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1 . Introduction .

In today's complex world an understanding of the impact of modelling

assumptions upon optimum military strategies derived from mathematical

models is essential for the determining of optimal solutions to complex

problems of international significance. In this paper we continue the

study of one of the authors on the effects of various modelling assumptions

on the structure of optimal tactical allocation policies by systematically

contrasting the solutions for a sequence of idealized models. These combat

models are too simple to be taken literally but should be interpreted as

indicating general principles to serve as hypotheses for subsequent higher

resolution studies of real world problems via computer simulation or field

experimentation

.

In previous papers [34], [35], [36], [37], [38] one of us has

studied the optimal control of deterministic Lanchester attrition processes.

A major result of this previous research was that optimal tactical alloca-

tion policies are quite sensitive to the precise nature of the combat

model adopted, even as to whether the tactical scenario lasts for a

specified period of time or terminates only when a predetermined "break-

point" has been reached. We have shown [36] that whether or not concentra-

tion of all fire on a single enemy target type is always the optimal fire

distribution policy depends on whether, for example, enemy target types

undergo a "square-law" or "linear-law" attrition process (see also [38]).

In the paper at hand, we examine the effects on the structure of the

optimal fire distribution policy of whether combat attrition is modelled

as a deterministic or a stochastic process. Although there has been a

continuing discussion among military operations analysts about the relative



merits of deterministic versus stochastic combat attrition models (in

particular, see [4], [9]), there apparently has been no systematic attempt

to contrast optimal military strategies derived from such different

modelling approaches.

In order to keep the impact of modelling assumptions on optimal

strategies in sharp focus and also for reasons of mathematical tractability

,

we consider a simple fire distribution problem for a homogeneous Y force

in Lanchester combat against heterogeneous X forces composed of two

types of weapon systems. Our research approach is to study the same

scenario (prescribed duration battle) using a deterministic combat attri-

tion model and also a stochastic one and then to compare the corresponding

optimal fire distribution policies.

The solution to the deterministic problem is obtained using modern

optimal control theory (see [8], [27]). As discussed in [37] arid [41],

the non-negativity restrictions on the force levels are state variable

inequality constraints (henceforth abbreviated as SVIC's) and require

special treatment (appropriate modification of the usual maximum principle )

when active (see Chapter 6 of [27], [40]). In this paper we shall treat

SVIC's by the method of Speyer and Bryson [32] (see also [19], [24]) of

adjoining an SVIC directly to the return functional with a (Lagrange)

multiplier (see [41]). Unlike the corresponding terminal control problem

studied in [34], however, this "solution" requires several computer assisted

computations for implementation.

The solution to the stocnastic problem is obtained using the well-

known dynamic programming approach to optimal stochastic control [13], [21],

In this paper we employ an equivalent statement of the Pontryagin maximum
principle [27] commonly used by engineers in the United States. There is a

minor sign difference (see p. 108 of [8]) between these versions.



[12]. The basic equations of optimality (the fundamental functional

equation for the optimal expected-value function (see [12])) are developed.

We derive analytic solutions to these equations for very small numbers of

combatants and thus obtain the optimal closed-loop control. As is the

case for the Lanchester stochastic process (see [9], [20]), a general

solution for arbitrary numbers of combatants has not been obtained for

the fundamental functional equation (actually a system of differential-

difference equations) , although solutions for specific (small) numbers of

combatants are readily obtained. Therefore, we have used finite-difference

methods to generate a numerical approximate solution.

The body of this paper is organized in the following fashion. First,

we review a few relevant facts about the Lanchester stochastic process.

Then we state the two optimal control problems that this paper compares.

The method of solving the deterministic problem is outlined. The basic

equations of optimality for the stochastic control problem are developed,

and obtaining an analytic solution to these equations is discussed. The

use of finite difference methods for generating a numerical solution is

described. Then we compare results obtained from the two models and dis-

cuss these results. The implications of these results for defense planners

and military operations analysts are pointed out.

? - The Lanchester Stochastic Process .

In 1914 in the British journ^' Engineering F. W. Lanchester [23]

postulated that under the conditio' of "modern warfare" combat between two

homogeneous forces could be described by the equations

See [45] for a discussion of the assumptions inherent :'.n (1). A further
discussion of Lanchester-type equations of warfare can be found in [39].

Further references on determinis : . Lanchester formulations can be found

there [39] or in [11].



dx
dt

-ay,

where a,b are commonly referred to as the Lanchester attrition-rate

coefficients and x(t) ,y(t) are force levels. During World War II,

B. Koopman suggested a reformulation of such a model in stochastic form

[25] . Subsequent work, on stochastic models of combat attrition has been

by R. Snow [31], R. Brown [6], [7], G. Weiss [44], D. Smith [30], and

G. Clark [9]. The stochastic process corresponding to a model like (1)

has been called the Lanchester stochastic process by B. Koopman [20].

Before considering the optimal stochastic control problem, it seems

appropriate for us to review a few results for the Lanchester stochastic

process. Consider combat between a homogeneous X force and a homogeneous

Y force. Let us model this combat as a continuous parameter Markov chain

with stationary transition probabilities (see pp. 188-189 of [26] for a

further discussion of terminology) . Let M(t) denote the (integer)

number of X combatants "alive" at time t after the battle begins, and

let N(t) denote the number of Y combatants. We denote the state proba-

bility by P(t,m,n), and thus

P(t,m,n) = Prob[M(t)=m,N(t)=n]

.

Making standard assumptions (see [5]), we find that the state probabilities

satisfy the following system of differential-difference equations

for 1 £ m a m and 1 £ n £ n„

Random variables are denoted by capital letters, while their realizations
are denoted by the corresponding lower case letters.

We adopt the convention that P(t,m,n) for either m > m_ or n > n .



^-(t,m,n) = P(t,m+l,n)A(m+l,n) + P(t,m l n+l)B(m,n+l)

-{A(m,n) + B(m,n)}P(t,m,n), (2)

where m (n~) is the number of X (Y) combatants at the beginning of

battle at t 0, i.e. M(t-O) = m with probability one; A(m,n) is

the rate of attrition of the X forces with A(0,n) * 0; and B(m,n)

is the rate of attrition of the Y forces with B(m,0) * 0. In other

words, we have

Prob
one X casualty in time . , *..

, <- A(m,n)At.
iterval from t to t + AtJ

'

J.nt

(Moreover, P(t,m,n) is, more precisely, the transition probability

M(t=0)=m"
P(t,m,n) = P(t,m,n;t=0,m ,n ) - Prob

|M(t)=m
|N(t)=n N(t=0)=n^ .)

Of course, the state space is discrete, i.e. m 0,1,...,m and

n = 0,1,..., n„. At state space boundaries, i.e. m = or n = 0,

equation (2) takes the form

^•(t,m,0) = P(t,nrt-l,0)A(m+l,0) + P(t ,m,l) B(m,l)

- P(t,m,0)A(m,0),

dP—(t,0,n) = P(t,0,n+l)B(0,n+l) + P (t ,l,n)A(l,n)

- P(t,0,n)B(0,n),

HP
j-(t,0,0) = P(t,l,0)A(l,0) + P(t,0,l)B(0,l). (3)
at

Initial conditions for (2) and (3) are

. 1 for -n - m , n = n ,

P(t=0,m,n) =
\ otherwise. (4)



Let us adopt the following terminology for the attrition rates

(and hence the process itself) . We say that we have a

(a) linear-law attrition process when

A(m,n) = amn,

B(m,n) = bmn, (5)

and (b) square-law attrition process when

A(m,n) 3m + an,

B(m,n) bm + an, (6)

where a, 8 may be referred to as operational loss rates.

Although it is well-known that (2) through (4) yield an exponential

solution (the Chapman-Kolmogorov equation expresses the semi-group property

of the state probabilities (see [20])) when A(m,n) and B(m,n) have

been specified (for example, by (6)), general solutions which apply for

all values of m_ and n„ have only been obtained to this system only

in a few special cases. In the special case when a + a - b + 3, Isbell

and Marlow [18] developed a general solution to (2) through (4) for a

square-law stochastic attrition process. Recently, Clark (see pp. 102-104

of [9]) developed the general solution to the linear-law stochastic

attrition process (i.e. A(m,n) and B(m,n) are given by (5)).

One reason why we have reviewed this material is to now point out

to the reader that a general solution to (2) through (4) only exists for

a linear-law attrition process and is very complex (see pp. 102-104 of [9]).

In considering the optimal control of the Lanchester stochastic (square-law)

process, we will encounter a similar system of equations for the optimal

expected-value function. Keeping in mind that a general solution has not

been obtained to the corresponding equations (2) through (4) for the state



probabilities of the square-law stochastic attrition process, the reader

will not be surprised to learn that we have not developed an analytic solu-

tion for the general case of these equations.

Additionally, using the above noted solutions for the Lanchester

stochastic process, Clark (following results in [25] and qualitative results

in [31]) made comparisons [9] (see also Chapter 11 of [4]) of the average

force levels in the stochastic process (denoted as m(t) and n(t)) and

the corresponding force levels x(t) and y(t) in the deterministic

formulation (such as (1)). Unlike the corresponding situation for the

Yule-Ferry linear birth process (see pp. 77-78 of [3] or pp. 156-159 of

[10]), there is a bias (due to "boundary effects") in the dynamical behavior

of x(t) and y(t) as compared with m(t) and n(t) for the same values

of a and b. It turns out that m(t) lies above x(t) , and the amount

of separation grows over time.

The above is a major result of Clark's careful investigation in

which several numerical examples are given to prove such points. He con-

cludes that (see p. 11-19 of [4]) "the deterministic model would have

difficulty approximating a stochastic simulation" with respect to the time

history of force levels. Clark's solution to the stochastic linear-law

process was important in making such a comparison. This fact that the

average of the Lanchester stochastic process does not behave identically

to the corresponding force levels x(t) and y(t) computed according to

the corresponding deterministic model has motivated the paper at hand.



3. The Optimal Control Problems .

In this section we state the two optimal control problems that are

considered in this paper. The deterministic optimal control problem

considered is

maximize{ry(t
f ) - px (t

f ) - qx_(t
f )} with t specified,

D
(t)

dx
l

subject to: -^- - -^a^y

»

dx
2— = -(l-*

D
)a

2
y,

dt '
"b

l
X
l

"W (7)

X;L ,x2
,y * 0, * *D

* 1, and t
f
£ t^,

with initial conditions

x
1
(t-0) = x°, x

2
(t-0) = x°, y(t=0) » yQ ,

where all symbols are explained in the Appendix. In this problem x ,x_,

and y are called state variables, while
<J>

is called a control (or

decision) variable. A constraint such as x ^ is called a state

variable inequality constraint (SVIC) and requires special treatment (see

below)

.

The battle lasts for £ t £ t unless, of course, one side or
max

the other is annihilated before t . To be more precise, the battle
max

terminates under one of the three following circumstances:

(1) xl(tf ) = x
2
(t

f
) = and t

£
£ tMx ,

(2) y(t
f
) = and t

£
£ e^,

(3) h " U'



where t, denotes the time at which the battle ends. Upon further

analysis, it has been convenient to consider that there are eight "terminal

states," or "target sets." These are shown in Table I. The reader should

note that for S, through S_ the battle ends by the system (as described

by the three state variables x ,x. , and y) being driven to a prescribed

terminal state. For these terminal states, t
f

is undetermined when

t r < t , since it is then determined by entry to the terminal state,
f max ' ' '

and this depends upon the control used. For these cases a well-known

transversality condition must hold. The above problem (7) is called a

prescribed duration battle , since the battle lasts for a maximum duration

of t , i.e. t £ as t
max f max

The corresponding stochastic optimal control problem considered is

maximize E[rN(t
f
) - pM (t

f
) - qM_(t

f
)] with t

f
specified,

subject to: casualties occur randomly as a continuous
parameter Markov chain with stationary transition
probabilities corresponding to the deterministic
process (7)

,

(8)

M , ,M
2
,N ;> and « f £ 1,

where the random variables M (t) , M (t) , N(t) are force levels

(integers), E[»] denotes mathematical expectation, and all other symbols

are explained in the Appendix. In (8) <|>

q <J>
(t,m. ,m ,n) denotes a

closed-loop control (see [16]). For the deterministic problem (7) we

have not been precise about this point, since it is well-known that open-

loop control (e.g. <j»
= $ (t;x. ,x_,y )) and closed-loop control

(e.g. <j>
= k(t,x

1
,x ,y)) are equivalent and yield identical results in

trajectory and payoff [16]. For stochastic control problems this equiva-

lence is, of course, not true (see [12]).
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Table I. Definition of Terminal States for Deterministic

Optimal Control Problem (Prescribed Duration

Battle)

.

Sl : x
l(

t
f

) > 0, x
2
(t

f
) > 0, y(t

f
) > 0, t

f
- t^

S
2

: x
x
(t

f
) = Xl ( tl ) = 0, x

2
(t

f
) > 0, y(t

f
) > 0, t

f
- t

max

where t < t
f

S
3

: x
l(

t
f
) - x

l(
t
3

) > 0, x
2
(t

£
) = 0. y(t

f
) > 0, t

f
- t

max

where t« < t
f

S
4

: xl(tf ) > 0, x
2
(t

f
) > 0, y(t

f
)-0, t

f
st

max

S
5

: X
l
(t

f
) * X

l
(t

l
)

=
°» X

2
(t

f
) > °» y(t

f
)

=
°» t

f * 'max

where t^ < t
f

S
6

: xl(tf ) = x
l(

t
2

) > 0, x
2
(t

f
) - 0, y(t

f
) =0, t

f
£ t^

where t„ < t
f

S
?

: x
l(

t
f
) - Xl (tl)-- 0, x

2
(t

f
)=0, y(t

f
) > 0, t

£
* t^

where t < t

S
g

: x
l(

t
f

) = 0, x
2
(t

f
) = x

2
(t

4
) = 0, y(t

f
) > 0, tf * t^.

where t. < t,
4 f
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4 . Determination of an Optimal Policy for Deterministic Problem .

In this section we outline how an optimal policy (expressed as a

closed-loop control) may be determined for (7) . In order to keep the

length of the paper at hand within reasonable limits we will only be able

to highlight the main points. Details which are available elsewhere in

the open literature will be omitted. In order to contain the length of

this paper the entire "solution" will not be given here.

4.1. Outline of Solution Procedure .

Before giving our solution algorithm, it seems appropriate to define

some terms . We have then

Definition 1: By an extremal path we mean a path on which the necessary

conditions of optimality are everywhere satisfied (we use

the work everywhere , since we take the class of admissible

controls to be the space of piecewise-continuous functions)

.

Definition 2: By an extremal control we mean the control used in order

that the system follow an extremal path.

Definition 3: By the domain of controllability for extremals to a given

terminal state we mean that subset of the initial state

space from which extremals lead to the terminal state.

Definition 4: By the synthesis of an extremal control we mean using the

basic necessary conditions of optimality to explicitly

determine the time history of an extremal control from

initial to terminal time as a function of initial conditions.

Complete results in a form suitable for numerical determination are to be

found in Appendix G of [43]. The "solution" occupies twenty pages in [43],
and this should explain why for the purposes of the paper at hand only

representative results are given.
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Our solution algorithm then is as follows:

(a) an extremal control law is developed from the maximum principle

(which must be modified when the trajectory lies on the boundary of

the state space) ; for Lanchester "square-law" attrition structures

the extremal control law in many cases depends only on relationships

between dual variables (marginal returns from destroying targets)

,

(b) for each terminal state an extremal control is synthesized by com-

bining a backwards integration of the adjoint system of differential

equations with the extremal control law and corner conditions,

(c) for each terminal state the domain of controllability for extremals

is determined by forwards integration of the state equations using

the synthesized extremal control from (b)

,

(d) the solution is determined at this point for regions of the initial

state space which are covered by only (part of) the domain of con-

trollability for extremals to one terminal state; one must also verify

that the entire initial state space has been accounted for, since

otherwise one may have overlooked some type of "singular" surface,

(e) if domains of controllability overlap so that for a point of the

initial state space contained in their intersection there is more

than one extremal leading to the terminal surface, then one computes

the return (or payoff) associated with each extremal; the optimal

trajectory is selected from the extremals by comparing these values.

The above solution algox _tnm is a refinement of the one presented

in [34]. Let us make a few remarks about the application of this procedure

to the prescrived duration bat:?.'- ?) For this problem we may think of

For this approach to work it is essential that an optimal policy exist for

(7). This has previously been established in [37], [41]. In this case
one of the extremals must be ar optimal trajectory.
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time as being an additional state variable. On the other hand, for the

Isbell-Marlow terminal control problem [34] time may be considered as being

a parameter and consequently was eliminated for the determinations of step

(c) above. In other words, for the Isbell-Marlow problem a domain of

controllability was determined by inequalities involving the three state

variables; for the prescribed duration battle (7) such a determination

involves the four variables t , x, , x_ , and y».
max 1' 2

For the prescribed duration battle we have not been able in all

cases to develop analytic expressions at step (c) in the above algorithm

as we did for the terminal control problem studied in [34]. Consequently,

we could not analytically accomplish steps (d) and (e) for the problem at

hand. We have, however, used computational methods to determine the optimal

control. We have expressed our "solution" (partially presented in the next

section) so that given a point P = (x-,x_,yn ) in the initial state space

and t , one can determine which terminal states are reached by extremals,
max

Thus, we can determine to which domains of controllability P belongs.

Then, using the extremal control, we can numerically compute the return

(or payoff) associated with each extremal and select the optimal policy

from among a finite number of possibilities. A computer program was written

in FORTRAN to do the above and computations performed on an IBM 360 computer.

4.2. Summary of Solution .

We have applied the solution procedure of Section 4.1 to develop

a "solution" in the sense discussed there. Without loss of generality we

assume that a b > a b , i.e. R > 1. There are two cases to be considered

(1) 6 > 1,

and (2) £ 6 < 1,

where 6 = a^p/Ca.q) .
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For Case (1): 6^1, the domains of controllability do not overlap

each other, and hence extremals extremals are unique. The extremal control

is thus the optimal control. The optimal policy, moreover, may be expressed

in a particularly simple form: always concentrate all fire on X
1

while

x. > 0. Further details on domains of controllability and "event" times

are to be found in Table II of [43].

For Case (2) : s* 6 < 1, some domains of controllability overlap

each other, and hence extremals are not unique (in the sense that from a

point in the initial state space the system may be steered along any one

of several extremals to various end states of battle). (See [41] for a

discussion of a similar case.) Thus, considerations "in the large" (i.e.

step (e) of the above solution procedure) are required to determine the

optimal policy. Unfortunately, explicit analytic expressions are not

readily obtainable as they were for the Isbell-Marlow terminal control

problem [34]. However, as discussed in Section 4.1 above, one can use the

information presented in Tables III of [43] (which is fifteen pages long)

to numerically determine an optimal fire distribution policy for any specific

set of model input parameter values. A representative sample of this informa-

tion is given in Table II.

In Case (2) the optimal fire distribution policy cannot be expressed

in the very simple form as in the first case. When Y wins in time less

than t (S_ for which the optimal policy is determined) , the optimal
max 7

fire distribution policy is precisely the same as when 6 k 1. However, for

all other cases (i.e. terminal states S 1 through S,) the extremal policy
1 o

is to finish the prescribed durf^ion battle by firing at X , regardless of

whether or not X has been annihilated. This differs from that when 6^1.

Thus, we see that force levels affect the optimal fire distribution policy.
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Table II. A Representative Part of the Solution

to the Prescribed Duration Battle for

& 6 < 1.

(Nonrestrictlve assumption: R > 1, i.e. a b > a b )

C
f * 'max

1 for Octet, where x,(r..) -
* 111

Extremal Control: ^(t) "

for t. < t £ t.

Domain of Controllability: a b y
2 > g 2 - (b_x_) 2

a
l
b
l
y * "* + ( R-1 )<b

2
x
2
)2

1 -li^iVo-^^V?^
t, - t. + — tanh \ > £ t
f 1 I—r— \ , o c- max

•a
2
b
2

b-x./R

where t - t (S ) - t (S ) is given by

(1) for a^y 2 > a 2

o
x.i_ tsvs - *' + ggl - v 2 »

/&T7 /IT7 y . - s

t, -

11 11 'o

(2) for a
1
b
1
y
2 < a 2

^
1 _jnr„ f

*?l 8 ' ^i yo

(3) for a^y 2 - s 2

t. - —— *n{r^-o4
1

v^bY *Vl'

NOTE: for £ 6 < r - /R(R-l) optimal paths also satisfy (equality

yielding a dispersal surface )

for £ x° < (b
2
x°)/(kb

1
)

u 2 „ 2 R J L o[z 2(R-l) + R] . . ol 2

alVo * Rs " ?iV- 2P
^ + b

2
X
2> '

where k is given by k - {z 2 - R(z-l) 2
}/ (2R)

.
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4.3. Development of Basic Necessary Conditions of Optimality .

We will use Speyer and Bryson's approach [32] of adjoining the

state variable constraint directly to the criterion functional with a

Lagrange multiplier. The Hamiltonian is given by (see also [19])

HCt.x.p,^) = -p-j^^y - P
2
(1 ~'f)

D
)a

2
y " P

3
(b

1
x
1
+b

2
x
2

) + n
1
(t)x

1
+ n

2
( t ) x

2
' ^

where

n.(t)

- for x. > 0,

;> for x = 0.

The adjoint system of differential equations for the dual variables is

3T " " ll^-E'O -V3-VO. do)

3T--!i^ t'i*£-V3-.Vt)
'

(11)

P3 3H * * *

IT = "
37

(t
^'£»*D )

= Vl P
l
+ (1

-*U
)a

2
P 2- (12)

Boundary conditions for the dual variables (also frequently called trans-

versality conditions) are discussed below. When t.. < t . the following
f max

transversality condition also holds

H(t=t
f
,x,p.O = 0. (13)

When x ,x > 0, the maximum principle yields the extremal control

law [34], [41]

/ 1 for v(t) > 0,

4>n (t) =
D

for v(t) < 0, (14)

Taylor apparently is the only person to apply these important results to

variational problems in operations research. See [41] for discussion of

previous applications.
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where v(t) = (-p )a - (-p )a . In [34] we showed that there are no

singular subarcs (see Chapter 8 in [8]) in the solution.

Without loss of generality, let us consider a constrained subarc

on which x. (t) for t- £ t £ t
f

(and x ,y > for t < t ) . Since
dx

l *
-7— = 0, the control is clearly

<t> n
(t) = for t £ t £ tf

. The require-

ment that — yields the following relationship between dual variables

on the constrained subarc

a
1
p
1
(t) - a

2
p
2
(t). (15)

The multiplier n, (t) is determined from the condition that t~{tt) = 0>
1 dt ^09

and this yields

n
l
(t) =

a ( a
1
b
1
-a

2
b
2
). (16)

The interpretation of ru (t) (see [41] for a further discussion) is the

rate of marginal return to Y for keeping x = 0. Thus, (intuitively)

Y tries to annihilate X only when it profits him to do so. Further-

more, the requirement that r\ (t) ^ when x = for a finite interval

of time yields that we must have

a
l
b
l * a

2
b 2* ('

17 ^

since it may be shown that p^(t) > for t < t
f

. The nonrestrictive

assumption that a b > a.b (i.e. R > 1) implies that it is nonoptimal

to have x = for a finite interval of time.

Furthermore, when the necessary conditions of optimality are expressed

in Speyer and Bryson's format [32] (see also [19]), the corner conditions

The development of (15) requires a slightly different argument when t = t

and y(t
f
) = 0. See [41] for a further discussion of this point.
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(see pp. 125-126 of [8]) take a particularly simple form for a first order

SVIC : the adjoint variables are continuous across all corners (both

interior to and on the boundary of the state space) . In other words

P(t") = p(t+), (18)~ c *- c

where t denotes the time just before the corner (i.e. a left-hand limit)

We also have that

H(t ,x(t ).P(0,**(t")) = H(t,x(t),p(t\/(t)). (19)C~C~C DC C"*C**CUC

On entry to a constrained subarc with X-. (t) = for t £ t £ t-, (19)

yields

a
1
P
1
(t

1
) = a

1
P
1
(t

1
) = a

2
p
2
(t

1
) = a^Ct^). (20)

Let us finally consider the boundary conditions for the dual

variables at t = t
f

. The nonrestrictive assumption that a..b > a b„

yields that no extremals lead to S
ft

. The three terminal states S , S
,

and S may be discussed collectively. In all three cases the length of

the battle is equal to t . Then, according to the results presented
^ max

in [42] , we have

for S , S , and S :

px
(t

f
) = -p + vv p

2
(t

f
) = -q + v

2
, P

3
(t

f
) = r > 0, (21)

where
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= for x
i
(t

f
) > 0,

I

1

(

unrestricted for x (t,) and x.(t) = (22)

\>. I k for x,(t c ) but x_,(t) > for t < t £ ,i f i f

for t. £ t £ t- with t. < t £ .

l f if
The latter condition that, for example, the multiplier v, is unrestricted

when the system is on a constrained subarc for a finite interval of time

is because the boundary of the state space is "absorbing" (i.e. the state

constraint x ^ essentially acts like a terminal equality constraint

as far as the determination of boundary conditions for the adjoint variables

[42]). If there were replacements in the model (7) so that the boundary

of the state space would not be "absorbing," then we would have v. £

for x. (t J = 0.
l f

For S., S r , and S, the duration of the battle t £ is determined
4 5 6 r

by the terminal equality constraint y(t,) » when t r < t so thatny
f f max

the transversality condition (13) yields p„(t.) = 0. When t c t ,J \ * * r3f f max

additional analysis is required, and this is discussed in Section 4.4

below. Then, again according to the results presented in [42], we have

for S. , S cl and S.

:

4 5 6

Pl (t
f
) - -p + \>v p

2
(t

f
) = -q + v

2
, p

3
(t

f
) == 0, (23)

where the multipliers v. for i = 1,2 are again given by (22).

For S
?

: x
;L

(t
f
) = *

2
(t

f
) " °. y(t

f
) > 0, t

f
£ t^, we have [8]

P
l
(t

f
}

= "P + V
l»

P
2
(t

f
)

= "q + V2' P
3
(t

f
)

= r > °» (24)

since t
f

is determined by the (equality) terminal constraints x (t,) =

and x (t
f

) = 0. Since these are equality constraints, the multipliers
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v and v are unrestricted in sign. Since t
f

is unspecified, the

*
transversality condition (13) with

<f>
(t

f
)

= yields that -p
9
(t

f
)a

?
y =

so that p„(t
f

) = and v„ » q. The condition (15) which, in particular,

holds at t = t
f

yields that p
1
(t

f
) « 0. Thus, we have

for S
7
[x

1
(t

f
) - before x

2
(t

f
) - 0, y(t

f
) 0]:

P
x
(t

f
) - 0, p

2
(t

f
) - 0, P

3
(t

f
) = r. (25)

4.4. Synthesis of Extremal Control .

For each terminal state, extremals may be synthesized by combining

the conditions which must hold on a constrained subarc and the extremal

control law (14) with a backwards integration of the adjoint equations (10)

,

(11) and (12) . The boundary conditions for the adjoint variables given

in Section 4.3 and the corner conditions (18) and (19) are used in this

backwards sweep process. It is convenient to use the switching function

v(t) = (-p )a - (-p )a in synthesizing extremals. Using (10) and (11),

we readily find that for t < t
f

^ = p
3
(t)(-a

1
b
1
+a

2
b
2
) < 0, (26)

since p„(t) > for t < t
f

.

Details in the synthesis of extremals are similar to those presented

in [34]-[38], [41], and [43], and hence they are omitted. The treatment

in [37] is most similar to the problem at hand. Details for <S k 1 and

for £ 6 < 1 are different.

There are two interesting aspects, moreover, that we encountered

in synthesizing extremals. These are

In some of these references the non-negativity of the force levels (i.e.

SVIC's) have been treated by means othex than Speyer and Bryson's approach
[8]. The basic principles of working backwards from the end, however, are
the same in all applications.
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(a) when s; 6 < 1 and a switch in the target type upon which all Y-

fire is concentrated occurs without the annihilation of a target type,

the switching time depends upon the initial force levels and possibly

the valuation of Y survivors, and

(b) when P = (x ,x
9 ,yn ) is such that when 6 < 1 an extremal leads

S S
to S. (i.e. we reach S. with a switch in tactics) with t £ (S.)

4 4 f 4

< t , we can possibly also steer the system to an end point with
max

y(t =t ) * without violating any necessary conditions of optimality

Let us first discuss the dependence of the non-annihilation switching

time on force levels and valuation of Y survivors. Such a switch in

fire distribution only happens for <5 < 1 . Let us compare the situations

for extremals leading to S
1

and S, . In both cases we have

/ 1 for £ t £ t - x ,

D<o
for t - t < t £ t , (27)

where x (t=t
f
—c.) > 0. It is convenient to introduce the "backwards time"

t defined by x = t
f

- t. Then when 6 < 1, we have ^(t) = for

£ t ^ x, where x, denotes the backwards time of the first switch in

fire distribution. For S. [x. (t,) > 0, x (t..) > 0, y(t,) =0, t, < t ],
4 j. x L t I i max

it may be shown using (10)-(12), (14), (23), and (26) that"

Tl (S,) = —-

—

cosh^z, (28)

where z = (R-6)/(R-l). For S^x, (tj : 0, x (tj > 0, y(t f ) = 0,

t„ = t 1 , it may be shown that
f max

Further details of the results summarized in this section are to be found

in [43]. To keep the paper at hand from being too long, we have omitted

them.
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A
2
b
2

where

qv a
2

(30)

The following theorem is of interest (see [36] for a similar result)

.

THEOREM 1: Assume that R > 1 and 6 < 1.

Then,

T
1
(S

1
} < T

1
(S 4>-

A proof of Theorem 1 is given in [43]. Furthermore, it is readily shown

that lim t,(S.) = 0. Thus, when 6 < 1, the switching time t - t
f

-

r-H-a>

x, (S ) along extremals leading to S- explicitly depends on the value

Y places upon the survival of his own forces. The higher he values Y-

force survivors, the longer Y forces concentrate their fire on X when

6 < 1. For extremals leading to S,, the transversality condition (13)

yields that Y-force survivors have zero value. Intuitively, we see that

firing longer at X prolongs the length of battle for those cases when

y(t
f

) = 0, since ^ib. > a
?
b . However, for extremals leading to S,

this is not an optimal tactic.

Let us therefore consider the case when t, = t for S. . We
f max 4

just discussed above the possibility when R > 1 > 6 of prolonging the

length of battle along an extremal leading to S, by firing longer at

X . Using (27) , it may be shown that

(b
1
x
1
(t

f
-T

1
)+b

2
x
2

)

y(t
f

) = y(t
f
—Ocosh/a-b- x sinh/a^b x, , (31)
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where

and

where v is the multiplier corresponding to the terminal constraint

y(t
f

) = 0. Then, the following lemma may be established [43].

LEMMA 1: Consider an extremal leading to S, with y(t
f )

given by (31) and t
f

defined by y(t ) = 0. Then

:

f

r- < if and only if a,b,y£ < s 2 .

Utr 1 1

In [43] it is whown that by increasing the implicit valuation of Y

survivors (i.e. v in (33)) the length of battle may be extended until

t.. = t . However, this is not an optimal policy. This situation in
f max ' r r J

which a special case (here t r = t for S.) requires an inordinate
f max 4

amount of analysis unfortunately has arisen in all problems that we have

studied.

4.5. Obtaining an Optimal Policy .

After extremals have been synthesized, domains of controllability

for extremals may be obtained as shown in [34] . It then remains to apply

steps (d) and (e) of the solution procedure given in Section 4.1. A

computer program written in FORTRAN has been developed to assist in the

determination of an optimal policy. This computer program does the follow-

ing: for a given point in the initial state space, we determine to which

terminal states extremals lead. Then, the payoff corresponding to each

extremal is computed. The optimal path (and hence the optimal policy) is

readily obtained by determining which extremal yields the largest return

to Y.
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In the above fashion, the optimal fire distribution policy may be

obtained as an open-loop control. After this has been obtained, it is a

straightforward matter to express the optimal policy as a closed-loop

control. In doing this, it is convenient to cite the principle of optimality

[1] (a special case of Isaacs' tenet of transition [17] (see also [2])),

i.e. every subarc of an optimal trajectory is itself an optimal trajectory.

5. Determination of an Optimal Policy for Stochastic Problem .

In this section we discuss how an optimal fire distribution policy

(expressed as a closed-loop control) may be determined for (8) . Using

the formalism of dynamic programming, we develop the fundamental functional

equation for the optimal expected value function. This is a sufficient

condition of optimality: a control which leads to the satisfying of this

equation is an optimal policy (see [29]). An analytic solution is developed

to the fundamental functional equation for very small numbers of combatants.

Finite difference methods are used, however, to generate a numerical

approximate solution, since a general solution (for arbitrary numbers of

combatants) has not been obtained to the fundamental functional equation.

5.1 Development of Fundamental Functional Equation .

Let S(x,m
1
,m ,n) denote the optimal expected-value function (see

[12]). Then

S(x,m ,m ,n) = maximum E [rN(x=0) - pM (x=0) - qM (x=0) ] , (34)
x c. , — . m ) i J. *

where

*
s
e*

the system state is m, ,m ,n at time t (i.e. M (x) = m , etc),

* is the class of admissible controls (i.e. <}> must always be

1 2
chosen from the set o f rational numbers {0,—rr.—7—r-, . . . ,1}) ,

n(x) n(x;
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T = t - t is the "backwards time" from the end of battle (which

begins at t = 0) ,

in
denotes mathematical expectation given that m(x) = (m. (t)

,t ~ l

m
2
(x) ,n(x)) ,

casualties occur in a random fashion between t and t f
.

In other words, S(x,m ,m„,n) is the maximum return that we get on the

average when we start with force levels m ,m , and n at t = t
f

- x,

*
follow an optimal policy ^ (s,m ,m ,n) (chosen from the class of

admissible policies <t) for t £ 8 £ t- , and casualties occur in a

random fashion.

We consider that casualties occur as a Markov process with discrete

state space (or discontinuous Markov process). Specifically, we assume

that

(1) the attrition process is a continuous parameter Markov chain with

stationary transition probabilities corresponding to a deterministic

Lanchester square-law attrition process; this is equivalent to

assuming

(a) the future occurrences of casualties depend only on the state

of the system at t and not on past history,

(b) the transition probabilities depend on only the state of the

system,

(c) [one X casualty. [one X, casualt 1

Prob
, , 1 . ..

'

|_in interval At

[one X casualty
[in interval At

= 4>a..nAt,

= (l-<J>)a
2
nAt,

Pr
. [one Y casualty] ,, ,, w .

ob . . . ,
' (b.m +b m )At,

[in interval At 112 2

where $a n is X casualty rate, etc.,
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(d
> Prob

more than one casualty
in interval At

= 0((At) 2
),

0(x)
where 0(x) denotes dependence on x such that lim

x+0
X

const.

,

(2) the Y-forces have perfect information as to the state of the system

at t and the expected casualty rates,

(3) the Y-forces can instantaneously shift fire from any target at any

time,

(4) the length of the battle is known.

Then, we have

state variables ; M (t) ,M (t) ,N(t)

,

decision (or control) variable : <\> ,

where

, . r A 1 2 n(t)-l .i

To be more precise <\> =
<j> (t,m ,m ,n) is a closed-loop (or feedback)

control.

To develop the fundamental functional equation for the optimal

expected-value function, we begin by considering any interval of "backwards

time" of length Ax which occurs from x - xA to x. There are five

exhaustive and mutually exclusive possibilities for random events to occur

in such an interval. These are

(1) one X casualty occurs,

(2) one X casualty occurs,

(3) one Y casualty occurs,

(4) no casualty occurs,

(5) more than one casualty occurs.
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Let us now examine each of these cases and develop expected returns.

( 1

)

One X casualty occurs in At :

By our assumptions above, we have for the probability of occurrence

of this event

Prob[one X casualty occurs in At] = <J>a nAT

.

Given that one X casualty is realized in the interval from t to

t-At, the optimal fire distribution policy for Y will consider the

maximum expected value for the return functional as casualties continue

to occur randomly from t - At to t > 0. This maximum expected value

is S(t-At ,m (t-At) ,m (t-At) ,n(T-AT) ) where m (t-At) = m (t)-1,

m-(T-AT) = m (t) , and n(T-AT) = n(i).

(2) One X casualty occurs in At :

Similarly, we have that

Prob[one X« casualty occurs in At] = (l-<f>)a~nAT

,

with the optimal expected-value function S (t-At ,m

,

(t) ,m (T)-l,n(x) )

.

Events (3) through (5) are analyzed in a similar fashion.

Now, by the standard dynamic programming argument which combines

the probabilities of events (1) through (5) above with the maximum expected

return to be achievable given these events occur, we obtain the expression

S(t ,m ,m ,n) = maximum{ [1-At{<J> a n+(l-<f>_)a n+b m +b
2
m }]S (t-At ,m ,m ,n)

0^4> £l

+<(> a nATS(T-AT,m -l,m ,n) + (1-<|> )a nATS(T-AT,m. ,m
2
"l,n)

+ (.b^^b^ )ATS(T-AT,m ,m ,n-l) }. (35)
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Rearranging terms in (35) and taking the limit as At -*• 0, we

obtain the fundamental functional equation for the optimal expected-value

function

for m ,m ,n > 0:

^-(x,m
1
,m

2
,n) = (b^+b^) {S (x .m^ ,m2> n-l)

- Stx.n^.m^n)

+ n maximum[<J> a {S(x,m -l,m ,n) - S(x,m ,m ,n) }

0i<j> si
b l L l l l

+ (l-<J>
s
)a

2
S(x )m

1
,m

2
-l,n) - S (x,m

;L

,m
2
,n) }] , (36)

with the boundary condition at t t
f

S(T=0,m1>m2
,n) = rn - pm

1
- qm2> (37)

where m ,m , and n are integers and

* = {0,^,...,-^-,!}. (38)
n n n

Special forms of (36) in which m * 0, etc., will be given later.

More concisely, we could have said that (36) results from combina-

tion of the well-known formalism of dynamic programming with the retrospective

(backward) probabilistic evolution of the system over time (c.f. [13], [22]).

It should be noted that (36) is a special case of an equation given by

Kushner in 1962 [21].

If we take (36) to be the basic equation for S(x,m ,m ,n) , then

(35) may be considered to be the simplest finite difference approximation

to it, i.e. the result of applying the well-known Euler's method to (36)

(see pp. 130-131 of [15]). (Of course, a method employing a higher order
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approximation scheme (see pp. 132-140 of [15]) may be necessary under many

circumstances.) We will find this point of view convenient when we consider

developing a solution to (36)

.

Alternatively, we could have taken a discrete parameter Markov

chain as our basic combat model. It is readily shown that an optimal

policy exists for this latter formulation (see Theorem 1 on pp. 88-89 of

[22]), and that a policy which yields the maximum in (35) is an optimal

policy (see Theorem 2 on p. 89 of [22]).

5.2. On the Analytic Solution of the Fundamental Functional Equation ,

The first task in determining an optimal fire distribution policy

(which requires obtaining the solution to (36) and (37) is to develop the

entire system of equations (c.f. equations (2) through (4)). We must,

therefore, develop the form that (36) takes at the boundary of the system,

i.e. m = or m = or n 0, where the fire distribution problem

no longer exists. When n = 0, arguments similar to the above lead to

for n=0, m^O, m^O,

j C—(x.m^m ,0) m with S(T-0,m ,m ,0) = -n^p-n^q,

and hence

for n=0,m 2:0,m ^0: S(T >m ,m ,0) = -n^p - m
2
q. (39)

Similarly,

for m =0,m =0,n^0: S(T,0,0,n) = nr, (40)

for m =0,m >0,n>0: —(x,0,m ,n) - b.m {S (x ,0,m
2
,n-l)

- S(x,0,m o ,n)} + a_n{S(x,0,mo-l,n) - S(x,0,m ,n)}, (41)
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j C

for m >0,m =0,n>0: —(x,m ,0,n) = b m {S(T,m ,0,n-l)

- S(x,m
1
,0,n)} + a

1
n{S(T,m

1
-l,0

t n) - S (x ,m ,0 ,n) } . (42)

Equations (36) through (42) are the complete system of equations for the

optimal expected-value function in the optimal control of the Lanchester

stochastic process.

For m > 0, m > 0, n>0 the optimal fire distribution

policy is determined by the maximization operation in (34) , and hence

. 1 for W(x,m ,m-,n) > 0,

<^

s
(x,m

1
,m

2
,n) =

for W(x,m
1
,m

2
,n) < 0, (43)

where we shall refer to W(x,m ,m ,n) as the "switching function." It is

defined by

for m > 0, m > 0, n>0,

W(x,m ,m ,n) = a {S(x,m -l,m ,n) - S(x ,m
1>
m
2
,n)

}

- a
2
{S(x,m1>m2

-l,n) - S (x.m^m^n) } . (44)

Let us observe that at the end of the battle at t = t
f>

we may combine

(37), (43), and (44) to obtain

{1
for a

x
p > a

2
q,

for a p < a q, (45)

which is similar to results for the optimal control of the deterministic

process (7) (see, for example, (14), (21), and (22)).

It should be noted that equations (36) through (42) have the same

form as those for the Lanchester square-law attrition stochastic process
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(i.e. equations (2) through (4) when the attrition rates are given by (6)).

A general solution has not been obtained to these equations. Nevertheless,

it is of value to develop a partial solution. For example, since we use

finite difference methods to generate an approximate solution (see Section

5.3 below), it is desirable to check the adequacy of the approximation (in

particular, the "time step size" used in the numerical propagation of the

approximate solution by "marching ahead in time") . This is easily done by

comparing the approximate solution, denoted as S, to the exact analytic

solution, denoted as S. Hence, a partial analytic solution is useful.

Careful consideration of (36) through (42) reveals that there are

restrictions on the order in which the optimal expected-value functions

S(t,ui ,m ,n) for m =0,1,2,..., etc., can be computed. In particular

an admissible sequence for building up the solution through S(x, 1,1,1)

is shown below in Table III.

i i n

1

1

1

1 1

1 1

1 1

1 1

Table III.

1

Admissible Order for Computing Optimal Expected-Value
Functions (admissible order is from top to bottom)

.

We note that (36) becomes a first order system of ordinary differential
equations for S(t,m ,m ,n) when <{> as determined by (43) is used. Solving
for S(x,m

1
,m ,n) for m = 0,1,2,..., etc., we can then determine

<f>
by

(43) . The synthesis of an optimal control by combination of the control law

(43) with integration of a system of differential equations is similar to

that for deterministic optimal control problems.
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We readily successively compute using (39) through (42)

S(t, 0,0,0) = 0, S(x, 1,0,0) = -p, S(t, 0,1,0) = -q,

S(t, 0,0,1) = r, S(x, 1,1,0) = -p - q,

S(t, 0,1,1) =
b
2
r-a

2
q

a
2
+b

2

-(a2+b 2
) T

e +
a
2
r ~h

2
q

'

]

a2+b 2

S(t, 1,0,1) =
rb

i
r~a

l
P

a
1
+b

1 ;

-(a1+bl )x
e +

a
l
r~b

l
P

a
l
+b

l

(46)

Using (46), equations (36) and (37) become for m = 1, m = 1, n = 1,

dS
~(i,l,l,l) = -(b

1
+b

2
){S(T,l,l,l)+ (p+q)} + maximum[4»

s
a
1
{S(T, 0,1, 1)-S(t, 1,1,1)}

4>

s
=0 or 1

+ (l-<|
>s
)a

2
{S(T >

l,0,l)-S(T, 1,1,1)}], (47)

with

S(t=0, 1,1,1) = r - p - q,

where S(t, 0,1,1) and S(x, 1,0,1) are given by (46).

Using (43) , (44) , and (45) , we may readily solve (47) . As for the

deterministic formulation, there are two cases that must be distinguished

Case (1) a p ^ a q,

Case (2) a p < a q.

For Case (1): a p ;> a q, we have that <j>(x, 1,1,1) = 1 for £ t £ i
,

where x, denotes the "backwards time" of the first switch in the optimal

fire distribution policy. Thus t.. is the smallest t which satisfies

W(t=t
1

, 1,1,1) -0 with W(x, 1,1,1) given by (44).
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for £ t £ t when a p ;>. a^ (^(t, 1,1,1) - 1)

., 1 1 n
a
i
(b

2
f -a

2
q) -(a2+b 2

)x
( [^(bft^lrU,,,J

' (a
1
+b

1
-a

2
)(a

2
+b

2
)

e +
|

(a
1
+b

1
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2
)(a

1
+b

1
+b

2
)
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a
x
P a

l
a
2
q

I
-(a

1
+b

1
+b

2
)T

e
(a

1
+b

1
+b

2
) (a

1
+b

1
-a

2
) (a

1
+b

1
+b

2
)

a
x
a
2
r (b^p [ (b 1+b 2

) (a^+a^q
j ^

(a
2
+b

2
) (a

1
+b

1
+b

2
) (a

1
+b

1
+b

2
) (a

2
+b

2
) (a

1
+b

1
+b

2
)

We note that x might be equal to +°°, i.e. we never switch. Assuming

that a switch in targets does occur, however, let us denote S(x=x ,1,1,1)

by S where, as we recall, x is the smallest x which satisfies

W(x=x ,1,1,1) - 0. Then, we have that <f>(x, 1,1,1) = for x < x £ x ,

where x denotes the "backwards time" of the second switch in the optimal

fire distribution policy. Then, we have

for x < x £ x when a p k a q (<j>(x, 1,1,1) = 0)

./ iin
a
2
(b

l
r-a

l
p)

f
-(Vb

i)
T (a

2
+b

2
)(Vx).a

1
xrb

1
T)

S(T ' 1 ' 1 ' 1) =
(a2+b 2

-
ai ) (.1+bl )

\

e " £

J

WS. -
a
x
a
2
r [ (b^bj) (a^b^+a^Jp O^+b^q

|
(a^+b^ (x^x)

(a
1
+b

1
)(a

2
+b
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1
) (a

1
+b

1
) (a

2
+b
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alV [(b^b
2
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) +a
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b
1
3p (b1+b 2 )g j
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1
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1
)(a

2
+b

2
+b

1
)

' (a
1
+b

1
) (a

2
+b

2
+b

1
) (a^+b^

j

*

Again, we note that x
?

might be equal to -H», i.e. we might never redis-

tribute fire a second time. Assuming that a second switch in fire distribu-

tion does occur, we have <|>(x, 1,1,1) = 1 for x~ < x £ x... We have not

carried out the computation of S(x, 1,1,1) past x„.
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For Case (2): a p < a~q, the results are symmetric to the above

(interchange the roles of X and X ) and hence are omitted.

Although the above constitutes a complete development for S(t, 1,1,1)

(and hence
<J> (1,1,1, 1) via W(t, 1,1,1)), these results are complex

enough that it is not immediately clear how ^(t, 1,1,1) changes over

time and/or depends on model parameters.

5.3. Development of Numerical Solution .

With the advent of modern high-speed digital computers, finite

difference methods of obtaining an approximate solution are commonly used

when an analytic solution cannot be obtained to equations like (36) through

(42). Euler's method (see pp. 130-131 of [15]) yields the simplest finite

difference approximation for (36) . Let us denote the approximation to the

optimal expected value function as S. We shall compute values for this

approximation at discrete points in time separated by a constant amount

Ax. We let x £At so that t
f

= LAt. Then (36) may be approximated

by

for m > 0, m > 0, n > 0:

S((A+l)AT,m
1
,m

2
,n) = {1-(At) (b^ +b

2
m
2
) }SUAT,m ,m ,n) +

(At) (b m +b_m )S(HAT,m 1
,m. ,n-l) + n(Ax) maximum[d> a

n
{S (£At ,m

n
-1 ,m_ ,n)112 2 12

Q^j
SI 12

- S(AAT,m ,m
2
,n)} + (l-$

s
)a

2
{S (£At .m^n^-l.n) - SUAt^.i^ii))], (50)

for I = 0,1,..., L-l with boundary condition (37) and also (38). Similar

approximations may be developed for (41) and (42)

.

We recall that for the deterministic formulation when x (t ) > and
x
2
(t ) > 0, the conditions a p ^ a q and a b > a

?
b implied that

<J>*(t,x x y) = 1 for the entire battle.
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As noted above, consideration of (36) through (42) yields that

there are restrictions on the order in which the optimal expected-value

function S (or its approximation S) is computed. The computation of

S((4+l)Ax,m ,m ,n) depends upon the quantities shown in Figure 1 below.

m , -l,m ,n m ,m
2
-l,n m

1
,m

2
,n-l

n^.n^* 11

Figure 1. Dependence of Optimal Expected-Value Function
on Discrete State Variables.

Based on the dependence depicted in Figure 1, the solution can be "built-

up" as shown in Table IV.

It remains to discuss the adequacy of the finite difference approxi-

mation (50). It is well-known (see pp. 130-145 in [15]) that Euler's

method yields a finite difference approximation for such a system of

differential equations that is both consistent and stable so that the

approximate solution S can be guaranteed to converge to the exact analytic

solution S as At •* (and L > °°) [28]. However, At must not be too

large in order to keep the truncation error satisfactorily small. Moreover,

the time step size At is also limited by the fact quantities like

(At) (b m +b m ) or a nAi or a„nAT in (50) represent probabilities and

hence must be less than one. In our computational work we have used a

A computer program has been written in FORTRAN for this purpose.



Table IV. Admissable Order for Computing Optimal
Expected-Value Functions.
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m. m. n m„ m.

1

1

1

1 1

1 1

1 1

1 1 1

2

2

2

2 1

1 2

2 2

2 1

1 2

2 2

2 1

1 2

2 2

2 1 1

1 2 1

1 1 2

2 2 1

1 2 2

2 1 2

2 2 2

3

3

3

3 1

3 2

1 3

2 3

3 3

3 1

3 2

1 3

2 3

3 3

3 1

3 2

1 3

2 3

3 3

3 1 1

3 2 1

3 1 2

3 2 2

1 3 1

2 3 1

3 3 1

1 3 2

2 3 2

1 1 3

2 1 3

3 1 3

1 2 3

1 3 3

2 2 3

3 3 2

2 3 3

3 2 3

3 3 3

A

4

etc

.

Note: Admissible order is top to bottom, starting with
column (composed of V m

2
, n) on left,
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time step size which yields agreement in the fourth decimal place to the

right of the decimal point when S is compared to the exact analytic solu-

tion S in the special cases (such as (48) and (49)) when the latter has

been obtained.

6. Comparison of Results from Deterministic and Stochastic Formulations .

In this section we compare the structures of the optimal fire dis-

tribution policy between the deterministic control problem (7) and the

stochastic control problem (8). Before presenting this comparison, it

seems appropriate to discuss some general methodological considerations.

Any comparison between the two models should be guided be the purpose

of the comparison. In the paper at hand our purpose is to consider whether

the structure of the optimal fire distribution policy is the same for the

two formulations. In other words, we would like to determine upon what

groups of model parameters the optimal allocation rule depends and whether

this depends upon the particular form of model adopted (here deterministic

or stochastic) . The' things that can be compared between the two models

are (1) the optimal fire distribution policy and (2) the optimal (expected)

return. It is the opinion of the authors that the second criterion (i.e.

optimal return) is only significant when there are differences between the

optimal policies from the two models. Furthermore, there are two types of

comparisons that we can make between the models: one is quantitative and

the other is qualitative.

A direct quantitative comparison of the optimal policies obtained

from the two formulations is impossible: on the one hand for the deterministic

The only papers known to the authors in which a quantitative comparison
between results for deterministic and stochastic optimal control problems

is made are [48] and [49]. In both papers the state space is continuous in

the stochastic problem.
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model we have a piecewise dif f erentiable battle trajectory, while on the

other hand for the stochastic model we have a discontinuous Markov process

describing the force levels. Thus, we have <pn (t,x , ,x
? ,y) for the deter-

ministic formulation with x , x , and y varying continuously over time,

and we have
<J>

(t,m ,m ,n) for the stochastic formulation with m , m
,

o J. Z _L Z

and n restricted to be non-negative integers and casualties occurring

randomly as a Markov jump process. The impossibility of directly comparing

* *
4> (t ,x. ,x ,y) and

<f>
(t,ra ,m ,n) continuously over time should be apparent.

Nevertheless, we can still qualitatively compare the structures of

*
the two policies. There is, however, a difficulty in that ^ (t,m ,ra ,n)

represents a conditional policy, i.e. the optimal policy given that the

system is in state (m ,m ,n) with "backwards time" t remaining in the

battle. When a state transition occurs (randomly) to (m',m',n'), then

the optimal policy accordingly becomes <£ (x ,m' m' ,n') . In comparing the

optimal policies this should be taken into account, since it does not seem

*k
/ o o o o

appropriate to compare <j) (x,m ,m ,n») with m , m , and n~ held con-

*
stant to

<J)
(t,x. ,x ,y) with x, , x , and y changing (continuously)

over time. Since for the stochastic formulation it does not make sense

to consider an "average" optimal policy or the optimal policy for "average"

force levels, for comparison with the optimal policy for the deterministic

formulation we have considered a realization of the stochastic attrition

process in which the force levels are always "near to" those of the corre-

sponding deterministic process. In other words, we will compare <j> (t,x ,x ,y)

to <j> c (T,m ,m ,n) at selected values of x , x , and y. The force levels

in the deterministic model are rounded to integers to yield the values of

m , m , and n as follows: m [x ] + 1 (and m = when x = 0)
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where [x] denotes "the greatest integer in x," i.e. [3.96] = 3.

Moreover, in our comparison we will try to use the results obtained from

the deterministic formulation to gain insight into the behavior of the

optimal policy for the stochastic control problem. In other wof*o k
we

will try to explain results from the stochastic formulation 1/ considering

the corresponding behavior for the deterministic formulation.

Numerical results have been generated using two FORTRAN programs

*
run on an IBM 360-67 computer. The program which generates $ (t,x ,x ,y)

(and also the force level trajectories) has been discussed in Section 4.5.

*
The program which generates

<f> Q (t,m ,m ,n) performs the computations

described in Section 5.3. The program for the stochastic formulation is

limited by computer memory requirements. Results for all force levels are

retained for two time steps. A battle with m.. = 5, m = 5, and n„ = 5

requires 200,000 bytes of computer memory, and this increases exponentially

with the force levels as Table IV indicates. Thus, most runs of the computer

program for the stochastic formulation have been with the above as the

upper limit for initial force levels, although we have run one case with

m = 9, in = 9 , and n~ 9 which required nearly 2,000,000 bytes of

memory.

The above computer programs have been run for over fifteen different

"parameter sets," typical examples of which are shown in Table V. In all

cases we have chosen parameter values so that a
-i
D

-,
> a^n m The optimal

policies for the deterministic and the stochastic formulations have been

compared as discussed above. The results of these comparisons will now be

summarized.

This is done so that an interval process (time between casualties) of the

casualty process will be "similar" in the deterministic and stochastic
formulations

.
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Table V. Parameter Sets Used to Generate Numerical
Results Given in Tables VI through VIII.

Parameter
Set & a_

2
b b 2. 1 L

1 0.025 0.015 0.035 0.005 0.75 2.25 2.0

2 0.005 0.003 0.007 0.001 0.15 0.45 0.4

3 0.085 0.080 0.03 0.03 1.0 2.0 2.0

Note: For all the above parameter sets we have a b > a b and a^ < a q.

The first thing to be pointed out is that the optimal fire distribu-

*
tion policy for both formulations has the property that

<J>
is either

or 1 (almost everywhere in time) . For the deterministic formulation,

we have shown [34] that a singular solution is impossible and that
<f>

must be or 1 except for at most one point in time. Although we have not

proved such a result for the stochastic formulation, we have never encountered

any exception to it in all our numerical computations. As we have discussed

above, two cases must be distinguished:

Case (1) a p 2s a q,

Case (2) a p < a~q.

For Case (1): a p k a
9 q,

the optimal policy is apparently identical

for both formulations:
<J>

(t,x ,x ,y) =
<J>

(t,m ,m ,n) = 1 for x >

(or m > 0) . We recall that this result has been proved for the determi-

nistic formulation. Although a proof has not been found, it apparently

is also true for the stochastic formulation. No exception has been encoun-

tered in all the cases for which numerical determinations have been made.

See [36] for a discussion of why this is so and for an example of a similar
problem with a different attrition process for which <f>* may take on an

intermediate value, i.e. < <J>*
< 1 (see also [38]).
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For Case (2): a p < a„q, the optimal policies are similar but not

identical. The basic structures are apparently essentially the same. As

discussed above, the two policies have been compared at selected points

along a deterministic trajectory by considering a corresponding realization

of the stochastic process obtained by rounding the deterministic force

levels. The time of such a comparison is rounded up to the next whole

minute in the case of the occurrence of a casualty and to the next 0.01

minute in the case of a switch in fire distribution. Cases corresponding

to over ten parameter sets have been considered; illustrative examples of

such parameter sets are shown in Table V.

In Table VI we show some typical comparisons. Although not shown

in Table VI, it should be noted that in all the cases numerically computed

*
4> (x,m ,m ,n) had the property that for constant m , m , and n

it it

<t>

s
(x,m ,m ,n) = for £. x < x and 4>

s
(x,m ,m

2
,n) - 1 for x^ > x

where x denotes the "backwards time." In Table VI we show the optimal

policies for the two formulations for two parameter sets. The optimal

policies are given at discrete points in time following the above discussion,

These times correspond to a switching time in one of the formulations or

the occurrence of a casualty in the "typical" realization of the stochastic

process. The deterministic force levels x , x , and y from which

m
1

, m , and n have been determined are not shown in Table VI. The

optimal returns for the two formulations are also shown.

The results shown in Table VI are typical and indicate (at least

for all the cases so far computed) that there is no fundamental difference

between the structures of the two optimal policies, at least where the

deterministic battle does not terminate prematurely, i.e. t f - t •

Thus, these remarks apply to cases in which optimal deterministic trajectories

lead to terminal states S, S_, and S„.
1» 2 3
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Table VI. Comparisons of Results from Deterministic

and Stochastic Optimal Control Problems

(Deterministic Trajectory Leads to Terminal State SI)

Parameter Set 1

Elapsed 'Lime, t Force Levels Deterministic
(minutes) m m

2

5

n -4&

1

*
2 »J° °l3t Lraal Ret urn +*<it.m ,m„,n) S(t,m ,m.^,n)

-8.932 3 -10.95

j 1

1

i.

13 2 5 2 1 -10.95 1 -11.16
18 1 5 2 1 -10.95 1 -9.12
31 1 5 1 1 -10.95 1 -10.96
35.39 1 5 1 1 -10.95 -10.79
41.28 1 5 1 -10.95 -10.54

50=t =t
t max

1 5 1 -10.95 -10.00

Parameter Set 2

Elapsed Time, t Force Levels Deterministic
(minutes)

27

50
55

56

56.38
87

100-t =t
t max

5

5

4

4

4

4

4

4

m
2

n $*(t,x ,x ,y) Optimal Return <frg <t t
m ,m

?
,n) SCt.m^m ,n)

-2.06

•2.06

-2.06

-2.06

-2.06

-2.06

-2.06

-2.06

X L • x <c

1 -0.62

1 -2.17

1 -1.67
-1.64
-2.06
-2.05
-2.18
-2.05

Parameter Set 2

Elapsed Time, t Force Levels
(minutes) m m n 4*iL

1

X
2-,y) t*(t ,m- ,m_ fn)

1

l

5

i.

5 5

B

5.61 5 5 5 1

6.38 5 5 5

26 5 5 4

50=t =t
f max

5 5 4
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*
The reader should note that <j> changes somewhat earlier in forward time

from 1 to than does $ (at least for the realization of the stochastic

process considered here).

In cases in which the deterministic battle ends prematurely (i.e.

the optimal trajectory leads to S. , S c , S,, or S_) more pronounced
h j o /

quantitative differences may occur. This is illustrated by the cases shown

in Table VII. As noted above, the deterministic trajectory determines at

which values of m , m , and t we look at <j> . This should explain

to the reader why the stochastic results shown in Table VII are not realizable.

Thus, for the first battle shown in Table VII, a realization of the stochastic

battle would evolve differently (in structure) than the deterministic battle

due to this difference in the optimal controls. The authors feel that this

is due to the fact that Y marginally wins the deterministic battle, and

thus in the stochastic model there is a fairly good probability at t

much less than t that Y will lose the battle. In other words, there
max

are some possible probabilistic trajectories which yield a reduced payoff

to Y. These are weighted in the stochastic decision process, and Y con-

sequently follows a more conservative policy for the stochastic formulation.

For the case of the first battle shown in Table VII, Y essentially gives

up his chances of winning to guarantee a given level of return. This

phenomenon is similar to the "flypaper effect" noted by Whittle [48J in

certain stochastic optimal control problems. In the second battle shown,

Y achieves a clear-cut victory in the deterministic battle, and this

phenomenon does not occur.

A transition from (m. ,m.,n) = (3,5,5) to (2,5,5) is impossible when
<f>

=
n 1 2 b

This probability has not been explicitly determined.
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Table VII. Comparisons of Results from Deterministic

and Stochastic Optimal Control Problems

(Deterministic Trajectory Leads to Terminal State S7)

Parameter Set 3
max

= 50 minutes

Elapsed Time, t Force Levels
(minutes) m

l

3

m
2-

5

n

5

3 2 5 5

5 2 5 4

6 1 5 4

8. 59 5 4

11 5 3

13 4 3

18 3 3

21 3 2

24 2 2

31 1 2

40. l=t £ 2

Ag( t
»
x
1.i*2-t^l fs*

t7?
t

l
>lV n)

Parameter Set 3

Elapsed Time, t Force Levels
,50* ,40* ,30* 20*

(minutes) m m n 4*

1 1 1 1

l

2 3 5

3 1 3 5 1 1 1

5.04 3 5

8 2 5

11 1 5

14 1 4

14.11»tr 4

Note: <j)

40*
denotes d>* (t ,ra. ,m~ ,n) computed with t

S 1 2 max
40 minutes
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In addition, in cases in which there is a premature termination in

the deterministic formulation, the optimal policy for Y in the correspond-

ing stochastic problem is affected by the length of the "perceived planning

horizon." This effect is shown in the data for the second battle of Table

VII in which optimal policies are given for stochastic battles of varying

lengths. We see that when the deterministic battle ends near to the

scheduled end of the stochastic battle, Y follows a more conservative

policy in the stochastic battle. Since there is some chance that Y cannot

annihilate the X forces in the "perceived length of battle," he follows

a conservative policy of firing at X
9

. This might, in fact, explain the

results for the first battle. Other similar phenomena have been encountered

in cases not shown here.

Finally, in Table VIII we show that the optimal policy followed by

Y in a realization of the stochastic combat process may differ appreciably

from that for the deterministic formulation if the realization does not

follow" the deterministic trajectory. It is seen that
<J> S

may repeatedly

switch back and forth from to 1 for certain realizations of the stochastic

process. This is quite different than the corresponding behavior for the

deterministic version.

7 . Discussion .

In this section we discuss what we have learned from the above com-

parison. First and foremost, the authors feel that the deterministic

formulation provides more insight into the structure of the optimal fire

distribution policy. The explicit dependence of the optimal control upon

various parameter groups (these are (1) R = a..b /(a_b ), (2) <S = a p/(a q),
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Table VIII. One Possible Dependence of Optimal Stochastic

Control on Realization of Casualties in

Stochastic Lanchester Attrition Process

(Deterministic Trajectory Leads to Terminal State S7; See Table VII.)

Parameter Set 3 50 minutes

Elapsed Time, t Force Levels
(minutes) m

l
m
2

n 4>*(t 1m
1
;m

2
,n)

3 5 5

0.5 3 4 5

0.7 3 3 5 1

10.0 2 3 5 1

15.0 2 3 4

20.0 2 2 4 1

23.55 2 2 4

24.0 2 2 3

25.0 2 1 3 1

26.0 1 1 3 1

30.0 1 1 2

35.0 1 2 1
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r A7 11

and (3) a = — /— ) is readily obtained for the deterministic optimal

control problem. This has not been true for the stochastic problem for

which only the dependence upon 5 has been analytically obtained.

Let us now summarize the observed differences and similarities

between the structures of the optimal policies for the deterministic and

stochastic formulations. The similarities are: (1) optimal policy always

or 1, (2) same parameter groups (R,<S, and a) upon which optimal

policy depends, (3) optimal policy dependent upon force levels and

whether Y wins or loses, (4) in both models
<f>

=1 for x
1

> when

*
6 i 1 and R > 1, and (5)

<fr
=0 for t € (T-t ,T] when s: 6 < 1 < R;

furthermore t. x
1
(a) . The differences are: (1) in the stochastic

formulation the optimal policy actually implemented (i.e. followed) in a

battle depends upon the battle's probabilistic (forward) evolution (i.e.

the realization of the stochastic process) and the time remaining in the

prescribed duration battle, and (2) t, is "greater in the stochastic

model" except for cases corresponding to premature termination in the

deterministic battle. Overall, we feel that an understanding of the

structure of an optimal policy is best developed by considering the

deterministic version of such a combat problem. For problems too complex

for analytic treatment, rules of thumb for approximating an optimal policy

are probably best obtained from deterministic formulations.

In [34] and [36] one can find further discussion of the structure of the

optimal policy, including interpretation of such parameter groups. The reader

may find the following interpretations useful for understanding the solution

to the problem studied in the paper at hand. The quantity a b^ may be thought

of as the rate of destroying X 's kill capability against Y. It is a measure

of strategic (long run) return. The quantity a p represents the rate of de-

struction of X value by Y at the end of battle. Thus, it represents short

run return. The quantity r/bT reflects the loss of Y value at the end of

battle so that a measures the loss of Y value relative to that of X
2

at

the end of battle.

Moreover, t, depends upon m ,m , and n in the stochastic optimal control
problem.
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Finally, we would like to point out that there is a circumstance

under which the stochastic formulation is to be preferred over the deter-

ministic one. This is, namely, when there is a small number (approximately

three or under) of each combatant type. As noted above, obtaining a

numerical approximate solution to the optimal stochastic control problem

is limited to small numbers of combatants due to computer memory require-

ments. In such cases, however, of small numbers of combatants (and a

stochastic attrition process) , the stochastic formulation as a Markov chain

is to be preferred when the required computer resources are available for

the obvious reason that the deterministic differential equation model

cannot adequately describe the situation. This point made comparison of

results from the two formulations difficult.

8 . Implications for Defense Planners .

The authors feel that the study of even the very simplest abstractions

(idealizations) of tactical allocation structures as considered in this

paper has yielded significant implications for defense planners and

military operations analysts. First and foremost is the fact that study

of such deterministic optimal control problems provides much more insight

into the structure of optimal allocation policies than corresponding stochastic

formulations. We feel that such deterministic formulations provide a better

understanding of the effects of modelling assumptions on optimal military

strategies derived from the mathematical models. This is, of course,

essential for determining optimal (or near-optimal) solutions to real world

problems that are far too complex to be solved by exact analytic methods.

These grow exponentially as force levels increase because of the way in

which a solution must be "built up." See Figure 1 and Table IV for illus-

trations of this point.
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Moreover, one might apply general principles or rules of thumb developed

from the study of such idealizations to higher resolution studies which,

for example, might use computer simulation methods.

The study of the deterministic optimal control problem (7) in this

paper yields several significant results which should be kept in mind by

practitioners who perform more detailed computer simulation studies.

These are

(1) Force levels do affect optimal strategies. Whether one "wins" or

"loses" affects optimal strategies.

(2) Even the nature of the scenario (terminal control or prescribed dura-

tion conflict) may affect optimal strategies. This, if one develops

"good" tactics for a 90 day compaign, such tactics need not be "good"

if the conflict does not terminate at the prescribed time.

(3) The nature of the attrition process has a significant effect upon

optimal strategies.

Finally, the authors feel that the above results indicate that more

basic research should be done on the termination of battles and wars as

well as combat attrition theories. The demonstrated sensitivity of results

obtained from optimization problems like the one considered here shows

this.

1 This result has been pointed out elsewhere [36], [38] and is partially

based on the study of a similar problem [38].

"Some work has been done in this direction [14], [33], [46], [47], although it

does not appear to be widely known among practicing analysts.
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APPENDIX. Explanation of Notation .

The symbols which are used in this paper are defined as follows:

a.,a
9
,b ,b» constant attrition-rate coefficients,

A(m,n) ,B(m,n) = attrition rates of X and Y forces, respectively, in
stochastic battle; it should be noted that

Prob
one X casualty in

interval from t to t^At]
- A <m ' n > At >

E [•] = conditional expectation (mathematical expectation of quantity
~,T in brackets at t - given that at t we have m(t) =

(it^Ct) ,m
2

( T ) ,n(x)))

,

H = Hamiltonian function,

M (t) ,M (t) ,N(t) = the numbers (a random variable) of X , X„ , and Y

combatants, respectively, at time t,

m.. ,m ,n = realizations of the random variables M (t) , M (t) , and N(t);
initial values denoted as vo9 , m° , n~,

p,q,r = utilities assigned to surviving X.. , X and Y forces
respectively,

p.(t) for i = 1,2,3, = dual variable corresponding to x.(t)
1

(x
3
(t) = y(t)),

£
=

^pi»P2 ,p 3^ (a vector),

P(t,m,n) = Prob[M(t)=m,N(t)=n] = state probability,

o o o
P = (x

t x ,y ) = point in the initial state space,

R = a
1
b
1
/(a

2
b
2
),

SCxjin. ,m ,n) = optimal expected value function,

S = numerical approximation to S (x,m
1
,m

9
,n)

,

S. for i = 1,...,8 = the i— part of the terminal surface as defined

in Table 1.
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s = s(x1> x 2
) - b^x + t>

2
x

,

t = time after beginning of battle,

t, = time at which X is annihilated, i.e. x-i(t-i) = °»

t„ = first time at which 2b x (tjx. + b„(x
2

)
2 « a_y2 (t ) for an

extremal leading to S-,

t„ = last time at which fire is directed at X for an extremal leading
to S

3
,

t, = time at which X~ is annihilated (before X.), i.e. x (t.) - 0,

for an extremal leading to S ,
o

t
f

= time at which battle ends,

t = maximum possible duration for battle, i.e. t r £ t ,

max r f max'

v = v(t) = a
2
P
2
(x) - a^Ct),

W(x,m ,m ,n) "switching function" defined by equation (44),

o o
x -i> x9»y = average force strengths; with initial values x

1
,x

2
,y„,

= coshVa b_ T (S.)
R-6

2 2 1
v 4' R-l *

qv a
2

'

6 = aip/(a 2
q)

,

n. (t) for i = 1,2, = multiplier corresponding to state variable

inequality constraint x ^ 0,

v. for i = 1,2, = multiplier corresponding to state variable terminal

inequality constraint x.(T) k 0,

4> (<f> ) = fraction of Y-fire directed at X in deterministic (stochastic)

formulation; extremal and optimal controls denoted as ^(^g) >
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$ = { , , . ,

—

t-t- 7—r— ,1} = set of admissible controls in stochastic
n(t) n(t) n(t) .-

problem,

x = "backwards time" from the end of battle defined by x = t
f

- t, i.e.

the time remaining before the end of battle,

t n (S.) = "backwards time" of the first switch in tactics for extremals
1 i

leading to S .

Additionally, remarks similar to those for t, (S ) above apply to

t-^sp, t
f
(S

i
), etc.
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