

Calhoun: The NPS Institutional Archive

DSpace Repository

Reports and Technical Reports

All Technical Reports Collection

1973-07

Design report of hybrid compressor and associated test rig

Vavra, Michael Hans

Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/29245

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

LIBRARY TECHNICAL REPORT SECTION NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940 NPS-57Va73071A

NAVAL POSTGRADUATE SCHOOL Monterey, California

DESIGN REPORT OF HYBRID COMPRESSOR
AND
ASSOCIATED TEST RIG
by
M. H. Vavra
July 1973

Approved for public release; distribution unlimited.

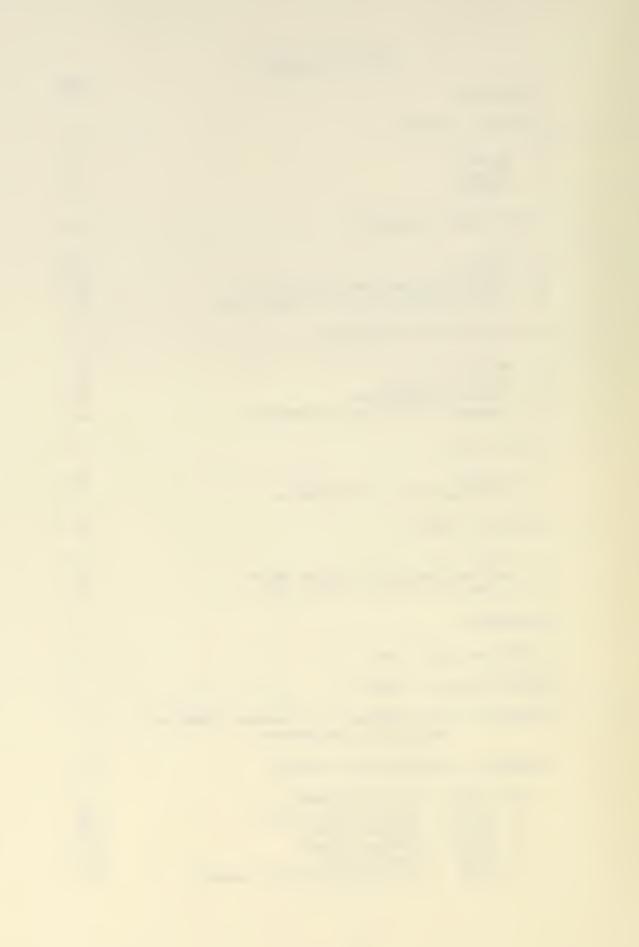
NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral M. B. Freeman, USN Superintendent

M. U. Clauser Provost

ABSTRACT:

This report presents the aerodynamic calculations and describes the mechanical features of a test rig that has been designed at the Turbopropulsion Laboratory, Department of Aeronautics, for research work on a special type of centrifugal compressor. This so-called Hybrid compressor consists of a centrifugal rotor with 180° flow deflection in the meridional plane followed by an axial flow diffusor. The report establishes a method to predict the off-design performance of the subject compressor, which can be applied also to conventional centrifugal compressors. Extensive use is made of modern programmable calculators, and programs are presented to show the effectiveness of these tools in engineering endeavors.


This work was supported by:

Navy Department Naval Air Systems Command, Code 330C AIRTASK No. A3303300/186B/3F41432301

ø

	INTRODUCTION	rage 1
I.	AERODYNAMIC DESIGN	2
	 Impeller Inducer Diffusor 	2 6 11
II.	DESIGN POINT PERFORMANCE	21
	 Rotor Diffusor Flow Straightener and Discharge Duct Compressor Performance at Design Point 	21 24 30 35
III.	OFF-DESIGN POINT PERFORMANCE	41
	 General Rotor Performance Diffusor Performance Compressor Off-Design Performance 	41 41 44 46
IV.	DRIVE TURBINE	49
	l. General 2. Off-Design Turbine Performance	49 49
V.	MECHANICAL DESIGN	52
	 Rotor Maximum Obtainable Pressure Ratios General Description of Test Rig 	52 54 56
	REFERENCES	61
	TABLES (see list, page v.)	63
	FIGURES (see list, page vi.)	77
	APPENDIX A: Basic Elements for Advanced Design of Radial-Flow Compressors	110
	APPENDIX B: Manufacturing Drawings	153
	Dwg. 2103-A: Rotor Attachment " 2107 : Turbine Blade Profile " 2108-1: Turbine Rotors " 2109 : Turbine Stators " 2140 : Nozzle Casing " 2158 : Tnlet Throttle Valve Assembly	154 155 156 157 158

Dwg.	2159 :	Control Valve Actuator	160
tt	2164-1:	Inlet Plenum	161
77	2203 :	Impeller of Hybrid Compressor	162
11	2204 :	Inducer of Hybrid Compressor	163
11	2205 :	Wheel Attachment	164
tt.	2207 :	Stator Casing	165
11	2208 :	Diffusor Sleeve	166
tt.	2209 :	ala ala	167
11	2210-1:	01	168
ŤŤ	2210-2:	AZ	169
TT	2210-3: 2210-4:	ЪТ	170 171
11	2210-4:	BC	172
tt	2212 :		173
11	2215		174
11		Labyrinths	175
11	2210 :	Nozzle Frame	176
TT	2222 :		177
7.1	2223 :		178
	~~~) .	Compressor Test Rig	±/0
		compressor rest nig	
APPEND	IX C: Lo.	sses in Radial Compressor Wheels	179
		<u>+</u>	
APPEND	IX D: Ca	lculating Programs for Monroe	195
		del 1655/6 and Model 1880-20	
		ogrammable Calculators:	
Prog	ram No. 10	02: Flow Rate through Radial	196
Co	mpressor	for Given Conditions at Discharge	
		03: Determination of Pressure	204
		iven Tsentropic Flow Function	
fo	r Differer	nt Y.	
		04: Inlet Conditions of Radial	211
Co	mpressor	with Axial Inlet Flow	
T>			218
		05: Relation between Rotor	210
		s and Velocity Ratio of Radial	
Co	mpressor	Impeller	
Drace	nom No. J	06: Conditions at Discharge	224
-		of Radial Compressor	224
01	Tuberrer.	OI Radiai compressor	
Prog	ram No 1	08: Mass Flow Rate at Inducer	231
-			102
-11		nction of $V_{lo}/a_0$	
Prog	ram No. 1	09: Flow Conditions after	238
		Given Inlet Conditions,	290
		tions and Total Pressure	
	ss Coeffi		

ø

Program No.	110: Calculation of Curve $r/a = \theta^{-D}$	248
with Zero	Curvature at One Point and $\delta_{MAX} = 90^{\circ}$	

Program No. 517: Off-Design Performance of 251 Hybrid Compressor

# LIST OF TABLES

0

		page
I.	Flow, Blade, and Incidence Angles at Inducer Leading Edge	64
II.	Loss Coefficients of First Blade Row of Diffusor	65
III.	Design Values of First Blade Rows of Diffusors A and B	66
IV.	Loss Coefficients of Second Blade Row of Diffusor	67
V.	Design Values of Second Blade Rows of Diffusors A and B	68
VI.	Determination of Diffusor Profile Data	69
VII.	Flow Properties in Diffusor	70
VIII.	Flow Conditions in Flow Straightener and Discharge Duct	71
IX.	Estimated Compressor Performance at Design Point	72
х.	Performance of Centrifugal Compressor Rotor (2 sheets)	73
XI.	Calculated Performance of Hybrid Compressor at 16,666 rpm	75
XII.	Calculated Performance of Hybrid Compressor at 12,018 rpm	76

,

# LIST OF FIGURES

.

1.	Hybrid Compressor (Symbols and Stations)	page 78
2.	Determination of Rotor and Hub Contours for	
	Specified Blade Tip Contour	79
3.	Conditions at Leading Edge of Inducer	80
4.	Blade Angles of Straight Inducer Blades	81
5.	Properties of Elliptical Inducer Blade Surface	82
6.	Secondary Loss Coefficient of Ref. 6	83
7.	Overall Loss Coefficients of First Diffusor Row	84
8.	Overall Loss Coefficients of Second Diffusor Row	85
9.	Diffusor Blade Data	86
10.	Determination of Flow Conditions after Diffusor Row	87
11.	Conditions in Flow Straightener and Discharge Duct	88
12.	Rotor Dimensions	89
13.	Polytropic Rotor Efficiency as Function of Flow Angle $\beta_{lo}$ at Inducer Tip Radius and Speed Ratio $\text{U}_2/\text{a}_0$	90
14.	Arc Length of Parabolic Mean Camber Line of Inducer Blade	91
15.	Flow Angle $\beta_{10}^*$ for $U_2/a_0$ and $M_{W1}$	92
16.	Velocity Distributions at Inducer Tip at Different Incidence Angles	93
17.	Compressor Performance at $U_2/a_0 = 0.83$	94
18.	Meridian Curve $r/a = \theta^{-b}$ with $\delta_m = \pi/2$	95
19.	Relationship between $y_x$ , $x_ok_m$ and $y_o/x_o$ for Meridian Curve of Fig. 18	96
20.	Scale Drawing of Meridian Contours with $r/a = \theta^{-b}$ of Impeller of Fig. 12	97
21.	Dimensionless Mass Flow Rate (m)* as Function of Flow Function $\varphi_1$ of Fig. 17	98
22.	Polytropic Rotor Efficiency $\eta_{\rm RP}$ and Mach Number $M_{\rm Wl}$ from Figs. 21 and 15	99

23.	Polytropic Rotor Efficiency $\eta_{\mathrm{RP}}$ and Mach Number $M_{\mathrm{Wl}}$	
	as Function of Flow Angle from Fig. 21 and Fig. 13	100
24.	Adiabatic Rotor Efficiency $\Pi_R$ as Function of Mach Number $M_{Wl}$ , Peripheral Speed Ratio $U_2/a_0,$ and Incidence Angle i'	101
25.	Adiabatic Rotor Efficiency as Function of M _{Wl} and i' of Fig. 24	102
26.	Velocity Coefficient $\Psi$ and Incidence Angle i' of Hybrid Compressor Rotor as Function of Deceleration Ratio	
	$W_2/W_{lo} \dots$	103
27.	Assumed Change of Diffusor Pressure Loss Coefficient Y _t with Incidence Angle i	104
28.	Calculated Performance of Hybrid Compressor Operating in Test Rig	105
29.	Predicted Performance of Drive Turbine	106
30.	Predicted Turbine Performance	107
31.	Stress Distribution in Hybrid Rotor	108
32.	Blade Stresses of Hybrid Rotor	109

#### INTRODUCTION

The idea of arranging an axial diffusor after a special centrifugal compressor rotor that turns the flow by 180° instead of 90°, as in conventional machines, has been conceived by Mr. George Derderian, Naval Air Systems Command, Code AIR-53622B. For this so-called Hybrid compressor concept, he was awarded U. S. Patent 3, 365, 892 dated January 30, 1968.

To verify the conditions that exist after a Hybrid impeller, and to investigate whether it is possible to convert the kinetic energy of the flow after such a rotor into useful pressure rise with acceptable efficiency, a research project was started at the Turbopropulsion Laboratory, NPS, which was funded by the Naval Air Systems Command, under: AIRTASK A3303300/186B/3F41432301.

The present report gives the particulars of the design that led to the manufacture of the test rig which is now operative and being used to carry out the afore-mentioned research work.

The project was supervised by Mr. K. H. Guttmann, AIR-330C, who has been extremely helpful in all phases of the program. The author is deeply grateful to Mr. Guttmann for the patience, understanding and considerateness which he received during a lengthy period of personal misfortune which delayed the research program and the completion of this report.

#### I. AERODYNAMIC DESIGN

#### 1. Impeller

Because of its peculiar design the rotor of the Hybrid compressor of Fig. 1 is highly stressed. (See Section V.1) Therefore, it must have meridional blades at the discharge to eliminate additional blade bending stresses. Ahead of the rotor the absolute inlet velocity will be axial everywhere. Hence it is possible to establish the rotor dimensions with the method of Ref. 1 which is enclosed as Appendix A. The corresponding dimensions of the Hybrid rotor are shown in Fig. 1.

The symbols used in the following are identical with those listed in Appendix A. For easier reference, the figures and equations of Appendix A are denoted by Fig. A .... and Eq. A .... Thus, Fig. A(3) is figure 3, and Eq. A II(4) is equation II(14) of Table II of Appendix A.

A parametric study indicated that optimum conditions were obtained for the following design values (see Fig. 1):

$$\beta_{10} = 55^{\circ}$$
  
 $\alpha_2 = 65^{\circ}$   
 $R_{10}/R_2 = 0.55$   
 $R_{11}/R_2 = 0.18$ 

The relatively small angle  $\beta_{10}$  of 55° is necessary to be able to limit the ratio  $R_{10}/R_2$  to 0.55 and to obtain a sufficiently high flow rate so that the diffusor blade height  $b_2$  does not become too small. For values of  $R_{10}/R_2$  larger than 0.55 the meridional flow channel would also have very large curvatures at the blade tip contour of the Hybrid rotor. This would produce large radial velocity gradients at the rotor discharge. The choice of  $\alpha_2 = 65^\circ$  was predicated by the permissible loading of the axial diffusor blade rows, and the large losses that occur if  $\alpha_2$  is larger than  $65^{\circ}$ . A radius ratio  $R_{li}/R_2 = 0.18$  of the hub at the inducer inlet was chosen to be able to arrange 17 rotor blades with a thickness of about 0.125 inches. With smaller ratios  $R_{li}/R_2$  it is not possible to have 17 blades and it would then be necessary to design the impeller with splitter vanes, a feature which did not seem to be warranted for the present tests.

Preliminary investigation also showed that the peripheral rotor speed  $U_2$  at the mean discharge radius  $R_2$  of Fig. 1 should not exceed about 800 ft/s because of critical speed considerations if the rotor is made of aluminum.

For air with  $\gamma = c_p/c_v = 1.4$  and a gas constant  $R_G = 53.35$  (ft-lb)/ (lbm,  $^{O}R$ ), the velocity of sound  $a_O$  at an assumed total inlet temperature  $T_O = 520^{O}R$  is

$$a_0 = \sqrt{g \gamma R_G T_0} = 1117.85 \text{ ft/s}$$

giving a ratio

$$U_2/a_0 = 0.7156$$

From Eq. A II(4) the Mach number  $M_{Wl}$  of the relative velocity at the outer radius  $R_{10}$  of the rotor inlet eye is then

$$M_{Wl} = \left[\frac{\sin^{2} \beta_{lo}}{\left(\frac{R_{lo}}{R_{2}} - \frac{U_{2}}{a_{0}}\right)^{2}} - \frac{Y - 1}{2} \cos^{2} \beta_{lo}\right]^{-\frac{1}{2}} = 0.4842$$
(1)

For a weight flow rate w = m g (lbm/s) there is from Eq. A II(9)

$$TR_2^2 k_{Bl} = \frac{\dot{w}}{P_0} \sqrt{\frac{R_G T_0}{g}} (11.7944)$$
 (2)

Figure A(3a) shows that the so-called slip factor  $\mu$  depends of the number of rotor blades  $Z_R$ , the ratio  $R_{1o}/R_2$ , the rotor efficiency  $N_R$ , and the flow coefficient  $\varphi_2$ . Minor corrections for  $\mu$  must be applied if

the tip clearance ratio  $\delta/b_2$  differs from 0.05 (see Fig. A(3b)) and if the flow in the rotor is turned by less than 90° in the meridian plane (see Fig. A(3c)). However, no data for  $\mu$  are available if this turning is  $180^{\circ}$  as in the present wheel, and for this reason the slip factor is taken as that of a standard centrifugal compressor wheel with  $\epsilon = 90^{\circ}$ .

In accordance with Eq. A II(6) the flow coefficient  $\varphi_2$  depends on  $\mu$ . For a chosen value  $\mu = 0.86$  there is

$$\varphi_2' = (0.86)(\cot 65^\circ) = 0.401$$

For an assumed rotor efficiency  $\Pi_{\rm R} = 0.86$ ,  $Z_{\rm R} = 17$ , and  $R_{10}/R_2 = 0.55$ , by extrapolating Fig. A(3a) to higher values of  $\varphi_2$ , there is  $\mu = 0.847$ . Hence,  $\varphi_2 = 0.395$ , and the slip factor for this velocity ratio is about 0.85, giving a final value  $\varphi_2 = 0.3964$ . For  $\mu = 0.85$ , from Eq. A II(5),

$$\frac{W_2}{W_{10}} = 0.6312$$
 (3)

Appendix A discusses the different possibilities to express the frictional losses in radial wheels. From Eq. A(25)

$$C = 0.7200$$

and from Eq. A(27) the so-called wheel efficiency  $\eta_W$  for  $\eta_R = 0.86$  is

$$\eta_{\rm tr} = 0.4999$$

With this value and Eq. 3, the velocity ratio Y of Eq. A (21) is

$$\Psi = \frac{W_2}{W_{2is}} = 0.7548$$

With these data the rotor dimensions at the discharge are obtained from Eq. A II(11)

$$\pi R_2^2 \frac{b_2}{R_2} k_{B2} = \frac{i}{P_0} \sqrt{\frac{R_G T_0}{g}} (1.2739)$$
(4)

Hence, with Eq. 2

$$\frac{b_2}{R_2} = \frac{k_{B2}}{k_{B1}} = \frac{1.2739}{11.7944} = 0.1080$$

The restriction factor  $k_{Bl}$  at the inlet eye due to boundary layer growth is assumed to be 0.98, and  $k_{B2} \approx 0.954$ , Thus

$$\frac{b_2}{R_2} = 0.1109$$
 (5)

In accordance with Fig. A(16) this ratio is acceptable.

The mean radius  $R_2$  is chosen as 5.5 in., primarily to be able to drive the impeller by an available turbine and to mount the compressor to this item. Then the rotative speed N for U₂ = 800 ft/s is

$$N = \frac{800}{\frac{\pi}{30} \frac{R_2}{12}} = \frac{(800)(360)}{\pi(5.5)} = 16,666 \text{ rpm}$$

The basic compressor dimensions in inches are then:

$$D_{2} = 2 R_{2} = 11.0$$
$$D_{10} = 2 R_{10} = 6.05$$
$$D_{11} = 2 R_{11} = 1.98$$
$$D_{2} = 0.61$$

The radial overlaps  $\delta$  of Fig. 1 at the impeller discharge are chosen to be 0.025 in., so that the blade height  $b_2$ ' at the wheel discharge equals

$$b_{2}' = 0.56$$
 in.

Drawing 2222 of Appendix B shows the design of the Hybrid compressor. Details of the impeller and the inducer are given in Dwgs. 2203 and 2304. The meridional channel of the wheel was laid out by assuming a blade tip contour with the smallest possible curvature changes between  $R_{lo}$  and the discharge. Drawings 2203 and 2204 show that such a contour could be obtained with a two adjoining circular arcs with radii of 1.666 and 1.02 inches. By assuming that the meridional flow areas, without the restriction due to the blades, change linearly with the distance l along the tip contour from  $A_1$  at the inlet to  $A_2'$  at the impeller discharge the meridional channel could be laid out with the method explained in Fig. 2. As shown in Dwgs. 2203 and 2204 the hub contour thus obtained could be approximated by four adjoining circular arcs whose radii decrease from the rotor inlet to the rotor discharge. The clearance between the blade tips and the adjoining casing of Dwg. 2213 is everywhere equal to 0.025 inch.

### 2. Inducer

Although some designers propose that the leading edges of the inducer blading have to be so arranged that particular incidence angles occur, it is shown in Ref. 2 that the correct incidence angles are obtained if the blockage because of the blade thickness is taken into account in the design. Figure 3 shows the conditions at the inducer entrance where  $V_1$ ,  $W_1$ ,  $\beta_1$  are the flow properties just ahead of the inducer leading edges. In particular, the relative flow angle  $\beta_{10}$  at the radius  $R_{10}$  is equal to  $55^{\circ}$ . At an arbitrary radius  $R_1$  the blade spacing is

$$S = \frac{2 \pi R_1}{Z_R}$$
(6)

Because of the blade thickness t or its projected thickness t_u in peripheral direction, the axial component  $V_1$ ' of the flow after entering the inducer is

$$V_{l}' = V_{l} \frac{s}{s - t_{u}}$$
(7)

giving a flow angle  $\beta_{J}$  ' of

$$\beta_{\underline{l}}' = \tan^{-\underline{l}} \left( \frac{\omega R_{\underline{l}}}{V_{\underline{l}}'} \right) = \beta_{\underline{B}}$$
(8)

If the blade has this angle  $\beta_1$ ' at the leading edge there occurs an effective positive incidence angle

$$i = \beta_{1} - \beta_{1}^{\dagger} = \beta_{1} - \beta_{B}$$
(9)

Although in actuality the projected blade width is then  $t_u' = t/\cos \beta_1'$ it is sufficiently accurate to take  $t_u = t/\cos \beta_1$  because of the small values of i, and because the blade leading edge will actually be profiled as shown by the dotted contours of Fig. 3. For the same reason the thickness t is taken as 0.10 in., although the blade thickness t farther downstream is actually 0.125 in.. With these assumptions the blade angle  $\beta_B = \beta_1'$  at the leading edge can be determined from Eqs. 6 to 8, or

$$\tan \beta_{\rm B} = \frac{\omega R_{\rm l}}{V_{\rm l}} \left(1 - \frac{t_{\rm u}}{s}\right) = \frac{\omega R_{\rm l}}{V_{\rm l}} \left(1 - \frac{t Z_{\rm R}}{\cos \beta_{\rm l} 2 \pi R_{\rm l}}\right)$$

Assuming V₁ to be constant along R₁, and from the condition that at R₁₀

$$\tan \beta_{lo} = \frac{\omega R_{lo}}{V_{l}} = \tan 55^{\circ}$$

there is with  $R_{lo} = 3.025$  in.

$$\tan \beta_1 = \frac{R_1}{R_{10}} \tan 55^\circ = \frac{R_1}{3.025} \tan 55^\circ$$

and

$$\tan \beta_{\rm B} = \tan \beta_{\rm L} \left[ 1 - \frac{(0.1)(17)}{\cos \beta_{\rm L} 2 \pi R_{\rm L}} \right]$$

Table I gives the angles  $\beta_1$ ,  $\beta_B$  and the incidence angles i along the radius  $R_1$  at the inducer inlet.

To be able to machine the impeller with simple means, it is assumed that its blade sufaces consist of generatrices that are everywhere parallel to the radius at the inducer discharge where the blades must adjoin the radial impeller blades. As shown in Fig. 4, the camber line of the inducer blades can then be specified by a single function y = f(x). At a point P the blade surface has the angle  $\gamma$ , where tan  $\gamma = dy/dx$ . This angle, however, is the angle in planes A-A which are perpendicular to the radius at station Q, where the inducer blades line up with the impeller blades. To obtain the actual blade angle  $\beta_B$  at a radius  $R_1$  the blade surface must be intersected with a cylinder of radius  $R_1$ . For a point P(x,y) of the blade surface the blade angle  $\beta_B$  at the radius  $R_1$  is from Fig. 4

$$\tan \beta_{\rm B} = \frac{\rm dy}{\cos \theta \, \rm dx} = \frac{\tan \gamma}{\cos \theta}$$

However

$$\cos \theta = \frac{\sqrt{R_1^2 - y^2}}{R_1}$$

Thus

$$\tan \beta_{\rm B} = \frac{\tan \gamma}{\sqrt{1 - (y/R_{\rm l})^2}} = \frac{dy/dx}{\sqrt{1 - (y/R_{\rm l})^2}}$$
(10)

A function y = f(x) for the blade surface will now be established such that the blade angles  $\beta_B$  of Table I can be obtained along the radius  $R_1$  by varying the axial length x of the inducer blades, as indicated in Fig. 3. In particular, the camber line of the inducer blades is chosen to be an ellipse. In accordance with Fig. 5

$$y = b - \frac{b}{a} \sqrt{a^2 - x^2}$$
 (11)

where 2a and 2b are the lengths of the major and minor axes of the ellipse, respectively. From Eq. 11

$$\frac{dy}{dx} = \tan \gamma = \frac{b}{a} \frac{x}{\sqrt{a^2 - x^2}}$$
(12)

Referring to Fig. 3, the values of "a" and "b" will be determined by specifying the conditions at stations C and D at the radii  $R_{1o} = 3.025$ in. and  $R_{1i} = 0.99$  in. where, in accordance with Table I, the flow angles  $\beta_{\rm B}$  must be 50.32°, and 18.08°, respectively. As shown in Fig. 3, it is assumed also that the axial lengths x of the inducer blades are 1.8 in. at C and 1.255 in. at D. These data are sufficient to determine the values of "a" and "b". However if Eqs. 11 and 12 are introduced into Eq. 10, one obtains fourth-order equations which cannot be solved with simple means. For this reason a method of successive approximations is used by assuming values for the angles  $\gamma_{\rm T}$  and  $\gamma_{\rm H}$  of Fig. 5 at  $R_{\rm lo}$  and  $R_{\rm li}$  and calculating the corresponding angles  $\beta_{\rm B}$  by means of Eq. 10. Let, in accordance with Fig. 5,

$$x_{T} = 1.8 = l$$
  
 $x_{H} = 1.255 = \zeta l = (0.697)$ 

Then, from Eq. 12, with c = b/a,

$$\tan^{2} \gamma_{\rm T} = \frac{c^{2}}{(a/\ell)^{2} - 1}$$
$$\tan^{2} \gamma_{\rm H} = \frac{\zeta^{2} c^{2}}{(a/\ell)^{2} - \zeta^{2}}$$

giving

$$\left(\frac{a}{k}\right)^{2} = \frac{\zeta^{2}(\tan^{2}\gamma_{T} - \tan^{2}\gamma_{H})}{\zeta^{2}\tan^{2}\gamma_{T} - \tan^{2}\gamma_{H}}$$
(13)

l

$$c^{2} = \left(\frac{b/\ell}{a/\ell}\right)^{2} = \frac{(1 - \zeta^{2}) \tan^{2} \gamma_{T} \tan^{2} \gamma_{H}}{\zeta^{2} \tan^{2} \gamma_{T} - \tan^{2} \gamma_{H}}$$
(14)

Successive approximations of  $\gamma_{\rm T}$  and  $\gamma_{\rm H}$  established the following final values:

$$Y_{\rm T} = 49.964^{\circ}$$
; tan  $Y_{\rm T} = 1.1902$   
 $Y_{\rm H} = 17.817^{\circ}$ ; tan  $Y_{\rm H} = 0.3214$ 

For these angles, from Eqs. 13 and 14,

$$\frac{a}{\ell} = 1.04442; a = 1.8799$$
  
 $\frac{b}{\ell} = 0.37460; b = 0.6743$ 

and, by Eq. 11

$$\frac{y}{\ell} = 0.37460 - 0.35867 \sqrt{1.09081 - (x/\ell)^2}$$
(15)

For  $x = \ell$  at  $R_{10} = 3.025$ ,

$$y = 0.47973$$

and for x = (0.697) lat R = 0.99,

With these values, from Eq. 10, at  $R_{10} = 3.025$ ,

$$\tan \beta_{Bo} = \frac{1.1902}{\sqrt{1 - (0.47973/3.025)^2}} = 1.20545$$

and, at  $R_{li} = 0.99$ ,

$$\tan \beta_{\rm Bi} = \frac{0.3214}{\sqrt{1 - (0.1721/0.99)^2}} = 0.32637$$

Table I shows that these angles coincide very closely with the required blade angles at these radii.

All blade angles  $\beta_{\rm B}$  of Table I at the different radii  $R_1$  can be obtained with the blade surface that is given by Eq. 15, for a particular change of the distance x of Figs. 3 and 5 with the radius  $R_1$ . This relationship between x and  $R_1$  must be determined with an iterative method. For chosen values of x there can be determined y and dy/dx from Eqs. 15 and 12. These values introduced into Eq. 10, for the radius  $R_1$  under consideration, give the value of  $\beta_B$ . If the blade angle thus determined differs from the required blade angle of Table I, the distance x must be varied until the correct angle is obtained. Drawing 2204 gives the values of z = 1.8 - x vs.  $R_1$  that were obtained in this manner for the blade surface of Eq. 15 whose coordinates are listed also in Dwg. 2204.

With this design the inducer can be fabricated from a forging by first machining the tip controur of the blades and the surface of revolution of the leading edges that is given by z vs. R. Then the blade passages can be produced by an end-mill that is moved in x and y directions, and along the radius, to produce the hub contour, However, with the described design the axis of the end-mill need not be tilted to produce the correct inlet blade angles.

# 3. Diffusor

The diffusor is arranged in a cylindrical annulus downstream of the impeller discharge, having the mean radius  $R_2 = 5.5$  in., and a radial height  $b_2 = 0.61$  inches. Ahead of the diffusor at station (2) the flow properties are obtained with the relations of Table A I. From Eq. A I(7), and the data established earlier,

$$\frac{T_2}{T_0} = 1.08402$$

From Eq. A I (8)

$$\frac{T_2'}{T_0} = 1.07013$$

From Eq. A I (6)

$$\frac{T_{t2}}{T_0} = 1.17411$$

From Eq. A I (20)

$$\frac{P_2}{P_0} = 1.2677$$

and from Eq. A I (19)

$$\frac{P_{t2}}{P_0} = 1.6764$$

The Mach number  $M_{V2}$  of the velocity  $V_2$  ahead of the diffusor is from Eq. A II(6)

$$M_{rp} = 0.6446$$

for the chosen flow angle

A preliminary analysis showed that a minimum of two diffusor blade rows is necessary to produce an acceptable diffusor efficiency. These rows are designed in the same manner as bladings of axial-flow compressors by using the method of Ref. 3. In the following, station (3) is after the first diffusor blade row and station (4) is located after the second diffusor row, as shown in Fig. 1.

Neglecting the change of the through-flow velocity because of the density increase from station (2) to station (3) the diffusion factor D of the first diffusor blade row is

$$D = 1 - \frac{\cos \alpha_2}{\cos \alpha_3} + \frac{(\tan \alpha_2 - \tan \alpha_3)}{2\sigma} \cos \alpha_2$$
(16)

where  $\alpha_3$  is the average flow angle at station (3) and  $\sigma$  the cascade solidity defined by

$$\sigma = \frac{\text{blade chord}}{\text{blade spacing}} = \frac{c}{s}$$

For different deflections  $\Delta \alpha = \alpha_2 - \alpha_3$  and  $\sigma$  it is possible therefore to evaluate D from Eq. 16. The losses increase with increasing values of D. For the first diffusor blade row these losses can be expressed by the total pressure loss coefficient Y_t defined by

$$Y_{t} = \frac{\Delta P}{P_{t2} - P_{2}} = \frac{P_{t2} - P_{t3}}{P_{t2} - P_{2}}$$
(17)

where  $\Delta P$  is the loss in total pressure in the blade row, and  $P_{t2}$ ,  $P_2$ , the total and static pressure, respectively, ahead of the cascade. Reference 4 shows that Y of a stator blade row with a discharge angle  $\alpha_3$ , diffusion factor D, and solidity  $\sigma$  can be calculated from

$$Y = \frac{2\sigma}{\cos\alpha_3} \left[ 0.0004 + 0.0639(D + 0.1)^{2.91} + 0.057D^{2.02} (1 - \lambda)^{3.77} \right]$$
(18)

The factor  $\lambda$  is defined by

$$\lambda = \frac{R - R_{H}}{R_{T} - R_{H}}$$
(19)

where R is the radius at which Y is to be determined, and  $R_T$ ,  $R_H$  are the tip and hub radii, respectively, of the blading. Since  $1 - \lambda = 1$  at  $R_H$ , and  $1 - \lambda = 0$  at  $R_T$ , the loss coefficient Y of Eq. 18 is higher at the hub than at the tip, if the other quantities in Eq. 18 do not vary radically along R. Equation 18 may give a realistic description of the loss variation in radial direction if the blade heights are large with respect to their chords, as for instance in axial compressors for jet engines. In such compressors the stator blades are attached at the tip and they usually have a clearance at the hub to prevent rubbing with the rotor assembly. The NASA calculating procedure of Refs. 3 or 4 does not separate the overall blade loss into profile losses, secondary or end losses, and tip clearance losses. End and tip clearance losses depend on the ratio of blade height and chord and on the ratio of blade gap to blade height, respectively, and it is evident from Eq. 18 that these quantities do not influence the overall loss coefficient of the NASA design procedure. In the cascades to be determined the blade gap is zero but the ratio of blade height and chord, or  $b_2/c$ , is quite small compared with the values in jet engine compressors, and the end losses will be very much larger than those in stator cascades of such machines. It is assumed therefore that Eq. 18 for the mid-span, or for  $\lambda = 0.5$ , establishes the profile loss coefficients  $Y_{_{\rm D}}$  only, or

$$Y_{p} = \frac{2\sigma}{\cos\alpha_{3}} \left[ (0.004 + 0.0639(D + 0.1)^{2.91} + 0.0042 D^{2.02}) \right]$$
(20)

To this profile loss coefficient will be added the so-called secondary loss coefficient  $Y_s$  to give the total loss coefficient  $Y_+$ , such that

$$Y_{t} = Y_{p} + Y_{s} = \frac{P_{t2} - P_{t3}}{P_{t2} - P_{2}}$$
 (21)

Eq. 13(76) of Ref. 5, p. 380, gives the so-called induced drag coefficient  $C_{\rm Di}$  of axial-flow cascades where the first part is the drag coefficient  $C_{\rm DS}$  due to secondary flow effects, whereas the second part is due to tip clearance losses. This part is taken to be zero because no radial blade gaps  $\delta$  exist in the present diffusor configuration. Hence

$$C_{\rm DS} = 0.04 C_{\rm L}^2 \sigma \frac{\rm s}{\rm h}$$
(22)

where the blade height h equals  $b_2$ . The lift coefficient  $C_L$  is equal to (see Eq. 13(14), Ref. 5, p. 337)

$$C_{\rm L} = \frac{2}{\sigma} (\tan \alpha_2 - \tan \alpha_3) \cos \alpha_{\infty}$$
 (23)

The angle  $\alpha_{m}$  is obtained from

$$\tan \alpha_{\infty} = \frac{\tan \alpha_2 + \tan \alpha_3}{2}$$
(24)

Equation 13(11) of Ref. 5 relates the drag coefficient to the total pressure loss coefficient  $\zeta$  which, in the present application, would be defined by

$$\zeta = \frac{\Delta P}{P_{t3} - P_3}$$

It must be noted that  $\zeta$  relates the drop in total pressure to the discharge conditions of a cascade. Then, since

$$I_{s} \equiv \frac{\Delta P}{P_{t2} - P_{2}}$$

there is with Eqs. 22, 23, and 24

$$Y_{s}' = 0.16 \frac{s}{h} \cos^{2} \alpha_{2} \left[ \tan \alpha_{2} - \tan \alpha_{3} \right]^{2} \sqrt{1 + \frac{1}{\mu} [\tan \alpha_{2} + \tan \alpha_{3}]^{2}}$$
 (25)  
since  $1/\cos \alpha_{\infty} = \sqrt{1 + \tan^{2} \alpha_{\infty}}$  The secondary loss coefficient of Eq. 25  
is denoted by  $Y_{s}'$  to distinguish it from a secondary loss coefficient  $Y_{s}''$   
that has been proposed in Ref. 6. In Ref. 6 it is stated that the ratio  
 $Y_{s}''/(Y_{p} + Y_{s}'') = Y_{s}''/Y_{t}''$  is a unique function of  $\Delta \alpha(c/h)$ , where  $\Delta \alpha$  is  
the flow deflection in radians, and c/h the ratio of blade chord and blade  
height. This relationship is shown in Fig. 6. For known values of  $Y_{p}$  and  
 $Y_{s}''/Y_{t}''$  there are

$$Y_{s}'' = Y_{p} \frac{(Y_{s}''/Y_{t}'')}{1 - (Y_{s}''/Y_{t}'')}$$
(26)

and

$$I_{t}'' = \frac{Y_{p}}{1 - (Y_{s}''/Y_{t}'')}$$
(27)

The losses in the diffusor blade rows will be determined with Eq. 25 as well as with Eq. 26 for purposes of comparison. These two methods are

based on different models and concepts. It can be noted that for given flow angles the secondary losses of Eq. 25 are primarily a function of the ratio of blade spacing and blade height, whereas with the method of Ref. 6, or Eq. 26, they are depending mainly on the ratio of blade chord and blade height. Evidently, if Eq. 25 is used, one obtains different cascade arrangements for a specified total loss than if Eq. 26 is applied, and this situation is indicative of the present state of ignorance about secondary flows in general. A survey of the available analytical methods for the determination of secondary flow effects is given in Ref. 7.

As shown in Dwgs. 2202 and 2210-1, the diffusor blades will have a circular platform with a threaded cylindrical extension to attach them to the blade holders, which are shown as item 1 in Dwg. 2209. This design has been adopted to be able to change the blade stagger angle in the diffusor cascades if, because of the irregular flow conditions at the impeller discharge, the average flow angle  $\alpha_2$  differs from the design value of  $65^{\circ}$ . This diffusor blade attachment requires however, that each blade row does not have more than 38 blades. For Z = 38, the blade spacing s at the mean radius  $R_2 = 5.5$  in. becomes

$$s = \frac{2 \pi R_2}{Z} = 0.9094$$
 in.

and

$$\frac{s}{h} = \frac{s}{b_2} = \frac{0.9094}{0.61} = 1.4908$$
(28)

For particular values of  $\sigma = c/s$ ,

$$\frac{c}{h} = \sigma \frac{s}{h} = \sigma(1.4908)$$
(29)

For  $\Delta \alpha$  in degrees, the variable  $\Delta \alpha(c/h)$  of Fig. 6 is,

$$\Delta \alpha(c/h) = \Delta \alpha^{\circ} \frac{\pi}{180} \sigma(1.4908) = \frac{2.602}{100} \sigma \Delta \alpha^{\circ}$$
(30)

Table II shows the diffusion factor D, the profile losses  $Y_p$ , and the overall loss coefficients  $Y_t$ ' and  $Y_t$ " as functions of solidity for flow deflections  $\Delta \alpha = 10$ , 12 and  $14^\circ$  in the first blade row of the diffusor. The quantities  $Y_t$ ' and  $Y_t$ " are also plotted in Fig. 7.

Although it is desirable to have the highest possible flow deflection  $\Delta \alpha$  in the first diffusor blade row, the general level of the losses as evidenced by Fig. 7, and the non-uniform and non-steady flow conditions at the impeller exit, make it advisable to limit  $\Delta \alpha$  to 12°. For this deflection the data of Fig. 7 show that the solidity should be about unity to obtain loss coefficients Y_t that are smaller than about 0.12. Experience with diffusors of centrifugal compressors seems to indicate however that, in spite of the results of Fig. 7, more favorable conditions may be obtained for higher solidities, primarily because of the afore-mentioned irregular flow properties at the rotor discharge. At higher solidities the diffusor blades form channels with better guidance of the flow than if the solidity were low. These channels will act as flow straighteners which can equalize the flow irregularities with smaller flow separations than those which might occur in low-solidity cascades where the diffusion factors and the blade loadings are higher. It is likely then that the performance of the second diffusor blade row, and possibly that of the whole diffusor, is better than if the solidity of the first row is small. In general, the writer is of the opinion that the secondary losses do not increase as radically with the flow deflection  $\Delta \alpha$  and the solidity  $\sigma$  as obtained by Ref. 6.

For these reasons it was decided to build two sets of diffusors. In one, denoted by A, the solidity of the first row was chosen as 1.6. In

another, which is denoted by B, the first row has a solidity of 0.95. The deflections  $\Delta \alpha$  have been chosen as  $12^{\circ}$  for both first rows of A and B. However, since the effects due to the non-steady impeller exit flows cannot be evaluated, the performance of these cascades will be determined with the loss coefficients of Fig. 7. The design criteria of the two first diffusor blade rows are listed in Table III, which also gives the values of the chosen maximum blade thickness.

The flow angle  $\alpha_3$  ahead of the second diffusor blade row is then  $65 - 12 = 53^{\circ}$ . Theoretically, the highest pressure recovery would be obtained in the diffusor if this angle could be reduced to zero in the second row. It can be seen, however, that the blade loadings and the losses would become excessive for such deflections. Preliminary investigations showed that the deflections  $\Delta \alpha = \alpha_3 - \alpha_4$  cannot exceed about  $26^{\circ}$  to  $38^{\circ}$ at reasonable loss coefficients, so that after the diffusor the flow angles  $\alpha_4$  will be between  $27^{\circ}$  and  $15^{\circ}$ . Even though the kinetic energy of these whirl components of the discharge flow at station (4) cannot be converted into pressure rise, the overall efficiency of the compressor will be better than the one obtainable if it were tried to reduce the flow angle  $\alpha_4$  to zero.

Because it is intended to orient the blades of the second row in such a manner that they form a so-called tandem foil arrangement with the blades of the first row, the second diffusor row must also have 38 blades. Thus, its geometrical properties are likewise given by Eqs 28, 29, and 30. The profile losses  $Y_p$  of the second row of diffusor blades can be determined by Eq. 20 if  $\alpha_3$  is replaced by  $\alpha_4$ . The diffusion factors of these rows are obtained by Eq. 16, replacing  $\alpha_2$  by  $\alpha_3$  and  $\alpha_3$  by  $\alpha_4$ . The overall loss coefficient  $Y_t$  is, similarly to Eq. 17,

$$Y_{t} = \frac{P_{t3} - P_{t4}}{P_{t3} - P_{3}}$$
(31)

The secondary flow loss coefficients  $Y_s$  will be determined by Eq. 26, replacing  $\alpha_2$  by  $\alpha_3$ , and  $\alpha_3$  by  $\alpha_4 = \alpha_3 - \Delta \alpha$ , and also with the method proposed in Ref. 6 by using the curve of Fig. 6. The results for different solidities and deflections  $\Delta \alpha$  are listed in Table IV and plotted in Fig. 8.

Figure 8 shows that the overall losses increase very radically with solidity if the secondary flow losses are calculated in accordance with Ref. 6. If Eq. 25 is used however to determine  $Y_s$ , the overall losses  $Y_t$ ' are almost constant for different values of  $\sigma$ , in fact they have a minimum for solidities of about unity. The data of Fig. 8 for  $Y_+$ "; that is, using  $Y_s$  of Ref. 6, suggest that with solidities much smaller than unity a diffusor with very low losses could be designed. However, not only would the blade chords be excessively small in such cascades, but the writer also believes that because of the high blade loading the flow would be too severely separated to make possible the small losses that Ref. 6 predicts. If in contrast to this opinion, the method of Ref. 6 should prove to give the correct values of Y_s", a cascade with solidity of 1.6, which was chosen for blade row Al, would have excessive losses. It was decided, therefore, to design two second row diffusor cascades also. Both rows will have a deflection  $\Delta \alpha = \alpha_3 - \alpha_4 = 32^\circ$  to keep the losses within acceptable limits, independent of whether the one or the other prediction method gives the correct loss coefficients. The so-called row A2 will be designed for  $\sigma = 1.4$ , and for row B2 the solidity is chosen as unity. If Eq. 25 predicts the secondary losses properly, both cascades should have about equal losses. On the other hand, if Ref. 6 gives realistic secondary losses, row A2 would be greatly inferior to row B2. Although it will be

possible to arrange row A2 or B2 after either of the two first rows Al or B1, for calculating purposes the so-called diffusor A is supposed to consist of rows A1 and A2 and diffusor B of rows B1 and B2. The design parameters of the second diffusor blade rows are listed in Table V.

The blade profiles and their orientation in the cascade are determined with the method of Ref. 3. The necessary calculating steps are described in paragraph 8 of Ref. 8. The basic thickness distribution of the profiles is shown in Fig. 13 of Ref. 8. Except for slight modifications near the leading edge this distribution corresponds to that of a British C-4 profile. The camber line of the profiles is a circular arc with camber angle  $\varphi$ . For known values of  $\varphi$  and thickness ratios t/c the profile coordinates are obtained with the relations of Fig. 14 of Ref. 8.

Figure 9 shows the attitude of a blade in a diffusor cascade and explains the symbols that are used for the profile calculations in Table VI. By using the method of Ref. 3 one often obtains excessively large incidence angles. As seen from Table VI this situation occurs for row Al where  $i = + 4.312^{\circ}$ , for row Bl where i = -2.95, and for row B2 where  $i = -7.002^{\circ}$ . For these rows, incidence angles  $i^*$  of  $+2^{\circ}$ ,  $-1^{\circ}$ , and  $-2^{\circ}$ , respectively, are chosen, and the corresponding camber angles  $\varphi^*$  and the stagger angles  $\gamma^*$  are calculated with the values of  $d\delta/di$  of Fig. 177 of Ref. 3. Table VI also lists the drawings of Appendix B where the different blade profiles and their coordinates are shown. From these drawings the angles  $\Delta\gamma$  of Fig. 9 were determined graphically and were used to establish the stagger angles  $\gamma'$  that are necessary for the installation of the blades in the blade holders of Dwg. 2209.

## II. DESIGN POINT PERFORMANCE

# 1. Rotor

For a chosen total temperature  $T_0 = 520^{\circ}R$  at the compressor inlet, and for  $U_2/a_0 = 0.7156$ ,  $M_{Wl} = 0.4842$  (see Eq. 1), the static temperature  $T_1$ , and the static pressure  $p_1$  at the inlet eye of the impeller are obtained from Eqs. A I (5) and A I (18), or

$$\frac{T_{1}}{T_{0}} = 0.9848$$

$$\frac{P_1}{P_0} = 0.9478$$

The absolute value of the total pressure  $P_0$  at the impeller inlet is as yet unknown because in the test rig the compressor operates as an exhauster. Drawing 2223 shows that the air entering the compressor is expanded in a throttle valve to a pressure below atmospheric pressure. From a plenum chamber (Dwg. 2164-1), where the kinetic energy of the flow through the throttle valve openings is destroyed by a system of adjustable screens, the air enters the suction pipe through a profiled orifice. This suction pipe with an inner diameter of 18 inches has a length of about 18 feet, so that non-uniformities of the flow which have not been removed in the plenum chamber will be equalized ahead of the flow measuring nozzle of Dwg. 2216. This nozzle has a diameter of 5.38 inches, hence its flow area is only about 9 percent of the cross sectional area of the suction pipe. The large acceleration of the flow in the nozzle will produce a uniform flow at its discharge. Drawing 2222 shows the location of the flow nozzle with respect to the compressor inlet. Drawing 2202 shows that provisions have been made in the nozzle casing (Dwg. 2140) to carry out flow surveys ahead of the 7 in. diameter duct ahead of the impeller by

means of Pitot probes.

Drawing 2222 shows that a honeycomb flow straightener is arranged after the diffusor blade rows to remove the whirl components of the flow at this station, and that the air is then discharged into the atmosphere. This arrangement has been adopted for simplicity of the design, since it does not require a scroll or a complicated collector after the compressor from where the flow is discharged into the atmosphere through a throttling valve. Moreover, with this arrangement the driving power of the compressor is lower than with a test set-up where the inlet flow of the compressor is equal to the total pressure. However, the total inlet pressure  $P_0$ , which is equal to the total pressure in the 7 in. diameter inlet duct, depends on the pressure ratio that is produced by the compressor. If, as shown in Fig. 1, the conditions at the exit of the discharge duct, arranged after the annular flow straightener, are denoted by the subscript (6), the static pressure  $p_6$  must be equal to the ambient atmospheric pressure  $P_{atm}$ , or

$$P_{O} = P_{atm} \frac{1}{(p_{G}/P_{O})}$$
(32)

Hence it is necessary to determine the pressure ratio  $p_6/P_0$  to obtain  $P_0$ . Evidently,  $p_6/P_0$  depends on the pressure drops in rotor, diffusor and flow straightener which will be evaluated in Section I.3.

The weight flow rate w through the compressor can be determined from Eq. 2. For the assumed blockage factor  $k_{Bl} = 0.98$ , and since  $R_2 = 5.5$  inches,

$$\frac{1}{P_0} \sqrt{\frac{R_G T_0}{g}} = \frac{\pi R_2^2 k_{Bl}}{11.7944} = 7.8963 \text{ (in.}^2\text{)}$$
(33)

With  $R_{G} = 53.35 \text{ (ft-lb)/(lbm, }^{\circ}R)$ ,  $g = 32.174 \text{ ft/s}^2$ ,  $T_{O} = 520^{\circ} R$ ,

$$w = 0.2689 P_0 (1bm/s)$$
 (34)

In Eqs. 33 and 34,  $P_0$  is the absolute total inlet pressure in psia.

In the rotor the total temperature of the fluid is increased from  $T_0$  to  $T_{t2}$ . For an adiabatic process the energy increase due to this temperature rise is equal to the energy per unit flow rate that the rotor must transmit to the fluid. Hence, the power HP required to drive the rotor is, exclusive of bearing and other mechanical losses,

$$HP = \dot{w} c_{p} (T_{t2} - T_{0}) \frac{1}{550} (HP)$$
(34a)

With

$$c_p = R_G \frac{\gamma}{\gamma - 1}$$
 (ft-lb)/(lbm, ^oR)

and Eq. 33

$$HP = \frac{7.8963}{550} \frac{\gamma}{\gamma - 1} P_0 \sqrt{g R_G T_0} (\frac{T_{t2}}{T_0} - 1)$$

For  $\gamma = 1.4$ , and since  $T_{t2}/T_0 = 1.17411$ ,

$$\frac{HP}{P_0 \sqrt{g R_G T_0}} = \frac{8.7489}{(10^3)}$$
(35)

For  $T_0 = 520^\circ$  R,  $\gamma = 1.4$ ,  $R_G = 53.35$ , there is also,

$$HP = 8.2656 P_0 (HP) (36)$$

In Eqs. 35 and 36 the pressure  $P_0$  must be in psia.

The following data at the rotor discharge were obtained earlier:

$$\frac{T_2}{T_0} = 1.08402$$
$$\frac{P_2}{P_0} = 1.2677$$
$$\frac{P_{t2}}{P_0} = 1.6764$$

$$M_{V2} = \frac{V_2}{a_2} = 0.6446$$

With  $T_0 = 520^{\circ}R$ , or  $a_0 = 1117.85$  ft/s, the velocity of sound  $a_2$  at the rotor discharge is

$$a_2 = a_0 \sqrt{T_2/T_0} = 1163.86$$
 ft/s

and

$$V_{2} = 750.23$$
 ft/s

This average velocity at the rotor exit has an average flow angle  $\alpha_2 = 65^{\circ}$ .

# 2. Diffusor

The total pressure  $P_{t3}$  after the first diffusor blade row is obtained from Eq. 21, or

$$\frac{P_{t3}}{P_0} = (1 - Y_t) \frac{P_{t2}}{P_0} + Y_t \frac{P_2}{P_0}$$
(37)

where the pressure loss coefficients  $Y_t$  of the rows Al and Bl are listed in Table III. At station (3), after the first diffusor row, the velocity  $V_3$  has an average flow angle  $\alpha_3 = 53^{\circ}$ . Although the annulur flow areas are equal at the station (2) and (3), the boundary layer growth in the blade row will make the effective flow area smaller at (3) than at (2). At station (2) a restriction factor  $k_{B2} = 0.954$  has been assumed earlier to establish the diffusor annulus, or

$$A_2 = k_{B2} A_{geom}$$

where  $A_{geom}$  is the cross-sectional area of the annulus. At station (3) it is assumed that the effective flow area  $A_3$  is

$$A_3 = k_{B3} A_{geom}$$

and  $k_{B3} = 0.92$  by assumption.

The flow conditions at station (3) must be determined analytically for the flow area  $A_3$ , the flow angle  $\alpha_3$ , and the total pressure  $P_{t3}$ , by using the energy equation, the equation of motion, and the equation of continuity. The energy equation for an assumed adiabatic process of a steady flow gives

$$T_{t3} = T_{t2}$$

In fact, the same total temperature will occur at stations (4), (5) and (6), if the flow processes are adiabatic.

Since the conditions after the second diffusor row at station (4) must be established with the same approach as those at station (3), a calculating procedure will be developed with the symbols of Fig. 10. Figure 10a shows a diffusor cascade in an annulus. The effective flow areas are  $A_e = k_{Be} A_{geom}$  and  $A_d = k_{Bd} A_{geom}$  at entrance and discharge, respectively. The average axial components  $V_{ea}$  and  $V_{da}$  that are uniform over  $A_e$  and  $A_d$ , respectively are

$$V_{ea} = V_e \cos \alpha_e$$
  
 $V_{da} = V_d \cos \alpha_d$ 

A section through the blading of the diffusor row is shown in Fig. 10b, and Fig. 10c depicts the thermodynamic process between entrance and discharge in an entropy diagram. From the equation of motion

$$T_{te} = T_{td} = T_{e} + \frac{V_{e}^{2}}{2 g c_{p}} = T_{d} + \frac{V_{d}^{2}}{2 g c_{p}}$$
 (38)

From the equation of continuity, with  $\rho = p/(g R_G T)$ 

$$A_d V_d \cos \alpha_d \frac{P_d}{R_G T_d} = A_e V_e \cos \alpha_e \frac{P_e}{R_G T_e}$$
 (39)

With  $A_e/A_d = k_{Be}/k_{Bd}$ , Eq. 39 can be rewritten as

$$\frac{V_{d}}{\sqrt{g \vee R_{G} T_{d}}} = \frac{k_{Be}}{k_{Bd}} \frac{\cos \alpha_{e}}{\cos \alpha_{d}} \frac{(p_{e}/P_{O})}{\sqrt{(T_{e}/T_{O})}} \frac{V_{e}}{\sqrt{g \vee R_{G} T_{e}}} \frac{\sqrt{(T_{d}/T_{O})}}{(p_{d}/P_{O})}$$
(40)

With the Mach numbers

$$M_{d} = \frac{V_{d}}{\sqrt{g Y R_{G} T_{d}}}$$
(41)

$$M_{e} = \frac{V_{e}}{\sqrt{g \gamma R_{G} T_{e}}}$$
(42)

and

$$K = \frac{k_{Be}}{k_{Bd}} \frac{\cos \alpha_{e}}{\cos \alpha_{d}} \frac{p_{e}/P_{O}}{\sqrt{(T_{e}/T_{O})}} M_{e}$$
(43)

which is a constant for known entrance conditions and area ratios, there is from Eq. 40,

$$M_{d} = K \frac{\sqrt{(T_{d}/T_{O})}}{(p_{d}/P_{O})}$$
(44)

From Fig. 10c at the entropy  ${\rm s}_{\rm d}^{}, \; {\rm from \; Eq. \; 38},$ 

$$\frac{T_{td}}{T_d} = \frac{T_{te}}{T_d} = 1 + \frac{Y - 1}{2} M_d^2$$

and

$$\frac{P_{td}}{p_{d}} = (1 + \frac{\gamma - 1}{2} M_{d}^{2})^{\gamma/(\gamma - 1)}$$

From these relations

$$\frac{T_{d}}{T_{0}} = \frac{T_{te}/T_{0}}{1 + \frac{Y - 1}{2} M_{d}^{2}}$$
(45)

and

$$\frac{P_{d}}{P_{O}} = \frac{P_{td}/P_{O}}{(1 + \frac{\gamma - 1}{2} M_{d}^{2})^{\gamma/(\gamma - 1)}}$$
(46)

where, similar to Eq. 37, with the pressure loss coefficient  $Y_t$  of the blade row,

$$\frac{P_{td}}{P_{0}} = (1 - Y_{t}) \frac{P_{te}}{P_{0}} + Y_{t} \frac{P_{e}}{P_{0}}$$
(47)

Because of their exponential expressions it is not possible to substitute Eqs. 45 and 46 into Eq. 44 to obtain a closed solution for  $M_d$ . It is necessary to choose values of  $M_d$ , say  $M_d^*$ , to calculate  $T_d/T_0$  and  $p_d/P_0$ from Eqs. 45 and 46. These quantities are then used in Eq. 44 to determine the Mach number  $M_d$ . If  $M_d$  differs from  $M_d^*$ , other values of  $M_d^*$ must be chosen until agreement is reached. With the final value of  $M_d = M_d^*$  it is possible to calculate the ratios  $T_d/T_0$  and  $p_d/P_0$  with Eqs. 45 and 46, and the velocity  $V_d$  is obtained from Eq. 41, or

$$V_{d} = M_{d} a_{0} \sqrt{(T_{d}/T_{0})}$$
(48)

This iterative calculating process has been carried out for the rows Al and Bl, for both overall loss coefficients  $Y_t$ ' and  $Y_t$ " that are listed in Table III. In Table VII where the final data are presented, the columns designated by Al' and Al" give the performances of blade row Al for the overall loss coefficients  $Y_t$ ' and  $Y_t$ ", respectively, of Table III. A similar designation is used for the performance of blade row Bl, for the losses  $Y_t$ ' and  $Y_t$ ". With the flow conditions thus determined at (3), the flow properties at station (4), after the second diffusor blade row, can be calculated with the same method. These calculations are also carried out with both loss coefficients  $Y_t$ ' and  $Y_t$ " of Table V. The quantity K of Eq. 43 is determined for  $k_{Be} = k_{B3} = 0.92$  and  $k_{Bd} = k_{B4} = 0.88$ . The flow angles  $\alpha_3$  and  $\alpha_4$  are 53° and 21°, respectively, in accordance with Table VI.

The calculations of the flow conditions after the diffusor blade rows are quite lengthy and have to be carried out with great precision. On the other hand they do not warrant the use of a high-speed digital computer for which a rather elaborate program would have to be set up to perform the necessary iterations automatically. For the debugging of such a program several tries would probably be necessary until results could be obtained. However, for evaluations of the type discussed above, in fact for most calculations of this report, modern electronic and programmable display calculators are admirably suited. The Monroe Model 1655 with Card Reader CR-1 used at the Turbo-Propulsion Laboratory has proved to be an extremely valuable tool, and the writer believes that such calculators will completely revolutionize analytical engineering approaches. Libraries of programs for a variety of engineering calculations are already available, and programs for particular tasks can be established with great ease. Since most calculators, specifically the Monroe Model 1655, have provisions to verify and debug programs with a step by step procedure, program errors can be detected and corrected without delay by the programmer himself, without having to go to the trouble of submitting several modified programs as is necessary in most central computer facilities. At present, many high-speed computers are used for programs that do not really need the small access time and the large storage capacity of modern systems, and the use of programmable calculators will make available more time for those calculations that can be solved only by high-speed machines. Conversely the engineer or student is relieved of many routine calculations, without having to worry about inaccuracies and errors, and he obtains

results when needed during the progress of his work. Thus more time is available for creative efforts where the formulation of a problem is more important than the manipulation of numbers that is necessary for its solution.

To show the possibilities that exist in solving engineering problems with the Monroe 1655 calculator, some of the programs used for the calculations for this report are enclosed in Appendix D. Each program consists of a description, an operating instruction, and a listing of the program steps with their codes. The serial numbers of these programs refer to the private program library of the writer. The data of Table VII for the conditions after the two diffusor blade rows have been obtained with Program No. 109.

Appendix D also contains a more elaborate calculating program that requires the use of the Monroe calculator Model 1880 which is an advanced and more expensive machine with larger memory capacity.

The pressure ratios  $P_{t4}/P_0$  of Table VII will be used to determine the so-called total-to-total compressor efficiency  $\Pi_{t4}$ . For an isentropic compression from the total inlet pressure  $P_0$  and the total inlet temperature  $T_0$  to the total discharge pressure  $P_{t4}$ , the rise in total temperature  $\Delta T_{tis}$  equals

$$\Delta T_{tis} = T_{O} \left[ (P_{t4}/P_{O})^{(\gamma - 1)/\gamma} - 1 \right]$$

Since this temperature rise is proportional to the theoretical energy input per unit mass flow rate, and because for the actual process the energy per unit mass flow rate necessary to drive the rotor is proportional to  $T_{t4} - T_0$ , which equals  $T_{t2} - T_0$ , the compressor efficiency  $T_{t4}$  is

$$\eta_{t4} = \frac{(P_{t4}/P_0)^{(\gamma - 1)/\gamma} - 1}{(T_{t2}/T_0) - 1}$$
(49)

The compressor efficiencies  $\eta_{t4}$  are given also in Table VII. If the secondary flow losses are calculated in accordance with Eq. 25, an efficiency of 81.5% is obtained for the compressor with diffusor A, whereas if the losses for this configuration are determined with the method of Ref. 6 the efficiency is 78.9% only. The calculated compressor efficiencies with diffusor B are 82.3% and 82.8%, respectively, with the two methods.

It would appear, therefore, that higher efficiencies can be reached with diffusor B than with diffusor A. However, for the reason mentioned earlier, it may be that more favorable conditions can be obtained with the high-solidity diffusor A. Moreover, the performance calculations cannot take account of the radial velocity gradients or the non-steady flow at the rotor discharge, and it is because of these uncertainties that tests must be carried out to verify which diffusor configuration gives the best performance.

#### 3. Flow Straightener and Discharge Duct

The flow conditions in the flow straightener and the discharge duct of Fig. 11a can be determined with approximate methods since the Mach numbers of the flow are small. At station (4), at the diffusor discharge, the velocity  $V_{\rm h}$  has the angle  $\alpha_{\rm h} = 21^{\circ}$  with the axial direction. The peripheral component  $V_{\rm h}$  sin  $\alpha_{\rm h}$  will be destroyed as the flow enters the axial flow straightener. This element consists of a honeycomb with hexagonal channels that have a spacing of 0.125 inch, a wall thickness of about 0.002 to 0.003 inch, and an axial length of 1.38 inch. As shown in Dwg. 2212, twelve honeycomb segments are arranged in an annulus between spacers that are 0.25 inches thick. On assuming that the flow leaving the diffusor does not diverge in radial direction, the velocity  $V_{\rm g}$  in the channels of the flow straightener is with the symbols of Fig. 11a, neglecting density

changes,

$$I_{4} \simeq \pi R_{2} b_{2} = V_{S} [2 \pi R_{2} b_{2} - (12)(0.25) b_{2}] (\frac{0.123}{0.125})$$

where the fraction 0.123/0.125 is the blockage due to the wall thickness of the honeycomb straightener. With  $V_{4a} = V_4 \cos 21^\circ = 0.933 V_4$ ,  $R_2 = 5.5$ ,

$$V_{\rm g} = V_{\rm h} \cos 21^{\circ} \frac{(0.125/0.123)}{1 - \frac{(12)(0.25)}{2 \pi (5.5)}} = 1.039 V_{\rm h}$$
(50)

As shown in Fig. 11a, it is supposed that after the honeycomb the flow will diverge radially to a height  $b_5 = 0.65$  in. at station (5). Hence the velocity  $V_5$  is assumed to be

$$V_5 = \frac{b_2}{b_5} V_{4a} = \frac{0.61}{0.65} (0.933) V_4 = 0.8764 V_4$$
 (51)

Because the discharge duct between stations (5) and (6) is not a properly designed diffusor it will be assumed that the flow will follow the dashdotted boundaries of Fig. 11a. Neglecting the change in density from (5) to (6), the velocity  $V_6$  is then

$$V_6 = V_5 \frac{2 \pi (5.5)(0.65)}{2 \pi (6.2)(0.70)} = 0.824 V_5 = 0.722 V_1$$

Figure 11b shows the flow process between stations (4) and (6) in an entropy diagram. If the flow is adiabatic the total temperature  $T_t$  is everywhere constant, equal to  $T_{t4} = T_{t2}$ . From the diffusor discharge at (4) to the entrance of the honeycomb the velocity  $V_4$  is reduced to  $V_{4a}$  at the constant static pressure  $p_4$ . This process is associated with an increase in entropy from  $s_4$  to  $s_4$ ', reducing the total pressure from  $P_{t4}$  to  $P_{t4}$ '. The velocity is then increased from  $V_{4a}$  to  $V_8$  at station (4') just inside the entrance to the flow straightener. If this acceleration is isentropic the pressure  $p_4$  is reduced to  $p_4$ '. With the symbols of Fig. 11b,

$$T_{\mu}^{*} = T_{\mu} + \frac{V_{\mu}^{2} - V_{\mu a}^{2}}{2 \text{ g } c_{p}}$$

Since  $C_p = R_G \gamma/(\gamma - 1)$ , and  $V_{4a} = V_4 \cos \alpha_4$ ,

$$\frac{T_{4}^{*}}{T_{0}} = \frac{T_{4}}{T_{0}} + \frac{\gamma - 1}{2} \left( \frac{V_{4} \sin \alpha_{4}}{a_{0}} \right)^{2}$$
(53)

where  $a_0 = 1117.85$  ft/s and  $\alpha_4 = 21^{\circ}$ . Further,

$$\frac{P_{t4}}{P_{0}} = \frac{P_{4}}{P_{0}} \left( \frac{T_{t2}/T_{0}}{T_{4}*/T_{0}} \right)$$
(54)

The velocity increase from  $\rm V_{4a}$  to  $\rm V_S$  at the entropy  $\rm s_4'$  reduces the static temperature from T_4* to T_4', where

$$T_{4}' = T_{t2} - \frac{V_{s}^{2}}{2 g c_{p}}$$

or, with Eq. 50,

$$\frac{T_{4}'}{T_{0}} = \frac{T_{t2}}{T_{0}} - \frac{\gamma - 1}{2} \left(\frac{1.039 V_{4}}{a_{0}}\right)^{2}$$
(55)

Also

$$\frac{p_{\mu'}}{P_{t\mu'}} = \left(\frac{T_{\mu'}}{T_{t2}}\right)^{\gamma/(\gamma - 1)}$$

and

$$\frac{P_{4}'}{P_{0}} = \frac{P_{t4}'}{P_{0}} \left(\frac{T_{4}'/T_{0}}{T_{t2}/T_{0}}\right)^{\gamma/(\gamma - 1)}$$
(56)

The loss in total pressure  $\triangle P_S = P_{t4}' - P_{t4}''$  in the honeycomb will be determined with the frictional coefficient f of flows in pipes, or

$$\Delta P_{\rm S} = \left(\frac{\rm L}{\rm d_h}\right) f \frac{\rm p}{2} V_{\rm S}^2$$
(57)

The hydraulic diameter  $d_h$  of the flow channels in the honeycomb straigntener is 0.123 in., and L = 1.38 in. The factor f depends on the Ecynolds number

$$R_e = \frac{V_s d_h}{v}$$

Table VII shows that the velocities  $V_{4}$  do not differ greatly, hence  $R_{e}$  can be determined for an average value  $V_{4} = 330$  ft/s. Moreover the average ratio  $T_{4}/T_{0}$  is about 1.157, and the pressure  $p_{4}$  is nearly equal to the atmospheric pressure. For  $T_{4} = (1.157)(520) = 602^{\circ}$  R, and  $p_{4} = 14.7$  psia, there is  $v = 1.97(10^{-4})$  ft/s². Hence, with Eq. 50,

$$R_{e} = \frac{(1.039)(330)(0.123/12)}{1.97(10^{-4})} = 1.78(10^{4})$$

From Ref. 9 for smooth surfaces, f = 0.0265, and by Eq. 57

$$\Delta P_{\rm S} = \frac{(1.38)}{(0.123)} (0.0265) \frac{\rho}{2} V_{\rm S}^2 = 0.3 \frac{\rho}{2} V_{\rm S}^2$$

At the low Mach numbers of the flow, there is approximately

$$\frac{P}{2}V_{s}^{2} = P_{t4}' - P_{4}'$$

or

$$\frac{P_{t4}'}{P_{0}} = 0.7 \frac{P_{t4}'}{P_{0}} + 0.3 \frac{P_{4}'}{P_{0}}$$
(58)

From Fig. 11b, and Eq. 56 the static pressure  $p_{\mu}$ " is then obtained from

$$\frac{P_{4}}{P_{0}} = \left(\frac{P_{t4}}{P_{t4}} / P_{0}\right) \left(\frac{P_{4}}{P_{0}}\right)$$
(59)

The reduction of the velocity from  $V_S$  to  $V_5$  is supposed to occur at the static pressure  $p_4$ ", hence  $p_5 = p_4$ ", as indicated in Fig. 11b. The static temperature  $T_5$  is with Eq. 51,

$$\frac{T_{5}}{T_{0}} = \frac{T_{t2}}{T_{0}} - \frac{\gamma - 1}{2} \left( \frac{0.8764 \ V_{4}}{a_{0}} \right)^{2}$$
(60)

and the pressure ratio  $\mathrm{P}_{\mathrm{t5}}/\mathrm{P}_{\mathrm{0}}$  is

$$\frac{P_{t5}}{P_0} = \frac{P_{l4}''}{P_0} \left( \frac{T_{t2}/T_0}{T_5/T_0} \right)^{\gamma/(\gamma - 1)}$$
(61)

The loss in the discharge duct between stations (5) and (6) is assumed to be

$$P_{t6} - P_{t5} = (0.4)(P_{t5} - P_5)$$

Thus, with  $p_5 = p_4$ "

$$\frac{P_{t6}}{P_0} = 0.6 \frac{P_{t5}}{P_0} + 0.4 \frac{P_4''}{P_0}$$
(62)

With Eq. 52

$$\frac{T_{6}}{T_{0}} = \frac{T_{t2}}{T_{0}} - \frac{\gamma - 1}{2} \left( \frac{0.722 \ v_{l_{4}}}{a_{0}} \right)^{2}$$
(63)

and

$$\frac{P_{6}}{P_{0}} = \frac{P_{t6}}{P_{0}} \left( \frac{T_{6}/T_{0}}{T_{t2}/T_{0}} \right)^{\gamma/(\gamma - 1)}$$
(64)

For the data at the diffusor discharge (station (4)) of Table VII the conditions of state in the flow straightener and the discharge duct have been calculated with the above relations. The results are summarized in Table VIII. As discussed earlier, the static pressure  $p_6$  at the exit of the duct will equal the atmospheric pressure. If this ambient pressure

 $P_{atm}$  is taken as 14.7 psia, the total pressure  $P_0$  at the compressor inlet is obtained from Eq. 32. The last line of Table VIII gives these pressures for diffusors A and B and the two different losses which were taken into account for their performance prediction.

# 4. Compressor Performance at Design Point

The weight flow rate w and the driving power of the compressor can be determined from Eqs. 34 and 36 for the values of  $P_0$  from Table VIII. The pressures thus obtained are for a total inlet temperature  $T_0 = 520^{\circ}$  R and a speed of rotation N = 16,666 rpm. Of interest is also the torque M that is necessary to turn the compressor, which equals

$$M = \frac{HP(550)}{\omega} = \frac{HP(550)}{\pi N/30}$$
 (ft-lb) (65)

With Eq. 34, and N = 16,666 rpm

$$M = 2.6045 P_0$$
 (ft-lb)

or

$$M = 31.2554 P_0$$
 (in-lb) (65)

where  $P_0$  must be in psia. In Table IX the compressor performance data for the design point at N = 16,666 rpm and  $T_0 = 520^{\circ}$  R are summarized. Also given are the pressure ratios  $P_{t4}/P_0$  and  $p_6/P_0$ , and the efficiencies  $T_{t4}$  with the two diffusors A and B, for the two methods used for the determination of their secondary flow losses.

It is evident from Appendix A (Ref. 1), and the calculations of this report, that  $U_2/a_0$ ,  $\gamma = c_p/c_v$ , and the flow angles are the prime variables that establish the performance of a particular compressor, in fact of all designs which are geometrically similar. Except for possible changes in the loss coefficients which will be discussed later, the pressure ratio  $P_{t\mu}/P_0$  of these machines will be equal if  $U_2/a_0$ ,  $\gamma$ , and the flow angles

are equal. This situation occurs because the density ratios of the fluid and the Mach numbers of the flow remain constant at particular stations in the compressors, which makes it possible to maintain the same flow angles with respect to the bladings. From Eq. A II(9) it is seen that the dimensionless mass flow rate  $(\dot{m})$ * defined by

$$(\dot{m})* = \frac{(\dot{w}/g) \sqrt{g R_g T_0}}{\pi R_2^2 P_0}$$
 (66)

must be constant at these conditions. From Eq. 35 and Eq. A I(6) it is apparent that the dimensionless power (HP)*, defined by

$$(HP)* = \frac{(HP)(550)}{\pi R_2^2 P_0 \sqrt{g R_G T_0}}$$
(67)

is invariant also for similar machines that operate at the same values  $U_2/a_0$  and  $\gamma$ , and produce the same pressure ratio  $P_{t4}/P_0$ .

Since  $\omega = U_2/R_2$ , the moment of Eq. 65 becomes with Eq. 67, and

 $a_{0} = \sqrt{v g T_{G} T_{0}},$   $M = \pi R_{2}^{3} P_{0} \frac{(HP)*}{(U_{2}/a_{0}) \sqrt{\gamma}}$ (68)

Hence, similar to Eqs. 66 and 67 the so-called dimensionless moment (M)* will be defined as

 $(M)* = \frac{M}{\pi R_2^3 P_0}$  (69)

which is constant also for the conditions at which  $(\dot{m})$ * and (HP)* do not change.

Obviously the dimensionless quantities of Eqs. 66, 67, and 69 have equal magnitudes in any consistent system of units for geometrically similar compressors that operate at the same values of  $U_2/a_0$ ,  $\gamma$ , and  $P_{t\mu}/P_0$ , independent of their size and the magnitudes of  $P_0$  and  $T_0$ . However, the losses in these machines do not depend only on the angles and the Mach numbers but also on the Reynolds numbers of the flow. That the Mach numbers remain constant at fixed values  $U_2/a_0$ ,  $\gamma$ , and flow angles, independent of the magnitudes of  $T_0$  and  $P_0$ , is shown by Eqs. A II(4) and A II(6). The flow angles, and therefore the blade incidence angles, remain equal at particular stations because the ratios  $T/T_0$  and  $P/P_0$ , which establish the density ratios  $\rho/\rho_0$ , are also not affected by  $T_0$  and  $P_0$ . The Reynolds number  $R_e$  at a particular station, where the velocity V exists at p and T, can be expressed by

$$R_e = \frac{V R_2}{\mu_v} \rho$$

since, for geometrically similar compressors, the dimensions of all flow channels are constant fractions of the mean compressor radius  $R_2$ . If  $M_V$  is the Mach number of V, or V =  $M_V \sqrt{\gamma g R_G T}$ , and, since  $\rho = p/(g R_G T)$ , there is also

$$R_{e} = \left[\frac{P_{O} R_{2}}{\mu_{v} \sqrt{g R_{G} T_{O}}}\right] \left(\frac{p/P_{O} M_{v} \sqrt{\gamma}}{\sqrt{(T/T_{O})}}\right)$$
(70)

Since the dynamic viscosity  $\mu_v$  has the dimension (lb-s)/ft² in the system of units used in this report, the term in the square bracket is dimensionless. This is necessary because the term in the round bracket and R_e are dimensionless also.

Whereas, for reasons discussed earlier, the expression in the round bracket is constant for all geometrically similar compressors operating at particular values of  $U_2/a_0$ ,  $P_{t4}/P_0$  and  $\gamma$ , independent of  $P_0$  and  $T_0$ , the term in the square bracket depends on the compressor size, the gas properties, and the magnitudes of  $P_0$  and  $T_0$ . Experience has shown, however, that the influence of Reynolds number on losses in turbomachines is quite small, and that large increases of the losses occur only below some critical value of  $R_e$  which is usually reached only at very low pressures or with small dimensions. For most gases the dynamic viscosities increase slightly with temperature but the absolute magnitudes of  $\mu_v$  do not vary greatly for different gases. Most diatomic gases such as  $N_2$ ,  $O_2$ ,  $H_2$ , CO, and also air, have values of  $\gamma$  of about 1.4 at ambient temperature, and the ratio of the viscosities of the heaviest of these gases  $(O_2)$  and the lightest one  $(H_2)$  is only about 2. A change in Reynolds number by a factor of two has a very small influence on the losses, except near the above-mentioned critical value of  $R_e$ .

This discussion shows that geometrically similar compressors that operate with gases that have the same specific heat ratio will have almost equal values of  $(\dot{m})^*$ , (HP)*, and (M)* at particular values of  $U_2/a_0$  and  $P_{t4}/P_0$ , if the Reynolds numbers are sufficiently high. Evidently the efficiencies of the compressors at these operating conditions will then also be nearly equal, irrespective of the molecular weight of the grs and the magnitudes of inlet pressure and inlet temperature. The quantities  $(\dot{m})^*$ , (HP)* and (M)* are shown in Table IX for the ratio  $U_2/a_0 = 0.7156$ .

For a particular compressor operating with a particular gas, the dimensionless quantities of Eqs. 66, 67, and 69 can be simplified by introducing the ratios

$$\Theta_{\rm C} = \frac{{\rm T}_{\rm O}}{{\rm T}_{\rm REF}}$$
(71)

and

$$s_{\rm C} = \frac{P_{\rm O}}{P_{\rm REF}}$$
(72)

where  $T_{REF}$  and  $P_{REF}$  are usually taken as  $518.4^{\circ}$  R and 14.7 psia. The subscript C was introduced to differientiate these ratios from similar ones that later on are used for the performance calculations of the drive turbine.

With Eq. 71, the ratio  $U_2/a_0$  is also

$$\frac{U_2}{a_0} = \frac{(\pi/30) N R_2}{\sqrt{g \gamma R_G \theta_C T_{REF}}}$$

Hence in a compressor that handles a specific gas, equal values of  $U_2/a_0$ are obtained for equal ratios  $N/\sqrt{\theta_c}$ . Thus,

$$N_{\rm REF} = N / \sqrt{\theta_{\rm C}} \qquad (rpm) \tag{73}$$

will be called the referred speed of the compressor. Similarly, from Eq. 66, the so-called referred weight flow rate is defined by

$$\dot{w}_{\text{REF}} = \frac{\dot{w} \sqrt{\theta_{\text{C}}}}{\delta_{\text{C}}}$$
 (lbm/s) (74)

From Eq. 67 the referred power is

$$(HP)_{REF} = \frac{HP}{\delta_{C} \sqrt{\theta_{C}}}$$
(HP) (75)

and from Eq. 69 the so-called referred torque becomes

$$M_{\text{REF}} = \frac{M}{\delta_{\text{C}}} \qquad (\text{ft-lb}) \text{ or (in-lb)} \qquad (76)$$

On the basis of the previous discussion it can be stated that a compressor designed for and operated with a particular fluid will have the same pressure ratio at the same values of  $N_{REF}$  and  $\dot{w}_{REF}$  independent of the absolute magnitudes of  $P_0$  and  $T_0$ , provided that the possible variations of Reynolds number have a minor effect on the losses in the bladings of

the machine. Then the referred power required by the compressor will also be a unique function of  $N/\sqrt{\theta_C}$  and  $\dot{w} \sqrt{\theta_C}/\delta_C$ , indicating that its efficiency is only depending on these two variables also. The main disadvantage of the so-called referred parameters is that they are not dimensionless, and that they cannot be used to compare the operating performance of different machines with each other, as it is possible with the earlier defined non-dimensional quantities.

The referred operating parameters of Eqs. 73 to 76 for the design point are given in Table IX.

#### III. OFF-DESIGN POINT PERFORMANCE

### 1. General

Because the Hybrid compressor operates as an exhauster in the test rig it is of interest to know its performance at pressure ratios and speed other than those for the design point. If the pressure ratio is smaller than the design value, the pressure  $P_0$  will be higher and since the weight flow rate, and the driving power are proportional to  $P_0$ , it is likely that the maximum power occurs at pressure ratios lower than the values at the design point.

## 2. Rotor Performance

Prime variables for the rotor performance are the peripheral speed ratio  $U_2/a_0$  and the absolute discharge angle  $\alpha_2$ . If particular values of these quantities are chosen and if the slip factor  $\mu$  and the velocity ratio  $\Psi$  were known it would be possible to determine the dimensionless mass flow rate through the wheel by means of Eq. A II(11). These calculations can be carried out by means of program 102 of Appendix D, which also establishes the ratios  $T_2/T_0$  and  $p_2/P_0$  for the assumed values of  $\mu$ and  $\Psi$ . Actually, program 102 determines the quantities:

$$\frac{\dot{w} \sqrt{(R_{\rm g}/g) T_{\rm O}}}{P_{\rm O}} = (\dot{m})^* \pi R_2^2$$
(77)

$$\Phi_{2} = \frac{\sqrt[*]{w}\sqrt{(R_{G}/g) T_{O}}}{A_{2} k_{B2} P_{O}} = \frac{\sqrt[*]{w}\sqrt{(R_{G}/g) T_{O}}}{2\pi R_{2} b_{2} k_{B2} P_{O}}$$
(78)

and

$$\Phi_{l} = \frac{\dot{w} \sqrt{(R_{G}/g) T_{O}}}{A_{l} k_{Bl} P_{O}} = \frac{\dot{w} \sqrt{(R_{G}/g T_{O})}}{\pi (R_{lO} - R_{li}^{2}) k_{Bl} P_{O}}$$
(79)

for chosen blockage factors k_{B1} and k_{B2}.

The dimensionless flow function  $\Phi_1$  of Eq. 79 can be used to establish the ratio of the static pressure  $P_1$  and  $P_0$ , since  $P_0$  is identical with the total pressure  $P_{t1}$  at station (1), with the relation

$$\Phi_{1} = \sqrt{\frac{2\gamma}{\gamma - 1} \left[ (p_{1}/P_{0})^{2/\gamma} - (p_{1}/P_{0})^{(\gamma + 1)/\gamma} \right]}$$
(80)

Since for known values of  $\Phi_1$  and  $\gamma$ , it is not possible to calculate  $p_1/P_0$  in closed form, the calculating program 103 of Ref. D has been set up to determine  $p_1/P_0$  with an iterative process.

Program 104 of Appendix D can then be used to determine the flow properties at the inducer inlet with the relations of Appendix A which are listed in the program description. This program gives  $T_1/T_0$ ,  $V_1/a_0$ ,  $W_{1o}/a_0$ , and the quantities  $M_{W1}$  and i'. The latter is the incidence angle at the outer inlet radius  $R_{10}$  if blockage due to inducer blade thickness is taken into account.

Appendix C analyzes available test data of losses in centrifugal compressor rotors, and shows that Fig. 24 can be used for the present off-design calculations. From Fig. 24 the rotor efficiencies  $\eta_R$  are obtained as functions of i' and  $M_{W1}$ . The efficiency  $\eta_R$  is defined by Eq. A (12). With Eqs. A II(5), A (27), and A (21) it is possible to calculate the velocity ratio  $\Psi = W_2/W_{2is}$  which is used for the performance calculations with the method of Appendix A. This conversion can be carried out with program 105 of Appendix D. The wheel efficiency  $\eta_W$  of Eq. A (15) and the deceleration ratio  $W_2/W_{10}$  are outputs of this program also. The value of  $\Psi$  thus obtained should coincide with that initially assumed for use in program 102, and  $\Psi$  must be iterated by successive approximations till agreement is reached.

For the design point the slip factor  $\mu = \mu_d = 0.85$  has been determined from Fig. A (3a) for the given rotor dimensions, the assumed rotor

efficiency  $\eta_{\rm R} = 0.86$ , and the design flow coefficient  $\varphi_2 = \varphi_{2d} = 0.3964$ . Experience shows that Fig. A (3a) cannot be used to establish  $\mu$  at offdesign conditions. Most theoretical analyses predict that the slip factor for rotors with radial blades at the discharge remains constant if the flow coefficient and  $\eta_{\rm R}$  change. As shown in Ref. 13, and by other authors, this condition does not occur in actuality. For the present calculations the conclusion reached in Ref. 13 is applied, namely, that the relative flow angle  $\beta_2$  of Fig. 1 at the rotor exit remains constant at all operating conditions. Then, by Fig. 1

$$\tan \beta_2 = \frac{U_2}{V_{m2}} \frac{(1 - \mu)}{\varphi_2} = \frac{1 - \mu}{\varphi_2}$$

For the design point with  $\mu_d$  and  $\varphi_{2d}$ , and for  $\beta_2 = \beta_{2d}$ 

$$\frac{1 - \mu}{\varphi_2} = \frac{1 - \mu_d}{\varphi_{2d}}$$

and, since

$$\varphi_2 = \mu \cot \alpha_2$$

there is

$$\mu = \frac{1}{1 + \frac{1 - \mu_d}{\varphi_{2d}} \cot \alpha_2}$$
(81)

Then, for  $\mu_{d} = 0.85$  and  $\phi_{2d} = 0.3964$ 

$$\mu = \frac{1}{1 + (0.3784) \cot \alpha_2}$$
(82)

Sheets 1 and 2 of Table X give the final results of the rotor performance for speed ratios  $U_2/a_0 = 0.7156$  and  $U_2/a_0 = 0.516$ , respectively, obtained with the procedure outlined above. As pointed out earlier, a value of  $\Psi = \Psi_j$  has to be assumed (line 7 of Table X) and must be changed until it and the value  $\Psi$  calculated by program 105 (line 22 of Table X) coincide. Table X only gives the final value of  $\Psi_{j}$  for each chosen angle  $\alpha_{2}$ , the intermediate results of the iterations in  $\Psi$  have not been listed. The curves of Fig. 25 are identical with those of Fig. 24 which were used to obtain the rotor efficiencies  $\eta_{R}$  as functions of  $M_{W1}$  and i' for the calculations in Table X. In Fig. 25 the rotor efficiencies  $\eta_{R}$  of Table X are plotted vs.  $M_{W1}$  and i' to show the location of the curves  $U_{1}/a_{0} = 0.7156$  and  $U_{1}/a_{0} = 0.516$  in relation to the other curves  $U_{1}/a_{0} = constant$  which were actually disregarded in establishing  $\eta_{R}$  for the calculations of Table X. It can be noticed that the two curves  $U_{1}/a_{0} = constant$ , that could be drawn through the data points of Table X, are similar to the dashed curves of Figs. 24 and 25 but have somewhat different slopes.

A far more interesting representation of the data of Table X is given in Fig. 26 where the velocity coefficients  $\Psi$  and the incidence angles i' are shown as function of the deceleration ratio  $W_2/W_{10}$  of the relative velocities in the rotor. As expected, the velocity coefficients  $\Psi$  decrease with decreasing ratios  $W_2/W_{10}$ , and if  $W_2/W_{10}$  approaches unity the values of  $\Psi$  seem to reach an asymptotic value which is higher at the lower velocity ratio  $U_1/a_0$  because of the lower Mach number of the flow. Figure 26 also shows that the incidence angles decrease almost linearly with  $W_2/W_{10}$ . In the writer's opinion losses of centrifugal compressors rotors should be presented in the manner of Fig. 26. Data of this nature for different impellers would enable the engineer to arrive at optimum designs and make it possible to establish off-design performance maps with greater accuracy than with the rotor efficiencies  $\eta_{\rm p}$ .

# 3. Diffusor Performance

To determine the compressor performance for the rotor data of Table X the conditions in the diffusor must be evaluated also. Experience shows that the pressure loss coefficient  $Y_t$  of a decelerating axial

cascade varies with incidence angle and inlet Mach number. Limited information is however available in the literature about these influences. Figure 27 has been established on the basis of Fig. 130 of Ref. 3, but these data are educated guesses at best, although they are representative of observed behavior. In particular, the solid curve will be used for  $U_2/a_0 = 0.7156$  and the dashed curve for  $U_2/a_0 = 0.516$ , for the range of the Mach numbers indicated. Because of the approximate nature of these curves it is sufficient to treat the two diffusor rows together. At the design point the total pressure loss coefficient of rows  $A_1'$  and  $A_2'$  of diffusor A' is from Table VII

$$Y_{t} = (Y_{t})_{i0} \frac{P_{t2}/P_{0} - P_{t4}/P_{0}}{P_{t2}/P_{0} - P_{2}/P_{0}} = \frac{1.6764 - 1.5910}{1.6764 - 1.2677} = 0.2089$$

This loss coefficient is supposed to occur at the design incidence angle  $i = i_0^{0} = + 2^{\circ}$  of the first diffusor blade row Al in accordance with Table VI. At other incidence angles

$$i = \alpha_2 - 63^\circ$$

the pressure loss coefficients Y_t are taken as

$$Y_{t} = 0.2089 \left[ Y_{t} / (Y_{t}) \right]_{io}$$

where the ratio in the square bracket is read from Fig. 27.

Reference 3 shows that the deviation angle  $\delta$  is almost constant if the incidence angle of the flow of a particular cascade changes. Thus, the discharge flow angle of a cascade is nearly constant. This general phenomenon is evident also from Fig. 14 (7) of Ref. 5. Because of the approximate nature of the present investigation it is permissible, therefore, to assume that the flow angle after the second diffusor row  $A_{2}$  is

constant, equal to  $\alpha_{\downarrow} = 21^{\circ}$ , irrespective of incidence angle and Mach number of diffusor row A₁ (see Table VI).

The calculating method of program 109 of Appendix D will be used to establish the conditions of state of the fluid after the diffusor for the data of Table X. It is assumed that the blockage factors at inlet and exit of the diffusor are those at the design point, or

$$k_{Be} = k_{B2} = 0.954$$
  
 $k_{Bd} = k_{B4} = 0.88$ 

The quantity K of Eq. D 109(2) is then, with  $A_{l_1} = A_2$ ,  $\alpha_{l_1} = 21^\circ$ , and  $M_2 = M_{V2}$ 

$$K = 1.161218 \cos \alpha_2 \frac{P_2/P_0}{\sqrt{T_2/T_0}} M_2$$

The Mach number  $M_{4}$  and the velocity  $V_{4}$  must be obtained with the iterative procedure outlined in program 109.

The processes in the flow straightener and discharge duct, illustrated in Figs. 11a and 11b, are determined with Eqs. 50 to 64. The objective of this procedure is to obtain the pressure ratio  $p_6/P_0$ . Since  $p_6$  is equal to the ambient pressure, or 14.7 psia, these calculations establish the value of the total pressure  $P_0$  ahead of the compressor rotor. It is assumed that the total temperature  $T_0$  equals  $520^{\circ}R$ .

## 4. Compressor Off-Design Performance

From line 8 of Table X there are known the ratios  $\frac{(R_G/g)T_O}{P_O}$ . Hence the flow rate  $\dot{w}$  in lbm/s is obtained from

$$\dot{w} = 0.034055 \frac{\dot{w}_{\sqrt{R_{G}/g} T_{O}}}{P_{O}} P_{O} (1bm/s)$$
 (83)

for  $R_{G} = 53.35 \text{ (lb-ft)/(lbm, }^{\circ}R)$ , g = 32.174 ft/s², and  $T_{O} = 520^{\circ}R$ , if  $P_{O}$  is introduced in psia. The drive power of the compressor is, from Eq. 34a,

$$HP = 176.54 \text{ w} \left[ (T_{t2}/T_0) - 1 \right] (HP)$$
(84)

where  $T_{\pm 2}/T_0$  is known from line 23 of Table X.

The total-to-total efficiency  $\eta_{t4}$  of Eq. 49 can be determined for the pressure ratio  $P_{t4}/P_0$  that is obtained by the calculations. For  $T_0 = 520$  °R, and  $R_2 = 5.5$  in., the speed N of the compressor is

$$V = 23290.21 (U_2/a_0) (rpm)$$
 (85)

These calculations have been performed with program 517 on a Monroe Model 1880-22 scientific programmable printing calculator. Program 517 contains the earlier mentioned program 109. With this advanced calculator the whole calculating procedure can be carried out without the need of introducing several programs as would have been necessary with Monroe Model 1556, which is limited to 256 program steps and seven active memory registers. Program 517 which is described in Appendix D requires 557 program steps and 40 data storage registers.

The results of the calculations for the data of Table X are listed in Table XI for the design velocity ratio  $U_2/a_0 = 0.7156$  and in Table XII for  $U_2/a_0 = 0.516$ . The data of these tables are direct print-outs of the Model 1880 calculator.

The data at the design speed of 16,666 rpm and for  $\alpha_2 = 65^{\circ}$  (Table XI) should coincide with the values of Table IX. It can be noted that the agreement is good, hence, it can be concluded that no arithmetic errors were made in the calculations.

Figure 28 is a graph of the data of Tables XI and XII. As expected, the driving power is higher at flow rates larger than that of the design point. It is necessary therefore to run the compressor with a turbine that is capable of producing at least 130 HP at 16,666 rpm, although only about 83 HP are required at the design point conditions. It can also be seen

from Fig. 28 that the calculated optimum compressor efficiencies at 12,018 and 16,666 rpm are nearly equal, namely, 81.35% at the lower and 81.49% at the higher speed. It seems possible, therefore, to obtain a good measure of the maximum compressor efficiency with tests at speeds lower than design, say, at about 13,000 to 14,000 rpm.

The data points in Fig. 28 at the lowest flow rates are for  $\alpha_2 = 73^{\circ}$  at both speeds. As indicated in Fig. 25 these points lie on the curve labeled "surge limit." At  $\alpha_2 = 73^{\circ}$  the diffusor incidence angle i is  $10^{\circ}$ . By Fig. 27 the ratio  $Y_t/(Y_t)_0$  for  $i = 10^{\circ}$  is 1.90 for  $U_2/a_0 = 0.7156$  and 1.22 for  $U_2/a_0 = 0.516$ . A frequently applied rule assumes that an axial blade row stalls if the loss is twice that at the design incidence angle. If this condition were to hold for the tandem row of the present diffuser, it could be stated that compressor surge is due to rotor stall at both speed ratios. The surge limit indicated in Fig. 28 holds for this premise.

#### IV. DRIVE TURBINE

### 1. General

An available test stand for investigations of transonic axial compressor wheels is driven by a dual-flow air turbine with 50 percent reaction which is illustrated in Dwg. 2222 of Appendix B. The rotors of this turbine are shown in Dwg. 2108-1 and the guide vanes in Dwg. 2109. The blades of rotor and stator are identical with the profiles of Dwg. 2107, but to avoid wake interferences the stator row has 31 and the rotor 32 blades. The two parallel stages are designed for the following conditions

$$P_{tO}/P_2 = 2.8 \text{ for } P_2 = P_{AMB} = 14.7 \text{ psid}$$
  
 $T_{tO} = 640 \text{ }^{\circ}\text{R}$   
 $\dot{w} = 10.85 \text{ lbm/s}$   
 $HP = 485 \text{ HP}$   
 $N = 30,500 \text{ rpm}$ 

where  $P_{tO}$  and  $T_{tO}$  are total inlet pressure and total inlet temperature, respectively, and  $p_{o}$  the static discharge pressure.

To be determined are the pressure ratio, inlet temperatures, and weight flow rates for turbine powers of 130 HP at 16,666 rpm, and 60 HP at 12,018 rpm.

### 2. Off-Design Turbine Performance

These calculations were performed by Prof. E. Macchi during his stay as Visiting Professor at NPS. Use was made of the computer program of Ref. 14 which treats the three-dimensional flow in a turbine stage by taking account of streamline curvatures and slopes, as well as energy and entropy gradients. In Ref. 14 it is possible to select one of five loss correlation methods that are included in the program. For the present

investigation the method of Traupel (Ref. 15) has been applied, since it was found to give good performance predictions for 50 percent reaction turbines. The results of these calculations are presented in Fig. 29, showing referred flow rate  $i\sqrt[4]{\theta_T}/\delta_T$ , and referred power HP/( $\delta_T \sqrt{\theta_T}$ ) as function of the referred speed  $N/\sqrt{\theta_T}$  for different turbine pressure ratios. There are:

 $\delta_{\rm T} = P_{\rm tO}/14.7$  $\theta_{\rm T} = T_{\rm tO}/518.4$ 

If the ambient pressure is assumed to be 14.7 psia the turbine pressure ratio  $P_{\rm t0}/p_2$  equals  $\delta_{\rm T}.$ 

For ease of operation it will be endeavored to run the turbine at the lowest possible inlet temperature  $T_{t0}$ . A lower limit is given by the condensation or icing of the water vapor in the operating air which has nearly 100 percent relative humidity. It will therefore be assumed that the static turbine discharge temperature  $T_2$  shall not be less than  $45^\circ$  F or  $505^\circ$  R. The off-design calculations showed that the total-to-static turbine efficiency  $\eta_s$  does not exceed about 81% in the range of operating conditions for the Hybrid compressor. The temperature  $T_2$  is obtained from

$$T_{2} = T_{tO} \left\{ 1 - \eta_{s} \left[ 1 - (1/\delta_{T})^{(\gamma - 1)/\gamma} \right] \right\}$$
(86)

For  $T_2 = 505^{\circ}$  R and  $\eta_s = 0.81$  the temperature  $T_{tO}$  can therefore be determined for different values of  $\delta_T$  and  $\gamma = 1.4$ . Thus, the ratios  $\theta_T = T_{tO}/518.4$  are known as functions of  $\delta_T$ . For a particular speed N, or ratio  $N/\sqrt{\theta_T}$ , the referred turbine parameters are then obtained from Fig. 29 for the three values of  $\delta_T$ . The results are listed in the following table:

N (rpm)	16,666			12,018		
δ _T	1.4	1.8	2.2	1.4	1.8	2.2
T _{tO} ( ^O R) (Eq. 86)	545.5	577.3	603.6	545.5	557.3	603.6
$\theta_{\rm T} = T_{\rm t0}/518.4$	1.05227	1.11360	1.16439	1.05227	1.11360	1.16439
$N/\sqrt{\Theta_{T}}$	16,247	15,793	15,445	11,716	11,388	11,137
$\frac{\dot{w}/\theta_{\rm T}}{\delta_{\rm T}} \text{ (Fig. 29)}$	3.65	4.18	4.30	3.72	4.27	4.36
$\frac{\text{HP}}{\delta_{\text{T}} \sqrt{\theta_{\text{T}}}} \text{ (Fig. 29)}$	48.5	89.1	111.8	46.8	81.0	97.2
w (lbm/s)	4.98	7.13	8.77	5.08	7.28	8.89
HP	69.6	169.2	265.4	67.2	153.8	230.7

From the plot of these data in Fig. 30 it can be seen that the turbine is capable of producing 130 HP at 16,666 rpm with a pressure ratio of 1.64 at a flow rate of 6.4 lbm/s. The inlet temperature must be about  $105^{\circ}$  F. At the lower speed of 12,018 rpm a power of 60 HP is produced at a pressure ratio of 1.37 for a flow rate of 4.85 lbm/s with a turbine inlet temperature of 82° F.

The air supply system of the Turbopropulsion Laboratory is capable of producing these inlet conditions and no difficulty is expected to drive the compressor at all possible operating conditions.

### V. MECHANICAL DESIGN

#### 1. Rotor

An investigation of the stresses in the Hybrid rotor has been carried out to determine its maximum operating speed. As evident from Dwg. 2203 of Appendix B the outer rim of the rotor will produce bending stresses which will be reduced, in part, by the restraint of the radial blades. In Ref. 16 the stresses were calculated by ignoring these bending stresses and the support by the blades. Referred to the outer rotor radius  $R_0 = 5.94$  inch the maximum stress  $\sigma_{max}$  was determined to be

$$\sigma_{\rm max} = 0.53 \ \rho \omega^2 \ R_0^2$$

where  $\rho$  is the density of the rotor material.

For aluminum alloy AL-7079 with  $\rho = 2.616 (10^{-4})$  lb s²/in.⁴, there is at N = 17,000 rpm

$$\rho \omega^2 R_0^2 = 29,252 \text{ psi}$$

and

$$\sigma_{max} = 15,504 \text{ psi}$$

With a correction factor of about 1.25, to allow for the inaccuracies of the model used for the calculation, the design stress  $\sigma_d$  was taken as

Aluminum alloy Al-7079-T6 was chosen as material. In forged condition this alloy has a 0.2% yield stress of 73 kpsi, and an ultimate stress of 83 kpsi.

During his stay at NPS as Visiting Assistant Professor, Dr. W. Schlachter undertook a more accurate stress analysis with the method of Ref. 17 which is discussed also in Ref. 18. This method takes account of the bending moments that occur in non-symmetrical disks with radial blades. Although the forces and moments produced by the blade elements are evaluated properly, these effects are later distributed evenly along the periphery to obtain axisymmetric conditions. Thus the rotor is supposed to have an infinite number of blades which have the same effect as the actual number of blades. Inspite of its complexity the method of Ref. 17 gives doubtful results in the vicinity of the outer radius of the Hybrid rotor, and finite-element methods should actually be employed to give more accurate conditions.

Figure 31 shows the dimensionless stresses  $\sigma/(\rho\omega^2 R_o^2)$  in the disk in radial and peripheral directions. In Fig. 31 the shape of the Hybrid rotor is shown also to indicate that the plotted stress ratios exist on either the outer or the inner disk contour, which are designated by A and B, respectively. Evidently, high stresses occur at a radius ratio  $R/R_o = 0.7$  where the disk has its smallest thickness. On contour A the disk is in compression and on contour B it is in tension. This is indicative of the bending moment that must occur at this station.

The highest stress occurs at the radius  $R_o$  on the inner contour B of the rotor but it has the nature of a stress concentration which, in ductile materials, will be reduced considerably by local plastic deformations if the yield stress is exceeded. For this reason ductile materials have to be used for rotors to equalize stress peaks. From Fig. 31 it can be concluded that a maximum stress of about 0.60 ( $\rho w^2 R_o^2$ ) can be used as a design criterion for the Hybrid rotor if it is made of a material with good ductility.

This criterion seems to be invalidated by Fig. 32 which shows the blade stresses at the tip, and at the base where they adjoin the disk. These stations are designated as contours D and C, respectively, of the rotor which is shown in Fig. 32, also. However, the high stress ratio at the blade tips at a radius ratio  $R_D/R_o = 0.7$  is clearly a local condition which will be reduced by plastic yielding if the material has good

ductility. Drawing 2203 of Appendix B shows that the blades of the rotor have a thickness of 0.125 inch. If this thickness were increased to 0.16 inches the blade tip stress ratio could be reduced from 2 to about 1.22 without loss in efficiency. However, the writer believes that even with the thin blades the rotor is capable of operating at 17,000 rpm without danger. For a stress ratio of 0.6, the maximum stress  $\sigma_{max}$  is

$$\sigma_{max} = 17,500 \text{ psi}$$

If a maximum design stress of 55 kpsi is taken for AL-7075-T6, or about 75 percent of its 0.2% yield stress (73 kpsi), the maximum rotor speed could be

$$N_{\text{max}} = 17,000 \sqrt{\frac{55,000}{17,500}} = 30,100 \text{ rpm}$$

A design speed of 17,000 rpm was used because of the critical speed of the rotor assembly. For the overhung arrangement of Dwg. 2222, where the shaft is supported by ball bearings with 30 mm bore, and for an aluminum rotor that weighs about 19.5 lb, the critical speeds are:

$$N_{CT} = 21,620 \text{ rpm}$$

and

$$N_{CTT} = 66,230 \text{ rpm}$$

These speeds were obtained without taking account of the flexibility of the bearing supports. Thus, the decision was made to limit the operating speed to 17,000 rpm or about 78 percent of the first critical shaft speed.

# 2. Maximum Obtainable Pressure Ratios

It is of interest to evaluate what pressure ratio could be produced by the Hybrid compressor if it were rotating at 30,100 instead of at 16,666 rpm. The peripheral speed ratio  $U_2/a_0$  for a total inlet temperature  $T_0 = 520^{\circ} R$ could then be increased from 0.7156 to

$$(U_2/a_0)_{max} = 1.2924$$

From Eq. A II(3)

$$\frac{P_{t4}}{P_{0}} = \left[1 + (\gamma - 1) \mu \eta_{c} (U_{2}/a_{0})^{2}\right]^{\gamma/(\gamma - 1)}$$
(87)

For an assumed efficiency  $\eta_c = 0.8$ , and  $\gamma = 1.4$ ,  $\mu = 0.85$ ,

$$\left(\frac{P_{t4}}{P_0}\right)_{max} = 3.71$$

At this pressure ratio the static temperature  $T_2$  at the rotor exit is from Eq. A I(7), for  $T_0 = 520^{\circ}$  R,

$$(T_2)_{max} = 662.5^{\circ} R = 202.5^{\circ} F$$

This temperature is somewhat high for aluminum alloys since their physical properties are reduced considerably at higher temperatures. At 300° F, for instance, the 0.2% yield strength of AL-7075-T6 is reduced from 73 kpsi (at room temperature) to 22 kpsi.

Titanium alloy 6AL-4V would be a better rotor material for the higher speeds. At a temperature of about  $300^{\circ}$  F the 0.2% yield strength of a forging with an elongation of 13 percent is about 130 kpsi. For a design stress of 75 percent of this yield strength, or

$$\sigma_{\rm max} = 97,500 \, {\rm psi}$$

and

$$\sigma_{\rm max} = 0.6 \ (\rho \omega^2 R_0^2)$$

there is with

$$\rho = 4.144 (10^{-4}) \text{ lb s}^2/\text{in.}^4$$

$$N_{\max} = \frac{30}{\pi} \omega = \frac{30}{\pi} \sqrt{\frac{\sigma_{\max}}{(0.6) \rho R_0^2}} = 31,835 \text{ rpm}$$

Then

$$U_2/a_0 = 1.3669$$

From Eq. 87 the pressure ratio at this speed ratio is, for  $\eta_c = .80$ ,  $\gamma = 1.4$ ,  $\mu = 0.85$ ,

$$\frac{P_{t4}}{P_0} = 4.213$$

at a temperature  $T_2$  of

$$T_2 = 679.4^{\circ} R = 219.4^{\circ} F$$

These calculations indicate that pressure ratios larger than about 4.2 can be reached only in a Hybrid compressor of the design proposed here, if spin tests show that stress ratios  $\sigma_{max}/(\rho \omega^2 R_o^2)$  higher than 0.6 are permissible, or that the ratio of 75 percent of design and yield stress is too conservative.

#### 3. General Description of Test Rig

Drawing No. 2222 of Appendix B shows that the compressor shaft is supported by two matched pairs of high-precision ball bearings. The rotor assembly is held together by a central tie-bolt which is prevented from turning by prongs in the quill shaft that connects the compressor to the drive turbine. At the compressor end of the assembly, a steel attachment, shown in Dwg. 2103-A, pre-loads the inner races of the ball bearings and serves as support for the aluminum rotor. To ensure that the rotor remains concentric with the shaft, even if it increases its diameter by centrifugal stresses, four matched bushings (part 2103-2) are inserted in holes in the rotor collar and part 2103-1, that are drilled and reamed together. These bushings center the rotor and transmit the torque. The maximum torque is about 605 in.-1b at 160 HP and 16,666 rpm. The cross-sectional area of one bushing (0.25 OD, 0.196 ID) is 0.0189 in.². The shear force acting at the

diameter of 3.2 in., where the rotor rests on the steel disk (part 2103-1) is  $605/(2 \times 3.2) = 94.5$  lb if all bushings carry equal loads. Thus the shear stress per bushing is 94.5/0.0189 = 5000 psi. The bushings are of Steel AISI 4340, hardened to 360 Brinell, to obtain a yield strength of about 160 kpsi. Hence the allowable shear stress is 80,000 psi and it is possible for one bushing to transmit the whole torque without danger.

The axial thrust exerted by the impeller is eliminated by the rotating balance piston near the quill shaft. The ball bearings at this shaft end are floating but they are supported by flexures which are equipped with strain gages. Calibrations of the assembly with known applied axial forces will indicate how much thrust is acting on the bearings. The readout of the strain gages is displayed in the control room so that the balance air pressure can be adjusted for minimum thrust acting on the bearings. Because of its symmetrical design the drive turbine will not produce any axial thrust. The bearings are oil-mist lubricated, and the temperature of each outer race of the eight bearings is measured by a thermocouple which can be read in the control room also.

The diffusor blades are attached to blade holders (Part 1 of Dwg. 2209) by nuts and lock washers. Hence their stagger angles can be varied. These blade holders are inserted in a casing (Part 4 of Dwg. 2208). A number of spacer rings (see Dwg. 2209) were manufactured to be able to locate the diffusor blade rows at different distances from the rotor discharge. It is possible also to rotate the blade holders with respect to each other. With this arrangement it is possible to produce different arrangements of tandem blade rows. Part 4 of Dwg. 2208 is bolted to a casing (Part 1 of Dwg. 2207) on one side and to the shroud support of Dwg. 2212 on the other. To this support is attached the rotor shroud (Part 1 of Dwg. 2213) to form the floating stator assembly whose functions

are described in the next paragraph. Honeycomb flow straighteners are arranged between the fins of the shroud support.

At the design point the total temperature of the air passing through the compressor will increase by about  $90^{\circ}$  R. Hence a temperature error of one degree will result in a change of the calculated efficiency of about 1.2 points. Errors of temperature measurements of one degree easily occur in high speed flows, especially if they are non-steady. It was therefore decided to make arrangements for direct torque measurements. As shown in Dwg. 2222 the so-called floating stator assembly, consisting of the diffusor vanes, the flow straightener, the rotor shroud, and an outer casing, is supported by two special Kaydon ball bearings. The flow ahead of the inducer is in axial direction and the flow straightener after the diffusor will produce an axial discharge velocity. Then, the moment excerted on the rotor must be equal and opposite to the moment acting on the above-mentioned assembly. This moment is measured by flexures with strain gages (Part 4 of Dwg. 2215) which are calibrated against known torques, that are applied with a lever and known weights.

This arrangement requires labyrinth seals at the inner and outer diameters of the shroud of Dwg. 2213. These labyrinths are shown in Dwg. 2215. For radial clearances of 0.015 inch a leakage flow of about 0.012 lbm/s will pass through the inner labyrinth with 6.4 inch ID, from the region inside the shroud to the inducer inlet. This quantity is about 0.4 percent of the design flow rate. Through the outer labyrinth with an OD of 9.48 inch, however, a leakage flow of 0.064 lbm/s will occur from the opening after the flow straightener to the region inside the shroud. To maintain the required pressure between the labyrinths, an air flow of 0.064 - 0.012 = 0.054 lbs/s has to be vented from this region. For this reason the inlet casing, shown in Dwg. 2214-2, is hollow and is connected

by four 1 inch tubes to openings in the 18 inch suction pipe ahead of the flow measuring nozzle.

The measuring nozzle has a diameter of 5.375 inches and is formed of epoxy as shown in Dwg. 2222, with parts of the contour machined in the nozzle frame of Dwg. 2216. The shape of the nozzle conforms to the norms of VDI measuring orifices. A nozzle with a diameter of 5.375 inches will produce a pressure difference of about 20 inches of water for the measuring of the design flow rate of 2.7 lbm/s.

Drawing 2223 shows the general installation of the compressor test rig in Test Cell 2 of the Turbopropulsion Laboratory. Air supplied from a multi-stage axial compressor with a drive power of 1250 HP passes through a remote-controlled butterfly valve to the drive turbine. In case of runaway conditions, which could be caused by a compressor blade failure, the turbine air can be blown directly to the atmosphere through an emergency bypass valve.

The compressor air flow is controlled by the inlet throttle value of Dwg. 2158. It consists of a fixed and a rotating plate that have the same arrangement of holes. The maximum flow area is 158 in.², corresponding to the area of a pipe of about 14 inch ID. The rotating plate is supported by ball bearings and can be moved with the oil pressure actuator of Dwg. 2159. This actuator can produce a force of about  $1700_{\mu}^{\pm} \pm 1700$  lb for an oil pressure of 400 psi. It is controlled from the control room by a reversible electric motor of less than 1/10 HP. The actuator is inherently stable and maintains the same position irrespective of the force applied to it, provided it is less than about 2000 lb.

After the throttling value the velocity of the air is destroyed in the plenum chamber of Dwg. 2164-1. It is equipped with six perforated plates, with 43 percent free opening, which can be located at arbitrary positions

along the axis of the plenum. A contoured plastic nozzle guides the flow into the 18 inch diameter suction pipes, which contain the measuring nozzle.

#### REFERENCES

- Vavra, M. H., "Basic Elements for Advanced Design of Radial Flow Compressors", Article 6 of AGARD Lecture Series No. 39 on Advanced Compressors, Technical Editing and Reproduction Ltd., London, June 1970. (Enclosed as Appendix A)
- Stiefel, W., "Theoretical and Experimental Research on Limit Loading of Radial Compressors" Part II, Course Note 53b, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium, March 1965.
- Lieblein, S., "Experimental Flow in Two-Dimensional Cascades", Chapter VI of "Aerodynamic Design of Axial-Flow Compressors", Edited by I. A. Johnson and R. O. Bullock, NASA SP-36, Washington, D.C., 1965.
- 4. Steinke, R. J., and Crouse, J. E., "Analytical Studies of Aspect Ratio and Curvature Variations for Axial-Flow Compressor Inlet Stages under High Loading", NASA TN D-3959, May 1967.
- Vavra, M. H., "Aerothermodynamics and Flow in Turbomachines," John Wiley & Sons, New York 1960.
- Griepentrog, H., "Secondary Flow Losses in Axial Compressors", Article
   5 of AGARD Lecture Series No. 39 on Advanced Compressors, Technical
   Editing and Reproduction Ltd., London, June 1970.
- 7. Woods, J. R. Jr., "The Analytical Treatment of Secondary Flows and Associated Losses in Axial-Flow Turbomachines", Report NPS-57W071121A, Naval Postgraduate School, Monterey, California, December 1971.
- Vavra, M. H., "Aerodynamic Design of Symmetrical Blading for Three-Stage Axial Flow Compressor Test Rig" Report NPS-57VA70091A, Naval Postgraduate School, Monterey, California, September 1970.

- Giles, R. V., "Fluid Mechanics and Hydraulics" 2nd. Ed., p. 257, Schaum Publishing Co., New York, 1962.
- 10. Linsi, U., "Experiments on the Radial Compressors of Turbochargers" Brown Boveri Review, Vol. 52, No. 3, pp. 161/170, March 1965.
- 11. Meldahl, A., "The Separation of Impeller and Diffusor Losses in Radial Blowers" Brown Boveri Review, Vol. 28, No. 8/9, pp. 203/206, Aug./Sept. 1941.
- 12. Traupel, W. "Die Theorie der Stroemung durch Radialmaschinen", p. 100,G. Braun, Karlsruhe, 1962.
- Stahler, A. F., "The Slip Factor of a Radial Bladed Centrifugal Compressor", ASME Paper 64-GTP-1, March 1965.
- 14. Macchi, E., "Computer Program for Prediction of Axial Flow Turbine Performance", Report NPS-57MA70081A, Naval Postgraduate School, Monterey, California, August 1970.
- Traupel, W., "Thermische Turbomaschinen", Vol. 1, pp. 269/298, Springer Verlag, Berlin, 1958.
- 16. Griepentrog, H., "Calculation of Hybrid Compressor", Encl. 3 of Progress Report, February 1970, on "Research in Hybrid Compressor Concept", Naval Postgraduate School, Monterey, California. AIR TASK A330536 0/551B/0F32432302
- 17. Schilhansl, M. J., "Stress Analysis of Radial-Flow Rotor", Trans. ASME J. of Engg. for Power, January 1962 pp. 124-130.
- 18. Vavra, M. H., "Mechanical Problems in Radial Turbines", Short Course March 1968, Part C, p. Cl⁴/C26, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.



# TABLE I: Flow, Blade, and Incidence Angles

R ₁ (in.)	β ₁ (°)	β _B (°)	tan β _B	i=β ₁ -β _B ( [°] )
3.025	55	50.32	1.20545	4.68
2.8	52.89	47.99	1.11016	4.90
2.6	50.83	45.71	1.02525	5.12
2.4	48.57	43.23	0.94024	5.34
2.2	46.09	40.51	0.85449	5.58
2.0	43.36	37.54	0.76852	5.82
1.8	40.36	34.30	0.68216	6.06
1.6	37.07	30.76	0.59530	6.31
1.5	35.30	28.88	0.55166	6.42
1.4	33.46	26.92	0.50784	6.54
1.3	31.54	24.88	0.46388	6.66
1.2	29.53	22.77	0.41973	6.76
1.1	27.44	20.57	0.37538	6.87
1.023	25.78	18.83	0.34111	6.95
1.00	25.27	18.30	0.33085	6.97
0.99	25.05	18.08	0.32639	6.97

# at Inducer Leading Edge

#### TABLE II: Loss Coefficients of First Blade

#### Row of Diffusor

Δα	σ =	0.8	1.0	1.2	1.4	1.6	1.8
10 ⁰	D	0.4524	0.4146	0.3893	0.3713	0.3578	0.3473
	Υ _P	0.0452	0.0486	0.0527	0.0572	0.0619	0.0668
	Υ _t '	0.0900	0.0934	0.0975	0.1020	0.1067	0.1116
	Yt"	0.0680	0.0788	0.0902	0.1031	0.1169	0.1323
12 ⁰	D	0.5137	0.4705	0.4417	0.4211	0.4057	0.3937
	Υ _P	0.0545	0.0578	0.0620	0.0666	0.0716	0.0768
	Y _t '	0.1116	0.1148	0.1190	0.1236	0.1286	0.1338
	. Y _t "	0.0873	0.0988	0.1127	0.1289	0.1470	0.1669
14 ⁰	D	0.5687	0.5207	0.4886	0.4657	0.4485	0.4352
	Υ _P	0.0639	0.0670	0.0711	0.0760	0.0812	0.0857
	Υ _t '	0.1332	0.1362	0.1403	0.1452	0.1504	0.1549
	Yt"	0.1069	0.1207	0.1376	0,1569	0.1788	0.2017

 $\Delta \alpha = \alpha_2 - \alpha_3 = 65^\circ - \alpha_3 = Flow Deflection$  $\sigma = Solidity = (Blade Chord/Blade Spacing)$ D = Diffusion Factor (Eq. 16) $Y_P = Profile Loss Coefficient (Eq. 20)$  $Y_t' = Y_P + Y_s' = Overall Loss Coefficient$  $Y_t'' = Y_P + Y_s'' = Overall Loss Coefficient (Eq. 27)$  $Y_s' = Secondary Flow Loss Coefficient (Eq. 25)$  $Y_s'' = Secondary Flow Loss Coefficient (Eq. 26 with$  $Y_s''/Y_t'' from Fig. 6)$ 

# TABLE III: Design Values of First Blade Rows

#### of Diffusors A and B

Diffusor	А	В
Diffusor Blade Row Designation	A	Bl
Flow Deflection $\Delta \alpha^{\circ} = \alpha_2 - \alpha_3$	12	12
Number of Blades	38	38
Solidity o	1.6	0.95
Diffusion Factor D	0.4057	0.4796
Profile Loss Coefficient Y _P	0.0716	0.0569
Total Loss Coefficient $Y_t'$	0.1286	0.1139
Total Loss Coefficient Y $_{ m t}^{"}$	0.1470	0.0958
Blade Chord c (in.)	1.455	0.864
Maximum Blade Thickness t (in.)	0.090	0.085
Thickness Ratio t/c	0.062	0.098

#### TABLE IV: Loss Coefficients of Second

#### 0.8 $\Delta \alpha$ 1.0 1.4 1.2 1.6 $\sigma =$ 1.8 26° 0.4783 0.6321 0.5706 0.5296 0.5003 0.4612 D 0.0644 Yp 0.0565 0.0568 0.0587 0.0613 0.0678 Y_t' 0.1462 0.1349 0.1352 0.1371 0.1428 0.1397 Yt" 0.1201 0.1354 0.1553 0.1793 0.2077 0.2387 32⁰ 0.5581 D 0.7101 0.6392 0.5919 0.5327 0.5130 0.0698 0.0690 0.0703 0.0726 0.0789 Υ_p 0.0755 Y_t' 0.1709 0.1767 0.1801 0.1702 0.1714 0.1737 0.2461 Y_" 0.1654 0.1856 0.2129 0.2906 0.3432 38° 0.6425 0.6046 0.5761 D 0.7753 0.6956 0.5540 0.0826 0.0805 0.0810 0.0829 0.0856 YP 0.0889 Y_t' 0.2066 0.2044 0.2049 0.2068 0.2095 0.2128 Y." 0.2135 0.2439 0.2811 0.3288 0.3926 0.4677

#### Blade Row of Diffusor

 $\Delta \alpha = \alpha_3 - \alpha_4 = 53^\circ - \alpha_4 = Flow Deflection$ 

- $\sigma$  = Solidity = (Blade Chord/Blade Spacing)
- D = Diffusion Factor (Eq. 16 with  $\alpha_2 = \alpha_3$ ,  $\alpha_3 = \alpha_4$ )  $Y_p$  = Profile Loss Coefficient (Eq. 26 with  $\alpha_3 = \alpha_4$ )  $Y_t' = Y_p + Y_s' = 0$ verall Loss Coefficient  $Y_t'' = Y_p + Y_s'' = 0$ verall Loss Coefficient  $Y_t' = Secondary$  Flow Loss Coefficient (Eq. 25 with

$$\alpha_2 = \alpha_3, \ \alpha_3 = \alpha_4$$

 $Y_s'' = Secondary Flow Loss Coefficient (Eq. 26 with <math>Y_s''/Y_t''$  from Fig. 6)

# TABLE V: Design Values of Second Blade

# Rows of Diffusors A and B

Diffusor	А	В
Diffusor Blade Row Designation	A2	B2
Flow Deflection $\triangle \alpha^{\circ} = \alpha_3 - \alpha_4$	32	32
Number of Blades	38	38
Solidity $\sigma$	1.4	1.0
Diffusion Factor D	0.5581	0.6392
Profile Loss Coefficient Y _P	0.0726	0.0690
Total Loss Coefficient Y _t '	0.1737	0.1702
Total Loss Coefficient $Y_t$ "	0.2461	0.1856
Blade Chord c (in.)	1.275	0.910
Maximum Blade Thickness t (in.)	0.090	0.085
Thickness Ratio t/c	0.070	0.093

Diffusor B	lade Row	Al	Bl	A2	B2	
$\alpha_{e}^{(\circ)}$		65	65	53	53	
$\Delta \alpha$ (°)		12	12	32	32	
$\alpha_{d}^{(\circ)}$		53	53	21	21	
σ		1.6	0.95	1.4	1.0	
t/c		0.062	0.098	0.07	0.093	
	(k _i ) _{sh}	1.1	1.1	1.1	1.1	
	(k _o ) _{sh}	1.1	1.1	1.1	1.1	
	(i ₀ ) ₁₀	7.85 ⁰	4.55 ⁰	5.80 ⁰	4.10 ⁰	
From Ref. 3	( ₈₀ ) ₁₀	3.22°	2.05 ⁰	1.40°	1.80 ⁰	
From Ker. 5	m	0.245	0.338	0.231	0.300	
	n	-0.197	-0.293	-0.140	-0.195	
	(k _i ) _t	0.79	0.99	0.845	0.970	
	$(k_{\delta})_{t}$	0.545	0.925	0.630	0.955	
$i_0 = (i_0)_{10}(k_i)$	) _t (k _i ) _{sh}	6.822°	4.955 ⁰	4.375 [°]		
$\delta_0 = (\delta_0)_{10} (k_{\delta})$	$)_{t}(k_{\delta})_{sh}$	1.930 ⁰	2.086 ⁰	0.97 ⁰	1.891 ⁰	
$\varphi = (\triangle \alpha - i_0 + i_0)$	$\delta_0)/(1-m+n)$	12.738°	24.74 ⁰	43.846°	58.447 ⁰	
$i = i_0 + n_{\varphi}$		4.312 ⁰	-2.95 ⁰	-0.747 ⁰	-7.022 ⁰	
$\delta = \delta_0 + m \varphi$		5.051 ⁰	10.50°	11.098°	19.425 ⁰	
$\gamma = \alpha_e - \varphi/2 - \varphi$	i	54.319	54.922	31.824	30.798	
Chosen inciden	ce i*	+2 ⁰	-1 ⁰	0 ⁰ 45'	-2 [°]	
From Ref. 3:	(d\delta/di)	0.04	0.13		0.085	
$\varphi^* = \varphi - (i^* - i)$	$(l - d\delta/di)$	14.957	23.613	43.846	53.852	
$\gamma^* = \alpha_e - \varphi^*/2 - $	- i*	55 [°] 31'	54 ⁰ 11'	31 ⁰ 50'	28 ⁰ 04'	
Profile coordi	nates:	Dwg 2210-1	Dwg 2210-3	Dwg 2210-2	Dwg 2210-4	
Δγ		0 ⁰ 39'	1 ⁰ 09'	0 ⁰	0 ⁰ 06 '	
$\gamma' = \gamma + \triangle \gamma \text{ or } \gamma$	γ [*] +∆γ .	56 ⁰ 10'	55 ⁰ 20'	31 ⁰ 50'	28 ⁰ 10'	

# TABLE VI: Determination of Diffusor Profile Data (For Symbols see Fig. 9)

Blade Row	Al'	Al"	Bl'	Bl"				
P _{t2} /P ₀		1.676 ¹	4	_				
$T_{t2}/T_0 = T_{t3}/T_0 = T_{t4}/T_0$	1.17411							
₽ ₂ /₽ ₀		1.267	7	-				
T ₂ /T ₀		1.084	02	_				
K (Eq. 43)		0.571	523 ·	_				
Y _t (Table III)	0.1286	0.1470	0.1139	0.0958				
$P_{t3}/P_0$ (Eq. 47)	1.6238	1.6163	1.6298	1.6372				
M ₃ * (chosen)	0.4240	0.4265	0.4220	0.4196				
T ₃ /T ₀ (Eq. 45)	1.13336	1.13290	1.13373	1.13417				
P ₃ /P ₀ (Eq. 46)	1.4350	1.4263	1.4419	1.4505				
M ₃ (Eq. 44)	0.4240	0.4265	0.4220	0.4196				
V ₃ (ft/s) (Eq. 48)	504.6	507.7	502.3	499.5				
Blade Row	A2'	A2"	B2'	B2"				
K (Eq. 43)	0.385168	0.385168	0.385132	0.385150				
Y _t (Table V)	0.1737	0.2461	0.1702	0.1856				
$P_{t4}/P_{0}$ (Eq. 47)	1.5910	1.5695	1.5978	1.6025				
M ₄ * (chosen)	0.2743	0.2784	0.2730	0.2722				
T ₄ /T ₀ (Eq. 45)	1.15670	1.15618	1.15686	1.15670				
P ₄ /P ₀ (Eq. 46)	1.5100	1.4872	1.5172	1.5221				
M ₄ (Eq. 44)	0.2743	0.2785	0.2730	0.2722				
V ₄ (ft/s) (Eq. 48)	329.8	334.7	328.2	327.2				
η _{t4} (Eq. 49)	81.5%	78.9%	82.3%	82.8%				

# TABLE VIII: Flow Conditions in Flow Straightener

.

# and Discharge Duct

# (See Fig. 11 for Symbols and Location of Stations)

Diffusor	A *	A''	в'	В"
$ \begin{array}{c} V_{\mu} (ft/s) \\ P_{t4}/P_{0} \\ P_{\mu}/P_{0} \\ T_{\mu}/T_{0} \end{array} \end{array} From Table VII $	329.8	334.6	328.2	327.2
	1.5910	1.5696	1.5979	1.6026
	1.5100	1.4873	1.5172	1.5222
	1.15670	1.15619	1.15686	1.15698
$V_{\mu}/a_{0} = V_{\mu}/(1117.85)$ $T_{\mu}*/T_{0} (Eq. 53)$ $P_{t\mu}'/P_{0} (Eq. 54)$ $T_{\mu}'/T_{0} (Eq. 55)$ $P_{\mu}'/P_{0} (Eq. 56)$ $P_{t\mu}'/P_{0} (Eq. 58)$ $P_{\mu}''/P_{0} (Eq. 59)$ $T_{5}/T_{0} (Eq. 60)$ $P_{t5}/P_{0} (Eq. 61)$ $P_{t6}/P_{0} (Eq. 62)$ $T_{6}/T_{0} (Eq. 63)$ $P_{6}/P_{0} (Eq. 64)$	0.2950	0.2993	0.2936	0.2927
	1.15893	1.15849	1.15907	1.15918
	1.5803	1.5587	1.5872	1.5919
	1.15532	1.15477	1.15550	1.15561
	1.4935	1.4706	1.5009	1.5059
	1.5543	1.5323	1.5613	1.5661
	1.4689	1.4457	1.4764	1.4814
	1.16074	1.16035	1.16087	1.16095
	1.5290	1.5066	1.5362	1.5410
	1.5050	1.4822	1.5123	1.5172
	1.16503	1.16477	1.16512	1.16518
	1.4647	1.4414	1.4721	1.4772
$P_0 = \frac{14.7}{(p_6/P_0)}$ (psia)	10.036	10.198	9.985	9.951

TABLE IX: Estimated Compressor Performance

at Design Point (N = 16,666 rpm,  $T_0 = 520^{\circ}R$ )

Diffusor	Α'	A''	в'	в"
$P_{t4}/P_0$ (Table VII)	1.5910	1.5696	1.5979	1.6026
$\eta_{t4}$ (Table VII)	81.5%	78.9%	82.3%	82.8%
P ₆ /P ₀ (Table VIII)	1.4647	1.4414	1.4721	1.4772
P _O (Table VIII), (psia)	10.036	10.198	9.985	9.951
w (Eq. 34), (1bm/s)	2.698	2.742	2.685	2.676
HP (Eq. 36), (HP)	83.0	84.3	82.5	82.2
M (Eq. 65), (inlb)	313.7	318.7	312.1	311.0
U ₂ /a ₀		0.73	156 ———	
(m)* (Eq. 66)		0.08	8309 ———	
(HP)* (Eq. 67)	·	0.0	5063	
(M)* (Eq. 69)		0.0	5980	
$\theta_{c} = 520/518.4$		1.0	031	
$\delta_{c} = P_{0}/14.7$	0.6827	0.6937	0.6792	0.6769
N _{REF} (Eq. 73), (rpm)		16,	642	
w _{REF} (Eq. 74), (lbm/s)		. 3.9	591	
(HP) _{REF} (Eq. 75), (HP)		121	.317	
M _{REF} (Eq. 76), (inlb)		459	.45	

~	
6	
SOTO!	
RO	
B	
S	
S	
OMPRESSO	
a	
Σ	
0	
O	
1	
<b>CENTRIFUGAI</b>	
$\overline{\mathbf{O}}$	
2	
H	
Ľ	
E	
Z	
5	
-	
<b>[</b> 24	
0	
[1]	
Ü	
Z	
ERFORMANCE	
2	
õ	
E.	
2	
<u> </u>	
2	
0F 2	
E.	
0	
_	
-	
SHEET	
H	
S	
-	
4	
~	
<b>TABLE</b>	
31	
A	
F	

( MONROE CALCULATOR 1655/6 ) ROTOR DIMENSIONS:

	HEE		Ur	2	ŕ		_												RC	0101		1101	VRO		655	, 0,	
k= 0.8599																											
(°)		13	-		.8963	FINAL	.548	5.462 317	. 271 616	.217 145	.975 796	.993 024	.186 761	.435 643	64.615	61.109	.4372	+10. 789	. 7964	.4813	TT62.	.5480	1.183 592	1.688 362	1.093 625	1.2 80 258	. 6413
β _g = 50.32		71			.8847	FINAL	. 611 6	6.088 361	. 302 747	.242 032	.969 728	,991 256	.209 096	.445 675	62.020	58.291	.4476	+ 7.971	.8187	.5229	. 36 99	. 6116	1.181 216	1.688 961	1.091 551	1.281 213	.6409
0.55		69			.8732	FINAL	. 6686	6.705 048	.333 412	.266 548	010 296.	985 289.	.231 421	. 456 577	59.545	55, 636	.4590	+ 5.316	. 8373	. 5617	.4300	. 6686	1.178 860	1.687 492	1.089 263	1.279 641	.6413
R10/R2=		67			.86.16	FINAL	T17.	1.307 976	.363 393	. 290 516	769 556.	.987 136	.253 608	.468 212	57.204	53.154	.4712	+2.834	.8514	.5976	.4747	0212.	1.176 484	1.683 471	1.086 156	1.275 311	.6425
5 (in ² )	0.7156	54	0.954	0.980	. 7844	FINAL	181.	10.461 233	.520 190	.415 869	.903 564	.971 442	.377 877	.545 615	46.166	41. 849	. 55 36	- 8.471	.1396	1664.	1250	7181.	1.160 671	1.554 246	1.064 392	1.147 873	. 6725
25.6685		58			. 8088	FINAL	.780	9.622 001	478 458	.382 506	. 386 616.	.976 454	.343 120	.522 146	48.918	44.606	.5284	-5.713	.80	.7405	.2198	.7802	1.165 669	1.605 044	1.072 513	1.199 174	.6590
(in ² ) A ₁		62			. 8325	FINAL	. 188	8.717 619	.433 488	.346 554	.935 492	.981 128	.307 180	.499 264	52.029	47.772	. 5040	-2.548	. 8574	. 6783	6974.	. 1878	1.170 524	382 1.657 610	1.079 476	1.248 524	.6494
		65			. 85	DESIGN POINT	. 1548	7.892 906	.392 478	. 313 769	.947 862	.984 817	.275 522	.480 435	55.006	50.851	.4841	+0.531	.86	. 63 12	. 4 999	. 7548	1.174 108	1.676 382	1.084 022	1.267 734	.6446
21.0801	-	2	3	4	5	9	2	တ	0	10	=	12	13	12	5	16	17	-	19	95	12	cc	23	72	6.1 C2	26	12
1.4 A2-	U 2/a 0	α2.	k _{B2}	k _{B1}	Ľ	No.=j	¢.	$\sqrt{(R_G/R)T_0/P_G}$	ф2	¢	P1/P0	$T_1/T_0$	V1/a0	W10/a()	β, ( ⁰ )	β ₁₀ [•] ( ⁰ )	Mur	1 ( 0 )	nn R	-W2/W10	П.,	*	Tt 2/70	Pt. 7/P0	T ₂ /T _C	P ₂ /P ₀	ċ^W
γ of Fluid -		SELECTED	rakane leko		Ec. 82	ITERATION	0F #		PROGR.102		PROGR.103		73	PROGR . 104					FIG. 24		PROGR.105				PROGR . 100		

TABLE X (SHEET | OF 2 ) PERFORMANCE OF CENTRIFUGAL COMPRESSOR ROTOR (MONROE 1655/6)

M. H. V. 87219 12

ROTOR
COMPRESSOR
CENTRIFUGAL C
PERFORMANCE OF CI
OF 2 )
(SHEET 2
TABLE X

MONROE CALCULATOR 1655/6 )

ROTOR DIMENSIONS:

676 810 503 1.048 680 3.660 138 929 .989 292 264 k= 0.8599 63.079 002 1.095 458 110 921 4 = +12.759 .8006 .2936 4882 . 5541 8963 FINAL 554 3101 73 .309 1.140 . 145 .996 1.329 . 123 .182 66. .472 082 405 223 1.047 602 814 759 471 713 4.070 451 010 .315 604 + 10.180 781 966. P11 986. 64.057 60.500 . 33 86 8164 . 6119 .5325 <del>و</del> . 3162 .8847 . 612 しくてに . 138 1.094 1.140 1.327 12 . 202 191. 32 875 619 616 022 . 322 042 1.046 412 .471 802 366 128 4.478 169 2 (3 1.092 998 55.047 6655 618c. 61.793 .5742 50. 8732 665 .8315 + 7.727 .3226 69 **FINAL** . 983 1.326 .995 1.138 . 222 . 152 .178 B â 1.6L 065 517 468 305 442 746 .328 937 813 1.028 559 1.045 108 1.136 169 835 1.091 762 59.630 55.727 8428 6134 + 5.407 . 32 98 4102 111 2 8616 FINAL 4.861 50 1111 67 .980 1.323 194 . 166 .242 466. .472 0 R10/R2= 555 369 154 233 107 912 .401 047 .283 366 45.044 984 .983 941 - 9.584 3847 40.135 8761 4043 . 7680 .8394 0.954 840 0.516 .7590 0.98 FINAL 8.099 944 1.080 1.065 1.267 .402 50 . 504 .321 i (in²) 1.090 658 . 986 846 7.384 474 504 1.083 540 128 1.287 029 1.033 481 557 961 217 126. 154 43.579 47.898 -6.740 8220 9L11 . .3850 .8204 1968 . 8381 .1844 54 PINAL 382 . 492 . 367 :293 .256 S 604 1.112 604 6.653 236 488 1.037 703 835 222 483 096 463 668 003 532 661 46.755 51.035 -3.565 .3669 8350 7639 1358. .3914 FINAL 86 0008 58 . 330 1.086 1.305 . 264 686. .229 .365 .963 ່ 2 B 1.041 323 676 1.088 663 .476 767 198 × 146 558 883 455 5.875 178 348 033 971 878 50.460 54.631 1955 4046. 8325 + 0.14 4371 71 OF . 1955 99. 1.125 62 FINAL 1.315 (in²) .233 . 292 .201 ā. 687 705 5.265 458 552 214 LLL 483 378 340 4--505 822 542 4465 7547 6502 856 S . 1546 3374 3.191 1.043 060. 1.321 473 1.133 65 116 TINAL 666 .210 .336 51. 53. SS 262 180 21.080 4 10 11 12 13 14 15 16 û. 20 23 24 25 26 10 17 21 000 2 9 တ δ -3 4 ŝ  $\sqrt[a]{(R_G/g)T_0}/P_C$ <u>م</u> <del>ر</del>) (°) /an 01 m/cm A_2= t2/P0 V./80 U2/30 1,2/10 T,7T0  $P_1/P_0$  $T_1/T_0$  $P_2/P_0$ No.- j • MV2 M10, B10 k_{B1} ol a₂ k_{B2} MM <u>e</u> • . ę Э ю ۵. of Fluid = 1.4PROGR. 104 PROGR.102 PROCR. 103 PRCGR.105 SELECTED PARAMETERS PROGR , 10' I I ERATION 24 82 ->> FIG. 40 с ш ≻ 74

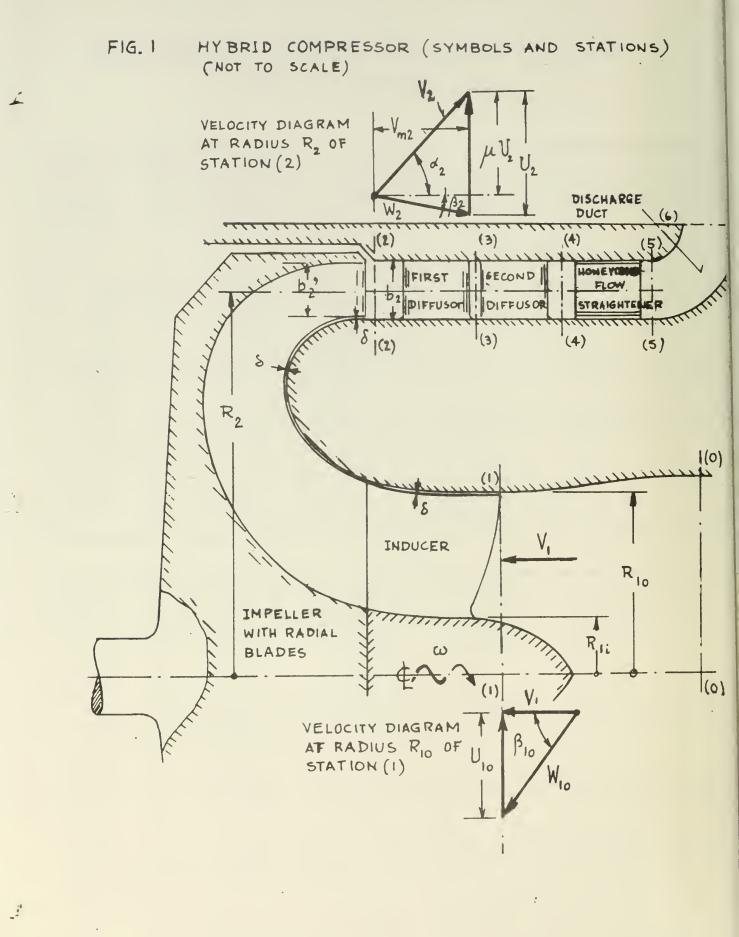
TABLE X (SHEET 2 OF 2 ) PERFORMANCE OF CENTRIFUGAL COMPRESSOR ROTOR (MONROE 1655/6)

TABLE XI CALCULATED PERFORMANCE OF HYBRID COMPRESSOR AT 16,666 RPM

# $T_0 = 520^{\circ}R$ ; $P_0 = 14.7/(p_6/P_0)$ (psia)

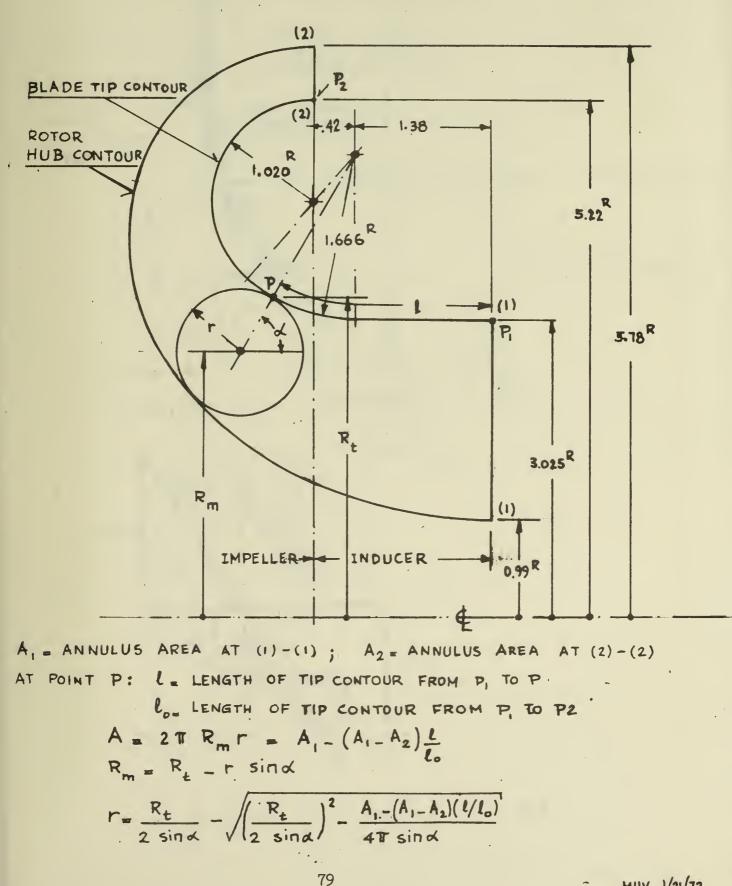
$\frac{U_2}{\alpha_2}$	0 • 7 1 5 6 6 5 • 0 0 0 0	0 • 7 1 5 6 6 2 • 0 0 0 0	0 • 7 1 5 6 5 8 • 0 0 0 0	0 • 7 1 5 6 5 4 • 0 0 0 0
$\frac{\mathbf{P}_{t4}}{\mathbf{P}_{0}}$	1 • 5 9 1 0	1・5722	1 • 5 1 3 5	1 • 4 2 3 5
	1 • 5 1 0 0	1・4708	1 • 3 8 2 5	1 • 2 5 2 7
	1 • 1 5 6 7	1・1485	1 • 1 3 5 9	1 • 1 1 9 0
$     P_4/P_0     T_4/T_0     M_{V4}     V_4/a_0 $	0 • 2743	0 • 3 1 0 0 0 • 3 3 2 2	0 • 3620 0 • 3858	0 • 4 3 1 3 0 • 4 5 6 2
$\frac{P_{t4}'/P_{0}}{P_{t}'/P_{0}}$	1 • 5 8 0 <b>3</b>	1 • 5 5 8 6	1 • 4 9 5 8	1 • 4 0 0 0
	1 • 4 9 <b>3</b> 5	1 • 4 5 0 4	1 • 3 5 6 3	1 • 2 1 9 3
P t //P O	1 • 5 5 4 3	1 • 5 2 6 2	1 • 4 5 3 9	1 • 3 4 5 8
P / //P O	1 • 4 6 8 9	1 • 4 2 0 2	1 • 3 1 8 4	1 • 1 7 2 0
$\begin{array}{c} P t 5/P \\ P t 5/P \\ P t 6/P \\ P 6/P \\ \end{array}$	1 • 5 2 9 0	1 • 4 9 4 6	1 • 4 1 3 1	1 • 2 9 2 4
	1 • 5 0 5 0	1 • 4 6 4 8	1 • 3 7 5 2	1 • 2 4 4 3
	1 • 4 6 4 6	1 • 4 1 5 1	1 • 3 1 2 2	1 • 1 6 4 7
P _O (psia)	10.0367	10•3883	11 • 2026	12•6209
w (1bm/s)	2.6978	3•0841	3 • 6709	4•4963
HP	82.9226	92•8442	107 • 3626	127•5371
N (rpm)	16,666 •	16,666 •	16,666 •	16,666 •
N T	0 • 8149	0 • 8093	0 • 7587	0 • 6607
$\frac{U_{2}/a_{0}}{\alpha_{2}}$	0 • 7 1 5 6 6 7 • 0 0 0 0	0 • 7 1 5 6 6 9 • 0 0 0 0	0 • 7 1 5 6 7 1 • 0 0 0 0	0 • 7 1 5 6 7 3 • 0 0 0 0
P t4/P0	1 • 5 9 8 2	1 • 5 9 9 7	1 • 5 8 1 6	1 • 5 2 6 4
P/P0	1 • 5 2 9 5	1 • 5 4 2 3	1 • 5 3 <b>3</b> 9	1 • 4 8 6 7

2	67.0000	69.0000	71.0000	13.0000
Pr4/Po	1 • 5 9 8 2	1 • 5 9 9 7	1 • 5 8 1 6	1 • 5 2 6 4
P47P0	1 • 5 2 9 5	1 • 5 4 2 3	1 • 5 3 3 9	1 • 4 8 6 7
4/10	1•1618	1 • 1,6 6 6	1 • 1709	1 • 1 7 4 7
M	0 • 2 5 1 3	0 • 2 2 9 2	0 • 2 0 9 6	0 • 1 9 4 3
4, 0	0 • 2709	0 • 2 4 7 5	- 0.2268	0 • 2 1 0 6
Pt4'/PO P4'/PO	1 • 5 8 9 2	1 • 5 9 2 2	1 • 5 7 5 4	1 • 5 2 1 2
P4 /P0	1 • 5 1 5 5	1 • 5 3 0 6	1 • 5 2 4 2	1 • 4 7 8 6
P "/P	1 • 5 6 7 1	. 1 • 5 7 3 7	1•5600	1.5084
P4 PO	1 • 4 9 4 4	1 • 5 1 2 8	1 • 5 0 9 3	1•4661
P.s/P	1 • 5 4 5 7	1 • 5 5 5 8	1 • 5 4 5 2	1 • 4 9 6 1
$P_{t6}/P_0$	1 • 5 2 5 2	1 • 5 3 8 6	_ 1.5308	1 • 4 8 4 1
P6/P0	• 1 • 4 9 0 7	1 • 5096	1•5066	1 • 4 6 3 9
P ₀ (psia)	9 • 8 6 0 9	9 • 7 3 7 5	9 • 7 5 6 9	10.0417
<b>w</b> (1bm/s)	2 • 4 5 4 1	2 • 2 2 3 5	2 • 0 2 3 0	1 • 8680
HP	76 • 46 18	70 • 2088	64 • 7 1 9 4	60 • 5 4 3 3
N (rpm)	16,666•	16,666 •	16,666 •	16,666 •
η	0 • 8 1 2 3	0 • 8032	0 • 7 7 2 3	0 • 6 9 9 5


.

# $T_0 = 520^{\circ}R$ ; $P_0 = 14.7/(p_6/P_0)$ (psia)

ì


U2/a0	0 • 5 1 6 0	0.5160	0 • 5 1 6 0	0 • 5 1 6 0	0.516
2° 0 a2	65.0000	62.0000	58.0000	54.0000	50.000
	1.2824	1 • 2756	1 • 2642	1 • 2362	1.193
$P_{t4}/P_{0}$	1 • 2 4 1 4	1 • 2 2 4 3	1 • 1969	1 • 1501	1.083
P4/P0					
^T 4 ^{/T} 0	1.0805	1.0760	1.0693	1.0614	1.051
HV4 V./80	0 • 2 1 6 0	0 • 2 4 2 9	0 • 2 8 0 5 .	0•3228	0 • 374
4'-0	0 • 2 2 4 5	0 • 2520	0 • 2 9 0 1	0.3326	0.383
P t 4 /P 0	1 • 2 7 7 1	1 • 2689	1 • 2 5 5 3	1 • 2 2 4 6	1 • 1 7 8
P4 /20	1 • 2 3 3 0	1 • 2 1 3 8	1 • 1833	1 • 1 3 2 7	1.061
$P_{t4}$ "/P	1 • 2639	1 • 2 5 2 3	1 • 2 3 3 7	1 • 1 9 7 1	1 • 1 4 3
P "/P t 4 "/P P, "/P	1 • 2 2 0 3	1 • 1 9 8 0	1 • 1 6 3 0	1 • 1072	1.029
P _{t5} 0	1 • 2511	1.2364	1 • 2 1 2 7	1.1702	1.108
$P_{t6}/P_{0}$	1 • 2 3 8 8	1.2210	1.1928	1 • 1 4 5 0	1.077
P6/P0	1 • 2 1 8 0	1 • 1952	1 • 1 5 9 5	1 • 1029	1.024
	12.0689	12.2989	12.6784	13.3279	14.346
P _O (psia) w (lbm/s)	2 • 1724	2 • 4 6 0 8	2 • 8726	3 • 3517	3.957
H P	34 • 7276	38.5173	43.6842	49.4315	56.478
1					
N(rpm)	12,018 •	12,018 ••	12,018 •	12,018 •	12,018
η _τ	0 • 8 1 3 5	0 • 8 1 2 3	0 • 8 0 4 2	0 • 7 4 7 5	0.639
			•		
	•	r	* *	1	
U_/a_	0.5160	0.5160	0.5160	1	
$\frac{U_2/a_0}{\alpha_2}$	0.5160	0 • 5 1 6 0 6 9 • 0 0 0 0	0•5160	0.5160	
$\frac{U_2/a_0}{\alpha_2}$	67.0000	69.0000	71.0000	0 • 5 1 6 0 7 3 • 0 0 0 0	
$P_{t4}/P_{0}$	67.0000 1.2846	69.0000 1.2870	71.0000	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1	
$P_{t4}/P_{0}$	67.0000 1.2846 1.2498	69.0000 1.2870 1.2579	71.0000 1.2870 1.2630	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7	
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$	67.0000 1.2846 1.2498 1.0832	69.0000 1.2870 1.2579 1.0859	71.0000 1.2370 1.2630 1.0884	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7	
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$	67.0000 1.2846 1.2498 1.0832 0.1984	69.0000 1.2870 1.2579 1.0859 0.1810	7 1 • 0 0 0 0 1 • 2 8 7 0 1 • 2 6 3 0 1 • 0 8 8 4 0 • 1 6 4 1	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9	
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$ $\frac{P_{4}/P_{0}}{T_{4}/T_{0}}$ $\frac{M_{V4}}{V_{4}}$	67.0000 1.2846 1.2498 1.0832 0.1984 0.2065	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887	7 1 • 0 0 0 0 1 • 2 8 7 0 1 • 2 6 3 0 1 • 0 8 8 4 0 • 1 6 4 1 0 • 1 7 1 2	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4	
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$ $\frac{P_{t4}/T_{0}}{M_{V4}}$ $\frac{M_{V4}}{V_{4}/E_{0}}$	67.0000 1.2846 1.2498 1.0832 0.1984 0.2065 1.2801	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832	7 1 • 0 0 0 0 1 • 2 8 7 0 1 • 2 6 3 0 1 • 0 8 8 4 0 • 1 6 4 1 0 • 1 7 1 2 1 • 2 8 3 9	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4 1 • 2 7 8 6	
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$ $\frac{P_{t4}/T_{0}}{M_{V4}}$ $\frac{M_{V4}}{V_{4}/E_{0}}$	67.0000 1.2846 1.2498 1.0832 0.1984 0.2065	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832 1.2519	$71 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4 1 • 2 7 8 6 1 • 2 5 7 7	•
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$ $\frac{P_{t4}/T_{0}}{M_{V4}}$ $\frac{M_{V4}}{V_{4}/E_{0}}$	67.0000 1.2846 1.2498 1.0832 0.1984 0.2065 1.2801	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832	$71 \cdot 0000$ $1 \cdot 2370$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2761$	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4 1 • 2 7 8 6	
$\frac{P_{t4}/P_{0}}{P_{4}/P_{0}}$ $\frac{P_{t4}/T_{0}}{M_{V4}}$ $\frac{M_{V4}}{V_{4}/E_{0}}$	$67 \cdot 0000$ $1 \cdot 2846$ $1 \cdot 2498$ $1 \cdot 0832$ $0 \cdot 1984$ $0 \cdot 2065$ $1 \cdot 2801$ $1 \cdot 2427$	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832 1.2519	$71 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4 1 • 2 7 8 6 1 • 2 5 7 7	•
$     P_{t4}/P_{0} \\     P_{4}/P_{0} \\     T_{4}/T_{0} \\     M_{V4} \\     V_{4}/e_{0} \\     P_{t4}'/P_{0} \\     P_{4}''/P_{0} \\     P_{4}''/P_{0}$	$67 \cdot 0000$ $1 \cdot 2846$ $1 \cdot 2498$ $1 \cdot 0832$ $0 \cdot 1984$ $0 \cdot 2065$ $1 \cdot 2801$ $1 \cdot 2427$ $1 \cdot 2689$	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832 1.2519 1.2738	$71 \cdot 0000$ $1 \cdot 2370$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2761$	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4 1 • 2 7 8 6 1 • 2 5 7 7 1 • 2 7 2 3	
$     P_{t4}/P_{0} \\     P_{4}/P_{0} \\     T_{4}/T_{0} \\     M_{V4} \\     V_{4}/P_{0} \\     P_{t4}'/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t5}/P_{0} \\     P_{t5}$	$67 \cdot 0000$ $1 \cdot 2846$ $1 \cdot 2498$ $1 \cdot 0832$ $0 \cdot 1984$ $0 \cdot 2065$ $1 \cdot 2801$ $1 \cdot 2427$ $1 \cdot 2689$ $1 \cdot 2318$	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832 1.2519 1.2738 1.2427	$71 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2761$ $1 \cdot 2505$	0 • 5 1 6 0 7 3 • 0 0 0 0 1 • 2 8 1 1 1 • 2 6 1 7 1 • 0 9 0 7 0 • 1 4 7 9 0 • 1 5 4 4 1 • 2 7 8 6 1 • 2 5 7 7 1 • 2 7 2 3 1 • 2 5 1 5	
$     P_{t4}/P_{0} \\     P_{4}/P_{0} \\     T_{4}/T_{0} \\     M_{V4} \\     V_{4}/P_{0} \\     P_{t4}'/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t5}/P_{0} \\     P_{t5}$	$67 \cdot 0000$ $1 \cdot 2846$ $1 \cdot 2498$ $1 \cdot 0832$ $0 \cdot 1984$ $0 \cdot 2065$ $1 \cdot 2801$ $1 \cdot 2427$ $1 \cdot 2689$ $1 \cdot 2318$ $1 \cdot 2530$ $1 \cdot 2475$	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832 1.2519 1.2738 1.2427 1.2647	$71 \cdot 0000$ $1 \cdot 2370$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2761$ $1 \cdot 2505$ $1 \cdot 2687$	$0 \cdot 5160 \\ 73 \cdot 0000 \\ 1 \cdot 2811 \\ 1 \cdot 2617 \\ 1 \cdot 0907 \\ 0 \cdot 1479 \\ 0 \cdot 1544 \\ 1 \cdot 2786 \\ 1 \cdot 2577 \\ 1 \cdot 2577 \\ 1 \cdot 2515 \\ 1 \cdot 2663 \\ 1 \cdot 2604 \\ 1 \cdot 2604$	
$     P_{t4}/P_{0} \\     P_{4}/P_{0} \\     T_{4}/T_{0} \\     M_{V4} \\     V_{4}/P_{0} \\     P_{t4}'/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t5}/P_{0} \\     P_{t5}/P_{0} \\     P_{t6}/P_{0} \\     P_{6}/P_{0} \\     \end{array} $	$67 \cdot 0000$ $1 \cdot 2846$ $1 \cdot 2498$ $1 \cdot 0832$ $0 \cdot 1984$ $0 \cdot 2065$ $1 \cdot 2801$ $1 \cdot 2427$ $1 \cdot 2689$ $1 \cdot 2318$ $1 \cdot 2540$ $1 \cdot 2475$ $1 \cdot 2299$	$69 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2579$ $1 \cdot 0859$ $0 \cdot 1810$ $0 \cdot 1887$ $1 \cdot 2832$ $1 \cdot 2519$ $1 \cdot 2738$ $1 \cdot 2427$ $1 \cdot 2647$ $1 \cdot 2559$ $1 \cdot 2411$	$71 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2581$ $1 \cdot 2505$ $1 \cdot 2687$ $1 \cdot 2614$ $1 \cdot 2491$	$\begin{array}{c} 0 \cdot 5 1 6 0 \\ 7 3 \cdot 0 0 0 0 \\ 1 \cdot 2 8 1 1 \\ 1 \cdot 2 6 1 7 \\ 1 \cdot 0 9 0 7 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 5 4 4 \\ 1 \cdot 2 7 8 6 \\ 1 \cdot 2 5 7 7 \\ 1 \cdot 2 7 2 3 \\ 1 \cdot 2 5 1 5 \\ 1 \cdot 2 6 6 3 \\ 1 \cdot 2 5 0 4 \\ \end{array}$	
$     P_{t4}/P_{0} \\     P_{4}/P_{0} \\     T_{4}/T_{0} \\     M_{V4} \\     V_{4}/s_{0} \\     P_{t4}'/P_{0} \\     P_{t4}'/P_{0} \\     P_{t4}'/P_{0} \\     P_{t6}/P_{0} \\     P_{t5}/P_{0} \\     P_{t6}/P_{0} \\     P_{0}(psia)   $	$\begin{array}{r} 67 \cdot 0000\\ 1 \cdot 2846\\ 1 \cdot 2498\\ 1 \cdot 0832\\ 0 \cdot 1984\\ 0 \cdot 2065\\ 1 \cdot 2801\\ 1 \cdot 2427\\ 1 \cdot 2689\\ 1 \cdot 2318\\ 1 \cdot 2530\\ 1 \cdot 2475\\ 1 \cdot 2299\\ 1 \cdot 2299\\ 1 1 \cdot 9526\end{array}$	$69 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2579$ $1 \cdot 0859$ $0 \cdot 1810$ $0 \cdot 1887$ $1 \cdot 2832$ $1 \cdot 2519$ $1 \cdot 2738$ $1 \cdot 2427$ $1 \cdot 2647$ $1 \cdot 2559$ $1 \cdot 2411$ $1 \cdot 8448$	$71 \cdot 0000$ $1 \cdot 2370$ $1 \cdot 2370$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2581$ $1 \cdot 2505$ $1 \cdot 2637$ $1 \cdot 2614$ $1 \cdot 2491$ $1 1 \cdot 7683$	$\begin{array}{c} 0 \cdot 5 1 6 0 \\ 7 3 \cdot 0 0 0 0 \\ 1 \cdot 2 8 1 1 \\ 1 \cdot 2 6 1 7 \\ 1 \cdot 0 9 0 7 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 5 4 4 \\ 1 \cdot 2 7 8 6 \\ 1 \cdot 2 5 7 7 \\ 1 \cdot 2 7 2 3 \\ 1 \cdot 2 5 1 5 \\ 1 \cdot 2 6 6 3 \\ 1 \cdot 2 6 0 4 \\ 1 \cdot 2 5 0 4 \\ 1 1 \cdot 7 5 6 5 \end{array}$	
$     P_{t4}/P_{0} \\     P_{4}/P_{0} \\     T_{4}/T_{0} \\     M_{V4} \\     V_{4}v_{4}/e_{0} \\     P_{t4}'/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t4}''/P_{0} \\     P_{t5}/P_{0} \\     P_{t5}/P_{0} \\     P_{6}/P_{0} \\     P_{0}(psia) \\     \dot{w} (lbm/s) $	67.0000 $1.2846$ $1.2498$ $1.0832$ $0.1984$ $0.2065$ $1.2801$ $1.2427$ $1.2689$ $1.2318$ $1.2530$ $1.2475$ $1.2299$ $11.9526$ $1.9871$	$69 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2579$ $1 \cdot 0859$ $0 \cdot 1810$ $0 \cdot 1887$ $1 \cdot 2832$ $1 \cdot 2519$ $1 \cdot 2738$ $1 \cdot 2427$ $1 \cdot 2647$ $1 \cdot 2559$ $1 \cdot 2411$ $1 1 \cdot 8448$ $1 \cdot 8064$	$71 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2581$ $1 \cdot 2505$ $1 \cdot 2687$ $1 \cdot 2614$ $1 \cdot 2491$ $11 \cdot 7683$ $1 \cdot 6313$	$\begin{array}{c} 0 \cdot 5 1 6 0 \\ 7 \overline{3} \cdot 0 0 0 0 \\ 1 \cdot 2 8 1 1 \\ 1 \cdot 2 6 1 7 \\ 1 \cdot 0 9 0 7 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 5 4 4 \\ 1 \cdot 2 7 8 6 \\ 1 \cdot 2 5 7 7 \\ 1 \cdot 2 7 2 3 \\ 1 \cdot 2 5 1 5 \\ 1 \cdot 2 6 0 4 \\ 1 \cdot 2 5 0 4 \\ 1 \cdot 2 5 0 4 \\ 1 1 \cdot 7 5 6 5 \\ 1 \cdot 4 6 5 4 \end{array}$	
P _t 4/P ₀ P ₄ /P ₀ T ₄ /T ₀ M _{V4} V ₄ /a ₀ P _t 4'/P ₀ P _t 4'/P ₀ P ₄ "/P ₀ P ₄ "/P ₀ P ₅ /P ₀ P ₅ /P ₀ P ₆ /P ₀ P ₀ (psis) ŵ (1bm/s) HP	67.0000 $1.2846$ $1.2498$ $1.0832$ $0.1984$ $0.2065$ $1.2801$ $1.2427$ $1.2689$ $1.2318$ $1.2530$ $1.2475$ $1.2299$ $11.9526$ $1.9871$ $32.1903$	69.0000 1.2870 1.2579 1.0859 0.1810 0.1887 1.2832 1.2519 1.2738 1.2427 1.2647 1.2559 1.2559 1.2411 1.8448 1.8064 29.6570	$71 \cdot 0000$ $1 \cdot 2370$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2581$ $1 \cdot 2505$ $1 \cdot 2687$ $1 \cdot 2687$ $1 \cdot 2614$ $1 \cdot 2491$ $1 1 \cdot 7683$ $1 \cdot 6313$ $27 \cdot 1356$	$\begin{array}{c} 0 \cdot 5 1 6 0 \\ 7 3 \cdot 0 0 0 0 \\ 1 \cdot 2 8 1 1 \\ 1 \cdot 2 6 1 7 \\ 1 \cdot 2 6 1 7 \\ 1 \cdot 0 9 0 7 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 5 4 4 \\ 1 \cdot 2 7 8 6 \\ 1 \cdot 2 5 7 7 \\ 1 \cdot 2 7 2 3 \\ 1 \cdot 2 5 1 5 \\ 1 \cdot 2 6 6 3 \\ 1 \cdot 2 5 0 4 \\ 1 \cdot 4 6 5 4 \\ 2 4 \cdot 6 9 5 3 \end{array}$	
$     \begin{array}{r}       P_{t4}/P_{0} \\       P_{4}/P_{0} \\       T_{4}/T_{0} \\       M_{v4}v_{v/a_{0}} \\       P_{t4}'/P_{0} \\       P_{t4}'/P_{0} \\       P_{t4}'/P_{0} \\       P_{t4}'/P_{0} \\       P_{t5}/P_{0} \\       P_{t5}/P_{0} \\       P_{6}/P_{0} \\       P_{0}(psia) \\       w (lbm/s)   \end{array} $	67.0000 $1.2846$ $1.2498$ $1.0832$ $0.1984$ $0.2065$ $1.2801$ $1.2427$ $1.2689$ $1.2318$ $1.2530$ $1.2475$ $1.2299$ $11.9526$ $1.9871$	$69 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2579$ $1 \cdot 0859$ $0 \cdot 1810$ $0 \cdot 1887$ $1 \cdot 2832$ $1 \cdot 2519$ $1 \cdot 2738$ $1 \cdot 2427$ $1 \cdot 2647$ $1 \cdot 2559$ $1 \cdot 2411$ $1 1 \cdot 8448$ $1 \cdot 8064$	$71 \cdot 0000$ $1 \cdot 2870$ $1 \cdot 2630$ $1 \cdot 0884$ $0 \cdot 1641$ $0 \cdot 1712$ $1 \cdot 2839$ $1 \cdot 2581$ $1 \cdot 2581$ $1 \cdot 2505$ $1 \cdot 2687$ $1 \cdot 2614$ $1 \cdot 2491$ $11 \cdot 7683$ $1 \cdot 6313$	$\begin{array}{c} 0 \cdot 5 1 6 0 \\ 7 \overline{3} \cdot 0 0 0 0 \\ 1 \cdot 2 8 1 1 \\ 1 \cdot 2 6 1 7 \\ 1 \cdot 0 9 0 7 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 4 7 9 \\ 0 \cdot 1 5 4 4 \\ 1 \cdot 2 7 8 6 \\ 1 \cdot 2 5 7 7 \\ 1 \cdot 2 7 2 3 \\ 1 \cdot 2 5 1 5 \\ 1 \cdot 2 6 6 3 \\ 1 \cdot 2 5 0 4 \\ 1 \cdot 2 5 0 4 \\ 1 1 \cdot 7 5 6 5 \\ 1 \cdot 4 6 5 4 \end{array}$	•

FIGURES



# FIG. 2 DETERMINATION OF ROTOR HUB CONTOUR FOR SPECIFIED BLADE TIP CONTOUR

(TO SCALE)



- MHV 1/21/72

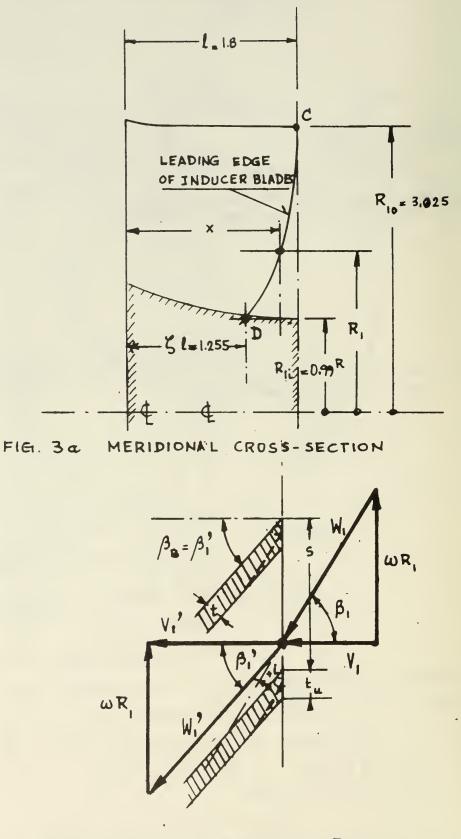
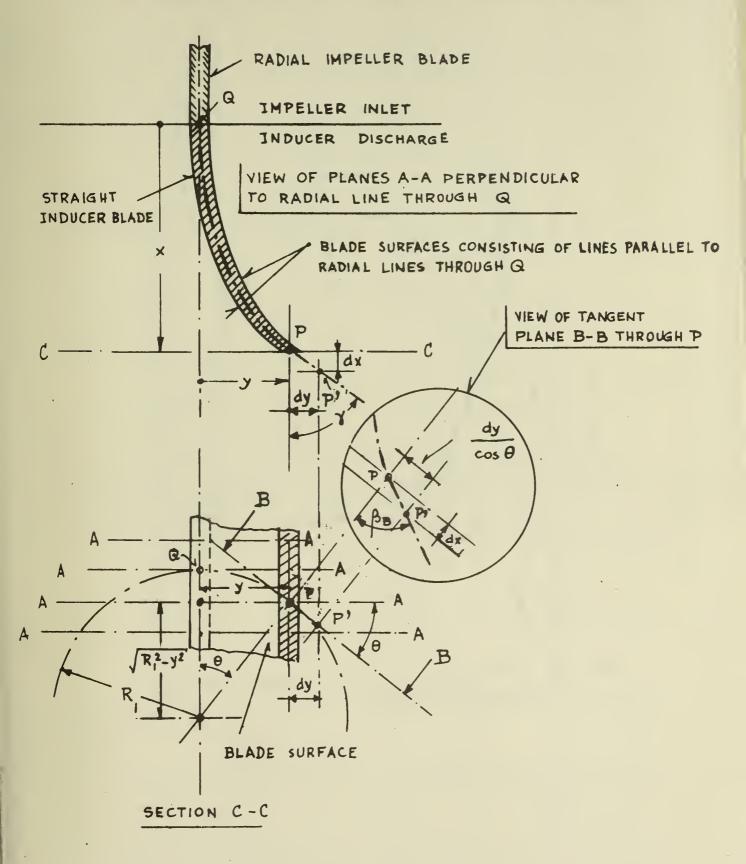
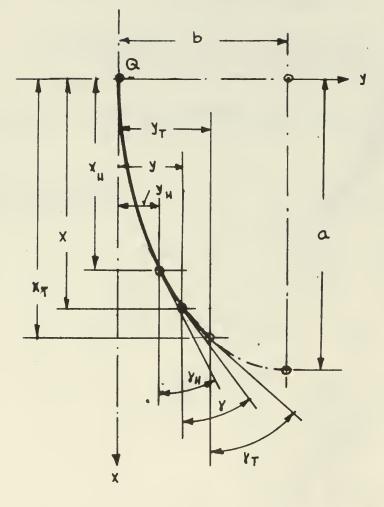





FIG. 36 CONDITIONS AT RADIUS R,



MHV 1/21/72



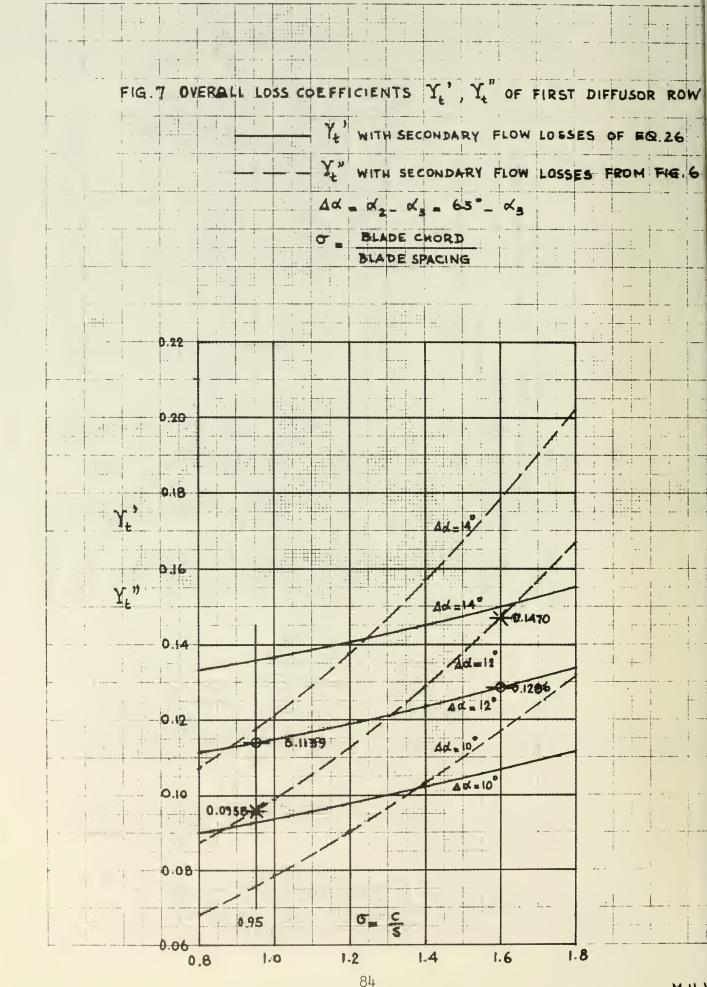
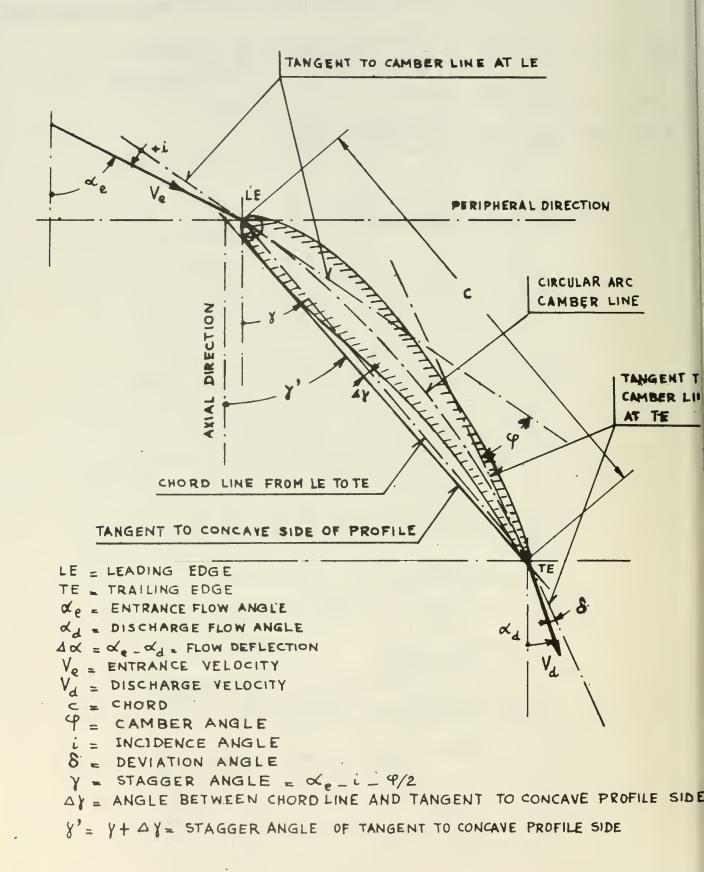

· /

FIG. 5 PROPERTIES OF ELLIPTICAL INDUCER BLADE SURFACE


aguas comans catologue estates	demonstration articles of a conductivity of the second second			and the test of test o	
·····					5
				1	
	5				5
	COEFFICIENT				
	COEF	4			8
	SS01				
	REF. 6				•
					<b>*</b>
	FFICIENT OF EFFICIENT , Y				4
	COEFFICIENT COEFFICIENT ON (RADIANS)				
	P C C C C C C C C C C C C C C C C C C C				
					10 1
	NDARY SECONDA FLOW D BLADE				0.0 of (c
					2
					9 0
	2 2				- <b>Mar</b> - <b>M</b>
					Ŏ
					0.2
		•			+ -
	<b>9</b>	1 0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Č	<b>0</b>	φ.
		"X"			


.

.



M.H.N





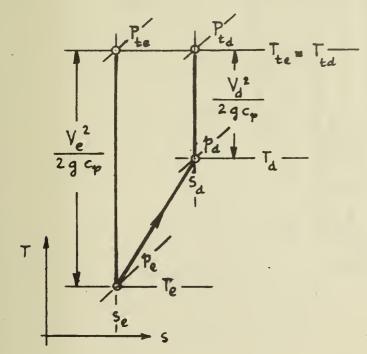

1ì

FIG. 10 DETERMINATION OF FLOW CONDITIONS AFTER DIFFUSOR ROW



FIG. 10a. MERIDIONAL SECTION

FIG. 10 b. DEVELOPED CASCADE AT RADIUS R2



87

FIG IOC. PROCESS IN ENTROPY DIAGRAM

# FIG. 11 CONDITIONS IN FLOW STRAIGHTENER AND DISCHARGE DUCT

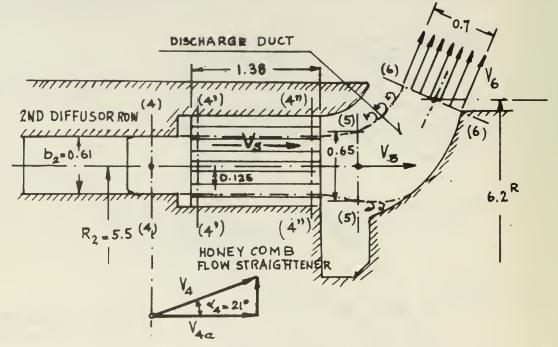
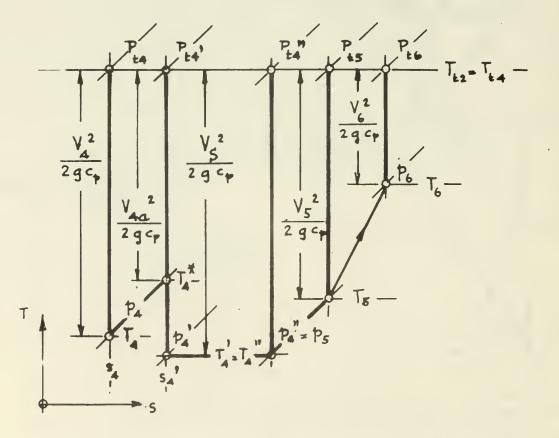
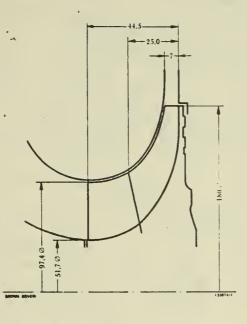




FIG. II a FLOW STRAIGHTENER AND DISCHARGE DUCT GEOMETRY

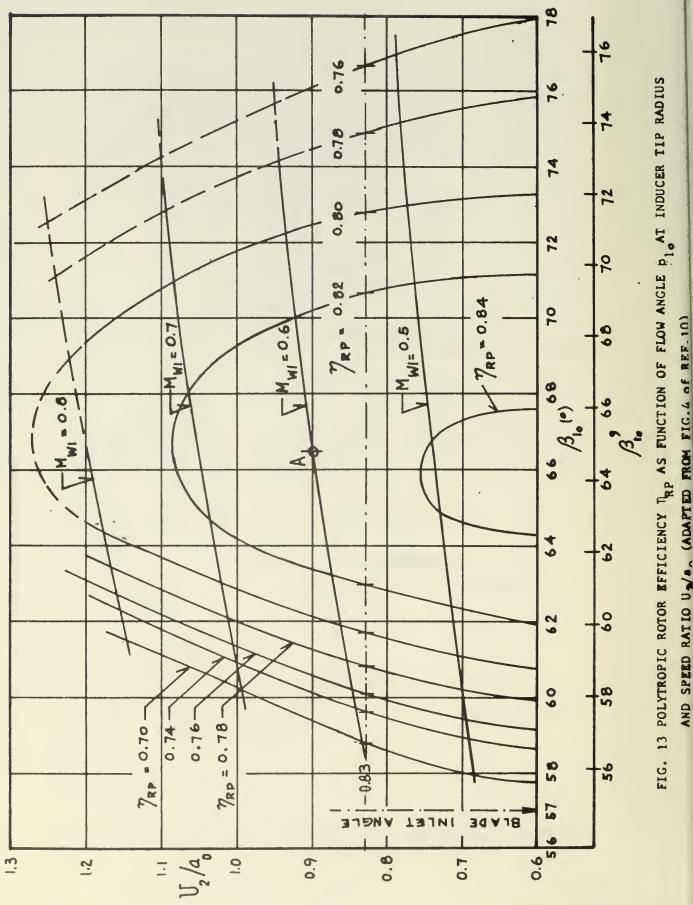



1

ì

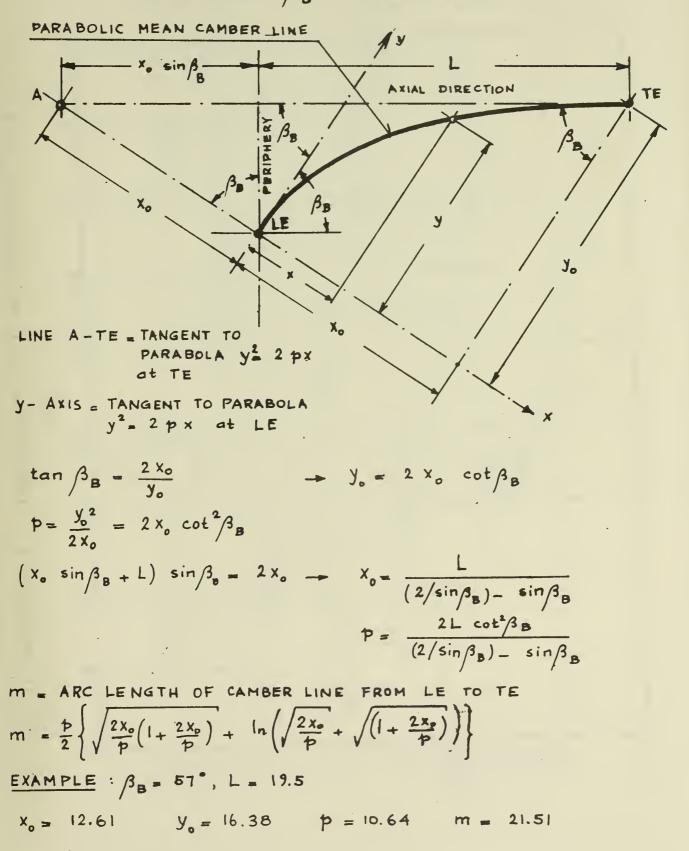
FIG. 11 b FLOW PROCESS REPRESENTED IN ENTROPY DIAGRAM

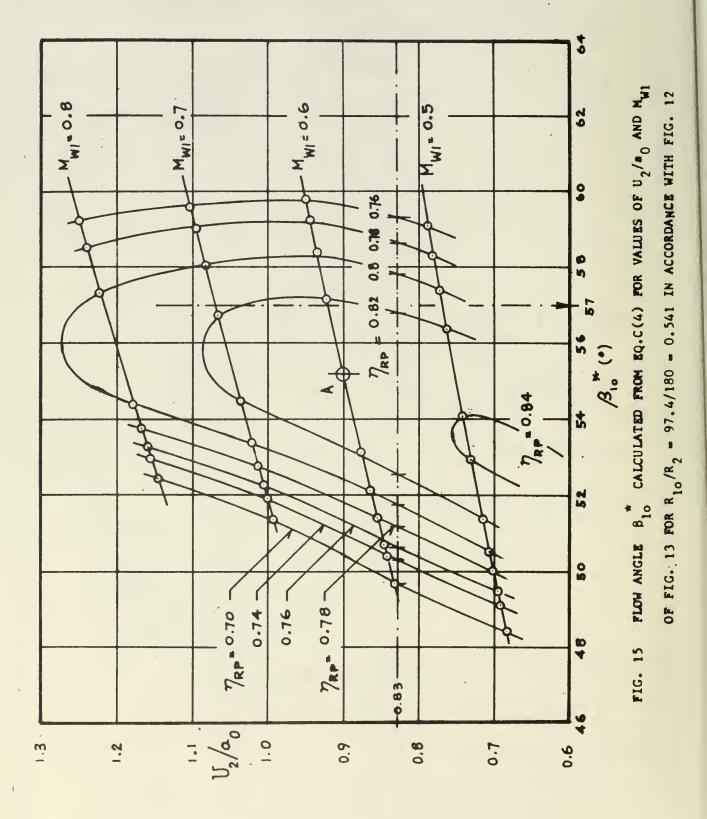
- 88


.



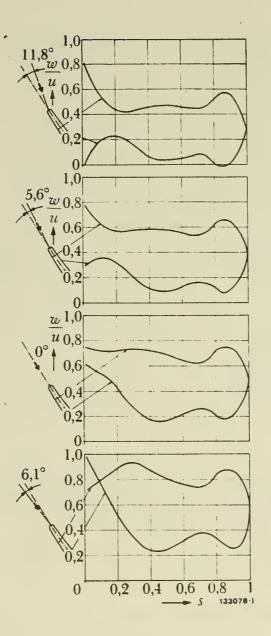
#### FIG. 12 ROTOR DIMENSIONS


Fig. 12 is identical with Fig. 2 of Ref. 10 (Dimensions are in millimeters)


$$R_{10}/R_2 = 97.4/180 = 0.541$$
  
 $R_{11}/R_2 = 51.7/180 = 0.287$   
 $b_2/R_2 = 7/90 = 0.078$ 



M.H.V. 3/0/12


FIG. 14. ARC LENGTH OF PARABOLIC MEAN CAMBER LINE OF INDUCER BLADE OF AXIAL LENGTH L AND BLADE ANGLE B AT LEADING EDGE LE





92

M. H. V. 3/2



- FIG. 16 VELOCITY DISTRIBUTIONS AT INDUCER TIP AT DIFFERENT INCIDENCE ANGLES
  - w = Relative velocity on blade surface
  - u = Peripheral speed
  - s = Distance along parabolic camber line of inducer

(Fig. 16 is identical with Fig. 5 of Ref. 10 and presents velocity distributions that are calculated by ignoring blade thickness, compressibility effects, and friction)

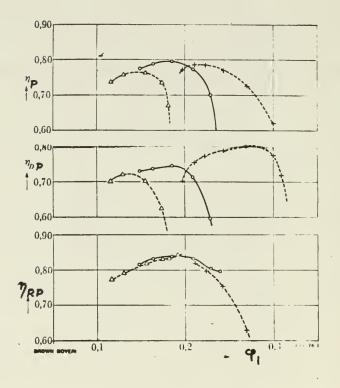



FIG. 17 COMPRESSOR PERFORMANCE AT  $U_2/a_0 = 0.83$  OF ROTOR OF FIG. 12 WITH THREE DIFFERENT DIFFUSORS (Adapted from Fig. 3 of Ref. 10)

$$\begin{split} \eta_{\mathrm{RP}} &= & \mathrm{Polytropic} \ \mathrm{Rotor} \ \mathrm{Efficiency} \\ \eta_{\mathrm{DP}} &= & \mathrm{Polytropic} \ \mathrm{Diffusor} \ \mathrm{Efficiency} \\ \eta_{\mathrm{P}} &= & \mathrm{Polytropic} \ \mathrm{Compressor} \ \mathrm{Efficiency} \\ \phi_1 &= & \mathrm{Q}_1/(\mathrm{U}_2 \ \mathrm{R_2}^2) \\ \mathrm{Q}_1 &= & \mathrm{Volume} \ \mathrm{Flow} \ \mathrm{Rate} \ \mathrm{at} \ \mathrm{Inducer} \ \mathrm{Inlet} \end{split}$$

94

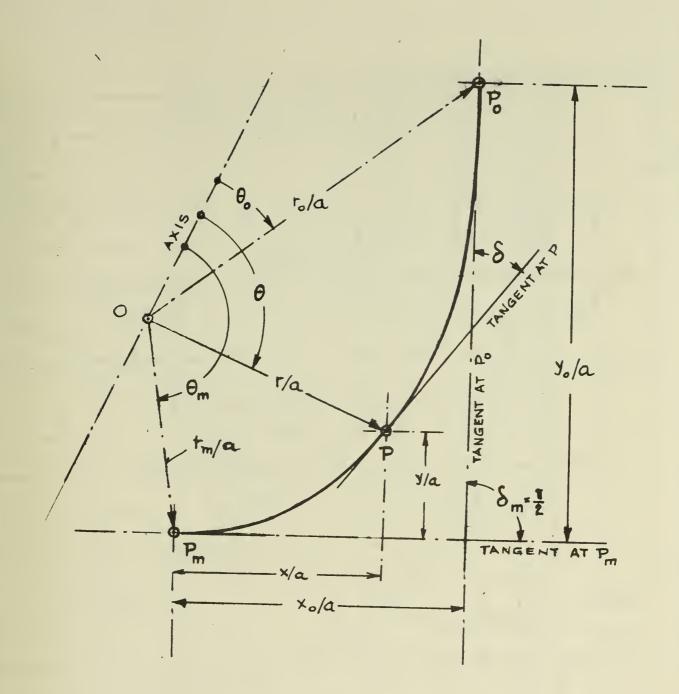



FIG. 18 MERIDIAN CURVE  $r/a = \theta^{-b}$  with  $\delta_m = \pi/2$ 

M.H.V. 3/10/12

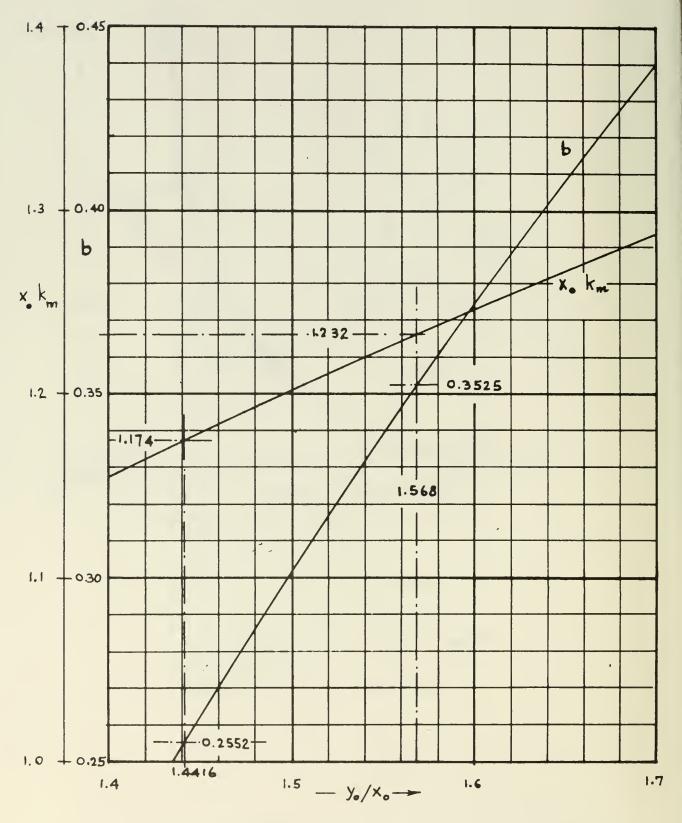



FIG. 19 RELATIONSHIP BETWEEN  $y_0/x_0$ ,  $x_0 k_m$  AND  $y_0/x_0$  FOR MERIDIAN CURVE OF FIG. 18 CALCULATED WITH PROGRAM No. 110 OF APPENDIX D

.

.

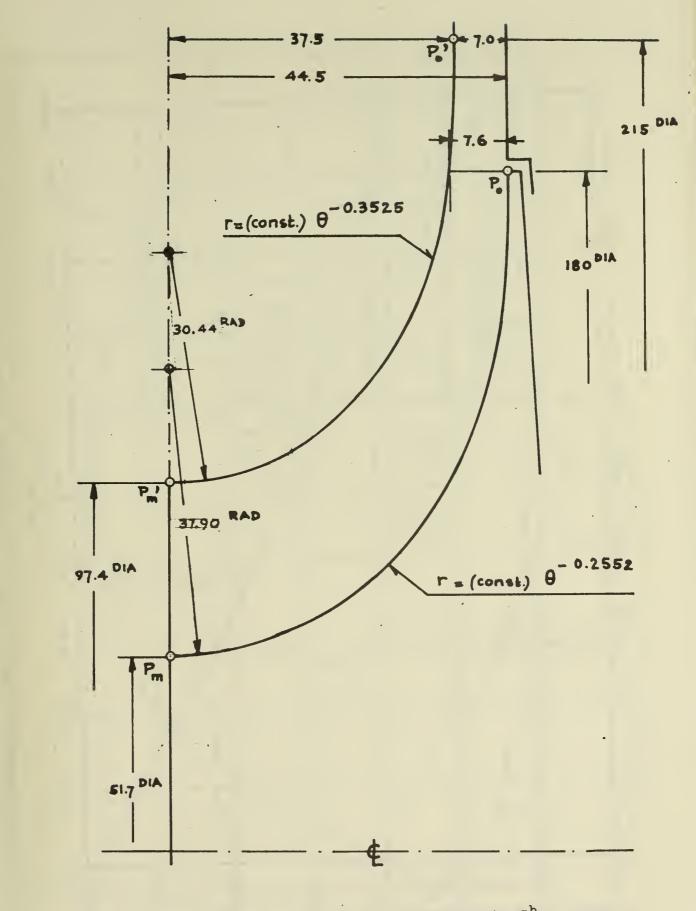
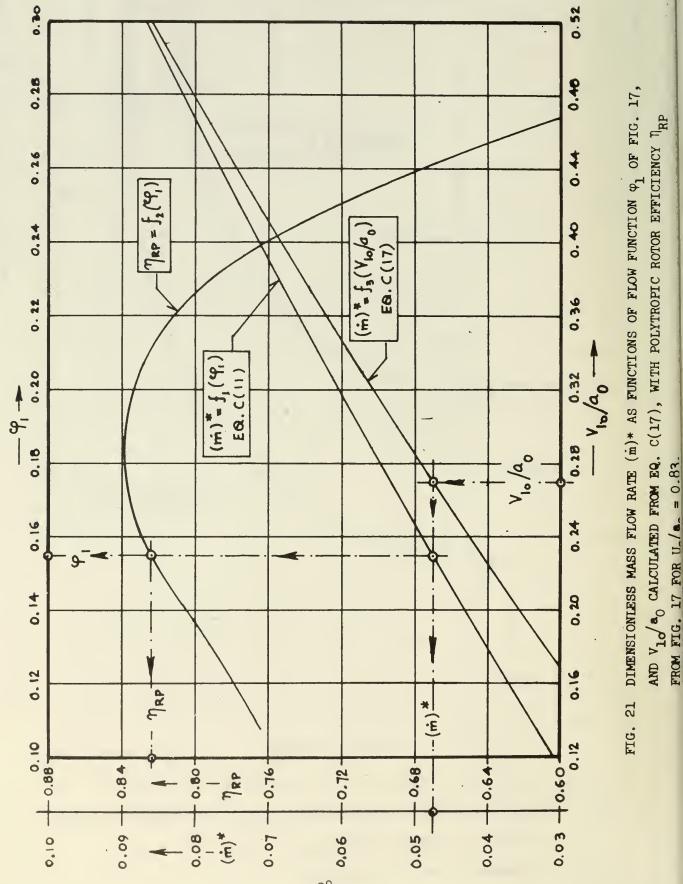
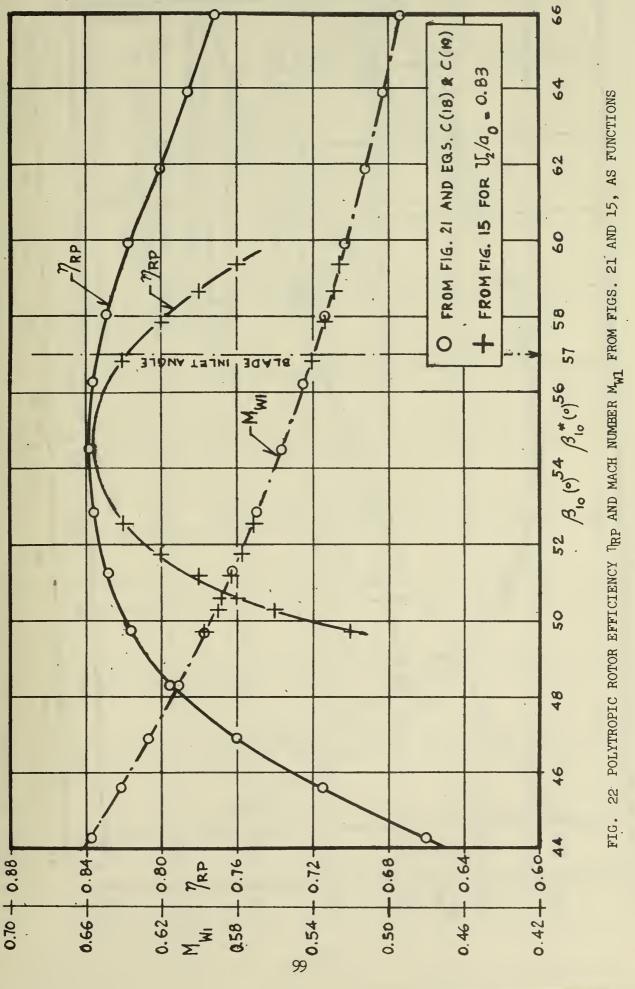
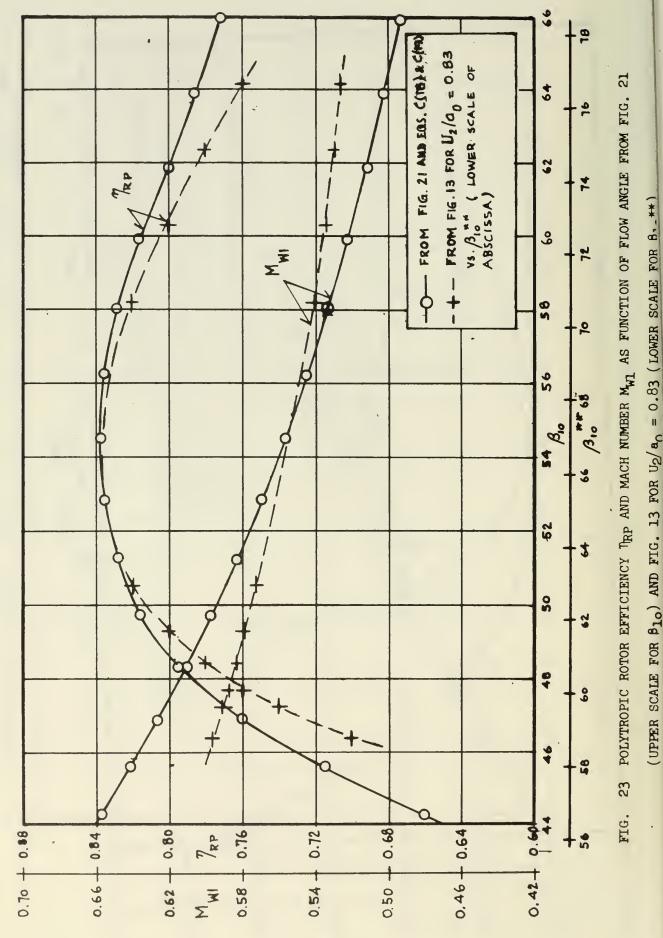



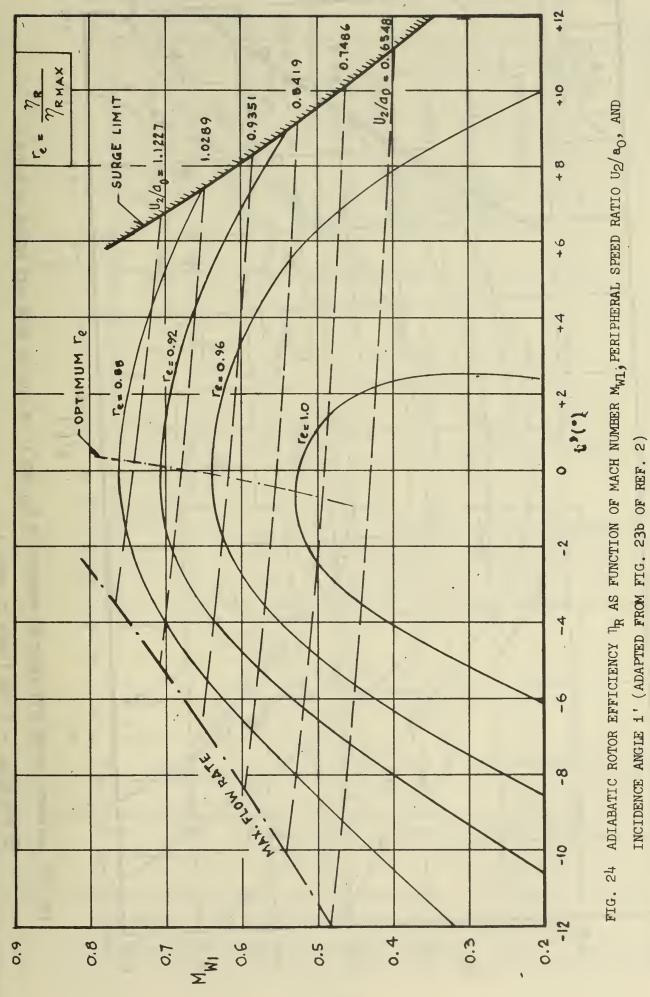

FIG. 20 SCALE DRAWING (2:1) OF MERIDIAN CONTOURS WITH r/a=0^{-b} OF IMPELLER OF FIG. 12 THROUGH POINTS P_o, P_m, P_o', P_m'. (Dimensions are in Millimeters)




t

۲ ر

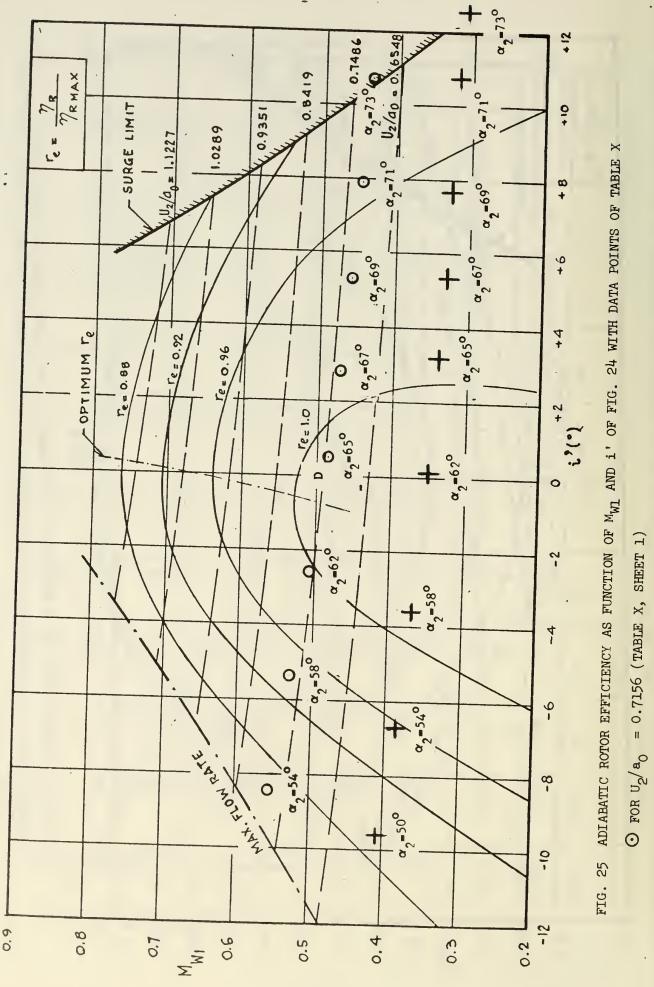

1 1


98



PROM FIG

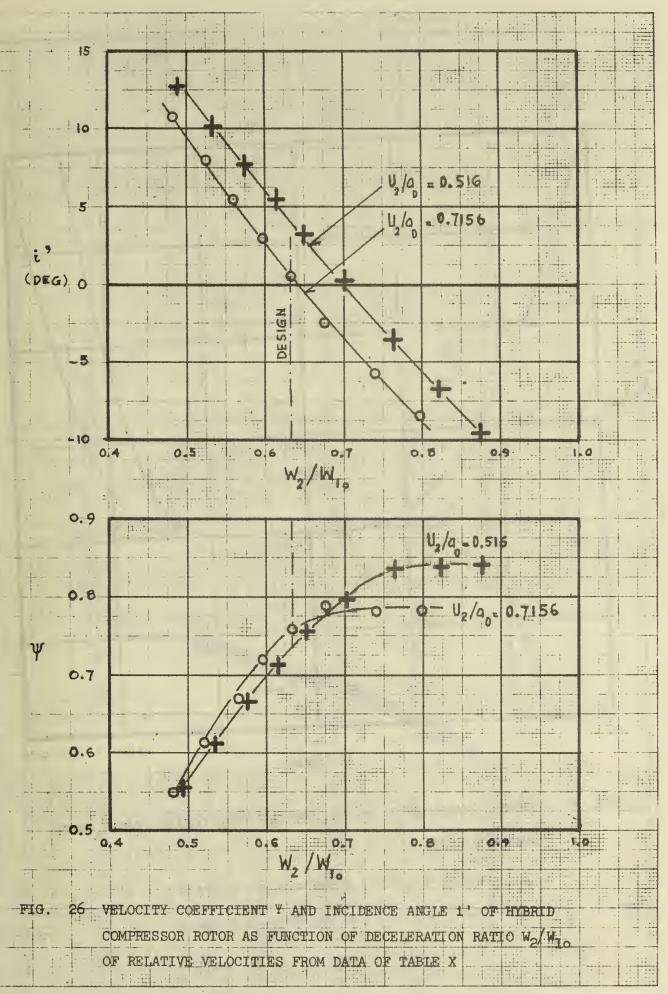
OF FLOW ANGLE  $\beta_{10}$ , FOR  $U_2/\alpha_0 = 0.83$ 





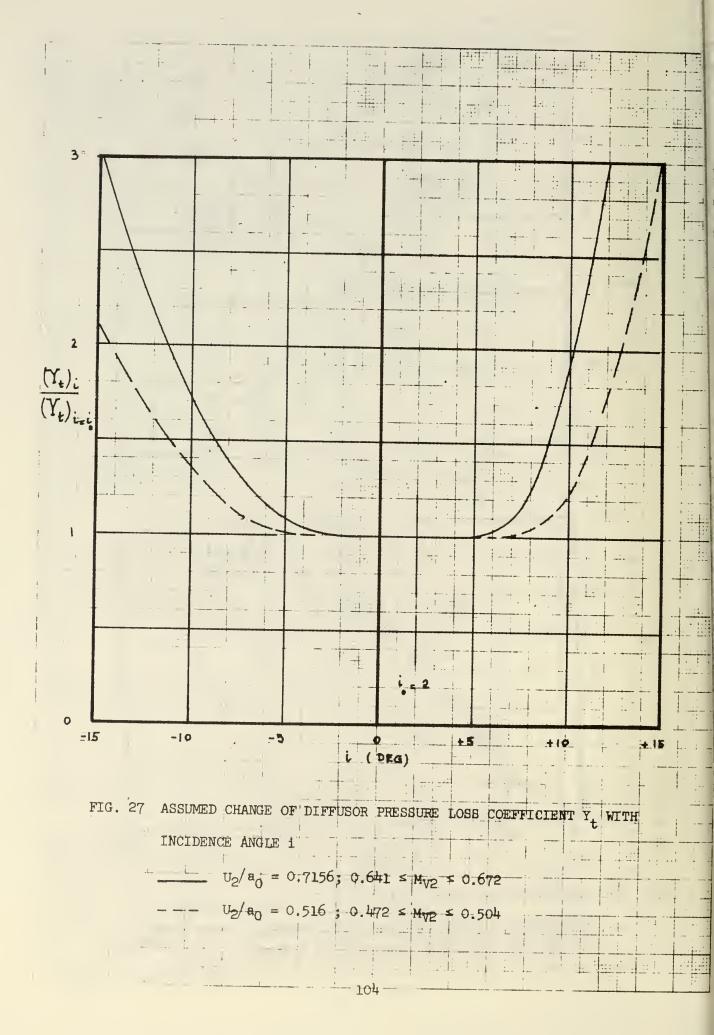

TRMAX = Maximum Adiabatic Rotor Efficiency

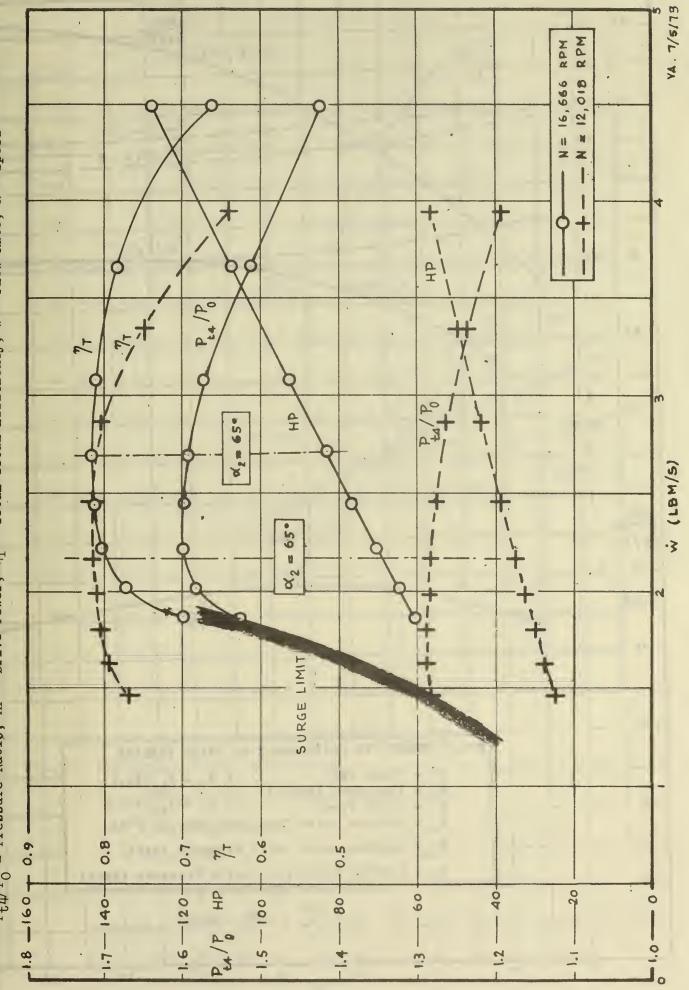
 $- - - Curves for U_2/a_0 = constant$ 


101



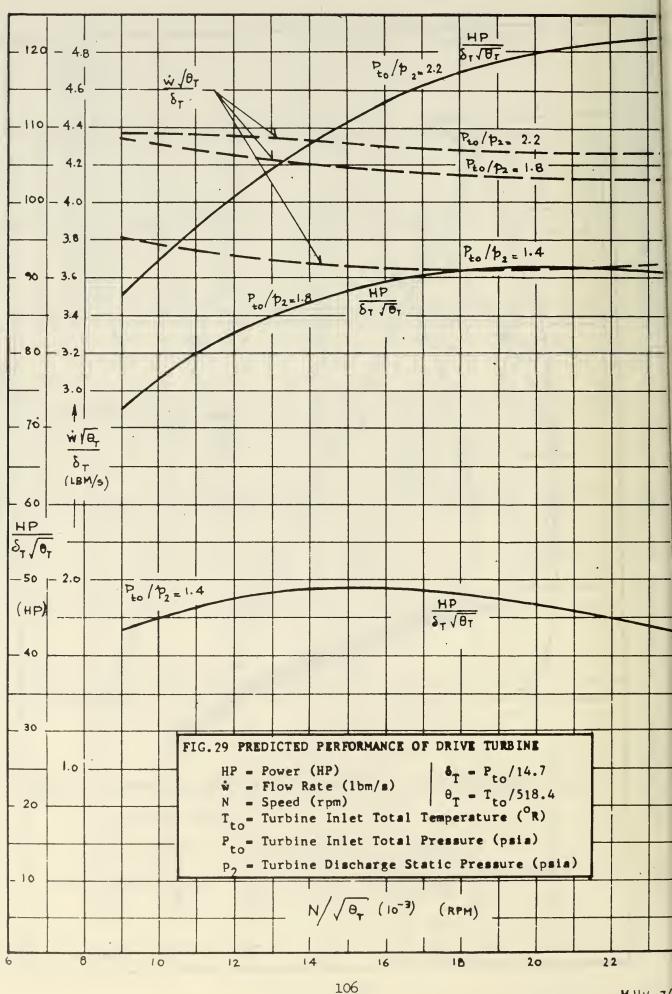
ł


102


+ FOR  $U_2/a_0 = 0.516$  (TABLE X, SHEET 2)



103


<u>]</u>t





105

Ptu/Po = Pressure Ratio; HP = Drive Power; NT = Total-Total Efficiency; w = Flow Rate; N = Speed



ſ

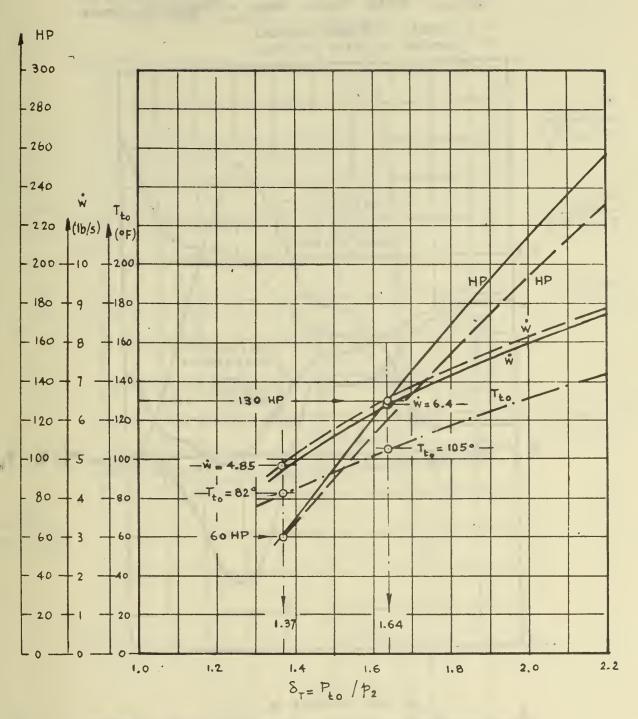
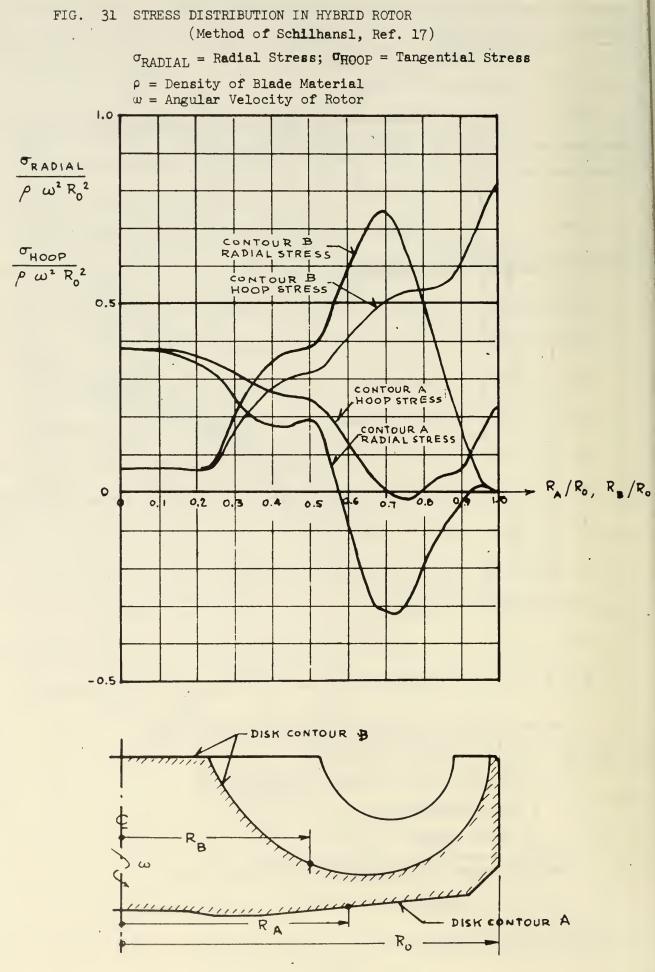
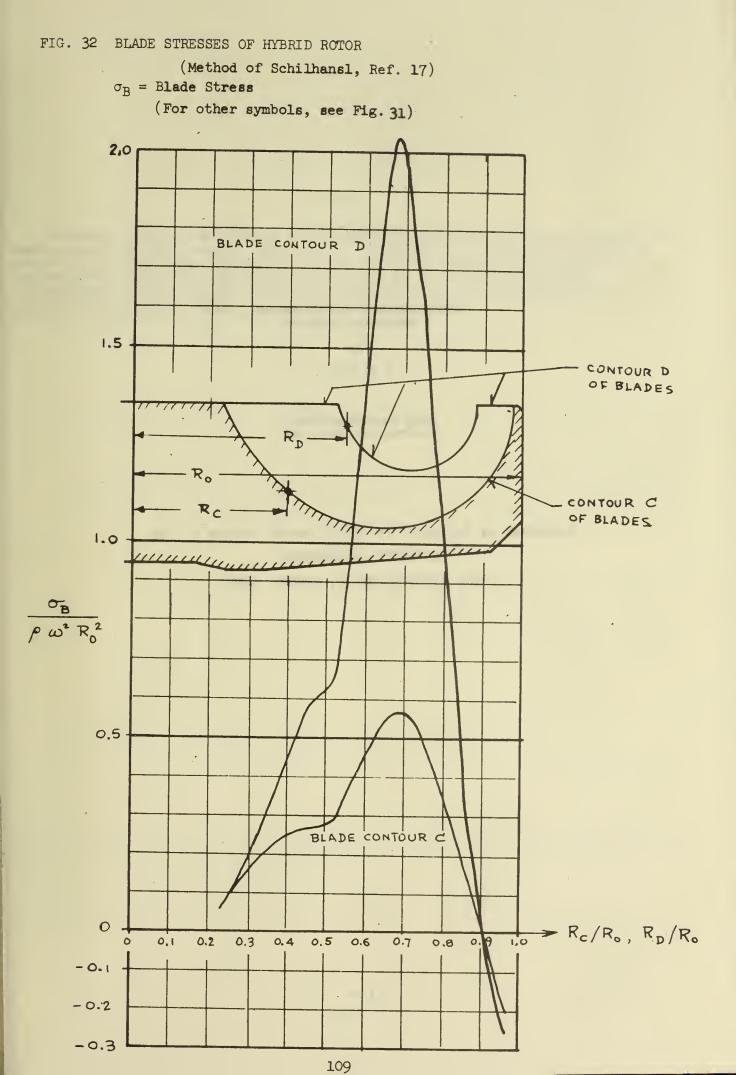



FIG. 30 PREDICTED TURBINE PERFORMANCE


 $\delta_{\rm T} = P_{\rm tO}/P_2 = Total-to-Static Pressure Ratio$ 

- $\dot{w} = Flow Rate (lbm/s)$
- HP = Horse Power

 $T_{tO}$  = Turbine Inlet Temperature ( $^{\circ}F$ )


_____ N = 16,666 rpm

·--- N = 12,018 rpm



108

Μ



# APPENDIX A

BASIC ELEMENTS FOR ADVANCED DESIGNS OF RADIAL-FLOW COMPRESSORS

Ъy

## M. H. Vavra

Naval Postgraduate School Monterey, California 93940

Published as Article 6 in AGARD Lecture Series No. 39 "ADVANCED COMPRESSORS" NATO, AGARD-LS-39-70, London 1970

### SUMMARY

Dimensionless parameters are presented for the design of compressors with axial inlet velocities and radial blades at the rotor discharge. These parameters take account of the compressibility of the flow and hold for arbitrary fluids. They permit to evaluate the effect of changes of the design variables on the conditions of state of the fluid at different locations, and on the geometry of the design. Loss relationships are discussed and their effects on performance are shown. The design parameters are compared with the so-called specific speed criteria to show that the latter do not satisfy the laws of similarity if compressibility effects are taken into account. BASIC ELEMENTS FOR ADVANCED DESIGN OF RADIAL-FLOW COMPRESSORS

#### M. H. Vavra

#### 1. INTRODUCTION

Under consideration are high-speed centrifugal compressors with rotors of the type shown in Fig. 1 that have radial blades at the discharge and where the absolute inlet velocities are in axial direction. With a straight annular inlet duct these inlet velocities will be uniform between the radii  $R_{1i}$  and  $R_{1o}$  of the impeller eye. For a particular relative flow angle  $\beta_{1o}$  and the relative velocity  $W_{1o}$  at  $R_{1o}$ , there is then known the peripheral speed  $U_{1o}$ , which, for chosen radius ratios  $R_2/R_{1o}$ , establishes the peripheral rotor speed  $U_2$  at  $R_2$ . The average relative velocity  $W_2$  at the discharge of a rotor with radial blades is not radial, but has an average angle  $\beta_2$ . With the slip factor  $\mu$  there is

$$\beta_2 = \tan^{-1} \frac{(1-\mu) U_2}{V_{m2}}$$
(1)

6-1

where  ${\tt V}_{m2}$  is the average meridional velocity at the rotor discharge. Equation 1 is a consequence of the definition of the slip factor

$$\mu = \frac{v_{u2}}{U_2} \tag{2}$$

For a simplified analysis of the compressor performance that assumes uniform conditions at the rotor discharge not only in peripheral but also in axial direction, across the blade width b₂, and for axial absolute velocities  $V_1$  at the rotor inlet, the specific work  $\triangle H_w$  necessary to drive the compressor is from moment of momentum consideration, for an assumed adiabatic process,

$$\Delta H_{W} = \mu U_{2}^{2} \qquad (\frac{ft-lb}{slvg})$$
(3)

For a perfect gas with  $\gamma = c_p/c_v = constant$ , the actual rise in total temperature  $\Delta T_w$  in the rotor is

$$\Delta T_{W} = \frac{\Delta H_{W}}{c_{p}} = \frac{\mu U_{2}^{2}}{c_{p}}$$

With the gas constant RG there is

$$c_{p} = R_{G} \frac{\gamma}{\gamma - 1}$$
(4)

Let

$$a_{O} = \sqrt{\gamma R_{G} T_{tl}} = \sqrt{\gamma R_{G} T_{O}}$$
(5)

be the velocity of sound at the total inlet temperature  $T_{t1} = T_0$ . Then

$$\frac{\Delta T_{w}}{T_{O}} = \mu \left(\gamma - 1\right) \left(\frac{U_{2}}{a_{O}}\right)^{2}$$
(6)

For an isentropic compression process from the total inlet pressure  $P_0 = P_{t0} = P_{t1}$  to the discharge pressure  $P_{t4}$ , the necessary work required would be  $c_0 \Delta T_{is}$ , where

$$\Delta T_{is} = T_{O} \left[ \left( \frac{P_{t4}}{P_{O}} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right]$$
(7)

The compressor efficiency  $\boldsymbol{\eta}_{\mathbf{C}}$  is defined by

$$h_{c} = \frac{\Delta T_{18}}{\Delta T_{w}} = \frac{\left(\frac{P_{t4}}{P_{0}}\right)^{\frac{\gamma-1}{\gamma}} - 1}{\mu(\gamma-1)\left(\frac{U_{2}}{a_{0}}\right)}$$
(8)

For a particular design the following data are usually prescribed:

$$\hat{m} - \text{mass flow rate (slug/s)}$$

$$P_{O} - \text{total inlet pressure (psia)}$$

$$T_{O} - \text{total inlet temperature (}^{O}R)$$

$$P_{t4} - \text{discharge pressure (psia)}$$

$$\gamma - \text{ratio of specific heats } c_{p} \text{ and } c_{r}$$

$$R_{G} - \text{gas constant } (\frac{\text{ft-lb}}{\text{slug,}})$$

With the indicated units, which are frequently used for engineering purposes, a quantity of mass is in slugs which is derived from the chosen units of force, length, and time. However, the relations which are going to be established hold for any consistent system of units, hence also for one where the primary units are mass, length and time, and where forces are in derived units.

For the given conditions there are to be found the following data for an optimum design:

$$\begin{array}{rcl} U_2 & - & \mbox{peripheral rotor speed at } R_2 \\ b_2/R_2 & - & \mbox{ratio of axial impeller width at discharge} \\ \hline b_2/R_2 & - & \mbox{outer radius of impeller} \\ \hline R_{1o}/R_2 & - & \mbox{outer radius of impeller} \\ \hline R_{1i}/R_{1o} & - & \mbox{inner radius at rotor inlet} \\ \hline m_{1o} & - & \mbox{angular velocity of impeller (radians/s)} \\ \hline \beta_{1o} & - & \mbox{relative flow angle at } R_{1o} \\ \hline \alpha_2 & - & \mbox{absolute flow angle at } R_2 \\ \hline R_3/R_2 & - & \mbox{radius at inlet lip of diffusor blades} \\ \hline R_4/R_2 & - & \mbox{radius at discharge of diffusor} \\ \hline m_1 & \mbox{angular velocity of impeller} \\ \hline m_2 & \mbox{absolute flow angle at } R_2 \\ \hline m_3/R_2 & - & \mbox{radius at inlet lip of diffusor} \\ \hline m_4/R_2 & - & \mbox{radius at discharge of diffusor} \\ \hline m_3 & \mbox{angular velocity of impeller} \\ \hline m_4/R_2 & - & \mbox{radius at discharge of diffusor} \\ \hline m_3 & \mbox{angular velocity of impeller} \\ \hline m_4/R_2 & - & \mbox{radius at index} \\ \hline m_3 & \mbox{angular velocity of impeller} \\ \hline m_4/R_2 & - & \mbox{radius at discharge of diffusor} \\ \hline m_3 & \mbox{angular velocity of impeller} \\ \hline m_4/R_4 & \mbox{angular$$

Important design criteria are also:

$$M_{Wl} = \frac{W_{lo}}{a_1}$$
 - Mach number of relative velocity  $W_{lo}$  at outer radius  $R_{lo}$  at impeller inlet  
 $M_{V2} = \frac{V_2}{a_2}$  - Mach number of absolute velocity  $V_2$  at impeller discharge

Mechanical and fluid dynamics considerations impose design limits of:

- U2, because of permissible rotor stresses
- b)  $R_{10}/R_2$ , which cannot exceed about 0.70 to 0.75 to obtain an outer rotor contour with acceptably small curvatures in the meridinal plane
- $R_{11}/R_{10}$ , which, if too small, does not permit the arrangement of a sufficiently large number of rotor blades  $Z_R$  with reasonable thickness c)
- a)
- e)
- $\beta_{10}$ , which cannot be larger than about 70° for manufacturing reasons b₂/R₂, which cannot be smaller than certain limits to obtain good efficiencies c₂, which cannot exceed 70° to 80° because of manufacturing reasons and because of poor diffusor f) performance, especially if  $M_{V2}$  is larger than unity.

#### 2. COMPRESSION PROCESS

Figure 2 is a temperature-entropy diagram showing the thermodynamic process in the compressor of Fig. 1. The temperature differences in Fig. 2 correspond roughly to the velocities of the triangles of Fig. 1 to obtain a realistic representation. Since by Eq. 6 the work input  $\Delta T_w$  is also  $\Delta T_w = \mu (U_2^{-2}/c_p)$ , the temperature rise  $T_2 - T_1$  in the rotor is roughly one-half of  $\Delta T_w$ . Later on the so-called degree of reaction r* will be introduced to determine this ratio more precisely.

Station (1) in Fig. 2 corresponds to the static condition at the rotor inlet, given by the static pressure  $p_1$  and the static temperature  $T_1$ . The total pressure and total temperature at this station are  $P_{t1} = P_0$  and  $T_{t1} = T_0$ . For the isentropic process between (0) and (1).

$$\frac{T_{tl}}{T_{l}} = \frac{T_{0}}{T_{l}} = 1 + \frac{\gamma - 1}{2} M_{Vl}^{2}$$

(9)

$$\frac{P_{tl}}{P_{1}} = \frac{P_{0}}{P_{1}} = \left(\frac{T_{0}}{T_{1}}\right)^{\frac{Y}{Y-1}}$$

where

$$M_{V1} = \frac{V_{1}}{a_{1}} = \frac{V_{1}}{[\gamma R_{G} T_{1}]^{\frac{1}{2}}}$$

is the Mach number of the absolute velocity  $V_1$  at the rotor inlet.

The conditions of state at all locations can be expressed with the parameters  $U_2/a_0$ ,  $R_{10}/R_2$ ,  $M_{W1}$ ,  $\beta_{10}$ ,  $\alpha_2$ ,  $\mu$ , and loss coefficients that establish the entropy increments between the different stations, if it is assumed that the flow process along the outer contour of the rotor between the radii  $R_{10}$  and  $R_2$  is representative of the rotor flow in general. The later assumption is made because the relative velocity  $W_1$  and the relative flow angle  $\beta_1$  are higher at  $R_{10}$  than at other radii  $R_1$ . Hence along the outer rotor contour from  $R_{10}$  to  $R_2$  there occur the highest deceleration ratio  $W_{10}/W_2$  and the largest flow deflection  $\Delta\beta = \beta_{10} + \beta_2$ . Moreover since the path travelled by a fluid particle along the outer rotor contour is shorter than that travelled by a particle entering at other radii  $R_1$ , the conditions along the outer rotor contour will establish design limitations and have a critical influence on the rotor losses.

With the chosen parameters, Eq. 9 can be rewritten

$$\frac{T_{1}}{T_{0}} = \frac{1}{1 + \frac{\gamma - 1}{2} M_{W1}^{2} \cos^{2}\beta_{10}}$$

This formula is also given by Eq. I(5) of Table I. This table has been arranged to list the pertinent relations for the determination of the flow properties in the compressor for ready reference. In the following only the main steps will be indicated that led to these formulas without going into the details of their derivations. Some of the equations, for instance Eq. I(6), can be obtained directly from Fig. 2. It can be noted that all temperatures are given as multiples of the total inlet temperature  $T_0 = T_{t1}$ , and pressures are listed as ratios with respect to  $P_0 = P_{t1}$ . The static temperature  $T_2$  of the rotor discharge [Eq. I(7)] is equal to the difference of the total temperature  $T_{t2}$  at the rotor exit and  $V_2^{2/2}c_p$ , where  $V_2$  is given by Eq. I(3). The temperature  $T_2$  is necessary to calculate the pressure ratio  $p_2/P_0$  by Eq. I(20). Evidently  $T_2$  depends on the entropy increase  $s_2 - s_1$  in the rotor.

The process between stations (1) and (2) from the rotor inlet to its discharge can be formulated by

$$T_{1} - \frac{W_{1o}^{2}}{2c_{p}} - \frac{U_{1o}^{2}}{2c_{p}} = T_{2} + \frac{W_{2}^{2}}{2c_{p}} - \frac{U_{2}^{2}}{2c_{p}}$$
(10)

which is a fundamental relation obtained from the energy equation for steady, adiabatic flows along streamlines in rotors, as shown in Art. 7.5 of Ref. 1.

The following discussion uses a relation which is obtained from Eq. 10 for incompressible flows (See Eq. 7(44) of Ref. 1). At a particular radius R along the outer rotor contour where the peripheral and relative velocities are U and W, respectively, the static pressure p is

$$p = p_{1} + \frac{\rho}{2} (U^{2} - U_{10}^{2}) + \frac{\rho}{2} (W_{10}^{2} - W)^{2} - \Delta p_{f}$$
(11)

where  $\rho$  is the constant mass density of the fluid, and  $\Delta p_f$  the pressure loss due to frictional effects in the rotor. At the rotor inlet, where  $U = U_{10}$  and  $W = W_{10}$ , the static pressure is evidently equal to  $p_1$ , the static pressure in the absolute flow just ahead of the rotor at  $R_{10}$ . Equation 11 shows that, independent to the static pressure in the absolute flow just ahead of the rotor at  $R_{10}$ . ently of the values of W and  $\Delta p_f$ , there will always occur a pressure increase  $\rho/2(U^2-U_1o^2)$ ²) if a fluid particle moves from  $R_{10}$  to R. An additional pressure rise is produced by decelerating the relative velocity from  $W_{10}$  to W. A flow that moves in a direction where the static pressure increases is more susceptible to separations than an accelerated flow, but the frictional pressure loss between neighboring stations is proportional to the dynamic head ( $\rho/2$ ) W² in both flows. In view of Eq. 11 however there exist differences between flows that pass through stationary channels and those in rotating impellers. If a relative flow is decelerated in a rotating channel, whose distance from the axis of rotation increases in flow direction, it will not necessarily separate even though it moves against rapidly increasing static pressures, provided these pressure gradients are produced by the centrifugal force field and not by large reductions in relative velocity. If the same static pressure rise would have to be produced in a stationary channel of the same length as the rotating one, the deceleration of the flow per unit length would very likely become excessive and could be associated with considerably increased losses because of flow separations. On the other hand, if it were possible to ignore the effects due to Coriolis accelerations, it could be stated that the pressure losses in a stationary and in a rotating channel of equal length and shape would have to be equal for the same velocity heads and equal flow decelerations, except for influences due to Reynolds number differences. Moreover, for different velocity heads the pressure losses would be directly proportional to the velocity heads at corresponding locations in the two channels. However if the respective performance of the two channels were evaluated by a loss coefficient  $\zeta_R$  that relates the frictional pressure drop  $\Delta p_f$  to the actual static pressure rise in the channel, its value would be lower for the rotating channel than for the stationary one because of the additional pressure rise  $(\rho/2)(U^2 - U_{10}^2)$ . The performance of the channels can be compared only by means of a loss coefficient  $\zeta_W$  that is defined as the ratio of the pressure drop  $\Delta p_f$  and the pressure rise  $(\rho/2)(W_{10}^2 - W_1^2)$  due to the flow deceleration, irrespective of whether additional pressure rise is produced by the centrifugal force field or not.

These elementary considerations have not been presented here to imply that the loss coefficients  $\zeta_W$  in a rotating and in a stationary channel of the same geometry are equal. In Ref. 1, Art. 8.5, it is shown that flows in stationary and rotating channels have fundamental differences as far as their rotational characteristics are concerned, and consequences of these conditions are described in Arts. 10.5 and 12.2 of Ref. 1. The intent of the above discussion is to draw attention to the fact that frequently used formulations for the efficiency of impellers for centrifugal turbines and compressors cannot serve as a measure for the performance of these rotors, and that some of the separation criteria applied to flows in centrifugal rotors have no physical meaning.

A commonly used definition for the efficiency of a centrifugal compressor rotor is

$$\Pi_{R} = \frac{T_{2}' - T_{1}}{T_{2} - T_{1}}$$
(12)

The significance of the temperatures is evident from Fig. 2. Equation 12 holds for the compressible flow of fluids with a constant value of  $\gamma = c_p/c_v$ . Similar to the preceding discussion that delt with incompressible flows, part of the temperature rise in the rotor is due to the increase in peripheral speed from station (1) to station (2). Equation 10, rewritten as

$$\mathbf{I}_{2} - \mathbf{T}_{1} = \frac{\mathbf{U}_{2}^{2} - \mathbf{U}_{1o}^{2}}{2c_{p}} + \frac{\mathbf{W}_{1o}^{2} - \mathbf{W}_{2}^{2}}{2c_{p}} = \mathbf{T}_{u} - \mathbf{T}_{1} + \frac{\mathbf{W}_{1o}^{2} - \mathbf{W}_{2}^{2}}{2c_{p}}$$
(13)

shows that the static temperature rise  $T_u - T_1$  due to the centrifugal force field is equal to the first term on the right-hand side of Eq. 13. It occurs in rotors with and without flow losses, hence it is independent of the entropy increase  $s_2 - s_1$ . Thus the compression corresponding to  $(U_2^2 - U_{10})^2/2 c_p$  occurs along the isentropic line  $s_1 = constant$  from  $T_1$  to  $T_u$ , from station (1) to station (u) in Fig. 2, producing the static pressure rise  $p_u - p_1$ , where

$$\frac{P_{u}}{P_{1}} = \left(\frac{T_{u}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}} = \left(1 + \frac{\left(\frac{U_{2}^{2} - U_{10}^{2}}{2c_{p}T_{1}}\right)^{\frac{\gamma}{\gamma-1}}}{2c_{p}T_{1}}\right)^{\frac{\gamma}{\gamma-1}} = \left(1 + \frac{\gamma-1}{2}\frac{U_{2}^{2} - U_{10}^{2}}{\gamma R_{G}T_{1}}\right)^{\frac{\gamma}{\gamma-1}}$$

The deceleration of the relative velocity from  $W_{lo}$  to  $W_2$  produces the temperature rise

$$T_2 - T_u = \frac{W_{10}^2 - W_2^2}{2 c_p}$$
(14)

with an entropy increase from  $s_1$  to  $s_2$ , due to the flow losses, which in turn affect the pressure rise  $p_2 - p_u$ . The efficiency of the process from (u) to (2) can be defined by the so-called wheel efficiency  $T_W$ 

$$T_{W} = \frac{T_{2}^{2} - T_{u}}{T_{2} - T_{u}} = \frac{T_{2}^{2} - T_{u}}{(W_{10}^{2} - W_{2}^{2})/2 c_{p}}$$
(15)

giving

 $\frac{\mathbf{T}_{2}'}{\mathbf{T}_{u}} = \mathbf{\eta}_{W} \quad \frac{\mathbf{T}_{2}}{\mathbf{T}_{u}} + \mathbf{1} - \mathbf{\eta}_{W}$ 

and

$$\frac{p_2}{p_u} = \left(\frac{T_2'}{T_u}\right)^{\frac{\gamma}{\gamma-1}}$$

From a fluid dynamics view point only the efficiency  $T_W$  is a measure for the quality of the rotor performance. In particular, low measured values of  $T_W$  are indications for the existence of flow separations, although  $T_W$  will be affected also by the tip clearance losses, the so-called scrubbing losses produced by the rotating blades in the wall boundary layer at the fixed shroud, and the mixing losses after the rotor. However, low efficiencies  $T_W$  are only partly reflected in the rotor efficiency  $T_R$  of Eq 12 because of the temperature rise  $T_u - T_1$  which is produced without entropy increases. If the entropy diagram of Fig. 2 were to represent the actual conditions in the compressor of Fig. 1, there would be, by measuring the temperature differences in Fig. 2,

$$\eta_{\rm R} = 0.84$$

$$w = 0.57$$

Although the value of  $\Pi_R = 0.84$  seems to indicate that the flow in the rotor is reasonably good, the low value of  $\Pi_W = 0.57$  shows clearly that it should be possible to improve the rotor considerably with a redesign. Such improvement should be undertaken not only to increase the overall efficienty of the compressor by reducing the entropy rise s₂ - s₁ in the rotor, but also to produce more uniform flow conditions at the rotor discharge since it might then be possible to reduce the diffusor losses also.

The process in the rotor that involves the relative velocity changes can be considered also from a different view point. Equation 10 may be written as

$$T_{\rm E} = T_{\rm 1} + \frac{W_{\rm 10}^2}{2 c_{\rm p}} + \frac{U_{\rm 2}^2 - U_{\rm 10}^2}{2 c_{\rm p}} = T_{\rm u} + \frac{W_{\rm 10}^2}{2 c_{\rm p}} = T_{\rm 2} + \frac{W_{\rm 2}^2}{2 c_{\rm p}}$$
(16)

where  $T_E$  is the so-called equivalent total temperature of the rotor flow. Equation 16 has the same form as the energy equation for an adiabatic process of an absolute flow if  $T_E$  is replaced by the constant absolute total temperature  $T_t$  and  $W_2$  by the absolute velocity V. The temperature  $T_E$  is constant for a process in a particular rotor having a fixed radius ratio  $R_{10}/R_2$  and turning at a specified speed. Thus, for given inlet conditions, Eq. 16 can be used also for an isentropic process along  $s_1 = \text{constant from } (u)$ to (2) to give, in accordance with Fig. 2,

$$T_{\rm E} = T_{\rm 2}' + \frac{W_{\rm 21s}^2}{2 c_{\rm p}}$$
(17)

for the same pressure rise  $p_2 - p_u$  as produced by the process with friction, and  $W_{218}$  is the theoretical velocity available at the pressure  $p_2$ . In turbine calculations it is customary to express the rotor losses by so-called velocity coefficients  $\psi$ 

$$\psi = \frac{\frac{2}{W_{21B}}}{(18)}$$

If this formulation is used for compressors also, there is from Eq. 17,

$$T_{2}' = T_{E} - \frac{1}{\psi^{2}} \frac{W_{2}^{2}}{2c_{p}}$$
(19)

Introduced into Eq. 15

$$T_{W} = \frac{W_{10}^{2} - W_{2}^{2}/\psi^{2}}{W_{10}^{2} - W_{2}^{2}} = \frac{1 - \frac{1}{\psi^{2}} \left(\frac{W_{2}}{W_{10}}\right)^{2}}{1 - \left(\frac{W_{2}}{W_{10}}\right)^{2}}$$
(20)

or

$$= \frac{\frac{W_2/W_{10}}{[1 - \eta_W + \eta_W (\frac{W_2}{W_{10}})^2]^{\frac{1}{2}}}$$
(21)

The reason for introducing  $\psi$  as an alternate for  $\Pi_W$  is that  $\Pi_W$  equals -  $\infty$  for the special condition where  $W_2 = W_{10}$ , or  $T_2 = T_u$ . In this case, and if  $W_2$  is larger than  $W_{10}$ , the velocity coefficient  $\psi$  can however still be applied. On the other hand, for usual designs where  $W_2$  is smaller than  $W_{10}$ , the velocity coefficient is not a good measure for the rotor performance since  $\psi$  can be increased by simply making the velocity  $W_2$  smaller, and it is then more appropriate to use the wheel efficiency  $\Pi_W$  for the loss evaluation. Since the same difficulties in expressing the losses occur in turbines also, an additional formulation is sometimes used which establishes the drop in total pressure that is associated with the entropy increase  $s_2 - s_1$ . For radial compressor rotors these formulation are either

$$Y_{1} = \frac{P_{E1} - P_{E2}}{P_{E1} - P_{u}}$$
(22)

or

$$t_2 = \frac{P_{\rm E1} - P_{\rm E2}}{P_{\rm E2} - P_2} \tag{23}$$

depending on whether the pressure drop  $P_{E1} - P_{E2}$  is referred to the inlet or the exit conditions. Although these total pressure loss coefficients are useful at small Mach numbers, or for incompressible flows where  $P_{E1} - p_u = (\rho/2) W_{10}^2$  and  $P_{E2} - p_2 = (\rho/2)W_2$ , it can be shown that the corresponding coefficients which relate the losses to the kinetic energy of the flow (in the same manner as  $T_W$  of Eq. 15, or  $\psi$  of Eq. 18) become smaller for constant values of  $Y_1$  or  $Y_2$  if the Mach number of the inlet or discharge flow increases.² Although the actual energy losses tend to increase with increasing flow Mach numbers, an indiscriminate application of Eqs. 22 or 23 with values of Y from low-speed tests can be used as a wrong argument that the opposite is true.

To simplify the relations for the determination of the conditions of state in the compressor the velocity coefficients  $\psi$  will be used in the equations of Table I. To compare two rotors with different radius ratios and different deceleration ratios  $W_2/W_{10}$ , the efficiency  $T_W$  of Eq. 15 should be used as a

measure for their performance. Equations 20 and 21 relate  $\psi$  and  $T_W$  to each other. Paragraph 5 contains a discussion that deals with the magnitudes of  $T_W$ . With the formulas of Table I it is possible also to establish a relation for the determination of  $T_W$  for known values of  $T_R$  of Eq. 12, or vice versa. From

R

$$\Pi_{\rm R} = \frac{\Pi_{\rm W} \left[ \left( \frac{W_{\rm 10}}{U_2} \right)^2 - \left( \frac{W_2}{U_2} \right)^2 \right] + 1 - \left( \frac{R_{\rm 10}}{R_2} \right)^2}{\left( \frac{W_{\rm 10}}{U_2} \right)^2 - \left( \frac{W_2}{U_2} \right)^2 + 1 - \left( \frac{R_{\rm 10}}{R_2} \right)^2}$$
(24)

and with

$$C = \frac{1 - (\frac{10}{R_2})^2}{(\frac{10}{R_2})^2 \cot^2 \beta_{10} + 2\mu (1 - \frac{\mu}{2\sin^2 \alpha_2})}$$
(25)

there are

$$\eta_{\rm R} = \eta_{\rm W} + C \left(1 - \eta_{\rm W}\right) \tag{26}$$

$$\eta_{W} = \frac{\eta_{R} - C}{1 - C}$$
(27)

High performance compressors with high pressure ratios cannot be equipped with diffusors that are circular cascades with airfoil shaped blades. Figure 1 is a realistic sketch of a high speed compressor operating with an average discharge velocity  $V_2$  that is supersonic. To obtain reasonably large axial blade widths b2 as well as acceptable shapes of the meridinal rotor contours, it is necessary to resort to large angles  $\alpha_2$  at the rotor discharge. At large angles  $\alpha_2$ , practical consideration dictate a limited number of diffusor channels, say, about 8 to 10 for angles  $\alpha_2$  of about 75°, and the permissible diffusion in these individual channels produces configurations similar to that depicted in Fig. 1. One of the most critical problem areas is the design of the flow passages from the rotor discharge to the entrance of the diffusor channels proper. The absolute flow leaving the rotor is not only non-uniform but also non-steady, because the relative velocity at the rotor discharge must by necessity vary between the suction and the pressure sides of the rotor blades at R2. Designs where the radius R3 is very much larger than the outer rotor radius R2, or compressors with vaneless diffusor for large angles  $\alpha_2$ , were found to be inferior to machines with small radial gaps R3 - R2, especially for high subsonic or supersonic velocities  $V_2$ . If it were not for the excessive noise the diffusor lips would preferably be arranged even closer to R2 as shown in Fig. 1.

Theoretical attempts were made in Refs. 3 and 4 to evaluate the losses in the space between  $R_2$  and  $R_3$ , and in vaneless diffusors, that are due to mixing and frictional effects. The results of these investigations do not agree with reality if My2 and/or  $\alpha_2$  are large. These inconsistencies are due to the assumption that equal flow angles are supposed to occur across the axial width  $b_2$  of the flow channel after the rotor, a condition which is created by assuming that the frictional forces along the walls act equally on all particles between them. In actuality the flow angles  $\alpha$  (measured with respect to the radial direction) decrease radically in the wall boundary layers in the direction from the mid-section of the channel toward the wall. The particles inside the boundary layers and very easily cause flow separations from the walls, thereby impairing the effectiveness of such diffusors.

In the writer's opinion it is incorrect to state that in efficient diffusors the vanes must not be too close to the impeller, or that the velocity at their entrance must be subsonic in all cases. For the reason mentioned above, it is equally wrong to maintain that vaneless diffusors must be arranged for supersonic absolute velocities at the rotor discharge.

Because of the inability to separate the losses that exist between the radii  $R_2$  and  $R_4$  of Fig. 1 an overall diffusor efficiency  $T_D$  will be introduced. With the symbols of Fig. 2

$$\eta_{\rm D} = \frac{{\rm T}_4 - {\rm T}_2}{{\rm T}_4 - {\rm T}_2} \tag{28}$$

where

$$\mathbf{T}_{4} - \mathbf{T}_{2} = \frac{\mathbf{v}_{2}^{2} - \mathbf{v}_{4}^{2}}{2 \mathbf{c}_{p}}$$
(29)

The velocity  $V_{4}$  exists at the diffusor discharge at the radius  $R_{4}$ , and is taken as

$$V_{l_1} = \lambda V_2 \tag{30}$$

With small values of  $\lambda$  the radius ratios  $R_{l_{\rm I}}/R_2$  become large because of the limited amount of diffusion that is possible per unit length in flow direction to avoid separations in the diffusor channels. Values of  $\lambda$  of about 0.20 to 0.30 are common to limit  $R_{l_{\rm I}}/R_2$  to about 2. With designs of the type shown in Fig. 1 the kinetic energy  $V_{l_{\rm I}}/2$  cp cannot be converted into pressure rise, since the flow from the individual diffusors is dumped into a receiver surrounding them. As indicated by station (d) in Fig. 2 the total pressure  $P_{\rm L}$  at the compressor discharge is then equal to the static pressure  $p_{\rm L}$  at the diffusor exit, and

6-7

the total temperature at the compressor discharge is  $T_{t4} = T_{t2}$  for adiabatic processes. The dumping of the kinetic energy  $V_4^2/2$  cp is reflected in the overall diffusor efficiency TD* between rotor and compressor discharge

$$\Pi_{\rm D}^{*} = \Pi_{\rm D} \, (1 - \lambda^2) \tag{40}$$

Diffusor design criteria and approximate methods to evaluate the diffusor losses are given in paragraph 5.

Since

$$T_{l_{4}} = T_{t2} - \frac{V_{l_{4}}^{2}}{2 c_{p}} = T_{t4} - \lambda^{2} \frac{V_{2}^{2}}{2 c_{p}}$$

and with Eq. 28 there is then obtained the temperature  $T_{l_4}$ , as given by Eq. I(11) of Table I. The pressure  $p_4 = P_{t_4}$  is determined from

$$\frac{P_{4}}{P_{2}} = \left(\frac{T_{4}}{T_{2}}\right)^{\frac{\gamma}{\gamma-1}}$$

for the isentropic process along the line  $s_2 = \text{constant}$ . Because the isentropic temperature differences between lines of constant pressure are proportional to the initial temperatures of the processes, there is, with the symbols of Fig. 2,

$$\frac{T_{4}' - T_{2}'}{T_{4}' - T_{2}} = \frac{T_{2}'}{T_{2}}$$

and

$$\frac{T_{\mu''}}{T_{O}} = \frac{(T_{\mu'}/T_{O})(T_{2'}/T_{O})}{T_{2'}/T_{O}}$$

As shown in Table I the ratio  $T_{\rm H}$  '/T_O can be expressed by Eq. I(13) which has the form

$$\frac{T_{L_{1}}''}{T_{O}} = \frac{1 + A(X_{1} + A X_{2})}{1 + A B}$$
(41)

where  $X_1$  and  $X_2$  are given by Eqs. I(14) and I(15), and

$$A = (\gamma - 1) \mu \left(\frac{U_2}{a_0}\right)^2$$
(42)

$$B = 1 - \frac{\mu}{2 \sin^2 \alpha_2}$$
(43)

The temperature rise  $\Delta T_{is}$  for an isentropic compression from the total conditions  $P_0$ ,  $T_0$  at the compressor inlet, to the discharge pressure  $P_{t4}$  is, with Eq. 41,

$$\frac{\Delta T_{is}}{T_0} = \frac{T_{i}'}{T_0} - 1 = \frac{A[X_1 - B + A X_2]}{1 + A B}$$
(44)

Eq. 44 is identical with Eq. I(16) of Table I.

As shown in Table I the pressures at the different stations can be determined from the established temperatures by using the pressure-temperature relation for isentropic processes of perfect gases.

#### 3. PERFORMANCE AND DESIGN PARAMETERS

The overall compressor efficiency defined by Eq. 8 is, with Eqs. 6, 42, and 44,

$$\eta_{c} = \frac{\Delta T_{is}}{\Delta T_{rr}} = \frac{X_{1} B + A X_{2}}{1 + A B}$$

With Eqs. 42 and 43 the above relation establishes Eq. II(1) of Table II. This table lists the equations necessary to determine the performance and the geometry of the compressor. Only the principal steps that led to the equations of Table II are described in the following, the details of the derivations are omitted. The symbols of Table II are those of Figs. 1 and 2, with additional ones that are defined in this paragraph.

The degree of reaction r* is defined as the ratio of the isentropic temperature rise  $T_2'$  -  $T_0$  in the rotor to that corresponding to the pressure ratio  $P_t \mu/P_0$ . Equation II(2) of Table II shows that for  $\Pi_c = 1$  and  $\psi = 1$ , the degree of reaction is

$$r^* = r_0^* = [1 - \frac{\mu}{2 \sin^2 \alpha_2}]$$

For a slip factor  $\mu = 0.85$ ,  $r_0^*$  changes from about 0.544 to 0.433 if the angle  $\alpha_2$  is reduced from 75° to 60°. For low degrees of reaction a large part of the overall pressure rise must be produced in the diffusor. Since this energy conversion is associated with greater losses than the pressure rise produced in the rotor, high degrees of reaction are desirable. This condition is used in hydraulic pumps which usually have backward-bent rotor blades to produce most, if not all, of the pressure rise in the rotor. However, if such rotors were employed for light gases, such as air, the pressure rise would be too small for most applications, not only because of the reduced specific work input but also because such rotors would not be able to operate at high speeds on account of the high bending stresses in the blades. In rotors with radial blades it seems beneficial to use large angles  $\alpha_2$  to increase r*. At a fixed peripheral speed U₂ the velocities V₂ decrease if  $\alpha_2$  is increased, but difficulties occur then because of the geometry of the passages from the wheel to the diffusor inlet. The deceleration ratio  $W_2/W_{10}$  becomes smaller also, as shown by Eq. II(5), and the increased losses caused by larger flow decelerations in the rotor may off-set the gain that would be obtained from the increase of reaction if other conditions would remain unchanged. The choice of these design parameters to obtain the best possible solution must usually be based on experience because of the interactions between rotor and diffusor that are greatly influenced by their designs.

The slip factor  $\mu$  appears in most of the equations of Tables I and II. More has been written on this subject than on any other in the field of radial pumps and compressors, primarily because it is of great importance to know exactly how much energy a wheel will absorb. If wrong values of  $\mu$  are used in a design the desired pressure ratio will not be obtained even though the expected efficiency is reached. Reference 7 is a recent paper where tests obtained with one particular wheel are compared with data obtained from experiments, and with slip factor formulas, by other authors. As is frequently the case in many studies on the subject, test data from a single wheel obtained at off-design conditions are used to establish design point data for other impellers. Moreover, the highest ratio  $U_2/a_0$  was only about 0.51 in the tests of Ref. 7. The bibliography of Ref. 7 fails to mention the investigations of Refs. 5 and 6 which were undertaken at Daimler-Benz A. G. by systematically testing ten high-performance impellers of different shapes up to values of  $U_2/a_0$  of about 1.1. In the writer's opinion, the data published in Refs. 5 and 6 are extremely valuable to the designer and the original curves of the article have been replotted in Fig. 3 to give wider publicity to this important contribution to the state of the art.

With the slip factor known from Fig. 3 the compressor efficiency of a particular design can be determined from Eq. II(1) for known losses. Equation II(3) is plotted in Fig. 4 for  $\gamma = 1.4$ , and different values of  $\mu \Pi_{\rm C}$ , to show the magnitudes of U₂/a₀ necessary to produce particular pressure ratios. For advanced gas turbine applications it would be desirable to operate at pressure ratios of between 8 and 10. For  $\Pi_{\rm C} = 0.8$ and  $\mu = 0.875$ , Fig. 3 shows that values of U₂/a₀ of about 1.8 are necessary to reach this goal. Thus, at an inlet temperature of 60°F, where a₀ = 1120 ft/s, the rotor of such a compressor has to operate with a peripheral speed U₂ of about 2000 ft/s, requiring special materials and careful rotor designs for the resulting high stresses.

By Eq. 1(6) the rise of the total temperature in the compressor is  $T_{t2} - T_0 = T_0(\gamma-1)\mu((\frac{1}{2}/a_0)^2 = 590^{\circ}F$ , or about 600°F, for  $\mu = 0.875$  and  $T_0 = 520^{\circ}R$ . Since the degree of reaction is around 0.5, the static temperature T₂ at the rotor discharge is then about 60 + 600/2 = 360°F. At this temperature, high-strength aluminum alloys have rupture stresses, and stresses for specified creep rates, which are less than one-half of the allowable stresses at room temperature. Hence it is necessary to use titanium alloys, for instance those with about 6 percent aluminum and 4 percent vanadium. At 360°F the design criterion for these materials is the yield stress since no appreciable creep effects occur even for operating times of 100,000 hours. Their 0.2 percent offset yield strength at 360°F is about 120 kpsi, with an ultimate strength of about 150 kpsi. As shown in chapter C of Ref. 8, the tangential stress in a non-supported ring of small radial thickness rotating with the peripheral speed U₂ is pU₂². For titanium with a specific gravity of 4.43, this value is about 240 kpsi at U₂ = 2000 ft/s. Figures C.27 and C.29 of Ref. 8 show the so-called equivalent centrifugal stresses  $\sigma_e$  in rotors with radial blades as multiples of  $PU_2^{-2} = \rho \omega^2 R_2^{-2}$ , for a design where the disk extends to the outer tip of the blades at R₂, and another which has so-called scallops between the blades, similar to the rotor design shown in Fig. 1. Not counting the stress peaks at the central bore, which are more of the nature of stress concentrations that will be relieved by plastic deformations, because titanium has high ductility on account of its 20 percent elongation, the maximum stress ratios  $c_{\ell}/(PU_2^{-2})$  are about 0.25 and 0.16 for the rotors without and with scallops, respectively. Hence the maximum stresses at 2000 ft/s will be about 60 kpsi for one and about 40 kpsi for the other rotor. This discussion shows that compressor rotors operating at tip speeds 02 000 ft/s are feasible and

Important advances are being made in nuclear gas turbines with helium as working fluid, as described in a recent article by Bammert and Bohm⁹. The main difficulties in the design of the turbomachines for this plant are the low pressure ratios that can be produced with helium in a conventional compressor stage, since the molecular weight of helium is only about 4 and  $\gamma = 1.659$ . At 60°F the velocity of sound in helium is 3275 ft/s. For a rotor with U₂ = 3000 ft/s, a speed ratio U₂/a₀ = 0.916 would be obtained in a radial compressor. All velocities in the compressor would be subsonic and design point efficiencies of about  $\eta_c = 0.85$  seem feasible. For  $\mu=0.90$ ,  $\eta_c = 0.85$ , U₂/a₀ = 0.916, at  $\gamma = 1.659$ , the resulting pressure ratio Pt4 /P₀ would be 2.43 in accordance with Eq. 8. In Ref. 9 a 25 MW_e closed-cycle helium gas turbine plant is described that operates with a turbine pressure ratio of 2.55. The pressure ratio of the compressors will have to be about 2.7 to overcome the pressure losses in the reactor and heat exchangers, of which no values are given in the paper. Reference 9 shows however that the plant has three axial compressors in series, each consisting of 9 stages. Since intercoolers are arranged between the three compressors each will produce a pressure ratio of about 1.4. If the three axial compressors were replaced by two single-stage radial compressors, of the type described with an intercooler between them, it would be possible to obtain an overall pressure ratio of about six which would be of advantage for the cycle. The writer does not want to minimize the difficulties that would be connected with the development of radial compressors and radial turbines for such applications, in addition to those connected with the bearings, seals and gear drives, but it is felt that they might be the ultimate solution for these highly interesting power plants.

Equation I(1) will be used in an example to show the influence of the diffusor losses on the compressor efficiency at different speed ratios  $U_{2Q_0}$ , for absolute flow angles  $\alpha_2$  of  $60^\circ$  and 75°. The velocity coefficients  $\psi$  will be determined by assuming a wheel efficiency  $\eta_W$  of Eq. 15 of 0.7 for both impellers. Equations 21 and 24 were used to establish Fig. 5. The deceleration ratios  $W_2/W_{10}$  are 0.68 for  $\alpha_2 = 60^\circ$  and 0.366 for  $\alpha_2 = 75^\circ$  by Eq. I(5) for the data listed in Fig. 5. This difference makes the choice of equal efficiencies  $\eta_W$  for both cases somewhat dubious. It is seen from Fig. 5 that the rotor efficiencies  $\eta_R$  are 0.89 and 0.855 for  $\alpha_2 = 60^\circ$  and  $\alpha_2 = 75^\circ$ , respectively. The corresponding values of  $\psi$ , which will be used in Eq. I(1), are 0.865 and 0.585. It is assumed further that the velocity  $V_{14}$  at the diffusor discharge is 0.2 V₂, or  $\lambda = 0.2$ , so that  $\eta_D * = 0.96 \eta_D$  by Eq. I(2). Figure 6 shows the large effect of the diffusor losses on the compressor efficiency. To obtain  $\eta_c = 0.85$ , the diffusor efficiency would only be 0.75. At  $U_2/a_0 = 1.6$ , this decreased diffusor efficiency would reduce the pressure ratio of the compressor from about 7 to 5.8, which in a gas turbine plant would produce a mismatch between turbine and compressor, with additional adverse effects on the thermal efficiency of the plant. Figure 6 shows also that the diffusor has a larger influence on  $\eta_c$  at the higher flow angle  $\alpha_2$ . On the other hand, the Mach number My₂ of the rotor discharge velocity will be lower at  $\alpha_2 = 75^\circ$  than at  $\alpha_2 = 60^\circ$ . The respective values can be obtained from Eq. II(6) which has been represented in Fig. 7 for  $\gamma = 1.4$ . At  $U_2/a_0 = 1.6$ , the values of My₂ are 1.16 and 1.24 for  $\alpha_2$  of 75° and 60°, respectively, for the design parameters listed in Fig. 5.

Figure 7 shows that the Mach number My2 becomes unity for values of U2/a0 between 1.1 and 1.3, depending on the choice of  $\alpha_2$ . From Fig. 8, which is a representation of Eq. II(4), it can be noted that for a speed ratio U2/a0 = 1.2 and at a radius ratio  $R_{10}/R_2$  of about 0.67, which represents an average design value, the relative velocity  $W_{10}$  at the rotor inlet has a Mach number Mw1 of about 0.9 at an inlet angle  $\beta_{10}$  of 65°. Figures 8 and 4 show that the Mach number Mw1 for air compressors will not have to be larger than about 1.3 to produce pressure ratios up to about ten. Some sources state that no efficient inducers can be built for values of Mw1 larger than 0.8 because of "shock losses". It seems to the writer that such statements are not different from those made some years ago, which predicted that it would be impossible for an airplane to break the "sonic barrier", or others which maintained that an axial compressor stages have shown that human ingenuity can overcome these so-called barriers. Reference 10 is cited as an example, where a transonic boost stage ahead of the inlet of a centrifugal compressor is described, which produces a pressure ratio of 1.43 for air at an efficiency of 90 percent with a tip Mach number of 1.05.

The flow in an inducer of an impeller with radial blades is different from that in an axial-flow rotor. In the latter, particles that have been moving along the suction and the pressure sides of the blades are mixed at essentially constant static pressure after the trailing edges at the discharge, whereas no such mixing occurs in the flow channels where the inducer joins the radial blades of the impeller. Hence the pressure distributions along the walls of the inducer blades must be radically different from those along the surfaces of an axial rotor blade, and separation criteria that are based on the diffusion factor of axial cascades cannot be applied. Similar to the conditions in transonic axial stages the supersonic relative velocity at the tip of an inducer becomes sonic at a particular radius Rlc, and subsonic at radii  $R_{\rm lx}$  smaller than  $R_{\rm lc}$ . Denoting the Mach number of  $W_{\rm l}$  at  $R_{\rm lx}$  by  $M_{\rm lx}$ , and that at  $R_{\rm lo}$  by Mwl as previously defined, there is

$$\frac{R_{1x}}{R_{10}} = \frac{1}{\sin\beta_{10}} \left[ \left( \frac{M_{1x}}{M_{WI}} \right)^2 + \sin^2\beta_{10} - 1 \right]^{\frac{1}{2}}$$
(45)

Figure 10 shows the values of  $R_{1x}/R_{10}$  obtained from Eq. 45 for  $M_{W1} = 1.3$ , at different relative flow angles  $\beta_{10}$  at the inducer tip, and for particular values of the Mach number  $M_{1x}$ . This graph is presented to show that it is non-sensical to state that  $M_{W1}$  cannot exceed particular values without specifying at what angle  $\beta_{10}$  and at what ratio  $R_{11}/R_{10}$  this limitation holds. Whereas at  $\beta_{10} = 75^{\circ}$  a Mach number of unity occurs at  $R_{1x}/R_{10} = 0.75$ , the whole inlet annulus will have supersonic relative velocities at  $\beta_{10} = 50^{\circ}$ , for the same Mach number  $M_{W1} = 1.3$  at the tip. Moreover, if at  $\beta_{10} = 75^{\circ}$  the hub/tip ratio  $R_{11}/R_{10}$  of the inlet eye is 0.75 in one machine and, say, 0.3 in another the losses due to compressibility effects will certainly be different. Figure 10 also shows the Mach numbers  $M_{V1}$  of the absolute velocity  $V_1$  ahead of the impeller which, as indicated earlier, has been assumed to remain constant in radial direction. They have values of 0.336 and 0.919, respectively, for  $\beta_{10} = 75^{\circ}$  and  $\beta_{10} = 55^{\circ}$  at  $M_{W1} = 1.3$ , and it is inconceivable to the writer that the losses will remain constant independent of  $M_{V1}$ . Clearly, if  $M_{V1}$  becomes larger than unity very special conditions occur since the flow in the annulus becomes choked at  $M_{V1} = 1$  as has been discussed in Art. 9.9 of Ref. 1. Some of the peculiarities associated with cascades at supersonic inlet velocities are mentioned in Art. 9.10 of the same reference.

The writer believes that the, by now, almost classical view points of flows through turbomachines have outlived their usefulness. They may even be a hindrance for future developments and if accepted without questioning, may prevent original thinking and could make people believe that all problems have been or will be solved by their use. This classical method assumes that the fluid particles in a turbomachine move on axisymmetric stream surfaces of shapes which are either assumed a priori, or obtained 6-10

by simplified theoretical methods. Further, it is assumed that the flow through a turbomachine can be replaced by the flows through a multiplicity of annular channels bounded by neighboring stream surfaces, which are closely spaced between the meridional contours of the flow channel of the machine at hub and tip. The stream surfaces are actually considered to be thin, solid walls that do not create disturbances, and it is assumed that the flows in these individual channels do not interact with each other. In each one of the channels there exists then a so-called quasi two-dimensional flow of the type described in Art.12 of Ref. 1. The performances of the different cascades, which are now arranged in the various flow channels to produce the specified flow deflection, are taken to be those of two-dimensional cascades obtained either in cascade test rigs or by theoretical methods. With the latter, one can at best attempt a solution for the special relative flows W in rotors that satisfy the condition  $\nabla \times \overline{W} = -2\overline{\omega}$ ; that is, where the curl of the velocity function is a constant, since  $\overline{\omega}$  is the angular velocity vector of the rotor. Such flows are isentropic but can be compressible. However, disturbances due to shocks cannot occur. This condition limits the theoretical evaluation to flows where the local Mach numbers must be less than or, at the most, equal to unity. More general solutions of the so-called blade-to-blade problem on axisymmetric stream surfaces have not yet been obtained and are very difficult to formulate.

So-called quasi two-dimensional flows with  $\nabla \times \widetilde{W} = -2\widetilde{w}$  are discussed in Art. 12 of Ref. 1. By introducing a stream function  $\psi$  there is obtained a second order partial differential equation of the form (see Eq. 12(9), p. 307, Ref. 1)

$$\frac{1}{R^{2}}\psi_{,,\theta} + \psi_{,,m} - \frac{1}{R^{2}}\left[(\ln\rho)_{,\theta}\right]\psi_{,\theta}$$
$$+ \left[(\ln R)_{,m} - \left[\ln(\Delta h\rho)\right]_{,m}\psi_{,m} = -2(\Delta h) \rho \omega \sin \lambda \qquad (46)$$

The commas denote partial differentions with respect to the coordinates listed after them, where  $\theta$  is the angle in peripheral direction and m the length along the generatrix of the stream surface. The mass density is denoted by  $\rho$ , R is the radius from the axis,  $\Delta h$  is the varying distance between neighboring stream surfaces,  $\omega$  is the angular rotor velocity, and  $\lambda$  is the angle of the tangent to the generatrix with the axis of rotation. For  $\lambda = 0$  the particles move on cylindrical stream surfaces, and  $\lambda = 90^{\circ}$  covers flows in radial compressor wheels with stream surfaces that are planes perpendicular to the axis. For the latter case, and for conical stream surfaces, Eq. 46 has been solved by Stanitz for thin blades.³ For cascades with airfoil-shaped blades, that are arranged on an arbitrary surface of revolution, computer programs are described in Ref. 11 for solutions with relaxation methods that need high-speed computers with large storage capacities. As interesting and useful these theoretical attempts are, one must be critical to evaluate what they really produce in form of results, and whether or how these data will help to improve present designs, and to create the turbomachinery which is to be built in the future.

The mere fact that modern computers can solve differential equations with complicated boundary conditions which, hitherto, could not be tackled by hand calculations is no assurance that the results must be correct from a physical point of view. Computers can only perform mathematical manipulations as they are told to do, and no result is better than the assumptions that were used to formulate the problem that is solved by these apparently sophisticated, but inherently stupid, machines.

Two of the necessary boundary conditions for solving Eq. 46 with the programs of Ref. 11 require that the flows upstream and downstream of the blades are uniform, and that the flow angles at these stations be specified. These conditions imply that the tangential deflection through the cascade is known a priori, whereas in actuality the possible deflection depends on the attitude of the blades in the cascade and the upstream conditions only. Whereas in turbine cascades it is possible to calculate the discharge angle from the geometry of the cascade with approximate methods, such predictions are not possible in axial compressor cascades, in fact one of the major problems is to find out what the discharge angles are for imposed incidence angles. Actually then, Ref. 11 produces pressure distributions about blades for specified locations of the rear stagnation points, and if they have been chosen wrongly the pressure pattern will be wrong also. As in most theoretical cascade flow investigations the effects of upstream or downstream cascades cannot be taken into account; the row investigated constitutes in actuality a disturbance located between two flow fields that extend to infinity far upstream and far downstream without being disturbed by other cascades.

A major drawback of all methods that are based on Eq. 46 is however that the right-hand side of this relation becomes zero if either  $\omega$  is zero, or if  $\lambda$  is zero. If the angular velocity is zero the cascade is stationary and instead of the pattern of the relative velocity W one deals with the absolute velocity V in a stator whose curl  $\nabla \times \vec{V}$  is now zero because of the initial condition that  $\nabla \times \vec{W} = -2\hat{\omega}$ . The velocities V of such flows must be gradients of a potential function  $\varphi$ , and Eq. 46 can be modified to

$$\nabla^2 \varphi = \frac{\nabla \varphi}{a^2} \cdot \nabla \left(\frac{v^2}{2}\right) \tag{47}$$

where "a" is the variable velocity of sound at the different locations in the flow field. As before it is necessary that M = V/a is everywhere smaller than unity. For incompressible flows, where the velocity of sound "a" is tending toward infinity, Eq. 47 reduces to Laplace's equation  $\nabla^2 \phi = 0$ . Equation 47 is a partial differential equation of the Poisson type and the term on its right-hand side can be interpreted mathematically to be the result of sources in the flow field. Expressed differently, the curl of  $\overline{V}$  is zero, but its divergence  $\nabla \cdot \overline{V}$  is not; which means that flow must be generated somewhere in the field, and sources judiciously arranged therein can take care of this situation. Reference 12 develops calculating methods that are based on this idea by using the principles of superposition, but again for assumed axisymmetric stream surfaces, namely, cones in particular.

6-11

It can be noticed also, that Eq. 46 changes into Eq. 47 if  $\lambda = 0$ ; that is, if cylindrical stream surfaces are assumed to exist. Thus, as far as axial machines with cylindrical stream surfaces are concerned, the flow through a rotor is not different from the flow through a stator, if the cascades have the same geometries and if the flow angles of the relative and absolute flows are equal. On the other hand it can be proved without a shadow of a doubt, e.g., by Art. 8.5 of Ref. 1, that even isentropic relative flows in rotors must be fundamentally different in character from absolute flows. From Eq. 8(23) of Ref. 1 it can be seen clearly that the simplest relative flow must have  $\nabla x \ W = -2 \ W$ , and if Kelvin's theorem is extended to relative flows (Eq. 8 (22) of Ref. 1), and applied to isentropic conditions, one sees that the change of the circulation  $\Gamma_R$  around a moving fluid curve C in a relative flow is not zero but equal to

$$\frac{D\Gamma_R}{dt} = -2 \oint_{(C)} d\vec{r}_R \cdot \vec{w} \times \vec{W}$$
(48)

In an absolute isentropic flow, however, the change of the circulation around a moving fluid is indeed zero. Equation 48 indicates that  $D\Gamma_R/dt$  is zero only if the relative flow vectors  $\vec{W}$  are everywhere parallel with  $\vec{w}$ , hence parallel with the axis of rotation. Rotors of this type are not capable of changing the energy of fluids and have no practical interest. That the condition  $\nabla \times \vec{W} = -2\vec{x}$  is not in conflict with Eq. 48 can be proved with simple means.

It can be stated therefore that the stream surfaces in a rotating cascade must differ from those that would occur if the same cascade were stationary. More precisely, the stream surface in a stationary cascade, whose flow satisfies  $\nabla \times \vec{\nabla} = 0$ , must change to a pattern that satisfies  $\nabla \times \vec{W} = -2\omega$ , and it is not possible that the relative flow in the rotating cascade has the same stream surfaces as the absolute flow. In particular, the relative stream surfaces cannot be axisymmetric, if those of the absolute have this character. More about these conditions has been described in Art. 10.5 of Ref. 1, but it is evident from the above discussion that results obtained by solving Eqs. 46 and 47 must be of approximate nature even for the idealized flows that are investigated, and they must be interpreted in the proper perspective of their initial assumptions.

Such results, or data from stationary cascade test rigs which basically are obtained with the same assumptions as those of the above-mentioned theories, are now used to establish the blading elements in the individual flow channels between the solid stream surfaces. The classical method consists in designing the actual blade surfaces through the profiles of these blade elements. The "solid" stream surfaces are then, so to say, removed and it is assumed that the originally calculated or assumed stream surfaces will also exist for the flow about these three-dimensional blades. It is quite clear that there are many possibilities of arranging an actual blading with the profile sections that are obtained from the flows through the individual flow channels, depending, for instance, on how the leading edge of the blade is arranged. In the inducer of Fig. 1 the leading edge of the blade could be pulled forward in flow direction to obtain a blade surface that is leaning more away from a meridional plane than if the leading edge were to slant backward, although at the different radii the blade angles would be exactly equal. Without a doubt these two blades would exert different forces on the flow, one could tend to push the flow toward the tip, the other toward the hub, and it is inconceivable that the flow pattern in the meridian channel would remain unchanged. In Ref. 2 (Table C-2, p. 26) an investigation dealing with the blading of an axial-flow machine has been carried out to check whether it is possible to build a rotor with a very large number of thin blades that produces the idealized relative flow with  $\forall x \ \overline{W} = -2\overline{x}$  near its cylindrical hub. This flow condition establishes a particular change of the flow angle in radial direction, and requires that the blade surface consists of radial lines. Since for a large number of blades the flow and the blade angles must be identical, the last mentioned requirement establishes the change of the flow angle along the radius by itself. It can be seen that the two values differ, primarily because from  $\nabla \times W = -2u$  the necessary blade angle change depends on the ratio of w and the axial component of  $\overline{W}$ , whereas this is not the case for the other. Hence, it is evident that the condition  $\nabla x \overline{W} = -2w$  cannot be maintained in a blading with a finite axial length, and that the actual blade shapes as a whole will have an influence on the flow through them. These examples show that the flow patterns in a machine can be influenced by particular arrange-ments of the profiles in direction of the blade height and that they will have a bearing on the meridional flow. The classical approach, so to say, linearizes the problem, and does not take account of the interactions that occur between the flows through the different elementary channels from the hub to the tip. It further tries to explain all phenomena with a two-dimensional model, at best with one on stream surfaces that are surfaces of revolution, and looses sight of the actual three-dimensional effects that occur in reality. These limiting view points seem to be particularly harmful if supersonic flows occur in a relative flow field where, as discussed earlierin connection with the inducer inlet, the absolute flow is subsonic. Stationary cascade test data cannot give a true picture of the conditions since they replace again the relative flows by an absolute flow between "solid" stream surfaces, where in particular the condition that the flow component perpendicular to the cascade axis, which is in reality the actual absolute flow, has no special significance. In a supersonic cascade test rig it will hardly be possible to determine cascade performance at different incidence angles nor establish design data for blades where only parts of the blades have supersonic velocities. For inducers of radial compressors which are followed by radial blades it does not seem possible to use cascade data with any degree of realism, and only experimental work with actual rotating wheels will show what detrimental effects high relative flow Mach numbers have on the performance.

There seem to exist a number of design variables that should be examined for supersonic inducers. The possibility of influencing the flow pattern near the tip by appropriate blade shapes to produce, say, greater mass flow rates per unit area near the hub, has been mentioned. These designs could be extended to produce swept-wing effects, similar to what has become the standard design of wings for high-speed airplanes. It is well known that in supersonic flows the velocity parallel with the leading edge of a swept-back wing with infinite span cannot produce variations in pressure, hence only the component of velocity perpendicular to the leading edge can create losses that are caused by compressibility effects. Peculiar conditions could however occur at the outer wall, if this principle were applied to the design of the inducer inlet edges, but it might be possible to obtain considerable improvements. The writer is surprised that such designs

have not been tried for axial compressor stages, especially for those with large blade heights. Sweptback blades would not necessarily have greatly increased bending stresses, since the maximum section modulus of an airfoil profile is a large multiple of the minimum modulus about the outer principal axis. If the centers of gravity of the profiles along the blade height were displaced backward along this axis of the hub profile, it should be possible to minimize the stresses that are caused by the additional bending moment about the other principal axis.

The writer believes that it is possible to build inducers at supersonic relative inlet velocities for absolute inlet Mach numbers My1 of about 0.5 to 0.6 with good efficiency and minimum flow disturbances. Converging-diverging passages in the inducer seem unnecessary, especially if only part of the rotating channel has supersonic velocities. Leading edge radii must be as small as possible, but large enough to avoid damage by flutter, and great care must be taken to properly design the suction side of the blade to provide a good transition into the actual blade channel. It is not believed however that the blades must be designed for incidence angles if the proper blockage factor is used for the flow area calculations at the inlet. This statement contradicts the data of Ref. 13, where the optimum rotor efficiency  $T_{\rm R}$  is shown to occur at positive incidence angles of about 10° at R10 for blade angles of 57°. The inlet channel ahead of the eye of the wheel that was tested, has curved meridinal contours, hence the inlet velocity V1 is not uniform from Rli to Rlo. Although it is stated in Ref. 13 that the distribution of V1 was determined by probes, slight inaccuracies of the measurements, or a location of the probe at some distance forward of the leading edges of the rotor could easily be responsible for these unusually large incidence angles. By means of theoretical methods, which are not described in detail, the velocity distributions along the inducer were determined also in Ref. 13 to verify the test data. However, as shown by Fig. 5 of Ref. 13, the inducer has simply been replaced by a cascade, since at its discharge the velocities on either sides of the blade are shown to be equal, a situation which cannot exist in reality, and which gives questionable value to the argumentation based on it.

Design criteria for the whole rotor passages from the inlet to the discharge are often given in terms of the deceleration ratio  $W_2/W_{10}$  of the relative rotor velocities. From earlier discussions with regard to rotor losses it is evident that not all losses in a rotating impeller depend exclusively on this ratio. They will also be greatly influenced by the performance of the inducer, in particular, on the velocity distribution that exists at the station where the inducer blades join the radial impeller blades. It is necessary to have a good appreciation of the complexities of flows in rotating impellers to avoid oversimplifications and the setting up of design criteria that are based on wrong models. An invaluable contribution to investigating the real flow phenomena in rotating impellers has been made by Fowler¹⁴, who actually measured the velocity distribution in the passages of a large compressor with probes from a platform inside the hub that was rotating with the wheel. Figure 11 has been adapted from a personal communication of Mr. Fowler to the writer. It shows the velocity profiles at seven cross sections of the rotor flow channel of an unshrouded wheel with radial blades at the discharge, when operating at a peripheral speed U₂ = 17 ft/s. The meridional flow channel has the smoothly changing contours used for modern designs. Plane 1 of Fig. 11 is at the inlet section of the inducer blades, extending from the leading edge of one blade to the back of a neighboring one, and the blades become radial near plane 3. The zones with reduced velocities at the blade tips that are due to the blade gap and the scrubbing effects along the outside wall, remain almost equal from plane 3 to the discharge plane 7. It is of interest to compare these measured velocity distributions with the theoretical solutions of Eq. 47 for radial blades and incompressible flows. The pattern of the streamlines obtained by Stanitz for a radial impeller with 20 blades is shown in Fig. 3.5.2 of Ref. 3. The velocities are inversely proportional to the distance between neighboring streamlines. leading surface of a blade will be called the pressure side, the trailing surface of the same blade is its suction side. Hence the direction in a blade channel from the pressure side of one blade to the suction side of the neighboring one, is in direction of rotation of the wheel.

At the outer radius of the wheel (R = 1 in Fig. 3.5.2 of Ref. 3) the theoretical analysis predicts that the velocity in a blade channel increases in direction of rotation, whereas exactly the opposite trend is seen to occur in plane 7 of Fig. 11. However in planes 3 and 4, and to a lesser degree in plane 5, the measured velocity changes agree in the main with the theoretical ones which predict a velocity increase in direction of rotation at all radii. This situation occurs because the theoretical method shows, or is based on the assumption, that at radii smaller than about 70 percent of R2 the relative velocities are everywhere radial. Then, as determined in Art. 10.6 of Ref. 1, and as shown in Fig. 10(5a), they will increase linearly with the angle along the periphery in direction of rotation. The measured reversal of this behavior, starting from plane 5 to the discharge plane 7, cannot be due to viscous effects only, which are neglected in the theoretical treatment, but must occur because of flow peculiarities that a simplified theory cannot take into account. In his personal communication to the writer, Mr. Fowler also remarked that the directions of the relative velocities at the discharge did not have as large a deviation from the radial direction as Fig. 3.5.3 of Ref. 3 shows. The measured flow distributions suggest that considerable mixing of the different flow strata must occur while they pass through the compressor and it is very unlikely that there exist axisymmetric surfaces. Reference 15 describes tests of single, straight diffusors that were arranged radially and rotated in the test rig of Ref. 14, to examine the effects of centrifugal and Coriolis forces on decelerated flows that move radially outward. Diffusors with different divergence angles where investigated, first while stationary and then while rotating. It was found that considerable differences occur if a diffusor is rotated. Static tests with a two-dimensional diffusor with an included angle of 10° showed the well-known peaked velocity distributions that occur for these angles. If rotating, the peaks flatten out and the flow becomes more stable. These results agree with the conclusions reached earlier about the beneficial effects of a centrifugal force field on decelerated flows, but they show also that boundary layers along rotating walls, where the fluid particles are also affected by Coriolis forces, exhibit different characteristics than those along stationary walls. Similar results have been obtained in Ref. 16 which describes tests of flows through a channel with constant cross section that is rotated about an axis. Because of these conditions, different separation criteria for boundary layers must be applied if they occur on stationary walls or on surfaces that rotate about an axis.

For this reason it is not possible to use conventional boundary layer theories as a means to find permissible deceleration ratio  $W_2/W_{10}$  for the relative flows in impellers, nor can attempts be successful that try to relate this ratio to the NASA diffusion factor, which has proved to be a satisfactory separation criterion for axial compressor bladings which have small flow deflections, hence, where the changes of the

Coriolis forces are small if the blading rotates. Much more fundamental work dealing with boundary layers on rotating walls and investigations with modern flow visualization methods must be carried out before it is possible to establish satisfactory design limits for flows in radial impellers. Recent endeavors that use holography with Pulse-Lasers for investigations of flows in rotating wheels might open entirely new ways to study actual flows in high-speed machines where the effects of centrifugal and Coriolos forces are large.

If the above-mentioned peculiarities of rotor flows are not taken into account one might come to the conclusion, as some sources do, that flow separations will occur in an impeller if  $W_2/W_{10}$  equals 0.6, and that a ratio of 0.62 should be used for design purposes to avoid excessive losses. Such values are obtained from analogies with stationary diffusors or oversimplified boundary layer considerations for, say, linearly changing velocities along a surface, as is the case on the suction side of a blade in an axial compressor cascade. Figure 9 is a diagram for the determination of the deceleration ratio  $W_2/W_{10}$  in accordance with Eq. II(5) of Table II. If, for instance, the limit for this ratio were set at 0.65, the discharge angle  $\alpha_2$  could not be larger than about 600 for a radius ratio  $R_{10}/R_2$  of 0.7 and  $\beta_{10} = 60^{\circ}$ . For larger discharge angle  $\alpha_2$  the radius ratio  $R_{10}/R_2$  would have to be decreased. Figure 12 is presented to show these conditions more precisely if the lower limit of  $W_2/W_{10}$  is assumed to equal 0.6 and if the slip factor  $\mu$  is 0.85. For these conditions and at  $\alpha_2 = 75^{\circ}$ , the maximum radius ratio  $R_{10}/R_2$  could not exceed 0.42 at a relative flow angle  $\beta_{10} = 70^{\circ}$ . Experience with high performance compressors shows however that impellers with radius ratio  $R_{10}/R_2$  of 0.68 the deceleration ratio is of the order of 0.35 to 0.3, depending on  $\beta_{10}$ , as shown in Fig. 9 by following path "b" in the diagram. Therefore, if the deceleration ratio  $W_2/W_{10}$  is used as a preliminary design criterion it is permissible to apply minimum values of about 0.3 or even somewhat lower, say, about 0.26. A unique relationship between  $W_2/W_{10}$  and the wheel efficiency TW cannot be established because of Tw. A correlation between  $W_2/W_{10}$  and TW can probably never be obtained because of the additional rotor losses that depend on a number of additional factors.

For known values of  $M_{WL}$ ,  $\beta_{10}$ , and  $U_2/a_0$  it is possible to calculate the wheel radius  $R_2$  with Eq. II(9) of Table II, if the ratio  $R_{1i}/R_{10}$  were known. The quantity kBl is a blockage factor which is primarily depending on the number of inducer blades and their thickness at the inlet throat, although excessively thick boundary layers on the walls of the inlet annulus can affect kBl also. Evidently if  $U_2/a_0$  is known the angular velocity  $\omega$  is known also, if  $R_2$  has been determined. However  $\omega$  can be determined directly by Eq. II(10) of Table II, for known or chosen quantities  $M_{Wl}$  and  $\beta_{10}$ . Eq. II(10) is useful to establish the necessary rotative speed to handle particular flow rates. If  $\omega$  is given, because of the prime mover that drives the compressor, Eq. II(10) makes it possible to verify whether a particular flow rate can be handled at this speed. The ratio of axial blade width  $b_2$  and  $R_2$  is obtained by Eq. II(11). The blockage factor kB2 is the ratio of the actual flow area at the wheel discharge and the area  $2\pi R_2$   $b_2$ , multiplied by an experience factor that depends on the boundary layer thickness on the side walls.

The necessary diffusor exit area  $A_{\mu}$  at the radius  $R_{\mu}$  is obtained from Eq. II(14) for specified values  $\lambda = V_{\mu}/V_2$  and known efficiencies  $\exists_C$ . A blockage factor kB4 takes account of the displacement thickness of the boundary layers which reduce the actual flow area at the discharge of the diffusor. Section x-x of Fig. 1 is taken to be either the throat of the diffusor where the flow is choked if the absolute velocity  $V_2$  after the rotor is supersonic, or the entrance section of the actual diffusor if  $V_2$  is subsonic. The necessary total flow area of all diffusor channels is denoted by  $A_x$ , and  $k_{Bx}$  is again an area blockage factor. The area  $A_x$  can be determined for both cases if the ratio of the total pressures  $P_{tx}$  at station x and  $P_{t2}$  at the rotor discharge is known. Although  $P_{t2}/P_0$  could be expressed by Eq. I(19) of Table I and then introduced into Eqs. II(13) and II(14), it is better to use these relations as listed, since it is possible to judge approximately what values the ratio  $P_{tx}/P_{t2}$  will have for particular diffusor designs. If  $V_2$  is supersonic the throat area is obtained with the dimensionless critical flow function  $\hat{\Phi}_c$  of Eq. II(14) which has a value  $\hat{\Phi}_c = 0.6847$  for  $\gamma = 1.4$ . For subsonic velocities  $V_2$  the diffusor inlet area can be determined only if the velocity  $V_x$  at station x is specified, by assuming a value  $\xi = V_x/V_2$ . Usually this ratio is taken to be about 1.02 to 1.05 because a slight acceleration between stations (2) and (x) will produce more uniform flow conditions at the diffusor inlet. For a chosen number of diffusor flow channels, with this length and the methods described in Paragraph 5 establish the necessary length of the diffusor channels. With this length and the chosen diffusor arrangement it is possible to establish the outer radius  $R_{\rm h}$  of the diffusor.

### 4. SIMILARITY CONSIDERATIONS

If effects due to gravity, surface tension, and heat conductivity can be ignored, which is permissible for most flows in turbomachines, the laws of dynamic similarity establish that flow processes of perfect gases in geometrically similar channels are equal in performance if the Reynolds numbers  $R_e$  and the velocity ratios  $V//R_GT$  are respectively equal at corresponding stations in the channels. As derived for instance by Ackeret et. al., in Ref. 17, the latter condition can be expressed in terms of equal Mach numbers M, with the additional requirement that the fluids passing through the geometrically similar channels have equal specific heat ratios  $\gamma$ . Reference 17 shows also that the effects of different values of  $\gamma$  are small only if the Mach numbers are less than about 0.6. The reason is that gases with different heat ratios  $\gamma$  produce different relative changes in density if passing through a channel with particular area ratios. Hence the values  $V//R_GT$  cannot remain equal in geometrically similar channels.

Assuming then that gases with equal values of  $\gamma$  are considered only, and that the Reynolds numbers of the flows in the compressors to be compared are in a range where they can vary considerably without largely changing the frictional coefficients; that is, if they are moderately large and if the flow surfaces are rough, dynamic similarity is achieved in geometrically similar machines at equal Mach numbers.

In hydraulic machines, similarity considerations that are based on the so-called specific speed have been used with success and it will now be examined whether it is possible to apply this method also to the compressors considered here that operate at high speed ratios  $U_2/a_0$ . Attempts to obtain design limits and to establish the optimum operating range of radial compressors with this means are described in Refs. 18 and 19. In both reference there is used the specific speed  $N_S$  (see Eq. III(1) of Table III)

$$N_{\rm S} = \frac{N Q^{\frac{1}{2}}}{H_{\rm is}}$$

similar to the practice in hydraulic pump design. In the latter application, Q, which is the volume flow rate through the machine, is everywhere constant. In a compressor for gases however, where the volume flow rate will change considerably from inlet to discharge, a choice must be made whether Q at station (1), or at, say, station (2) is to be used in Eq. 50. In both references the quantity Q is taken to be the inlet flow rate  $Q_1$  without giving reasons for this choice. As in Refs. 18 and 19, and as shown in Table III by Eq. III(1), the value of N_S depends on the system of units which is used. In the two cited references N_S has the dimension rpm ft3/4 sec^{-1/2}, which is awkward for purposes of comparison with similar coefficients in other systems of units, and such formulations are not in keeping with the general and very desirable tendency to use dimensionless quantities throughout. For this reason it is more appropriate to use the dimensionless speed n_S, with units as defined by Eq. III(3) of Table III, which for particular conditions has the same value in all consistent systems of units. The quantity ns is obtained by dividing the value of N_S in the given English units by 129.

Whereas Ref. 18 (Fig. 2.8) simply presents a graph showing a direct correlation of the efficiency of different compressor types with Ng, Ref. 19 uses the so-called specific diameter  $D_S$  as an additional parameter, which is defined by (see Eq. III(2) of Table III)

$$D_{\rm S} = \frac{D H_{\rm is}^{1/4}}{Q_{\rm l}^{1/2}}$$

This quantity is also not dimensionless. However Eq. III(4) defines a dimensionless specific diameter ds that is obtained from  $D_S$  in English units by division with 0.42.

The coefficient  $\xi_1$  of Eq. III(5) represents the ratio of the area of the flow annulus at the compressor inlet and the area  $\pi R_{10}^2$ , where  $R_{10}$  is the outer radius of the rotor inlet eye. As shown in Table III the quantities ng and dg can be expressed also with the chosen parameters of Tables I and II, to obtain Eqs. III(6) and III(7). Both contain  $\xi_1$ , so that this ratio can be obtained from either of these relations as shown by Eqs. III(8) and III(9). By equating these expressions there is obtained Eq. III(10), or

$$n_{\rm S} d_{\rm S} = \frac{2}{(\mu \eta_{\rm C})^{1/2}}$$

where  $\mu$  is the slip factor and  $\mathbb{N}_{C}$  the compressor efficiency. Since  $\mu$  is a known quantity for a particular compressor design, and because  $\mathbb{N}_{C}$  can be determined with Eq. II(1), the specific diameter ds is directly related to ns and there is no reason why both ns and ds should be specified for a design with radial blades. Equation III(11) shows that by specifying ns there can be obtained the radius ratio  $R_{1i}/R_{10}$  for particular values of  $\beta_{10}$  and  $R_{10}/R_2$  which are usually chosen on the basis of other considerations, as explained earlier, Equations II(9) and II(10) of Table II, with the known ratios  $R_{1i}/R_{10}$ , would then give directly the necessary radius  $R_2$  or the angular velocity  $\omega$  for given op wrating conditions. If the optimum efficiency of a compressor were a unique function of ns, and if  $R_{1i}/R_{10}$  and  $\sqrt{}$  or the other parameters could be adjusted to meet the optimum value, the designer would have a simple criticrion for the optimization of compressors.

From Ref. 18 (Fig. 2.8, p. 38) it appears that radial compressors should have the best efficiency for values of N_S between 75 and 85, or for n_S between 0.58 and 0.66. Table III gives an example for design parameters that have been used successfully. In one case, a radius ratio  $R_{1o}/R_2$  of 0.56, in another a ratio  $R_{1o}/R_2 = 0.7$  was chosen. For the smaller value of  $R_{1o}/R_2$  it is not possible to design for N_S = 80, since the hub/tip ratio at the inlet becomes zero at N_S = 71. In an actual design of a compressor that had efficiencies higher than 80 percent, the hub/tip ratio at the inlet was about 0.46 for  $R_{1o}/R_2 = 0.56$ , hence it operated at N_S = 60 and did not have the much lower efficiency predicted by Ref. 18. For the example in Table III with the higher ratio  $R_{1o}/R_2 = 0.7$  the ratio  $R_{1i}/R_{1o}$  becomes zero at N_S = 99.4, and an actual high-performance machine is known to the writer that has an inlet hub/tip ratio of 0.34, hence it operates at n_S = 0.725 or N_S = 93.5. Thus, the sharp optimum for N_S in Ref. 18 does not occur in reality and N_S = 80 or n_S = 0.62 is not a design criterion.

It is obvious from Eq. III(6) that all radial compressors have values of  $N_{S'}$  between, say, 60 and 110. Lower and higher values would lead to impossible designs which would never be built anyway. The only merit of the specific speed is to find out whether  $\alpha$  radial compressor can be built at all for given values of N, Q₁, and H₁₈. If N_S is outside the range of 60 to 110, and if the above-mentioned design conditions cannot be changed, another type of compressor has to be chosen. However, if the relations of Table II were applied, the same conclusions would also be reached immediately even if the specific speed concept had never been invented. In fact its use can also be dangerous if, as might be the class for the example of Table III with  $R_{10}/R_2 = 0.56$ , the designer would try to reach the highest possible N_S by making the radius ratio  $R_{11}/R_0$  excessively small or choo sing too high a value of  $R_{11}/R_0$  to reduce N_S for  $R_{10}/R_2 = 0.7$ . The example also shows that large changes of  $R_{11}/R_{10}$  have a small influence of N_S except, near the maximum possible value of N_S where  $R_{11}/R_0$  tends toward zero. Further, if N_S = 80 would be considered necessary, a large number of high-performance radial compressors would never have been built, much to the detriment of the development of these promising machines, where a better physical understanding of the complicated flow phenomena can still lead to considerably improved performance.

Unfortunately there always exists the teridency in engineering to try to set up simple rules or criteria which make it possible to judge whether or not: a design is feasible, without having to go through the strenuous mental processes to try to understand the phenomena that actually occur and to relate them to the fundamental laws of nature. If our only task were to build the same machines over and over again, sometimes a little smaller, all would be well with this kind of handbook engineering. However, if an engineer believes that improvements are possible, and if he reflects on what has happened during the past years he cannot doubt that this will be the case, he must not accept the barriers that have been set up by past experience, and be impressed by the achievements that have been made. With a critical mind he has to evaluate what is true and what is false with accepted methods, and his aim must be to try to understand, to search, and to improve. Too often engineers are handlers of formulas or recipes, and there is the tendency to accept their results as correct without much questioning, especially if they are ground out by a computer, without finding out what sort of basic principles and assumptions led to the numbers. In the near future our modern computers may well be the biggest obstacle to imaginative original thinking and the use of new concepts, since for every problem there will very soon exist some sort of a program that can show that everything is known, and that nothing new needs to be added. All one has to know is the necessary format for the input to obtain the desired result, in print, in graphs, even in drawings. The inventive and critical engineer however must take the trouble to find out how the program was established and what basic principles and assumption were made, and must then evaluate the obtained numbers in the light of these conditions.

The biggest objection to the specific speed criteria is however that they do not satisfy the laws of dynamic similarity, even not for the limiting conditions that were assumed earlier. Equation III(6) shows that ng is independent of the pressure ratio that is produced by a compressor. If all factors in Eq. III(6) are equal for two compressors, they can have different values of  $U_2/a_0$  and therefore widely different blade width b2 at the rotor discharge. One compressor could operate with subsonic, the other with supersonic velocities at the diffusor inlet. Figure 13 is an adaptation of Fig. 4 of Ref. 19. The curves of constant efficiency  $\Pi_{\rm C}$  = 0.7 and  $\Pi_{\rm C}$  = 0.8 and the curves labeled  $N_{\rm Wl}$  = 1.0 and  $N_{\rm Wl}$  = 1.2 for  $P_{\rm t}\mu/P_{\rm O}$  were taken from Ref. 19 and redrawn in a bigger scale. Although labeled as lines of constant Mach number in Ref. 19 the curves for Nw1 = constant are for constant ratios of relative inlet and critical velocity for the total inlet temperature. Equation III(14) of Table III shows how these ratios are related to the actual Mach numbers Mw1. Although the differences between Nw1 and Mw1 are small at low Mach numbers, the values of M_{Wl} vary from 0.94 to 1.01 for  $N_{wl} = 1.0$  if  $\beta_{10}$  changes from 50° to 75°. According to the author of Ref. 19 the curves for  $N_{wl} = 1.0$  and 1.2 represent design limits for higher pressure ratios. It is stated that maximum efficiencies will occur for impellers with backward bent blades operating at specific speeds Ns between 90 and 130, and specific diameters  $D_S$  between 1.3 and 1.7. The straight lines labeled  $\mu T_c$  = constant which the present writer drew into the original diagram of Ref. 19 represent Eq. III(10), and relate  $D_S$  to  $N_S$  for wheels with radial blades at the discharge. Average values for  $\mu \Pi_c$  for such impellers are 0.7, hence all radial compressor of this type must lie in the vicinity of this curve for Fig. 13. The points labeled (1) to (7) in Fig. 13 represent design points for some actual compressors known to the writer, operating with  $U_2/a_0$  of about unity, and inlet Mach numbers of 0.9 and higher. It is of interest to note that all these points lie on the curve  $\eta_c = 0.70$  of Ref. 19 whereas all compressors, even those having Ng-values between 60 and 70, have efficiencies of 80 percent and higher. This situation shows again that the specific speed concept is a highly unsatisfactory design criterion, especially for radiallybladed compressor wheels, since it is impossible to design such machines with operating points that fall inside the closed curve, labeled  $\eta = 0.8$  in Fig. 13. It is pointed out in Ref. 19 that the data presented in its Fig. 4 were calculated on the basis of loss considerations. It can be concluded therefore that this loss evaluation is in error or unsuitable for compressors with rotors that have radial blades at the discharge.

What seems more crucial to the writer is the fact that on the basis of Fig. 4 of Ref. 19 (or Fig. 13 of the present article) one might come to the conclusion that it is not possible to build high-speed compressors of the type discussed here with high efficiencies, for instance, as required for gas turbines, and that further developments of these machines might not be undertaken because of "proof" that improvements are not possible. This is again a case which shows that an analysis is no better than its assumption. Since the specific speed has no real physical meaning, unlike the actual similarity parameters such as Reynolds number, Mach number and others, the writer deplores the tendency to express everything in flow machines with NS, also phenomena on which NS has really no primary influence. Because of the definition of N_S it is always possible to do so because either rotative speeds and flow velocities, or lengths, can be related to it, and since in all these expressions there then appears N_S in one form or another, depending on what simplifying assumptions were made, the reader is given to believe that N_S has a governing influence on the performance, and that manipulating N_S is all that needs to be done to create an optimum design. Everyone who has observed actual flows in turbomachines in test rigs, and has tried to understand the complexities of these processes will agree that nature just is not so simple that it can be explained by a set of convenient numbers.

#### 5. LOSSES IN RADIAL COMPRESSORS

It has been stated earlier that the wheel efficiency  $T_W$  of Eq. 15 is the best measure for the quality of a rotor wheel. As indicated, a number of factors influence Nw, but it will be examined now whether the deceleration ratio W2/W10 has an overriding effect on TW, as has been suggested by some sources which state that W2/W10 should not be smaller than about 0.6 to avoid flow separations. It has already been shown in Fig. 12 that such a limit cannot be used for compressors that operate at high speed ratios  $U_2/a_0$  because the radius ratios  $R_{10}/R_2$  become too small, and it is then not possible to handle the large changes in volume flow rate from rotor inlet to rotor discharge, that occur at high pressure ratios, with acceptable ratios of axial blade width b2 and R2. The example of paragraph 6 demonstrates this condition clearly. If  $W_2/W_{10} \ge 0.6$  were a realistic criterion, the losses in rotors with high speed ratios would be large and it would be difficult to obtain high efficiencies. Figure 14 is presented to show that many compressors have deceleration ratios that are smaller than 0.6 without a drastic decrease in  $T_W$ . The circles in Fig. 14 represent design point data of some of the compressors of Ref. 6, and others that are known to the writer. The points indicated by x and + were calculated from the data given in Ref. 13, and the curves drawn through them represent the change of  $T_W$  with operating conditions of a particular wheel at values of U2/a0 of 0.83 and 1.02, respectively. All data points are for impellers with radial blades at the rotor discharge, and all compressors operate at high speed ratios, having overall efficiencies in excess of 80 percent.

In contrast to the expected trend that  $T_{W}$  decreases with decreasing values of  $W_2/W_{10}$ , the opposite

could be deduced from Fig. 14, since wheel No. 1 with  $W_2/W_{10} = 0.265$  has the highest efficiency  $T_W = 0.77$ . For each data point in Fig. 14 are also given the ratios  $R_{10}/R_2$ ,  $R_{11}/R_{10}$ ,  $b_2/R_2$  and  $\Delta x/\Delta R$  of the rotor. The latter ratio establishes the general shape of the meridional channel and the values show that the contours of the meridional flow paths of all compressors must have small curvatures with the exception, maybe, of wheel No. 11. Definite reasons for the higher values of  $T_W$  in some designs cannot be given, probably because of the effect of the design of the inducers on the wheel performance. However, it is recognizable from Fig. 14 that high efficiencies  $T_W$  are reached either for high ratios  $R_{11}/R_{10}$  or high values of  $b_2/R_2$ . The influence of  $R_{10}/R_2$  seems small, although most good wheels have values of  $R_{10}/R_2$  between 0.6 and 0.7. Large ratios  $R_{11}/R_{10}$  require high relative Mach numbers  $M_{W1}$  to pass the flow rate through the eye of the impeller, and high ratios  $b_2/R_2$  are obtained if the absolute flow angles  $\alpha_2$  are large. For high values of  $M_{W1}$  the inducer becomes critical, and with large angles  $\alpha_2$  the design of the influence there and diffusor throat, becomes a difficult task. It is felt that high performance compressors can be developed if more attention is given to these two problem areas.

From the curves in Fig. 14 it is quite evident that the range in which  $T_{W}$  remains constant for offdesign operation becomes smaller the higher the speed ratio  $U_2/a_0$  is, a condition which is, at least in part, responsible for the steeper characteristics of compressors operating at high speed ratios.

The ratio of  $b_2/R_2$  also has an effect on the disk friction loss of an impeller. Assuming that the disk extends to the outer radius  $R_2$ ; that is, if no scallops are arranged, a frictional moment MDF acts on the back side of the impeller which can be determined by  20 

$$M_{\rm DF} = c_{\rm M} \rho_2 D_2^3 U_2^2$$
(49)

where c_M depends on the Reynolds number

$$Re = \frac{U_2 D_2}{v}$$
(50)

and the axial gap  $\delta_a$  between the rotating disk and the stationary wall. The influence of the ratio  $\delta_a/R_2$ , and the effect of disk roughness, which have been investigated by Refs. 21, 22, 23, and 24 are discussed in Ref. 8. Figure 15 has been established from the results of the quoted references, but experience has shown that the values of  $c_M$  can be a multiple of those of Fig. 15 if the flow in the region between the disk and the wall has radial velocity components pointing away from or toward the axis of the impeller. For compressors pumping ambient air the Reynolds number of Eq. 50 varies between about (10⁶) and 3(10⁷) for peripheral speeds between 1000 and 1600 ft/s, and rotor diameters between 3 and 20 inches. Although the average value of  $c_M$  from Fig. 15 is then about 1.5 (10⁻⁴), it has been shown by experience that  $c_M = 2.5(10^{-4})$ is more realistic for actual compressor wheels. For a mass flow rate in the power absorbed by an impeller is  $\dot{m} + U_2^2$  in accordance with Eq. 3, which is also equal to M $\omega$ , where M is the driving moment, and

$$M = \frac{\mathring{m} \mu U_2^2}{\omega} = \mathring{m} R_2 \mu U_2$$

However

 $\dot{m} = 2 \pi R_2 b_2 k_{B2} V_{m2} \rho_2$ 

and, with the relations of Table I,

$$M = 2\pi R_2^3 \left(\frac{b_2}{R_2}\right) k_{B2} \mu^2 U_2^3 \rho_2 \cot \alpha_2$$
(51)

The total moment which has to be overcome by the driving source is then M +  $M_{\rm DF}$  and if the efficiency of the compressor is  $\Pi_{\rm C}$ , without taking the disk friction moment into account, the actual compressor efficiency  $\Pi$  of the machine is  ${\rm SDF}$   $\Pi_{\rm C}$ , and

$$\xi_{\rm DF} = \frac{M}{M + M_{\rm DF}} = \frac{1}{1 + (M_{\rm DF}/M)}$$

Then by Eqs. 49 and 51

$$\xi_{\rm DF} = \frac{1}{1 + \frac{(4/\pi) c_{\rm M} \tan \alpha_2}{(b_2/R_2) \mu^2 k_{\rm B2}}}$$
(52)

It can be noted that  $\overline{SDF}$  is independent of the mass density  $\rho_2$  and  $R_2$  since both M and  $M_{DF}$  are proportional to these quantities. Hence Eq. 51 holds for all impellers with radial blades the outer radius  $R_2$ . Equation

52 is plotted in Fig. 16. This figure shows that with small ratios  $b_2/R_2$  there can occur a considerable reduction in efficiency, which is the greater the larger the angle  $\alpha_2$  is. For  $\alpha_2 = 75^\circ$  the ratio  $(b_2/R_2)$  kp2  $\mu^2$  should not be less than about 0.06 to limit  $\xi_{DF}$  to 0.98. Then, with  $k_{B2} = 0.95$  and  $\mu = 0.90$ , the ratio of  $b_2/R_2$  must not be smaller than 0.08 to avoid efficiency reductions because of disk friction moments.

Although the above limit for  $b_2/R_2$  has been obtained by considering the frictional moment at the back side of the impeller, it is very probably that the so-called scrubbing loss of the blade tips at the outer contour of the meridional flow path produces frictional moments which are of similar nature and of the same order of magnitude as the disk friction moments. Moreover, as shown in Fig. 15 for the latter, these moments will also not be greatly influenced by the ratio of tip clearance and  $R_2$  if it is of the order of 0.05, which constitutes a normal to lower limit for most designs. The scrubbing loss is similar to the loss due to disk friction because the boundary layer along the stationary outer wall is rotated by the blade tips. If the losses at the blade tip would be taken to be those due to the flow of the fluid from the pressure side to the pressure side of the blade across the blade clearance, it would be inconceivable that the reductions in compressor efficiency with increased tip clearance are as small as shown by the measurements of Ref. 25. The same behavior has been found in radial turbines⁶ where an increase of the ratio of tip clearance and axial blade width b from 4 percent to 10 percent produced practically no drop in efficiency, but if 10 percent was exceeded there occured a radical efficiency reduction. The sudden drop beyond the 10 percent clearance ratio could occur because of massively increased leakage flows across the blade tips once they are outside the wall boundary layer.

Experience has also shown that the ratio of blade width  $b_2/R_2$  should not be less than 8 percent. The value of c_M in Eq. 51 for the representation in Fig. 16 has actually been increased from the average value for disk friction (~ 1.5 (10⁻⁴)) to 2.5(10⁻⁴) to demonstrate that this limit is very likely due to the combined effects of disk friction and scrubbing loss. For this ratio of  $b_2/R_2$  and for properly designed inducer sections of an impeller, with meridional contours having small and smoothly changing curvatures, it should be possible to obtain wheel efficiencies  $T_W$  of between 0.75 and 0.80 for  $b_2/R_2 = 0.08$  if the ratios  $R_{1i}/R_{10}$  are not less than about 0.5.

A large portion of the total losses in radial compressors occurs between the discharge of the wheel and the diffusor throat. The non-uniform distribution of the relative velocities at the rotor discharge produces a non-steady and greatly irregular absolute flow at this station which must be directed toward the diffusor inlet, preferably in a manner that provides uniform flow conditions at this station. If this uniformity is not achieved it is very unlikely that the diffusor proper can perform its function with minimum losses.' Very limited data are available for the design of and the losses in these transition sections. Figure 17 shows a typical distribution of the static pressures along the side walls of such a diffusor inlet for a machine that has a value of  $M_{V2}$  of about 1.18. Firstly it is clear that the absolute flow is irregular, judging from the change of the pressures in peripheral direction at the wheel discharge. Secondly, the design of the diffusor inlet is not as good as it is desirable because fluid particles undergo compressions and expansions before they reach the diffusor throat. Moreover, Fig. 17 also shows the futility of trying to apply simplified calculating method for this part of the process in the compressor.

Of particular importance is the design of the leading edge of the diffusor blade since the slightest misorientation will produce major disturbances usually with the effect that the flow rate at which the compressor surges is too close to its design flow rate. This condition occurs if the mean angle of the lip section with respect to the radial direction is too large or too small, and since the optimum angle depends on the performance of the rotor, it is not possible to indicate exactly how the transition section must be designed. Experiences have made it obvious, however, that theoretical methods which prescribe a logarithmic spiral or other shapes for the curved part of the transition section overlook the fact that the flows to be handled are so far from being uniform that is almost impossible to obtain optimum solutions without extensive experimental work that investigate the performance of different shapes, not only with respect to optimum efficiency but also to obtain the necessary surge margin. One of the major problems with experiments however is the accurate measurement of the static pressures in these irregular flows. In most cases it is found that Pitot-static pressure probes with even the smallest possible tube diameters are sufficient to change the flow pattern, in fact they usually throw the compressor into surge if it is operating near the design point, so that one has to rely on static wall pressure taps to investigate the effectiveness of different designs. Schlieren pictures for supersonic conditions do also not give information that can be interpreted with ease because of the three-dimensional character of the flow, not to mention the difficulties associated with the arrangement of the necessary optical system. It is therefore quite difficult to measure the true average static pressure after a compressor wheel, and because of the uncertainties that arise if the average static wall pressures at R2 is identified with it, the separation of the losses into those originating in the wheel, and those occuring in the transition section to the diffusor, is equally difficult. For this reason the evaluation of the actual wheel efficiency Tw may be associated with errors and this could be the reason why it is often impossible to correlate experimental data from different sources. Laser systems were mentioned earlier as an experimental tool to investigate flows in turbomachines, and if the so-called velocimeter, using two laser beams for the determination of the actual magnitude and direction of the velocity in the vicinity of a particular station has been perfected, this instrumentation would be the best possible means to observe the true flow patterns in machines, not only qualitatively but also quantitatively.

In accordance with a limited amount of test data with a compressor operating at  $U_2/a_0 = 1.4$ , with  $M_{V2} = 1.4$ , the approximate ratio of the total pressure  $P_{t2}$  at the rotor discharge and  $P_{tx}$  at the throat of the diffusor was found to be about 1.14, giving an efficiency of the transition section of 0.63. This efficiency is defined as the ratio of the actual static temperature rise to obtain sonic velocity at the throat to that of an isentropic compression for the same pressure ratio. The average discharge flow angle  $\alpha_2$  was about 75°. It seems however that the transition section of the compressor in question could be improved, so that the numbers given above represent only orders of magnitude and not values that cannot improved.

Although a large number of tests have been carried out with subsonic diffusors by many sources, these data cannot be applied directly to the diffusors of compressors with high speed ratios, especially if the

Mach numbers at the diffusor inlet are close to unity. Moreover, it has almost become standard procedure to apply the so-called equivalent cone angle of straight, round diffusors to decelerating flow channels with other cross sections. This procedure converts the inlet and discharge flow areas of a diffusor with arbitrary cross sections into circular ones, either with equal areas or by means of the hydraulic diameter, and then determines the equivalent cone angle with these diameters and the actual length of the diffusor. Either of the two methods for the determination of the equivalent cone angle breaks down for particular designs, or gives results that are in disagreement with actual test data.

An attempt to establish a more rigorous calculating method for arbitrary channels has been made by Traupel²⁶, primarily for incompressible flows and approximations for the compressible case, but it is then suggested that the equivalent cone angle be used again as a criterion for the permissible deceleration. A different approach is possible, however, which has a minimum of simplifying assumption and has proved to be valid for diffusors of arbitrary geometry, even axisymmetric ones with curved meridian channels and annular cross sections, for instance those arranged after turbomachines to deflect the flow from the axial to the radial direction. The derivation and the use of the equations are given in Table IV. From the laws of conservation of momentum, mass, and energy, combined with the first law of thermodynamics, there is obtained Eq. IV(10) which relates the frictional heat T ds to the work necessary to overcome the action of the shear stresses along the channel walls. With the so-called referred mass flow rate mr3 at the diffusor inlet, which is a dimensionless quantity defined by Eq. IV(14), there is then obtained the principal equation IV(15). This equation is of the form  $dX_1 = dX_2$ , where  $dX_1$  contains the properties of state  $\rho$ , p, and s, at the stations along the channel length, and  $dX_2$  is depending only on the channel geometry and the skin friction coefficient  $c_f$ . Actually, for a given diffusor the variables in  $dX_1$  are not independent of the changes of the channel geometry along its length L that occur in  $dX_2$ . However, if one were to adjust the flow areas A and the wetted perimeter C of the sections between the inlet and the exit in such a manner that the thermodynamic process of the fluid in the channel would follow a polytropic law, it would be possible to integrate  $dX_1$  independently from  $dX_2$  since s, and  $\rho$  are then unique functions of the pressure p for a constant polytropic efficiency  $T_p$  or a constant loss coefficient  $\zeta = 1 - T_p$ . Conversely, if an average skin friction coefficient  $\tilde{c}_f$  is introduced, the value of  $X_2$  is obtained by integrating the quantity do from diffusor inlet to diffusor discharge, establishing the so-called diffusor shape factor  $\Omega$  which is identical with the value  $\Phi$  of Ref. 26. The diffusor shape factor is a dimensionless quantity which depends only on the area and perimeter changes along the length L of the diffusor.

From the integration of  $dX_1$  there is obtained the quantity  $X_1$  as a unique function of the static pressure ratio in the diffusor,  $\gamma$ , and the polytropic loss coefficient  $\zeta$ . For  $\gamma = 1.4$  the function  $X_1$  is plotted in Fig. 18 for different values of  $\zeta$ , as function of the pressure ratio  $p_4/p_3$ . Obviously the conditions of state change monotonously during the polytropic process from  $p_3$  to  $p_4$  in Fig. IV(2), and the function  $X_1$  only holds for such changes. Hence if the area changes in the diffusor would be such that compressions in one part would be followed by expansions in another part, the function  $X_1$  could not take care of the situation, since for an expansion the polytropic law established by Eq. IV(7) would produce an entropy decrease in violation of the second law of thermodynamics. However, even for smoothly changing areas in the diffusor, which it will have in any case, the thermodynamic process in the T-s diagram of Fig. IV(2) might not follow the isentropic line which is shown there, but one which curves either upward or downward from it. It must be recognized however that the value of the function  $X_1$  will not be greatly changed by different distribution of p along L, similar to the integral of Tds which is about equal to  $(T_3 + T_4)$  ( $s_4 - s_3$ )/2 almost independent of how the process proceeds from station (3) to station (4), provided it goes along a smooth and fairly regular curve in the T-s diagram.

Moreover, the polytropic loss coefficient  $\zeta$  is not assumed a priori, but adjusted to satisfy the equation of continuity at the diffusor discharge for a specified average skin friction coefficient. The necessary iteration to solve this problem is explained in Table IV. The method employs the dimensionless flow function  $\phi$  which is plotted in Fig. 18 also, with the ratio of total and static pressure that correspond to an isentropic process as variable. Blockage factors for the diffusor areas are introduced to take account of the boundary layer thickness.

For small pressure ratios pL/p3; that is, for low Mach numbers at the diffusor inlet, the method leads to relations that are identical with those commonly applied for the loss evaluation for incompressible diffusor flows. In particular, the average skin friction coefficient is equal to

$$\overline{c}_{f} = \frac{C_{PRi} - C_{PR}}{\Omega}$$

(53)

where  $C_{PRi}$  and  $C_{PR}$  are the so-called ideal and actual recovery factors, which express the increase in static pressure as percentage of the kinetic energy of the flow at the diffusor inlet. The quantity  $\Omega$  is the diffusor shape factor defined by Eq. IV(19).

Figure 19 shows the skin friction coefficients  $\overline{c_f}$  obtained with Eq. 53 from the experimental data of Ref. 27 for two-dimensional diffusors. Except for the diffusor with  $I_0/a_1 = 48$ , which is unduly long, the data lie within a relatively small band, with the test data for a thin displacement thickness of the boundary layer at the inlet near its lower boundary. It is of interest to note that for large values of  $\Omega$  the skin friction coefficients are very nearly equal to those of fully developed turbulent flows along moderately rough surfaces in pipes or along plates, as shown by Ref. 20 (p. 587, and p. 611). The results of Ref. 28 which were obtained, in part, at high subsonic speeds give values of  $\overline{c_f}$  that lie in the same band as in Fig. 19, indicating that the skin friction coefficients  $\overline{c_f}$  are directly related to  $\Omega$  for different types of cross sections, and at speeds where compressibility effects cannot be disregarded. This product is shown in Fig 20

From Eq. IV(18) of Table IV it is seen that X is directly proportional to  $\overline{c_f} \Omega$  for the same data points of Ref. 27 as plotted in Fig. 19. Hence it appears that a diffusor with a shape factor  $\Omega$  equal to 10 represents an optimum solution. If  $\Omega$  is smaller the efficiency decreases radically and for values of  $\Omega$  larger than 10 a diffusor does not make full use of the possible adverse pressure gradient that a boundary layer can sustain without flow separations. The criterion  $\Omega = 10$  has been used by the writer with success for a number of diffusor designs, and a variety of different diffusor shapes is now being tested at NPGS to verify the validity of the criterion at high inlet velocities and with inlet flow distortions.

As shown also in Ref. 26, the shape factor of a round conical diffusor with inlet radius  $R_i$ , length L, and the half-angle  $\varepsilon$  of its divergence is

$$\Omega = \frac{1}{2 \tan \varepsilon} \left[ 1 - \frac{1}{(1 + 2(L/R_i) \tan \varepsilon)^4} \right]$$
(54)

For conical diffusors where L is large with respect to  $R_1$ , Eq. 54 gives a divergence angle of  $2\varepsilon = 5^{\circ}45'$ . The influence of the ratio  $L/R_1$  is small if  $L/R_1$  is larger than about 10. Two-dimensional straight diffusors with constant depth b, and widths  $a_1$  at the inlet and  $a_d$  at the discharge, determined by  $a_d = a_1 + 2 L \tan \varepsilon$ , where  $\varepsilon$  is again the half-angle of the channel, have shape factors

$$\Omega = \frac{L/a_i}{1+2(L/a_i)\tan\varepsilon} \left[1+\frac{1}{1+2(L/a_i\tan\varepsilon)}+\frac{2a_i}{b}\right]$$
(55)

If the diffusor of Fig. 17 had a ratio  $a_1/b = 2.4$ , the value of  $\Omega$  for  $\varepsilon = 5^{\circ}$  and  $L/a_1 = 10$ , is about equal 22.4, which appears to be excessive. Hence the diffusor should have a divergence perpendicular to the plane of drawing also to increase  $b_1$  at the inlet to  $b_d$  at the discharge. For shapes of this type the expression of Eq. IV(19) for  $\Omega$  leads to complicated integrals. However with a simple graphical integration for a half-angle of divergence of about 2° that produces a ratio  $b_d/b_1 = 2.4$  with the widths  $a_1$  and  $a_d$  remaining unchanged, the diffusor form factor is reduced to about 11.2. A diffusor channel for this value of  $\Omega$  for compressors is very likely very close to the optimum possible solution because of then non-uniform flow conditions that exist at its inlet.

Because of these disturbances, the values of  $\Omega$   $\overline{c_f}$  presented in Fig. 20 should also be increased, say, from 0.10 to about 0.15, or 0.20, for  $\Omega$  of about 10. How these values affect the diffusor efficiency will be shown with a simplified approach of the diffusor design method of Table IV. It is assumed that the Mach number My3 at the throat is unity, but the method is not restricted to this value. The flow function  $\Phi_3$  of Eq. IV(22) is then equal to 0.6847 in accordance with Fig. 18, and  $P_{t3}/p_3 = 1.8929$ . From Eq. IV(28) for for My3 = 1,  $\gamma = 1.4$ ,

$$\dot{m}_{r3} = (0.6847) (1.2)^3 = 1.1832$$

From Eq. IV(18)

$$X_2 = \frac{1.1832^2}{2} \overline{c}_f \quad \Omega = 0.7 \ \overline{c}_f \ \Omega$$

Hence,  $X_2 = 0.07$  for  $\overline{c_f} \ \Omega = 0.1$ ,  $X_2 = 0.14$  for  $\overline{c_f} \ \Omega = 0.2$ , and these values are equal to the values of the function  $X_1$  which is plotted in Fig. 18. It will now be assumed that the area ratio A3/A4 of the diffusor is 1/6.6 = 0.151 as is the case for the design of Fig. 17 with a half-angle of divergence of  $2^\circ$  to increase the depth b also. With blockage factors  $k_{B3} = 0.96$  and  $k_{B4} = 0.90$ , by Eq. IV(29)

$$\Phi_{\rm h} = (0.6847) \ (0.151) \ (0.96/0.9) \ (P_{\pm 3}/P_{\pm h}) = 0.11 \ (P_{\pm 3}/P_{\pm h})$$

Assuming that  $P_{t,3}/P_{t,4}$  is about 1.05, the value of  $\Phi_4$  is 0.115. From the plot of  $\Phi$  vs  $P_t/P_t$  it can be seen that  $\Phi_4 = 0.115$ , or slight changes of it on account of a wrongly chosen value of  $P_{t,3}/P_{t,4}$ , the value of  $P_{t,4}/P_4$  will not be higher than 1.02 because of the large change of  $\Phi$  with  $P_t/P_t$  close to unity. Then,

$$\frac{P_{\mu}}{P_{3}} = \frac{P_{t3}/P_{3}}{P_{t4}/P_{\mu}} \frac{P_{t4}}{P_{t3}} = \frac{1.8929}{1.02} \left(\frac{1}{1.05}\right) = 1.77$$

1

The approximate values of  $\zeta$  can then be read from Fig. 18 at the intersection of the lines for the known values of  $X_1$  and for  $p_{1/}p_3 = 1.77$ . For  $\overline{c_f} \ \Omega = 0.1$ , or  $X_1 = 0.07$ , there is  $\zeta = 0.070$ , and for  $\overline{c_f} \ \Omega = 0.2$ , or  $X_1 = 0.14$ , one finds  $\zeta = 0.130$ , giving approximate values of the diffusor efficiency of 0.93 and 0.87, respectively, without taking account of the reheat effects that are reflected in Eq. IV(35). The values of  $\zeta$  thus obtained can then be used to determine the pressure ratio  $p_{1/}p_3$  more precisely, by taking the pressure ratio  $P_{t3}/P_{t4}$  to be that obtained from Eq. IV(33) with the approximate pressure ratio  $p_{1/}p_3 = 1.77$ .

## 6. SAMPLE CALCULATIONS

To demonstrate the effectiveness of the developed performance parameters, and the help of the figures, the dimensions of an impeller for an air compressor with a pressure ratio of eight will be established for the following conditions:

$$P_{0} = 14.7 \text{ psia}; T_{0} = 520^{\circ} \text{R}$$

$$P_{t4}/P_{0} = 8$$
  
 $R_{g} = 1716.48 \frac{ft-1b}{slug.0R}$ ;  $\gamma = 1.4$ 

From Eq. 5

$$a_0 = 1117.8 \text{ ft/s}$$

Assuming  $\mu = 0.9$ ;  $\eta_c = 0.82$ , from Eq. II(3), or Fig. 4,

$$U_2/a_0 = 1.658$$

hence

Figure 8 clearly shows that for U/a and reasonable ratios  $R_{10}/R_2$  the relative inlet velocity  $M_{W1}$  must be supersonic. For  $M_{W1} = 1.15$  and  $\beta_{10} = 70^{\circ}$  there is from Fig. 8, or Eq. II(4),

$$\frac{R_{10}}{R_{0}} = 0.642$$

Judging from Fig. 4 it is necessary to choose  $\alpha_2 = 74^{\circ}$  to obtain a value of  $W_2/W_{10}$  of about 0.4. More precisely from Eq. II(5)

$$\frac{W_2}{W_{10}} = 0.405$$

For a chosen value of the wheel efficiency  $\mathbb{T}_W$  of 0.7, there are from Eq. 21

$$\Psi = 0.629; \Psi^2 = 0,394$$

and the usual rotor efficiency  $\eta_R$  defined by Eq. 12, in accordance with Eq. 24, is

$$\eta_{\rm p} = 0.88$$

b

With these values by Eq. II(9)

$$\left[1 - \left(\frac{R_{li}}{R_{lo}}\right)^2\right] k_{Bl} = \frac{i \sqrt{R_G T_0}}{\pi R_2^2 P_0}$$
 (5.7138)

and from Eq. II(11)

$$\frac{b_2}{R_2} k_{B2} = \frac{\dot{m}/R_G T_0}{\pi R_2^2 P_0} \quad (0.4127)$$

and, for approximate values  $k_{B1} = 0.85$ ,  $k_{B2} = 0.95$ , by division of two above-listed relations,

$$\frac{b_2/R_2}{1 - (R_{1i}/R_{1o})^2} = 0.0646$$

Evidently this ratio holds for all compressors for the chosen conditions, irrespective of the flow rate and the inlet pressure. For chosen radius ratios Rli/Rlo there are:

$$R_{11}/R_{10} = 0.2 0.3 0.4 0.5$$
  
 $b_2/R_2 = 0.062 0.059 0.054 0.048$ 

All these ratios are too small to obtain the desired efficiency. They were obtained because  $R_{10}/R_2$  was chosen too small and the angle  $\beta_{10}$  is too large, and both these values were taken to maintain a low Mach number Mwl. For a second try, let:

$$R_{10}/R_2 = 0.7; \beta_{10} = 60^{\circ}; \alpha_2 = 75^{\circ}$$

Then, from the inverse of Eq. II(4), expressing  $M_{W1}$  as function of  $R_{10}/R_2$  and  $\beta_{10}$ ,

$$M_{W1} = 1.3198$$

From Eq. II(5)

$$\frac{W_2}{W_{10}} = 0.360$$

The latter value seems acceptable in view of Fig. 14, and by proper rotor dimensioning a wheel efficiency  $T_{W} = 0.7$  should still be reached.By Eq. 21.

By Eq. II(9)

$$\left[1 - \left(\frac{R_{11}}{R_{10}}\right)^2\right] k_{B1} = \frac{\hbar/R_G T_0}{\pi R_2^2 P_0} (3.7063)$$

and, from Eq. II(11)

$$\frac{b_2}{R_2} \quad k_{B2} = \frac{m/R_G T_0}{\pi R_2^2 P_0} \quad (0, 4494)$$

With  $k_{B1} = 0.85$ ,  $k_{B2} = 0.95$ 

$$\frac{\frac{b_2/R_2}{1 - (R_{11}/R_{10})^2} = 0.1074$$

For the chosen value  $b_2/R_2 = 0.08$  the radius ratio  $R_{10}/R_2$  can be 0.5, which makes it possible to design a meridional flow path that has an acceptable shape.

From the inlet conditions and the design flow rate:

$$\frac{m/R_{G}T_{0}}{P_{0}} = \frac{\frac{2.5}{32.174}\sqrt{(1716.48)(520)}}{14.7} = 4.994 \text{ in.}^{2}$$

because the pressure  $P_{\rm O}$  was introduced in pound per sq. in.. Then, from the previous data,

$$\pi R_2^2 = \frac{(4.994)(3.7063)}{(1 - 0.25)(0.85)} = 29.034 \text{ in.}^2$$

Hence

$$R_2 = 3.04$$
 in.;  $D_2 = 6.08$  in.  
 $R_{10} = 2.125$  in.;  $D_{10} = 4.25$  in.  
 $R_{11} = 1.062$  in.;  $D_{11} = 2.125$  in.  
 $b_2 = 0.243$  in.

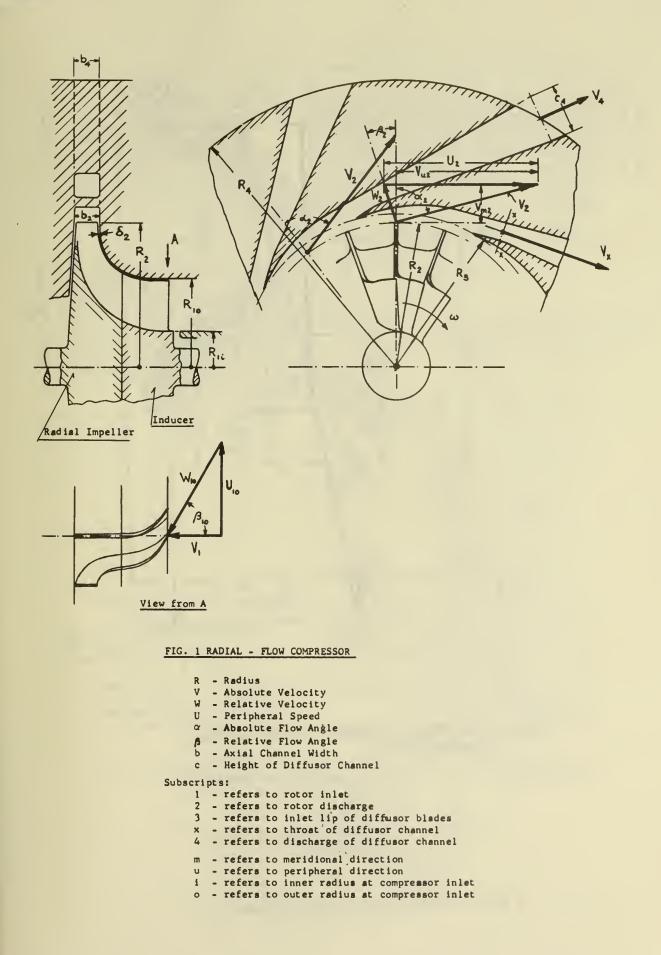
For the chosen data, from Eq. II(6),

$$M_{V2} = 1.256$$

The rotative speed N can be determined from Eq. II(10), or directly from

$$N = \frac{30}{\pi} \quad \omega = \frac{30}{\pi} \quad \frac{U_2}{R_2} = \frac{(30)(1853.4)}{\pi(3.04/12)} = 69,860 \text{ rpm}$$

## REFERENCES


1.	Vavra, M. H.	Aerothermodynamics and Flow in Turbamachines, Wiley Bros, New York, 1960.
2.	Vavra, M. H.	Axial Flow Turbines, Von Karman Institute for Fluid Dynamics, Lecture Series 15, pp. 99/100, April 1969.
3.	Traupel, W.	Die Theorie der Stroemung durch Radialmaschinen, Braun, Karlsruhe, 1962.
4.	Johnston, J. P. Dean, R. C., Jr.	J. Engg. for Power, Trans. ASME, pp. 49-62, January 1966.
5.	Stiefel, W.	"Experimental Investigations on Radial Compressors", Course Note 53b, Von Karman Institute, March 1965.
6.	Stiefel, W.	"Undersuchung an Radialen Verdichterlauefern," AVA Forschungsbericht 63-01, Triebwerksaerodynamik der Turbomaschinen, Teil II, Goettingen, 1963.
7.	Sakai, T. Watanabe, I., et al.	"On the Slip Factor of Centrifugal and Mixed-Flow Impellers", ASME Paper 67-WA/GT-10.
8.	Vavra, M. H.	"Radial Turbines", Part 4 of AGARD-VKI Lecture Series 6 on Flow in Turbines", Von Karman Institute, March 1968.
9.	Bammert, K. Bohm, E.	"Nuclear Plants with High-Temperature Reactor and Helium Turbine," ASME Paper 69-GT-43, March 1969.
10.	Groh, F. W. Robb, W. L.	"High Efficiency Can Be Achieved in Small Size Transonic Compressor Rotors," SAE Paper 820C, January 1964.
11.	Katsanis, T. McNally, W. D.	"Programs for Computation of Velocities and Streamlines on a Blade- to-Blade Surface of a Turbomachine" ASME Paper 69-GT-48, March 1969.
12.	Jmbach, H. E.	"Die Berechnung der kompressiblen, reibungsfreien Unterschallstroemung durch rauemliche Gitter aus Schaufeln auch grosser Dicke und starker Woelbung" Mittlg No 8, Inst. Thermische Turbomaschinen, ETH, Juris Verlag, Zurich, 1964.
13.	Linsi, U.	Brown Boveri Review, Vol. 53, No. 3, p. 161, March 1965.
14.	Fowler, H. S.	"Some Measurements of the Flow Patterns in a Centrifugal Compressor Impeller," ASME Paper 65-WA/FTP-7, April 1965.
15.	Fowler, H. S.	"The Distribution and Stability of Flow in a Rotating Channel," ASME Paper 68-GT-1, March 1968.
16.	Halleen, R. M. Johnson, J. P.	"The Influence of Rotation on Flow in a Long Rectangular Channel" Stanford University, Report MD-18, May 1967.
17.	Ackeret, J. Keller, C. Salzmann, F.	Schweizer Bauzeitung, No. 23, December 1934.
18.	Shepherd, D. G.	"Principles of Turbomachinery", Macmillan; New York, 1956.
19.	Baljé, O. E.	J. Engg for Power, Trans. ASME Series A, Vol. 84, No. 1, pp. 83-114, Jan 1962.
20.	Schlichting, H.	Boundary-Layer Theory, 6th ed., p. 606, McGraw-Hill, N. Y., 1968.
21.	Daily, J. W., Nece, R. E.	J. of Basic Engg., Trans. ASME, p. 217, March 1960.
22.	Nece, R. E. Daily, J. R.	J. of Basic Engg., Trans. ABME, p. 553, Sept. 1960.
23.	Pantel, K.	Forschung, Vol. 16, p. 97, 1950.
24.	Maroti, L. A. Deak, G. Kreith, F.	J. of Bastc Engg., Trans. ASME, p. 539, Sept. 1960.
25.	Schmidt-Theuner, P. Mattern, J.	Brown Boveri Review, Vol. 55, No. 8, p. 453, 1968.

- 27. Waitman, B. A. Reneau, L. R. Kline, S. J.
- 28. Sovran, G. Klomp, E. D.

Thermische Turbomaschinen, Bd. 1., p. 308, Springer, Berlin, 1962.

J. of Basic Engg., Trans. ASME, Vol. 83, Series D., No. 3, p. 349, Sept. 1961.

"Experimentally Determined Optimum Geometries for Rectinlinear Diffusors with Rectangular, Conical or Annular Cross Sections," Symposium on Fluid Mechanics of Internal Flow, General Motors Research Laboratories, Sept. 1965.



.

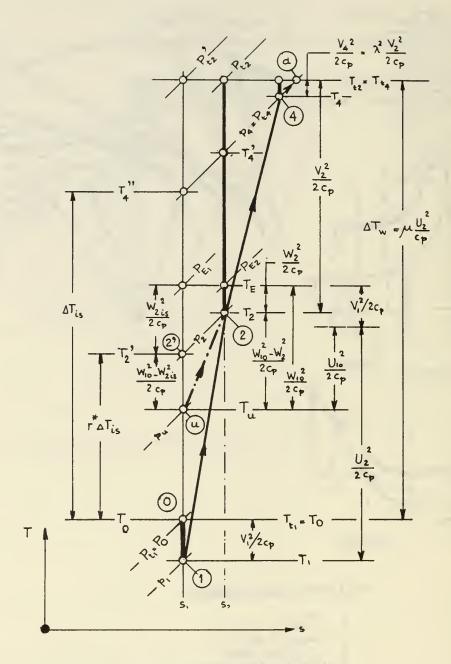
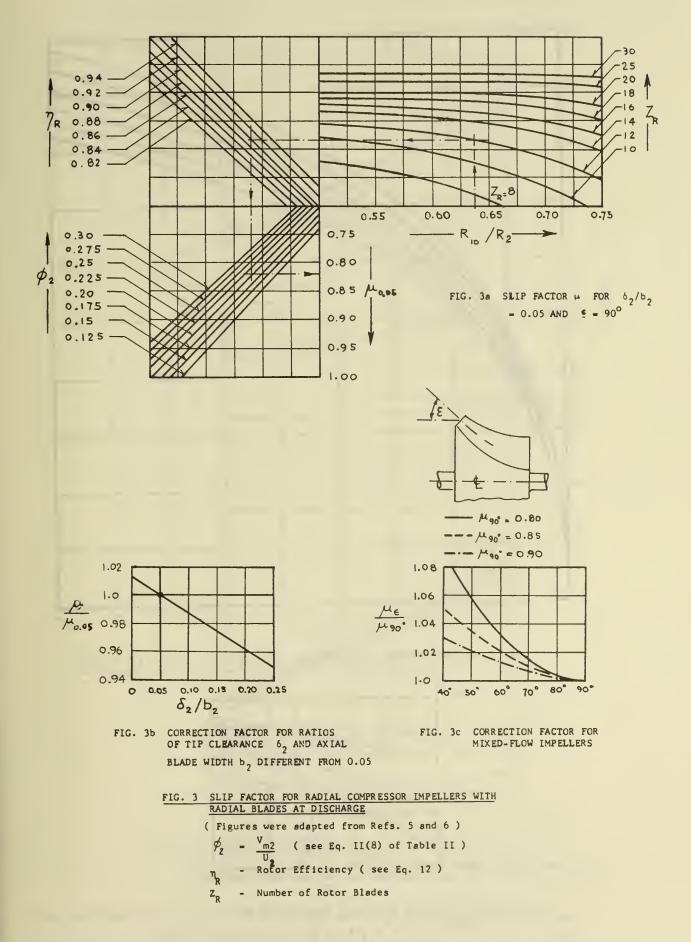




FIG.2 TEMPERATURE-ENTROPY DIAGRAM OF COMPRESSION PROCESS IN COMPRESSOR OF FIG. 1

cp - Specific Hest at constant Pressure

- p Static Pressure
- P. Total Pressure
- T Static Temperature
- T_t Total Temperature
- Entropy
- $x = v_4 / v_2$
- ( For other symbols and station designation see Fig.1 )



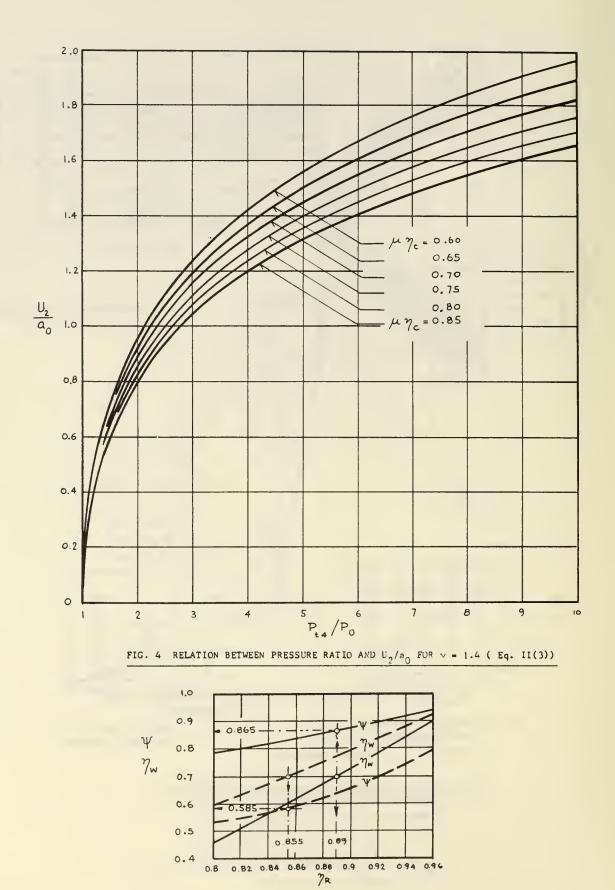
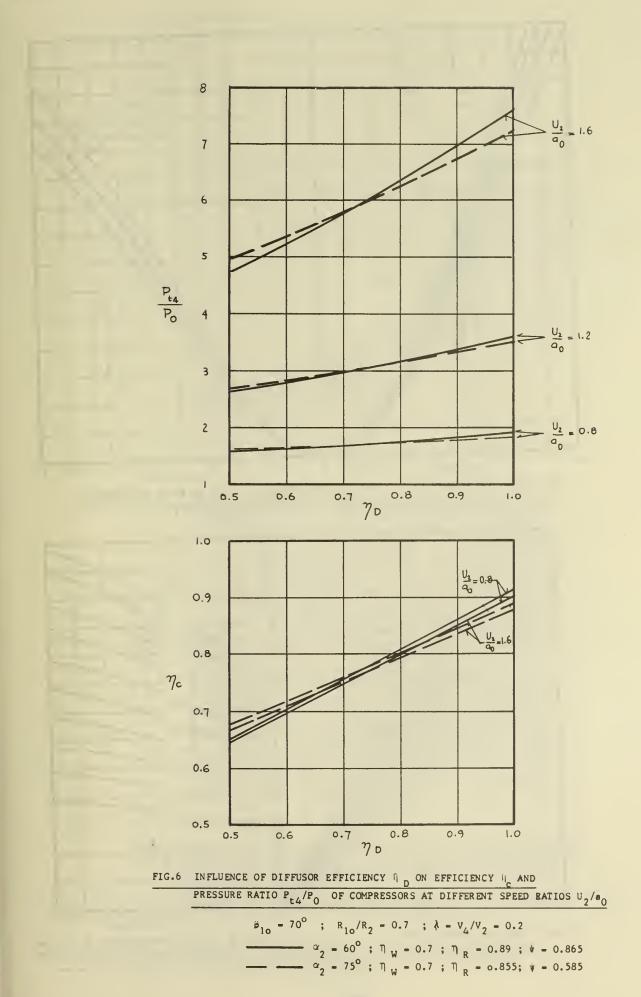
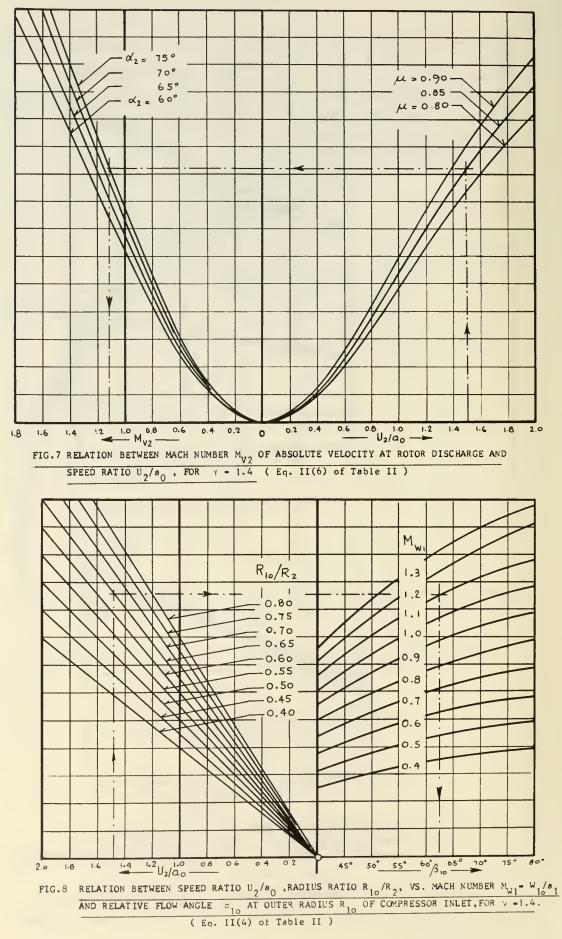
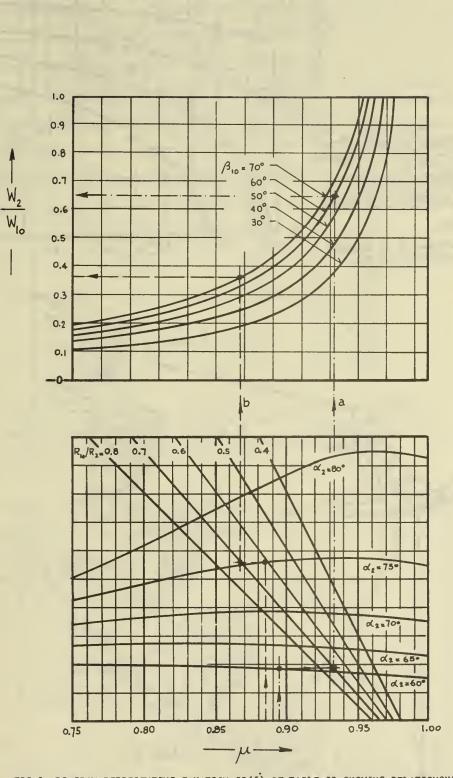
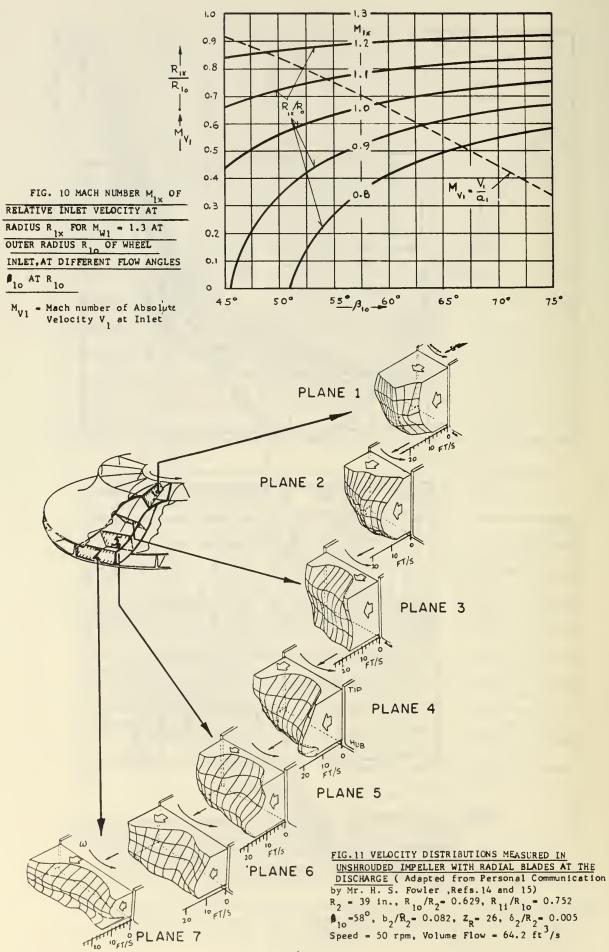
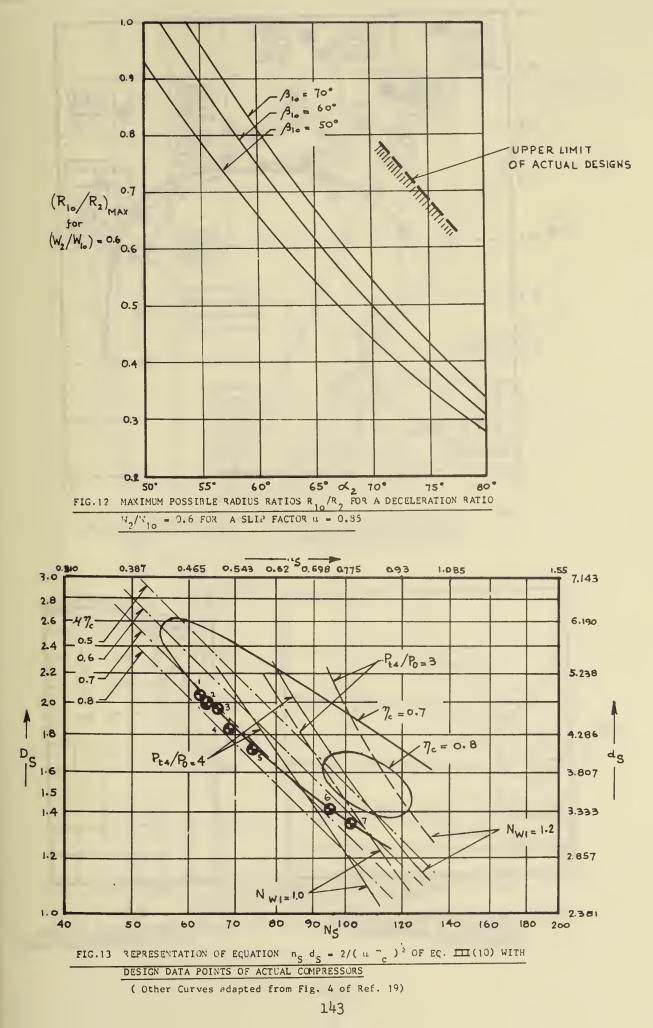
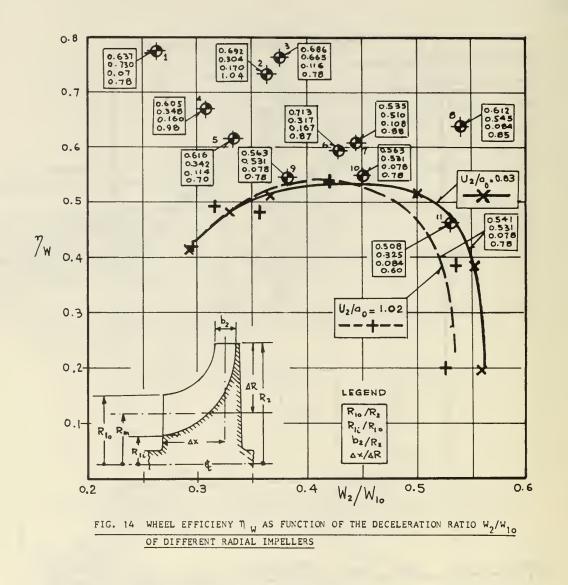
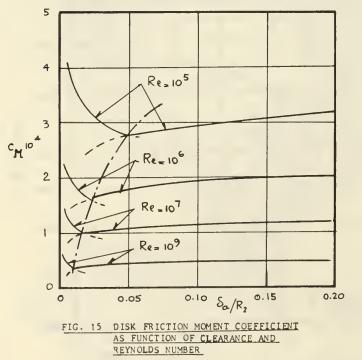
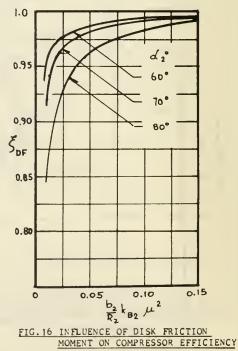





FIG. 5 RELATION BETWEEN ROTOR LOSS FORMULATIONS WITH  $\Pi_R$ ,  $\Pi_W$  AND V(Eos. 22 and 24)  $\alpha_2 = 60^{\circ}$  $\alpha_2 = 75^{\circ}$   $\beta_{10} = 70^{\circ}$ ,  $R_{10}/R_2 = 0.7$ ,  $\mu = 0.85$ 



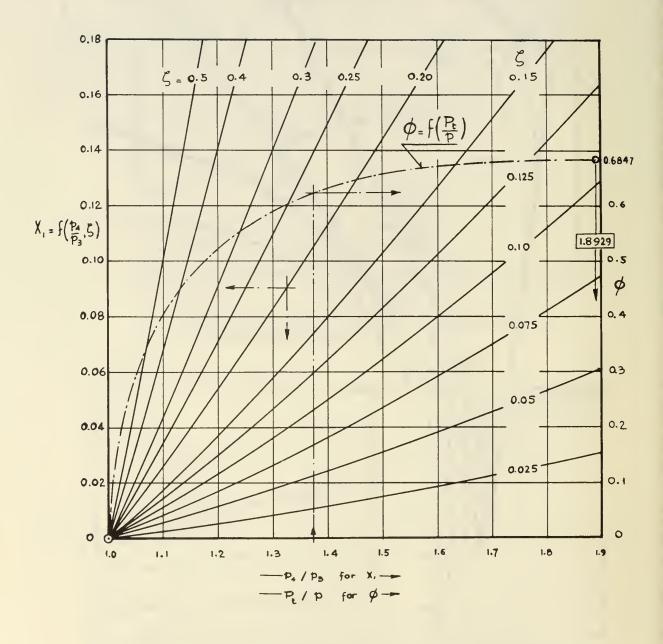


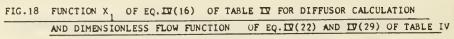








FIG.9 DIAGRAM REPRESENTING EQUATION II(5) OF TABLE II, SHOWING RELATIONSHIP BETWEEN DECELERATION RATIO  $W_2/W_{10}$  OF RELATIVE ROTOR VELOCITIES, RADIUS RATIO R₁₀/R₂, RELATIVE INLET FLOW ANGLE  $P_{10}$ , ABSOLUTE ROTOR DISCHARGE ANGLE  $\alpha_2$ , AND SLIP FACTOR  $\mu$ .

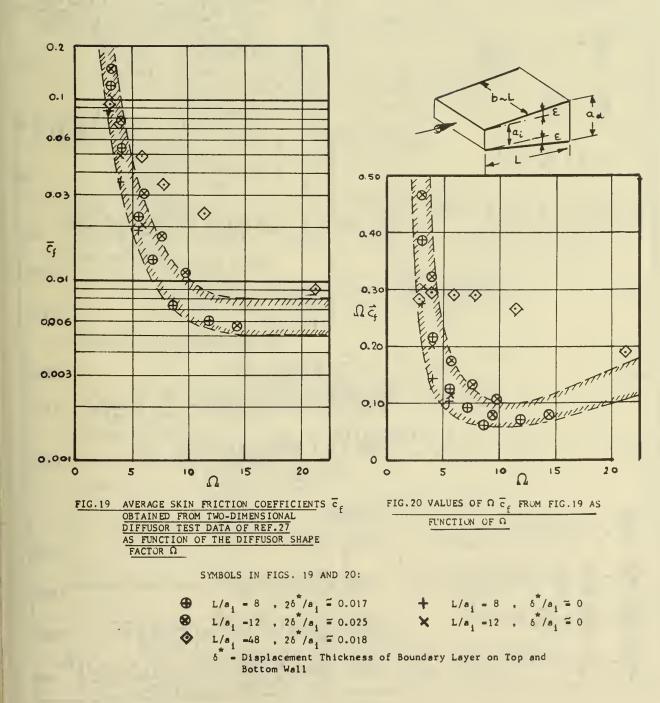









( Numbers represent approximate ratios of static pressures and average pressure p₂)





 $(\gamma = 1.4)$ 



$$\frac{\text{TABLE I PLOP PROTENTIES IN COMPRESSON}}{(\text{ For Symbols see Fiss. 1 and 2 })}$$

$$\frac{\text{VEDOTTIES}}{(\text{ For Symbols see Fiss. 1 and 2 })}$$

$$\frac{\text{VEDOTTIES}}{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2$$

148

•

TABLE II PERFORMANCE AND DESIGN PARAMETERS  

$$\frac{\gamma_c = \frac{\Delta T_{is}}{\Delta T_w} = \frac{\chi_1 - \left(1 - \frac{\mu}{2 \sin^2 \sigma_2}\right) + (\gamma - 1) \mu \left(\frac{U_z}{\sigma_0}\right)^2 \quad \chi_2}{1 + (\gamma - 1) \mu \left(\frac{U_z}{\sigma_0}\right)^2 \left[1 - \frac{\mu}{2 \sin^2 \sigma_2}\right]} \quad I(1)$$
(X and X are given by Eqs. 1(14) and 1(15) of Table 1.)

 $(X_1 \text{ and } X_2 \text{ are given by Eqs. I(14) and I(15) of Table I)$ 

$$F^{*} = \frac{T_{2}^{2} - T_{0}}{4 T_{is}} = \frac{\frac{1}{\gamma^{2}} \left( 1 - \frac{\mu}{2 \sin^{2} \alpha_{2}} \right) - \frac{1}{2 \mu} \left( \frac{1}{\gamma^{2}} - 1 \right)}{7 c} \qquad II(2)$$

$$\frac{W_{2}}{W_{10}} = \frac{\left[1 - 2\mu\left(1 - \frac{\mu}{2\sin^{2}\alpha_{2}}\right)\right]^{\frac{1}{2}}\sin\beta_{10}}{\left(R_{10}/R_{2}\right)} \qquad II(5) \qquad M_{V_{2}} = \frac{V_{2}}{\alpha_{2}} = \frac{\mu \frac{U_{2}}{\alpha_{0}}}{\sin\alpha_{2}\left[1 + (\gamma - 1)\mu\left(\frac{U_{2}}{\alpha_{0}}\right)^{2}\left(1 - \frac{\mu}{2\sin^{2}\alpha_{2}}\right)\right]^{\frac{1}{2}}} \qquad II(6)$$

$$\phi_{1} = \frac{V_{1}}{U_{2}} = \frac{M_{w1} \cos \beta_{10}}{\frac{U_{2}}{a_{0}} \left[1 + \frac{Y - 1}{2} M_{w1}^{2} \cos^{2} \beta_{10}\right]^{\frac{1}{2}}} \qquad \mathbb{I}(7) \qquad \phi_{2} = \frac{V_{m2}}{U_{2}} = \mu \cot \alpha_{2} \qquad \mathbb{I}(8)$$

$$\pi R_{2}^{2} \left[ i - \left(\frac{R_{1i}}{R_{10}}\right)^{2} \right] k_{B1} = \left(\frac{\dot{m}\sqrt{R_{G}T_{0}}}{P_{0}}\right) \left(\frac{U_{2}}{a_{0}}\right)^{2} \frac{\left[ i + \frac{Y-1}{z} M_{W1}^{2} \cos^{2}\beta_{10} \right]^{\frac{3Y-1}{2(Y-1)}}}{\sqrt{\frac{1}{2}} M_{W1}^{3} \cos^{2}\beta_{10} \sin^{2}\beta_{10}}$$

$$I(9)$$

$$\left(\frac{b_2}{R_2}\right)k_{B2} = \left(\frac{\dot{m}\sqrt{R_G T_0}}{\pi R_2^2 P_0}\right) - \frac{1 + (\gamma_{-1})\mu \left(\frac{U_2}{a_0}\right)^2 \left(1 - \frac{\mu}{2\sin^2 d_2}\right)}{2 \mu \sqrt{\gamma} \cot d_2 \left(\frac{U_2}{a_0}\right) \left(1 + (\gamma_{-1})\mu \left(\frac{U_2}{a_0}\right)^2 \left[\frac{1}{\gamma^2} \left(1 - \frac{\mu}{2\sin^2 d_2}\right) - \frac{1}{2\mu} \left(\frac{1}{\gamma^2} - 1\right)\right]\right)^{\frac{\gamma}{\gamma-1}} I(11)$$

Diffusor Exit Area A4:

$$A_{4} k_{B4} = \left(\frac{\dot{m}\sqrt{R_{G} T_{0}}}{P_{0}}\right) \frac{\sin \alpha_{2}}{\lambda \mu \sqrt{\gamma} \left(\frac{U_{2}}{a_{0}}\right)} \frac{\left[1 + (\gamma - 1)\mu \left(\frac{U_{2}}{a_{0}}\right)^{2} \left(1 - \frac{\lambda^{2} \mu}{2 \sin^{2} \alpha_{2}}\right)\right]}{\left[1 + \gamma_{c} (\gamma - 1)\mu \left(\frac{U_{2}}{a_{0}}\right)^{2}\right]^{\frac{\gamma}{\gamma - 1}}}$$

$$II (12)$$

Diffusor Throat Area  $A_x$  if  $M_{V2} > 1$ :

$$A_{x} k_{Bx} = \frac{\left(\frac{\dot{m} \sqrt{R_{g} T_{0}}}{P_{0}}\right)}{\phi_{c} \left(\frac{P_{tx}}{P_{tx}}\right) \left[1 + (\gamma - 1) \mu^{\mu} \left(\frac{U_{z}}{a_{0}}\right)^{2}\right]^{\frac{\gamma}{2} \left(\frac{\gamma}{\gamma - 1}\right)}} \qquad \gamma = \frac{\gamma}{\gamma - 1}$$
If (13)

where

$$\phi_{c} = \left\{ \frac{2\gamma}{\gamma-1} \left[ \left( \frac{2}{\gamma+1} \right)^{\frac{\gamma}{\gamma-1}} - \left( \frac{2}{\gamma+1} \right)^{\frac{\gamma}{\gamma-1}} \right] \right\}^{\frac{1}{2}}$$
 I(14)

and

$$Y_{\pm} = \frac{T_{2}/T_{0}}{T_{2}^{2}/T_{0}} = \frac{1 + (\gamma - 1)\mu(\frac{U_{2}}{a_{0}})\left[1 - \frac{\mu}{2\sin^{2}\alpha_{2}}\right]}{1 + (\gamma - 1)\mu(\frac{U_{2}}{a_{0}})^{2}\left[\frac{1}{\gamma\gamma^{2}}\left(1 - \frac{\mu}{2\sin^{2}\alpha_{2}}\right) - \frac{1}{2\gamma\mu}\left(\frac{1}{\gamma\gamma^{2}} - 1\right)\right]}$$

$$I(15)$$

Diffusor Throat Area  $A_x$  if  $M_{V2} \le 1$ , and  $V_x = \xi V_2$ :

$$A_{x} k_{Bx} = \frac{\sin \alpha_{z} \left(\frac{\dot{m} \sqrt{R_{c_{1}}T_{0}}}{P_{0}}\right)}{\xi \mu \sqrt{Y} \left(\frac{U_{z}}{a_{0}}\right) \left(\frac{P_{tx}}{P_{tz}}\right) \left[1 + (Y^{-1})\mu \left(\frac{U_{z}}{a_{0}}\right)^{2} \left(1 - \frac{\xi^{2} \mu}{2 \sin^{2} d_{z}}\right)\right]^{\frac{1}{T-1}} Y^{\frac{1}{T-1}}$$

$$\overline{I} (16)$$

$$\begin{array}{c|c} \hline \textbf{LARE III SPECIFIC SPEED RELATIONS} \\ \hline \textbf{DEFINITIONS WITH REDATISENT WITTS} \\ \hline \textbf{Large Refs. 18 and 19} \\ \hline \textbf{S} \\ \hline \textbf{S} \\ = \frac{s}{n_1} \frac{s}{n$$

X, ____

X,

and

$$\frac{PRINCIPAL EQUATION obtained from Eqs. 13 and 14, and P = \frac{p}{R_G T}$$

$$\frac{dX_i = \frac{P P}{P_3 P_3} d\left(\frac{s}{R_G}\right) = \frac{C_i}{2} \left(\dot{m}_{r3}\right)^2 \left(\frac{A_3}{A}\right)^3 \frac{C dL}{A_3} = \frac{C_i}{2} \left(\dot{m}_{r3}\right)^2 d\Omega = dX_2 \qquad \overline{W} (15)$$

$$dX_{i} = \left(\frac{1}{\gamma_{p}} - 1\right) \frac{p}{p_{s}} \frac{p}{p_{s}} \frac{dp}{p} = \left(\frac{1}{\gamma_{p}} - 1\right) \frac{p}{p_{s}} d\left(\frac{p}{p_{s}}\right)$$

$$\frac{2 - 2 - (1 - 3)}{\Gamma}$$

$$\Omega_{i} = \int_{-1}^{1} \left(\frac{A_{3}}{A_{3}}\right)^{3} \frac{C dL}{A_{3}}$$

$$W (19)$$

$$\frac{dX_{i}}{Q_{i}} = \left(\frac{1}{\gamma_{p}} - 1\right) \left(\frac{p}{p_{3}}\right)$$

$$\Omega_{i} = \frac{1}{\gamma_{p}} \left(\frac{A_{3}}{A_{3}}\right)^{3} \frac{C dL}{A_{3}}$$

$$W (19)$$

 $\Omega$  will be denoted as Diffusor Shape Factor

$$\begin{pmatrix} p_{3}/p_{4} \end{pmatrix} = \int dX_{1} = \frac{\frac{1}{7r} - 1}{2 - \frac{\gamma - 1}{7r\gamma}} \begin{bmatrix} \left(\frac{p_{4}}{r^{3}}\right)^{2} - 1 \end{bmatrix}$$

$$\begin{cases} \chi_{1} = \int dX_{1} = \frac{\frac{1}{7r} - 1}{2 - \frac{\gamma - 1}{7r\gamma}} \begin{bmatrix} \left(\frac{p_{4}}{r^{3}}\right)^{2} - 1 \end{bmatrix} \\ \left(\frac{p_{4}}{r^{3}}\right)^{2} - 1 \end{bmatrix}$$
From Eq. 20
$$\begin{cases} \chi_{1} \left(\frac{\gamma + 1 - 2\zeta\gamma}{\zeta\gamma}\right) \\ \frac{\gamma + 1 - 2\zeta\gamma}{\zeta\gamma} \end{bmatrix} \\ \hline \Psi(2r) \end{cases}$$

$$\begin{cases} \chi_{1} \left(\frac{\gamma + 1 - 2\zeta\gamma}{\zeta\gamma}\right) \\ \frac{\gamma + 1 - 2\zeta\gamma}{\zeta\gamma} \end{bmatrix}$$

$$E(2r) \end{cases}$$

TABLE IV (CONTD.) METHODS OF SOLUTION

For Effective Flow Area A3 = kB3 A3 (kB3 =Blockage Factor, A3=Actual Area at Diffusor Inlet)

12 (25)

$$\frac{\dot{m}\sqrt{R_{G}T_{t3}}}{A_{3}^{*}P_{t3}} = \sqrt{\frac{2\gamma}{\gamma-1} \left[ \left(\frac{b_{3}}{P_{t3}}\right)^{\frac{\gamma}{\gamma}} - \left(\frac{b_{3}}{P_{t3}}\right)^{\frac{\gamma+1}{\gamma}} \right]} = \phi_{3}^{*} = f\left(\frac{P_{t3}}{p_{3}}, \frac{\gamma}{\gamma}\right)$$
14
14
14

From Eq.14

$$n_{ra} = \frac{m\sqrt{R_{c}T_{3}}}{A_{3}*P_{3}} = \frac{q_{3}\sqrt{(T_{3}/T_{t_{3}})}}{P_{3}/P_{t_{3}}}$$

If p3 is known,

 $\frac{T_3}{T_{t3}} = \left(\frac{P_3}{P_{t3}}\right)^{\frac{\gamma-1}{\gamma}}$ 

$$\frac{T_{V3} = V_3 / \sqrt{YR_GT_3} \text{ is known, with } c_p = R_G \frac{v}{V-1}}{T_3} = 1 + \frac{V_3}{2c_pT_3} = 1 + \frac{Y-1}{2} \frac{V_3}{YR_3T_3} = 1 + \frac{Y-1}{2} \frac{M_{V3}}{V_3} \frac{W(24)}{W(24)}$$

$$\frac{P_{t3}}{P_3} = \left[ 1 + \frac{Y - 1}{2} M_{V_3}^2 \right] \frac{Y}{Y - 1} \qquad \mathbb{E}(26)$$

Into Eq.23

$$\hat{m}_{r_{3}} = \phi_{3} \left(\frac{P_{t_{3}}}{P_{3}}\right)^{\frac{t+1}{2\gamma}} \qquad \mathbb{I}\left(27\right) \qquad \hat{m}_{r_{3}} = \phi_{3} \left[1 + \frac{\gamma_{-1}}{2} + M_{\gamma_{3}}^{2}\right]^{\frac{\gamma_{+1}}{2(t-1)}} \qquad \mathbb{I}\left(28\right)$$

For known  $\Omega_{\rm and} \ \overline{c}_{\rm f}$ , i.e. X₂ from Eq.18, and X₁ =  $\lambda_2$ , the Loss Coefficient  $\zeta$  must be obtained with an iteration to satisfy the Equation of Continuity at Diffusor Discharge. For Effective Flow Area  $A_4^* = k_{\rm B4} A_4$  (  $k_{\rm B4} =$  Blockage Factor,  $A_4 =$  Actual Diffusor Discharge Area ), since T_{t4} = T_{t3},

$$\frac{\dot{m}\sqrt{R_{G}T_{t3}}}{A_{4}*P_{t4}} = \sqrt{\frac{2\gamma}{\gamma-1}\left[\left(\frac{P_{4}}{P_{t4}}\right)^{\frac{2}{\gamma}} - \left(\frac{P_{4}}{P_{t4}}\right)^{\frac{\gamma+1}{\gamma}}\right]} = \varphi_{4} = \int \left(\frac{P_{t4}}{P_{t4}}, \gamma\right) = \varphi_{3}\frac{A_{3}}{A_{4}}*\frac{P_{t3}}{P_{t4}}$$

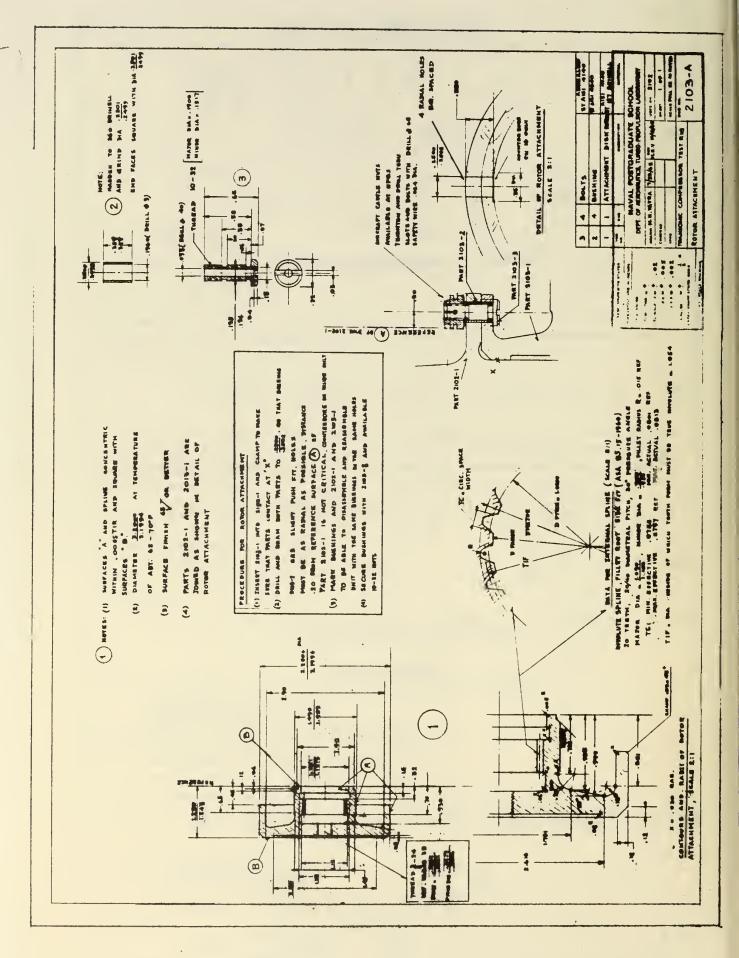
$$\mathbb{V}(29)$$

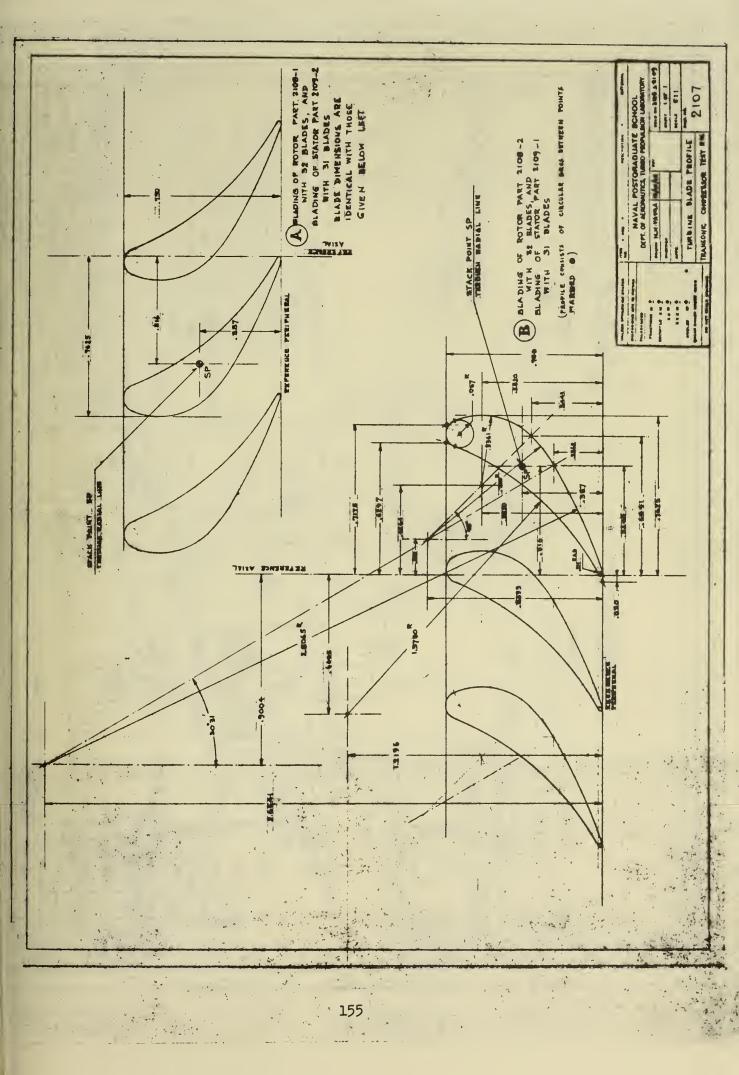
Since  $P_{t3}/P_{t4}$  is as yet unknown, it is not possible to determine  $P_{t4}/p_4$  from function  $\phi_4$  to obtain  $P_4/P_3 = (P_{t3}/P_3)/(P_{t4}/p_4)$ . Additional relation is obtained by calculating entropy increase  $\Delta s = s_4 - s_3$  for polytropic process from  $P_3$  to  $P_4$  with Eq.11, and for  $T_t = \text{constant from } P_{t3}$  to  $P_{t4}$  with Eq.5. For Polytropic Process:

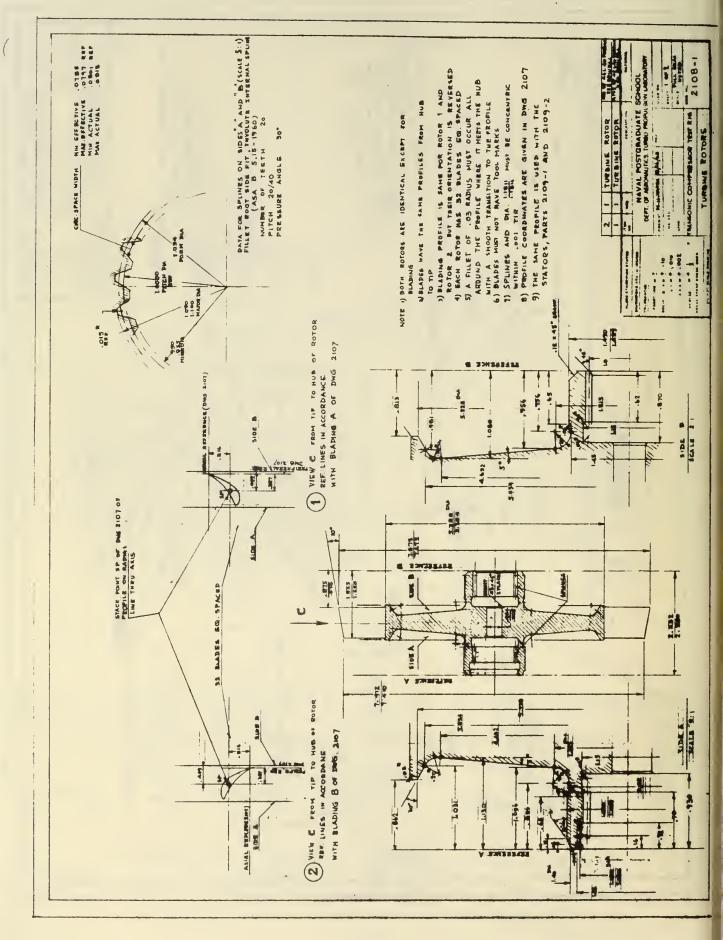
$$\frac{\Delta S}{R_G} = \frac{5}{1-\zeta} \ln\left(\frac{P_4}{P_5}\right) = \ln\left[\left(\frac{P_4}{P_5}\right)^{\frac{5}{1-\zeta}}\right] \mathbb{I}(30) = \frac{\Delta S}{R_G} = -\ln\left[\frac{P_{t3}}{P_{t3}}\right] = \ln\left[\frac{P_{t3}}{P_{t4}}\right] = \ln\left[\frac{P_{t3}}{P_{t4}}\right]$$

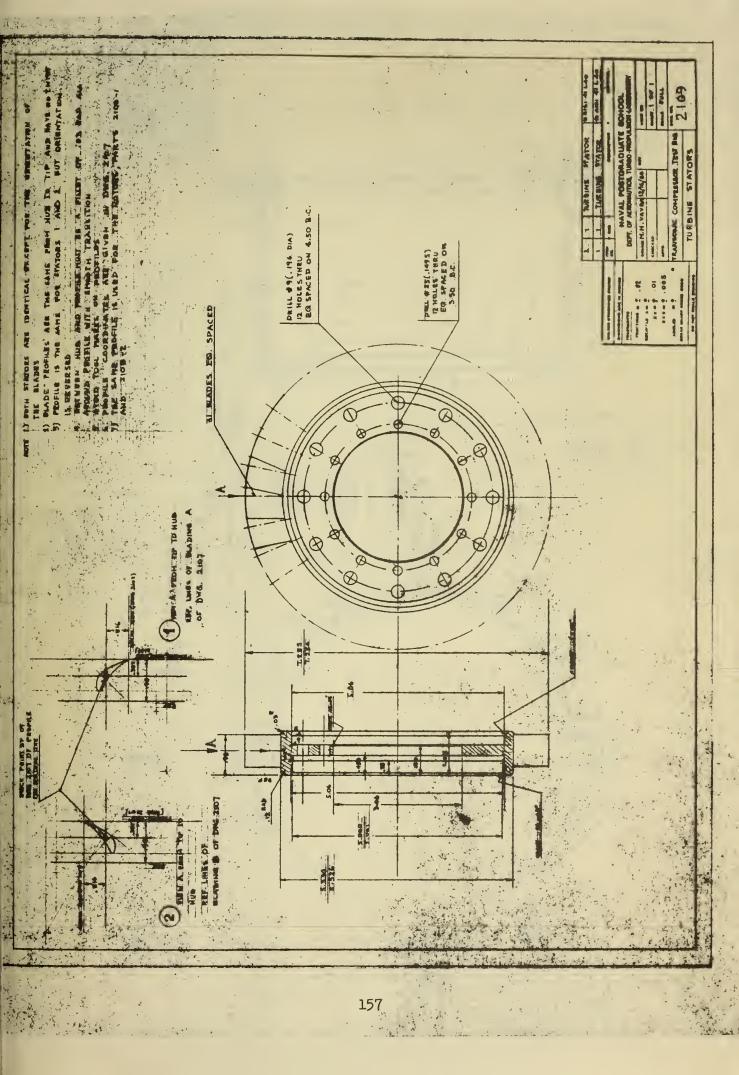
Equating Eqs. 30 and 31

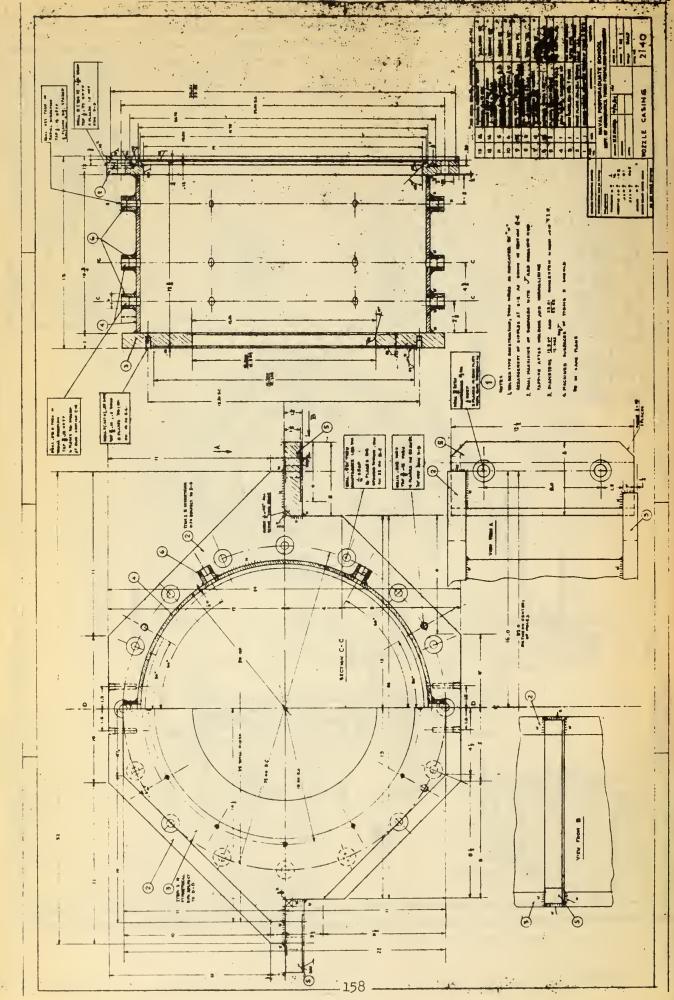
With Eq.33


$$\frac{P_{\pm 4}}{p_{4}} = \left(\frac{P_{\pm 3}}{P_{\pm 3}}\right)\left(\frac{P_{\pm 3}}{p_{3}}\right)\left(\frac{p_{3}}{p_{4}}\right) = \frac{\left(\frac{P_{\pm 3}}{p_{4}}\right)\left(\frac{p_{4}}{p_{4}}\right)}{\left(\frac{P_{\pm 3}}{P_{\pm 4}}\right)\left(\frac{p_{4}}{p_{4}}\right)} = \frac{\left(\frac{P_{\pm 3}}{p_{3}}\right)^{\frac{1}{1-5}}}{\left(\frac{p_{4}}{p_{5}}\right)^{\frac{1}{1-5}}}$$
IT (34)

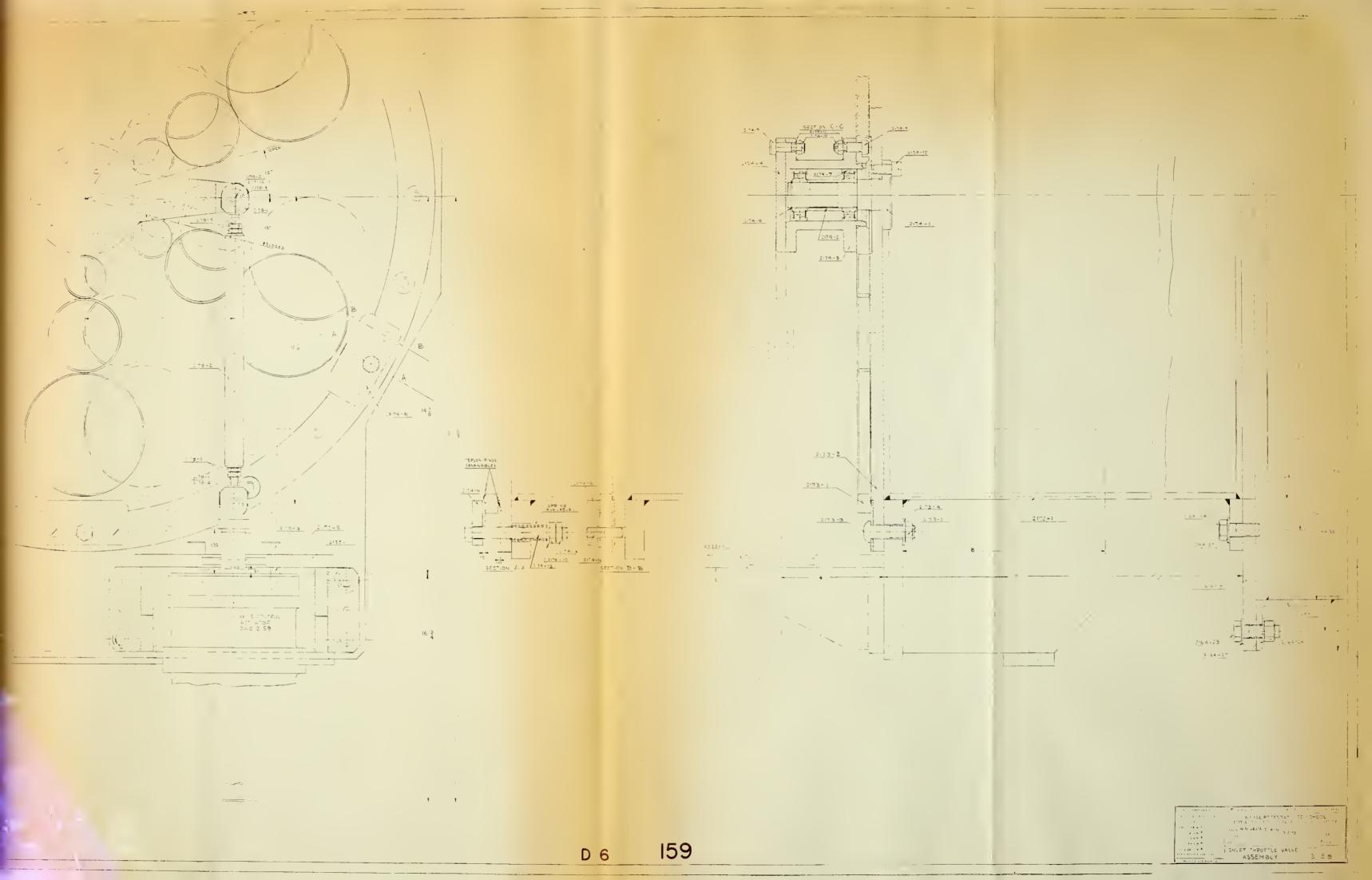

1) For given values of 
$$\Omega$$
 and  $\overline{c}_f$  calculate  $X_2$  from Eq.18 with Eq.27 or 28.  $X_1 = X_2$   
2) Choose initial value of G


(3) Calculate  $P_{4}/P_{3} = P_{4}'/P_{3}$  by Eq.21 for  $X_{1}$  and  $\zeta$ (4) Calculate  $P_{t3}/P_{t4} = P_{t3}/P_{t4}'$  from Eq.33 for  $P_{4}'/P_{3}$ (5) Calculate  $\phi_{4}' = \phi_{3}(A_{3}^{*}/A_{4}^{*})(P_{t3}/P_{t4}')$  (Eq.29) (6) Calculate  $P_{t4}'/P_{4}'$  from Eq.34 for  $P_{4}'/P_{3}$ (7) Calculate  $\phi_{4} = \phi_{4}''$  from Flow Function (Eq. 29) for  $P_{t4}/P_{4} = P_{t4}'/P_{4}'$ Change Value of  $\zeta$  No  $\phi_{4}'' = \phi_{4}''$  Yes  $\zeta_{j}(P_{4}/P_{3}) = (P_{4}''/P_{3}) \cdot (P_{t4}/P_{t3}) \cdot (P_{t4}'/P_{t3}) \cdot (P_{t4}'/P_{t3$ 

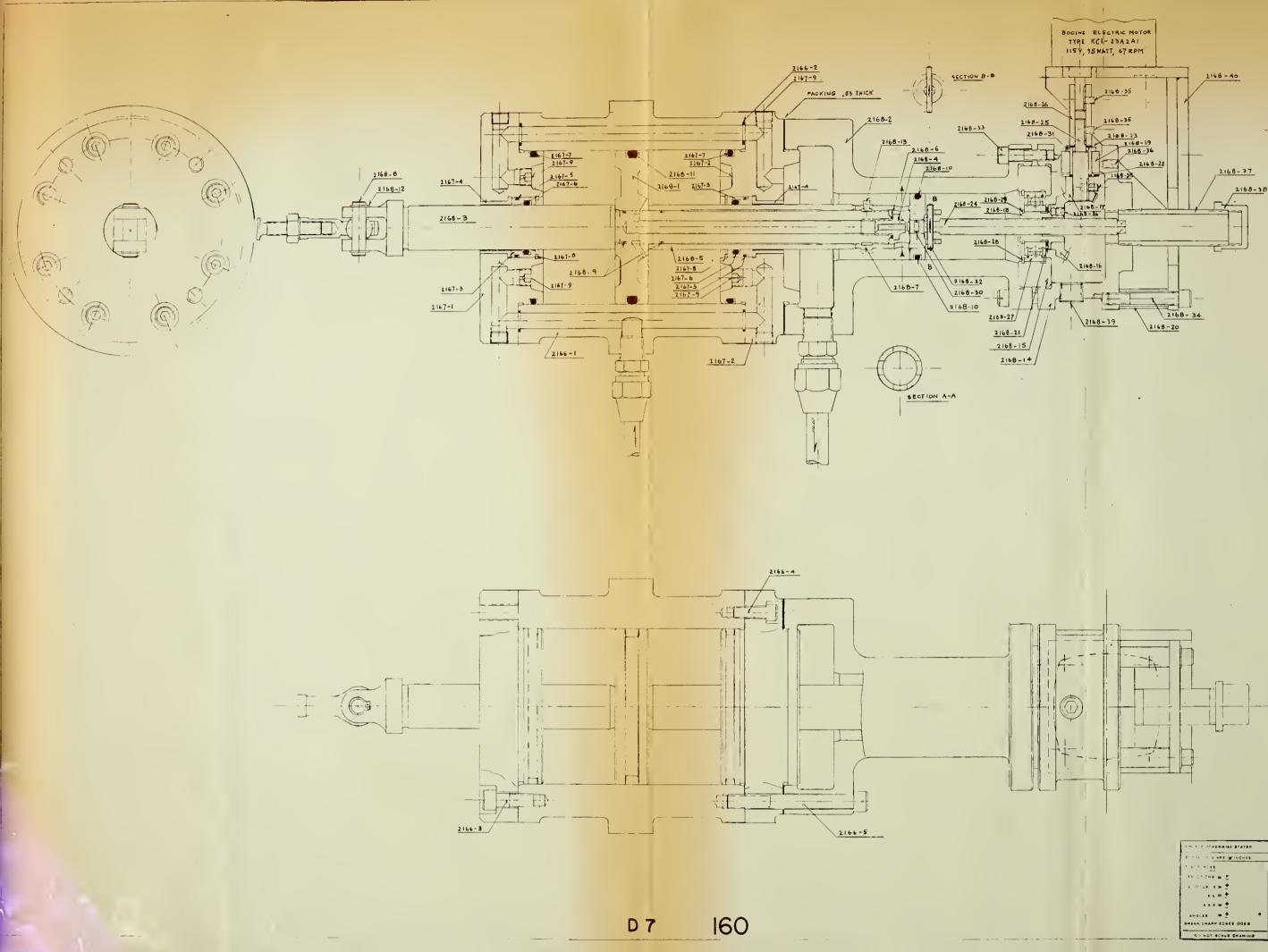

 $\frac{\text{Diffusor Efficiency } T_{D3-4}}{\gamma_{D3-4}} \stackrel{\text{between Stations (3) and (4)}}{=} \frac{T_4 \cdot - T_3}{T_4 - T_3} = \frac{T_4 \cdot / T_3 - 1}{T_4 / T_3 - 1} = \frac{(p_4/p_3) \cdot r_{-1}}{T_4 / T_3 - 1}$ With Eq.8  $\frac{\gamma_{D3-4}}{\gamma_{D3-4}} = \frac{(p_4/p_3) \cdot \frac{r_{-1}}{r_{-1}}}{(p_4/p_3) \cdot \frac{r_{-1}}{r_{-1}}} < (1 - \zeta)$ If (35)


## APPENDIX B: MANUFACTURING DRAWINGS



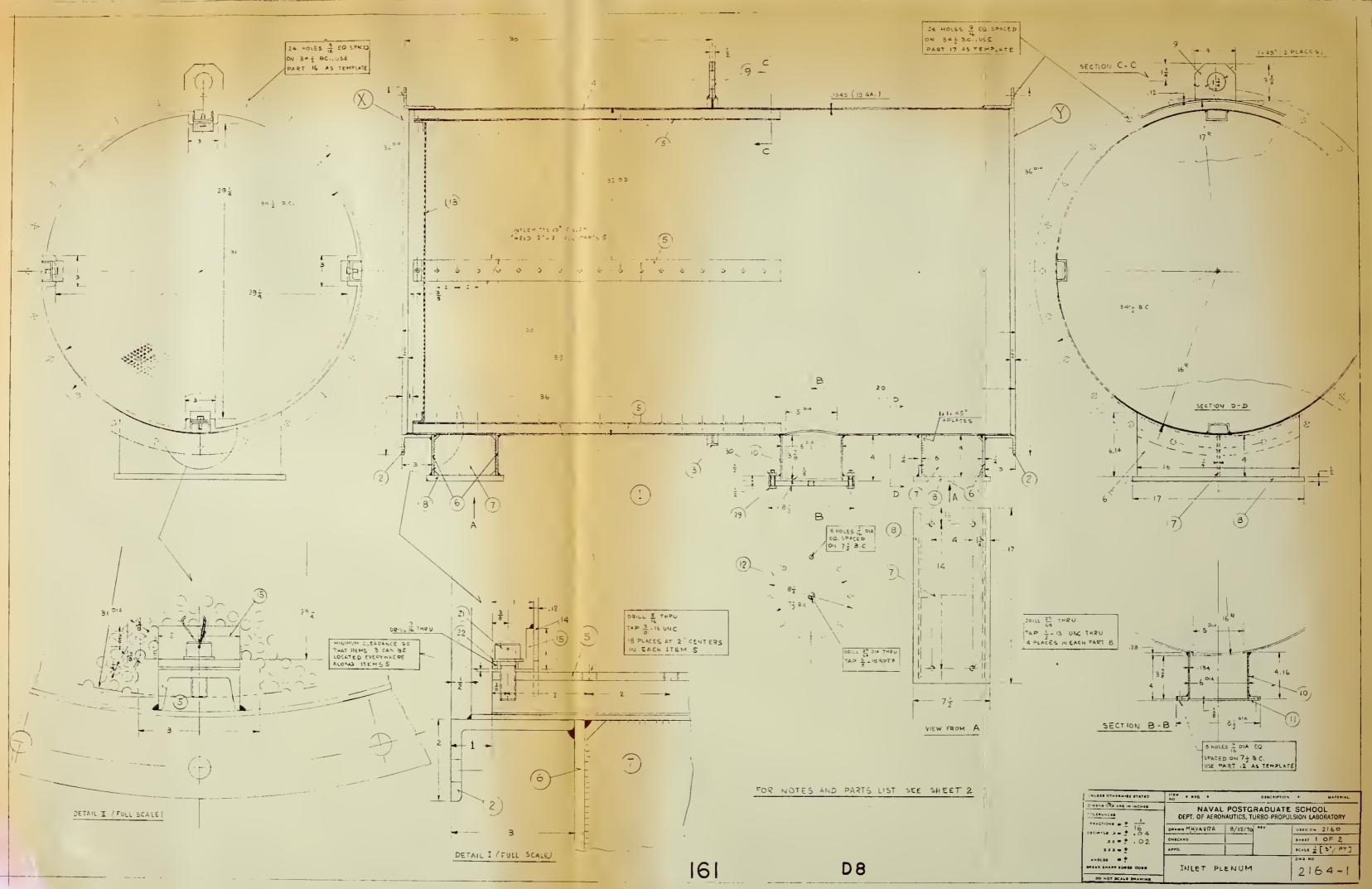




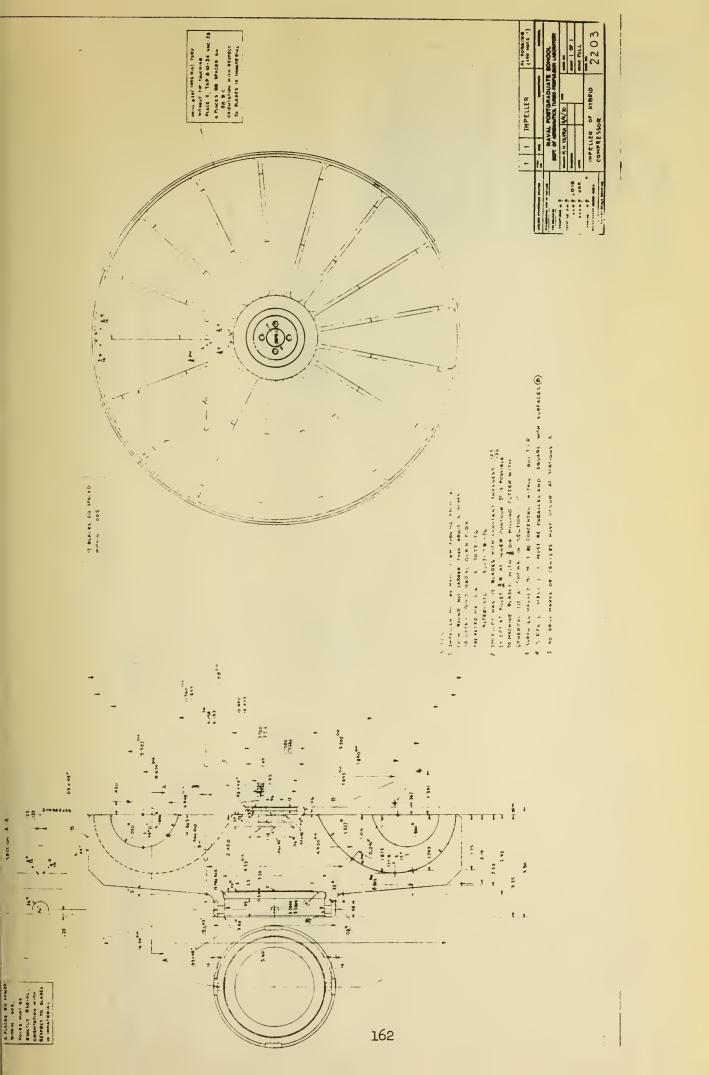



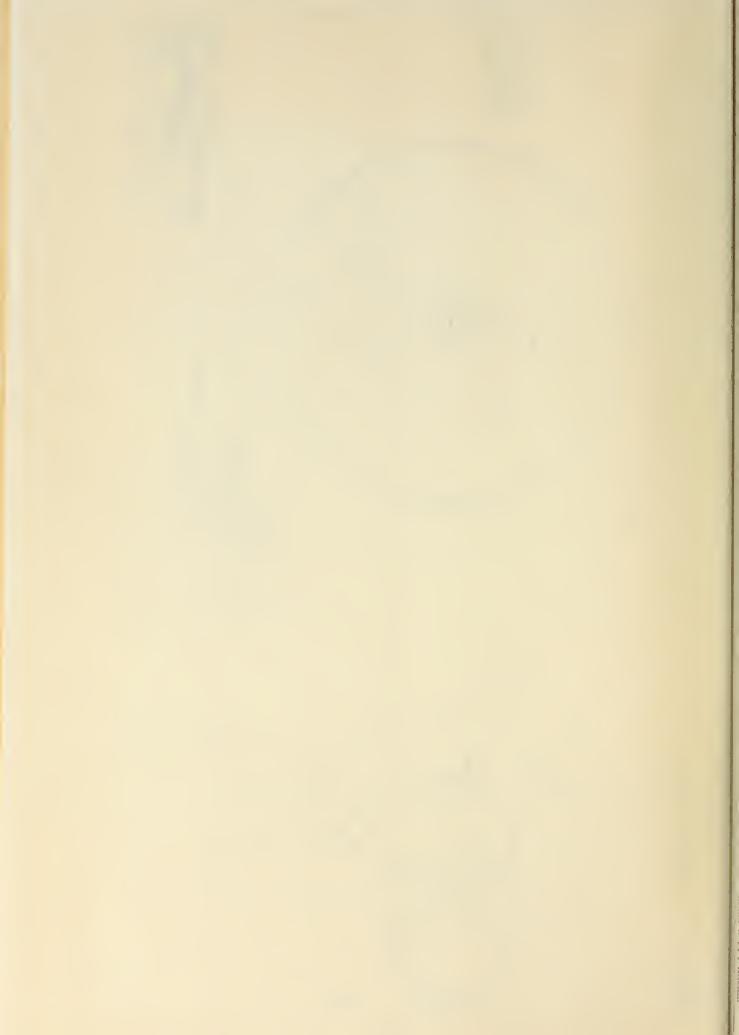


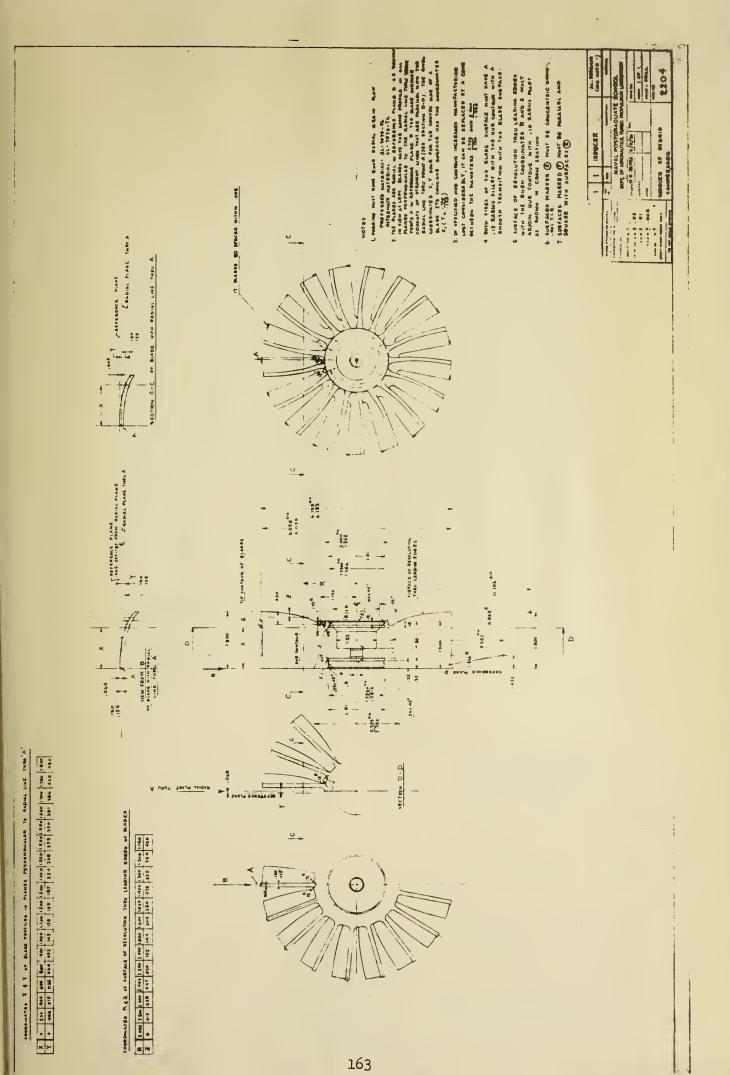

. Ф. 1



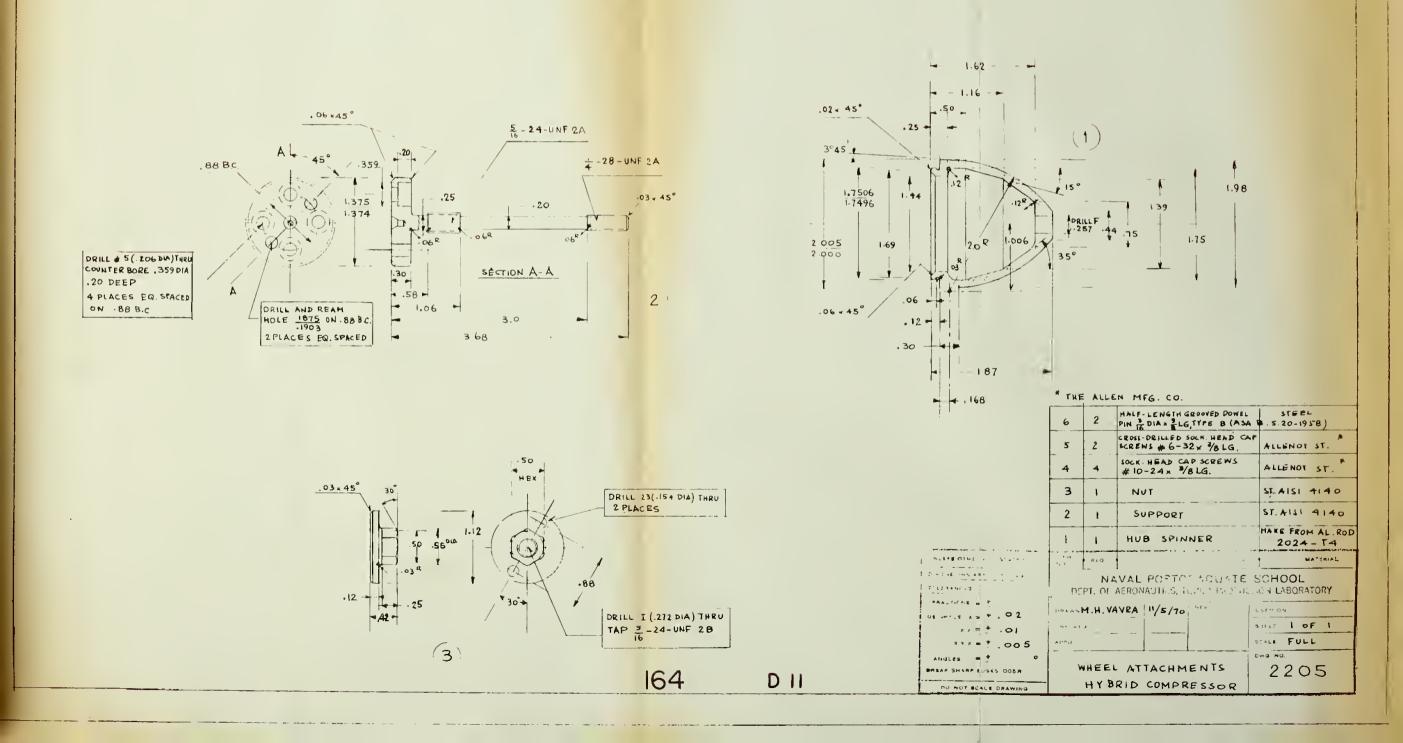


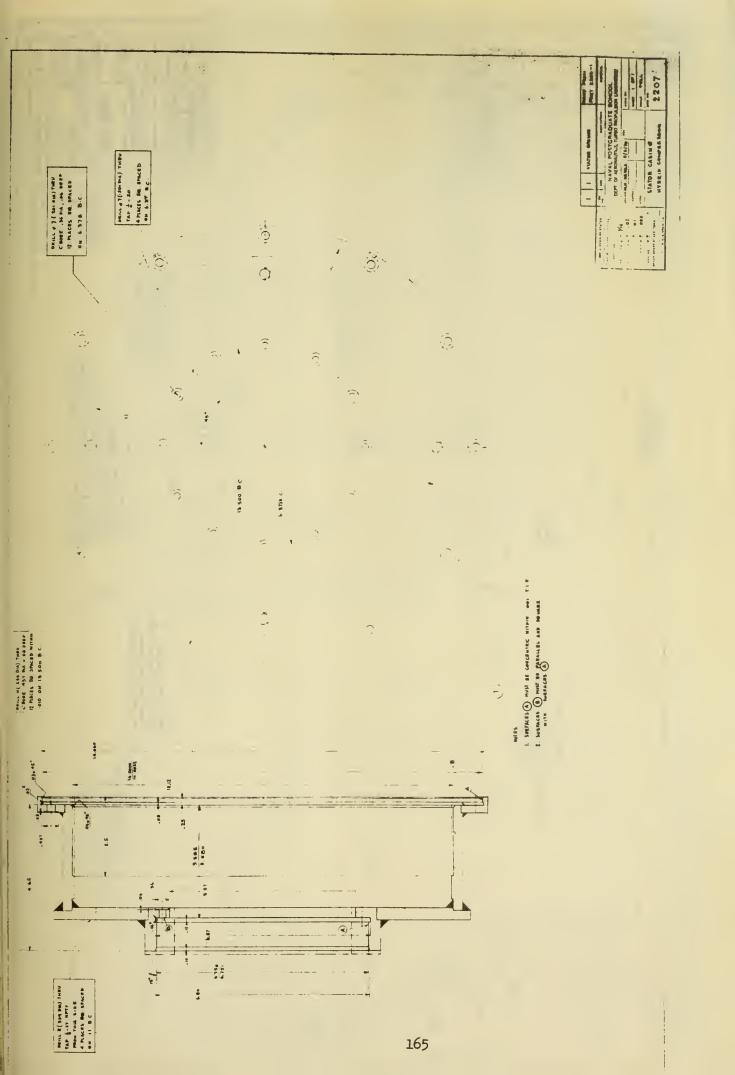


	THE T P DIREAMSE STATED	HTEN P ALQ 4	OES, IPTICH	- watening		
	C THE S DARE WINCHES		NAVAL POSTGRADUATE SCHO DEPT. OF AERONAUTICS, TURBO PROPULSION LA			
	KS 17/28 ± ± + ///\\$ x= ±	OPANN M H VAVRA	5/14/70 ***	USED ON 2158		
	± k ≈ ‡	CHECKED		BHEET I OF 1		
		A770		SCALS PULL		
	ANGLES	TRANSONIC COM	2150			
	NO NOT SCALS CRAWING					

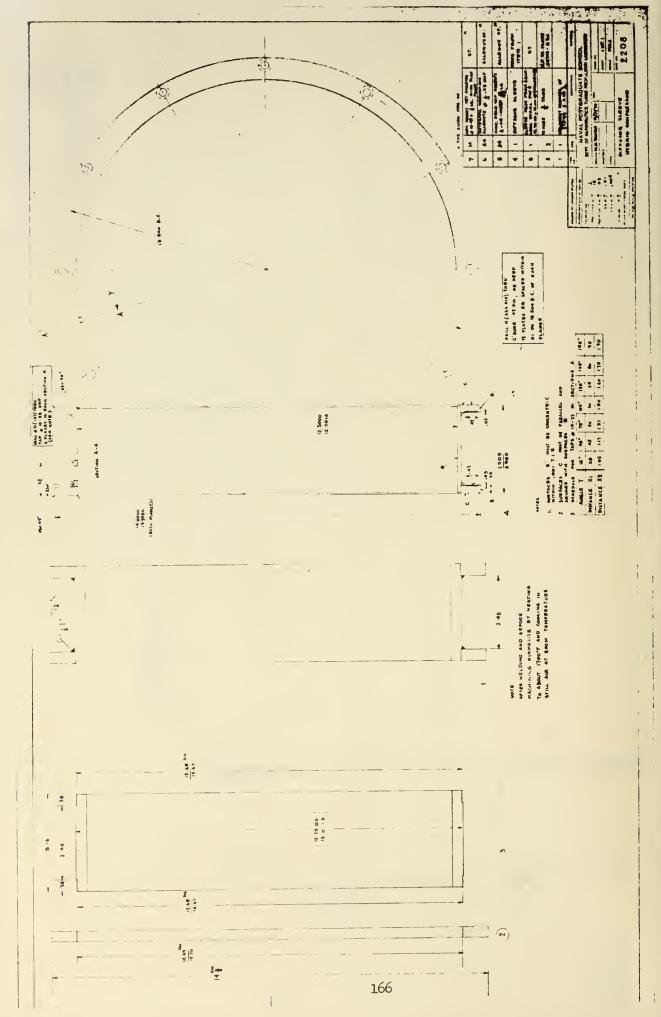


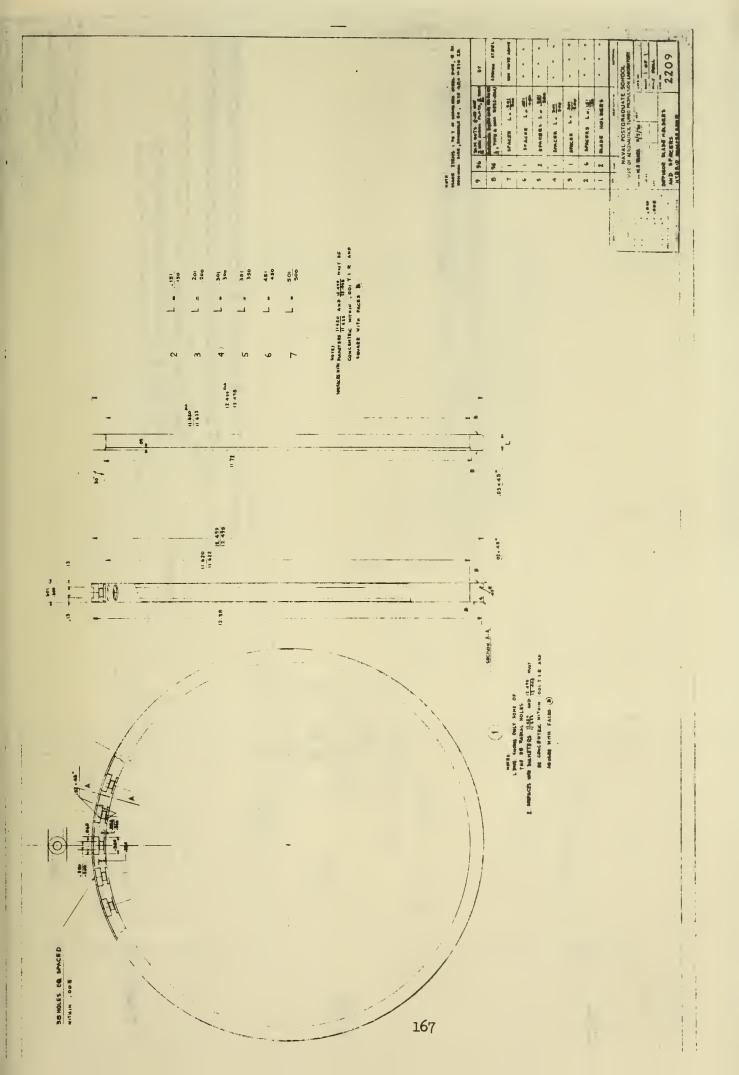


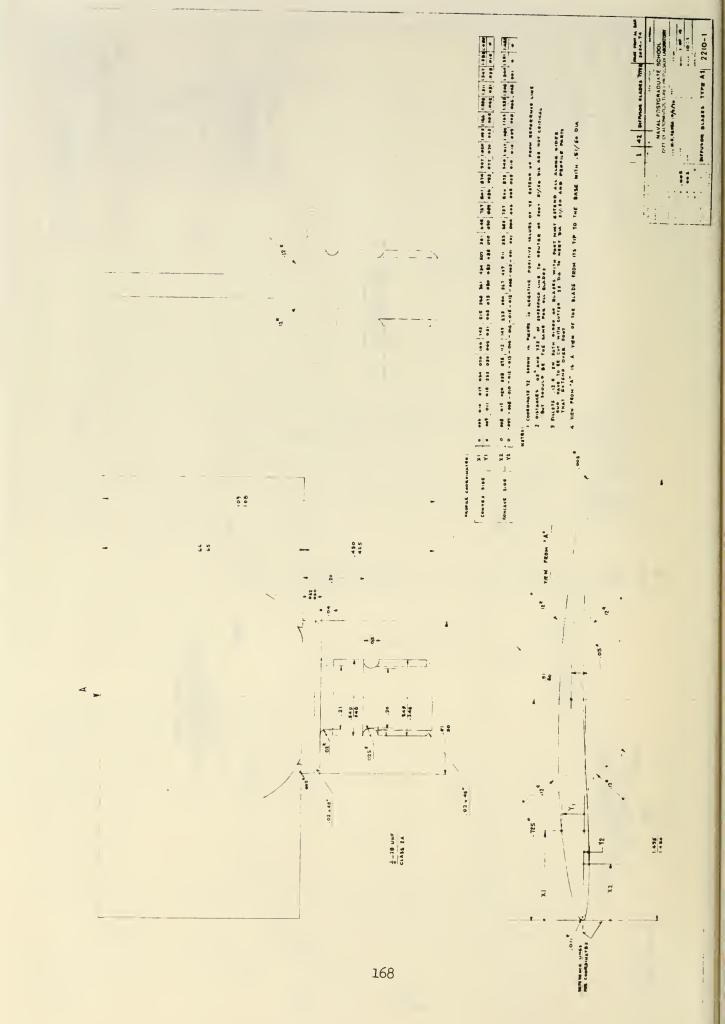



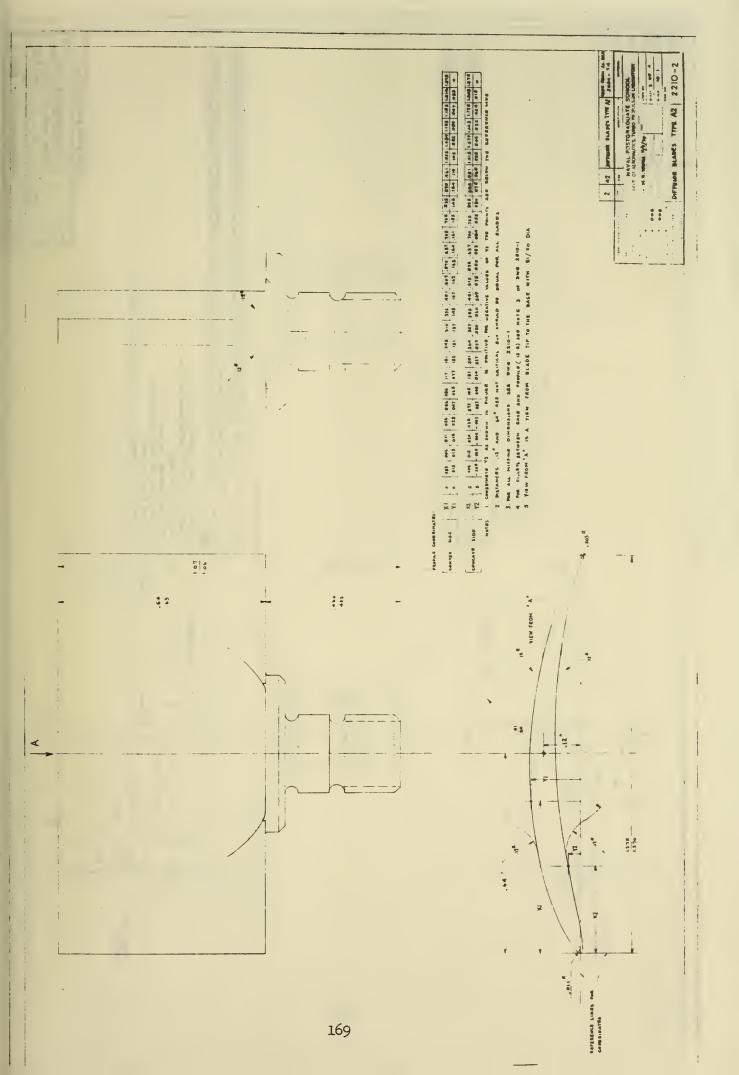


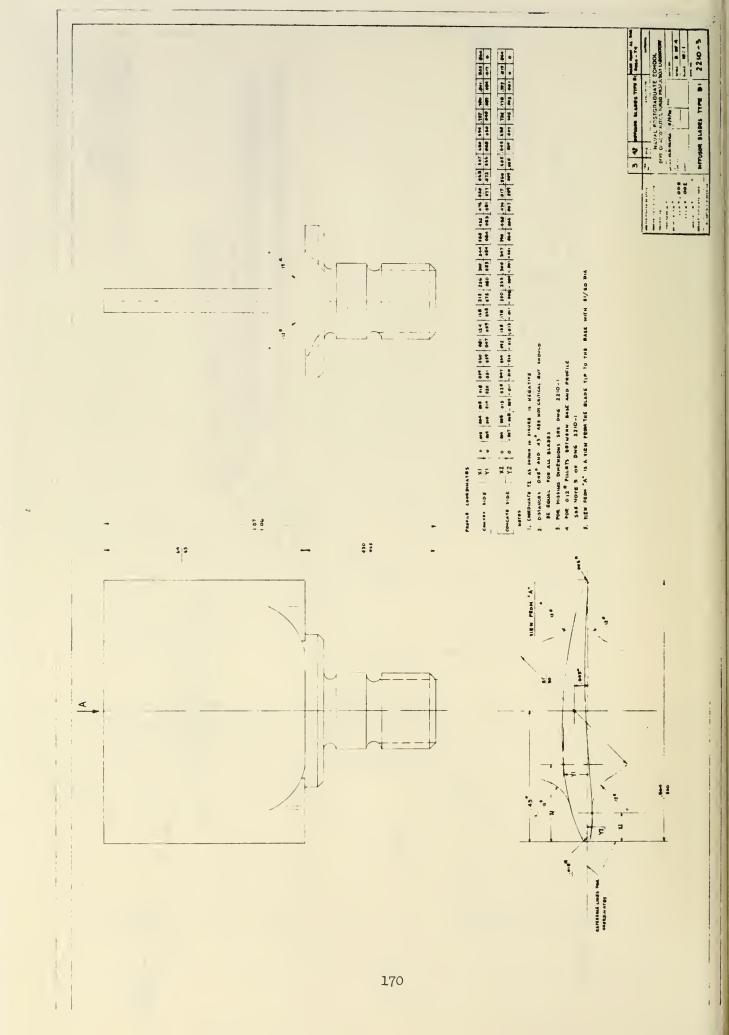



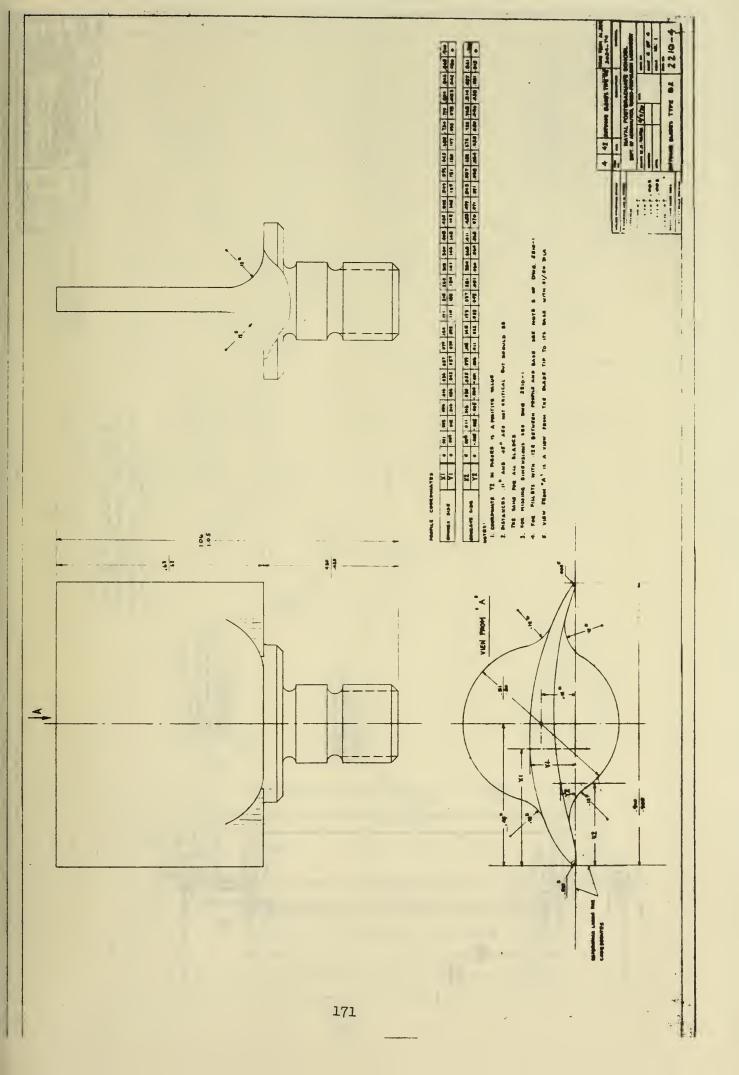



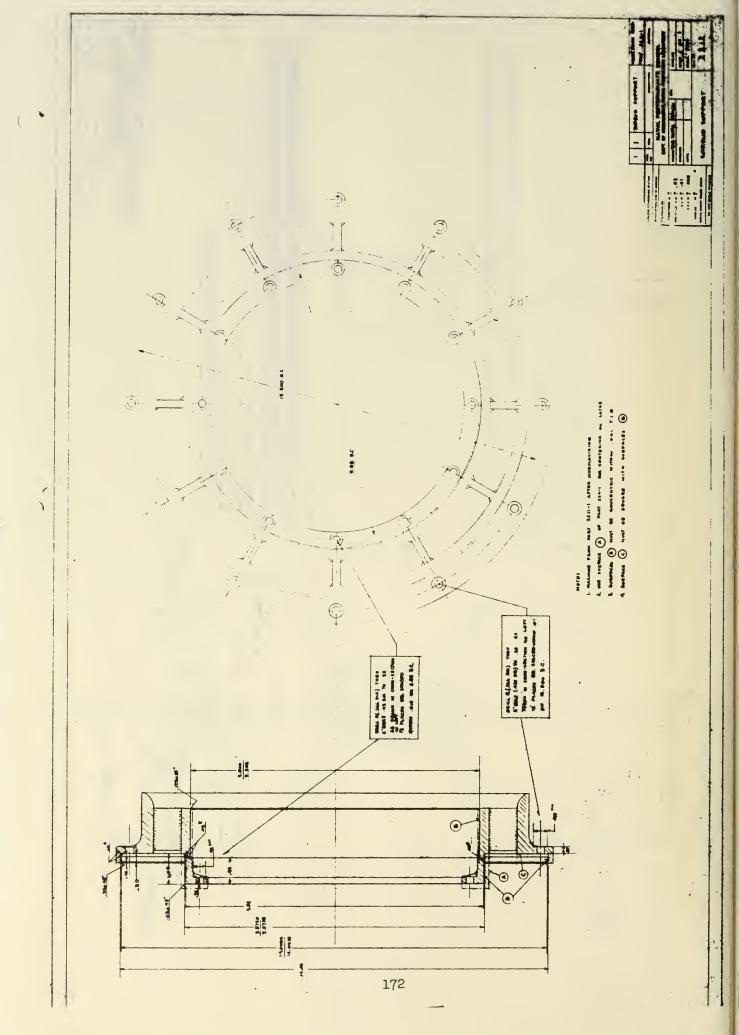



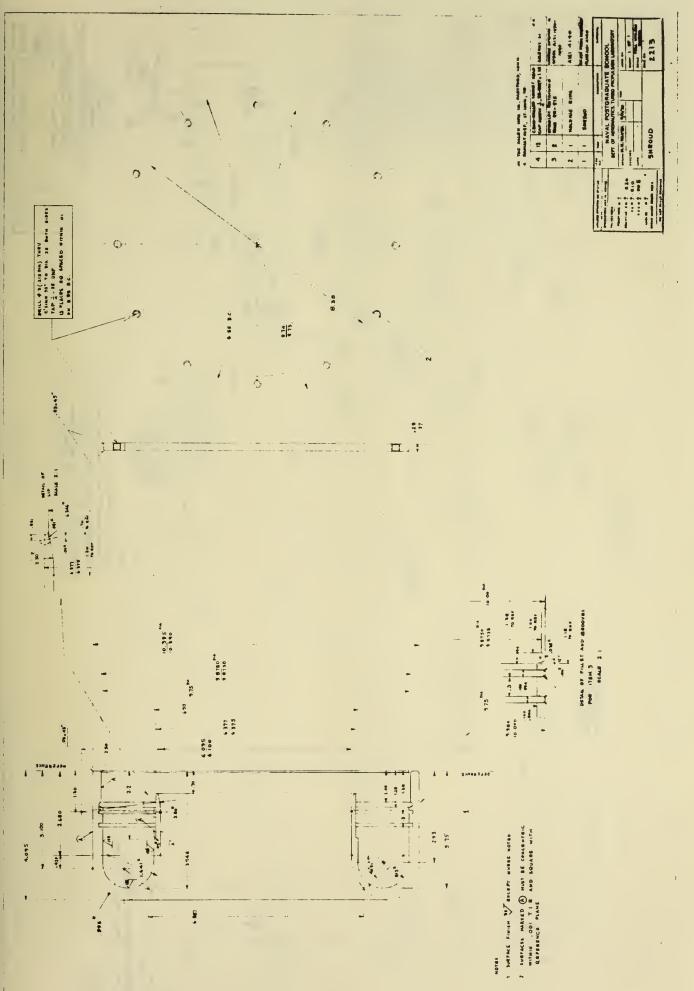



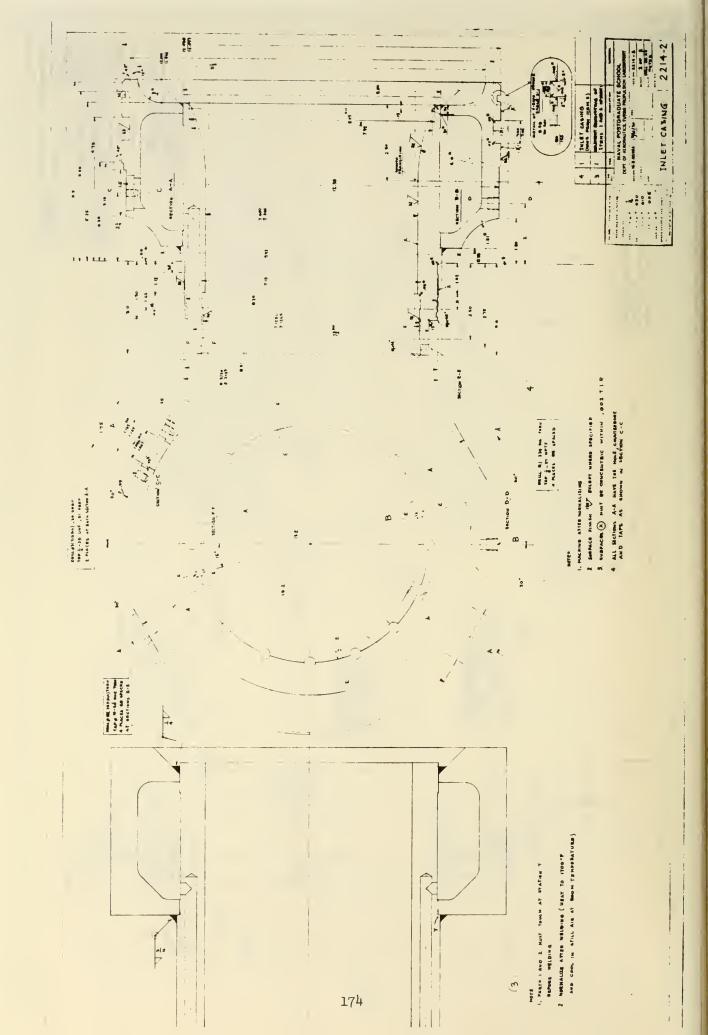



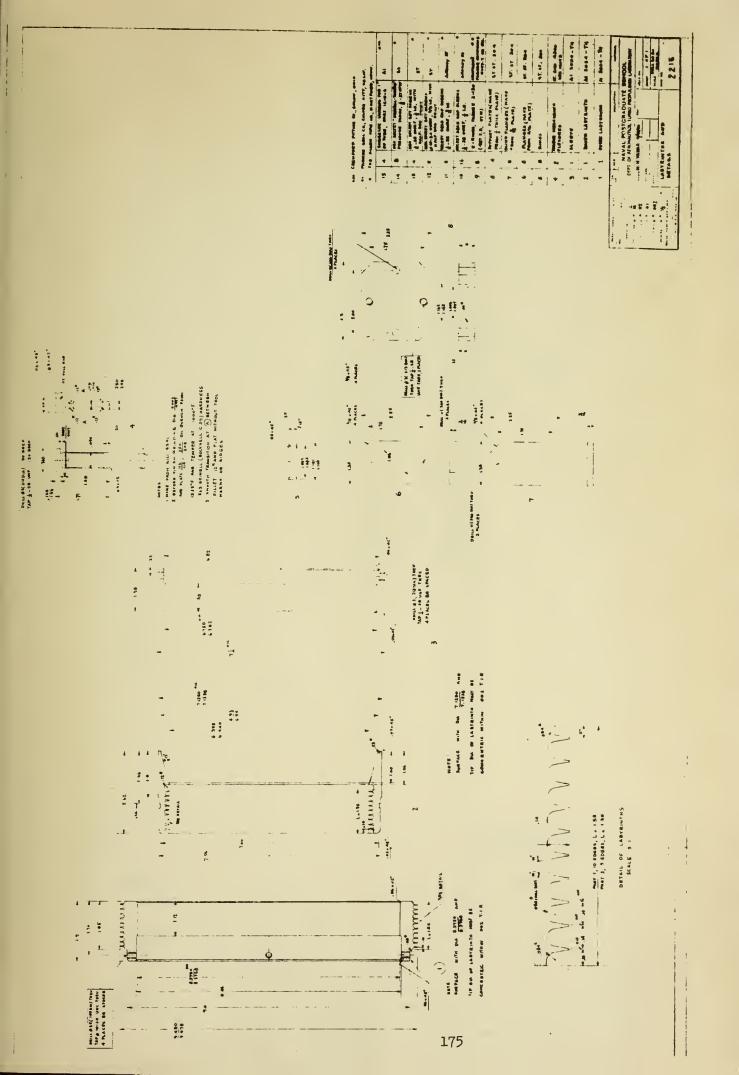



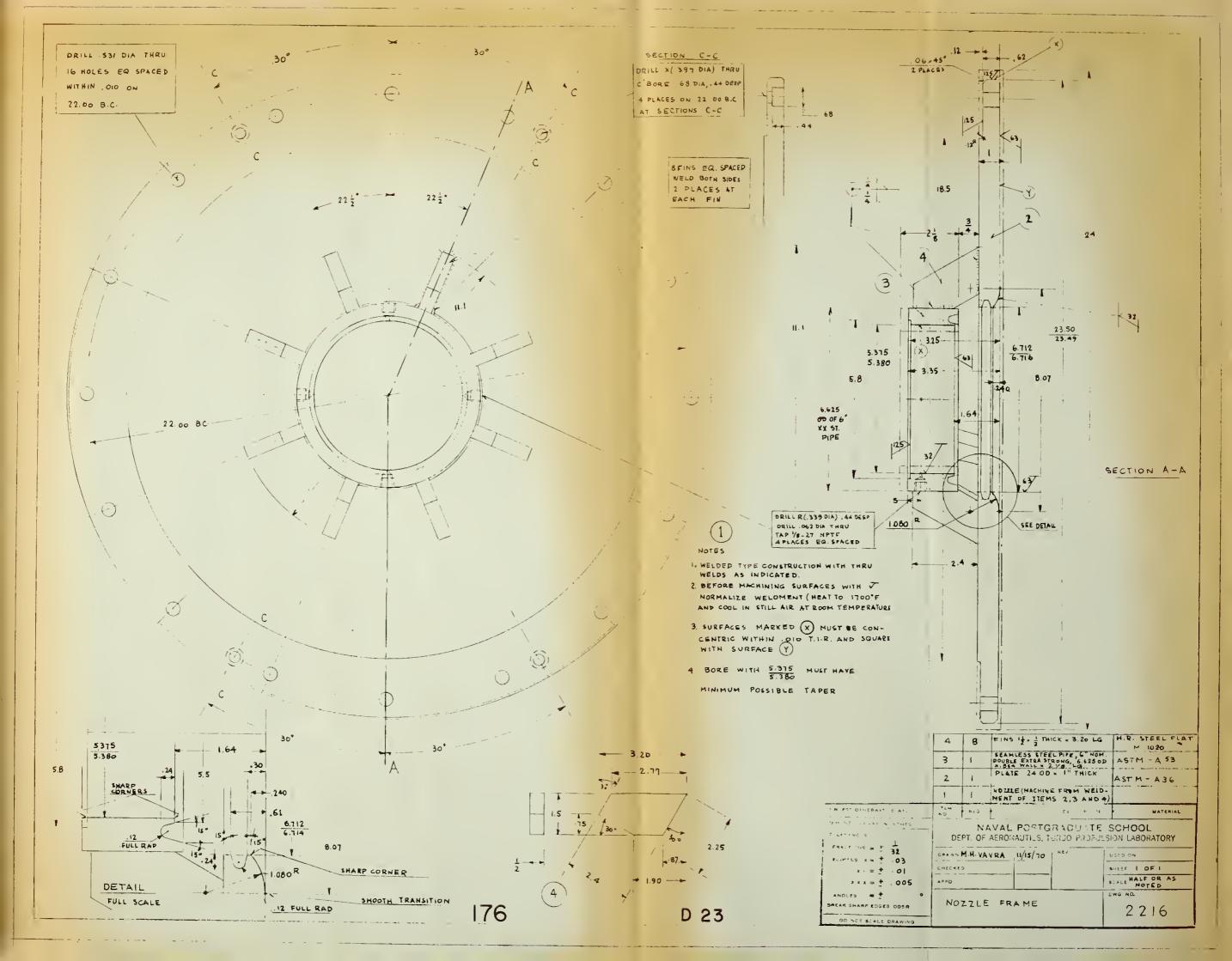





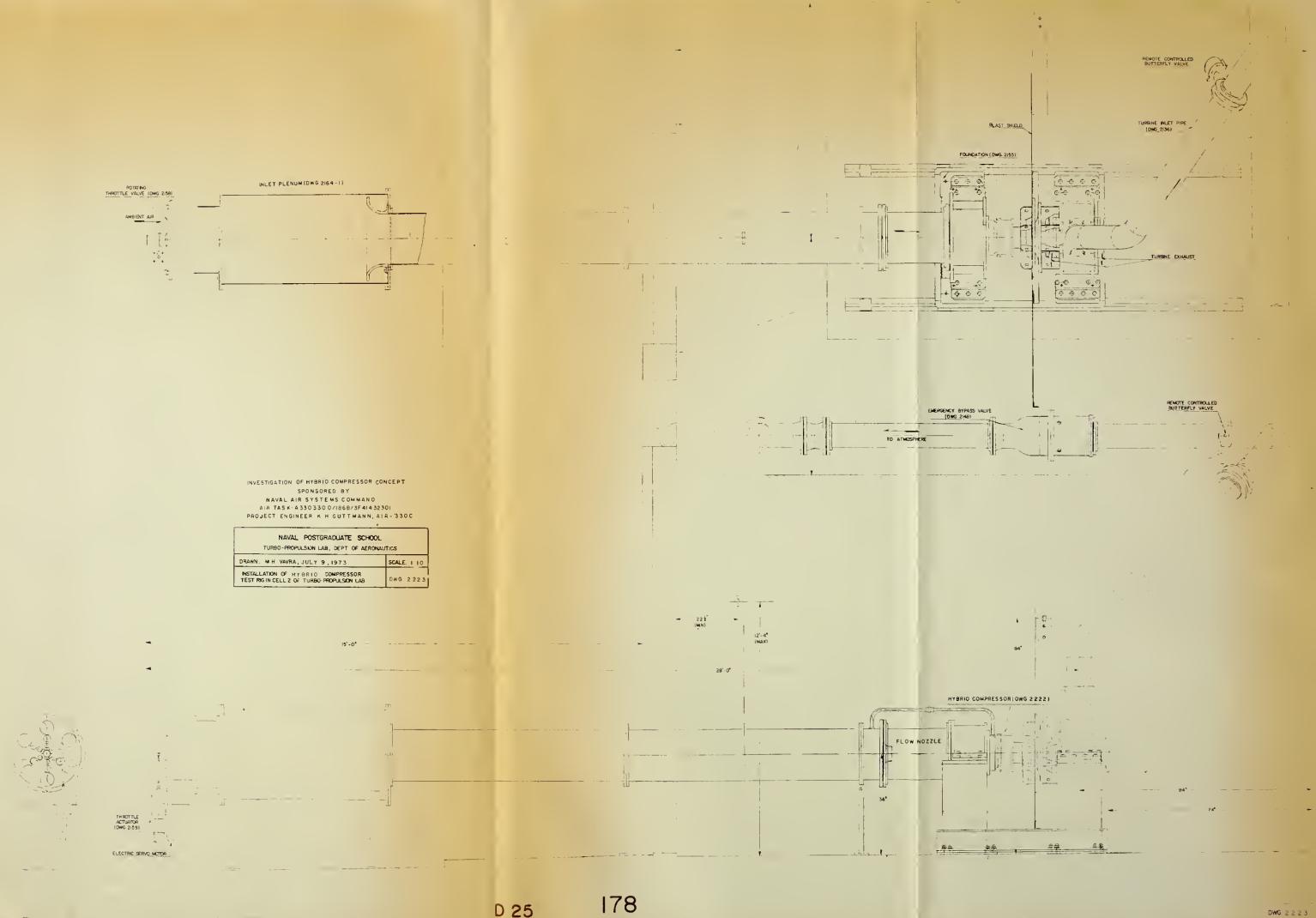





.
















D 25

DWG 2223



## APPENDIX C

## LOSSES IN RADIAL COMPRESSOR WHEELS

The flows in rotors of radial machines are greatly influenced by Coriolis and centripetal accelerations and are difficult to analyze even if viscous effects are ignored. The prediction of the losses in radial impellers constitutes an even more difficult task because of the complex three-dimensional nature of the real flow through such wheels which makes it impossible to apply conventional boundary layer theories or to use loss data for stationary channels or diffusors. At off-design operating conditions the prediction of the flow losses with theoretical means is nearly impossible because of local flow separations that occur in the wheels.

A more detailed discussion on losses in impellers of centrifugal compressors is given in paragraph 5 of Appendix A which also emphasizes the need for more and better experimental data. At present only a limited amount of such data is available in the open literature, for instance in Ref. 2 and Ref. 10. Although not directly applicable to the special rotor of the Hybrid compressor the test data of these references are evaluated in the following to obtain indications how the rotor losses are influenced by the different design parameters.

Reference 10 will be discussed first because it gives the losses in a particular rotor with specified dimensions which is shown in Fig. 12. Hence its pertinent geometrical characteristics are:

$$R_{10}/R_2 = 0.541$$
  
 $R_{11}/R_2 = 0.287$   
 $b_2/R_2 = 0.078$ 

The blade angle at  $R_{10}$  is given as 57°.

Figure 13 shows the so-called polytropic impeller efficiency  $\Pi_{\rm RP}$ , which is defined in Ref. 11, as a function of  $\beta_{\rm lo}$ , U₂/a₀ and the Mach number M_{W1} of the relative velocity W₁₀ at the inducer tip radius R₁₀. Figure 13 is an exact reproduction of Fig. 4 of Ref. 10, but with the symbols of this report. The dashed parts of the curves for  $\Pi_{\rm RP}$  = constant are extrapolations by the writer. It is noticeable from Fig. 13 that the best rotor performance is obtained for positive incidence angles of about 9° if blockage because of the blade thickness is ignored. Reference 10 states that the inducer blades have a parabolic mean camber line and that their thickness is about 3% of the arc length of the camber line. Figure 14 gives the relations to determine the arc length m of a parabolic blade with axial length L and inlet blade angle  $\beta_{\rm B}$ . From Fig. 12 there is L = 19.5 mm, and for  $\beta_{\rm B} = 57^{\circ}$ , m = 21.51 mm. Hence the blade thickness t is equal to (0.03) (21.51) = 0.64 mm. In accordance with Eqs. 7 and 8, the flow angle  $\beta_{\rm lo}'$  of Fig. 3b is

$$\tan \beta_{10}' = \tan \beta_{10} \left( \frac{s}{s - t/\cos \beta_{B}} \right)$$
 C(1)

For 20 rotor blades, and with the dimensions of Fig. 12,

s =  $\pi(97.4)/20$  = 15.30 mm t = 0.64 mm,  $\beta_B = 57^{\circ}$ , tan  $\beta_{10}'$  = tan  $\beta_{10}$  (0.923)

and for

In Fig. 13 the angles  $\beta_{10}$ ' of this relation are shown on a special horizontal scale that is labeled  $\beta_{10}$ '. Hence if the blockage due to the thickness of the blades is taken into account, the optimum incidence angle i' defined by Fig. 3b is still about  $+7^{\circ}$ , which is at variance with

the findings of Ref. 2 (see Fig. 24) where it is shown that incidence angles of about zero at the inducer inlet give the best rotor performance. The same conclusion is made in Ref. 12 on the basis of past experience.

The parametric curves  $M_{\rm Wl}$  = constant of Fig. 13 were transposed from Fig. 4 of Ref. 10 also. In the following it will be shown that these curves give data that are redundant since  $M_{\rm Wl}$  is known if  $U_2/a_0$ ,  $\beta_{\rm lo}$ , and  $R_{\rm lo}/R_2$  are known. Reference 10 defines  $M_{\rm Wl}$  as the Mach number of the relative velocity  $W_{\rm lo}$  at  $R_{\rm lo}$ . Independent of whether the absolute velocity  $V_{\rm l}$  at the inducer inlet is constant or changing along the radius  $R_{\rm l}$ ,

$$M_{Wl} = \frac{W_{lo}}{a_l} = \frac{\omega R_{lo}}{\sin \beta_{lo}} = \frac{U_2}{R_2} R_{lo} \frac{1}{\sin \beta_{lo}} C(2)$$

The quantity  $a_1$  is the velocity of sound of the flow at  $R_{10}$  where the static temperature is  $T_{10}$ . Now, with

$$M_{Vl} = \frac{V_{lo}}{a_l} = \frac{W_{lo} \cos \beta_{lo}}{a_l} = M_{Wl} \cos \beta_{lo}$$

and

$$\frac{a_{0}}{a_{1}} = \sqrt{\frac{T_{0}}{T_{10}}} = \left[1 + \frac{\gamma - 1}{2} M_{V1}^{2}\right]^{\frac{1}{2}}$$

there is

$$M_{Wl} = \frac{U_2}{a_0} \frac{R_{lo}}{R_2} \frac{1}{\sin \beta_{lo}} \left[ 1 + \frac{\gamma - 1}{2} M_{Wl}^2 \cos^2 \beta_{lo} \right]^{\frac{1}{2}}$$

and

$$M_{W1} = \frac{(U_2/a_0) (R_{10}/R_2)}{\left[\sin^2 \beta_{10} - \frac{\gamma - 1}{2} \cos^2 \beta_{10} (U_2/a_0)^2 (R_{10}/R_2)^2\right]^{\frac{1}{2}}}$$
 (3)

This relation could have been derived directly from Eq. A II(4) but it has been developed here to show that it holds for arbitrary distributions of  $V_1$  vs.  $R_1$  and not only for uniform inlet velocities ahead of the rotor. Equation C(3) can be modified to obtain the angle  $\beta_{10}$  as a function of  $U_2/a_0$  and  $M_{W1}$ , or

$$\sin \beta_{10} = (U_2/a_0) (R_{10}/R_2) \sqrt{\frac{1/M_{W1}^2 + \frac{\gamma - 1}{2}}{1 + \frac{\gamma - 1}{2} (U_2/a_0)^2 (R_{10}/R_2)^2}} C(4)$$

At point A of Fig. 13 the curve  $M_{Wl} = 0.6$  intersects the line  $U_2/a_0 = 0.9$  at an angle  $\beta_{10}$  of 66.5°, giving i = 66.5 - 57 = 9.5°. However for  $R_{10}/R_2 = 0.541$  of the rotor of Fig. 12,  $U_2/a_0 = 0.9$ ,  $M_{Wl} = 0.6$ , and  $\gamma = 1.4$ , Eq. C(4) gives a flow angle

 $\beta_{10} = 55.2^{\circ}$ 

so that the incidence angle without blockage is  $-1.8^{\circ}$  instead of  $+9.5^{\circ}$ . Figure 15 has been obtained by calculating the angles  $\beta_{10} = \beta_{10}^{*}$  from Eq. C(4) with the values of  $U_2/a_0$  along the curves  $M_{W1} = \text{constant of}$ Fig. 13 that pertain to particular efficiencies  $\eta_{RP}$ . Through the points thus obtained, which are marked by circles in Fig. 15, a new set of curves  $\eta_{RP} = \text{constant}$  has been drawn. In Eq. C(4) the value of  $R_{10}/R_2$ has been taken as 0.541 in accordance with the rotor dimensions of Fig. 12. Figure 15 shows that the incidence angles are greatly reduced and that their values for optimum efficiencies become smaller with increasing ratios  $U_2/a_0$ .

If Fig. 15 is correct; that is, if the relationship between  $M_{\rm WI}$  ,  $U_2/a_0$ , and  $\eta_{\rm RP}$  in Fig. 13 is valid, but if the flow angles  $\beta_{\rm lo}$  given in this figure are in error, the resulting incidence angles are more in line with experience. Then the argumentation in Ref. 10 based on its Fig. 5, which is presented as Fig. 16 in this report, namely, that positive incidence angles are necessary to obtain favorable velocity distributions along the inducer blades, would be without substance. The curves of Fig. 16 were obtained theoretically by neglecting blade thickness, compressibility and friction. It is very doubtful, however, whether velocity distributions similar to those shown in Fig. 16 occur along the actual inducer blades, not only because effects of blade thickness and leading edge shape were ignored, but primarily because the inducer was treated as a stationary cascade whose flow is not influenced by the impeller downstream of it. Hence no account is taken of Coriolis and centripetal accelerations and the fact that the inducer and impeller blades adjoin at the inducer discharge and form continuous blade surfaces from rotor inlet to rotor discharge. Hence at the station where the inducer and impeller blades join, the velocities on either side of a blade will differ and not be equal as Fig. 16 shows.

It will be tried to support the relationship presented in Fig. 15 by additional data of Ref. 10, namely, those given by its Fig. 3 which are presented here in Fig. 17. This figure shows the polytropic efficiency of the rotor of Fig. 12 at  $U_2/a_0 = 0.83$  for three different diffusors.

183

It is evident from Fig. 18 that the rotor performance is almost independent of the diffusor configurations, although the latter influences the range of operation of the compressor.

The rotor efficiencies of Fig. 17 are given as functions of the flow coefficient  $\phi_1$  , defined by

$$\varphi_{1} = \frac{Q_{1}}{U_{2} R_{2}^{2}}$$
 C(5)

where  $Q_1$  is the volume flow rate at the inducer inlet. Because of the curved walls of the inlet duct ahead of the inducer of Fig. 12 the absolute velocity  $V_1$  will vary from the inner radius  $R_{1i}$  to the outer radius  $R_{1o}$  of the inlet eye. Let  $\overline{V}_1$  be the average velocity at the inducer inlet such that

$$Q_{1} = A_{1} k_{B1} \overline{V}_{1}$$
 C(6)

where

$$A_{1} = \pi R_{10}^{2} \left[ 1 - \left(\frac{R_{1i}}{R_{10}}\right)^{2} \right]$$

 $k_{Bl}$  is the blockage factor at station (1). Then, from Eqs. C(5) and C(6)

$$\frac{\overline{V}_{1}}{a_{0}} = \frac{\varphi_{1}}{k_{B1}} \left(\frac{U_{2}}{a_{0}}\right) \left(\frac{R_{2}}{R_{10}}\right)^{2} \frac{1}{\pi \left[1 - \left(\frac{R_{1i}}{R_{10}}\right)^{2}\right]}$$

$$C(7)$$

The weight flow rate w through the compressor is

$$\dot{w} = Q_{1} \frac{\bar{p}_{1}}{R_{G} \bar{T}_{1}} = \phi_{1} U_{2} R_{2}^{2} \frac{(\bar{p}_{1}/P_{0}) P_{0}}{R_{G} (\bar{T}_{1}/T_{0})T_{0}}$$
(8)

 $\overline{P_1}$ ,  $\overline{T_1}$  are the flow properties at the radius  $R_1$  where the velocity  $\overline{V_1}$  occurs. Then, for an isentropic process from  $P_0$ ,  $\overline{T_0}$  to  $\overline{P_1}$ ,  $\overline{T_1}$ ,

$$\frac{\overline{p}_{l}/P_{0}}{\overline{T}_{l}/T_{0}} = (\overline{T}_{l}/T_{0})^{l/(\gamma-l)}$$

$$C(9)$$

and, since

$$\bar{U}_{1}^{2} = 2 \operatorname{gc}_{p} (T_{0} - \bar{T}_{1}) = \frac{2}{\gamma - 1} \operatorname{a}_{0}^{2} \left[ 1 - \frac{T_{1}}{T_{0}} \right]$$

or

$$\frac{\overline{T}_{1}}{\overline{T}_{0}} = 1 - \frac{\gamma - 1}{2} \left(\frac{\overline{V}_{1}}{a_{0}}\right)^{2}$$
 C(10)

the dimensionless mass flow rate (m)* of Eq. 66 becomes

$$(\dot{m})^{*} = \frac{(\dot{w}/g)\sqrt{gR_{G}T_{O}}}{\pi R_{2}^{2}P_{O}} = \frac{\varphi_{1}}{\pi} \left(\frac{U_{2}}{a_{O}}\right)\sqrt{\gamma} \left[1 - \frac{\gamma - 1}{2} \left(\frac{\overline{v}_{1}}{a_{O}}\right)^{2}\right]^{1/(\gamma - 1)} C(11)$$

Since by Eq. C(7) the ratio  $(\overline{V}_1/a_0)$  is a function of  $\varphi_1$  and  $(U_2/a_0)$  for known impeller dimensions, the dimensionless mass flow rate  $(\dot{m})$ * can be determined for assumed blockage factors  $k_{B1}$ .

The change of  $V_{l}$  along  $R_{l}$  can be determined approximately by assuming that the curvatures  $k_{m}$  of the generatrices of the axisymmetric stream surfaces at the inducer inlet vary linearly from  $k_{mi}$  at  $R_{li}$  to  $k_{mo}$  at  $R_{lo}$ , where  $k_{mi}$  and  $k_{mo}$  are the curvatures of the meridional contours at these radii. In accordance with Eq. 11 (122) of Ref. 5

$$\int_{1}^{n} k_{m} dn$$

$$I = V_{1i} e$$

$$C(12)$$

where  $n = R_1 - R_{1i}$ , and  $V_{1i}$  is the velocity at  $R_{1i}$ . As shown in Art. 3.3 of Ref. 5 the curvatures  $k_m$  in Eq. C(12) for the channel of Fig. 12 must be introduced as negative values. The assumed linear variation of  $k_m$  is given by

$$k_{m} = k_{mi} + \frac{k_{mo} - k_{mi}}{R_{lo} - R_{li}} (R_{l} - R_{li})$$
 C(13)

and the integral of Eq. C(12) becomes

$$-\int_{0}^{n} k_{m} dn = R_{2} k_{mi} \left(\frac{R_{1}}{R_{2}} - \frac{R_{1i}}{R_{2}}\right) + \frac{R_{2} k_{mo} - R_{2} k_{mi}}{2\left(\frac{R_{1o}}{R_{2}} - \frac{R_{1i}}{R_{2}}\right)} \left(\frac{R_{1}}{R_{2}} - \frac{R_{1i}}{R_{2}}\right)^{2} C(14)$$

On examining Fig. 12 it can be noticed that the rotor drawing presented in Ref. 10 is not to scale. From the measured distances of the figure the radius ratios  $R_{1o}/R_2$  and  $R_{1i}/R_2$  are about 0.59 and 0.275, instead of 0.541 and 0.287 in accordance with the dimensions of Fig. 12. Because of this situation it is not possible to determine the radii of curvature of the meridian contours at  $R_{1i}$  and  $R_{1o}$  from Fig. 12 with graphical means. Although the approach explained in the following is speculative it is believed that it gives a sufficiently good approximation for  $k_{mi}$  and  $k_{mo}$ . It is based on the assumption that the meridian contours of the rotor are curves with the equation  $r/a = \theta^{-b}$  in polar coordinates. As shown in Fig. 18 and explained in Program No. 110 of Appendix D, such curves have zero curvature at a point  $P_0$  given by  $r_0/a$  and  $\theta_0$  for any value of b between zero and unity. For angles  $\theta$  larger than  $\theta_0$  the curvatures increase smoothly to reach a maximum value of  $k_m$  at point  $P_m$  where the tangent to the curve is perpendicular to that at  $P_0$ . The writer has investigated a large number of curves and believes that those with  $r/a = \theta^{-b}$  have the smallest curvature  $k_m$  at  $P_m$  for a given ratio  $y_0/x_0$  of the coordinates of Fig. 18. Three-dimensional flow analyses indicate that smoothly changing curvatures k of the meridian contours of a channel and small values of k produce small changes of the velocities across the width of the channel and along the flow paths. In addition to satisfying these conditions it is seen from Fig. 20 also that contours with  $r/a = \theta^{-b}$  establish flow channels that look very much like those of high-performance radial impellers. The inner or hub contour is supposed to be located between station  $P_0$  and  $P_m$  of Fig. 20. For this curve

$$y_0/x_0 = \frac{180 - 51.7}{2(44.5)} = 1.4416$$

From Fig. 12 it is apparent that the tip contour does not have zero curvature at the outer rotor diameter of 180 mm, but that it is curved to the diameter where the axial width of the diffusor is 7 mm. It can be seen from Ref. 10 that this diameter is 215 mm. Hence, in accordance with Fig. 20 the tip contour is supposed to extend from  $P_m$ ' to  $P_0$ ' having

$$y_0'/x_0' = \frac{215 - 97.4}{2(37.5)} = 1.5680$$

The points  $P_0$  and  $P_0'$  correspond to station  $P_0$  of Fig. 18 so that the curvatures of the meridian at these locations are zero.

Since no direct solution of the problem of establishing the exponent b in  $r/a = \theta^{-b}$  for given ratios  $y_0/x_0$  is possible, the Calculator Program No. 110 of Appendix D has been established to obtain this relationship with an iterative process. Figure 19 shows b as function of  $y_0/x_0$ 

187

and gives the maximum curvature  $k_m$  at station  $P_m$  of Fig. 18 by the dimensionless quantity  $x_0 k_m$ . From Fig. 19 for the hub contour

$$k_{m} = k_{mi} = \frac{(1.174)}{44.5} = (2.638)(10^{-2}) mm^{-1}$$

so that the radius of curvature R_{ci} is

$$R_{ci} = \frac{1}{k_{mi}} = 37.90 \text{ mm}$$

For the tip contour

$$k_{\rm m}' = k_{\rm mo} = \frac{1.232}{37.5} = (3.285) (10^{-2}) \, {\rm mm}^{-1}$$

or

$$R_{co} = \frac{1}{k_{mo}} = 30.44 \text{ mm}$$

The exponents b were found to be 0.2552 for the inner and 0.3525 for the outer contour. They were used to establish the coordinates of the meridian contours of Fig. 20.

The calculated curvatures  $k_{mi}$  and  $k_{mo}$  introduced into Eq. C(14) give

$$-\int_{0}^{\infty} k_{\rm m} \, dn = -0.6815 + 2.3747 \, \frac{R_1}{R_2} + 1.1456 \left(\frac{R_1}{R_2} - 0.287\right)^2 \qquad C(15)$$

From Eqs. C(12) and C(15) for  $R_1/R_2 = R_{10}/R_2 = 0.541$ 

$$\frac{V_{10}}{V_{1i}} = e^{0.67712} = 1.9682$$

or

$$\frac{V_{1}}{a_{0}} = \frac{V_{10}}{a_{0}} (0.5081) e^{-\int_{0}^{n} k_{m} dn} = \frac{V_{10}}{a_{0}} X$$
 C(16)

Thus, for chosen values of  $V_{1o}/a_0$  the ratios  $V_1/a_0$  at the different radii  $R_1$  are known, and it is possible to determine the corresponding weight flow rates by

$$v = k_{BL} \int_{R_{Li}}^{R_{Li}} 2\pi R_{L} V_{L} \frac{p_{L}}{R_{G} T_{L}} dR_{L}$$

R

or

$$\dot{w} = 2 \pi R_2^2 k_{Bl} \frac{P_0}{T_0} \frac{a_0}{R_G} \int_{R_{li}/R_2}^{R_{lo}/R_2} \frac{R_1}{R_2} \frac{V_1}{a_0} \frac{p_1/P_0}{T_1/T_0} d\left(\frac{R_1}{R_2}\right)$$

Similar to Eqs. C(9) and C(10)

٦x

$$\frac{P_{1}/P_{0}}{T_{1}/T_{0}} = \left[1 - \frac{\gamma - 1}{2} \left(\frac{V_{1}}{a_{0}}\right)^{2}\right]^{1/(\gamma - 1)}$$

Then, since  $R_{1i}/R_2 = 0.287$  and  $R_{1o}/R_2 = 0.541$ , the dimensionless mass flow rate ( $\dot{m}$ )* of Eq. C(11) is obtained also from

$$(\dot{m})^{*} = 2 k_{B1} \sqrt{\gamma} \left(\frac{V_{10}}{a_{0}}\right) \int_{0.287} \left(\frac{R_{1}}{R_{2}}\right) X \left[1 - \frac{\gamma - 1}{2} \left(\frac{V_{10}}{a_{0}} X\right)^{2}\right]^{1/(\gamma - 1)} d\left(\frac{R_{1}}{R_{2}}\right) C(17)$$

where X is defined by Eq. 16.

With Eqs. C(11) and C(17) the flow coefficient  $\varphi_1$  can be related to  $V_{1o}/a_0$ by determining  $\overline{V}_1/a_0$  from Eq. C(7) for particular values of  $\varphi_1$  and calculating (m)* by Eq. C(11). Then, that ratio  $V_{1o}/a_0$  has to be established which, introduced in Eq. C(16) and used in Eq. C(17), gives the same value of (m)*. Since the same blockage factor  $k_{Bl}$  is used in both calculating procedures, its influence on the relationship between  $\varphi_l$  and  $V_{lo}/a_0$  is small, and a constant value  $k_{Bl} = 0.97$  will be assumed. For the ratios  $V_{lo}/a_0$  thus determined, the flow angle  $\beta_{lo}$  at  $R_{lo}$  is given by

$$\tan \beta_{10} = \frac{\omega R_{10}}{V_{10}} = \frac{(U_2/a_0) (R_{10}/R_2)}{(V_{10}/a_0)} = \frac{0.44903}{(V_{10}/a_0)}$$
 C(18)

The rotor efficiencies  $\Pi_{PR}$  of Fig. 17 which hold for  $U_2/a_0 = 0.83$  can therefore be related to the flow angle  $\beta_{10}$  at the tip of the inducer. With the calculated data it is possible also to establish the Mach number  $M_{W1}$  at the inducer tip radius by means of Eq. C(3). For  $\gamma = 1.4$ 

$$M_{Wl} = \frac{0.44903}{\left[\sin^2 \beta_{l0} - (0.2) (0.44903)^2 \cos^2 \beta_{l0}\right]^{\frac{1}{2}}}$$
 C(19)

These calculations have been performed on a Monroe 1655 Calculator. In particular, the evaluation of Eq. C(17) for the velocity ratios of Eq. C(16) has been carried out with Program No. 108 of Appendix D. Figure 21 shows the dimensionless mass flow rate  $(\dot{m})^*$  as functions of  $\varphi_1$  and of  $V_{1o}/a_0$ . The relationship  $(m)^* = f_1(\varphi_1)$  has been obtained from Eqs. C(11) and C(10), and  $(m)^* = f_3(V_{1o}/a_0)$  is the result of the calculations with Program No. 108. Whereas  $f_1(\varphi_1)$  depends solely on the rotor dimensions which are given by Fig. 12, the accuracy of the function  $f_3(V_{1o}/a_0)$  depends on how well the assumed stream surface curvatures correspond to reality.

Figure 21 also shows the rotor efficiency  $\boldsymbol{\eta}_{\text{RP}}$  as function of  $\boldsymbol{\phi}_{1}$  . This curve has been obtained from the test data of Fig. 17, and represents the best estimate of a continuous curve that can be drawn through all the  $\Psi_1 \cong 0.11$  and test points between  $\Psi_1 \cong 0.275$ . With this composite diagram the flow functions  $\varphi_1$  can be determined for chosen ratios  $V_{10}/a_0$ , since corresponding values must have the same dimensionless mass flow rate  $(\dot{m})^*$ . Hence, as shown in Fig. 21, it is also possible to obtain  $\eta_{\rm RP}$  as a function of  $V_{10}/a_0$ . Moreover, since by Eq. C(18) the relationship between the flow angle  $\beta_{10}$  and  $V_{10}/a_0$  is known for the velocity distribution of Eq. C(16), the rotor efficiency  $\eta_{\rm RP}^{}$  is obtained as function of the angle  $\beta_{10}$  at the speed ratio  $U_2/a_0 = 0.83$  for which the data of Fig. 17 hold. Moreover, Eq. C(19) establishes the Mach number  $M_{W1}$  for different flow angles  $\beta_{10}$ . The data thus obtained are marked by circles in Fig. 22. It can be seen that the maximum rotor efficiency occurs at a flow angle of about 55°; that is, at an incidence angle i of about -2°. The data points marked by crosses in Fig. 22 are from Fig. 15 for  $U_2/a_0 = 0.83$ . Both curves of  $\eta_{\rm RP}$  have the same maximum at about the same flow angle, but the efficiencies from Fig. 15 decrease more rapidly with flow angle on either side of the maximum than the data from Fig. 21. Figure 15 was obtained from the data of Ref. 10, shown in Fig. 13, by determining the flow angle ( $\beta_{10}$ *) with Eq. C(4) on assuming that  $U_2/a_0$  and  $M_{W1}$  of Fig. 13 are correct and that the rotor dimensions are those given by Fig. 12. Inspite of the much smaller range of rotor efficiency with inlet flow angle which the data from Fig. 15 exhibit, it is remarkable how well the Mach numbers  $M_{W1}$  of the two approaches of Fig. 22 coincide.

191

For purposes of discussion the curves of  $\Pi_{PR}$  and  $M_{Wl}$  obtained from Fig. 21 are compared in Fig. 23 with the data of Fig. 13 at  $U_2/a_0 = 0.83$  which are marked by crosses, and which represent the original values given by Ref. 10. It must be noted, however, that in Fig. 23 the curves from Fig. 13 are plotted against a scale marked  $\beta_{10}^{**}$  which is shifted by about  $12^{\circ}$  with respect to the horizontal scale  $\beta_{10}$  that holds for the data from Fig. 21. This shift has been chosen such that the two curves for  $\Pi_{RP}$  coincide as closely as possible.

The conclusions that can be drawn from the preceeding analyses are:

- (1) The curves of Fig. 13 are not consistent because, for the rotor dimensions of Fig. 12, the flow angles  $\beta_{10}$  must be different than those of Fig. 13 if the velocity ratios  $U_2/a_0$  and the Mach numbers  $M_{W1}$  of this figure are assumed to be correct, and doubt exists whether optimum efficiencies are reached at incidence angle i of about  $+9^{\circ}$ .
- (2) If the curves of Fig. 13 are plotted against the flow angle  $\beta_{lo}^*$ , obtained from Eq. C(4) to establish the correct relationship between  $U_2/a_0$  and  $M_{Wl}$ , the resulting curves of Fig. 15 give optimum incidence angle i of about  $-2^{\circ}$ .
- (3) If other original values of Ref. 10 for  $U_2/a_0 = 0.83$ , presented in Fig. 17, are analyzed with the best possible procedure, the optimum incidence angle i is also about  $-2^\circ$  but, as shown in Fig. 22, the range in which the flow angle can vary for a specified off-design efficiency is about twice that of the curves of Fig. 15 described in point (2) above. However, the inlet Mach numbers  $M_{W1}$  of the two approaches lie on the same curve.

- (4) If the relations computed from Fig. 17 are compared with the original results of Fig. 13, it is seen from Fig. 23 that the two curves  $\Pi_{\rm RP} = f(\beta_{10})$  at  $U_2/a_0 = 0.83$  can be made to coincide only if the flow angles of Fig. 13 are reduced by about  $12^{\circ}$ . In this case, however, different inlet Mach numbers  $M_{\rm WI}$  occur.
  - (5) The discrepancies in the data from Ref. 10 make it inadvisable to use Fig. 13 with reduced flow angles, or Fig. 15, where the range of flow angle for given off-design efficiency is very much smaller than that derived from Fig. 17.
- (6) It is not believed that the design criteria of Ref. 10 have general applicability. The inconsistencies in the data could be due to non-uniform inlet velocity distributions because of the shape of the inlet duct and its supporting fins. It is possible also that the flow angle measurements are in error or that the dimensions of the rotor are different from those given by Fig. 12.

Test data of radial compressor wheels are presented also in Ref. 2. The curves of Fig. 23b of Ref. 2 are redrawn in Fig. 24 of this report in a somewhat modified form, and with  $U_2/a_0$  instead of with  $U_2/\sqrt{T_0}$  as parameter. There is, in metric units for air,

$$\frac{U_2}{a_0} = \frac{U_2}{\sqrt{\gamma R_G g T_0}} = \frac{U_2}{\sqrt{T_0}} \frac{4.9874}{100}$$

for:

$$\gamma = 1.4$$
  
 $R_{G} = R/M = 847.83/28.964 = 29.272 (m/^{\circ}K)$   
 $g = 9.81 (m/s^{2})$ 

The incidence angle i' of Fig. 24 equals

$$i' = \beta_{10}' - \beta_{B0}$$

where  $\beta_{10}$ ' is the flow angle at  $R_{10}$  obtained from Eq. C(1) by taking account of the blockage due to the inducer blade thickness, and  $\beta_{BO}$ is the inducer blade angle at R₁₀. Reference 2 does not give the dimensions and the inducer blade angles of the rotor for which Fig. 24 has been established. Hence Mach number  $M_{W1}$  and peripheral speed ratio  $U_{0}/a_{0}$ cannot be related to each other by, say, Eq. C(3). Point D of Fig. 25, which gives the curves of Fig. 24 also corresponds to the design point of the Hybrid impeller with  $M_{Wl} = 0.4842$ ; i'  $\approx +0.5^{\circ}$ , and  $U_2/a_0 = 0.7156$ . It can be noticed that for these values of  $M_{\rm Wl}$  and i' the parameter  $U_2/a_0$  of Figs. 24 and 25 is very nearly equal to 0.7156. It was decided, therefore, to ignore the curves  $U_2/a_0 = \text{constant}$  in Fig. 24 for the offdesign performance calculations of the Hybrid compressor and to assume that  $r_e = \eta_R / \eta_{RMAX}$  is only depending on  $M_{Wl}$  and i', not only because of the limited information given in Ref. 2 but also because these two quantities seem to be the most important variables that affect the rotor efficiency. The curve labeled "Max. Flow Rate" in Fig. 24 appears to represent the limit at which stable operation is possible, probably because of the flow separations that occur on the pressure, or concave, sides of the inducer blades at these negative incidence angles. The surge limit of Fig. 24 is that which occurs if a non-bladed diffusor is arranged after the impeller. Hence, for bladed diffusors, compressor surge may be initiated by separations in the diffusor at incidence angles i' smaller than those of Fig. 24.

194

## APPENDIX D

### CALCULATING PROGRAMS

FOR

MONROE MODEL 1655/56

## ELECTRIC PROGRAMMABLE DISPLAY CALCULATOR

WITH

CARD READER CR-1

AND

MONROE MODEL 1880-22

SCIENTIFIC PROGRAMMABLE PRINTING CALCULATOR

#### PROGRAM No. 102

#### MONROE CALCULATOR 1655 WITH CARD READER CR-1

#### Description

Program 102 calculates the dimensionless flow rate of a radial compressor from the conditions at the impeller discharge. From Eq. II (11) of Ref.  $(a)^*$ ,

$$\Phi_{2} = \frac{\dot{w}\sqrt{(R_{g}/g)T_{0}}}{P_{0}A_{2}k_{B2}} = \mu\sqrt{\gamma} \cot \alpha_{2}\left(\frac{U_{2}}{a_{0}}\right) \frac{P_{2}/P_{0}}{T_{2}/T_{0}}$$

where:

 $\dot{\mathbf{w}} = \text{weight flow rate (lbm/s)}$   $R_{G} = \text{gas constant (ft-lb/(lbm,^{O}R))}$   $g = 32.174 (ft/s^{2})$   $T_{O} = \text{total temperature ahead of rotor (^{O}R)}$   $P_{O} = \text{total pressure ahead of rotor (psia)}$   $A_{2} = 2\pi R_{2} b_{2} = \text{rotor discharge area (in.}^{2})$   $k_{B2} = \text{restriction factor (-)}$   $A_{1} = \pi (R_{1O}^{2} - R_{1i}^{2}) = \text{rotor inlet area (in.}^{2})$   $k_{B1} = \text{restriction factor (-)}$   $\mu = \text{slip factor (-)}$   $\gamma = c_{p}/c_{v} (-)$   $\alpha_{2} = \text{absolute flow angle at rotor discharge (^{O})}$   $U_{2} = \text{peripheral rotor speed (ft/s)}$   $a_{O} = \sqrt{g \gamma R_{G} T_{O}}$ 

*(a) Vavra, M. H., "Basic Elements for Advanced Design of Radial Flow Compressors," in AGARD-LS-39-70, "Advanced Compressors," Techn. Editing & Reprod. Ltd; London 1970.  $p_2$  = static pressure out rotor discharge (psia)  $T_2$  = static temperature at rotor discharge (^OR) From Eqs. I(20) and I(8) of Ref. (a)

$$\frac{p_2}{P_0} = (T_2'/T_0)^{\gamma(\gamma-1)}$$

$$\frac{T_2'}{T} = 1 + (\gamma-1) \mu \left(\frac{U_2}{a_0}\right)^2 \left[\frac{1}{\Psi^2}\left(1 - \frac{\mu}{2\sin^2\alpha_2}\right) - \frac{1}{2\mu}\left(\frac{1}{\Psi^2} - 1\right)\right]$$

From Eq. I(7) of Ref. (a)

$$\frac{T_2}{T_0} = 1 + (\gamma - 1) \mu \left(\frac{U_2}{a_0}\right)^2 \left(1 - \frac{\mu}{2 \sin^2 \alpha_2}\right)$$

The velocity coefficient

$$\Psi = \frac{W_2}{W_2 \text{ is}}$$

establishes the rotor loss in accordance with Ref. (a).

The following quantities will be used during the calculations:

$$A = 1 - \frac{\mu}{2 \sin^2 \alpha_2}$$
$$B = \frac{1}{2\mu} \left( \frac{1}{\psi^2} - 1 \right)$$
$$C = (\gamma - 1) \mu \left( \frac{U_2}{a_0} \right)^2$$
$$D = \mu \sqrt{\gamma} \cot \alpha_2 \left( \frac{U_2}{a_0} \right)$$

Then

$$\mathbf{T}_{2}'/\mathbf{T}_{0} = \mathbf{F} = \mathbf{1} + \mathbf{C}\left(\frac{\mathbf{1}}{\mathbf{Y}^{2}} \mathbf{A} - \mathbf{B}\right)$$

$$p_{2}/P_{0} = F^{\gamma/(\gamma-1)}$$

$$T_{2}/T_{0} = 1 + C A$$

$$P_{2} = D \frac{(p_{2}/P_{0})}{(T_{2}/T_{0})}$$

$$X = \Phi_{2} A_{2} k_{B2} = \frac{\dot{w}\sqrt{(R_{G}/g) T_{0}}}{P_{0}}$$

$$\Phi_{1} = \frac{X}{A_{1} k_{B1}} = \frac{\dot{w}\sqrt{(R_{G}/g) T_{0}}}{P_{0} A_{1} k_{B1}}$$

The flow function  $\Phi_1$  will be used in program No. 103 to establish the ratios  $p_1/P_0$  and  $T_1/T_0$ . The area  $A_1 = \pi (R_{10}^2 - R_{11}^2)$  must be introduced in square inches.

Enclosures: Operating Instructions (1 page) Program Listing (4 pages) OPERATING INSTRUCTIONS PROGRAM No. 102

MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 <u>Set-Up</u>: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-3 Release (LOAD); (TO(O)); Depress (P); (RESUME)

	P-COUNT		
	001	ENTER: Y (RESU	ME)
	012	": U ₂ /a ₀ ('	')
	014	": $U_2/a_0$ (" ": $\alpha_2$ ("	")
	023		")
	034	": ψ ( '	")
	134	": A ₂ ("	")
	136	K DO	")
	141	A	")
	143		m )
0	146	RESULTS:	
		$\uparrow (1) \rightarrow T_2/T_0$ $\uparrow (0) \rightarrow p_2/p_0$	
	-	$\left  \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right  \rightarrow \frac{p_2}{p_0}$	
	L	↑ (4) → $\frac{\dot{w}\sqrt{(R_{C}/g)T_{O}}}{P_{O}}$	
		$\uparrow (3) \rightarrow \Phi_2 = \frac{\dot{w}\sqrt{(R_C/R_C)}}{P_0 A_2}$	
		$\uparrow (5) \rightarrow \Phi_{1} = \frac{\sqrt[4]{w}\sqrt{(R_{C}/M_{1})}}{\frac{P_{O}}{P_{0}}}$	g)T _O ^k Bl
		(RESUME)	
		Y	

PR F	RBO OGI LOV	i Ri	No Ate	D. T	HRC	DÜĞ	Ή i	M( RAD	ONR IA	OE L C	16 OM	S5 PRF	۲ <u>۲</u>	ALC OR	UL		RON DR GIV	EN	•••	s,	•••	• • •	• • • •		PA( DA1	GE. Te:	.1_	OF. AU(	. A 3 7	ş	ΒY	: <u>N</u>	1.H.V
	NOTES	ENTER: 8									ENTER: U2/40		ENTER: X2							ENTER: JU									ENTER: W				
	2																																2
	Y																																7
	×																																×
	6																																5
	8																																ω
	7																																74/1
	9											U2/40																					9
STERS	5															•	SINOS																S
EGI	4																				7									_			4
α.	3																											A					~
	2		۶																														<u>с.</u>
	-																																-
	0									1-1										_													0
	X									1-2	-														1							1	5.
	A			_						-														. 4								+	V
	E	Y	λ			۲-۱	~	1	((+1))/				\$2	2 n de		SING		sind		77		S IO DI 2		251n of		- A	∢		Ł	1/4	-	153	<u>ш</u>
-	_	-	-	2	-	5		0	4	7	-	5	-	0	0	0	4	4	0	-	m	2	2	2	-	- 0	3	2	-	4	0	2 1	9
	CODE	40	4 4	0 6	0 0	0 7	46	0 2	0 5	45	40	4 4	40	4 0	20	0 2	4 4	0 5	20	40	4 4	20	0	0 6	00	0 2	- 0	4 4	40	0 5			44
	CUMMAND	HALT	STR(2)	1	-	·ŀ	RcL (2)	11	NN1	STR(0)	HALT	STR (6)	HALT	SIN (CUS	×	ł	5TR (5)	YNY	×	HALT	STR(4)	·].		1	-	11	CHSGN	5TR(3)	HALT	NNI	×	-	5TR (7)
	_	0	-	ć	3	4	2	9	7	0	-	ć	3	7	5	9	7	0	-	c	~	4	2	2	7	0	1	2	3	4	5		7
ADDRESS	P COI	0							0	-	-		-					2		3					2	3			3	_	-+	-+	3
	PT P	0												2	200			-															-

TUPR	RBO OGI	S-P RAM	RO:	<b>.</b>		ON 1.0.2	• • •	. M(	) 	:0E	16	• 55 • •	C#	ALC	UL	ATC	)R 	•••	•••	• • •	••	• • •	•	۴.	PA DA	GE. Fe:	2_	OF.	. 4 G.	.7 2	2 B Y	(: <u>M</u>	1 <b>.</b> H	.v.
5 H 4 C 1	NULES																																	
	2																																	2
-	Y																																	Υ
	X																																	×.
	6																																	5
	8							A																										ω
	7	2 m/																																2
	9	$U_2/d_n$		Ĩ																														9
ISTERS	5	SN 02																																5
REGIS'	4	H S																																4
R	3	A																											1					~
	2	>																																2
	1	0.00														63	1		υ															-
	0	7-1																														4/4		0
	¥.																																	5
	A				(1-																													A
-	E		1-2-14		- /// -	h	A.		χ				μ	(K-1))	U2/ad		U2/a0	U		1/42		A		B		C			T2.40		21/24		υ	ш
E.		- 0	2 1/2	2	2	3	0	7	-	2	-	0	Э	0	5	0	S	0	0	9	0	7	2	7	0	0	0		4	7	0	7	0	
000	CODE	00	0 7	0	0 7	46	0 2	4	46	90	0 0	20	46	0 7	46	2 0	46	0 2	4 4	46	20	4	0 6	46	0 7	46	90	0	0 7	4 7	_		46	
COMMAND	UNINE LION	-	·ŀ	2.	•]•	RcL (4)	u	STR(8)	RCL (2)	1	-	×	RCL(4)	×	R cL (6)	×	RCL (6)	IJ	STR (I)	RCL (7)	×	RCL (3)	1	RcL(8)	×	Rcl(i)	+	-	×d	Rc L (U)	1)	STR(0)	RCL (1)	
ESS	UNT	0		2	3	4	5	9	1	C	7	6	3	4	5	9	7	0	-	ć	3	-1	5	9	7	0	1	2	3	4	5	9	7	
ADDRESS	P COUNT	0 4						•	4	5							5	9							16	7							7	
BR A		2											L	2	01			3																,
-																																		

TUPR	RBC OGF	) - P RAM	RO F	PUL	SI( 1	ON 02	LA	BOF MC	DNR	OE	16	555 	CA 		UL/	ATC	)R 	AU1			• •				PAC DA1	GE. Fe:	3 Al	OF. JG	.4 7	2	BY	:	м.	H.V
	CT TON																												ENTER: A2		ENTER: KB2			
	2																																	2
	۲																									_								Y
	×																							-										×
	6																									_								6
	8									_																_								3
	7	U2/9	0															-								-								2
RS		sina/ Uz								-																								5 6
EGISTERS	4 5	r sin	_					-										-	-			_				_								4
R E(	-	AA				-	-	_	-	-		-					-	-		-						-		0	4				×	2
	2 3	1 8	-	_									=									-		-		-		0						2
	-	C					T2/T0																				i							-
	0	P2/P0	,				F						_																					0
-	×.	4 23																																Σ
	A												-		12	cotdz																		A
	ш		A	C A		T2/An				sind z	10503	Sinks	tot "12	>	y cot de	VX cb		U2/4		r	/		P	P2/P		T2/T	, <del>0</del>	12	A,		K 82	X		ш
-	0E	0 1	62	60	10	20	4 U	10	62	6 4	2	4	70	-	0	56	0 1	65	7 0	63	01	10	0	7	2	60	0	4 2	- 0	01			4 3	
	LUDE	0 7	46	06	0	0 2	4 4	0	0	4	0 7	46	0	46	0 2	0	0 7	46	0	4	0 7	0	0 7	4 7	0 7	4	0 7	4	40	0 7		0	4	
Change	UNALIEN	×	RCL(3)	+	1	ų	STR(1)	1	1	Rcl (S)	·]•	R CL (5)	×	RC L (2)	15	7	×	RCL (6)	×	RCL (4)	×	Y	×	RCL(0)	·].	RCL (I)	×	5TR (3)	HALT	×	HALT	·]=	STR (4)	
LESS	COUNT	0 0	1	5	3	4	5	9	0 7	0	1	2	3	4	5	9	7	0		2	3	4	5	9	2 7	3 0	1	2	3 3	4	3 5		5 2	
ADDRESS	P CO	1							-								-	1 2							-	-			-		-		-	
8.8	Γd	4												20	22			S															1	v 2

TU PR	RB( OGI	KAM		PUL o.		ν.		M	JNR	lOE	16 	555 • •	C.	ALC	UL	ATC	)R		• • •						PA( DA)	GE. FE:	<u>4</u>	OF. AU(	4	72	ВУ	:_!	м.н	I.V.
	NOLES	ENTER: A,	-	ENTER: Kai			RESULTS:																											
	2																																	2
	Y																																	Y
	×																																	×
	6																																	9
1	80																																	30
	7																																	2
	9	U2/qa																																9
EGISTERS	5	Sinds				φ,	tO	1																										S
REGIS	4	X					X																											4
H	3	φ.	77				-0	42																										~
	2	Х					×																											2
	1	T2/T0					T2A2	0 1																										-
	0	P2/P					P2/P	0																										0
	W																																	N
	A	X						10																										A
	ω	A,		KB1	Ð	-																												LL)
500	LUDE	10	7 2	- 0	20	4 4	10	40																										
	_	4	0	4	0	5) 4	4	-																										
TO MANANT	UNAFIEUU	HALT	۰ŀ	HALT	II	5TR (5	HALT	TO(0)																										
ESS	COUNT	F 0	-	t 2	3	4	_	6	7	0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	7	0	-	2	3	4	5	3	7	
ADDRESS	P CO	1 4		1 4			1 4				_																							
BR	ΓŢ	9													20	3																		u olar

- -- -

#### PROGRAM No. 103

#### MONROE CALCULATOR 1655/6 WITH CARD READER CR-1

#### Description

Program 103 deals with the flow of a perfect gas with  $\gamma = c_p/c_v = \text{constant}$ that passes through a given area A. Because of boundary layers the effective flow area is supposed to be  $k_B A$ . The total pressure  $P_t$  and the total temperature  $T_t$  of the flow are known. To be determined is the average static pressure p that exists at the flow area  $k_B A$ . The equation of continuity can be expressed by a dimensionless flow function  $\phi$  where

$$\Phi = \sqrt{\frac{2\gamma}{\gamma-1}} \left[ \left( \frac{p}{P_{t}} \right)^{2/\gamma} - \left( \frac{p}{P_{t}} \right)^{(\gamma+1)/\gamma} \right]$$

where

$$\Phi = \frac{\dot{w} \sqrt{(R_{\rm g}/g)T_{\rm t}}}{k_{\rm g}A P_{\rm t}} = \frac{\dot{m}/g R_{\rm G} T_{\rm t}}{k_{\rm g}A P_{\rm t}}$$

There are:

w = weight flow rate (lbm/s)
m = mass flow rate (slug/s)
R_G = gas constant (ft-lb/(lbm,^OR))
g = 32.174 (ft/s²)

 $k_{B}^{A}$  = effective cross-sectional area of channel where static pressure p occurs

Figure D 103 shows a plot of  $\Phi$  vs.  $r = p/P_t$ . At the critical pressure ratio  $r_c$  the function  $\Phi = \Phi_c$  has a maximum, hence no solutions occur if

 $\Phi$  is larger than  $\Phi_{c}$ . There are:

$$f_{c} = \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma-1)} = \left[\left(\frac{2}{\gamma + 1}\right)^{1/(\gamma-1)}\right]^{\gamma}$$

and

$$\Phi_{c} = \sqrt{\frac{2\gamma}{\gamma + 1}} \left(\frac{2}{\gamma + 1}\right)^{1/(\gamma - 1)}$$

If  $\bar{\Phi}$  is smaller than  $\Phi_c$  two solutions of  $r = p/P_t$  are obtained, say,  $r_I$  if the velocity at the area A is subsonic, and  $r_{II}$  if the flow is supersonic. These pressure ratios must be obtained with an iterative process, by assuming a value of r, say  $r_i$ , and verifying whether the corresponding value  $\Phi_i$  equals the specified flow function  $\Phi$ .

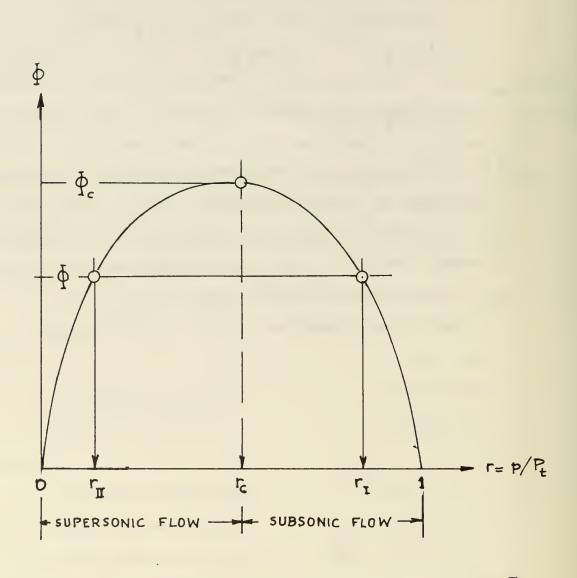
The following quantities are used in the calculations

$$El = 2/\gamma$$
$$E2 = (\gamma+l)/\gamma$$
$$A = 2\gamma/(\gamma-l)$$

$$B = \left(\frac{2}{\gamma + 1}\right)^{1/(\gamma - 1)}$$
$$C = \sqrt{\frac{2\gamma}{\gamma + 1}} = \sqrt{\frac{2}{E2}}$$

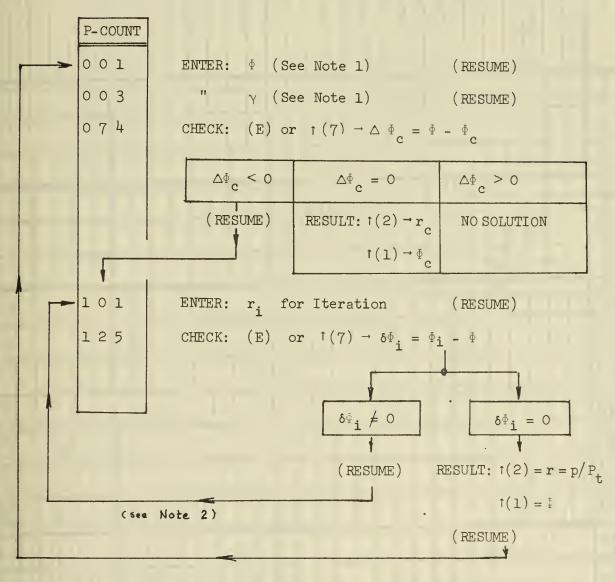
With,

$$r = p/P_{H}$$


there are:

$$\Phi = \sqrt{A(r^{El} - r^{E2})}$$
$$r_{c} = (p/P_{t})_{c} = B^{Y}$$
$$\Phi_{c} = C B$$

Enclosures: Fig. D(103)


Operating Instruction (1 page)

Program Listing (3 pages) 205



# FIG. D(103) ISENTROPIC FLOW FUNCTION $\overline{\Phi}$

OPERATING INSTRUCTIONS PROGRAM No. 103 MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 Set-Up: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-3 Release (LOAD); (TO(O)); Depress (P); (RESUME)



Note 1: If Program 103 is used immediately after Program 102: Enter at P-Count 1: ↑(5) for Φ Enter at P-Count 3: ↑(1) for γ

Note 2: Change of  $r_i$  (Reg. 2) to  $r_{i+1}$  for next iteration:

	SUBSONIC FLOW	SUPERSONIC FLOW
$\delta \Phi_i > 0$	$r_{i+1} > r_i$	r _{i+l} < r _i
δ⊈ <b>i</b> <0	$r_{i+1} < r_i$	$r_{i+1} > r_i$

207

PR DI	RBO OGI TE OW	ram RMI	No NA	э. Т <u>ІС</u>	10 )N	3 0F	PR	_MO EŞS	ON R ŞŲ Ŗ	OE E	16 RAT	555 10	C/ FC	ALC DR	111	ATC	n							۴.	PA( DA1	GE. Fe:	. L. A	OF. UG	.3	)	ΒY	(; <u>M</u>	• H .	VA
	NOTES	ENTER: \$[1(5) of No. 102]		ENTER: &[+(2) of No. 102]																														
	2																																	2
	Х																																	7
	×																																	×
	6			_																														5
	∞																																	$\infty$
	7																																	2
	9				مر																													9
<b>FERS</b>	5											1+1																						5
EGIST	4																U																	4
R.	3					-	_									_							-1-1							_				~
	2							-															1	<u> </u>				B		_				2
			φ																															-
	0		0																												U		-	0
																_														-	<u>6</u>			Σ.
	N.							_		-																				_	_		-	-
	A											-			1.						-			1-		1							_	E
$\vdash$	ω	φ -	0	7 1	5 8	0	-	2 4+1	2	よっ	4	4	0	<u>م</u>	0 24	6 0	Э	5 &	2		1-10	4	2	4 ² / ₊₁	4 °	2 1-1	0 B		J M	0 0.		рА —	4	
	CODE	0	4	0	4	9	0	2	0	2	5	4	7	9	2	S	4	9	9	0	2	5	4	9	7	9	7	4	9	2	S 7	9	7	
		4	(	4	6) 4	0	0	0	0	0	0	()	0	4	Q	0	4) 4	4	0	0	0	0	3) 4	5) 4	0	3) 4	0	) 4	4	0	4	4	0	
	COMMAND	HALT	STR(1)	HALT	STR (6)	+	-	۰ŀ	2	11	> <u>~</u>	STR(5	×	RcL(6)	13	5	STR(A)	RCL(6	1		W	> N	STR (3)		ъ <mark>×</mark>	$\square$	×	5TR (2	R C L (4)	11	STR (0)	RCL (2)	,ч	
ESS	COUNT	0	-	5 0	3	4	5	9		0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	7	0		2	~	4	5	9	37	
ADDRESS	P CO	00		0					00	-		_					-	2							2	m						-	-	
-	PT	0														20	8	-															,	

					-	~~~	-							-	4						taanda ye kaa					•							·		
PR	JR BO	S-P RAM		PUL 2• .	1	03	LA	BOI	ONR	COR	Y,	DE 555	PT C4	. C	)F UL	AEF	DR								PA	GE.	.2	OF.	з.						
•												•••	•••	• • •			•••	•••	• • •		•••	:.			DA	ΓE:		UG .	.72	•	BY	: •	M	<u>H.</u> V	•
						i																													
	ES																												٥,						
	NOTES				•																								- 20 =						
													I																А. 						
						_							_		-														CHECK:						
	2			_																														2	
	Y																																	Y	
	9 X	-																											_					9 X	
	8									-	-																		_					8	
	7							-																				990						2	
	9	×																																9	
STERS	5	2									∢																							5	
REGIS	4	U						1								Ē																		4	
	3	-1-1				-																	E2											~	
	2	£	100.00	LU													1.75												2					2	
	-	0	-																										φ _c	_		•	_	1 0	
	O W	Φ.																										-	0				-	Σ	
	A								-	-	-	-																-		-	-	-	-	V	
	E	٨	20		- 13		Å.			A				20	ū		Υ			1+1	۲	E2		6		30	φ-φ	U	ф-ф		-		-	ш	
	CODE	65	20	4 1	62-	70	65	10	02	20	_	0	72	65		43	65	60	- 0	7 2	65	20	42	60	62	77	20	40		0	0	0	0		
-		4	0	4	4	0	4		0	0	4	0	0	4	0	4	4	0	0	0	4	0	4	4	0	4	0	4	4						
	COMMAND	RcL(6)	11	5TR (2)	RCL (3)	×	Rcl(6)	×	2	11	STR(S)	2	·ŀ	RCL(6)	1	STR (4)	RCL (6)	+	-	·ŀ	RcL (6)	<b>H</b>	5TR (3)	RCL(1)	1	RCL(0)	n	STR(7)	HALT	0	0	0	0		
		0	1	2 9	3 R	4	5	9	7	0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	2		
ADDRESS	COUNT	4							4	5							S	9							9	4			2						
a statement	PT P	20														20	)9	3										_		_		_	_		
8	<b>A</b>		-														-	3																u 91.	

Mil W Olarla

TU PR	OG F	MAS	N c	)• -	10	03	•••	. MC	DNR	OE	16	555 • •	CA	ALC	UL	ATO	R	•••	•••	•••					PA( DA)	GE. GE:	3	OF.	3	72	BY	(: <u>)</u>	1.H	• V
	NOLES	ENTER: r. for iteration																				Снеск: Ф; = Ф ?	Depr.(SENSE) if \$ = \$											
Γ	2																																	2
	Υ																																	Y
	×																																	×
	6																																	5
	8																				φ	101												3
	7																				ф:-	₫:- ₫												2
	9	x																				d L												9
STERS	5	A																				A												5
EGIS	4	E							22								-	-		-		Ē												4
۲	3	2																				E2			_									~
	2	L'S	دخ															-				د. ۲												2
		Ч Ч																				ιθι												1
	0	φ_					E2										$\Phi_{i}$			-		e. Đ			-		_							0
	Я						<u>دع</u>													-					-									У.
	A																						_											A
	E /	r.	r:		E2	23.	-	r:		EL	ri Ei	r E2		A		ф.			ф	₽4		141												ш
F	-	E	-	4	2	0	2	-	4	3	2 5	7 7	0	4	0	9		2	0	0	9		3	0	0	0								
000	CODE	40	4 4	07	46	0 2	45	46	07	4 6	90	47	07	46	0 2	05	4 5	0 6	46	0 2	44		52	54	60	74	_						_	
	UNA				-			(2)		(+)				5)			(0		(j)		(L)				00	~								
	LUNAAND	HALT	5TR (2	хd	RCL (3	H	STR (O	RCL (	a*	RcL (	1	RCL(0)	×	RCL (	11		STR (	ł	RCL	IJ	STR	HALT	SFSNS	SKF	JUMP	T0 ( 0	-							
and the second s		0	-	¢.	~	4	5	9	7	0	-	ć	3	-1	5	9	7	0	-	2	~	t	5	9	7	0		5	3	4	ć	9	2	
0031	P COUNT	0							0	-				_			-	2				2			2	3			_				-	
	PT P	4								-						210	-	5 1							-									

#### PROGRAM No. 104

#### MONROE CALCULATOR 1655/1656 WITH CARD READER CR-1

#### Description

This program can be used to determine the flow properties at the inlet of a radial compressor rotor provided the absolute velocity  $V_{l}$  at this station is axial and uniform. The following quantities must be known:

$$\Phi_{1} = \frac{\dot{w}\sqrt{(R_{G}/g) T_{O}}}{P_{O} A_{1} k_{B1}} = \frac{\dot{m}\sqrt{R_{G} g T_{O}}}{P_{O} A_{1} k_{B1}} = \text{dimensionless flow function}$$

 $p_1/P_0 = ratio of static and total pressure at inlet <math>U_2/a_0 = speed ratio$ 

 $R_{lo}/R_2$  = ratio of outer radius at inlet and outer rotor radius  $\gamma = c_p/c_v$ =specific heat ratio

The program determines:

$$\begin{split} T_{l}/T_{O} &= \text{ratio of static and total temperatures at inlet} \\ V_{l}/a_{O} &= \text{ratio of absolute velocity at inlet and velocity of sound at } T_{O} \\ W_{lo}/a_{O} &= \text{ratio of relative velocity at } R_{lo} \text{ and velocity of sound at } T_{O} \\ \beta_{lo} &= \text{relative flow angle at } R_{lo} \\ M_{Wl} &= W_{lo}/a_{l} = \text{Mach number of } W_{lo} \end{split}$$

Symbols:

$$\dot{w} = \text{weight flow rate (lbm/s)}$$
  

$$\dot{m} = \text{mass flow rate (slug/s)}$$
  

$$R_{G} = \text{gas constant (ft-lb/(lbm,^{O}R))}$$
  

$$g = 32.174 \qquad (ft/s^{2})$$
  

$$T_{O} = \text{total inlet temperature (^{O}R)}$$
  

$$P_{O} = \text{total inlet pressure (psia)}$$
  

$$A_{I} = \pi (R_{IO}^{2} - R_{II}^{2}) = \text{area of inlet eye of rotor (in.}^{2})$$

$$k_{Bl} = restriction factor (-) p_1 = static pressure at inlet (psia) T_1 = static temperature at inlet (OR) U_2 = peripheral rotor speed at outer radius R2 (ft/s) a_0 = \sqrt{g \ Y \ R_G \ T_0}$$
 (ft/s)   
 R_{1i} = inner radius at inlet eye (in.)   
 R_{1o} = outer radius at inlet eye (in.)

 $R_2 = outer radius of impeller (in.)$ 

Although English units are used in the above list, the program can be used for any consistent system of units.

Derivations:

$$T_{1}/T_{0} = (p_{1}/P_{0})^{(\gamma-1)/\gamma}$$
  
$$\dot{w} = A_{1} k_{B1} V_{1} \frac{p_{1}}{R_{G} T_{1}} = A_{1} k_{B1} \frac{V_{1}}{a_{0}} \frac{(p_{1}/P_{0})}{(T_{1}/T_{0})} \sqrt{\frac{g \gamma R_{G} T_{0}}{R_{G}}} \frac{P_{0}}{T_{0}}$$

or

$$\mathbf{r}_{1} = \sqrt{\gamma} \frac{\mathbf{V}_{1}}{\mathbf{a}_{0}} \frac{(\mathbf{p}_{1}/\mathbf{P}_{0})}{(\mathbf{T}_{1}/\mathbf{T}_{0})}$$

and

$$\frac{V_{l}}{a_{O}} = \frac{\Phi_{l}}{\sqrt{\gamma}} \frac{T_{l}/T_{O}}{(p_{l}/P_{O})}$$

The peripheral speed  $\rm U_{lo}$  at  $\rm R_{lo}$  is

$$U_{lo} = (R_{lo}/R_2) U_2$$

For axial entry

đ

Thus

$$\frac{W_{10}}{a_0} = \sqrt{\left(\frac{V_1}{a_0}\right)^2 + \left(\frac{U_2}{a_0}\right)^2 \left(\frac{R_{10}}{R_2}\right)^2}$$

 $\tan \beta_{10} = \frac{(R_{10}/R_2)(U_2/a_0)}{(V_1/a_0)}$ 

and

$$M_{W1} = \frac{W_{10}}{a_1} = \frac{W_{10}}{a_0} \quad \frac{a_0}{a_1} = \frac{W_{10}/a_0}{\sqrt{T_1/T_0}}$$

The flow angle  $\beta_{10}$ ', by taking account of the blade thickness, is

$$\tan \beta_{10}' = \left(1 - \frac{t_u}{s}\right) \tan \beta_{10} = k \tan \beta_{10}$$

where

$$t_{u} = \frac{t}{\cos \beta_{B}}$$
$$s = \frac{2\pi R_{lo}}{Z_{R}}$$

where:

t = actual blade thickness at R  $\beta_{\rm B}$  = blade inlet angle at  $R_{\rm lo}$  $Z_{R}$  = number of rotor blade

Also

$$\cot \beta_{10}' = \frac{(V_1/a_0)/k}{(R_{10}/R_2)(U_2/a_0)}$$

with

$$k = 1 - \frac{t \frac{Z_R}{\cos \beta_B 2\pi R_{lo}}}{\cos \beta_B 2\pi R_{lo}}$$

If  $\beta_{\rm B}$  is the blade angle at  $R_{\rm lo},$  the incidence angle i' is

$$i' = \beta_{10}' - \beta_{B}$$

Enclosures: Operating Instructions (1 page) Program Listing (3 pages)

OPERATING INSTRUCTIONS PROGRAM No. 104 MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 Set-Up: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-2 Release (LOAD); (TO(O)); Depress (P); (RESUME)

P-COUNT								
001	ENTER:	₽l	( see	no	te)	(RE	SUM	E)
003	11	p _l /p	0 ( 5	see	note)	(	Ħ	)
005	11	γ				(	tt	)
036	11	U ₂ /a R ₁₀ /	Ö			(	tt	)
040	11	R _{lo} /	R ₂			(	11	)
067	11	k				(	tt	)
076	11	β _B				(	tt	)
101	RESULTS	: 1	(4)	<b>→</b>	$(T_1/T_0)$			
		Ť	(3)		$(V_1/a_0)$			
		Ţ	(2)		$(W_{lo}/a_{C})$	)		
		î	(1)		$\beta_{lo}$ (°)			
		Ť	(0)		$\beta'_{lo}$ (°)			
		Î	(5)	<b>→</b>	MWI			
		î	(7)		i'(°)			
				(1	RESUME)			

Note: If Program 104 is used immediately after Program 103, enter: at P-Count OO1:  $\uparrow$  (1) to obtain  $\Phi$ ,

at P-Count 003:  $\uparrow$  (2) to obtain  $p_{\rm L}/P_{\rm O}$ 

1	URB ROG	O-P RAM	RO	PUL	.SI	ON 4	LA	BOI	RAT	COR ROE	Y,	DE	PT .	. 0	F	AER ATC	lon DR	AUI	C I C	s,	NF	°S	,		PA	GE.	.1(	OF.	.3.						
•	INI	ET.	FL	OW		ONS	<u> </u>	F I			L (	COM 	PRE	ss	OR	WI	TH	<u>AX</u>	IA	L .	••	• • •	• • • • •	۰.	DA	ГE:	A	UG	7	2	BY	: <u>M</u>	<u>. н</u>	VA	VRA
	NOTES	ENTER: \$ [ 1(1) of 7806. 103]		ENTER: P1/P0[1(2) of PROG. 103]		ENTER: 2 [1(6) of PROG. 103]							•																		ENTER: U2/a0		ENTER: RIO/R2		
1	2																																1	2	
	X																																	X	
	×																																	×	
	6	Γ																																6	
	8	-																											-			_	-	8	
	1																									-			-	(V1/00) 2				2	
	9		÷.																										_	N)			-	9	
	ERS 5 6		-04		P./P0																												_	5	
	5				<b>P.</b> /				-				-1								0													4	
	REGI				_				-				小 小			1.		_		-	T1/T0							1/40					_	_	
I	m						30		_							7												1/1					_	-	
I	2																			_													_	2	
	-																																	-	
I	0																								1									0	
I	X																																	Σ	
I	4																												м					A	
I	ω					هد	لا			1-2	×	ī)×			3		P1/P0		1	T./To	T1/T0	Ð.		18		P/Pa	Vi/a		Vi/do		U2/dc		Rio/R	ш	
Γ	E	-	F 5	- 0	4 4	10	1 2	62	-	7 2	62	20	43	2	56	4 2	64	14	3	70	Э	С	2	6 2	7 2	64	01	4 2	2	9	- 0	0	- 0		
	CODE	40	4 4	40	4 4	4 0	4 4	0	0	0 7	4 6	0	4 4	46	05	4	46	0	4 6		4 4	46	0 7	4	0	4	07	4	0	4	4	$\rightarrow$	4		
	COMMAND	HALT	STR(6)	HALT	STR(S)	HALT	STR (3)	1	-	.1.	Rcl (3)	11	STR (4)	RCL (3)	L	STR (3)	RCL(S)	×a	RcL(4)	×	STR (4)	RCL(6)	.1.	RCL (3)	·ŀ	RCL(S)	×	STR (3)	IJ	5TR(7)	HALT	×	HALT		
	_	0	1	2	_	4	5	9	2	0	1	2	3	4 1	5	9	7	0	-	2	3	4	5	9	7	0		2	9	4	5		~		
	ADDRESS P COUNT	0		0		0			0	-							-	2							2	3					3	_	m		
	P P	0		0		٥																									0		0		
L	PT	0														21	5	-														1	14	V. 2	125/1

.

TI	JR 3 ROC	SO-F	RO	PUL 	SI( 10	DN )4	LA	BOI	ONR 	OE	16 	555 •••	C/	ALC 	UL	ATC	)R • • • •			s,	••		• •••		PA DA	GE. TE:	. 2 Al	OF.	37	2	BY	:	м.	H.Y.
	NOTES	$C = (U_2/d_0)(R_{10}/R_2)$																						ENTER: K							ENTER: 38	1		
	2	<u>.</u>																																2
	~	·																								-								Y
	×																																	×
	6																																	7
	00	19																																α
	~	(V1/a)																								-								2
	9	Ľ.	+																															9
STFRS	15	ġ.																			MMI													5
REGIO	2	F																																7
	~	Vi/da																																~
	5	1					·	W1/0																										2
	-												1310	310																				-
	0		υ																										310		_			0
	7																																	Σ
	A				5	2	0																		0									A
	ω	U		C ²	(Vya.	W1/ad)	Wildo		Vi/do			Bio	B10		Ti/To	FT.L.		Wi/d	/Mm	MWI		Vi/dd		×	k Vildo	υ	Bio	A10	18,00		B.B	( ?)		ы
Γ	ы D	70	5 7	60	99	20	56	4 -	6 2	76		20	9	40	m	56	72	6 1-	20	54	4 4	6 2	7 2	- 0	7 6	7 7	20	46	57	6 2	- 0	_	46	
-	CODE	0	4	0	4	0	0	4	4	0	4	0	0	4	4 6	0	0	46	0	0	4	4	07	4	0	4	0	0	4	0	4	0		
	COMMAND	×	STR (0)	+	RCL(7)	u	L	STR(2)	RCL (3)	X	RCL(0)	11	R to	STR(I)	Rc1(4)	Ļ	·ŀ	RCL (2)		1NV	STR(5)	RCL (3)	iley	HALT	X	RCL (0)	IJ	R→°	STR(0)	1	HALT		5TR (7)	
FSS	LND	0		2	.0	4	5	9	7	0	1	5	3	4	5	9	5 7	0	-	2	3	4	5	9	5 7	0 1	1	2	3	4	7 5	-	1 7	
ADDR	P COUNT	0 4	-						4	S				-			S	9				-		9	9	7					-			
	PT														-	216	5	З																v 219

+ 01 N

TURBO-PROPULSION	LABORATORY	, DEPT.	OF	AERONAUTICS.	NPS	
PROGRAM No. 104	MONROE	1655 CA	LCUL	ATOR		,

PAGE 3 OF 3 DATE: AUG. 72

В	Y	:		1	.	Н	V	
			٠					

•	••••	••••	• • • •	• • • •			• • •	• • •	• • •		 	•••		•••		••••	•••		• • •	••	•••	• • • •	•	DA	TE	AL	JG.		2	BY	4.	М.	H.V.
																Ť																	
	NOLES																																
	z																																
		S																															
		U LT																															
		RESULTS																															
																					$\vdash$												
	2		-							┝											-					-							2
	Y													-																			7
	×																																×
	6																																6
	∞																																$\infty$
	7	6.1																															~
	9	Đ																															9
ERS	5	Minh																															5
<b>GIST</b>	4 5	T/T_									 						-																4
RE		Y1/10 Ti	2							-	 					-	-																~
	2 3	Wi/da V	>																														2
		B10 W1																															_
	-									-	 						-																0
	0	310	_																						_								_
	×																																Σ
	A																																A
-	٤																																ы
5	2	- 0	40								 					_																	
5000	5	4	7 2						-		 																						
CIN	2 Z																																
CINN AND	APP. FIL	HALT	To(o																														
Slo	ر ۲		1 70																														
RES.	NDC	0		2	3	4	5	9	~	0	 5	~	4	5	9	2	0	-	2	~	4	5	9	7	0	1	2	~	17	10	ιD.	~	
ADDI	U a	-									 						-																
BR I	PT P COUNT	4													217	7																	
80	24	Z															-																

#### PROGRAM NO. 105

## MONROE CALCULATOR 1655/6 WITH CARD READER CR-1

#### Description

In Ref. (a)* the so-called adiabatic rotor efficiency  $\Pi_{\!R}$  of a radial compressor wheel is related to the wheel efficiency  $\Pi_{\!W}$  and to the velocity ratio

$$\Psi = \frac{W_2}{W_{2is}}$$

which is a convenient measure to express the rotor losses for performance calculations.

From Eq. a(21); that is, Eq. (21) of Ref. (a),

$$\Psi = \frac{W_2/W_{lo}}{\left[1 - \eta_W + \eta_W(W_2/W_{lo})^2\right]^{\frac{1}{2}}}$$

From Eq. a(27)

$$\Pi_{W} = \frac{\Pi_{R} - C}{1 - C}$$

where, from Eq. a(25),

$$C = \frac{1 - (R_{10}/R_2)^2}{(R_{10}/R_2)^2 \cot^2 \beta_{10} + 2\mu (1 - \mu/[2 \sin^2 \alpha_2])}$$

From Eq. II(5) of Ref. (a)

$$\frac{W_2}{W_{10}} = \frac{\left[1 - 2\mu \left(1 - \frac{\mu}{2} \sin^2 \alpha_2 \right)\right]^{\frac{1}{2}} \sin \beta_{10}}{R_{10}/R_2}$$

*See page 1 of Program 102

The following quantities are supposed to be known:

 $R_{10}/R_2$  = ratio of outer radius at impeller inlet and impeller exit radius  $\alpha_2$  = absolute flow angle at impeller exit  $\mu$  = impeller slip factor

 $\beta_{10}$  = relative flow angle at outer radius at impeller inlet

$$\eta_{\rm R}$$
 = adiabatic rotor efficiency [see Eq. a(12)]

To be determined are:

 $\Pi_{W}$  = wheel efficiency [see Eq. a(15)]

 $W_2/W_{10}$  = ratio of relative velocity at impeller exit and relative velocity at outer radius at impeller inlet

$$\Psi = W_2/W_{2is}$$
 = ratio of actual and isentropic relative velocities at impeller exit

The following quantities are used for the calculations

$$A = 2\mu \left( 1 - \frac{\mu}{2 \sin^2 \alpha} \right)$$

$$B = \sqrt{1 - A}$$

Then

$$C = \frac{1 - (R_{10}/R_2)^2}{(R_{10}/R_2)^2 \cot^2 \beta_{10} + A} = \frac{D}{E}$$
$$W_2/W_{10} = \frac{B \sin \beta_{10}}{R_{10}/R_2}$$
$$F = \left[1 - \eta_W + \eta_W (W_2/W_{10})^2\right]^{\frac{1}{2}}$$
$$\Psi = \frac{W_2/W_{10}}{F}$$

Enclosures: Operating Procedure (1 page) Program Listing (3 pages)

## OPERATING INSTRUCTIONS PROGRAM No. 105

MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 Set-Up: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-3 Release (LOAD); (TO(O)); Depress (P); (RESUME)

P-COUNT						
001	ENTER: R	10 ^{/R} 2		(RE	SUM	E)
003	": a,	2		(	11	)
012	":μ			(	11	)
037	":β	lo		(	11	)
067	" <b>:</b> Ŋ			(	11	)
122	RESULTS:	↑ (4) →	W ₂ /W _{lo}			
		↑(5)→	$\eta_{W}$			
		↑ (3) →	ψ			
		(1	RESUME)			

R	RB OGI ELA E_R	TI	ON	O. BE	TWI	EEN	R	. М ОТС	ON) DR	ROE EFF	5 1) 710	655 T FN		AL(											PA	GE. TE:	1	OF J.G.	3	•	B	· · · ·	1.4	, yạ yr
	NOTES	ENTER: RIO/RE		ENTER: d2							ENTER: A																					ENTER: /310		
	2										-	-	-												-	-								2
	λ		_	_	_	-																												Х
	×																																	×
	6												-																					6
	80																																	α
	2														$\vdash$	-																		2
	9		Rio/R	7						T							-																Rig/R	9
ERS	5		R																-														8	5
EGIST	4					_				-							-											-		-				4
RE							-			-							$\vdash$	$\vdash$						-			_							~
	2 3					-	-					E			-	-	-																	2
								-		Sinda		2	, 											A				4					A	-
	-								-	25	-						-							1							£A		B	0
	0				-				_							-								_								-	-	-
	X																																	Σ
	A	(g.			Ka .		×		sin K2					2 sin X2	2310 043																	0	2	A
	ω	R /p		22			Sink	-	2			X		_	_					K	Y-		1-A			A-	V+		1-A	B		310	Sing	Ξ
300	CODE	- 0	4 5	- 0	40	70	70	0 2	20	4	-	4 1	7 2	60	6 2	- 0	10	0	70	1 9	60	0	6 2	4	- 0	20	3	4	60	56	4	-	4	
-		4	4	4	0	0	0	0	0	4	4	4	0	4	0	0	0	0	0	4	0	0	0	4	0	0	0	4	4	0	4	4	0	
COMMAND	IN VIENTINA	HALT	STR(6)	HALT	SIN/COS	×	×	2	11	STR(1)	HALT	STR(2)	4.	RCL (1)	1	-	×	2	x	RCL (2)	+	-	1	STR(1)	-	U	CHSGN	STR (2)	RCL(1)	5	STR(1)	HALT	SIN COS	
ESS	COUNT	0	-	5	3	4	5	9	2	0	-	2	3	4	5	9	2	0	-	2	3	4	5	9	2	0		2	3	4	ŝ	9	2	
		0		0					0	-	-						-	2							2	3		_				03	3	
-	PT P	0		0					0		0					22	1	0 1														9		

RC	• •	• • •	•••		•••		•	• • •			••	• •	• • •		•••		ON.			• •	• •		• • • •	۳,	PA DA	GE. Fe:	2( _AL	OF. JG	.3.	2	BY	(:.	м.	Ĥ
NOTES																								ENTER: 7R										
Ţ	2																																	•
	7																												_					>
	×																																	1
ł	8									_																_								
$\mathbf{F}$	~																			-						_							$\left  \right $	+
1	9	Rio/R,																																
ERS	5	<u>A</u>																					ピー							MG				ŀ
REGIST	7											ш								<b>U</b> 1										Ì				ľ
	m	SinBu	-																															Ľ
	2	A																50													•			
-		A	-																															
ł	0								2				_																		_		$\square$	
$\left  \right $	Σ		_				_	0	-04 B10-																	_							$\left  \right $	
ł	× ω	Sin Big	cos /3.4	_ :	sin/3 ₁₀	cot B	Rio/R	Riecothie	10/R2)	A	w		Rigk,	-	Right) ²	-	-D	ц	U			υ -		7a		-0	7a-d	-C	7w		В		singie	1
-	-	2 si	6 60	2	2	0	2	0	0	1	0	3	SR	0	2 (8	-	2 -	3	0	3	-	0	4	1	0	3 -	2 7	4	0	4	0	0	2 5	ŀ
CODE		4 4	0 3	0 7	4 6	0 7	46	0 7	0 6	46	0 2	4	46	0 7	0 6	0	0 7	4 6	0 6	4 4	0	0 2	4 4	40	0 6	46	0 7	46	0 2	4 4	46	07	46	
COMMAND		STR (3)	2.FUNC	·1·	RCL(3)	×	RCL (6)	×	+	RCL(2)	u	STR(4)	RCL(6)	×	1	-	.1.	RcL (4)	+	STR(4)	1	11	STR (S)	HALT	+	RCL(4)	•1•	RcL ( 5)	u	STR (5)	RCL (1)	×	RCL (3)	
ADDRESS		0	-	2	3	4	5	9		0	1	2	3	4	5	9	5 7	0	-	2	3	4	5	66	67	7 0	1	2	3	4	5	9	77	
DDR	SC C	0 4				-		-	4	5							5	9		-	-			0 6			-				- 4		-	

•

TU	RB	0-F	RO	PUI	LSI	ON	LA	BO	RAI	OR	Υ.	DE	PT		<b>न</b> (	AEF	RON	AU	ΓΙΟ	s.	NJ	2S						er				të a fulloqqqqata			
<b>P</b> R	.0Gi	RAM	1 N 	0.	¹	105	• • • •	. M	ONF	ROE	1	655	C	ALC	UL	ATC	DR						•		PA	GE.	3 AI	OF. JG	3		DI	2.5	м	រ ។	/
•									•				•••											-							D	•••			•
	ES																																		
	NOTES																																		
																			Ts:																
																			RESULT																
																			R E																
	2																																	2	
	Υ																																	Υ	
	×																																	×	
	6																																	6	
	8																																	8	
	7																																	7	
	9	Rio/R																							-									9	
TERS	5	ML	_																wh															5	
ECISTER.	4	2-			W2/W													-	M2	M 10														4	
R	Э	sinblo	-															み	5	-														~	
	2	A																																2	
		В																																	
	0																																	0	
	W																																	Σ	
	A					)2																												A	
	ш	The second	Rio/R.	W2/W		(N2/N6)2	ML	-	ma			F2	ш		W2/W	1/2	2		2															w	
L	E	7 2	5	0	3	0	4	0 2	4	0	- 0	0	9		3	0	4	4 2	-	0															
	CODE	0 7	4 6	0 7	4 4	0 7	46	0 0	46	0 6	0	0 2	0 5	0 7	4 6	0 2	0 5	4 4	4	4 2				_											
	ANA				4)		(2)		(5)						4)			(3)		(0															
011010100	L'EIO-	• •	RcL(6)	×	STR (	×	RCL (	ł	R CL(	+	-	1)	5	•}•	RCL(	11	VNI -	STR	HALT	To(o															
ESS	INU	0	-1	2	3	4	2	9	7	0	-	2	3	4	5	6	7	0	-	2	3	4	2	9	7	0	~	2	3	4	2	9	7		
ADDRESS	CO	0							0								-	1 2	2						_										
BR A	TP	4 -								Ξ						223		5																	
80	11.	Y														22:																			

M il V Olnela

#### PROGRAM NO. 106

## MONROE CALCULATOR 1655/6 WITH CARD READER CR-1

## Description

This program is used to determine the flow properties at the discharge of a radial compressor wheel with the following equations of Ref. (a)*.

Eq. I (6): 
$$\frac{T_{t2}}{T_0} = 1 + (\gamma - 1) \mu \left(\frac{U_2}{a_0}\right)^2$$
  
Eq. I (7):  $\frac{T_2}{T_0} = 1 + (\gamma - 1) \mu \left(\frac{U_2}{a_0}\right)^2 \left[1 - \frac{\mu}{2 \sin^2 \alpha_2}\right]$   
Eq. I (8):  $\frac{T_2'}{T_0} = 1 + (\gamma - 1) \mu \left(\frac{U_2}{a_0}\right)^2 \left[\frac{1}{\psi^2} \left(1 - \frac{\mu}{2 \sin^2 \alpha_2}\right) - \frac{1}{2\mu} \left(\frac{1}{\psi^2} - 1\right)\right]$   
Eq. I(20):  $\frac{p_2}{p_0} = \left(\frac{T_2'}{T_0}\right)^{\gamma/(\gamma - 1)}$ 

Eq. I(19): 
$$\frac{P_{t2}}{P_0} = \left(\frac{P_2}{P_0}\right) \left(\frac{T_{t2}/T_0}{T_2/T_0}\right)^{\gamma/(\gamma-1)}$$
  
Eq. II(6):  $M_{v2} = \frac{\mu U_2/a_0}{\sin \alpha_2 \sqrt{T_2/T_0}}$ 

Input data are:

$$\frac{U_2}{a_0} = \frac{\text{peripheral speed of impeller at discharge}}{\text{velocity of sound at total inlet temperature } T_0$$

$$\alpha_2 = \text{absolute flow angle at impeller exit}$$

$$\mu = \text{rotor slip factor}$$

* See page 1 of Program 102

 $\mathbf{v} = \mathbf{c}_{\mathbf{p}} / \mathbf{c}_{\mathbf{v}}$ 

$$\Psi = W_2 / W_{2is} =$$
velocity ratio

The calculated values are :

$$\begin{split} \mathbf{T}_{0} &= \text{total temperature at impeller inlet} \\ \mathbf{P}_{0} &= \text{total pressure at impeller inlet} \\ \mathbf{T}_{2} &= \text{static temperature at impeller exit} \\ \mathbf{p}_{2} &= \text{static pressure at impeller exit} \\ \mathbf{T}_{t2} &= \text{total temperature at impeller exit} \\ \mathbf{P}_{t2} &= \text{total pressure at impeller exit} \\ \mathbf{M}_{V2} &= \text{Mach number of absolute velocity V}_{2} \text{ at impeller} \\ &= \text{exit} &= \frac{V_{2}}{\sqrt{g \, \forall \, \mathrm{R}_{\mathrm{G}} \, \mathrm{T}_{2}}} \end{split}$$

The following quantities are established during the calculations

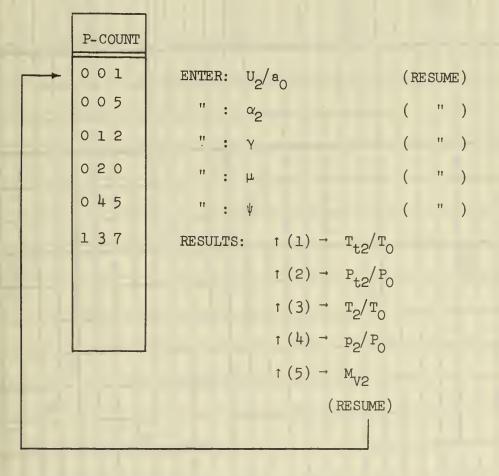
$$A = (\gamma - 1) \mu \left(\frac{U_2}{a_0}\right)^2$$
$$B = 1 - \frac{\mu}{2 \sin^2 \alpha_2}$$
$$C = \frac{1}{2\mu} \left(\frac{1}{\psi^2} - 1\right)$$
$$D = \frac{\mu^2 \left(\frac{U_2}{a_0}\right)^2}{\sin^2 \alpha_2}$$
$$E = \gamma/(\gamma - 1)$$

Then:

$$\frac{T_{t2}}{T_0} = 1 + A$$

$$\frac{T_2}{T_0} = 1 + AB$$

$$\frac{T_2'}{T_0} = 1 + \left[A \frac{1}{\Psi^2} B - C\right]$$


$$M_{V2} = \sqrt{\frac{D}{T_2/T_0}}$$

Enclosures: Operating Instructions (1 page)

.

Program Listing (3 pages)

OPERATING INSTRUCTIONS PROGRAM No. 106 MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 Set-Up: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-3 Release (LOAD); (TO(O)); Depress (P); (RESUME)



Note: N-switch must be in "Down" position.

RC	OGR	AM ITI		S A	10 T	6 DIS	SCH	MC	ONR GE	OE OF	16	55 1PE		ER	OF	RA	R DI	AUT	CO	MPR	ES	SOF	<u></u>		PA DA	GE. TE:	I( AU	OF.	3. 72		BY	<: <u>M</u>	I.H	
NOTEC	CT TON	ENTER: U2/40				ENTER: de					ENTER: 8						ENTER: A																	
	2																																	2
	Y						-																											1,
	×																	·																ţ
	6																	オ																Ţ
	80							_								1-2			-															4
	7	-					_					20															_							ŀ
	9				Uz/4n)	•																												t.
ERS	5		-		(ŋ)					sinda	-									_	-											_		ŀ
EGISTI	4		_							Sin																								┞
REC		_															_				_	_				_		_						$\mathbf{F}$
	2 3			_			_			-													_											ŀ
																											Ш							ŀ
	-							6 1		_				1-1)				ie il			1-1-1	A		-										
	0			10					10																0									
	X																																	
Ì	A			2																e														L
	ш	Uy/ao		(U, 100)		ď2	sind2		sind		×	Y			1-1		¥		4(1-1)	(0, ka)	∢		~		1-1	ш		¥			1/2	Sind		
6	1	1	7 0	20	45	0	40	70	20	4 4	0	4 6	6 2	0	70	4 7	0 1	50	0	65	20	0	66	7 2	5 7	20	4 -	7 0	7 2	0 2		6 4	6 2	
2002	2	40	0 7	0	4 4	4	0	0	0	4	4	4	0	0	0	4 4	4 c	4	20	4	0	4 4	4	0	46	0	4	4 7	-	0	20	46	0	
COMMAND	ANAT-LIO	HALT	×	U	STR(6)	HALT	SIN/COS	×	u	STR(5)	HALT	STR (7)	1	-	×	STR (8)	HALT	str(9)	×	RCL(6)	u	STR (1)	RcL(7)	•].	RCL(8)	(1	STR (2)	RcL(9)	·]·	2	·ŀ	RCL(S)	1	
-	_	0	-	6	3	4	5	9	7	0	-	2	3	4	5	9	7	0	-	2	3	t	5	9	7	0		2	3	7	5		2	
ADDRESS	P COUNT	0				0				-	-						-	2			_					3	_					_	3	l
AD	Δ,	0			0	0				0	0						0	0								0							0	1

TI	JR BOGI	D-P RAM	RO	PUL	.SI 1	0N 06		BOI		10E	16	555 •••	- C/	ALC	UL	AT(	)R 	•••	• • •		• •	• • •		۰.	PA DA	GE. TE:	.2. AU	OF.	.3. 72		BY	: _ ]	Ч.н	H.V.
	NOTES																																	
	LON					ENTER: W																												
	2																																	2
	Y																																	X
	×																																	×
	6	z	-																															6
	8	2-1																																8
	7	)   ²								1/yr																								7
v	9	(02/do)																															_	9
STERS	5	sin ² 0/2																							A								_	5
REGI	4																υ														•			4
	3				A					_																								3
	2	Ш													-																		_	2
	-	A																															_	-
	0																																	0
	X																																	Σ
	V											_								8	2 0		No	10-41		2	100.00							A
L	ω		-B	B		7	1/2		2 1/43		_	2 1/1-1	2		10	D, C	3	TY I			5 Uz/ao		a sin bl	A		6 1/42	0	2 B	2	3 C	0	A	0	ω
	CODE	- 0	20	13	4 2	10	54	70	9	46	0	7 2	0	72	70	20	4	70	70	70	65	7 2	64	20	4 4	6 6	7 0	6 2	6 3	9	7	60	9	
-	-	0	0	0	4	4	0	0	0	4	0	0	0	0	4	0	4	4	0	0	4	0	4	0	4	4	0	4	0	4	0	4	0	
-	COMMAND	2	11	CHSGN	STR (3)	HALT	INV	×	1	STR (7)	-	.].	2	+	RCL(9)	11	STR (4)	RCL (9)	×	×	R CL(b)	•••	RCL(5)	8	STR(5)	RCL (7)	×	RCL(3)	1	RCL (4)	×	RCL (1)	+	
ESS	COUNT	0	-	2	3	- 4	5	9	7	0	1	2	3	4	5	9	7	0	-	2	3	4	5	6	7	7 0	1	2	3	4	5	9	77	
ADDRESS	P CO	0 4		_		0 4				05								00								0		_					0	
BRIA		2 0				0				-						229	)	ß																

Mil V 2/2c

TU PR	R B OG	O-I RAN	PRO 1 N	PUI	.SI(	ON 06	LA	BOF	RAT	•••	••	•••	PT C/	•••	• •	• • •				s,		es :	,		PAC	GE. CE:	3 .AL	<b>0F</b> .	3 72	•	BY	(: <u>M</u>		•¥ : .
	NOTES																															RESULTS		
F	2			$\vdash$														-														8		2
	7		$\uparrow$																															X
	×																		. 1															×
	6	F																																6
	8	1																																ω
	~	2 1/14																																~
s		(U1/a										_																						9
STER	5	A																	MV2													M		2
REGI	7	υ				P2/Pa																												4
	~	1-	-										T2/T0					_												_	-	1~1		_
	2	Ш		-																				4							1 ag	Prz		3
-	-	◄	-	-														-	-					142/50								T	2	- 0
	0 W	┝	+	-											-						·												-	Σ
	$\vdash$	+-		-		-				-																							-	V
	EA	┢	TzYto	Ш	13/F	-	A	_	В			$T_2/T_n$	T2/T0	To/T2		A		Mv2		1		A	Tha/T		T2/t0	ta/ta	ш		Pz/Po	Pt2/A0			-	ш
-	L	-	4	-	0	3	0	0	ุณ	0	-	0	8	4	0	4	0	9	4		0	0	2	0	2	4	-	0	M	0	~	-	0	
	CODE	0	0	46	0	4 4	46	0 7	46	0 6	0	0 2	4 4	0 5	0 7	4 6	0 2	0	44	0	0 6	46	0 7	4 4	46	0 7	46	0 7	46	0 2	4 4	4	4	
	COMMAND	-	×	RCL(2)	11	STR (4)	RcL (1)	×	RCL (3)	+	-	H	STR (3)	INV	×	RCL(5)	Ħ	5	STR(5)	-	+	RCL(1)	·1·	STR(I)	RCL(3)	ъ*	RCL (2)	×	RCL (4)	11	STR (2)	HALT	10(0)	
		0	-	2	3	4	_	6	7	0	1	2	3	4	5	9	7	2 0	-	2	3	4	5	6	7	30	-	2	2	4	5	36	-	
ADDR	P COUNT	0 -								-								1 2								-						-		
BR	11	4													1	230		5															1	1 91-

#### PROGRAM NO. 108

## MONROE CALCULATOR 1655 WITH CARD READER CR-1

#### Description

This program calculates Eq. C(17) of Appendix C.

$$(\mathbf{\dot{m}})^* = 2\mathbf{k}_{B1} \sqrt{\gamma} \int_{0.287}^{0.541} \left(\frac{\mathbf{R}_1}{\mathbf{R}_2}\right) \times \left(\frac{\mathbf{V}_{10}}{\mathbf{a}_0}\right) \left[1 - \frac{\gamma - 1}{2} \left(x \frac{\mathbf{V}_{10}}{\mathbf{a}_0}\right)^2\right] \frac{1}{4} \left(\frac{\mathbf{R}_1}{\mathbf{R}_2}\right)$$

where  $X = \frac{V_1/a_0}{V_1/a_0}$ 

For five equal increments of  $R_1/R_2$  between 0.287 and 0.541 the ratio X can be calculated from Eq. C(15) and C(16). The following table gives the data that have to be entered in the program in the order required, starting from i = 0. The quantity  $z_i$  is used in the process of integration.

i	0	l	2	3	4	5
Xi	0.5081	0.5749	0.6544	0.7493	0.8631	1.0
$(R_1/R_2)_i$	0.287	0.3378	0.3886	0.4394	0.4902	0.541
z _i	2	l	l	l	l	2

With  $\Delta(R_1/R_2) = (0.541 - 0.287)/5 = 0.0508$  and

$$N_{i} = \left(\frac{R_{1}}{R_{2}}\right)_{i} X_{i} \left[\frac{V_{10}}{a_{0}}\right] \left[1 - \frac{\gamma - 1}{2} \left(X_{i} \frac{V_{10}}{a_{0}}\right)^{2}\right]^{1/(\gamma - 1)}$$

there is with the trapezoidal method of integration

$$\int_{0.287}^{0.541} = \left( N_0 / 2 + N_1 + N_2 + N_3 + N_4 + N_5 / 2 \right) \Delta \left( \frac{R_1}{R_2} \right)$$

$$0.287$$

 $\mathbf{or}$ 

$$S = \int_{0.287}^{0.541} = 0.0508 \sum_{i=0}^{5} N_i / z_i$$

Hence

$$(m) * = 2k_{Bl} \sqrt{\gamma} S$$

Further, from Eq. C(18)

$$\cot \beta_{10} = \frac{V_{10}/a_0}{(U_2/a_0)(R_{10}/R_2)} = \frac{V_{10}/a_0}{0.44903}$$

From Eq. C(19)

$$M_{W1} = \frac{0.44903}{\left[\sin^{2}\beta_{10} - \frac{\gamma - 1}{2} (0.44903)^{2} \cos^{2}\beta_{10}\right]^{\frac{1}{2}}}$$

The program can be used for different values of  $\gamma$ ,  $k_{Bl}$ ,  $U_2/a_0$  and  $R_{10}/R_2$ . It can be adapted also to integrations with more than five equal increments between  $R_{1i}/R_2$  and  $R_{10}/R_2$ . In this case the increment  $\Delta(R_1/R_2)$  must be entered in addresses 75 to 103 (octal).

Enclosures: Operating Instruction (1 page)

Program Listing (4 pages)

#### OPERATING INSTRUCTIONS PROGRAM No. 108

MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 <u>Set-Up</u>: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-4; Release (LOAD); (TO(O)); Depress (P); (RESUME)

P-COUNT (RESUME) 001 ENTER: γ ") 022 k_{B1} ("") ("")  $(R_{10}/R_{2})$  ("")  $(V_{10}/a_{0})$  ("")" (U₂/a₀) 025 027 041 "  $X_{i}(^{+})$ "  $(R_{1}/R_{2})_{i}(^{+})$ 045 ( ") 063 "Z_i (⁺) п ) 065 If i ≠ 5 ↓ If i = 5 (RESUME) Depress (SENSE) (RESUME) 145 RESULTS:  $\uparrow (0) \rightarrow (\dot{m}) *$  $\uparrow$  (1)  $\rightarrow \beta_{10}^{0}$  $\uparrow$  (3)  $\rightarrow$  M_{Wl} Release (SENSE) (RESUME) Introduce new value of  $(V_{10}/a_0)$ 

(⁺) Enter val[.] with equal indices i of Table on p. 1 of Program Descripti sequentially for i = 0, 1, 2, 3, 4, 5.

TU PR M	RB OG ASS Q:	0-P RAM 5.F. . <u>C</u> (	ROI No LQV 17)	PUL D J. BA	SI 10 ATE F_H		LA T.J RII	BOF MC IND D C		OR OE EB PRE	Y, 16 IN SS	DE 555 LEI OR		0 ALC S I S I C		AER ATC CT REI			FIC F.V	S, 10	N F /a (	?S	•		PAC DA1	GE. CE:	18	0F. /4/	4 72	•	BY	ڑ <b>:</b> ا	м.н	l.Va
	NOTES	ENTER: Y																	ENTER: KBI = K			ENTER: U2 /00		ENTER: RIO/R2	r)								Clears (0)	
	2					_																												2
	Х																																	Υ
	×																																	×
	6																																	6
	80																																	80
	~																																	~
	9																				k/Y												zklγ	9
ERS	5									<u>۲-</u> 1											2				-								- 2	5
EGIST	4									21			- -												-								-1-	4
RE	6												1>																					~
	2		-															-								۹ ا				_				2
		-	×				Υ.						_					-							-								q X	-
	0		~												1			1.1	101							-							0	0
	7.											-																						Σ
	-						1.1	-	-		1	13	-				17-24	-	-								1	-			-			A
	A					-					-	1-			1×			Vr		2k15		Uz/ao		Rio/Re	_									ш
	ω	× -	γ	2		2 X-	_	2	0	4	-7	4	m	S O	9	0	2	02	*	O 2k	5	1 Uz/	0	1 Rto	Р 0		0	0	0	0	0	0	1	
200	CODE	0	4	9	0	7	4	0	2	4	9	5	4	6 0	S	70	0	2	0	2	4	0	7	0	20	4	Ĭ						5	
		4	4	0	0	0	4	0	0	(	4	0	4	4	0	0	0	0	4	0	4	4	0	4	0	4							) 4	
	COMMAND	HALT	STR (1)	1	-	-1-	STR(2)	2	đ	STR (5)	RCL (2)	INV	STR (4)	RCL(I)	5	×	2	×	HALT	IJ	STR (6)	HALT	×	HALT	8	STR (2)	0	0	0	0	0	0	57R (0)	
SS	INC	0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	7	0	-	2	3	4	5	9	7	
DDR	P COUNT	0			·				0	-							-	2	2			2		2	2	3	_	_	_				ß	
-	PT P	0														23		-																

• .

(

# TURBO-PROPULSION LABORATORY, DEPT. OF AERONAUTICS, NPS ,

PROGRAM No. 108 MONROE 1655 CALCULATOR PAGE 2 OF 4 DATE: 8/4/72 BY: M.H.V. -00 ; i=0=5, Ś ENTER: ZL; L=0-+5, If L=5, depress [SENSE] 5 .0508 ·= 0 = ? ų NOT ES ENTER: (VI. /a)  $3i = (1 - c_i)^{1/(r-1)}$  $\frac{Y^{-1}}{2}(v X_i)^3$ (R./R2); ENTER: (X;); (Ni/zi) Ni/Zi R AR/R2 ENTER: ( W-W ، ن 4 0 2 N 2 Х Х × × 6 6 ဘ  $\infty$ ~ 5 2K/8 2 × 18 9 9 REGISTERS 1 7-1 5 ŝ 1-1 4 -1-4 vXi vXi ~ m 2 2 9 Ω -5 > ひ

	0	0																																
	Σ.																																	Σ
	A																													$\langle z_i \rangle$				4
	ш	4		2		Xi	v X i		$(vX_i)^*$	ず	c;	- c;			1-c:		100	vXi		(Ryks)	N:	1	Ni/z:	•	0	0			ស	ZIN				12
[1		-	0	0	0	-	0	2	0	4	0	3	0		4	3	0	2	0	-	2		0	2	0	2	3	0	2	0	2	0	5	
CODF		0	4	9	7	0	7	4	7	9	2	_	9	0	て	9	7	9	7	0	2	0	9	7	2	5	2	4	4	7	-	0	0	
č	د	4	4	4	0	4	0	4	0	4	0	0	0	0	0	4	0	4	0	4	0	4	0	4	0	4	S	5	9	0	P	01	0	
COMMAND	ANULTION	HALT	STR(I)	RCL (1)	×	HALT	×	STR(3)	×	RCL (5)	IJ	CH SGN	+	-	°,	Rcl(4)	×	R cL (3)	×	HALT	·ŀ	HALT	+	RcL (0)	1)	ST.R (0)	SFSNS	SKFI	JUMP 42	×	•	0	S	
SS	HN	0	~	5	3	4	5	9	2	0	-	2	3	4	5	9	7	0	-	01	3	4	5	9	7	0	1	2	3	4	-0	12	1~	
ADDRESS	COUNT	4		4		4			4	S							S	9		9		9			9	7					7	7	2	
ADI	Р	0		-			-																											
33	Ld	2														2	35	3																

MUV. 2/25/72.

TI	JR B LOG	O-P RAM	ROI		.SI(	) <u>8</u> . 	•••	MC	ONR	0E	16	• • •	CA		UL.	ATC	R	•••		s,	• •	• • •			PAC	GE	3	<b>DF</b> . 8/4	4	2	BY		М.	
	NOTES		AR/R2 = . 050000		٨																							d = 1-1 b2 cos 310		$f = d - \sin^3/3_{10}$	-f = sin 3 1-1 b cos B10			
	2												_																					2
	X																																	7
	×																																4	×
	6																													_			_	6
	8																																	8
	-																																-+	~
	9	2																															2 KV	9
STFR	;	ゴ																														*	12	2
RFCT	4	-1;																			0												Ī	4
	2	ưΧi																			SIN 3	•											Sing	m.
	2	-																															٩	2
	-	۶															310	/															310	-
	0								(in)*																								*(£	0
	7.																																	Σ
	V					Z(N; A:) AR	2											0		10		2			\$/810	5,000			810					V
	ω				s	Z(N;	-	(بنه)*		5		Ą	cot B,		310 R	$ \ge $	3100	SIN B		SIN 2		cos/8.		٩	bcos		고	_	sin	4	4		U X	ш
	CODE	0	0	0	0	70	65	20	57	09	7 2	6 1	7 6	- 0	20	46	40	40	70	20	4 2	36	70	19	70	0 1	$\rightarrow$	62	6 2	2	m -		54	
			0			0	4	0	4	4	0	4	0	0	0	0	4	0	0	0	4	0	0	4	0		4		4	0	0	0	0	
	COMMAND	0	8	0	0	×	RCL(6)	1)	STR(O)	RCL (1)	•)•	RCL (2)	X	1	ŧt	R	STR (I)	SIN/COS	×	U	<b>STR(3)</b>	2. FUNC	×	RCL (2)	×	- 1	RCL (5	1	RCL (3)	b	CHSGN	5	INV	
FSS	COUNT	0	-1	2	3	4	5	6	7	0	-	2	3	4	2	9	7	0		2	~	4	2		~	0	-	2	2	4	S		3 7	
ADDRESS	P CO	0			0				0	-							-	1 2							2	- m	-	-			-		-	
	Ld	4														23	6	ы									4		_				,	1 2/21

PRO	DGI	RAM	N	0.	10	8	• • •	• •	• • •	• • •	1	655		AL(	UL	AT	- • •		• •	••••		• • •			PA DA	GE. TE	4	0F 8/	4/7	2	В	X: ]	M . H	.v.
NOTEC	101 E3					RESULTS		Clears (0)	To repeat with new value Yio/do																									
	2																																	2
	×																																	Υ
	×																																	×
	6																																	6
	20																															1		8
Ī	-																																	2
Ī	9	2 418																												Γ				9
<b>FERS</b>		7-1 2																																5
EGISTERS	4							_		-		•					$\vdash$								-									4
~	-	Sin Bio 5			M	MMI	-										$\square$									-		-						~
	2	b Isr			Σ	2																								-				5
ł	_	B10				B10°			-	$\vdash$					_		-						-											-
ł	0	ل *( ش))				(in)* (														.7														0
+	У.	(r				5			-																		-							Σ
+	A							-																					-					A
ł	ω		9	MW			-				-						-	-															_	ш
_		0	-	MO	2	-	0	_	2					77																111				
CODE		0 7	46	0 2	4 4	40		4 5	74																								_	
CONMAND		×	RCL (2)	1	STR (3) 4	HALT 4	0	STR (0) 4	TO(2)																									
		0		2		4 1	5			0	-	ć	3	4	5	9	7	0	-	2	3	4	5	9	r~	0	-	2	3	4	Ś	Q	1-	
ADDRESS	COL	4				4			4																									
BR AI		- 9				-			-							237	,																	

.

#### PROGRAM No. 109

#### MONROE CALCULATOR 1655 WITH CARD READER CR-1

#### Description

This program calculates the flow conditions after an axial row of blades for known entrance conditions. Figure D(109)l shows such as cascade located between station (e) and station (d). It is assumed that the conditions at the mean radii  $R_{me}$  and  $R_{md}$ , at entrance and discharge, respectively, are representative of the average flow properties ahead of and after the cascade. The effective flow area at station (e) is taken as

 $A_e k_{Be} = 2\pi R_{me} h_e k_{Be}$ 

where k_{Be} is a blockage factor that takes account of the boundary layers at the inner and outer wall contours. Similarly, at discharge station (d)

 $A_{d} k_{Bd} = 2\pi R_{md} h_{d} k_{Bd}$ 

Figure  $D(109)^2$  shows a diffusor cascade of a subsonic axial compressor where the flow angle is reduced from  $\alpha_e$  to  $\alpha_d$ . Figure  $D(109)^4$  shows a stator of a turbine blading where the subsonic velocity  $V_e$  ahead of the row is accelerated to a supersonic velocity  $V_d$  because of the convergingdiverging area change of the flow channel. Figures  $D(109)^3$  and 5 represent the flow processes in the bladings of Fig.  $D(109)^2$  and 4, respectively in entropy diagrams, by assuming that the processes are adiabatic and that the fluids have constant specific heat ratios  $\gamma$ . In general, from the equation of continuity

 $A_{e} k_{Be} \rho_{e} V_{e} \cos \alpha_{e} = A_{d} k_{Bd} \rho_{d} V_{d} \cos \alpha_{d}$ 

With  $\rho_e$  and  $\rho_d$  from

$$\rho = p/g R_{\rm G}$$
 I

and the Mach numbers M and M from

$$M = V / \sqrt{g \gamma R_{G} T}$$

there is

$$M_{d} = \frac{A_{e} k_{Be}}{A_{d} k_{Bd}} \frac{\cos \alpha_{e}}{\cos \alpha_{d}} \frac{P_{e}}{\sqrt{T_{e}}} M_{e} \frac{\sqrt{T_{d}}}{P_{d}}$$

To obtain dimensionless relations the static pressure p and the static temperatures T will be taken as multiples of the constants  $P_0$  and  $T_0$ , respectively. Then

$$M_{d} = K \frac{\sqrt{T_{d}/T_{0}}}{(p_{d}/P_{0})}$$
 D109(1)

where

$$K = \frac{A_e k_{Be} \cos \alpha_e}{A_d k_{Bd} \cos \alpha_d} M_e \frac{P_e/P_0}{\sqrt{T_e/T_0}} D109(2)$$

The dimensionless quantity K is known from the cascade geometry and the inlet conditions. It is assumed that the ratios  $P_{te}/P_0$ ,  $T_{te}/T_0$  and the Mach number M_e are known, where  $P_{te}$  and  $T_{te}$  are the total pressure and the total temperature at station (e). Then, from

$$T_{te} = T_{e} \left[ 1 + \frac{\gamma - 1}{2} M_{e}^{2} \right]$$

and

$$P_{te} = p_{e} \left[ 1 + \frac{\gamma - 1}{2} M_{e}^{2} \right]^{\gamma/(\gamma - 1)}$$

there are

$$\frac{T_{e}}{T_{0}} = \frac{T_{t2}/T_{0}}{1 + \frac{\gamma - 1}{2} M_{e}^{2}}$$
D109(3)

and

$$\frac{P_{e}}{P_{0}} = \frac{P_{te}/P_{0}}{\left[1 + \frac{\gamma - 1}{2} M_{e}^{2}\right] \gamma/(\gamma - 1)} D109(4)$$

These quantities establish the value of K of Eq. 2, if the flow areas, the blockage factors, and the flow angles at stations (e) and (d) are known.

Since  $T_{td} = T_{te}$  for an adiabatic process, there is similar to Eq. 3

$$\frac{T_{d}}{T_{0}} = \frac{T_{te}/T_{0}}{1 + \frac{\gamma - 1}{2} M_{d}^{2}}$$
D109(5)

The losses in the row of the blade are expressed by the total pressure loss coefficient  $Y_{t}$  defined by

$$Y_{t} = \frac{P_{te} - P_{td}}{P_{te} - P_{e}} D109(6)$$

Hence

$$\frac{P_{td}}{P_0} = \frac{P_{te}}{P_0} - Y_t \left(\frac{P_{te}}{P_0} - \frac{P_e}{P_0}\right) \qquad D109(7)$$

and, similar to Eq. 4,

$$\frac{P_{d}}{P_{0}} = \frac{P_{td}/P_{0}}{\left[1 + \frac{\gamma - 1}{2} M_{d}^{2}\right]^{\gamma/(\gamma - 1)}} D109(8)$$

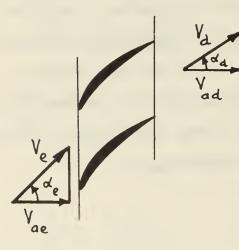
Because of the above exponential expression it is not possible to obtain a closed solution for  $M_d$  by substituting Eqs. 5 and 8 into Eq. 1. It is necessary to choose a particular value  $M_d = M_d^*$ , which is used to determine  $T_d/T_0$  and  $p_d/P_0$  by Eqs. 5 and 8. These values are introduced into Eq. 1., and  $M_d^*$  must be iterated until the result of Eq. 1 equals  $M_d^*$ . For given flow conditions at station (e) there always occur two solutions, one for which  $M_d$  is subsonic, the other for which  $M_d$  is supersonic.

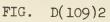
All input data are dimensionless with the exception of the crosssectional areas  $A_e$  and  $A_d$ . The dimensions of these areas are arbitrary but the units for  $A_e$  and  $A_d$  must be equal. As seen from the operating instructions, the calculated ratios  $p_e/P_0$  and  $T_e/T_0$  must be read before the iteration for  $M_d$ . If the condition  $M_d = M_d^*$  has been satisfied, the final results are obtained by depressing the (SENSE) switch.

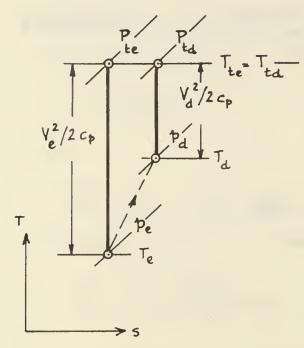
The velocity V_d after the cascade is

$$V_{d} = M_{d} a_{0} \sqrt{\frac{T_{d}}{T_{0}}}$$

where  $a_0$  is the velocity of sound corresponding to  $T_0$ . The velocity  $V_d$  is obtained with the keyboard operation


 $t(8) \sqrt{x} t(0) x$  (Value of  $a_0$ ) = at P-Count 173.


Enclosures: Figure D(109)


Operating Instruction (1 page)

Program Listing (4 pages)









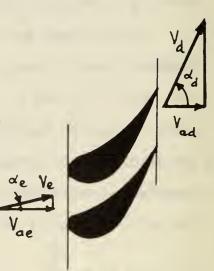



FIG. D(109)4

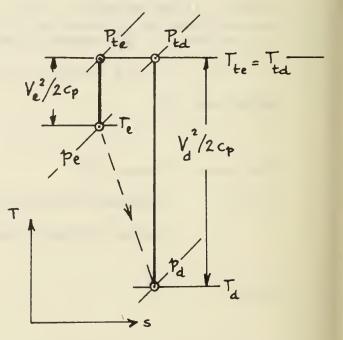



FIG. D(109)3

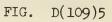
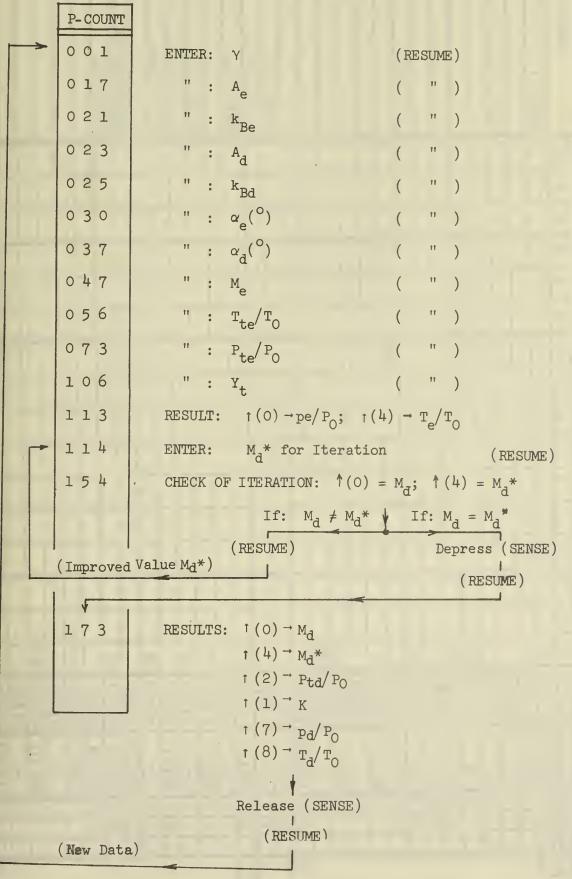




FIG. D(109) FLOW THROUGH CASCADE

OPERATING INSTRUCTIONS PROGRAM No. 109 MONROE CALCULATOR 1655 WITH CARD READER CR-1 (RESET); (TO(O)); Depress (LOAD); Read Cards 1-4 Release (LOAD); (TO(O)); Depress (P); (RESUME)

Set-Up:



243

PR	001	D - P RAM CON DEF	No	<b>`</b>	1	00		MC	NP	OF	16	55	C	TC	111	ATO	D							•	PA( DA1	GE. CE:	.1_0 8	0 <b>F</b> .	4 /.12	· ·	BY	': M	.н.	Vay
01 40 M	NOLES	ENTER: Y														ENTER : Ae		ENTER: Koe		ENTER: Ad		ENTER: KB4		B = (A = kae)/(A + ka)	ENTER: de							ENTER: d ^a		
	2																																	2
	Y																																	Х
	X																																	×
	6																																	6
	8																																	30
	7																																	2
	6																																	9
ERS	5									7					-1			-																5
EGIST	4	-												_	-1																			7
RE	_		-							-											_				-	-								2
	2 3	-	-		_		-												-						_								-	2
		_		_		_	1-1	_													_			_				-			cosele		_	-
	-		λ							_											_			<b>p</b>							36		_	0
	0												_																				_	
	Σ																				_													Σ
	A												-														X							V
	ω	×				1-2	1-2		J-		×		1-1		-								A		مر		Cosd		8			80		ш
4	CODE	- 0	40	62	- 0	7 2	4 -	0 2	20	45	60	72	6 1	20	4 4	-	70	- 0	7 2	- 0	7 2	- 0	20	4	- 0	40	36	70	60	20	40	-	40	
C	3	4	4	0	0	0	4	0	0	4	4		4	0	4	4	0	4	0	4	0	4	0	4	4	0	0	0	4	0			0	
COMMAND	COMMAND	HALT	STR (1)	1	1.	ન	STR (2)	2	W	STR (6)	RCL(I)	·ŀ	RCL (2)	U	<b>STR (5)</b>	HALT	×	HALT	·ŀ	HALT	·ŀ	HALT	IJ	STR (1)	HALT	SIN/COS	2.FUNCT	×	RCL (1)	11	STR (I)	+	SIN/COS	
ESS	TNU	0	1	2	3	4	5	9	7	0	-	5	3	4	5	9	7	0	-	2	3	4	5	9	7	0	1	2	3	4:	5	9	~	
DDRI	P COUNT	0							0	-		_			-		-	2		3		2			8	3						m.	,= )) 	
		0														244		-			_											_		

• .

TI	IRB IOGI	O-P RAM	RO	PUI o.	.SI .1(	ON )9.	LA	BO M	RAJ	COR	Υ.	DE	- C4	ALC	UL	ATC	)R 	•••			• •	• • •	»		PA	GE. TE:	2	OF.			BY			:H.У,
	NOTES							ENTER: Me			186	Puson PEN PU			ENTER: Tte/To								C"= C/VTe/To					ENTER Pre/Po						
	2																																	2
	Y																																	Υ
	×																																	×
	6																																	6
	8																								1									ω
	2																				-													2
	6	1																																9
STERS																																		5
EGIST	4	4																Tetto								I.								4
RE			_								-					Thefa		4																~
-	2 3															ц ^р													Per/p					2
									Me															-					4					-
H	0										U							-						υ							Po	2		0
	N				ī																										the set			Σ
					(Pho	bxso																		-										V
	A	cosol		Bcalde	Bcost ( could )	Beoste/coskd		0				Me	Zie		Hee/10		Teta		Vreyto	MTe/To			6		Me	Zze		Pee/Po		Pe/Po	2	c,	X	ш
	ω	6 60	2	O B	0 30	4 Be	0	- Me	-	0	0	- N	6 2	0	- Tte	2	O Te	R		4 1/1	0	<b>G</b>	С 0	0	L M	7 2	Q	1 Pee	-	0 10	7	00	0	
	CODE	03	20	4 6	0 2	0 5	07	40	4 4	0 2	4 4	46	74	0 7	40	44	0 2	44	05	05	0 7	46	02	4	46	7 4	0 7	40	4 4	07	45	_	02	
-	-		2		0	0	5		~			0	) (	0	L	-		4)								- (2			~	0	-		Ĭ	
	CUMMAND	2.FUNCT	·}·	RCL(I)	U	INV	×	HALT	STR (2	ħ	STR(1)	RCL(2	TO (6)	×	HAL	STR (3)	1)	STR (	5	NNI	×	RCL (1)	H	STR (I)	RCL (2)	TO (	×	HALT	<b>5TR (2</b>	×	STR(0	RCL (1)		
ESS	COUNT	0	1	2	3	4	5	9	- 7	0	-	2	~	4	5 5	9	1	0		2	3	4	5	9	5 7	0		2	3	4	2	9	-	
ADDRESS	P CO	4						4	4	S			-		5		S	9		_					9	2		7					17	
	PT	2													2	245		3																u slar

•

TL	JR B LOG	O-P RAM	RO	PUL D.	SI( 1(	09 09	LA	BOI MO	ОN Р 	OE	16	555 • •	С/ 		UL	ATC	)R 	•••			••		• • • • •		PA	GE. TE:	3	0F. /6	/.7. 2		BY	(:M	• И.	¥
	NOTES						enter: Ye					RESULTS: $4(0) \rightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{4} \frac{1}{2} \rightarrow \frac{1}{2} \frac{1}{7} \frac{1}{10}$	ENTER: Md" for Iteration																					
Γ	2																																	2
	×																												1					γ
	×																		•															×
	6	T																																6
	8																													G/10				80
	-																		pa/e											2				2
F	9	~																																9
r fr s	1	7																																5
EGIST	1	Sto.										Te/To		*PM																		·		4
~		14-1-1-	1				$\vdash$					-		-																				3
	2	Pee/Pn H									Ped/Po	-																						2
	-	Z									<u> </u>															T								-
	0	00			FFF.							Pe/Po				1								en y	łd									0
	E											<del>0</del> _																						Σ
	A	F						-lee																							.0			A
	ω		14/Po		Pte/Po	C-Pre	Yto	- Bet	Pre/In	Pa/P			*PW	*PW	Z2de		Pea/190	d/rd		Po/42		X	K Poit	5	*PW	Z 14 *		Tee/To	Td/Td	Td/rd		-		ш
F	<u>ц</u>	0	-	2	-	0	-	0	-	0	-	-	-	3	7	0	-	0	6	4	0	0	0	F	3	9	0	2	0	7	9	0	0	
L	CODE	4 4	47	0 0	46	07	4	0 6	46	02	44	4	40	4 4	74	20	46	0 2	4 4	0 2	0 7	46	0 2	45	46	4	0 7	46	0 2	4	05	07	65	
	COMMAND	STR (i)	RCL(0)	1	RCL (2)	×	HALT	+	RCL (2)	U	STR(2)	HALT	HALT	STR (4)	TO (7)	×	RCL (2)	1)	STR (7)	INV	×	RCL(1)	ħ	STR(0)	RCL(A)	To ( b )	×	RCL(3)	1)	STR(B)	L	×	JUMP 50	
	-			2	3	4	5	9	7	0	-	2	3	4	5	9	7	0		2	3	4	5	6	7	0	-	2	3	4	5	9	2	
ADDRESS	P CO	0	-				0		0	-			-	1 1			-	1 2		_					- 2	- 3	-					-	3	
BR		4							-		_	-		1	2	246		5															,	v 21

109 /3

۰.

TU PR	OGI	D-P RAM	RO N	PUI o.	.S I	ON 109		BO M	RA1 ONF	ROE	- 1( 	555 • •	- C1	ALC	UL	AEF	)R 	••••	•••		• •	• • •	•	4.	PA DA	GE. TE:	4_	<b>OF</b> 8/6	4	72	BY	¢:,	<u>M</u> .	H.V.
	NOLES				SUBROUTINE: ZI = f(M,V)			$Z_{1=1}/(1+\frac{1}{2}M^{2})$	>				*PM=	(SENSE)				*		SUBROUTINE Z2 - H(M, K)	4					Z== //[(++== H A A/(==)]		RESULTS						
	2																																	7
	Y																																	×
	X																								•									×
	6																																	6
	8									Td/To																		T4/10						20
	7									1/64																		1/Pu						~
S	9	- In								되																		الآ						9
EGISTER	5	1								21:																		7						5
REGI	4									*PW		1																*PM						4
	3									Tta/T																		Ttaff						~
	2									d/PH																		Ptd/P 1	• •					2
	-									X																		Х						-
	0									R.Y.	р	Md																MA						0
	X																																	Σ
	V																						H					1						V
	ω	Σ	MZ	고나	Y-I H		71	4 H	Ĩ	er X	MA							Σ	M ²	간	LI H		나+	2013	T AN	Z2								ы
3000	100	10	0 1	65	60	- 0	20	54	5 7	77	20	57	-	23	40	13	7 2	70	0	65	60	- 0	4	V	2 6	54		- 0	40				_	
<b> </b>		0	0	4	0	0	0	0	2	4	0	4	4	5	Я	9	9	0	0	4	0	0	0	4	0	0	5	4	-					
COMMAND		×	×	RCL(6)	+	-	ß	INV	RCLP	RCL(0)	H	STR(0)	HALT	SFSNS	SKFI	JUMP 13	JUMP 72	×	×	RCL(6)	+		a×	RCL(S)	IJ	INV	RCLP	HALT	T0(0)					
ADDRESS	UNT	0	-	2	3	4	5	9	1	0	-	ć	~	4	5	9	7	0		2	3	4	5	9	2	0		2	3	4	5	9	1	
DDR	ဗ	4							4	5			5				S	9							9 1	4		7					-	
Concession of the local division of the loca	and the second se												-		2	47	-	-									1							
BR	۵,	9													2	τį		~																

#### PROGRAM NO. 110

#### MONROE CALCULATOR 1655 WITH CARD READER C-R1

#### Description

The curve of Fig. D(10) has the characteristics that its curvature k at the point  $P_0$  is zero and that k increases gradually with increasing angle  $\theta$ . To be found is that curve which has the angle  $\delta_m = \pi/2$  between the tangents of the curve at  $P_0$  and  $P_m$  such that particular distances  $x_0/a$  and  $y_0/a$  are obtained. For

$$r/a = \theta^{-D} \qquad \qquad 110(1)$$

there is *

$$\tan \Psi = -\frac{\theta}{b} \qquad \qquad 110(2)$$

For 0 < b < 1 there is  $\pi/2 < \Psi < \pi$  and since

 $\vartheta = \Psi - \pi/2$ 

one obtains

$$\cot \vartheta = -\tan (\Psi - \pi/2) = \theta/b$$
 110(3)

and

$$\sin \vartheta = \sqrt{\frac{1}{1 + (\theta/b)^2}}$$
 110(4)

where

$$0 < \vartheta < \pi/2$$

The curvature k at  $P(r/a, \theta)$  is

1

$$s = \frac{1 - b(1-b)/\theta^2}{a\theta^{-b} \left[ 1 + (b/\theta)^2 \right]^{3/2}}$$
 110(5)

*Vavra, M. H., "Aerothermodynamics and Flow in Turbomachines," pp. 293/298, John Wiley & Sons, New York, 1960. At P_o (r_o/a,  $\theta_{o}$ ) the curvature k_o is zero, hence, by Eq. 5

$$\theta_0 = \sqrt{b(1-b)}$$
 110(6)

From Eq. 1

$$\frac{r_{o}}{a} = \theta_{o}^{-b} = [b(1-b)]^{-\frac{b}{2}}$$
 110(7)

and from Eq. 4

$$v_{0} = \sin^{-1} \sqrt{\frac{1}{1 + (\theta_{0}/b)^{2}}}$$
 110(8)

From Fig. D(110) for  $P(r/a, \theta)$ 

$$\begin{split} \delta &= (\theta + \vartheta) - (\theta_{o} + \vartheta_{o}) = E - E_{o} \\ \text{and for } P_{m} \left(\frac{r_{m}}{a} , \theta_{m}\right), \text{ where } \delta_{m} = \pi/2, \end{split}$$

$$\delta_{\mathrm{m}} = \frac{\pi}{2} = (\theta_{\mathrm{m}} + \Psi_{\mathrm{m}}) - (\theta_{\mathrm{o}} + \Psi_{\mathrm{o}}) = \mathrm{E}_{\mathrm{m}} - \mathrm{E}_{\mathrm{o}} \qquad 110(9)$$

where, according to Eq. 4

$$\hat{D}_{m} = \sin^{-1} \sqrt{\frac{1}{1 + (\theta_{m}/b)^{2}}}$$
 110(10)

From Fig. D(110) the coordinates  $x_a/a$  and  $y_a/a$  are

$$\frac{x_{o}}{a} = \frac{r_{o}}{a} \cos \vartheta_{o} - \frac{r_{m}}{a} \sin \vartheta_{m}$$
 110(11)

From Eq. 3

$$\frac{b}{\theta} = \tan \vartheta$$

Hence

$$1 + (b/\theta)^2 = 1 + \tan^2 \sqrt[4]{\theta} = \frac{1}{\cos^2 \sqrt[4]{\theta}}$$

Introduced into Eq. 5, with Eqs. 1 and 6,

$$ak = \frac{1 - (\theta_0/\theta)^2}{r/a} \cos^3 \vartheta$$
 110(13)

Hence at  $\mathbf{P}_{m}$  the curvature  $\mathbf{k}_{m}$  is obtained from

$$ak_{m} = \frac{1 - (\theta_{0}/\theta_{m})^{2}}{r_{m}/a} \cos^{3} \vartheta_{m}$$
 110(14)

It is not possible to calculate the parameters of a curve with  $\delta_{\rm m} = \pi/2$ that has a given ratio  $y_{\rm o}/x_{\rm o}$  with a closed solution. It is necessary to choose a value of b which establishes  $\theta_{\rm o}$ ,  $r_{\rm o}/a$  and  $\mathbf{v}_{\rm o}$ . Then the angle  $\theta_{\rm m}$ must be varied until  $\delta_{\rm m} = 90^{\circ}$  by Eq. 9. With  $\theta_{\rm m}$ , the quantities  $r_{\rm m}/a$ and  $\mathbf{v}_{\rm m}$  are obtained from Eqs. 1 and 10. Then the coordinates  $x_{\rm o}/a$  and  $y_{\rm o}/a$ of Eqs. 11 and 12 establish the ratio  $y_{\rm o}/x_{\rm o}$ . If this ratio differs from that of the desired curve the quantity b must be varied until agreement is reached

From Eqs. 11 and 14 it is possible also to express the curvature  $k_{\rm m}$  as a multiple of  $1/{\rm x}_{\rm O}$  or

$$k_{m} x_{0} = (a k_{m}) (x_{0}/a)$$
 110(15)

Enclosures: Figure D(110)

Operating Instruction (1 page) Program Listing (4 pages)

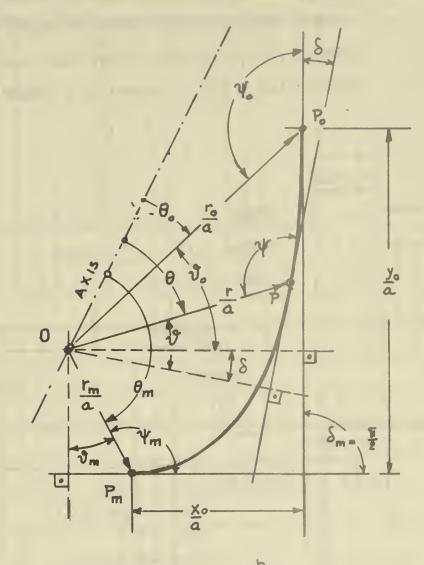
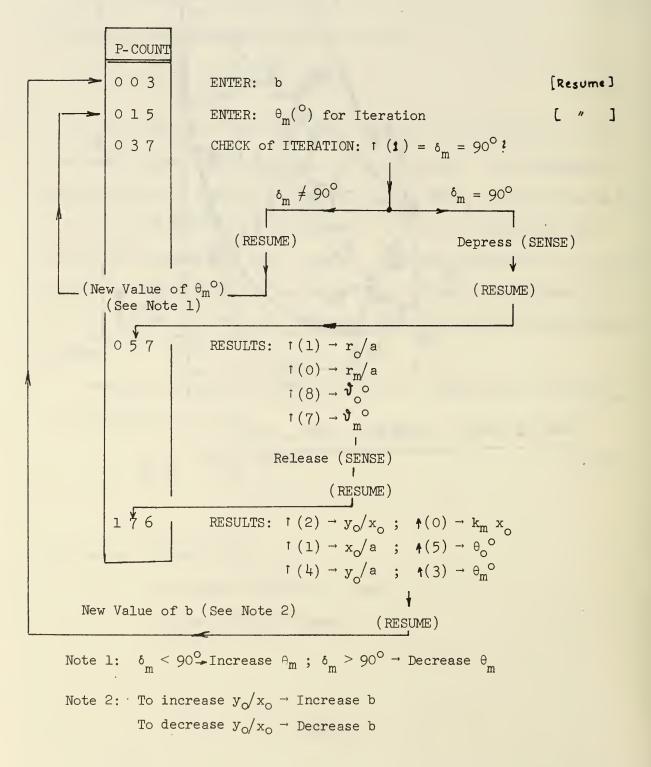




FIG. D(110) CURVE 
$$r/a = \theta^{-1}$$

#### OPERATING INSTRUCTIONS PROGRAM No. 110

MONROE CALCULATOR 1655/6 WITH CARD READER CR-1 Set-Up: (RESET); (TO(O)); Depress (LOAD); Read Cards 1-4 Release (LOAD); TO(O)); Depress (P); (RESUME)



TU PR C	RBC OGF ALC T_C	D-P CAM CUL	RO N AT	PUI	.SI 11 0 T	ON O F ANI	LA UR	BO M VE	RA'		Y,	DE 655 @	PT b c	ALC	)F UL IH	AEF ATC ZĘ		AU:	r IC R VA	S,	N I Re	es 	,		PA	GE. TE:	.1_	of. /.7/	. 4	•	ВУ	< N	۰	.Vav	ra
JELON				ENTER: b										ENTER: 8m° (0≤ 8m≤130°)																$\delta m = \tilde{U}_m + \theta m - (\theta_o + \theta_o)$		CHECK: Sm=90" If true: [SENSE]			
	2																									-								2	
	Υ																																	Y	
	X																																	×	
	6									Γ																				_				6	
	80									T																								8	
	2									T																								2	
	9				٩					T																								9	
ERS	5									θ, α		$\vdash$											-										-	5	
ECISTER	4								$\vdash$	Ē			202					-																7	
RE	-					-				┢			5						0mg														-	~	
	2 3							-	$\vdash$	┢	-	-							θ			J m	_									_		2	
	_					-			-						1			-				S									° E			-	
h	0								-	-								-													20	_		0	
	Σ									-	-		-																			-	-	Σ	
								-	-	-	-	-																				-	-	A	
	×					<b>q</b> -		(q-1)q	۲.	a	5	Jor R		° _		tas Br		α c	۲R	съ	ar	Я,		d		ď	.;	Jo R	S ^m	° 8			-	E	
	ш ,	-	2	9 1	5		5 6	1)9 0	6 9	4 0,	7 Sin	2 Vo	Э	1 0 ^m	0	6 64	2	6 0 ^m	2 8m ^R	7 Isin Um	2 3m	1 Jma	0	2 0m ^R	2	4 0°	2 4	3 %	08	65.	0	-	3		
200 £	1000	0	06	40	4 4	120	4 6	2	+	4 4	4 1	40	4 4	40	0 4	0 3	04	03	44	14	04	4 4	0 6	46	0 6	46	0 6	46	0 2	0 4	4 4		52		
-	-		0		6) 4	0	6) 4	0		5) Z	-		4) 4				-			(		2) 2		31 -		(2)	0	4) 4	0		E	-	S		
COMMAND		-	1	HALT	STR (	×	RCL(E	11	5	STR(	T0 (7	SIN'/COS	STR (	HALT	SIN/COS	2 FUNCT	SIK7/COJ	2FUNCT	STR (	T0 (7	SIN'/COS-I	STR(	+	RCL (	1	RCL	1	RCL (	11	2	STR	HAL	SFSN		
ESS	COUNT		1	2	3	4	2	9		0	-	2	3	4	5	6	7	0	-	2	3	4	5	9	2	0		2	Ċ.	4	5	9 0	2 2		
	P CO	0		0				-	0	-	-	-					~	2		_					2	m						3	3		
	PT F	0													2	53		-									1								

URBROG	KA.	M N	0.				M(	JNR	OE			· C/			ATC												<b>OF</b> . 8,			B	(: <u>.</u>	.м.	Н.
NOTES															RESULTS: Im, Te; Um; Do	5																	
2																																	~
X		-																															7
×	┢	-	-					-																						-			×
8 9	┢	-	-				_		_																	-				-	-		3
7 8	-	-	-	-							°F			30	\$°														-				
9			┢	-							о С С				e da														-			$\square$	9
ERS 5 6	α	+	╞	$\left  - \right $								-												_									5
4	9 R 0	+	-	$\left  \right $								-									sindo				-								7
2 K	A R	5	$\vdash$		-		-														215												٤
2	~	E	†																							0							6
-	۰ ۲				ro/a										r%a											i cos	5						-
0								rm/a							rm/a																		0
У.																																	M
A										0			-				. 0			° n u		-0			500				. 2			inum	V
ω	╋	04	4 B°R	6 ro/a	0	2 0 m	6 m/a	7	1 Jma	6 ^J m°	9	3 VoR	6 30°	7		7 3,6	O sin Vo	0	<u>م ال</u> ر	O Lesind	3	6 cos vo		0 rga	O Le cos	0	- Jm	6 0	O sin Um			2 5 5	1
CODE	5 4 0	· -	461	746	4 4 0	462	7 4 6	45	46	0 4 0	4 4 (	4 6	046	44-	401	46-	040	070	460	0 2 0	44	036	070	460	0 2 0	440	46	4 0	40		1	90	
COMMAND	SK F -	4	RcL (5) 4	TO(6)	STR(I)	RcL (3)	To(6) -	5TR (0) -	RCL (2) 4	•1	STR(7)	RCL (4)	04	STR (8)	HALT -	RCL (8) 4	SIN/COS	×	RCH(1) 4		STR(4)	2.FUNC		Rc L (1)	U	STR(I)	RCL (2) 4	•1	SIN/COS		RcL(0) 4	1	
	15 0	-	2 R(	3 T	4 S.	5 R	6 T	7 5-	0 20	1 R	5 č	3 R	4 R	5 5	6 H	7 20	0 51	-	2 20	~	4 S1	5 2	9	2	0	1 5.	2 R	3 R	2 SI	12 ¹ 1	6 2	2	
P COUNT	N N							4	5						5	5	9			_	_	_		9	7							7	

TIP	URBOGI	O-P RAM	RO	PUI D.	LS I 1.	ON 1.Q .	LA	BO	RAT	OR	Y, 10	DE 555	PT CA	. ( ALC	UL	AT(	)R • • •	•••		s,			• •• •		PA( DA)	Ge. Ce:	3	of.	4.		BY	-	. M.,	Н. У.
	ES																					(rm/a)												
	NOTES																					€,/0m)²)/(rm/a												
				1		-																$Y_{=}(1-10, 00)$		-					-					
F	2																																	2
	Y																																	Υ
	×																																	X
	6							_		_								_																8 9
	7 8	-		_						_												_												2 2
	9	9																-																6
r sp c	201	0°a																																5
RETCT	4	re sindo	5									y₀⁄a																						4
	3	θm																																3
	2	o Jar																					-											2
	-	10000			×%a																												_	0 1
ł	0 1	rm/a															-					-	エ										-	Σ
	H								F	0			_						_			-				-							-	A
	E A	Te costo	2 d	Xola		cos B.		lm/a	The costin	ro sir do	Jo/a		θ°κ		θ ^m ^k	Bgbm	² ( ² ² ² ) ²		1-1-1	tm/a	7-	Y		^д т ^к	Jm°	_	cos D.			cos 073	Y	ak		ш
	CODE	60	20	13		36	70	771	60	63	20	4 3	and the second second		62	70	62	- 0	72	77		- 3	57	- 9	46	0 4	36	74	03	0 2	77	D	45	
-	_	4	0	0	4	0	0	4	0	4	0	4	4	0	4	0	0	0	0	4	0	0	4	4	0	0	0	0	0	0	4		9	
	COMMAND	RCL(I)	IJ	CH SGN	STR(I)	2.FUNCT	×	RCL(O)	÷	RCL (4)	11	STR(4)	RCL (S)	·ŀ	RCL(3)	×	·k	+	-1-	R CL(0)	V	CHSGN	STR(0)	RCL (2)	°↑ ₩	SIN/COS	2.FUNCT	a*	3	×	RCL (0)	×	JUMP 45	
		0	-	2	3	4	5	6	7	0	1	ć	~	4	5	. 9	7	0		2	~	4	5	9	2	0	-	2	3	4	5	9	7	
ADDRFSS	COL	0 1	_						0	-							-	1 2	-	-		-	_		4	- 3							<u>-</u>	
	PT P	4													2	55	-	2																

TUE PRO	RBC	D-P LAM	ROP No	PUL	.S I (	ОN 10.		BOI	RAT ONR	OR OE	Y, 16	DE 555	PT CA		UL.	AER	ON OR	AUT	. IC	s,	N P	S	•		PA DA	GE. Fe:	<u>4</u>	<b>OF</b> . 3./.7	4	2.	BY	ć: M	H	۰۷
NOTEC	C7 104	A North Contraction of the second sec	SUBROUTINE:	$r/a = \theta^{-b}$		v												Y	SUB ROUTINE:		sin U=	$1/1+(\theta/b)^{2}$	X			۸ ا					RESULTS: Je; Je, Xe, Xokm; Bo, Bm			
	2																						-								-			Y 2
	XX																	_					_							-				×
	6																						-											6
	00		_																									_						8
	2					~																												7
S	9	q					٩											9									P				4			9
STER	2						9°8																				θ°				θ°	1 1		2
REGI	4						yo/a																				r y~/a				Ye/a	÷		4
	3						R BmR							ç									_				. Bme			θ	o 0m°			3
	2						Sm				_			Yo/xo												-	a Y%/x.				x Yo/xo		_	1 2
							- Xu/a		E									-	_		_	_		_	_		m X %			-	km x%a		_	0 1
	о Л						7		Xokm												-		_				Xa Km				X o Km		+	Σ.
																						-	_										-	A
	E A	θ	4	9	9-B	r/a	X0/a	Xokm		y∘/a		X°/a	Yo/Xo		0°R	θ, °		θ	٩	9/9	* (d/9)		1+(1)2		Sin		θ°	0mR	0m°					ш
		4	5	θο	4	7	0	D	7	63 Y	3	0	0		4	9	-	2	Ŋ	0	0	-	0	9	4	Z	_	2	466	4,2	-	0		_
100 £	3	0 7	4	02	0 5	55	46	0 2	4 5	4 6	0 7	4 6	0 2	44	46	4	67	0 7	46	0 7	0	0	02	0	05		4 4	46	0	44	40	4		
COMMAND		a×	RCL (6)	V	ÍNV	RCLP	R CL (1)	H	STR(0)	RCL (4)	۰ŀ	RCL(I)	đ	STR (2)	RcL (5)	R →0	JUMP 71	.•]•	RcL(6)	×	+	-	8	L	INV	RCL P	STR(5)	RCL (3)	R to	STR(3)	HALT	To(0)		
ADDRESS		4 0		2	3	4	4 5	9	4 7	0	1	2	3	4	5	9	5 7	9		2	~	4	2	9	67	70		2	3	4	75	9	-	
ADDF	P C	7					7 1		-	1 5							-	-							-	-	-				-			

110/4

MUV 2/1

#### PROGRAM NO. 517

#### MONROE CALCULATOR 1880-22

#### Description

Program 517 calculates the conditions after the diffusor, the honeycomb flow straightener, and the discharge duct of the Hybrid compressor. Details of these calculations are given in Section III.3 of "Hybrid Compressor Design Report." The compressor is supposed to operate as an exhauster such that the static pressure  $(p_6)$  at the compressor discharge is 14.7 psia. The total temperature at the impeller inlet  $(T_0)$ is taken to be 520°R. Basic data to be used in the program are the conditions after the rotor obtained by the method described in Section III.2 of "Hybrid Compressor Design Report."

Both diffusor rows are considered as a unit and it is assumed that the flow angle  $\alpha_{\downarrow}$  after the second diffusor blade row is constant, equal to 21°. The program contains program 109, described in Appendix D, which by an iterative procedure establishes the Mach number  $M_{V4} = M_4$  of the flow after the diffusor with losses that are a multiple of its design pressure loss coefficient.

After calculating the diffusor performance program 517 determines the overall compressor performance in accordance with Section III.4. Examples of print-outs are given in Tables XI and XII of the aforementioned report.

Enclosures: Operating Instructions (1 page) List of Print-Out of Results (1 page) . Program Listing (12 pages) Main Data Storage (1 page)

257

## OPERATING INSTRUCTIONS PROGRAM No. 517

#### MONROE CALCULATOR 1880-22

Set-Up: Read 2 Magnetic Cards starting at Branch Point 00

-

	P-COUNT		
	0043	ENTER: $(k_{B2}^{/}k_{B4}^{}) \cos \alpha_{4}^{} = 1.161 218$	(RESUME)
	0047	": $(Y_t)_{i=i_0} = 0.2089$	(")
	0051	": $V_{\rm S}/V_{\rm L} = 1.039$	(")
	0 0 5 5	": $v_5 / v_4 = 0.8764$	(")
	0059.	": $V_6/V_4 = 0.722$	(")
	0079	": $\alpha_{l_{4}}$ (°) = 21°	(")
>	0085	": α ₂ (°)	(")
	0094	": I _{t2} /I ₀	(")
	0098	": P _{t2} /T ₀	(")
	0102	": T ₂ /T ₀	(")
	0106	2 0	( ")
	0110	": M _{V2}	( ")
	0141	": $Y_t/(Y_t)_{i=i_0}$	( ")
	0167	" : M ₄ * FOR ITERATION	(")
	0235	PRINT-OUT: IDENTIFIER -4.	
		$\Delta M = M_{\mu} - M_{\mu} *$	
		м ₄ *	
		IF $\Delta M \neq 0$ IF $\Delta M \cong 0$	
		(RESUME) ENTER: O	
		(RESUME)	
	V		
	0439		(RESUME)
	0467		( )
		PRINT-OUT OF RESULTS (see list attached)	
	SEE NOT		

NOTE: After "Print-out of Results" the program automatically returns to P-Count 0085 for new data.

# PROGRAM 517

# MONROE CALCULATOR 1880-22

LIST OF PRINT-OUT OF RESULTS:

. ^U2^{/ a}0 α₂ (°)  $P_{t4}/P_0$ p₄/P₀ T₄/T₀  $M_{V4} = M_4$ V₄/a₀ P_{t4}'/P₀ p4'/P0 P_{t4}''/P₀ p4'/P0  $P_{t5}/P_0$  $P_{t6}/P_0$ ₽₆/₽₀ P_O (psia)  $\mathring{w} (1bm/s)$ HP (HP) N (rpm) η_T (_)

PRO	GR	AM # YA 5	17 DFF-D	MONROE 1080	OF 12 DAT	E: 6/73 BY:	MHV
STEP		SYMBOL	COMMAND	COMMENTS	ENTER		PEINT
00			2				
	1		9				
	2		•				
	3		3				
	4		6				
	5		4				
	6		0				
	7		٦				
	8		7	$E = \sqrt{(R_a/q) T_o}$			
	9		J()()				
60	0		2				
	1		0	- <u>y</u>		E -+ 20	
	2		1				
	3		7				
	4		6				
	5						
	6		5				
	7		4	$F = R_{a}(t/(t-1)) T_{0}/550$			
	8		+()()				
	9		2				
02	0			×		F-+ 21	
	L		2				
	2		3				
	3		2				
	4		9				
	5		0				
	6						
	7		2				
	8		1	C 2 720/(ED)			
	9		1(3()	$G_{=} a_{0} \frac{720}{(T D_{1})}$			
03			2			6	
	-		2			G-722	-
	2						
	3						
	4						
	5			NO OP.			
	6						
	7						
	8						
P-1-1-1	9		/ 	Y			
04	0		SET D.P.				
			4	ENTED: C KB2/COLD 1161010	C		
	2		HALT	ENTER: $C = \frac{K_{B_2}}{K_{B_4}} / \cos d_4 = 1.161218$	C		
	3		VL ILI				
	4	· · · · · ·	0			C-+00	
	5		U		Y.		
	6		HALT	ENTER: $(Y_{t})_{i=i0} = 0.2089 = Y_{t0}$	Yto		
	7		1()()				
	8		0			Y.	
	9		}	260		140->01	2/7/73

PRO	GR/	M# VA	517	MONROE 1880 PAGE 2	OF 12 DAT	E:6/73 BY:	MHY
STEP		SYMBOL	COMMAND	COMMENTS	ENTER	and the second se	PEINT
05	_		HALT	ENTER: VS/VA= 1.039	$V_{s}/V_{4}$		
	1		1()()				
	2		0				
	3		2		Vs/	VA - 02	
- 00	Á		HALT	ENTER V Vs / V4 = 0.8764	V5/VA		
	5		1()()		Y	/14-703	
	6					/ 14 - 703	
	7		0				
				THEFTON Y. A.	V. /		
J.C.	8		HALT	ENTER: V6/V4 = 0.722	V6/V4		
	9		4()(]				
06	0		0		V	Na -> 04	
	1		4		6	144 - 04	
	2						
	3		4	8-1			
	4		<u></u>				
	5		1				
- 1	6		•				
- 11	7	_	4	Y			
1	8		=	(1-1/8			
	9		1()()				
07	0		0			14	
	ι		5			1	
	2		3				
	3	-	•				
	4		5	8/(8-1)			
	5		+()()			L.	
- 1	6		0			1/8-1-706	
	7		6				
	8		HALT	ENTER: $\alpha_4 = 21$	dq		
	9		()()				
08	0						
	1		0 7			a4->07	
	2	+	IND/SYMB	SYMBOL. ADDRESS +			
	3		+				
	4		HALT	ENTER: de	d ₂		
	5		1()()				
	6		2				
	7		9			d2-29	
	8		SIN/COS				
	9		2NDFUNC	cos da			
09	0		L()()				
	1		1				
			0			cosdy -> 1	0
	2		HALT	ENTER: TE2/TO	Tt2/To		
	3		and the second design of the s				
	4		1()()				
	5					It2/To-+1	1
	6			ENTED P. ID	Pt2/Po		
	7		HALT	ENTER: Pt2/Po	. 22/10		
	8	and the second division of the second divisio	11()()			-	
	19			661			2/717

PROGR	AMA	VA	EIN
PRUGK	AU	VA	517

PAGE 3 OF 12 DATE 6/12 BY MILL

	PROGRAM & VA 517 PAGE 3 OF 12 DATE: 6/13 BY: MHI						MHV
STEP		SYMBOL	In case of the local division of the local d	COMMENTS	ENTER		PEINT
10	0		2			Pt2/Pa-12	
	1		HALT	ENTER: T2/TO	T2/T0		
	2		+()()				
	3		1	·····			
			3			τ	_
	4				4 17	T2/T0 -> 13	_
	5		HALT	ENTER: 1/Po	B/P0		
	6		1()()				
	7		1				
	8		4			ta/Po + 14	
	9		HALT	ENTER: MV2 = M2	My2		
	0		+()()				
I and the state	Ť		1	······································			
			5	·····		M	
	2					M2-+ 15	
	3		$\uparrow$ ()()				
	4		1				
	5		3	T2/T0			
	6		V	$\frac{\sqrt{T_{2}/T_{0}}}{1/\sqrt{T_{2}/T_{0}}}$			
	7		1/x.	1/172/10			
	8		X				
	9		1()()				
			1				
12	0			N/			
	L		5	M2			
	2		X				
	3		1()()				
	4		1				
	5		4	P2/P0			
	6		X				
	7		1(1()				
	8		10101				
	9		0	tor la			
	in the second se			Cosda			
13	0		X				
	1		1()()				
	2		0				
	3		0	С			
	4		=	К			
	5		+(1()				
	6		0				
			8			K->08	
	7					1-200	
	8		1	NO OP.			
-	9		1		N/ /··		
14	0		HALT	ENTER: Yt / Yto	Yt/Yto		
	L		X				
	2		1()()				
	3		0				
	4		1	Yto			
	-						
	5		CHSGN	- Y _{to}			
	6		X				
	7		(				
	8		1(1()				
	9		1				
				262		MHY	2/7/73

PROGRAM & VA 517

MONROE 1880

PAGE 4 OF 12 DATE: 6/73 BY: MHV

PROGRAM& VA 517 PAGE 4 OF					V VA	E. 715 BT.	TT PAY
STEP		SYMBOL	the state of the s	COMMENTS	ENTER	the second se	PEINT
15	0		2	Pts/Po			
	1		-				
	2		1()()				
	3		1				
1	4		4	\$2/P0			
-	5		)				
	6		+				
1.1	7		1(1()				
-	8		1				
<u> </u>	9		2	P. / P.			
				Ptz/Po			
16	0			Pta/Po			
_			+()()				
	2		3				
	3		0			Pta/Po-40	
	4	×	INDISYMB	SYMBOL. ADDRESS X			
	5		X				
	6		HALT	ENTER : MAR FOR ITERATION OF MA	Ma#		
	7		1()()				
	8		1				
	9		6			M4" 16	
17	0		X				
	1		×	M4 *2			
1	2		•	· · · · · · · · · · · · · · · · · · ·			
	3		2	(8-1)/2			
	4		+				
-	5		1		-		
1.1	6		ax	1+ K-1 M4#2 = A1			
1000	7		+()()				
	8		1				
1000	9		7			A1-17	
110	-						-
18	0		1 ( )( )				
	_		0	k/(y-1) = 3.5			
	2		6	$\frac{(1+\frac{1}{2})^{3.5}}{(1+\frac{1}{2})^{4+2}} =$			
	3		=	(1+ [14] =			
	4		1/x				
	5		× ()()				
	6		TUU				-
	7		1				
	89		0	PE4/Po			
-	9		=	\$4/Po			
19	0		+()()				
1	1		1			6.5	
	2		-			P-/P0-31	
	23	F (1	1()()				-
	4	•	1		F		
	5		1	T+2/T0			
	6		÷				
	7		1)()				
	-						
	89		7	AI OCO			-
1.5	0						

	PRO	GR	AN & VA	517	MONROE 1080	OF 12 DAT	E: 4/73 BY:	MHY
C	STEP		SYMBOL	COMMAND	COMMENTS	ENTER	STORE	PRINT
L	20	0	_	=	T4/T0			
		1		↓ ( )( )				
		2		3				
		3		2			T4/T0 -= 22	
		4		V	VT4/To			
		5		÷				
		6		1(1()				
		7		3				
		8		1	Pa/Po			
		9		×				
-	21	0		t()()				
		1		0				
		2		8	K			
		3		=	Ma			
		4		+()()				
		5						
		6		3			Ma -> 33	
		7		-				
		8		1()()				
		9		1				
<b>F</b>	22			6	Ma *			
L	14 14	0			$\Delta M = M_{4-} M A^{4}$			
		2		=				
		2		0			4M-> 0	
				4			AFI-F O	
		4			PRINT IDENTIFIER -4.			
		5		CHSGN				
		6	EC	177	*			-4.
		7		()1				
		8		0	۵M			AM
-	Tel	9		PRINTA				
L	23			1()()	X			
				1				
		2		6	M 4 *			14 *
		3		PRINTA				M4*
		4		HALT	IF AM 20; ENTER:0			
		5		JUMP				
		6			GO TO S.A + IF AM = O			
		7		IND/SYMB				
		8		÷	*			
-		9		JUMP	AGO TO S.A. X IF AM = O FOR			
C	24	0		IND/SYMB	BETLER APPROXIMATION OF M4			
		I		×	4			
		2	* 	IND/SYMP	SYMBOL. ADDRESS		1	
		3		• •				
		4		1()()				
		5		3				
		6		2	T4/T0			
		7		5	VT4/T0			
		8		X				
		9		+()()	261			
		1					041134 0	1-1-2

PRO	GR	AN # VA	517	MONROE 1880	OF 12 DAT	E: 6/73 BY:	MHV
STEP		SYMBOL	COMMAND	COMMENTS	ENTER	STORE	PEINT
25	0		3		LITTER		PEINT
	١		3	M4			
	2		×	Va/ao			
	3	-	11)()				
-	4		3				
-	5		4			V4/an=34	
	6		(			-140.00.	
1	7		1(1()				
	8		0				
	9		7	da			
26	0		SIN/COS				
Read and the second sec	1		)	SIN dA			
_	2		X	(V4/00) sin 24			
-	3		X	$[(V_A/a_0) \sin \alpha_A]^2$			
	4			Lining and 1			
	5		2	(1-1)/2			
	6		+				
	7		Ť()()				
	8						
	9		3	T /F			
	_			Ta/To			
27	0			T_4 */To			
	1		1/x	To/Ta*			
5	2		X				
	3		1()()				
	4						
	5			T+2/To			
	6		a×	$(T_{t_2}/T_0)(T_0/T_4^*)$			
	7		1()()				
	8		0				
-	9		6	$\frac{1}{(1-1)} = 3.5$			
28	0		×				
			1()()				
	2		3				
	3			P4/P0			
	4		-	Pt4 % Po			
	5		+()()				
	6		3				
	7		5			Pt - 35 Po	
	8		$\uparrow()()$			Po	
	9		3				
29	0		4	Va/an			
1	1		X				
L.	2		1()()				
	3		0			1	
	4		2	V5/V4 = 1.039			
- 4	5		×	Vislan			
	6		X	Vš/ao (Vs/ao) ²			
	7		•				
			2	(1-1)/2 = 0.2			
	89						
Cherry	7		CHSGN			MHY	2/7/73

PROGR	ANA	_VA	517

	GR	AM# VA		PÅGE <u>7</u>	OF DAT	E: 6/73 BY:	MHV
STEP		SYMBOL	the state of the s	COMMENTS	ENTER	STORE	PRINT
30	0		+				
1.1	1		f()()				
	2		1				
	3		1	Tez/To			
	4		<u>.</u>	Τ4'/Το			
	5		t()()				
	6						
	7		1	7+2/To			
	8			122/10			
	9		a*				
			1()()				
31	0		0				
	1		6	k/(K-1) = 3.5			
	2		×				
	3		1()()				
	4		3				
	5		5	Pta'/Po			
	6		X	P41/P0			
	7		4()()				
	8		3				
	9		6			Pa' - 36	
32	0			NO OP		Po	
	ī						
	2		3				
	3		+	. 3 ( ta'/Po)			
				. 3 ( 14/10]			
	4						
	5		•				
	6		7				
	7		X				
	8		1()()				
	9		3				
33	0		5	$P_{t4}'/P_{q}$			
	1		)	.7 (Pta 1/ Po)			
	2		÷	P+4"/Po			
	3		1()()				
	4		3				
	5		3 7			Pt4" - 37	
	6		+()()			Po	
	7		3				
			5	Pt4'/Po			
	8		the second se	't4 / 10			
	9		×				
34	0		<u>†()()</u> 3				
	-			h 1/2			
	2		6	P4'/P0			
	3		2	P4 "/ Po			
	4		+()()				
	5		3				
	6		8			<u>P4"-38</u> P0	
	7		1()()			Po	
			$\frac{1}{3}$				
	89		4	V4/Q0		1	
	7		T	14/40 266		MHY	2/7/73

		AM# VA		MONROE 1880 PAGE 8	0 0F 12 DAT	E:6/73 BY:	MHV
STEP		SYMBOL	the second se	COMMENTS	ENTER	STORE	PRINT
35	0		×				
	1		f()()				
	2		0				
290	3		3	$V_{5}/V_{4} = 0.8764$			
	4		X	Vs/aa			
	5		X	$V_{S/a_0}$ $(V_{S/a_0})^2$			
	6			( 5/00)			
-	7		2	(1-1)/2			
	8						
	9		CHSGN	2			
	-		+				
36			f()()				-
2	1		1				
	2		1.,	Tt2/To			
	3		-	T5/T0			
_	4		1/x	To/TS			
	5		X				
	6		f()()				
	7		[				
	8		1	T = 2/T0			
	9		a×	Tt2/T5			
37	0		1()()				
	ī		0				
	2		6	k/(x-1) = 3.5			
1							
	3		X				
- 1	4		1()()				
	5		3				
- 1-	6		8	\$4"/Po			
- 12.1	7		X	Pts/Po			
	8		1()()				
	9		3			1.	
38	0		9			Pts -= 39	
	1		•			Po	
	2		6	0.6			
0.0	3		+	0.6 ( Pts/Po)			
	4		(				
	5		1()()				
113	6		3				-
				6 )) / P.	+		
	7		8	₽4"/Po			
	8		×				
-	9						
39	0		4				
			)				
	2		=	Pt6/P0			
	3		1(1()				
	4		4				
	5		0			$\frac{P_{t6}}{P_0} \neq 40$	
	5		+()()		1	PO	
			and the second se				
	7		3	V. / a			
and the second	89		4	Va/ 90			
			X				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
9       6 $\frac{1}{(Y-1)} = 3.5$ 1 $\uparrow()()$ 1         2       4       1         3       0 $P_{t6} / P_0$ 4       = $\frac{1}{7} (f_0)$ 5 $\frac{1}{(1)}(f_0)$ 1         6       4       1         7       1       1         8 $\frac{1}{x}$ $\frac{7}{70}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7 I <u>†6</u> - 8 <i>Yx</i> Po/p6 <u>7</u> 0	
$\frac{8}{1/x} \frac{P_0}{p_c} = \frac{7_0}{7_0}$	-+41
9 X	
430	
$P_{AIM} = 14.7 \text{ psia}$	
2 .	
3 7 1	
4 = Po(psia)	
5 4(1()	
7 2 Po-	+ 42
B HALT ENTER: $X = \dot{w}/(R/q) T_0/P_0 X$	
9 ×	
2 2 P ₀	
3 ÷	
4 ()()	
5 2 6 0 E	A REAL PROPERTY AND ADDRESS OF
8 ()() 9 4 · · · · · · · · · · · · · · · · · ·	
9 4 260	

PRO	GR	AM# _VA	517	MONROE 1880 PAGE 10	OF 12 DAT	rz: 6/73 BY:	MHV
STEP		SYMBOL	COMMAND	COMMENTS	ENTER		PEINT
45	0		3			w -+ 43	
	1		(			-	
-	2		1()()				
	3		1				
1	Ā		1	Tes/To			
-	5						
1	6						
-	7						
1				$(T_{t_2}/T_0) - 1$			
	8		×				
	9		1()()				
46			2			-	
10	1		1	F			
	2		=	НР			
	3		1()()				
1000	4		4				
1	5		4			$HP \rightarrow 44$	
	6		HALT	ENTER: $U_2/a_0$	$V_2/a_0$		
11	7		4()()				
	8		2				
0.00	9		8			V1 -> 28	
47	0		X			Ci ₀	
	Π		1()()				
-	2		2				
	3		2	G	1		
	4		=	N (rpm			
1000	-		1(1()				-
	5						
_	6		4 5			N-+ 45	
-	-					M	
	8		1()()				_
	9		3	D (0			_
48		-	0	PE4/Po			
	5		0×				
-	2		()()				
	3	1	0				
	4		5	(Y-1)/Y = 34/1.4 (PE4/PD) =-1/8			
	5		-	(Pt=/Po) =-1/8			
	6		1	$\frac{1}{(P_{t4}/P_{t0})} = 1$			-
	7		÷.	(Pt4/Pto) 8-1			
	8		(		_		
	9		1()()		_	-	
49	0		1 1				
	I		1	T _{±2} /T ₀			
	2		-				
	3		1				
	24		1	$\left(\frac{1}{1+2}\right) = 1$			
11			)	$\frac{(T \pm 2/T_0) - 1}{\gamma_T}$			
h	5			/ 1			
	6		+()()				
1 -	7	-	4			mal	
1	8		6			7 → 46	
1	9	EC	176	PRINT LINE OF DOTS		CALL Y	2/7/73
				269		MHY	61115

PRO	GR	AN# V	A 517	MONROE 1880 PAGE 11	OF 12 DA-	rE: 6/73 BY	: MHV
STEP		SYMBOL	COMMAND	COMMENTS	ENTER	STORE	PRINT
50	0		2	4			
	1		8	SET-UP POINTER 28 (FIRST REG.			
	2		1()	TO BE PRINTED & STR. 49		1	
	3		•				
	4		$\frac{1}{1}(1)(1)$				
	5		4				
	6		9				
	7	PRINTA	IND/SYMB	SYMBOL ADDRESS "PRINT A"			
	8		PRINTA	V			
	9		1()()	A RCL ACC. TO POINTER			1
51	0		IND/SYMB	*			
	1		PRINT A				PATA
	2		SET D.P	SET DEC. POINT TO 4			
	3		4				
	4		1				
	5		1()()	ADD I TO POINTER, STR 49			
	6		+	AND SET UP NEW POINTER			
	7		4				
	8		9				
	9		↓()()				
52	0		4				
	L		9				
	2		↓( )				
	3		•	V			
	4		-				
	5		4				-
	6		5	and the second se			
	7		=	NEW POINTER - 45			
	8		BRANCH				
-	9		=	IS TO DE PRINTED SET DP TO ZERO			
53	0		IND/SYMB	WITH S.R. O			
	1		•	V			
	2		1()()				
	3		4				
	4		9	NEW POINTER			
	5		-				
	6		4				
	7		7				
	8		=	NEW POINTER - 47			
	9		JUMP				
54	0		=	GO TO S.A. V IF NEW POINTER			
	L		IND/SYMB	= 47, OR PO NOT PRINT			
	2		V	V			
	3		JUMP	A GO TO S.A "PRINT A" IF NEW			
	4		IND/SYM3	POINTER = 46			
	5		PRINT A	V			
	6	~	IND/SYMB	1 SYMBOL. ADDRESS V			
	7		V	V			
	8	EC	176	PRINT LINE OF DOTS			
	9		JUMP	1		A	2/=1=2
				270		MHV	2/7/73

PROGRAM & VA 517 PAGE 12 OF 12 DATE: 6/73 BY: MIH							MILV
STEP	_	SYMBOL		COMMENTS	ENTER	STORE	PRINT
55			IND/SYMB	JUMP TO S.A. ADD. + TO			
	1		+	PROCESS NEW DATO			
	2	φ	IND/SYMB	ASUBROUTINE & SETS D. POINT TO O			
	3		ф	FOR PRINTING OF N			
	4		SET D.P				
	5		0				
	6		RESUME	V			
	7		IL DUNE	Y			
	8						
	9		_				
56							
	1						
	2						
	3						
	4		-				
	5						
-	6						
	7						
	8						
	9						
	0						
	L						
	2						
	3						
	4						
1	5						
1	6						
_	7						
	8						
1.0	9						
P-T-T-	0						
-							
	2						
	3						
	4						
	5						
	6						
	7						
	8						
	9						
	0						
Grandward							
	2						
	3						
	4	*					
1 C.	5						
	6						
	7						
	8						
	9						
				271		CALL V	2/7/73

PRO	OGR	M: VA 517 OFF-DESIGN HYB	RID COMPRESSOR	PAGE: 51 OF 1 DATE 6/73 BY : MHV
REGIST	R	CONTENTS I	CONTENTS 2	CONTENTS 3
0	0	$C = (K_{B2}/K_{B4})/COS 21^{\circ} = 1.16$		
	1	Yto= . 2089		
	2	$V_{S}/V_{4} = 1.039$		
	3	$V_5/V_{4=}.8764$		
	4	$V_6/V_4 = .722$		
	5	(Y-I)/Y = .4/I.4		
	6	X/(Y-1) = 1.4/.4 = 3.5		
	7	d4 = 21°		
	8	K		
	9			
	0	cos d2		
	1	Tt2/To		
	2	$P_{k2}/P_0$		
	3	$T_2/T_0$		
	A	P2/P0		-
	5	$M_{y_2} = M_2$		
	6	M4*		
	7	$A_{1} = 1 + [(Y-1)/2] M_{4}^{*2}$		
	8			
	9	-		
2	0	E = 29.364 077		
	T	F = 176.54	· · · · · · · · · · · · · · · · · · ·	
	2	G = 23290.21		
	3			
	4			
	5			
	6			
	7			
	8	$U_2/a_0$	PRINT-OUT OF INPUT	
	9			
3		Pt4/Po		
	11	P4 / P0		
	2	TA/TO		
	3	Ma	LINE UP	
	4	V4/90	OF CALCULATED DATA	
	5	Pt4'/Po	FOR PRINTING.	
	6	p4'/P0		
	7	Pta"/Po		
	8	pa"/Po		
	9	Pts/Po		
4		Pt6/Po		
	i i	P6/P0		
	2	Po (psia)		
	3	ŵ (lbm/s)		
	4	НР		
	5	N (rpm)		
	6	7 T		
	7	1		
	8			
	9	POINTER		
	Concession in the local division of the loca		272	M.H.V. 2/1/73

(

		No. of Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12
2.	Library Code 0212 Naval Postgraduate School Monterey, California 93940	2
3.	Superintendent Naval Postgraduate School Monterey, California 93940	l
4.	Provost Code O2 Naval Postgraduate School Monterey, California 93940	l
5.	Dean of Research Code 023 Naval Postgraduate School Monterey, California 93940	l
6.	Chairman Department of Aeronautics Code 57 Naval Postgraduate School Monterey, California 93940	l
7.	Turbo-Propulsion Laboratory Department of Aeronautics Naval Postgraduate School Monterey, California 93940	5
8.	Commanding Officer Naval Air Systems Command Navy Department Washington, D. C. 20360	l
9.	Asst. Commander for Research & Technology Naval Air Systems Command Navy Department Washington, D. C. 20360	1

10. Dr. Frank Tanczos Code 03 Naval Air Systems Command Navy Department Washington, D. C. 20360 1

1

1

1

1

2

1

6

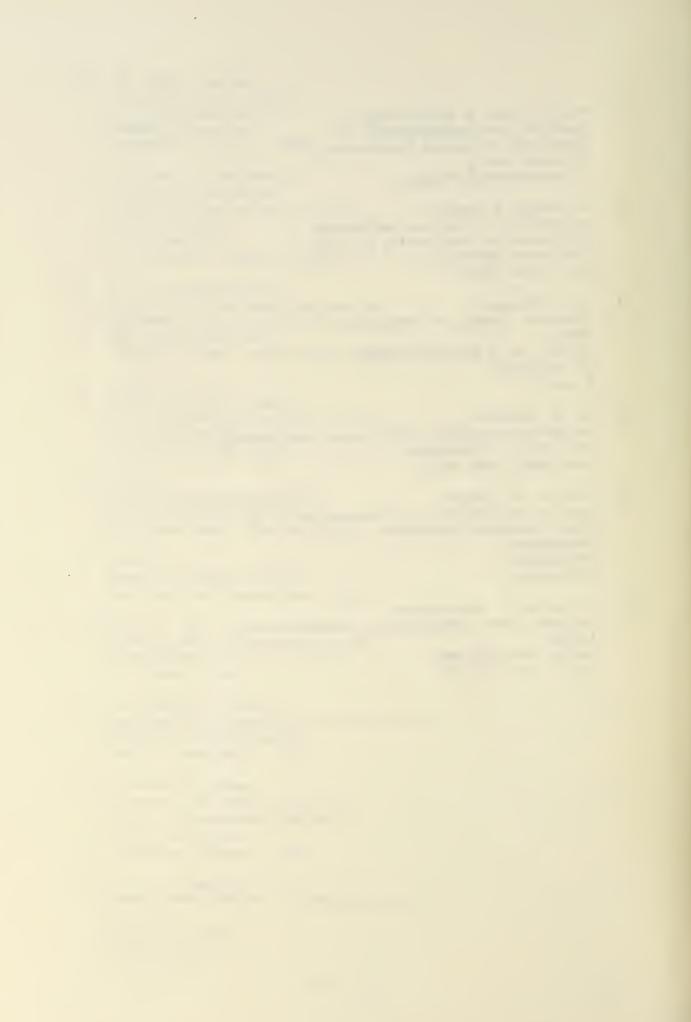
- 11. Mr. I. Silver
  Code 03B
  Naval Air Systems Command
  Navy Department
  Washington, D. C. 20360
- 12. Dr. Edward S. Lamar Chief Scientist, AIR-03C Naval Air Systems Command Navy Department Washington, D. C. 20360
- 13. Dr. H. J. Mueller Research Administrator Code 310A Naval Air Systems Command Navy Department Washington, D. C. 20360
- 14. Mr. E. A. Lichtman Naval Air Systems Command Code 330 Navy Department Washington, D. C. 20360
- 15. Mr. Karl H. Guttmann Code 33CC Naval Air Systems Command Navy Department Washington, D. C. 20360
- 16. Rear Admiral C. O. Holmquist, USN Chief of Naval Research Office of Naval Research Arlington, Virginia 22218
- 17. Commanding Officer Naval Air Propulsion Test Center Attn: Mr. E. Stawski Trenton, New Jersey 08628
- 18. Mr. Eric Lister R & T Division Naval Air Propulsion Test Center Trenton, New Jersey 08628

19.	Mr. Elmer G. Johnson Director, Fluid Dynamics Facilities Research Laboratories (ARL) Wright-Patterson AFB, Ohio 45433	l
20.	Mr. R. A. Langworthy Army Aviation Materiel Laboratories Department of the Army Fort Eustis, Virginia 23604	1
21.	National Aeronautics and Space Administration Lewis Research Center (Library) 2100 Brookpark Road Cleveland, Ohio 44135	1
22.	Prof Dr. Ing. Karl Bammert Institut fuer Stroemungsmaschinen Technische Hochschule Hannover 3 Hannover, Germany	1
23.	Prof M. Berchtold Institut fuer Thermodynamik Eidg. Technische Hochschule Sonneggstr. 3 8006 Zurich Switzerland	l
24.	Dr. V. Beglinger Manager of Development Brown Bovery-Sulzer Turbomachinery Ltd Ch-8023 Zurich Switzerland	1
25.	Library AiResearch Mfg. Corporation Division of Garrett Corporation 402 South 36th Street Phoenix, Arizona 85034	1
26.	CAG Library The Boeing Company Seattle, Washington 98124	1
27.	Prof Jacques Chauvin von Karman Institute Chaussee de Waterloo 72 1640 Rhode-Saint-Genese Belgium	1
28.	Mr. Jean Fabri ONERA 29, Ave. de al Division Leclerc 92 Chatillon Franch	1

29.	Dr. Robert Goulard Director, Project SQUID Jet Propulsion Center Purdue University Lafayette, Indiana 47907	l
30.	Dr. Robert E. Henderson Director of Research Detroit Diesel Allison Division General Motors P. O. Box 894 Indianapolis, Indiana 46206	1
31.	Dr. B. Lakshminarayana Professor of Aerospace Engineering The Pennsylvania State University 233 Hammond Building University Park, Pennsylvania 16802	l
32.	Library General Electric Company Aircraft Engine Technology Division DTO Mail Drop H43 Cincinnati, Ohio 45215	1
33.	Library Pratt and Whitney Aircraft Post Office Box 2691 West Palm Beach, Florida 33402	1
34.	Library Pratt and Whitney Aircraft East Hartford, Connecticut 06108	1
35.	Prof Dr. Ing. H. Marcinowski Institut fuer Stroemungsmaschinen Universitaet (T. H.) Karlsruhe Karlsruhe, Germany	1
36.	Prof Gordon C. Oates Department of Aeronautics and Astronautics University of Washington Seattle, Washington 98105	l
37.	Dr. Bruce A. Reese Director, Jet Propulsion Center School of Mechanical Engineering Purdue University Lafayette, Indiana 47907	l
38.	Dr. W. Schlachter Brown, Boveri-Sulzer Turbomachinery Ltd Dept. TDE Escher Wyss Platz CH-8023 Zurich Switzerland	l

- 39. Prof Dr. Ing. H. Schlichting Institut fuer Stroemungsmechanik Technische Hochschule Braunschweig Bienroder Weg 3 93 Braunschweig, Germany
- 40. Dr. George K. Serovy Professor of Mechanical Engineering 208 Mechanical Engineering Building Iowa State University Ames, Iowa 50010
- 41. Dr. J. Surugue Director, Energie et Propulsion ONERA
  29 Ave. de la Division Leclerc
  92 Chatillon France
- 42. Dr. W. Tabakoff Professor, Department of Aerospace Engineering University of Cincinnati Cincinnati, Ohio 45221

1


1

1

1

1

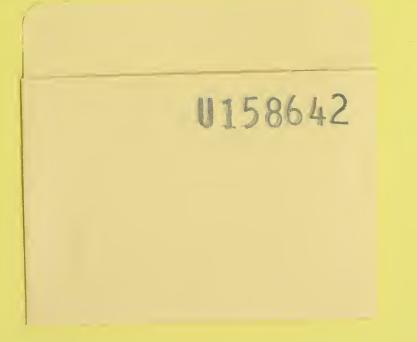
- 43. Prof Dr. W. Traupel Institut fur Thermische Turbomaschinen Eidg, Technische Hochschule Sonneggstr. 3 8006 Zurich Switzerland
- 44. Dr. Arthur J. Wennerstrom Chairman, ASME Turbomachinery Committee ARL/LF Wright-Patterson AFB Dayton, Ohio 45433



Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
NPS-57Va73071A	S. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitie)	
Design Report of Hybrid Compressor and	5. TYPE OF REPORT & PERIOD COVERED Final Report to July 1973
Associated Test Rig	TIMAL Report to Sulfy 1975
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR()	8. CONTRACT OR GRANT NUMBER(*) Airtask No.
Michael H. Vavra	A3303300/186B/3F41432301
	A2202200/ TOOP/ 3F4T43520T
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Aeronautics	AREA & WORK UNIT NUMBERS
Naval Postgraduate School	N.A.
Monterey, Calif 93940	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Air Systems Command AIR 330C	July 1973
Washington, D. C. 20360	13. NUMBER OF PAGES 279
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release and sale; distributi	on unlimited.
Approved for public release and sale; distributi	
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES	oan Report)
Approved for public release and sale; distributi	oan Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept.	oan Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design	om Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary end identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance	om Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abotract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels Lenformance of Drive Air Turbing	oan Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number)	om Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations as	nd describes the mechanical
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations and features of a test rig that has been designed at the	an Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations and features of a test rig that has been designed at th Department of Aeronautics, for research work on a features of a features of a features of a feature of the features of a feature of the feat	an Report)
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations and features of a test rig that has been designed at th Department of Aeronautics, for research work on a scompressor. This so-called Hybrid compressor const	And describes the mechanical he Turbopropulsion Laboratory, special type of centrifugal ists of a centrifugal rotor
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations and features of a test rig that has been designed at th Department of Aeronautics, for research work on a features of a features of a features of a feature of the features of a feature of the feat	an Report) And describes the mechanical he Turbopropulsion Laboratory, special type of centrifugal ists of a centrifugal rotor followed by an axial flow
<ul> <li>Approved for public release and sale; distributi</li> <li>17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 different in</li> <li>18. SUPPLEMENTARY NOTES</li> <li>19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbine</u></li> <li>20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations and features of a test rig that has been designed at th Department of Aeronautics, for research work on a compressor. This so-called Hybrid compressor cons with 180° flow deflection in the meridional plane is diffusor. The report establishes a method to predi- of the subject compressor, which can be applied al.</li> </ul>	and describes the mechanical he Turbopropulsion Laboratory, special type of centrifugal ists of a centrifugal rotor followed by an axial flow ict the off-design performance so to conventional centrifugal
<ul> <li>Approved for public release and sale; distributi</li> <li>17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different in</li> <li>18. SUPPLEMENTARY NOTES</li> <li>19. KEY WORDS (Continue on reverse elde if necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Ferformance of Drive Air Turbino</u></li> <li>20. ABSTRACT (Continue on reverse elde if necessary and identify by block number) his report presents the aerodynamic calculations al features of a test rig that has been designed at th Department of Aeronautics, for research work on a compressor. This so-called Hybrid compressor cons: with 180° flow deflection in the meridional plane is diffusor. The report establishes a method to predi-</li> </ul>	and describes the mechanical he Turbopropulsion Laboratory, special type of centrifugal ists of a centrifugal rotor followed by an axial flow ict the off-design performance so to conventional centrifugal
Approved for public release and sale; distributi 17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 different in 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde 11 necessary and identify by block number Hybrid compressor concept. Aerodynamic Design Design- and Off-Design Performance Losses in Radial Compressor Wheels <u>Performance of Drive Air Turbing</u> 20. ABSTRACT (Continue on reverse elde 11 necessary and identify by block number) his report presents the aerodynamic calculations and features of a test rig that has been designed at th Department of Aeronautics, for research work on a compressor. This so-called Hybrid compressor cons: with 180° flow deflection in the meridional plane : diffusor. The report establishes a method to pred: of the subject compressor, which can be applied al. compressors. Extensive use is made of modern prove	and describes the mechanical he Turbopropulsion Laboratory, special type of centrifugal ists of a centrifugal rotor followed by an axial flow ict the off-design performance so to conventional centrifugal

Unclassified


SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Item 19 continued:

Description of Test Rig Torque Measurement Programs for Programmable Calculators

Item 20 continued:

programs are presented to show the effectiveness of these tools in engineering endeavors.



.



