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ABSTRACT

:

A single-product continuous review inventory problem is

formulated and solved. The chief virtue of the formulation is that

the probability distribution of lead times is general. It is found
that the optimal order size differs from the Wilson EOQ when holding
costs or deterioration rate (both are lumped into a single discount
rate) are large, and that it may even be a non-unique quantity. The
second (fast) shipment mode enters in the same manner as a stockout
cost.
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1. Background and Assumptions:

Sending cargo by air was a very expensive option until the end

of World War II, at which time the sudden availability of pilots and

surplus transport aircraft gave rise to costs that were low enough to

make air freight a reasonable alternative for certain products. Since

that time, the cost of air freight has fallen substantially relative

to the cost of surface freight. For example, the ratio "cost per ton

mile by air"/"cost per ton mile by rail" has fallen from about 20 in

1946 to about 6 in 1970. Introduction of the jumbo jets promises

further reductions; in fact, air freight is already cheaper than truck

freight on certain routes at certain times of day for certain products.

The result of this is that air freight has been growing at about 15%

per year for some time [5], which is explosive growth compared to the

economy or to surface transportation. Furthermore, air freight still

accounts for less than 1% of all domestic ton miles, which means that

it could very well continue to outgrow total freight for some time to

come.

Given the growth of the air freight industry and the expectation

of further reductions in relative costs, the interest of major shippers

in inventory models that contrast air freight and surface freight is

natural [2]. Most of these models are "uni-modal" in the sense that

the goal is to discover which mode results in the smallest (distribution

+ inventory + packaging + freight) cost, with the understanding that

the cheapest mode should be used more or less exclusively. In general,

air freight will overcome its cost handicap for products that are

sufficiently fragile or perishable or expensive.



The original goal of the research presented here was to

investigate a "bi-modal" inventory system, although this fact would

perhaps not be obvious to the reader who skipped this introduction.

By a "bi-modal" inventory system, we mean a system where a fast/expensive

and a slow/cheap mode are both used as a matter of course, with the

general idea being that the fast (air) mode is used only when the slow

(surface) one "breaks down", as it will do in statistically predictable

fashion. In the parlance of the trade, we are talking about "air express",

rather than "air freight".

The simplest way of modeling surface "breakdowns" is to treat the

surface lead times as independent random variables. There are two ob-

jections to the "independence" part, one practical and one theoretical.

The practical objection is that many things that cause surface lead

time delays are pervasive in nature, and thus affect several lead times

simultaneously. In particular, strikes and seasonal demand peaks cause

lead time randomness without necessarily permitting the order crossings

that are inevitable if lead times are independent. The theoretical

objection is that the independence assumption isn't even particularly

convenient, since the resulting order crossings make analysis difficult.

Nonetheless, the alternatives (multivariate lead time distributions or

queueing models for the orders, for example) seem to present practical

and theoretical difficulties that are even worse, so the lead times

will be assumed to be independent in what follows.

Several schemes for dealing with the order crossing problem in

continuous review systems have appeared. One is to assume that lead

times are exponentially distributed [3] , in which case a Markovian



analysis is possible. Another is to permit only unit orders, in which

case it can be shown that the lead time distribution does not affect

the ordering policy [4]. The assumption to be made here is somewhat

unconventional. We will assume that each unit ordered can satisfy only

one particular unit of demand. In a manufacturing context, this amounts

to assuming that parts are not interchangeable. In a sales context,

the corresponding assumption is that each item has been "colored" to

suit the needs of a particular customer. The effect of the assumption

is to decouple the orders so that it becomes immaterial whether they

cross or not. Our results will apply rigorously only to such systems.

If applied to conventional systems with interchangeable parts, errors

will result to the extent that orders are likely to cross. The cost

derived here will then constitute an upper bound on actual inventory

cost.

Air freight will be assumed to have lead time (see [1] for

an analysis with positive lead times) and set-up cost, so that the

only charge is tt per unit ordered. These assumptions definitely

favor air freight over surface freight, and should be borne in mind in

any applications. The effect of the assumptions is to make the cost of

air freight an effective "penalty cost" that is presumably smaller than

the penalty that would have to be paid if the unit actually failed to

arrive. It can be seen that the resulting model will be bi-modal only

by interpretation. An equally good description would be "a model in-

cluding penalty costs applicable to the problem of ordering non-inter-

changeable parts". In fact, the terminology used in the Analysis

section will be consistent with the idea of a penalty cost, since that



is the more elementary interpretation. However, the penalty cost that

we have in mind is not so large as to justify analytical simplifications

based on its size.

Some other assumptions are worthy of note. Demand is assumed

to be continuous at U units per unit time. All carrying costs are

assumed to be lumped into the discount rate, so that there will be no

cost term, for example, that is proportional to average inventory on

hand. The surface lead time is assumed to be non-negative with a

finite mean.

Goals: We want to find a means for determining the optimal

surface order quantity (Q) and the optimal amount of time (t) that

an order should be placed before the first unit in it is needed. In

addition, we want to determine conditions on the parameters of the

problem and the distribution function of surface lead times F(«) such

that

1) It is cheaper to pay the penalty than to order the unit

(this would correspond to pure air freight in the bi-modal

interpretation). See Section 3.

2) The optimal coefficient of tt in the formula for total

discounted cost is a discontinuous function of tt (the

coefficient is air freight usage in the bi-modal inter-

pretation). See Section 4.

2. Analysis:

Imagine that a certain product is to be manufactured at the

constant rate U, with each unit having a serial number and requiring

a similarly numbered part from a supplier. It is desired to construct



an ordering scheme for obtaining parts from the supplier that minimizes

the present value of the total cost of supply, where said cost includes

a charge of A + CQ when an order of size Q > is made, discounted

to the time when the order is made, and a charge of tt for every unit

produced without the subject part, discounted to the time when the

deficient unit is produced. The parts are not interchangeable; a part

that arrives late cannot be used on a unit with a different serial

number. We assume U, C, tt > 0, and A ^ 0.

Production starts at time 0, although it is possible to place

orders in negative time. The lead times for all orders are independent,

non-negative random variables with a common C.D.F. F(*) that is

possibly defective in the sense that we only require lim F(t) =

F(») £ 1.

Let

V = minimum expected total cost of supply discounted

to time 0, given that every part is ordered.

exp(-ax) = discount factor at time t.

-t = time when first order is placed,

q = quantity of first order, in time units.

c(t,q) = expected cost of first order, including

penalties

.

We require q > and t ^ 0. Since the total cost of supply
oo

when nothing is ever ordered is / ttU exp(-at)dt = irU/a = V^, we

will also restrict our attention to those cases where V £ V .



We have

00 / min(u-t,q) \

c(t,q) = exp(at)(A+CUq) + j<
J

(tU exp(-av)dv>d F(u)

t ( ) (1)

+ 7iU{(l-exp(-oq))/a}(l-F(»))

The first term of (1) is the ordering cost, the second term is the

expected penalty for being out of stock- for a length of time that is

at most q, and the third term is the penalty for loss of the order

multiplied by the probability of loss. It will be convenient to change

the form of the second term (call it I) through integration by parts.

Let g(v) = ttU exp(-av) and h(u) = min(u-t,q). Then we have

-h(u) . h(u)

(fg(v)dv(dF(u) = F(iu)fg(v)dv - |F(u)h ? (u)g(h(u))du (2)

t
t

tt (0

Since h(t) = 0, h(°°) = q, and h'(u) = for u > t + q, this is

q t+q

I = f(co) fg(v)dv - f F(u)g(u-t)du, (3)

t
t+q

a
(l-exp(-aq))F(°°) - a / F(u)exp(-a(u-t))du (4)

t

The total discounted cost V is the sum of c(t,q) plus the

discounted cost of ordering all parts except for the first q. The

latter quantity is V occurring at time q, so that V exp(-aq) is

the present value, and V must satisfy

V = inf (c(t,q) + V exp(-aq)} (5)

t,q

If we make the substitutions x = aq , y = at, G(v) = F(v/a) , and

substitute (1) and (4) in (5) , we have



V= inf|exp(y)(A + — x) + —(l-exp(-x) - / G(v)exp(y-v)dv)
x,y( a a j

)

y
(6)

+ V exp(-x)}

Let a = oiA/ttU, 6 = 1- V/V
Q

, and r = C/ir. If V is subtracted

from both sides of (6) , and if the result is multiplied by a/nH = 1/V
n ,

then (6) becomes

= inf |exp(y)(a+rx) + 6 (l-exp(-x) ) -
J

G(v) exp(y-v)dv> (7)

x,y( y )

Multiplying both sides by (-1), factoring out exp(y), and using

basic properties of the exponential, we arrive at

= sup exp(y)M g(v,r,6)dv - a> , (8)

*>y ( y )

where g(v,r,5) = (G(v)-6)exp(-v)-r (9)

We are looking for solutions of (8) with ^ 6 < 1, since

< V £ V . If 6^0, then G(v) - 6 £ 1, and it follows that

g(v,r,6) < for v > log(l/r) . Also, g(v,r,6) < for v < 0, since

G(v) = for v < 0. We can conclude that sup can be replaced
x,y

by max. Since exp(y) is bounded between positive numbers for

x,y
£ y £ log(l/r) , the bracketed factor in (8) must actually be 0,

i

and we have the final form of the basic equation

a = max| /g(v,r,6)dv> (10)

x >y I y )

Let r e max G(v)exp(-v). Then g(v,r,0) £ for all v if

r ^ r, and hence g(v,r,6) < for all v if r > r and 6^0,

since g(v,r,6) is strictly decreasing in 6 and r. It follows



that there is no solution of (10) with 6^0 if r > r, even if

a = 0. The interpretation of this result is that the part should not

be supplied at all when c/tt = r > r, even if the cost of ordering

is 0.

Let a(r,6) be the right hand side of (10). As long as r £ r

and £ 6 < 1, the function g(v,r,5) will have a maximum at some

finite v for which G(v) ^ 6. This maximum value will be a continuous,

strictly decreasing function of 6 (see lemma in Section 7) that is posi-

tive for 6=0 and negative for 6 sufficiently close to 1. There

is, therefore, a unique number 6- such that max g(v,r,6 ) = 0. Since
u y U

g(v,r,l-r) = (G(v)-l)exp(-v)-r(l-exp(-v)) < for all v, 6 < 1 - r.

Evidently, a(r,6_) = 0. We can now once again apply the lemma, with

S = [0,6 ), to conclude that a(r,6) is continuous and strictly

decreasing in 6. It follows that the equation a(r,6) = a will have

a unique solution 6(a) as long as = a(r,6 n ) < a £ a(r,0). This

solution represents the normalized total cost of supply. The optimal

policy (not necessarily unique) can be recovered from any (x,y) pair

that is optimizing in (10) when 6 = 6(a). If a > a(r,0) , there is

no non-negative solution for 6 , which means that the part should not

be supplied.

The equation a(r,6) = does not have a unique solution for

6, nor is there a maximizing, positive x. This simply indicates that

the optimal order size is when there is no ordering cost; the only

questions are how far ahead of need each part should be ordered, and

what the resultant cost is. When the ordering cost is 0, the cost

per unit ordered is c exp(y) + 7r(l-G(y)). If this is minimized and



multiplied by U/a, the result is the total discounted cost of supply:

V = (iTu7a)miri(r exp(y) + (l-G(y))). By proceeding in the manner used
y

when a > 0, with 6=1- V/V_, this can be reduced to = max g(y,r,6),
U

y

the only solution of which is 6 = 6_. In other words, 6
n

is the

normalized cost when a = 0, and the optimal normalized lead time is

any maximizing y.

Intuitively, the function 6(a) should be such that lim
a-K)

6(a) = 6 . To prove this, we first note that 6(a) is decreasing on

[0,a(r,0)], with 6(a) < 6 , so that lim 6(a) = 6(0) exists.
a-*0

Furthermore, we must have max g(v,r,6(0)) ^ 0, since otherwise we
v

would have a(r,6(a)) > a for "a" sufficiently small. But always

max g(v,r,6(a)) > 0, so we must have lim max g(v,r,6(a)) =

v a+0 v

max g(v,r,6(0)) ^ 0. It follows that max g(v,r,6(0)) = 0, and,
v v

therefore, that 6(0) = 6 .

3. A Graphical Method:

We can now describe the following graphical method for deter-

mining Q and t.

1) Construct a plot of G(v)exp(-v), where G(v) -

F(v/a) . This is illustrated in Figure 1 on p. 11 for a case

where the lead time is either .6 or 1.2 (50/50) and

a = 1. This will be referred to as the Main Curve.

2) Compute r = C/tt and r = max G(v)exp(-v). If
v

r ^ r, the part should not be supplied, and V = V_ =

TTU/a.

3) If the maximizing v is much less than 1.0, let
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Q = yjlk/aCU = Wilson EOQ , and choose t to minimize

total discounted cost (see Section 5). Otherwise,

go on to 4.

4) Construct a cutout of the exponential curve

exp(-v) . The vertical scale is technically im-

material, but subsequent computations will be aided

if exp(-O) corresponds to about .5 on the

G(v)exp(-v) curve.

5) Construct a horizontal "reference line" on the

same plot as the Main Curve at height r (see

Figure 1) . Compute a = aA/irU.

6) Slide the cutout along the reference line

until the area above the difference between the

Main Curve and the exponential edge of the cutout

over some interval [y,x+y] is "a". These two

points y and x + y will be intersections of the

Main Curve with the exponential edge. They will

normally be unique, although "a" has been chosen

in Figure 1 to be the only value where they are not

unique; either [.6, 1.99] or [1.2, 1.99] will

work if "a" is the area shaded in Figure 1.

If "a" is so large that even sliding the

cutout "all the way to the left" (this would make

the exponential edge agree with the reference line)

does not produce a large enough area, then the part

should not be supplied.
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7) The optimal variables are t - y/a and Q = xU/a.

If V is desired, it can be obtained from the facts

that r + 5 is the intersection of the exponential

edge with the vertical axis, and V = Vn (l-6)

.

4. Nice Distributions and the Question of Continuity:

We now return to a question posed earlier: Under what

circumstances can we expect the optimal coefficient of tt in the

expression for total discounted cost to be a continuous function of

tt? The coefficient of tt after (6) is solved for V is (U/a) f (x,y)
,

where
y+x

J G(v)e"
V
dv

f (x,y) = 1 - -~k (11)

f e"vdv

y

Note that f(x,y) =0 or 1 if G(v) is 1 or throughout the

interval of integration, which corresponds to no penalty if the order

is bound to arrive before need, and maximal penalty if the order will

certainly not arrive in the interval of need. In general, f(x,y) is

the fraction of the maximum penalty that is paid, properly discounted.

With the other parameters fixed, x and y are functions of

tt, and our question is "Can we expect f (x(tt) ,y (tt) ) to be a continuous

function of tt?". In general, the answer is "no". An example is shown

in Figure 1, which is drawn for a particular value of tt (call it tt

whatever it is) for which (x,y) is not unique. If the first alternate

interval is used, f(x,y) = 0, since G(v) = 1 throughout the interval.

If the second alternate interval is used, then f(x,y) > (the order has

a 50/50 chance of arriving on time). If tt = tt , only the first alternate

interval is optimal (the quantity of air freight decreases with its cost)

,
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and if tt = tt , only the second alternate interval is optimal. This

represents a discontinuity at tt-.

It should be evident that a discontinuity such as the one at

tt could not have occurred if the Main Curve of Figure 1 had been so

constructed that there could be no more than 2 intersections with the

exponential edge, no matter how the edge is oriented. Distribution

functions F(«) with this property we will term "nice", since they

correspond to situations where (x,y) is readily computed and continuous

in the parameters. Analytically, the requirement is that the equation

g(v,r,6) e (G(v)-6) exp(-v) - r = should have no more than 2 roots

v for any r>0, 0^6 <1, and a > 0, which is equivalent to

requiring the same thing of the equation f(t,r,6) = (F(t)-6) exp(-at)

- r = 0, where t = v/a.

If F(*) is to be nice, it is evidently necessary that the

function F(t)exp(-at) be unimodal (using the word in its mathematical

sense) for all a, since otherwise more than two roots can be found for

some a and r > and 6=0. If we except cases where the lead time

is actually deterministic, it follows that

No discrete distribution of lead times is nice .

On the other hand, suppose that F(*) actually has a density

function F'(t) = — F(t) , except possibly for a defect at t = °°, and

that there are at least four distinct roots of f(t,r,6) = for some

(r,5,a). It follows that h(t) = f (t,r , 6) exp(at) also has at least

four roots (the same ones) , and that there are consequently at least

three distinct roots of h'(t) = 0. Since h'(t) = F'(t) - ar exp(at),

this is the same as saying that F '(t) exp(-at) = otr at three distinct
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places. This is impossible if the function F'(t) exp (-at) is unimodal

for all a, so that the assumption that F'(t) exp(-at) is unimodal for

all a is sufficient to guarantee that there is no (r,5,a) for which

f(t,r,6) has at least four roots. Furthermore, if there are exactly

three roots for some (r,6,a) then one of these roots must be a point

of tangency, since f(t,r,6) is negative for t and for t suf-

ficiently large. It follows that there will be at least four roots

either for (r-K:,6,a) or (r-6,6,a), where € is a small positive

number. We have proved that three roots are essentially the same as

four roots, and consequently that

F(*) is nice if it is absolutely continuous except

for a possible defect at t = °°, and if F' (t) exp(-ott)

is unimodal for all a .

It follows easily from this that

All Gamma, Beta, Normal, and Uniform distributions

of lead times are nice .

Finally, consider a situation where F(*) is absolutely continuous

and nice, but where "accidents" happen in a Poisson process with rate A;

if an accident happens while the shipment is in transit, then the shipment

does not arrive. The new lead time is now defective, with the p.d.f. of

the continuous part being (F' (t)) exp (-At) . This distribution will still

be nice as long as F(*) is. In other words, the niceness property is

robust in the face of Poisson- type accidents.

To conclude this discussion of continuity, we note that there will

always be a discontinuity, even for nice lead time distributions, when

tt becomes so small that the penalty should be paid (only the fast mode
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should be used) for all parts. The critical value of tt satisfies

the equation a = a(r,0).

5. Robustness of the Wilson EOQ:

The Wilson EOQ has been shown to be optimal or near optimal in

many circumstances other than those for which it was originally derived.

The present problem provides another example of this phenomenon. The

theorem below shows that the Wilson EOQ is optimal for small a, pro-

vided that the lead times have a finite mean when finite.

Let 1 - F(°°) be the defect in the distribution of lead times.

Since every part will be lost with probability 1 - F(°°) , one is

naturally led to identify C' = C + 7t(1-F(°°)) as the cost per part;

indeed, it is clear from the outset that the average rate of spending

will approach C'U in our model as a approaches 0, since the set-

up cost will become negligible as the order size increases. Since the

effective average rate of spending is also aV, we should expect to

find lim (aV-C'U) = (the statement is somewhat stronger in the

a-K)

theorem below) . But it is not clear whether q should be asymptotically

q = v/2A/aCU, or whether C should be replaced by C in the EOQ

formula. It will turn out that C should not be replaced by C.

Theorem: Let c(t,q) be as given by (1), let V be as given by (5),
oo

and let q = Jlk/aCH. Assume C < u, /[F(°°) - F(t)]dt < °° (this is
w J

Q

the same as assuming that the mean lead time is finite except for the

defect), and A > 0. Then lim (aV-C'U) /J^ = lim (aV-C'U)/^ ^ACU

,

a-H) a->0

where V is identical to V except that q = q .r w
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Proof: Since lim r = F(°°) , and since r < F(<») if and only C' < tt,

ar*Q

we will have V = min c(t ,q) /(l-exp(-aq) ) and V = min c(t,q )/
w

t,q t

(l-exp(-aq )) when a is small enough; that is, the part will be
w

supplied. From (1), since min(u-t,q) £ q, we have

exp(at)(A+CUq) + (irU/a) (1-exp (-aq) ) (1-F(°°) ) <: c(t,q) <:

(ID

exp(at)(A+CUq) + (TrU/a) (1-exp (-aq) ) (l-F(t))

From the second inequality in (11) ,

A+CUq
aV <: a exp(at) - ——r- + 7rU(l-F(t)) (12)

1-exp (-aq )

Subtracting C'U from both sides and dividing by VcT, we get

(aV'-C'U)//^^ X + Y, where

^(A+CUq^
X = 6XpCat)

(1-exp (-aq )) " CU/V a
'

and
w

Y = 7rU(F(-)-F(t))/
N
/o~

Let t = 6 A/a, where € > 0. It follows from the finite mean assumption

that lim Y = 0. Let q = K/yfa. Then (after applying L'Hospital's
a-K)

Rule) lim X = A/K + CUK/2 + €CU, which takes on its minimum value
a+0

y/lkQM + € CU when K = yJlk/CU. Since € is arbitrary, we have shown

that lim (aV'-C'U) i/cT^ ^ACII, and that C should not be replaced
a-K)

by C' in the formula for the Wilson EOQ.

To complete the proof, we use the left hand inequality in (11),

noting that exp(at) ^ 1, to obtain

V^ min .

A+C
^
q

r- + (7TU/a)(l-F(«>)) e V
t

q=>0
^xpC"" "!) L
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dV
LThe derivative will be at the minimizing q; solving -— =0, we ob-

dq

2tain (exp(aq)-l-aq)/a = A/CU. It follows that lim a q = 2A/CU; i.e.,
a->0

lim q/q =1. It is now simply a matter of repeating arguments used
a+0

W

earlier to conclude that lim (aV -C 'U) /y/a = ^ACU . But V £ V£ V';
Oi-J Li

so the theorem follows.

Example 1: In order to test exactly how small a has to be before the

Wilson EOQ is a good approximation, we will work an example where

a = .2 per year, the distribution of lead times is normal with mean

.2 year and standard deviation .1 year, and r = c/tt = .4. This

leads to the Main Curve and Reference Line shown in Figure 2 on p. 18.

The exponential edge in Figure 2 has been drawn arbitrarily, with "a"

being specified implicitly. Using a planimeter, the area (dimen-

sionless) between the Main Curve and the Exponential Edge is found to

be a = 0.337, with the associated x and y being .545 and .063,

respectively. The quantity aq is the Wilson EOQ in dimensionless
w

form, and can be compared with x. In this problem, aq = yjla/x = .580,

This is less than 10% too large, and the percentage difference in total

costs would be much smaller.

Given the fact that optima in inventory problems of this sort

tend to be broad, and also the fact that the variable t is still

available for optimization, there would seem to be little danger in

using the Wilson EOQ in problems where a < .2 per year.

Example 2: Suppose that a = 2 and that the lead time is either .3

or .6 years, so that Figure 1 applies. The shaded area a is ,444

in this case, and the resulting Wilson EOQ is aq =2.9. On the other
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hand, x can be either .8 (first alternate interval) or 1.4 (second

alternate interval) . The Wilson EOQ is much larger than either of the

optimal order quantities,

6. Summary: The results that we have obtained are of only marginal

practical importance, mainly on account of the fact that lead times in

most practical problems tend to be much smaller than the reciprocal of

the discount rate. Possible exceptions to this would be in problems

where the discount rate is made artificially large to account for such

things as product deterioration en route.

The principal contribution is conceptual: we have explored in

depth a particular inventory problem that was simple enough to remove

the need for making analytical approximations. We have discovered that

the optimal order quantity is potentially non-unique—a fact that is of

particular interest in the air freight interpretation. We have also

found a class of lead time distributions, including the commonly used

absolutely continuous distributions, for which this non-uniqueness is

impossible. Finally, we have shown that the Wilson EOQ is a good ap-

proximation to the optimal order quantity when the discount rate is

small,
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7. Lemma: Let f(u,v) be strictly decreasing and continuous in u

for each v, let S be an arbitrary set, and let S
v J u

be a possibly infinite interval of real numbers such that

g(u) = max f (u,v) is well defined for u € S . Then g(u)

v6sv
is strictly decreasing and continuous on S .

u

Proof: Let u„ = u
1
+ 6, where 6 > 0, and let v.. and v_

be maximizing for u and u_, respectively. Then g(u„) =

f(u
2
,v

2
) < f(u

1
,v

2
) <: f(u

1
,v

1
) = gCuj^) , so g(u) is strictly

decreasing. Also, g(u
2

> ^ f(u
2
,v

1
) = gCu^ + f(u

2
»v )

-

f(u ,v ), so lim g(u ) ^ g(u,), so g(u) is continuous.
6+0
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