943
on Research supported by the Naval Postgraduate School.

Table of Contents

Abstract 1
1.0 Introduction 2
2.0 Derivation of the new bounds 4
3.0 Comparisons with known bounds 7
4.0 Conclusions 14
References 15
Appendix A. Monotone behavior of the eigenvalue search function, and the bound search functions 16
Appendix B. Generalized Gershgorin bounds 18

Abstract

We present easily eomputable bounds on the extreme generalized eigenvalues of Itermitian peneils $\left(R_{n+1}, B_{n+1}\right)$ with finite eigenvalues, and positive definite B_{n+1} matrices. The proposed bounds are derived in terms of the generalized eigenvalues of the subpencil of maximum dimension (R_{n}, B_{n}) contained in (R_{n+1}, B_{n+1}).

Known results based on the generalization of the Gershgorin theorem and norm inequalities are presented and compared to the proposed bounds. It is shown that the new bounds compare favorably with these known results; they are easier to compute, require less restrictions on the properties of the peneils studied, and they are in an average sense tighter than those obtained with the norm inequality bounds.

1.0 Introduction

The Ifermitian (regular or generalized) cigenproblem occurs in a variety of applications in signal processing. It is commonly encountered in array processing [1,2,3], in spectral estimation [4], filtering [5], and other areas. Different bounds for the extreme eigenvalues of the regular IIermitian problems have been presented in the literature [6,7]. Some of them have then been extended to the generalized Ifermitian cigenproblem by either backtransforming the generalized problem into the corresponding eigenproblem, or by generalizing the results originally derived for the regular eigenproblem [8]. Classical bounds derived using norm inequalities can be extended to the gencralized positive definite eigenproblem by backtransforming the pencil (R, B) into a regular problem ($C^{-1} R C^{-}, I$) where $B=C C^{\text {. }}$. However, such a transformation requires the Choleski decomposition of B. The generalization of the Gershgorin theorem proposed by Stewart [8] does not have such a restriction, but the tightness of the bounds depends strongly on the characteristics of the pencils under study.

Here we present new bounds for the extreme generalized eigenvalues based on an order-recursive cigenproblem decomposition. This work can be considered as an extension of the ideas of Slepian et al [9] and Dembo [10] who considered the regular cigenproblem. The original idea behind the following work is connected to the derivation of the order-recursive RITE [11] and C-RITE [12] algorithms. These algorithms take advantage of the interlacing property [6]:

$$
\lambda_{1, n+1} \leq \lambda_{1, n} \leq \lambda_{2, n+1} \leq \cdots \leq \lambda_{n+1, n+1}
$$

where $\lambda_{i, n+1}$ is associated with the $(n+1)^{\text {th }}$ dimensional pencil $\left(R_{n+1}, B_{n+1}\right)$ and $\lambda_{i, n}$ is associated with the n -dimensional subpencil (R_{n}, B_{n}) contained in $\left(R_{n+1}, B_{n+1}\right)$. This property allows us to define intervals in which $\lambda_{2, n+1}, \ldots, \lambda_{n, n+1}$ may be found via iterative search techniques [12,13]. However, the interlacing property does not provide an upper bound on the largest generalized eigenvalue or a lower bound on the smallest generalized eigenvalue. The proposed bounds on the extreme
eigenvalues take advantage of the information available at the previous order (assumed to be known), and are easy to compute.

2.0 Derivation of the new bounds

Let $\left(R_{n+1}, B_{n+1}\right)$ be a $(\mathrm{n}+1)$-dimensional Hermitian peneil with finite eigenvalues. I et us assume that the generalized eigenvalues of $\left(R_{n}, B_{n}\right)$ are known. The eigenvalues λ associated with the peneil satisfy the relation:

$$
\begin{equation*}
\operatorname{det}\left(R_{n+1}-\lambda B_{n+1}\right)=0 \tag{1}
\end{equation*}
$$

which can be expressed as:

$$
\operatorname{det}\left(\left[\begin{array}{cc}
r_{0}-\lambda b_{0} & r^{*}-\lambda b^{*} \tag{2}\\
r-\lambda b & R_{n}-\lambda B_{n}
\end{array}\right]\right)=0
$$

Therefore, using [6] the determinant of the extended pencil (R_{n+1}, B_{n+1}) may be expressed as:

$$
\begin{align*}
\mathrm{DET} & =\operatorname{det}\left[\left(R_{n}-\lambda B_{n}\right)\left(r_{0}-\lambda b_{0}-(s-\lambda q)^{*}\left(\Lambda_{n}-\lambda\right)^{-1}(s-\lambda q)\right)\right] \\
& =\operatorname{det}\left[R_{n}-\lambda B_{n}\right] \operatorname{det}\left[r_{0}-\lambda b_{0}-(s-\lambda q)^{*}\left(\Lambda_{n}-\lambda\right)^{-1}(s-\lambda q)\right] \tag{3}
\end{align*}
$$

with $s=U_{n} r$, and $q=U_{n}^{\cdot} b$, where $U_{n}=\left[u_{1}, \ldots, u_{n}\right]$ is the B-orthonormalized eigenvector matrix associated with $\left(R_{n}, B_{n}\right)$. The eigenvalue search function $h(\lambda)$ is defined as:

$$
\begin{equation*}
h(\lambda)=\frac{\mathrm{DET}}{\operatorname{det}\left[R_{n}-\lambda B_{n}\right]} \tag{4}
\end{equation*}
$$

Expanding (4) leads to:

$$
\begin{equation*}
h(\lambda)=\left(r_{0}-\lambda b_{0}\right)-\sum_{k=1}^{n} \frac{\left|\beta_{k}\right|^{2}}{\lambda_{k, n}-\lambda} \tag{5}
\end{equation*}
$$

with $\beta_{k}=\left(s_{k}-\lambda q_{k}\right)$, where $s_{k}=u_{k}^{r} r$ and $q_{k}=u_{k}^{\prime} b$. The zeros of (5) are the generalized eigenvalues of the increased order pencil $\left(R_{n+1}, B_{n+1}\right)$. The function $h(\lambda)$ is monotone decreasing between its poles, as shown in $\Lambda_{\text {ppendix }} \wedge$. Note that similarly to the regular eigenproblem [9,14], $h(\lambda)$ fails to have $(\mathrm{n}+1)$ real roots only when it has less than n distinct poles. This happens when (R_{n+1}, B_{n+1}) has multiple cigenvalues, or when $s_{k}=q_{k}=0$ for some k. Slepian et al [6] indicated that
three possible situations related to the multiple eigenvalue case can occur for the regular eigenproblem. These comments can be extended to the generalized problem. Let $\lambda_{m, n}$ be an eigenvalue of $\left(R_{n}, B_{n}\right)$ with multiplicity k. If $\left(s_{r}, q_{r}\right)=(0,0)$ for $p=m, \ldots, m+k$, and $\lambda_{m, n}$ is not a root of $h(\lambda)$, then $\lambda_{m, n}$ is an eigenvalue of multiplieity k for the $(n+1)$ dimensional pencil. If $\left(s_{p}, q_{p}\right)=(0,0)$ for $p=m, \ldots, m+k$, and $\lambda_{m, n}$ is a root of $h(\lambda)$, then $\lambda_{m, n}$ is an eigenvalue of multiplicity $k+1$ for the $(n+1)^{\text {th }}$ dimensional pencil. Finally, if $\left(s_{p}, q_{p}\right) \neq(0,0)$ for some r where $m \leq p \leq m+k$, then $\lambda_{m, n}$ is an eigenvalue of multiplicity $k-1$ for $\left(R_{n+1}, B_{n+1}\right)$.

The idea now is to find a lower bound on $\lambda_{1, n+1}$ and a higher bound on $\lambda_{n+1, n+1}$ by approximating the rational portion of the eigenvalue seareh function. To that end we note that:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left|\beta_{k}\right|^{2}}{\lambda_{k, n}-\lambda} \leq G_{\min }(\lambda) \triangleq \sum_{k=1}^{n} \frac{\left|\beta_{k}\right|^{2}}{\lambda_{1, n}-\lambda} \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left|\beta_{k}\right|^{2}}{\lambda_{k, n}-\lambda} \geq G_{\max }(\lambda) \triangleq \sum_{k=1}^{n} \frac{\left|\beta_{k}\right|^{2}}{\lambda_{n, n}-\lambda} \tag{6b}
\end{equation*}
$$

Thus from (6) we get

$$
\begin{align*}
& h(\lambda) \geq h_{\min }(\lambda) \stackrel{\Delta}{=} r_{0}-\lambda b_{0}-G_{\min }(\lambda) \text { for }\left(-\infty, \lambda_{1, n+1}\right) \tag{7a}\\
& h(\lambda) \leq h_{\max }(\lambda) \stackrel{\Delta}{=} r_{0}-\lambda b_{0}-G_{\max }(\lambda) \text { for }\left(\lambda_{n, n}, \infty\right) \tag{7b}
\end{align*}
$$

As shown in $\Lambda_{\text {ppendix }} A$, the function $h_{\text {min }}(\lambda)$ is monotone decreasing in $\left(-\infty, \lambda_{1, n}\right)$, and $h_{\max }(\lambda)$ is monotone decreasing in $\left(\lambda_{n, n}, \infty\right)$. Thus, $h_{\min }(\lambda)$ has a root $\lambda_{\text {min }}$ in the interval $\left(-\infty, \lambda_{1, n}\right)$ such that $\lambda_{\text {min }} \leq \lambda_{1, n+1}$, as illustrated in Figure 1. Similarly, $h_{\max }(\lambda)$ has a root $\lambda_{\text {max }}$ in the interval $\left(\lambda_{n, n}, \infty\right)$ such that $\lambda_{\max } \geq \lambda_{n+1, n+1}$. The roots $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ can easily be computed by solving for the roots of the second order polynomials:

$$
\begin{align*}
h_{\eta}(\lambda) & =\left(r_{0}-\lambda b_{0}\right)(\eta-\lambda)-|s-\lambda q|^{2} \\
& =\lambda^{2}\left(m_{0}-|q|^{2}\right)+\lambda\left(2 \operatorname{real}\left(s^{*} q\right)-r_{0}-m_{0} \eta\right)+r_{0} \eta-|s|^{2}=0 \tag{8}
\end{align*}
$$

for $\eta=\lambda_{1, n}$ or $\eta=\lambda_{n, n}$.
Note that for the regular eigenproblem, where $B=I$, (8) becomes:

$$
\begin{equation*}
\lambda^{2} m_{0}+\lambda\left(-r_{0}-m_{0} \eta\right)+r_{0} \eta-|s|^{2}=0 \tag{9}
\end{equation*}
$$

which is the same expression as the one obtained by Slepian et al [9] and by Dembo [10].

3.0 Comparisons with known bounds

This section first reviews two types of known bounds on the extreme generalized eigenvalues of peneils, and next presents some comparisons of the proposed bounds with elassical results based on norm inequalities.

The generalized Gershgorin theorem

Stewart [8] derived a generalization of the: Gershgorin theorem and showed that the generalized eigenvalues of $R x=\lambda B x$ lie in the union of the neighborhoods \tilde{G}_{i} defined as:

$$
\tilde{G}_{i}=\left\{\lambda: \chi\left(\frac{r_{i i}}{b_{i i}}, \lambda\right) \leq \rho_{i}\right\}
$$

where

$$
\begin{equation*}
\rho_{i} \triangleq \frac{\left\|r_{i i} \beta_{i}^{*}-b_{i i} \alpha_{i}^{*}\right\|_{1}}{\sqrt{\left|r_{i i}\right|^{2}+\left|b_{i i}\right|^{2}} \sqrt{r_{i i}^{2}+b_{i i}^{\prime 2}}} \tag{10}
\end{equation*}
$$

with

$$
\begin{align*}
\alpha_{i}^{*} & =\left(r_{i 1}, \ldots, r_{i, i-1}, r_{i, i+1}, \ldots, r_{i, n}\right), \beta_{i}^{*}=\left(b_{i 1}, \ldots, b_{i, i-1}, b_{i, i+1}, \ldots, b_{i, n}\right) \\
r_{i i}^{\prime} & =\max \left\{0,\left|r_{i i}\right|-\left\|\alpha_{i}\right\|_{1}\right\} \tag{11}\\
b_{i i}^{\prime} & =\max \left\{0,\left|b_{i i}\right|-\left\|\beta_{i}\right\|_{1}\right\}
\end{align*}
$$

$\chi\left(\lambda, \lambda^{\prime}\right)$ is the ehordal distance between λ and λ^{\prime}. It is defined as the length of the ehord joining the points a and b located on the Riemann sphere [15,16], as shown in Figure 2.

Several comments can be made here:

1. A tighter bound may be obtained by replacing in ρ_{i} norm 1 with norn 2 , as shown in Appendix B.
2. A finite value for ρ_{i} is obtained only when $\left(r_{i i}^{\prime}, b_{i i}^{\prime}\right)=(0,0)$, or when $\left(r_{i \prime}, b_{i i}\right)=(0,0)$. Note that $\left(r_{i i}^{\prime}, b_{i i}^{\prime}\right) \neq(0,0)$, requires that at least one of the matrices of the pencil (R, B) to be diagonally dominant ${ }^{1}$. Thus, ρ_{i} may be infinite when at least one of the matrices of the pencil studied (R, B) is not diagonally dominant and no restrictions on the diagonal elements of the pencil are made. This indicates that the bounds obtained via the Gencralized Gershgorin (G.G.) theorem are not insured to be finite in all situations where the pencil has finite cigenvalues.
3. The chordal distance $\chi\left(\lambda, \lambda^{\prime}\right)$ has a maximum value of 1 [16]. Thus, a finite Gershgorin neighborhood is obtained only when $\rho_{i}<1$. The value of the parameter ρ_{i} defined in (10) depends on the pencil (R, B), it can have values larger than 1 even when the pencil eigenvalues are finite. In such a case, the regions \tilde{F}_{i} containing the eigenvalues cover the whole space, and no new information is gained by applying the G.G. theorem.

The above comments indicate that, when dealing with pencils with finite cigenvalues, additional information can be gained from the G. (3. only when $\rho_{i}<1$ for all i. This further restricts the usefulness of the G.G. theorem. By comparison, the proposed bounds are limited only to Hermitian pencils (R, B) with positive definite B matrices. Furthermore, the bounds are insured to be finite when the origina: pencil has finite eigenvalues to start with. Therefore, the G.G. bounds will not be used in the following statistical comparisons because they require too many restrictions on the pencils studied in order to bring additional information.

Norm Inequality bounds

Bounds on the extreme eigenvalues of the regular eigenproblem $A x=\lambda x$ based on norm inequalities have been proposed $[6,7]$. Recall that for such bounds, we have:

[^0]\[

$$
\begin{align*}
& \lambda_{n+1, n+1} \leq\|A\|_{F} \\
& \lambda_{n+1, n+1} \leq\|A\|_{1} \\
& \lambda_{1, n+1} \geq \frac{1}{\sqrt{(n+1)}\left\|A^{-1}\right\|_{\infty}} \tag{12}
\end{align*}
$$
\]

The above inequalities can be extended to the generalized eigenproblem by backtransforming the pencil (R, B) into $\left(C^{-1} R C^{-}, I\right)$ when $B=C C^{*}$ is positive definite. It was not possible to perform an analytical comparison of the new bounds with the norm inequality bounds. As a result, the behavior of the bounds was studied statistically using simulations.

The errors hetween computed bounds and the true cigenvalue are defined as:

$$
\begin{align*}
& \operatorname{err_{\operatorname {min}_{est}}}=\frac{\lambda_{1, n+1}-\lambda_{\min }}{\left|\lambda_{1, n+1}\right|} \quad \text { err } \text { min }_{\text {inr }}=\frac{\lambda_{1, n+1}-\lambda_{\text {norm }}^{\text {inf }}}{} \\
&\left|\lambda_{1, n+1}\right| \\
& \operatorname{err}_{\max _{\text {est }}}=\frac{\lambda_{\text {max }}-\lambda_{n+1, n+1}}{\left|\lambda_{n+1, n+1}\right|} \operatorname{crr}_{\max _{1}}=\frac{\lambda_{n o r m_{1}}-\lambda_{n+1, n+1}}{\left|\lambda_{n+1, n+1}\right|} \tag{1.3}\\
& \operatorname{err}_{\max _{F}}=\frac{\lambda_{n o r m_{F}}-\lambda_{n+1, n+1}}{\left|\lambda_{n+1, n+1}\right|}
\end{align*}
$$

where $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ are the eigenvalue bounds proposed using the order-recursive technique. $\lambda_{\text {norm }_{F}}$ and $\lambda_{\text {norm }_{1}}$ are the upper hounds respectively obtained using norm F^{F} and norm 1 , as defined in (12). $\lambda_{n_{n o m} \text { minf }}$ is the lower bound obtained using norm infinity, as defined in (12).

We considered peneils in which the elements are randomly generated from a uniform distribution. Note that bounds derived using matrix norm inequalities are only valid with positive definite pencils. Thus, in order to compare the proposed hounds with the matrix norm inequalities bounds, the eigenvalues of (R, B) are shifted to insure that the pencils under study are positive definite. Table 1 presents the means and standard deviations obtained for the error measures defined in (13). 3000 randomly generated positive definite pencils were used to generate the results in each case. This table shows that the proposed bounds are tighter than the norm inequality bounds in an average sense only, i.e., the relative tightness of the bounds around the true eigenvalue depends upon the pencil under consideration much more than the norm inequality based norms. Furthermore, the results indicate that the larger the cigenvalues are, the better the performance of the proposed $\lambda_{\text {min }}$
is. Note that $\lambda_{\text {min }}$ is not bounded by 0 , as is $\lambda_{\text {morminf }}$, and can be negative. Therefore, the likelihood of $\lambda_{\text {min }}<0$ increases when the true eigenvalues are close 100 to start with.

Table 1. Bound error measures

average min \& max eigenv.	$e r r_{\text {min }}$	$e r r_{\text {min }}^{\text {inf }}$	$e r r_{\text {max }}$	$e r_{\text {max }}$	$\mathrm{crr}_{\text {max }}$
	mean			(standard deviation)	
$\begin{aligned} & 28.677 \\ & 3079 \end{aligned}$	$\begin{aligned} & 0.5381 \\ & (2.1267) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7089 \\ & (0.0225) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2813 \\ & (0.4057) \end{aligned}$	$\begin{aligned} & 0.3282 \\ & (0.1194) \end{aligned}$	$\begin{aligned} & 0.5016 \\ & (0.3109) \end{aligned}$
$\begin{aligned} & 219 \\ & 10978 \end{aligned}$	$\begin{aligned} & 0.5730 \\ & (1.4311) \end{aligned}$	$\begin{aligned} & 0.7913 \\ & (0.0156) \end{aligned}$	$\begin{aligned} & 0.4356 \\ & (0.6020) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5005 \\ & (0.1383) \end{aligned}$	$\begin{aligned} & 0.5730 \\ & (0.3724) \end{aligned}$
$\begin{aligned} & 8407 \\ & 3.610^{5} \end{aligned}$	$\begin{aligned} & 0.1631 \\ & (0.0771) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.7884 \\ & (0.0166) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4356 \\ & (0.6450) \end{aligned}$	$\begin{aligned} & 0.4771 \\ & (0.1486) \end{aligned}$	$\begin{aligned} & 0.6485 \\ & (0.4410) \\ & \hline \end{aligned}$

Figure 1. Eigenvalue search function $h(\lambda)$, and bound search functions $h_{\text {min }}(\lambda)$, and $h_{\text {max }}(\lambda)$

Figure 2. Definition of the Chordal distance: from Parlett [15]

4.0 Conclusions

This report presents new bounds on the extreme eigenvalues of Ilermitian pencils (R, B) with finite eigenvalues, when B is positive definite. The bounds are based on an order-recursive eigendecomposition of the peneil. Simulations indieate that the proposed bounds depend more strongly on the pencil considered than those derived using norm inequalities. However, they are not as restricted and are easy to compute.

Acknowledgments

The author wishes to acknowledge the eontribution of Dr. C.A. Beattie, of the Virginia Polyteehnie Institute and State University, in the enclosed derivation of the proof of the monotone behavior of the generalized eigenvalue search function, and to thank him for numerous discussions on the generalized eigenproblem.

References

[1]: R.O. Schmidt, "A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation," Ph.I. Dissertation, Stanford University, Stanford, CA, Nov. 1981.
[2]: R. Roy, Λ. Paulraj, and T. Kailath, "ESPRIT - Λ Subspace Rotation Λ pproach to Estimation of Parameters of Cisoids in Noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-34, No. 5, Oct. 1986, pp. 1340-1342.
[3]: R. Roy and T. Kailath, "Total 1 east-Squares ESPRIT", Proc. $21^{s t}$ Asilomar Conference on Signals, Circuits, and Systems, Pacific Grove, C Λ, Nov. 2-4, 1987.
[4]: S.T. Kay, Modern Spectral Estimation, Prentice I Iall, 1988.
[5]: S. Haykin, Modern Filters, MacMillan, 1989.
[6]: F.R. Gantmacher, The Thenry of Matrices, Chelsea Publishing Company, New York, NY, 1974.
[7]: C. Golub and C. Van Loan, Matrix Computations, John Mopkins Univ. Press, 1983.
[8]: G.W. Stewart, "Gershgorin Theory for the Generalized Eigenvalue Problem," Mathematics of Comput., Vol. 29, No. 130, Λ pril 1975, pp. 600-606.
[9]: D. Slepian and H.J. Landau, "A Note on the Eigenvalues of Ilermitian Matrices," SI^M J. Math. Anal., Vol. 9, No. 2, April 1978, pp. 291-297.
[10]: Λ. Dembo, "Bounds on the Extreme Eigenvalues of Positive-Definite Toeplitz Matrices," IEEE Trans. on Inf. Th., Vol. 34, No. 2, March 1988, pp. 352-355.
[11]: A.A. Beex and M.P. Fargues, "Fast Recursive/Iterative Toeplitz Eigenspace Decomposition," IEEE Trans. on ASSP, Vol. 37, No. 11, Nov. 1989, pp. 1765-1768.
[12]: M.P. Fargues and $\Lambda . \Lambda$. Beex, "Fast Order-Recursive Generalized Ilermitian Toeplitz. Eigenspace Decomposition," Math. Control, Signals, and Systems, Vol.4, Nov. 90.
[13]: M.P. Fargues, "Tast Order-Recursive IIermitian Toeplitz Eigenspace Techniques for Array Processing," Ph.D. Dissertation, VI'I\&SU, Blacksburg, VA, 1988.
[14]: J.II. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.
[15]: B.N. Parlett, The Symmetric Eigenralue Problem, Prentice-I Iall Scries in Computational Mathematics, 1980.
[16]: G. G. Sansone and J. Gerretsen, I.ectures on the Thenry of Finctions of a Complex Variable, I: Holomorphic Functions, P. Noordhoff - Groningen, I td., 1960.

Appendix A. Monotone behavior of the eigenvalue

search function, and the bound search functions

This appendix shows that the generalized cigenvalue search function $h(\lambda)$, and the bound search functions $h_{\text {min }}(\lambda)$, and $h_{\text {max }}(\lambda)$ are monotone decreasing between their poles.

Proof:

Recall from (5) that the eigenvalue search function is defined as:

$$
h(\lambda)=r_{0}-\lambda b_{0}-\sum_{k=1}^{n} \frac{\left|s_{k}-\lambda q_{k}\right|^{2}}{\lambda_{k, n}-\lambda}
$$

Consider the following matrix equation:

$$
\left[\begin{array}{cc}
r_{0}-\lambda b_{0} & s^{*}-\lambda q^{*} \\
s-\lambda q & \Lambda-\lambda I
\end{array}\right]\left[\begin{array}{l}
C \\
x
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

with $\Lambda=\operatorname{diag}\left(\lambda_{1, n}, \ldots, \lambda_{n, n}\right)$. Solving equation ($\Lambda .2$) for C leads to:

$$
\begin{align*}
C(\lambda) & =\left[r_{0}-\lambda b_{0}-(s-\lambda q)^{*}(\Lambda-\lambda I)^{-1}(s-\lambda q)\right]^{-1} \\
& =[h(\lambda)]^{-1} \tag{^.3}
\end{align*}
$$

$C(\lambda)$ may be rewritten as:

$$
C(\lambda)=e_{1}^{*}(\hat{R}-\lambda \hat{B})^{-1} e_{1}
$$

with
Λ ppendix Λ. Monotone behavior of the eigenvalue search function, and the hound search functions

$$
\hat{R}=\left[\begin{array}{cc}
r_{0} & s^{*} \\
s & \Lambda
\end{array}\right] \quad \hat{B}=\left[\begin{array}{cc}
b_{0} & q^{*} \\
q & l
\end{array}\right] \quad e_{1}=[1,0, \ldots, 0]^{t}
$$

so that from (1.4) we get:

$$
\begin{equation*}
C^{\prime}(\lambda)=e_{1}^{*}(\hat{R}-\lambda \hat{B})^{-1} \hat{B}(\hat{R}-\lambda \hat{B})^{-1} e_{1}>0 \tag{A.5}
\end{equation*}
$$

Using (A.3) and (A.5), $h^{\prime}(\lambda)$ becomes:

$$
\begin{equation*}
h^{\prime}(\lambda)=\frac{d}{d \lambda}\left[\frac{1}{C(\lambda)}\right]=\frac{-C^{\prime}(\lambda)}{C(\lambda)^{2}}<0 \tag{A.6}
\end{equation*}
$$

Therefore, $h(\lambda)$ is monotone decreasing between its poles.
Next, note that $h_{\text {min }}(\lambda)$ and $h_{\max }(\lambda)$ are functions similar to $h(\lambda)$ in which Λ has been respectively replaced with $\operatorname{diag}\left(\lambda_{1, n}, \ldots, \lambda_{1, n}\right)$ and $\operatorname{diag}\left(\lambda_{n, n}, \ldots, \lambda_{n, n}\right)$. Thus, $h_{\min }(\lambda)$ and $h_{\text {max }}(\lambda)$ are monotone decreasing hetween their respective multiple poles $\lambda_{1, n}$ and $\lambda_{n, n}$.

Appendix Λ. Monotone hehavior of the eigenvalue seareh function, and the hound search functions

Appendix B. Generalized Gershgorin bounds

This appendix first reviews the generalized Gershgorin neighborhoods proposed earlier by Stewart [8]. Next, it shows that further tightness of the eigenvalue bounds may be obtained by replaeing the norm 1 measure used by Stewart with the norm 2 measure.

Generalized eigenvalues and the Chordal distance

Some insight into the properties of the pencil (R, B) can be gained by looking at the (ieneralized Sehur (G.S.) decomposition [7]. Recall that the G.S. decomposition leads to the following result:

Theorem: If R and B are in $\mathbb{C}^{n \times n}$, then there exists unitary Q and Z such that $Q^{\prime} A Z=T$ and $Q^{\cdot} B Z=S$ are upper triangular. If for some $k, t_{k k}$ and $s_{k k}$ are both zero, then $\lambda(R, B)=\mathbb{C}$. Otherwise,

$$
\begin{equation*}
\lambda(R, B)=\left\{t_{i i}\left|s_{i i}\right| s_{i i} \neq 0\right\} \tag{B.1}
\end{equation*}
$$

Equation (B.1) shows that $\lambda(R, B)$ may be very sensitive to small ehanges if $s_{\| i}$ is small. However, Stewart [7] noted that the reeiproeal $s_{i l} / t_{u}$ nay be a well behaved (i.e., not sensitive 10 sinall changes of its parameters) eigenvalue of the pencil (B, R), and pointed out that it may be better to treat the eigenvalues as pairs $\left(t_{i i}, s_{i j}\right)$ than as quotients. As a consequence, Stewart [8] identified the eigenvalucs $\lambda=t / s$ of pencils with the point in the projective eomplex line defined as:

$$
[t, s]=\{(t, s) \neq(0,0): \ell / s=\lambda\}
$$

The Chordal metrie ${ }^{2} \chi$ is used to measure the eigenvalue separation. It is expressed as:

$$
\begin{equation*}
\chi\left([s, t],\left[s^{\prime}, t^{\prime}\right]\right) \triangleq \frac{\left|s t^{\prime}-s^{\prime}\right|}{\sqrt{|s|^{2}+|t|^{2}} \sqrt{\left|s^{\prime}\right|^{2}+\left|t^{\prime}\right|^{2}}} \tag{B.2}
\end{equation*}
$$

[^1]For $\lambda=s / t$ and $\lambda^{\prime}=s^{\prime} / t^{\prime}$ the ehordal distanee ean be expressed as:

$$
\begin{equation*}
\chi\left(\lambda, \lambda^{\prime}\right)=\frac{\left|\lambda-\lambda^{\prime}\right|}{\sqrt{1+\lambda^{2}} \sqrt{1+\lambda^{\prime 2}}} \tag{B.3}
\end{equation*}
$$

The distanee $\chi\left(\lambda, \lambda^{\prime}\right)$ is the length of the ehord joining a and b, as shown in Figure 2.

Some useful properties of the Chordal metric [16]

1. The ehordal metrie is invariant under reeiproeation; i.e., $\chi\left(\lambda, \lambda^{\prime}\right)=\chi\left(1 / \lambda, 1 / \lambda^{\prime}\right)$.
2. The ehordal metrie is bounded; i.e., $0 \leq \chi\left(\lambda, \lambda^{\prime}\right) \leq 1$.
3. $\chi\left(\lambda_{1}, \lambda_{2}\right) \leq \chi\left(\lambda_{1}, \lambda_{3}\right)+\chi\left(\lambda_{3}, \lambda_{2}\right)$.
4. $\chi\left(\lambda, \lambda^{\prime}\right)=\chi\left(\lambda^{\prime}, \lambda\right)$.

Generalized Gershgorin bounds

Stewart [8, th. 2.1] showed that the generalized eigenvalues λ of the peneil (R, B) lie in the union of the regions G_{i} defined by:

$$
\begin{equation*}
G_{i}=\left\{\left[r_{i i}+\alpha_{i}^{*} \tilde{x}, b_{i i}+\beta_{i}^{*} \tilde{x}\right]:\|\tilde{x}\|_{\infty} \leq 1\right\}, \quad(i=1, \ldots, n) \tag{B.4}
\end{equation*}
$$

where $\alpha_{i}^{\dot{i}}=\left(r_{i, 1} \ldots, r_{i, i-1,1, r_{i,+1}}, \ldots, r_{i, n}\right), \beta_{i}=\left(b_{i, 1}, \ldots, b_{i, i-1,1} b_{i, i+1}, \ldots, b_{i, n}\right)$, and \tilde{x} is formed from the eigenvalue x by deleting its $i^{\text {th }}$ eomponent.

The sets G, are not easy to work with. Thus, they are replaced with the following neighborhoods defined in terms of the ehordal metrie χ. This leads to:

$$
\begin{equation*}
\chi\left(\left[r_{i i}, b_{i i}\right],\left[r_{i i}+\alpha_{i}^{*} \tilde{x}, b_{i i}+\beta_{i}^{*} \tilde{x}\right]\right)=\frac{\left|r_{i i} \beta_{i}^{*}-b_{i i} \alpha_{i}^{*} \tilde{x}\right|}{\sqrt{\left|r_{i i}+\alpha_{i}^{*} \tilde{x}\right|^{2}+\left|b_{i i}+\beta_{i}^{*} \tilde{x}\right|^{2}}} \tag{B.5}
\end{equation*}
$$

Next, the sets \tilde{G}, are defined as follows:

$$
\begin{equation*}
\widetilde{G}_{i}=\left\{\lambda: \chi\left(r_{i i} \mid b_{i i}, \lambda\right) \leq \rho_{i}\right\} \tag{B.6}
\end{equation*}
$$

where ρ_{i} is an upper bound on the chordal distance defined in (B.5). These regions \tilde{G}_{i} contain the eigenvalues of the pencil (R, B); they are called the Gershgorin regions. Stewart [8] showed that the bound ρ_{i} introduced in (B.6) can be defined by:

$$
\begin{equation*}
\rho_{i} \triangleq \frac{\left\|r_{i i} \beta_{i}^{*}-b_{i i} x_{i}^{*}\right\|_{1}}{\sqrt{\left|r_{i j}\right|^{2}+\left|b_{i j}\right|^{2}} \sqrt{r_{i i}^{2}+b_{i i}^{2}}} \tag{B.7}
\end{equation*}
$$

where

$$
\begin{aligned}
r_{i i}^{\prime} & =\max \left\{0,\left|r_{i i}\right|-\left\|\alpha_{i}\right\|_{1}\right\} \\
b_{i i}^{\prime} & =\max \left\{0,\left|b_{i i}\right|-\left\|\beta_{i}\right\|_{1}\right\}
\end{aligned}
$$

Modified Gershgorin bounds

Λ bound γ_{i} on the chordal distance tighter than the one proposed by Stewart with (B.7) can be derived by using the following vector norm inequality:

$$
\begin{equation*}
\|x\|_{2} \leq\|x\|_{1} \tag{B.8}
\end{equation*}
$$

Using (B. 8) in (B.5) leads to:

$$
\begin{equation*}
\left|\left(r_{i i} \beta_{i}^{*}-b_{i i} x_{i}^{*}\right) \cdot \tilde{x}\right| \leq\left\|r_{i i} \beta_{i}^{*}-b_{i i} \alpha_{i}^{*}\right\|_{2}\|\tilde{x}\|_{2} \tag{B.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|r_{i i}+\alpha_{i}^{*} \tilde{x}\right| \geq\left|\left|r_{i i}\right|-\left|\alpha_{i}^{*} \tilde{x}\right|\right| \tag{B.10}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left|r_{i i}\right|-\left|\alpha_{i}^{*} \tilde{x}\right| \geq\left|r_{i i}\right|-\left\|\alpha_{i}^{*}\right\|_{2}\|\tilde{x}\|_{2} \tag{B.11}
\end{equation*}
$$

Thus, (B.8), (B.9), (B.10), and (B.11) lead to:

$$
\begin{equation*}
\chi\left(r_{i i l} \mid b_{i i}, \lambda\right) \leq \gamma_{i} \triangleq \frac{\left\|r_{i i} \beta_{i}^{*}-b_{i i} \alpha_{i}^{*}\right\|_{2}}{\sqrt{\left|r_{i i}\right|^{2}+\left|b_{i i}\right|^{2}} \sqrt{\left|r_{i i}^{\prime}\right|^{2}+\left|b_{i i}^{\prime}\right|^{2}}} \leq \rho_{i} \tag{B.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& r_{i i}^{\prime}=\max \left\{0,\left|r_{i l}\right|-\left\|x_{i}\right\|_{2}\right\} \\
& b_{i i}^{\prime}=\max \left\{0,\left|b_{i i}\right|-\left\|\beta_{i}\right\|_{2}\right\}
\end{aligned}
$$

Note that the G.G. bound γ_{i} is tighter than ρ_{i} but similar comments to those made on ρ_{1} apply.

Distribution List

1. Research Administration, Code 81
Naval Postgraduate School
Monterey, CA 93943
2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Department Chairman, Code EC 1
Department of Electrical and Computer Eingineering Naval Postgraduate School
Monterey, CA 93943
4. Professor Monique P. Fargues, Code IC/I’a 7
Department of Electrical and Computer Enginecring Naval Postgraduate School Monterey, CA 93943
5 Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145No. Copies

[^0]: 1 The matrix R is diagonally dominant if $\left|r_{i 1}\right|>\sum_{i \neq i}\left|r_{i j}\right|$ for all i.

[^1]: 2 This metric results from the introduction of the extended complex plane (complex plane + infinity) in complex analysis [16]. The Riemann sphere is chosen to represent the extended complex plane which is not casy to visualize directly. The correspondence between the two geometric representations is then set up with the aid of a stercographic projection [16].

