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Executive Summary

Inventory managers are faced with the difficult problem of making

decisions under the uncertainty of future needs. This problem is espec-

ially critical in the Navy where such important decisions as those con-

cerning budgets, the range and depth of stock to be maintained and when

to replenish stocks must all be made for hundreds of thousands of items

on the basis of predictions about future demand. In order to provide a

margin of safety to protect against random fluctuations, the inventory

manager needs to make a probabilistic statement about the demand process

for each item. But, because of the size of the Navy's inventory system,

it is not feasible to give individual attention to determine "optimal"

forecasts for each item. Consequently, the Navy has attempted to solve

the forecasting problem by assuming a family (or families) of probability

distributions and concentrating on the problem of estimating the parameters

for the individual items. Several investigations have looked into the

problem of how to estimate the parameters. In this report we focus atten-

tion on the problem of selecting an appropriate family of probability dis-

t ribut ions

.

Various decision criteria should be considered when selecting a

family of distributions to describe demand. The family must be rich

enough to be able to describe demand distributions for a large number of

different items, and it must be mathematically tractable. Furthermore,

the family should reflect the current knowledge of the characteristics of

the demand, but, at the same time, it should also reflect the uncertainty.

These considerations combined with previous experience with demand data



and knowledge about the type of information available to the inventory

manager led us to examine the family of gamma distributions.

Using the maximum entropy procedure, a decision criterion which

leads one to select that family which maximizes the decision maker's un-

certainty subject to his current information, we show that the gamma family

results from information typically available to inventory managers. In

addition, we used actual demand data to compare the gamma family to the

normal family, which is currently employed almost exclusively in the Navy's

forecasting procedures. Goodness-of-f it tests were performed and numeri-

cal evaluations of various measures of supply effectiveness were made.

The experimental evidence gives strong support for the use of the gamma

family as preferable to the normal family for describing demand.



l. Introduction

Large multi-item inventory systems have long been confronted with

the problem of forecasting the occurrence of future demand. The stochas-

tic nature of demand creates an uncertainty that has a significant impact

on virtually every decision that an inventory manager must make. For

example, such inventory decisions as

(1) what items should be stocked,

(2) at what depth should an item be stocked,

(3) how should budgets be allocated among items,

(4) when should resupply orders be placed, and

(5) how much should be ordered

all depend strongly on the forecasts of future demand. Tn order to provide

a high level of service to the customer, the inventory manager must protect

against stockouts as best possible within his limited resources. This can

only be done by anticipating future demand.

In those cases where inventory levels are updated continuously and

orders can be placed as soon as available stock reaches the reorder level,

the time lag between the moment the order is placed and the time the order

ls received is an interval of uncertainty. Without incurring extra costs,

the inventory manager is at the mercy of his customers and his supplier

during the procurement lead time. He can only attempt to protect the in-

ventory system against stockouts during those intervals of uncertainty by

placing orders before the stock assets drop too low. Since he can nevei

be certain that his on-hand stock will last throughout the lead time, he

will usually assume that future demand will be similar to the past demand.



He will then estimate the probability distribution of lead time di mand to

guide him in making his decisions.

Nearly all mathematical models, from the very naive to the most

sophisticated, require the probability distribution of lead time demand.

For example, if F.(*) represents the cumulative distribution of lead

time demand for item i and r. is the reorder level for item i , al-

most all models dictate, in some form, that the reorder level be determined

by solving

1 - F.(r.) = C. (1)

The value C. depends on the model; it is usually a function of the in-

ventory costs or some specified measure of system performance. We are

concerned with the problem of selecting an appropriate probability distri-

bution F. ( • ) .

Because of the sheer magnitude of large multi-item inventory sys-

tems, the inventory manager can rarely afford the luxury of examining

the demand histories of the items individually and fitting the "best"

distribution to each item. For the most part the data required for such

an analysis is unavailable. Even if the data were available the dynamic

nature of demand histories would make a simple distribution-fitting ap-

proach of limited value. These problems notwithstanding a cost/benefit

analysis would probably suggest that some alternative method be employed.



2 . S

e

luct ing A Family of Distributions

One feasible way to accomplish the task is to select a family of

probability distributions in some rational manner. Given an individual

item, a particular member of the chosen family would be selected by esti-

mating the necessary parameters using statistics collected from the item's

demand data. This approach is particularly attractive because of its com-

putational simplicity. Indeed, most large inventory systems have taken

this approach. However, it is evident from the bulk of the forecasting

literature (see, for example, Brown 1
', Harrison 3

, and Winters 8
) that most

attention has focused on the problem oi estimating the parameters of the

distribution. When placed in the proper perspective, it is hard to justify

the use of a costly sophisticated forecast technique to estimate parameters

for a poorly chosen family of probability distributions.

What is the appropriate family of distributions? Falling back on

first principles, it can be argued in many cases that a Poisson process or

a compound Poisson process generates demands. Nevertheless, the lead time

itself may be a random variable so that the marginal distribution of lead

time demand can easily become intractable even if the process generating

demands were relatively simple like a compound Poisson process. What is

needed is a simple distribution which lends itself easily to numerical cal-

culations and which provides a good approximation in practical applications.

The quest for such a family of approximating distributions has led,

in most cases, to the choice of a family of distributions for continous

variables despite the fact that demands are normally integer valued. This

is because it is usually easier to work analytically with variables that



can be treated as continuous. Any problems caused by using a continuous

distribution to approximate a discrete distribution can usually be ignored.

The most frequently used family of distributions has been the normal family.

The advocates of the normal family will support their choice by arguing

that it is easy to work with and well tabulated. For theoretical support

they will then make some appeal to the Central Limit Theorem to argue for

the normality of leadtime demand. These arguments certainly support the

choice of the normal family, but is that really the best family to use?

The normal distribution has one obvious shortcoming— it does not have the

proper domain for the inventory application. This may not be serious if

the weight assigned to the negative half of the real line is small, but

problems could arise if that weight is not negligible. A simple way to

correct that deficiency is to truncate the left tail of the normal distri-

bution at zero and normalize the resulting truncated distribution. We are

then led in a natural way to consider the family of truncated normal dis-

tributions. This is certainly appealing, but a stronger justification is

needed for selecting any family to be used. We must establish reasonable

decision criteria upon which to base our choic of a family of distributions



3. Maximum Entropy Criterion

The problem confronting the inventory manager is to select a proba-

bility distribution for the lead time demand given only limited knowledge

about the random nature of the process. An appealing criterion which is

often used to make such a decision is that of maximizing the entropy.

The inspiration for the method of maximum entropy is due to the

work of Shannon and Weaver in communication theory. The entropy of a

probability function is defined to be the expectation of the logarithm of

the probability function. Mathematically, if f(x) is the probability

density function associated with the continuous random variable X de-

fined on the interval (a,b) , the entropy of the probability function

is given by

H(f) = - f(x) Jin f(x)dx (2)
J

a

The entropy is taken as a measure of the amount of "uncertainty" contained

in the distribution of X . The inventory manager usually has some know-

ledge of the characteristics of the random variable X through past his-

tory, his experience with the customers or perhaps known moments. His

problem may then be viewed as one of finding a probability density

f(x) that maximizes the entropy subject to constraints that reflect the

current knowledge of the characteristics of the random variable. Formally,

the inventory manager wishes to

max H(f)



subject to

f(x)dx = 1 (3)

£ (x)f(x)dx = y , k = 1,2,. . . ,n

a

f(x) £ , a x b

where u, is a constant for a given function E, (x) . For example, if

k
£,(x) = x , u, is the kth moment.

Introducing Lagrange multipliers a, A,,..., A , we convert (3) to

the following:

n

max 4>(x,f(x)) [in f(x) + a + j \ F (x)]f(x)dx
J

a
k=l

k"k

(4)

n

+ a + I Am
k=l

k k

It follows from the calculus of variations that 4)(x,f(x)) is maximum

when

n

3f(x)
Un f(x) + a + I A f (x)}f(x) =

k=l
k'k

This leads to the general maximum entropy density



n

f(x) = exp(- I A f
;

(x)) a £ x £ b (5)

k=0

where A = 1 + a and we take £ n ( x )
= 1 The n + 1 constraint equa-

tions in (3) must be solved in order to determine A., A.,..., A in (5).
1 n

The method of maximum entropy yields many of the classical probability

density functions under appropriate conditions. Some of the results are

summarized in Table 1.

Table 1.

Some Classical Maximum Entropy Densities

Conditions Density Function: f(x)

£,(x) = UNIFORM l/(b-a)

ax b

E, (x) = x EXPONENTIAL A exp(-Ax)

x € (0,») A >

£, (x) = x (a-1) , , .

c\ , a
GAMMA *- exp_(zxi3l

F
2
(x) = in x

r(a)3
a

x € (0,=°) a ; 3 >

C,(x) = x TRUNCATED __ , , N 2/o 2n

c\ , 2 NORMAL
K exp(-(x-u) 2 /2a 2

)

4 (X) = X
a/2V

x 6 (0,-) K > , a 2
>

4 (X) = X
NORMAL

exP (-(x-p)
2 /2a 2

)

C 9
(x) = x2 a/2rr

x 6 (-00
,
00

) « 2

It is intuitively appealing that classical probability densities

result from the maximum entropy method with the specification of simple

moments. For the inventory problem the distributions of interest are

10



exponential, gamma and truncated normal.

The appropriate discrete analogs for the densities and conditions

given in Table 1 follow directly. The details leading to this table as

well as the details for other maximum entropy densities are found in the

works by Tribus 6 ' 7 and C lough ^ . Although the concept of maximizing entropy

as a criterion for decision processes has only recently received wide ac-

ceptance in engineering, psychology and business and economic applications,

it has long been known as a tool for statistical inference. For a rigor-

ous mathematical treatment of this, the reader is directed to the work

of Kullback 14

.

11



4. Other Decision Criteria

Under appropriate conditions (see Table 1) the exponential, trun-

cated normal and gamma were all seen to be maximum entropy distributions

over the interval (O, 00
) . in the inventory problem the above moments

may not be known, but estimates can probably be obtained by examining past

demand data. It is the decision-maker ' s prerogative to collect whatever data

he deems useful. Those statistics typically include estimates for only

the mean and variance, but it would be a simple task to collect an esti-

mate for other moments such as E[Vn x] . The maximum entropy distribution

depends on the information that is available. Therefore, we are faced with

another decision—what information should be collected?

The information that is collected should result in a family of maxi-

mum entropy distributions which is versatile (allowing for many shapes)

and mathematically tractable. More importantly, the resulting family should

perform well in view of the measures of supply effectiveness. For example,

if the objective of the inventory system is to minimize the total number

ol stockouts subject to a given investment in stock, one should prefer that

family which yields the fewest stockouts with a given inventory investment.

Other measures of effectiveness such as the probability of a stockout or

time-weighted backorders might also be appropriate as decision criteria

for selecting among families of distributions.

The gamma family of distributions becomes particularly attractive

when one considers its versatility and t ractability . This two parameter

family is so rich that it can approximate virtually any nonnegative uni-

modal distribution. In fact, many of the classical distributions such as

12



the exponential, chi-square and the Erlang .in special cases of the gamma

family Furthermore, a member of this family tan usually be found thai

provides a good approximation to such distributions as the Wtibull, log

norma] and the truncated normal (having domain (0,0). These facts,

combined with the knowledge that it is a maximum entropy dislribut ion,

weigh heavily toward the selection of the gamma family. However, the

crucial test is how well the inventory svstem performs in actual use with

the gamma family.

13



5 . Data Comparisons: Gamma vs. Normal

We have previously commented that the normal family enjoys wide-

spread use in the inventory community for describing the distribution of

lead time demand. We have presented supporting arguments for using the

gamma family. We now seek to make the case for the gamma family even

stronger by presenting a posteriori comparisons with the normal family

using actual demand data. The comparisons reveal which family gives the

better "fits" as well as which family does the better job of maximizing

the effectiveness of the inventory system.

In order to compare the normal and gamma families, a random sample

of 50 items was selected from a data base of 1000 items in the inventory

of the United States Air Force. For each item there were 57 observations

of lead time demand. The first test examined the "goodness of fit" pro-

vided by the normal and gamma families. Next, the stockout risks were

examined. Finally, the two families were compared in an aggregate manner

using the average overall system risk per dollar of stockage cost as a

measure of effectiveness.

5.1 Tests of Goodness of Fit

For each item, estimates of the mean p , the variance o and

E

[

in X] were calculated as follows:

14



1

n

—
/ X .

= X
n

1-1
l

^
1

n

n 2 = -— (x.~x) ; = S (6)/

i=l

E[)in X] = - l'ri n x. = In x
" 1-1

X

Using the gamma density f(x;a,3) given in Table 1, a particular member

was selected for each item by determining the parameter pair (a, 3) bv the

method of moments. That procedure gives the following estimates:

<\>(a) - S.n a = in x - In x

(7)

3 = x/u

where tK°0 - d «n l'(a)/du is the digamma function. Similarly, the nor-

—
mal distribution with parameters ^ = x and >r = S was selected from

the normal family. The Kolmogorov-Smirnov test was then applied for each

of the 50 items to test first the hypothesis

H.
T

: The data are from the selected normal distribution.
N

and then the hypothesis

H : The data are from the selected gamma distribution.

The tests were conducted at a significance level of .10 with the results

as summarized in Table 2.

15



Table 2 •

K-S Test Re suits

Distribution
Times
Accepted

Times
Rejected

Acceptance
Percentage

Normal 50 0%

Gamma 31 19 62%

The goodness-of-f it tests, alone, present a strong argument in favor

of the gamma family. Whereas the normal family never provided a suffi-

ciently good fit, the gamma family gave a satisfactory fit in 62% of the

cases. Furthermore, the gamma beat the normal in all cases (using the K-S

statistic as the test criterion).

5.2 Stockout Risks

As discussed earlier, a probability distribution for lead time demand

is used primarily to determine reorder levels. The higher the reorder

level r. , the lower will be the probability that the lead time demand

will exceed r. . Define the stockout risk to be this probability. One
l

cost-independent method of determining the reorder level is to specify a

value for the risk which is acceptable, say p. , and solve (1) for r.

with C. = p. . Since F.(») is really unknown, the actual risk may

differ from the desired risk. The better the distribution F.(*) approx-
i

imates the true underlying distribution, the smaller will be the difference

between the actual and desired values for stockout risk.

A second comparison of the two families was undertaken to determine

how well each performed in determining reorder levels. With a selected

value of p. = 0.20 , the actual empirical distribution F ( * ) for each

item was used to determine the reorder level from (1). (The actual risks

16



were slightly less than 0.20 because the reorder levels were rounded to

the next higher integer.) In the same manner, both the normal and the

gamma distributions, F. ,
( • ) and F_(») , were substituted into (1) to

N G

determine r and r respectively. These values were then used with

the empirical distribution to estimate the actual risks yielded by the

normal and gamma families. That is, the values

"N
1 "W

and (8)

"G
1 -W

were determined. For example, if F_(10) = 0.75 , F_(15) = 0.80 and
E E

F (20) = 0.90 , then the reorder level should be 15 to get a risk of
E

0.20 . Now, if r = 20 and r = 10 , then the actual risks are
N Cj

p = 0.10 and p = .25 .

In general, these comparisons revealed that the actual risks given

by the gamma family were closer to the desired levels than were those ob-

tained from the normal family. The reorder levels determined from the

normal family tended to overprotect against stockouts; that is, the values

of r were usually much higher than those needed to give the desired

protection. Three typical comparisons are illustrated in Table 3.

Table 3.

Comparison of Risks ( (
= 0.20)

_. ., . Item 1 Item 2 Item 3
Distribution „ . , „ . ,

r Risk r Risk r Risk

Empirical 4 .193 22 .176 171 .193

Gamma 4 .193 26 .142 181 .175

Normal 10 .090 28 .12 3 368 .070

17



Judging the two families on the basis of how close the reorder

levels r and r are to the reorder levels determined by the empirical
IN kj

distributions, the gamma family showed to be superior to the normal family.

5 . 3 System Synthesis: Average Stockout Risk per Dollar

The comparison of stockout risks revealed that the normal family

tended to overprotect against stockouts. While it is desirable to reduce

the stockout risks as low as possible, this cannot be accomplished without

paying the price of carrying larger safety stocks. For example, Table 3

shows that the reorder level for item 3 as calculated by the normal dis-

tribution to give a risk of 0.20 was 368 when a level of 171 would have

been sufficient. The inventory system would certainly provide better ser-

vice (in terms of reduced stockouts) with the higher reorder level, but

it must pay for that extra performance through higher investment and

holding costs. With the limited budgets of large multi-item inventory

systems, such excesses cannot generally be tolerated. When one item is

given too great a protection in a system with limited resources, the risks

for other items must increase.

The final comparison looked at overall system risk by synthesizing

the operation of the inventory system (50 items) for 57 months with actual

demand data using reorder levels determined in one case by the normal family

and then repeated using the gamma family. A startup period of 21 months

was used to give initial estimates of the parameters of the demand distri-

butions. Those parameters, and consequently the reorder levels, were up-

dated continually as more data became available. Assuming a holding cost

rate of one per cent per month, total holding costs were accumulated.

18



The fraction of those lead times in which the lead time demand exceeded

the reorder level (stockouts occurred) was used to estimate "total system

risk." The system syntheses were repeated for different values of p

with results as depicted in Figure 1.

1.00

SYSTEM
RISK

SYSTEM RISK vs. HOLDING COST

Normal
Gamma

HOLDING COST X $1000

FIGURE 1
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One observes from Figure 1 that, for any fixed value of total holding

cost, the gamma family gave a system risk lower than that given by the

normal family. Hence, use of the gamma family appears to be the more

cost-effective alternative.

20



6 . Conclusions

We have presented intuitive and Lheoretical arguments for using the

gamma family to describe the distribution of lead time demand. We have

also attempted to evaluate the gamma family as compared to the normal

family, which is a widely used competitor. Three reasonable decision

criteria based on measures of inventory effectiveness were used in those

comparisons. The tests were conducted with a given set of real world de-

mand data.

One may certainly argue that the numerical comparisons might not

have favored the gamma family so strongly with a different set of actual

demand data. Perhaps special characteristics of the processes generating

demands in a given inventory system could be described better with the

normal family or some other family.

Nevertheless, we have shown with the available data that the gamma

family easily out performs the normal family with respect to (1) goodness

of fit, (2) the determination of reorder levels and (3) total system risk

per dollar of holding cost.

21
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