

Calhoun: The NPS Institutional Archive DSpace Repository

Nonsymmetric ballistic range, height, time-of-flight and optimal flight path angle computations with programs for a Hewlett-Packard 65 calculator

Shudde, Rex H.
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/29411

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

DUDLEY KNOX LIBRARY
http://www.nps.edu/library

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NaVAL POSTGRADUATE SCHOOL Monterey, California

NONSYMMETRIC BALLASTIC RANGE, HEIGHT, TIME-OF-FLIGHT
AND OPTIMAL FLIGHT PATH ANGLE COMPUTATIONS
WITH PROGRAMS FOR A HEWLETT-PACKARD 65 CALCULATOR
by
Rex H. Shudde

$$
\text { March } 1976
$$

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California
Rear Admiral Isham Linder
Jack R. Borsting
Superintendent Provost

```
Reproduction of all or part of this report is authorized.
```


Prepared by:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUAENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NPS55SU76031	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subitile) Nonsymmetric Ballastic Range, Height, Time-of-Flight, and Optimal Flight Path Angle Computations with programs for a Hewlett-Packard Calculator.	5. TYPE OF REPORT \& PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMEER
7. AUTHOR(a) Rex H. Shudde	8. CONTRACT OR GRANT NUMBER(4)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE March 1976
	13. NUMBER OF PAGES 17
14. MONITORING AGENCY NAME A ADDRESS(if dilferont from Controllind Office)	15. SECURITY CLASS. (of thie report) Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of thite Report)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abetract onfered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reveree eide if neceasary end identity by block number)

Ballistic Missile Range Maximization
Ballistic Range
Programmable Hand Calculator
Flight Path Angle
20. ABSTRACT (Continue on reverne alde if neceanary and identlfy by block number)

The purpose of this report is to provide the equations and HP-65 Programmable Calculator programs for computing ballastic range, height, time-of-flight, and particularly the flight path angle which maximizes ballistic ranges for non-symmetric launch and target positions. A no-atmosphere, non-rotating, spherical Earth is assumed.

TABLE OF CONTENTS

I. The Introduction and Apology 1
II. The Problem 2
III. The Computational Procedures 4
IV. The Illustrative Example 9
V. The Program Listings 13
VI. The References 14
VII. The Appendix 15

NONSYMMETRIC BALLASTIC RANGE, HEIGHT, TIME-OF-FLIGHT AND OPTIMAL FLIGHT PATH ANGLE COMPUTATIONS WITH PROGRAMS FOR A HEWLETT-PACKARD 65 CALCULATOR
I. The Introduction and Apology.

The range of a ballistic missile over the surface of the Earth is a topic which is discussed in almost every text on astronautics (Reference l, for example). Unfortunately, none of the available texts contained a needed procedure for the exact solution of the unsymmetric ballistic problem (defined in Section II); all procedures found were approximate and were based on a symmetric approximation [See References 2 and 3, for example]. The author of this report faced the dilemma of either (l) taking the time to solve the problem afresh, or (2) taking an inordinate longer time to do a thorough search to find a solution which might not be the one desired. The former course of action was taken and all due apologies are hereby extended to those that have published more elegant solutions.

All of the computational methods are outlined in Section III. Instructions and a sample problem for the HewlettPackard 65 Calculator (HP-65) are given in Section IV. This HP-65 programs are in Section V, and the development of the Bopt procedure is in the Appendix. Familiarity with Newtonian two-body theory is assumed.
II. The Problem.

Basically, the problem is to compute the range, S, and time-of-flight, t_{f}, of a ballistic missile given the booster cutoff at height h_{E} after a vertical ascent, a cutoff velocity v_{L}, and a subsequent flight path angle β (Fig. l). Given that a solution to the stated problem is available, the next natural question to ask is, "What flight path angle Bopt will obtain the maximum range $S_{\text {max }}$?" The solution is fairly simple in the symmetric ballistic problem, i.e. when $h_{E}=0$, and called symmetric because the launch point L and target point T are symmetric with the line of apses of the Keplerian orbit (i.e. $\phi_{1}=\phi_{2}$ in Fig. l). The unsymmetric ballistic problem is that in which $h_{E} \neq 0$. Here we assume that h_{E} is given, the Earth with radius r_{E} is spherical, non-rotating, and has no atmosphere. The effect of the Earth's rotation may be calculated figuring how far the target has moved during the time of flight of the missile. Explicitly, we assume that Keplerian orbit is obtained at height h_{E} with terminal booster cutoff velocity v_{L} and flight path angle B (or β_{L}), and the target T is at the Earth's surface.

The computation of range and time-of-flight for given h_{E}, $r_{E}, V_{L^{\prime}}$ and β can easily be obtained from the equations of elliptical orbits. The determination of $\beta_{\text {opt }}$ is somewhat complicated, however, and requires an iterative procedure. In all of the developments we assume that L and T are separated by the line of apses (which implies that $0<\beta \leq \frac{\pi}{2}$).

FIGURE 1
III. The Computational Procedures.
A. Range

1. Let r_{L} and r_{T} denote the distance of the launch point L and target point T from the center of the Earth. Usually we let $r_{L}=r_{E}+h_{E}$ and $r_{T}=r_{E}$ although r_{L} and r_{T} need not be so defined in general.
2. From r_{L} and v_{L}, compute the semimajor axis of the ellipse,

$$
a=\frac{\mu}{\left(\frac{2 \mu}{r_{L}}\right)-v_{L}^{2}}
$$

where $\mu=k_{E}^{2}$ and k_{E} is the (Gaussian) gravitational constant for the Earth. We have assumed that the mass of the missile is negligible with respect to the mass of the Earth.
3. Using the flight path angle β, compute the elliptical semiparameter

$$
p=\left(r_{L} v_{L} \cos \beta\right)^{2} / \mu
$$

4. Compute the eccentricity

$$
e=\sqrt{1-\frac{p}{a}}
$$

5. Compute the true anomaly of the launch point

$$
f_{L}=\cos ^{-1}\left[\frac{1}{e}\left(\frac{p}{r_{L}}-1\right)\right]
$$

where $0 \leq \mathrm{f}_{\mathrm{L}} \leq \pi$. Note that the line of apses can be said to have true anomaly $\mathrm{f}=\pi$.
6. Compute the true anomaly of the target point

$$
f_{T}=2 \pi-\cos ^{-1}\left[\frac{1}{e}\left(\frac{p}{r_{T}}-1\right)\right]
$$

7. The surface range of the missile is then

$$
S=r_{E}\left(f_{T}-f_{L}\right)
$$

B. Time-of-Flight

1. Compute the eccentric anomaly of the launch point,

$$
E_{L}=\cos ^{-1}\left[\frac{1}{e}\left(1-\frac{r_{L}}{a}\right)\right]
$$

where $0 \leq E_{L} \leq \pi$.
2. Compute the eccentric anomaly of the target point,

$$
E_{T}=2 \pi-\cos ^{-1}\left[\frac{1}{e}\left(1-\frac{r_{T}}{a}\right)\right]
$$

where $\pi \leq E_{T} \leq 2 \pi$.
3. Using Keplers' equation, compute the time-of-flight

$$
t_{f}=\frac{a^{3 / 2}}{\sqrt{\mu}}\left[\left(E_{T}-E_{L}\right)-e\left(\sin E_{T}-\sin E_{L}\right)\right]
$$

C. Height of Trajectory \& Circular Velocity

1. The maximum height of the trajectory above the Earth's surface for any h_{E}, v_{L}, and β is given by

$$
h_{\max }=h=a(1+e)-r_{E}
$$

2. Circular Velocity

The velocity required for a circular orbit at r_{L} is

$$
v_{C}=\sqrt{\mu / r_{L}}
$$

v_{c} will be used in Section III D.
D. Optimum Flight Path Angle \& Maximum Range For a specified h_{E} and v_{L}, a value of β can be found such that

$$
S_{\max }=S(\beta \text { opt })=\max _{\beta} S(\beta)
$$

In this unconstrained optimization problem
we set

$$
\left.\frac{\partial S}{\partial \beta}\right|_{\beta=\beta_{\text {opt }}}=0 \quad \text { and solve }
$$

for $\beta_{\text {opt }}$. The relationship between S and β is given by the computational formulas for the range in part A. Although an explicit formula for β is unobtainable, the following exact relationship is useful:
(1) $\cos ^{2} \beta_{o p t}=\frac{1}{\left(2-\alpha^{2}\right)}\left\{1+\frac{\left[1-\left(\frac{r_{L}}{r_{T}}\right)\left(2-\alpha^{2}\right) \cos ^{2} \beta_{o p t}-\frac{2 \mu}{v_{L}^{2}}\left(\frac{1}{r_{L}}-\frac{1}{r_{T}}\right)\right] \sin \beta_{o p t}}{\sqrt{1-\left(\frac{r_{L}}{r_{T}}\right)^{2} \cos ^{2} \beta_{o p t}-\frac{2 \mu}{v_{L}}\left(\frac{1}{r_{L}}-\frac{1}{r_{T}}\right)}}\right\}$
where $\quad \alpha=\frac{V_{L}}{V_{C}}$.

In the symmetric ballistic problem $r_{L}=r_{T}$; the equation for $\beta_{\text {opt }}$ then reduces to

$$
\cos ^{2} \beta_{\text {opt }}=\frac{1}{2-\alpha^{2}}
$$

which is the result given in References 1, 2, and 3.

In the unsymmetric case Equation (1) is used to find $\beta_{\text {opt }}$ as follows:

1. Solve (2) for $\beta_{\text {opt }}$.
2. Substitute $B_{\text {opt }}$ into the right hand side of (l) to obtain a new value for $\beta_{\text {opt }}$.
3. Average the last two values of $\beta_{\text {opt }}$ to obtain a new value of $\beta_{\text {opt }}$ and return this value of $\beta_{\text {opt }}$ to step 2 .
4. It has been found that five iterations are sufficient to obtain a reliable value for $B_{\text {opt }} \cdot$
5. Using $\beta_{\text {opt' }}$ compute the maximum range $S_{\text {max }}=S\left(\beta_{\text {opt }}\right)$ using procedure A.
IV. The Illustrative Example.

The HP-65 program consists of four magnetic cards which are used as follows:

Card l: This card must be entered first. It is used to set the two constants r_{E} and μ for any choice of four distance units and any choice of four time units. The distance units are kilometers, meters, statute miles, and nautical miles; the distance unit is entered by pressing key A, B, C, or $D, r e s p e c t i v e l y$. The display shows the equatorial Earth radius r_{E} in the respective unit. The time units are seconds, minutes, hours, and days; the time unit is entered by pressing key A, B, C, or D, respectively. The display shows the constant μ in the appropriate (distance) ${ }^{3} /(\text { time })^{2}$ unit. Note after entering program Card 1 , the distance unit must be entered before the time unit is entered since the keys A through D perform a dual function. The basic definitions used are:

1 statute mile $=1.609344$ kilometers (km)
1 nautical mile $=1.852 \mathrm{~km}$

$$
\begin{aligned}
r_{E} & =6378.160 \mathrm{~km} \\
\mu & =398603 \mathrm{~km}^{3} / \mathrm{sec}^{2}
\end{aligned}
$$

Card 2: This card computes $S, h_{\text {max }}$, and V_{C} given $h_{E^{\prime}} v_{L}$ and β. It must be used after the
execution of Card 1 and it may be used before and/or after the execution of Cards 3 and 4. If it is used after Card 4 to compute $S_{\text {max }}$ then Bopt as computed by card 4 need not be re-entered. Otherwise, in any order: enter h_{E} and press A, enter v_{L} and press B, enter β and press C. To find the range S, press E. Then to find $h_{\text {max }}$, press R / S; and then to find V_{C} press R / S again. Note: If $h_{E^{\prime}} v_{L^{\prime}}$ and β have been entered using Card 3, then they do not have to be reentered when using Card 2. Also, any new value of h_{E}, v_{L}, or β can be entered and the range computed without having to re-enter unchanged values.

Card 3: This card computes the time of flight, t_{f}. It must be used after the execution of card 1 and it may be used before and/or after the execution of Cards 2 and 4. If it is used after Card 4, then β opt as computed by Card 4 need not be re-entered; if it is used after Card 2, then only new quantities need be entered. Otherwise, in any order: enter h_{E} and press A, enter V_{L} and press B, enter B and press C. To find the time of flight, press E.

Card 4: This card computes $\beta_{\text {opt. }}$ It must be used after h_{E} and v_{L} have been entered from either Card 2 or Card 3. No entries are required. To compute $\beta_{\text {opt' press any key A }}$ through E; five iterations will be performed and the resulting value of $\beta_{\text {opt }}$ will be displayed. To perform five more iterations, press R / S. To monitor the intermediate iterations press keys \underline{f} SF2. Each intermediate result will be displayed. To continue, press R/S. To disable the monitoring, press keys \underline{f}^{-1} SF2.

Using the four program cards as described above find the range and time-of-flight for a ballistic missile that has a velocity of 10000 knots at a cut-off altitude of 50 nautical miles for a flight path angle of 30° and 40°. Also, find the maximum possible range and time-of-flight for the same missile.

Proceed as follows:

tep	Instruction	Data	Key	Display
1	Enter Card 1			
2	Distance unit is n.mi.		D	$\mathrm{r}_{\mathrm{E}}=3443.93 \mathrm{n} . \mathrm{mi}$.
3	Time unit is hours		C	$\mu=8.13247 \times 10^{11}$
4	Enter Card 2			
5	Enter cutoff altitude	50	A	$r_{L}=3493.93 \mathrm{n} . \mathrm{mi}$.
6	Enter cutoff velocity	10000	B	
7	Enter flight path angle	30	C	
8	Compute range		E	$\mathrm{S}=1928.08 \mathrm{n} . \mathrm{mi}$.

Step	Instruction	Data	Key	Display
8 a	Optional: Display $h_{\text {max }}$		R/S	$\mathrm{h}_{\text {max }}=344.74 \mathrm{n} . \mathrm{mi}$
8b	Optional: Display v_{C}		R/S	$\mathrm{v}_{\mathrm{c}}=15256.47 \mathrm{knot}$
9	Enter flight path angle	40	C	
10	Compute range		E	$\mathrm{S}=1956.60 \mathrm{n} . \mathrm{mi}$.
11	Enter Card 3			
12	Compute time-of-flight Note: $h_{E}=50, v_{L}=10000$, and $\beta=40^{\circ}$ since no further entries have been made.		E	$t_{f}=0.3043 \mathrm{hrs}$.
13	Enter flight path angle	30	C	
14	Compute time-of-flight		E	0.2504 hrs .
15	Enter Card 4			
16	Compute $\beta_{\text {opt }}(5$ iterations)		E	$\beta_{\text {opt }}=36.0895$
17	Make 5 more iterations to be sure		R/S	$\beta_{\text {opt }}=36.0895$
18	Enter Card 2			
19	Compute $\mathrm{S}_{\text {max }}$		E	$S_{\text {max }}=1973.95 \mathrm{n} . \mathrm{I}$
20	Enter Card 3			
21	Compute time-of-flight for maximum range.		E	$t_{f}\left(\beta_{\text {opt }}\right)=0.2846$

V. The Program Listings.

CARD 1

Set units of distance and time display r_{E} and μ

CARD 2

Compute range, $h_{\text {max }}, v_{c}$

CARD 3
Compute time-of-flight

Key	Code		Key	Code
Entry	Shown		Entry	Shown
RCL 4	3404		-	51
$+$	61		STO 5	3305
STO 3	3303		X	71
R/S	84		1	01
LBL	23		-	51
B	12		CHS	42
STO 2	3302		f	31
R/S	84		$\sqrt{ }$	09
LBL	23		STO 6	3306
C	13	60	g	35
STO 7	3307		π	02
R/S	84		ENTER	41
LBL	23		$+$	61
D	14		RCL 4	3404
g	35		D	14
RAD	42		-	51
RCL 5	3405		ENTER	41
X	71		f	31
1	01		SIN	04
-	51	70	RCL 6	3406
CHS	42		X	71
RCL 6	3406		-	51
\div	81		RCL 3	3403
f^{-1}	32		D	14
Cos	05		ENTER	41
RTN	24		f	31
LBL	23		SIN	04
E	15		RCL 6	3406
g	35		X	71
DEG	41	80	-	51
RCL 7	3407		-	51
f	31		RCL 5	3405
COS	05		\div	81
RCL 2	3402		RCL 1	3401
X	71		RCL 5	3405
RCL 3	3403		X	71
X	71		f	31
ENTER	41		$\sqrt{ }$	09
X	71		$\sqrt{ } \quad$ \%	81
RCL 1	3401	90	R/S	84
\div	81		GTO	22
STO 8	3308		E	15
2	02		g NOP	3501
RCL 3	3403		g NOP	3501
\div	81		g NOP	3501
RCL 2	3402		"	3501
ENTER	41		11	3501
X	71		11	3501
RCL 1	3401		"	3501
\div	81	100	"	3501

NOTE: Before putting a program into memory, after switching to W/PGM mode, press f and then PRGM to clear memory.
VI. The References.

1. Berman, Arthur I., The Physical Principles of Astronautics, John Wiley and Sons, Inc. 1961.
2. Seifert, Howard (editor), Space Technology, John Wiley and Sons, Inc. 1959.
3. Wyckoff, Robert C., Private Communication, 1975.
VII. The Appendix.

As indicated in section IIID, the maximum range for a specified cutoff altitude h_{E} and cutoff velocity v_{L} is found by the following unconstrained optimization:

$$
\begin{array}{r}
S_{\max }=S\left(\beta_{\text {opt }}\right)=\max S(\beta) \\
0<\beta \leq \frac{\pi}{2}
\end{array}
$$

Using the equations in section IIIA, we want to find $\beta_{\text {opt }}$ such that

$$
\left.\frac{\partial S}{\partial \beta}\right|_{\beta=\beta_{\text {opt }}}=\left.r_{E} \frac{\partial}{\partial \beta}\left(f_{T}-f_{L}\right)\right|_{\beta=\beta_{\text {opt }}}=0
$$

We find that

$$
\frac{\partial}{\partial \beta}\left(f_{T}-f_{L}\right)=\left(\gamma_{T}-\gamma_{L}\right) \frac{\partial p}{\partial \beta}
$$

where

$$
\gamma_{i}=\frac{1}{\sqrt{1-\frac{1}{e^{2}}\left(\frac{p}{r_{i}}\right)-1}}\left[\frac{1}{e r_{i}}+\frac{1}{2 a e^{3}}\left(\frac{p}{r_{i}}-1\right)\right] . i=T, L
$$

For the derivative of $f_{T}-f_{L}$ with respect to β to vanish at $\beta=\beta_{\text {opt' }}$ we must have either:
1.

$$
\left(\gamma_{T}-\gamma_{L}\right)_{\beta=\beta_{\text {opt }}}=0
$$

or

$$
2
$$

$$
\left.\frac{\partial p}{\partial \beta}\right|_{B=\beta_{\text {opt }}}=0
$$

We find that

$$
\frac{\partial p}{\partial \beta}=-\frac{r_{L}^{2} v_{L}^{2} \sin 2 \beta}{\mu}=0
$$

for $\beta=0, \pm \pi / 2, \pm \pi$, etc. Since we require that the launch point and the target point be separated by the line of apses, we require that $\theta<\beta \leq \frac{\pi}{2}$. This requirement is imposed because we must properly interface the discontinuity caused by the principal angle in the arc cosine used in steps 5 and 6 of section III A. Thus $\beta=\pi / 2$ is the only angle of interest for which $\partial p / \partial \beta=0$, and this angle clearly gives rise to a minimum in range since the trajectory of the missile is vertical (straight up, and then straight down).

The value of β which maximizes S is found from the requirement that

$$
\left(\gamma_{T}-\gamma_{L}\right)_{B}=\beta_{\text {opt }}=0
$$

This equation has defied attempts to find an analytic solution, but it can be rearranged and displayed as equation 1 in section III D, where the solution procedure is detailed.
Dean of Research, Code 023 1
Naval Postgraduate School
Monterey, California 93940
Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
Library, Code 55 2Department of Operations Researchand Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
Code 55Su 100
Naval Postgraduate School
Monterey, California 93940

$$
\sqrt{1 \pi y}=12
$$

4
aty

$$
\text { :ONOV } 76
$$

$$
\mathrm{S} 10501+1
$$

$$
=0 \text { NOV } 76
$$

$$
510501-
$$

$$
u-172,215
$$

Naval Postgraduate School.
NPS-55Su76031.

$$
\text { U } 172215
$$

