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ABSTRACT

Two stationary first-order autoregressive processes with Beta marginal

distributions are presented. They are both linear, additive processes but the

coefficients are Beta random variables. Their autocorrelation functions are

investigated: one is positive and the other alternates in sign. The useful-

1 ness of the models in simulation is discussed. The Bivariate Beta distribu-

tions of two consecutive observations are considered in some detail. Several

examples are given, including a Bivariate Uniform process which is also

examined in detail. The relationship of these Bivariate Beta distributions

to the Dirichelet distribution is discussed.
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1. INTRODUCTION

The Beta distribution is the most versatile and useful distribution

available on a bounded interval. Despite this there are very few practical

models for describing correlation between pairs of Beta random variables or

serial correlation in sequences of them. This is unfortunate since there is a

natural interest in modelling sequences of dependent Beta variates. These

arise in a variety of ways but are often associated with the stochastic

behaviour of a proportion or probability over time. One example is the study

of market share, e.g. the proportion of the market held by a particular

product. (See, for example, Wichern and Jones (1977)).

Some efforts have been made to model such behaviour. Azzalini (1982)

developed a simple Markov model for use in a quality control context where the

proportions defective in adjacent batches sampled may be expected to be depen-

dent. He used the Product Autoregressive process discussed by McKenzie (1983).

This model has limited usefulness for the Beta distribution, however, since it

requires that of the two parameters of that distribution one must be integral

and the other rational. Another approach has been suggested by Souza and

Harrison (1981). They attribute to the proportion a Beta distribution which is

revised with each observation by a procedure based on Bayesian and Information

Theoretic concepts. This approach appears to offer some promise for forecast-

ing but is fairly complex in general. A more traditional time-series approach

to such a data set would be to treat the proportions X not as Beta's but as

Logistic-normal variates. Thus, we would transform X to log-odds, i.e.

Y = £n[X /(1-X )] , and attempt to model {Y } as an autoregressive moving-

average process. This approach is suggested by the work of Aitchison and Shen

(1980) and Aitchison (1982), but does not appear to have been investigated as

a time-series procedure yet. It discards the Beta marginal distribution which

is our main interest here. Further, it appears to be extremely difficult to



reverse the procedure and generate a sequence of proportions with a specific

correlation structure.

The purpose of this work is to present a discrete time Markov process with

a Beta marginal distribution. It is constructed in the spirit of the recent

work on modelling of non-Gaussian time series illustrated, for example, by

Lawrance and Lewis (1980, 1982) and Jacobs and Lewis (1983). Since simulation

is also a major motivation for such work, we seek models which are simple and

flexible and whose parameters are few and physically meaningful. The aspect of

simulation is important here for, as Schmeiser and Lai (1980) noted in a recent

survey (1980), there are few practical ways of generating dependent Beta random

variables. This is because the usual multivariate Beta distributions are

closely related to the Dirichelet distribution and so constrain their vector

variates in a way which is undesirable in general.

We present here two simple discrete-time stochastic processes whose mar-

ginal distributions are Beta random variables. The processes are linear,

additive autoregressions with random coefficients. The coefficients themselves

are also Beta variates. There is a single free parameter which corresponds in

a simple way to the correlation in each model and a wide range of correlation

is possible. Because of their simplicity, the models provide a powerful way of

generating sequences of dependent Beta variates using only independent Betas.

As noted above, there is a scarcity of practical multivariate Beta distribu-

tions. Thus, the bivariate distributions associated with the processes are

discussed in some detail. They exhibit a number of interesting features. We

also examine in detail the particular case of the bivariate Uniform distribu-

tion. It plays an important role in the simulation of dependent pairs of

random variables .



Before describing the models we may not that there is a well-known

continuous-time Markov process with Beta marginals. It arises in genetics and

is one of the forms of the Wright-Fisher gene frequency models described in

detail in the books by Karlin and Taylor (1975, 1981). It is a diffusion

process and, in different forms, has found applications in sociology, psychol-

ogy and marketing. It is also derived by Massey et al . (1970) as a stochastic

response model. They obtain it as the limiting form of the "contagious

binomial" distribution developed by Coleman (1964) to model voting behaviour.

Of course, such processes are in continuous time and it is by no means clear

how they can be restructured in discrete time. Nor is it clear whether the

processes presented here represent some discrete time formulations of the

diffusion processes.

2. THE MODELS

2.1. A random variable (r.v.) X is said to have a Beta distribution with

parameters (a, 3) if it has probability density function (p.d.f.)

f (*>
• B(i;

x

6r ° < x

<

i

s

«.»><> •

For convenience in what follows, we shall write such a random variable as

Be(a,3) . We note for later use that for such X ,

E(X) = a/(a+B), Var(X) = a6/[( a+$)
2

( a+8+1) ] and the third moment about the

mean is given by nu = 2a6( B-a)/[(a+B) ( a+B+1) ( a+0+2) ] .

The models presented here use the following results:

1 - Be(a,3) = Be(e,a) (1)

Be(a,3) • Be(a+6,y) = Be(a,B+y) (2)



The first of these two results is well known and easily demonstrated. The

second result states that the product of two independent Beta r.v.s. with

parameters as specified is itself a Beta r.v. The result may be verified by

c

considering the Mel Tin Transform (Widder, 1946), i.e. E(X ) , of the product

on the left-hand side of (2). It is

r/y S
^ •

B (<*+S >g) . B(g+e+S,y) _ TJ g+S ) T{ ci+3+y) _ B(a+S,3+y)
LlA ; ~ B(a,3) B(a+3, Y ) r( a) r( a+g+y+s) B(a,3+y)

which is the transform of the right-hand side of (2). We shall refer to the

application of (2) to change one Beta r.v. into another as the Beta-Beta

transformation.

Two distinct models are presented here. One is for positively correlated

pairs of Beta r.v.s. and is denoted by PBAR and the other is for negatively

correlated pai^s of Beta's and is denoted by NBAR. Both models are linear and

additive and have random coefficients.

2.2. The PBAR model is given by

X
t

= 1 - U
t
(l - »

t
X
t_ x

) (3)

where {U.} and {W } are independent sequences of independent identically

distributed (i.i.d.) r.v.s., independent of previous X's , and U is

Be(3,a-p) and W is Be(p.a-p), (0 < p < a) . Now if X , is Be(a,3) then

W .X . is Be(p,a+3-p) from (2) and 1 - W X , is Be(a+3-p,p) from (1).

Further use of (2) shows that U (1-W X ,) is Be(3,a) and so X given by (3)

is Be(a,3) by (1). Thus, equation (3) defines a stationary process {X } with

a Beta(a,3) marginal distribution.

Further, there is a single free parameter in this scheme, viz. p . As we

shall see, the value of p determines the correlation structure of the



process {X
t

} . From the structure of (3), the process is a first-order linear

autoregression with random coefficients. Direct calculation yields the auto-

correlation function of the process as p
x
(k) = p , k = 0,1,..., where

p = E(U)E(W) = pe/a(a+6-p) . (4)

Now p as defined by (4) is a monotonic increasing function of p for fixed

(a, 6) . Further, since e > , < p < a , we may deduce that < p < 1 .

Thus, the entire range of positive correlation is possible for any values of a

and 3 , i.e. any Beta marginal distribution.

There are two limiting cases for the parameter p we may consider. When

p is zero W = with probability one and U, is Be(0,a) . Thus, X is

independent of X . and p = . When p = a both U. and W are unity

with probability one. Thus, X = X. . and p = 1 . The process is not ergodic

in this case.

It is important to notice that with this model (3) p = implies

independence.

2.3. The model for the NBAR process is given by

x
t

= V 1 - w
t
x
t-i» •

(5)

As before, {V } and {W } are independent sequences of i.i.d., r.v.'s

independent of X , and V is Be(a,3-p) and W is Be(p,a-p) .

Again, it is easily verified using (1) and (2) that equation (5) will generate

a stationary process whose marginal distribution is Beta(a,e) . The NBAR

process is also a linear autoregression with random coefficients. It too has

autocorrelation function of the form p , k = 0,1,..., but now

p = - p/(a+6-p) • (6)



Notice that the specification of the distributions of V and W requires

that < p < a and < p < . From (6), p is a monotonic decreasing

function of p for fixed (a, 3), and so we may deduce that for the NBAR

process(5) -max(a/3,3/a) < p < .

The upper extreme of zero is again attainable when p = and X = V ,

which is independent of X. , . As with the PBAR process, it is important to

note that p = implies idependence. The lower limit -max(a/3,3/cc) is also

attainable. If 3 < a it is attained when p = 3 and so V. = 1 . If

3 > a it occurs where p = a which corresponds to W = 1 . When a = 3

the lower limit is -1 which corresponds to the usual antithetic relationship,

X
t

= 1 - X
t _ 1

,
given by V

t
= W

t
= 1 .

2.4. The models PBAR and NBAR given by (3) and (5) yield random coefficient

autoregressions of order one. Further, the first-order correlation p satisfies

- max(| , £) < P < 1 . (7)

This is not the greatest possible range for general (a, 3) . For example, if

a = 2 , 3 = 1 we find that -0.5 < p < 1 for these models. On the other hand,

it may be deduced from Moran (1967) that the correlation between two Be(2,l)

r.v.s. is bounded below by (9tt-32)/4, i.e. approximately -0.9314. How far the

lower bound given by (7) is from the minimum correlation possible is not known for

general (a, 3) .

We may note, however, that in the symmetric case, i.e. a = 3 , the range

is (-1,1) as would be hoped. As before, the two extremes may be attained:

the upper limit of 1 from X. = X. , and the lower limit of -1 from the

usual antithetic relationship X. = 1 - X. , . This latter is obtained from

NBAR with p = a = 3 so that V = Z = 1 . In particular, it is now



possible to generate r.v.s. uniform on (0,1) with any first-order autoregressive

correlation, i.e. any pe[-l,l] . We return to this point later.

3. BIVARIATE DISTRIBUTIONS OF (X , X )

3.1. For convenience, we rewrite the PBAR model (3) as Y = 1 - U(l-WX) .

Initially, consider the joint p.d.f. of (Y,X) conditional on U . It can be

written in the form

f
Y,x|u"'

x
l

u
> 'h- ¥*> • V^' •

i-y<"<&-

The joint p.d.f. of Y, X and U may now be derived and from it the p.d.f.

of (Y,X) is obtained in the form

, . v 3-1 m(y ,x) .. - .

ft
x
(y,x) = ii=il / s

p
- 1

[x(l-y)-(l-x)s] a-P-
1
(l-y+ s)

e- a(y-s)
a^- 1

ds (8)

where m(y,x) = min(y ,x( 1-y)/ (1-x) ) and C
+

= B(a,e)B(p,a-p)B( 6,a-p) .

A change of variable t = (l-x)s/(l-y) in the integral in (8) yields the

result f v Y (y> x )
=

^v v( x »y) • Thus, the bivariate p.d.f., which is defined
Y , A I , A

on the unit square, is symmetric about y = x . Note also that m(y,x) = y

if y < x . Thus, the two forms of the integral exist on either side of

y = x , and we can define

g(y,x) y < x

fy
>x

(y,x) = (9)

g(x,y) y > x

where g(y,x) is given by the right hand side of (8) with m(y,x) replaced

by y .



This symmetry is also important from the viewpoint of modelling or iden-

tification of the PBAR process. The importance arises from the idea of time-

reversibility of a stationary process. The concept is discussed in detail by

Weiss (1975). A discrete-time stationary process {X.} is time-reversible if

the joint distributions of {X- ,X
?
,. .. ,X } and {X ,X

l
,..,,X-} are identical

for every t . In the case of a first-order autoregression, as here, the

joint p.d.f. can be expressed as

t-1 t-1

f(x. ,x
?
,...,x )

= n f(x.,x. .)/ n f(x.)
i c t

i=1
111

i=1
i

Such a process is time reversible then whenever the bivariate distribution is

symmetric. Thus, the PBAR process is time-reversible.

Indeed, the time reversed process is yiven by

x
t

- i - u
;
(i - w;w

where {U' } and {WM have exactly the same properties as {U.} and {W.}

respectively defined by (3).

3.2. For the NBAR process, writing Y = V(l-WX) and proceeding as for the PBAR

process yields

n n 3-1 m(l-y,x) ,
i o i

f
Y,X (y ' x)

= iTI / s [ xy - (l-xJsl^P^d-y-sJ^P^ds (10)

where C_ = B(a,S)B(p,o-p)B(a,8-p) .

Again, the change of variable t = (l-x)s/(l-y) shows that the bivariate

p.d.f. is symmetric about y = x and the NBAR process is time-reversible.

The structure of the density, however, is a little more complex than for the

PBAR process. The upper limit of the integral in (10) is m(l-y, x) = 1 - y



if x + y > 1 . Thus, the form of f~ depends upon which side of the line

x + y = 1 we are on.

Define

9i(y,x) x + y < 1 ,

f
Y x (y»

x )
= (ID

9
2
(y,x) x + y > 1 .

From symmetry about y = x , we know that g,(y,x) = g,(x,y) and

9 2
(y» x )

=
9p( x >.y) * °^ more immedlate interest is the relationship between

g and g~ . A further change of variable in the integral in (10) yields the

following result. Using an obvious notation to denote dependence upon the

parameters of the marginal distribution:

g^l-y, 1-x; a, 3) = g
2
(y, x; 3, a) (12)

Using (12) to evaluate f" in both the triangular regions induced by the line

x + y = 1 yields

f~
x
(l-y,l-x; ot,e) = fy

x
(y,x; 6, a) (13)

This result (13) is an obvious two-dimensional analogue of the relationship

specified by equation (1), viz. fw(l-x; a, 3)
= 'M*' e ' a ^ *

Further, by the symmetry about y = x , equation (12) yields

g
1
(l-x, 1-y; a,e) = g

2
(y,x; B, a ) (14)

which specifies the nature of the relationship between g. and g„ across

the line x + y = 1 . In particular, note that when a = 3 the bivariate

p.d.f. is symmetric about both y = x and x + y = 1 .
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4. MOMENTS

Although it is difficult to obtain the p.d.f.s in an explicit form, much

information can be derived directly from the structural relationships, (3) and

(5). This is also true of the conditional distributions. In both cases, the

conditional expectation is linear. For the PBAR process, using (3) yields

E(X
t+1

|X
t

= x) = [(a+B-p-ae) + P0x]/a( a+3-p) , (15)

and for the NBAR process, (5) yields

E(X
t+1

|X
t

= x) = (a-px)/(o+B-p) . (15a)

Further, the time-reversibility of the processes ensures that the inverse

regressions are identical to (15) and (15a), i.e. E( X. | X. , = x) = E(X.
+ , |X. = x)

In both cases the conditional variances are quadratic and of the form

2 2 2 2 2 2 2
var(X J., 1 |X. = x) = a (1-mx) + (a +m )a,,x where a, ,

= var(W) and m and
t+1 ' t w W W

2
a are the mean and variance of U for PBAR and of V for NBAR.

Higher order moments are important in the identification of non-standard

time-series models and we note here two of particular interest. The first is

Cp,(k) = Cov(X., X. ,)a. For time reversible processes C
?
,(k) = C«,(-k) .

i/

For both the PBAR and NBAR processes, C
?
,(k) = m~p , k = 0,1,2,..., where

m~ is the third moment of X about its mean, y say, and these are given

in Section 2.1

.

Another moment of particular value in residual analysis is based on the

residuals from minimum mean square error prediction, i.e.

R
t

= (X. - u) - p(X. , - u) • Such residuals are uncorrelated for PBAR and

2
NBAR processes. Of more interest is the behaviour of Cov(R

?
, R , ) which

is useful in distinguishing between constant and random coefficient models.

For both the PBAR and NBAR processes
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2 k
m
3
(l-p)(l- p ) p ,

Cov(fV R
t-k )

=
°

m
3
(l+2p)(l- P )\

k = 1,2,..

k = -1,-2,

k = .

Further details and discussion of the usefulness of these moments may be found

in Lewis and Lawrance (1983b).

5. EXAMPLES

To illustrate the nature of the bivariate p.d.f. the functions g from

(9) and g, and g ?
from (11) are evaluated explicitly for a few specific

cases below.

PBAR

PI: a = 3 = 2; p = 1 i .e. p = 1/3,

g(y,x) = 12y(l-x)

P2: a = 3, 6 = 2; p = 1 i.e. p = 1/6,

g(y,x) = 72(l-x)[(l-x)y(2-y)-2(l-yUn(l-y)-2y(2-x-y)]

P3: a = 4, 3 = 2; p = 3 i.e. p = 1/2,

g(y,x) = 120(l-x)[l+2(l-y)*n(l-y) - {l-yfl

NBAR

Nl: a - 2; p = 1

g
1
(y,x

g
2
(y» x

N2: a=3,B=2;p=

9
2
(y,x

N3: a = 5, B = 13/3; p = 4 i.e. p : 3/4

g 2
(y,*

g^y.x

.e. p = - 1/3,

12xy

= 12(l-x)(l-y)

1 i.e. p = - 1/4

,,2 2
= 36x y

= 36(l-x)(l-y)(x+y + xy-1)

= A(l-x)
10/3

(l-y)
10/3

=
g
2
(y,x) - B(l-x-y)

1/3
{3(l-y)

3
(l-x)

3
- i( l-y)

2
( l-x)

2
( 1-x-y)

+ y(l-y)(l-x)(l-x-y)
2

- ^(l-x-y)
3

}
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where A = 3532100/2187 = 1615.04, and B = 140A/283 = 798.96.

Plots of the contours and the surface of PI are displayed in Figures 1(a) and

(b). If they are rotated through 90° about the point (0.5, 0.5) the corre-

sponding plots are obtained for Nl . Contour plots are displayed for P2 and N2

in Figures 2 and 3.

Figures 1 ,2,3

The most remarkable feature of these distributions is the appearance of a

ridge in the surface of PI (and so Nl) but not in P2 or N2. The ridge is due

to the fact that both densities have two forms as described by equations (9)

and (11). Thus the ridge, if it occurs, corresponds to the line y = x for

PBAR p.d.f.s and x + y = 1 for NBAR's. From the definition, the p.d.f.s will

be continuous but tnei r derivatives need not be so. Any points of disconti-

nuity occur on these two lines. To determine the general conditions for

occurrence of a ridge we can examine the behaviour of the derivatives of the

p.d.f.s on both sides of the two lines. This procedure yields the following

results. For the PBAR density (8) there is no ridge provided p < (a-1) .

Using (4), we may deduce that no ridge occurs provided p satisfies

<_ p < 0(o-l)/a(0+l) . (16)

For the NBAR density (10) there is no ridge provided p < (a+3-2)/2 i.e.

provided

> p > [2 - (a+B)]/(2+cd-8) . (17)

These conditions (16) and (17) are violated by P3 and N3 respectively and so

both densities have a ridge. These are illustrated in the surface plots of

P3 and N3 displayed in Figures 4 and 5, respectively.

Figures 4 ,5



13

6. THE UNIFORM PROCESS

A bivariate distribution of particular interest is that with Uniform

marginals. Apart from the natural interest in modelling data from such a dis-

tribution it has an important application in simulation. By using the inverse

distribution function transformation of the Uniforms bivariate distributions

with any other marginals can be obtained. This is an important approach to

the generation of pairs of dependent random variables.

Some recent development of Bivariate Uniform distributions appears in the

papers by Barnett (1980) and Lewis and Lawrance (1983a). The former exhibits

several different Bivariate Uniform distributions but they are generally

complex, have limited correlation, and require distribution function trans-

formations to obtain the Uniforms. The latter work gives several procedures

for generating a pair of dependent Uniforms from a random coefficient regres-

sion on independent Uniforms. The procedures are simple and the entire range

of correlation can be attained. However, to achieve this breadth the correla-

tions are usually complex functions of two parameters.

The Bivariate Uniform with p.d.f.s given by (8) and (10) is particularly

useful in this kind of application. The entire range of correlation [-1, 1] is

available to the Uniforms and so the entire possible range will be available

to the transformed variates. Further, the correlation is a simple function of

a single parameter, i.e. p = ± p/(2-p) , (0 <_ p <_ 1) and so any desired cor-

relation is easily achieved. Finally, the generation of the desired pair is

straightforward involving only the additional generation of two independent

Beta r.v.s.

Since the Bivariate Uniform corresponds to (8) and (10) with a = e = 1

considerable simplification is possible. In this case,

fv y(y»x) = f v v(l-y» x ) and so on^ f is considered here. Making a suit-

able change of variable in the integral yields a more useful expression for

the density given by (9), viz.
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B(p,l-p)xp (l-y) p xu yj

The density has a line singularity on y = x as can be seen from the contour

and surface plots shown in Figure 6 for the case p = 1/2 .

Figure 6

7. RELATIONSHIP WITH THE DIRICHELET DISTRIBUTION

The best-known "Bivariate Beta" distribution is the Dirichelet distrib-

ution. It is described in detail by Johnson and Kotz (1972). It is defined

not on the Unit square as are the densities given by (8) and (10) but on the

Unit simplex, i.e. {(x,y): 0<x,y<l,x+y<l}. As such it plays a

natural role as the joint distribution of two proportions from a single popu-

lation. It seems to be generally regarded as a Bivariate Beta because both

the marginal and conditional distributions are Beta. The joint p.d.f. in the

case of identical Be(a,B) marginals is

f(u ^ _ ,r(g+B) . a-1 o-l n ^8-a-l
f(y

>
x)

" r(o)r(a)r(s-a)
x y (1 y~ x)

and the correlation between X and Y is p = - a/B (a < 3) . Note that p

here depends explicitly upon the parameters of marginal distribution and so is

fixed for any particular marginal distribution. Further, -a/B is the minimum

correlation attainable from the NBAR process. As noted, it is attained when

p = a and Y = V(l-X) where V is Be(a,B-a) and independent of X .

Thus, Y/(l-X) is independent of X , and symmetry ensures that X/(l-Y) is

independent of Y . This characterizes (X,Y) as having a Dirichelet distrib-

ution by a result of Darroch and Ratcliff (1971). Thus, we may view the

Dirichelet distribution as a limiting form of the NBAR process distribution,

as p ^ min(a,B) .
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8. EXTENSIONS

It is possible to extend the time-series models (3) and (5) to higher

orders of dependence. However, two simple and more immediate extensions lie

closer to the area of simulation and are noted here. The fact that the PBAR

and NBAR models yield simple but powerful methods of generating sequences of

correlated Beta r.v.s. has been emphasized. Such sequences are stationary so

that each Beta r.v. has the same distribution. An obvious extension is to the

generation of pairs of dependent Beta variates with different distribution.

This may be achieved in a variety of ways using (1) and (2) and (3) or (5) if

we wish.

A second simple generalization is to bounded intervals other than (U,l).

Since an alternative sample space is achieved by a linear transformation the

procedure is straightforward and all correlations are unaffected. Thus, sup-

pose we wish to develop a PBAR process for Be(a,B) r.v.s. defined on (a,b)

rather than (0,1). By considering the X. ' s transformed to Y.'s on (0,1)

and {Y } satisfying (3) we find that the PBAR for {X } is given by

X = b - U [b-a-W
t
(X

t
-a)] .
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Figure 1(b). Bivariate Beta PI. p=0.33. Surface Plot
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