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1. INTRODUCTION.

In two previous reports ([1] and [2]) a rather detailed

examination of some of the aspects of exponential smoothing as a

demand forecasting tool was presented. In particular, special atten-

tion was paid to the manner in which reorder levels are affected in a

variety of forms using models presently employed by NavSup and

originally generated by R. G. Brown [3].

In the case of a normal demand with constant mean and variance

(high mover, low value items) the results of setting reorder levels

using exponential smoothing were compared with chose obtained using

classical maximum likelihood techniques. Because of the intractability

of the probability distributions involved using exponential smoothing,

simulation techniques had to be used for comparing these methods

.

While such methods fail to produce absolutely conclusive results, the

overwhelming evidence favoring maximum likelihood over exponential

smoothing in every case examined can hardly be taken lightly. The

results really were not surprising. As previously pointed out, when-

ever the Gauss-Markov assumptions apply, as they do in these models,

almost any departure from maximum likelihood methods is doomed to be

second best, at most. Yet, on the practical side, one can ask, 'How

bad off is second best?" and, "Is there a trade-off perhaps between

optimality and some other desirable facets such as reduced computation

time or perhaps ease of understanding?" Again, attempts were made

to answer these questions by having NavSup personnel choose the criterion



and then draw comparisons on that criterion. For the models studied,

very little beyond the intuitive appeal of weighting previous demands

with the highest weight going to the most recent demand could be said

for exponential smoothing.

To be more specific, previous studies focused on the case where

demand in a period is normally distributed with mean y and standard

deviation a. From period to period, such demands are independent

but always with this same probability distribution. If u and a

were known, then it would be a relatively simple matter to set a

reorder level to apply period by period in order to achieve a specified

stockout risk. Indeed, if X represents random demand in the period

to come and a stockout risk of p is specified, then the reorder

level should be set at u + ka where the constant k is determined

from the simple relationship,

(1.1) p = P(X>u+ka)

Since this can be immediately translated into

(1.2) p = P(^ > k)

and —— is the standard or tabled normal random variable, it is a
a

trivial task to match k with p by means of a normal table. For

example, if p = .05, then k = 1.645, while if p = .10, then

k = 1.282 and so on. Obviously, choosing larger and larger values



of k guards against being out of stock, but only at the expense

perhaps of holding excessive stock on hand. The difference in the con-

sequences of these two standard undesirable conditions will have to

guide one's choice of p hence k.

The difficulty is that even if the model applies, the param-

eters \i and a are rarely known. This means that they will have

to be estimated and when these estimates are used to set the reorder

level, there is no longer any guarantee that the specified value of

p in (1.1) is satisfied. This is true regardless of how u and a

are estimated and is just one of those statistical facts of life.

The true risk that is faced thus depends upon the joint probability

distribution of the estimators involved and may or may not depart

significantly from the intended risk. Or if you prefer, the actual

costs of being out of stock will eventually be observed to depart

from what was supposed to be the case because of the fact that the

estimated reorder level is not the theoretical one specified by (1.1).

This being the case, the precision with which u and a are

estimated becomes an extremely important factor. And here is pre-

cisely where exponential smoothing begins to lose contests, at least

in the normal models that have been examined. The numerical results

in all of those cases, coupled with some theoretical results to be

reported presently, indicates that exponential smoothing always seems

to be more variable than classical maximum likelihood. What is worse,

that variance does not improve with time, is a function of the



smoothing constant and, in that regard, can only be reduced at the

expense of destroying the most compelling reason for employing it,

namely, reducing the weight assigned to the most recent observation

to zero

.

It has been brought to the writer's attention that exponential

smoothing really was never "invented" for the constant mean model in

the first place. Perhaps so, but it is, nevertheless, presently used

in precisely those cases and hence must stand on its own merit under

scrutiny, particularly when alternatives are available that appear to

do a better job for an equal amount of effort. Of even more signi-

ficance, however, is the fact that exponential smoothing was found to

be second best even in one case where the mean value of the demand

process is allowed to change in time. These results are reported in

Section 3.

Before turning to specific results, perhaps a remark or two

regarding random demand would be in order. Generally speaking, if

demand is truly random and the values of these random variables are

used to set reorder levels, or in general estimate parameters, it is

inherently part of the model that the resulting values will fluctuate

in a random fashion also. There is no way around this point and usually

the best we can hope for is that these random fluctuations eventually

dampen about some ideal or hope-for value. First, we usually try to

establish that at least these resultant processes will converge to a

target value in the mean. Thus, it is desirable certainly to be able



to establish that random reorder levels will eventually converge in

expected value to \i + ka whatever p and a happen to be. But,

such convergence is not enough. Unless the variance of that process

goes to zero in time there is no assurance that the process is in any

sense close to the required value regardless of how long the system

may have been operating. It is this examination of variance proper-

ties of exponential smoothing that is notably lacking in the published

literature. In this report, such considerations are included in a

detailed examination of several models currently in vogue.

2. NOTATION AND SUMMARYPREVIOUS RESULTS.

Perhaps it is unfair to indict exponential smoothing as being

the fundamental problem in the models tested. In a previous report

[2], it was pointed out that it is a combination of exponential smooth-

ing with the use of mean absolute deviation (MAD) as a means of esti-

mating variability that appears to create the major difficulty. To

summarize this point and report additional results, the following

notation is adopted.

Let Xn ,X ,X , ...,X be a demand record through time t. We

assume for this section that these are mutually independent normal

random variables each with mean u and standard deviation a. Follow-

ing Brown [3], we let X denote the forecast at time t - 1 of

the demand in the t — period using exponential smoothing of the data

to compute its value.



t-2
(2.1) X

t _ 1
- a I B X

t-1 __k
+6X

Q
0<a<l; 6 = l-a

k=0

By using this basic formula, it can be shown [1] that E[X ] = y

for all t so that we may view (2.1) as an unbiased estimator of

mean demand u from period to period. If we then define a forecast

error at time t by means of the formula

(2.2) e = X - X .

t t t-1

then it follows that E(e ) 50.

However, as previously remarked, the variance of any estimator

must also be examined. In a previous report, we established that

(2.3) Vara ) =
a V \ a 2

t-1 2 - a

Asymptotically then,

(2.4) Var(X .) -> -r- 5—a 2 as t * «
t-1 I - a

Now this is a positive constant and it must be recognized then that,

as an estimator for u, X. L can never be more precise than this

limiting variance allows. In other words, no matter how long the

system has operated, the forecast will fluctuate about u with a

variance whose size depends upon the unknown variance a 2 as well as,

of course, the choice of the smoothing constant a.



The same remarks can also be made about the forecast error e .

t

Although its expected value vanishes for all t, it too has a limiting

variance bounded away from zero and given by the formula

2t-l
(2.5) o 2 = lim Var(e ) = lim

2
t U = T^—a 2

e t 2-a 2-a

This result also allows us to write a, an unknown parameter, in terms

of the limiting standard deviation a as,

(2.6) °'/^° e

The main reason for noting this relationship is to comply with the

NavSup procedure for estimating a by means of estimates of a .

These are in turn found by smoothed estimates of MAD. In the normal

case, which is the only one we are treating, a is related to MAD,

A by means of the formula,
e

(2.7) a = fir A
e / 2 e

Combining this with (2.6) yields

(2.8) a= ^ZpX A
2 e

Exponentially smoothed estimates of A are obtained by

smoothing forecast errors. By formula,

t-1
(2.9) A = a y B le

e t-
k=0
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If this result is substituted ad hoc into (2.8) one then obtains the

estimate

(2.io) o =
/7T(

j;-
a)

A
2 e

consistent with formulas established by Brown. We are then but a

step away from the formula for setting a reorder level using smoothed

estimates. First, the constant mean is estimated. After t periods

of demand have been observed, mean demand is estimated by means of

the formula.

t-1
(2.11) u = a I 6 X

k=0

The formula ignores initial conditions which are rendered" ineffectual

in time anyway. Since the claims for smoothing properties are asymp-

totic in the first place, this represents no serious modification and

yields at least an asymptotic unbiasedness wherein E(u) * u. When

this estimate is combined with (2.10), a smoothed estimate of the

reorder level becomes

*«w r>s

(2.12) R = u + k a

where k is chosen to satisfy a required stock-out risk p as deter-

mined by (1.1)

.

As previously noted, however, the true risk that is achieved

by using (2.12), or indeed any formula involving only estimates of
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y and a, will depend on how well those parameters are estimated

Of special interest is the comparison of smoothed estimates with

maximum likelihood methods wherein,

(2.13) R = y + k a

1
t

with y = — T X. and a =
L

i-1

being the ordinary maximum likelihood estimates of y and a. This

point was the subject of some of the discussion in [2]. It was pointed

out there in several ways that (2.13) was superior to (2.12) in case

after case. Subsequent examinations by Ornek [4] and Coventry [5]

reveal the same consistent behavior.

While all of these results continue to be based on simulations,

the consistency with which exponential smoothing tends to produce more

variable results than maximum likelihood cannot be ignored. Moreover,

there is now some theoretical basis for this claim. Ornek has been

able to establish an exact formula for the asymptotic variance of A

which is of course a fundamental quantity used in the computation of

a reorder level. The expression is complicated and is not duplicated

here; details may be found in [4]. For all practical purposes approxi-

mate values with a high degree (within 10 ) of accuracy were computed

for various choices of the smoothing constant a. A summary appears

in Table 2.1.
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a Var(A /a 2
)e

S.D. of a/a

.10 .0204 .1745

.15 .0325 .2173

.20 .0461 .2553

.25 .0614 .2905

.30 .0785 .3239

.35 .0979 .3561

.40 .1196 .3876

.45 .1440 .4187

.50 .1716 .4495

.55 .2026 .4802

.80 .4267 .6341

Table 2.1. Variability of A and a.
e

The table amply demonstrates how asymptotic variability increases

with the choice of a but more importantly perhaps, no matter how long

the system runs, the variance of a never approaches zero and is

bounded away by a positive quantity. This means that estimates of a,

and hence of R, the theoretical reorder level, are doomed to fluc-

tuate forever. Not so for maximum likelihood. It is well known that

the variance of a goes to zero with increasing t (as does the

variance of \i of course) so that eventually, R and R coincide

for all practical purposes. Put another way, the intended risk p

and the actual risk attained will be the same, whereas the same state-

ment simply cannot be made about R.
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All of this merely supports what was already observed in

simulation results. Extending those results already established in

the pilot study of [2], simulations were run for various parameter

pairs and the risk levels compared at the 1,000 observation. For

each of several such parameter pairs, five risk levels were chosen.

Then actual risks p for smoothed estimates were compared with actual

risks p using maximum likelihood techniques. These results are

reported in Table 2.2 and they pretty well speak for themselves. The

attained risks, as measured by p, are consistently nearer the target

value p than are those determined by p\ What this means is that

even after the system has operated for a long, long time, with initial

conditions and other factors stabilized, the actual risk attained

when reorder levels are set using (2.12) may in any period be signi-

ficantly different from the value that presumably was being attained

by the choice of k.

Another way to view the greater variability involved when

smoothing is used to set reorder levels over a long period of time

was devised by Coventry. For this experiment parameter values of

M = 100 and a = 10 were chosen. Using a risk level of .05, the

theoretical reorder level would be 116.45. Demands were generated

for 1,000 periods and the reorder level using R and R was checked

at the 1000 period. This experiment was then replicated 100 times

and the various values of R and R were checked and plotted against

the theoretical reorder level. The results are displayed in Figure 2.1
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and once again the strikingly larger variability in R may be noted.

One way to view these results is as follows. Think of 100 supply

centers all operating under the same reorder rules for a given item.

After 1,000 periods (far in excess of the number of periods for which

records are typically kept) the graph may be viewed as showing the

actual reorder levels that would be set at the various centers, first,

all using R and, secondly, all using R. Again the results speak

for themselves.

3. LINEAR MEAN MODEL.

As previously remarked, it may be unfair to indict exponential

smoothing on the basis of a constant mean model since it appears to

be designed more for models which are more time-dependent. Indeed,

at the very heart of smoothing techniques is the idea that the most

recent demands are more indicative of the true demand pattern than

are the earlier ones. For a constant mean demand of course, that is

not true and all demands reflect the true pattern equally well. But

even when the mean is changing in time, this idea of weighting the

most recent demand heavily must not be carried too far. For determin-

istic demands there can be little argument, but when demands are truly

random, sudden increases or decreases in demand are to be expected

even with a stable mean and there is a question of just how much

weight should be assigned these random fluctuations. In any event

the system can be studied to see what such effects are.
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Perhaps the simplest time-dependent model that can be investigated

is the case where demand is random with linear mean but a constant

variance. This is the familiar linear regression model and with

normality further assumed leads to standard maximum likelihood esti-

mates of the parameters involved and once again presents itself as an

alternative to exponential smoothing. To be more specific, suppose

demand in period t is given by

(3.1) X = a + bt + £ where £ is N(0,o 2
)

Again Brown [3] recommends forecasting demands by means of exponentially

smoothed estimates. This time, since two parameters are involved, a

combination of single and double smoothing is required. More specifi-

cally, Brown advocates estimates

(3.2) x
fc

= 2 S
fc

(x) - S2( X )

b = | [S
t

(x) - S2( X)]

Since u = a + b(t+l) = u + b, it follows that x + b" is a

reasonable way of estimating u . In these formulas, S (x) stands

for single smoothing applied to the demand record X~,X ,X , ...,X

r k
S

4
(x) = a I 3 X. . 5 3 = 1 - a

L
k=0

t *

S 2 (x) on the other hand represents smoothing applied to the sequence

S (x),S
1

(x),S
2

(x),...,S
t

(x) so that
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t

S 2 (x) = a I 6
K

S . (x)
C

k=0
c k

It should be noted that x is not an estimate of a but

rather of a + bt. With b given however, one can estimate a by

the formula

(3.3) a = x
t

- Bt

The reason for this observation is that usually in regression models

of this type, estimates of the separate parameters are given. Indeed,

in this notation, the maximum likelihood estimators of a and b are

given by,

t

I (k-kXJ^-x)

(3.4) b=^P_
,

E.i.^ lr |
I (k-k) 2

k=0

t

I
i=0

a = X - bk

There are standard formulas that may be found in almost any standard

textbook on the subject. In these terms, an estimate of u , -,
=

j t+1

a + b(t+l) would be given by a + b(t+l) = a + bt + b.

This leaves the unknown parameter a to estimate. In the

theory of maximum likelihood, this estimate is easily derived and is

given by considering average squared deviations about the fitted

regression line. We thus have,
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(3.5) a = /±- I (3L -a-bk)
1

k=0
k

Not surprisingly (in terms of Section 2) the parameter a is estimated

in exponential smoothing by looking at weighted absolute deviations

about the fitted line. Thus we first let

e = X - 5T r b
t t t-1

be the difference between what was observed and what was forecast and

then define

~ t_1
k

~t
= a I 6

l

e
t-l

k=0

With normality assumed we may then use

~ _ /tt(2-cQ ~
a - ^ A

t

as before to estimate a.

Once we have estimates of the various parameters of course we

may use these to set reorder levels once again. In the spirit of the

preceding section, two methods will be compared again. First, maximum

likelihood estimates are used in each period to define

AAA A

(3.6) R = a + b(t+l) + k a

This would be the reorder level set at time t based on the fact that

the "best" estimate of the next demand would be a + b(t+l) the
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estimate of the mean y
1

. If exponential smoothing is employed,

then the reorder level would be set at

(3.7) R = x + b + k c

based on the same kind of reasoning.

How do these two methods compare? Again, we were forced to

resort to simulation for reasons that are even more pronounced in

this case. Generally speaking, and not too surprising perhaps, the

two methods compared quite favorably with each other when attained

risks were examined. The variability in the smoothing technique was

not nearly so noticeable as it was in the constant mean case. Never-

theless, it was still present and never was reduced to an extent

where it could be labeled superior to maximum likelihood in any of

the cases examined.

First of all, many different cases (choices of a, b and a)

were examined by Coventry. For each parameter choice, estimates of

the parameters were calculated by both methods after 100 periods of

demand generated to satisfy the model of (3.1). The experiment was

then replicated 100 times and results were then averaged over these

cases, it was noted that the results appeared to be independent of

parameter choices and so attention was focused on just a few special

cases.

Typical of the results are those shown in Table 3.1 for the

choice a = 50, b = 2 and a = 5. The attained risks are displayed
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for various periods and for this case averaged over 1,000 replications

of the experiment. While the attained risks, p using smoothing and

p using maximum likelihood, are both reasonable close to the theoret-

ical risk p , it should be noted once again that p does tend to be

more variable with no consistent pattern of change. In nearly every

case p does exceed p however and that in itself is noteworthy.

Number of Periods

m 10 20 50 100

p p P p P P P p P

0.01 .036 .007 .027 .014 .024 .011 .029 .008

0.05 .103 .045 .070 .045 .078 .049 .068 .053

0.10 .155 .092 .124 .098 .137 .103 .114 .110

0.25 .306 .233 .264 .256 .274 .249 .249 .256

0.50 .516 .482 .519 .521 .526 .510 .517 .505

Table 3.1. Attained Risks Compared to Theoretical Risk

With these results and the many other cases examined, it is now

reasonably safe to conclude that exponential smoothing is not a superior

estimating technique for normal demands whether constant or linear in

time. At least this is so when stock-out risk is the major criterion

(as it often is) and when the methods presently employed by NavSup as

advocated by Brown for setting reorder levels are compared to classical

techniques. Indeed, depending on the consequences of facing an attained

risk that is not the intended one, this method may be inferior to

ordinary maximum likelihood techniques. This just about leaves computing
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ease as the only criterion offered by smoothing advocates of any merit

But we found no evidence in any of our tests that smoothing resulted

in any significant savings in computer time either. In most cases,

the difference, if measurable, was negligible.

4. A BAYES PROCEDURE.

In actual practice it was found that neither the constant

mean model nor that of the linear mean adequately reflects the true

nature of demand even when the assumption of normality is acceptable.

The model that comes closest to reflecting what most people involved

really believe in (at least for some items) is that demand is normal

with constant mean for a time, perhaps several periods, and then

shifts to a new mean level which again remains constant for a time.

For example, in times of conflict there may be a sudden increase in

demand for an item and that demand has a mean value that remains

fairly constant for the duration. But, as hostilities cease, the

mean demand drops to a lower level and remains there while the circum-

stances remain stable. Then neither of the preceding models apply

exactly although, subject to the general remarks previously made,

exponential smoothing should be a good candidate for such a model.

The reason is the often quoted property of responding to changes in

demand more quickly than classical methods.

There is yet another technique which would seem quite appro-

priate for a model of this type and that is to apply Bayesian methods
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sequentially to predict or forecast demand. The basic idea is to use

posterior information in each period as prior information for the next

period. Starting with some initial subjective judgment as to the

parameters involved in the model, one can then proceed to use the

information in each period to update one's guess as to the parameters

to come and forecast accordingly. After all, if parameters such as

mean demand are truly changing, possibly from period to period, then

this basic Bayesian approach is tailored to fit precisely that kind

of situation.

To be more specific, let us suppose that demand is still normally

distributed but the mean is changing possibly from period to period.

Initially, we also assume that the variance c 2 in the initial period

is known. In each period we will set a reorder level at a value

\i* + k a* where y* and a* are estimates of \i and a for that

period with k selected again in order to achieve some nominal risk

p. To put these assumptions into the Bayesian framework, we initially

assume that the conditional distribution of demand X given a value

of the mean u is normal with that mean and a known variance of a .

As to the mean u, we suppose that the prior distribution on \i is

normal with some mean u_ and variance a 2
. With this kind of normal

on normal assumption, it is easy to show (see [6] for example) that

the posterior distribution for u, given an observed demand x , is

again normal with mean y and variance a 2 given by,
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Vl + a\
(4.1)

2 i* 2

As a bonus, if we take loss to be squared error, then the mean

y of this posterior distribution is the Bayes estimator, meaning

that it minimize the Bayes risk for the problem. (See [6] again for

details.) As such, y.. and a.. are the best estimates —best from

a Bayesian point of view —of the parameters that exist in nature at

that point, namely, after one observation. Consequently, a logical

Bayesian reorder level would be set at y + k a.. and the correspond-

ing stock-out risk p = P(X>y.+ko ) may or may not be the target

value p depending on whether or not the mean and standard deviation

of demand in the second period are or are not y.. and a respectively.

Before proceeding to the next period it might pay to pause and

analyze the significance of the estimates in (4.1). Re-writing y

as

f

a
6 1

x
l

+
r

° 2
)H+ ° z ^Q+°' A
\

M
l " aTPo^

X
l

+
aTTo^ U

we see that the updated estimate of the mean based on the first observed

demand x is just a weighted average of x and y , the initial

estimate of the mean. In this way, the weight attached to the observa-

tion x is like a smoothing constant and may be used to reflect one s
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desires or beliefs in the initial states. By choosing a 2 small,

very little (relatively) weight is attached to x compared to y .

This is as it should be for if c 2 is small, then the prior distri-

bution is concentrated heavily about its mean y n and reflects a high

degree of credence in that initial choice y . On the other hand, if

one's initial belief in y n is somewhat weak, this can be reflected

by making a 2 relatively large, whence more relative weight is

attached to what is actually observed in x .

Fortunately, this same basic scheme continues from period to

period as follows. By taking the prior for the mean in period 2 to

be the posterior from period one, the posterior distribution for

period 2, based on observing x , the actual demand during that period,

is again normal with mean y ?
and variance a 2 given by the formulas,

ag(x 1+x
2

) + a\ g Q ° 2

y
2

=
2c 2 + ^ ' °2

=
2a 2

Q
+ a*

Proceeding by induction in this manner, it is easy to show that the

posterior distribution at the end of the period t based on having

observed x, ,x„,...,x is once again normal with mean y and
1 2 t t

variance o 2 given by

t

a I X
k

+ °\
k=l

y
t

=
to 2 + a*

(4.2)

? 2

2
a °

a
t

=
T^~-r^
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As previously remarked, the reorder level for this period is then set

at y + k a .

Once again it may be seen that the Bayes estimate of mean

demand, as given by the mean of the posterior distribution, is a

t

weighted sum. This time the total observed demand £ x, is weighted
k=l

k

against the initial estimate y n . It is significant to note, moreover,

that lim a 2 = so that, as time goes on, this posterior distribution

is becoming degenerate at y . Consequently, as a prediction of mean

demand, the chosen value is subject to less and less fluctuation as

time goes on.

So much for theory. To determine just how much the estimate

of mean demand is affected by various combinations of y_ and a 2

and to see how it compares with exponential smoothing, a pilot study

using simulation was conducted. No attempt was made at this point to

examine the behavior for the case of a shifting mean. Rather this

study was confined to testing the procedure for internal consistency.

For the case of a constant mean value of u = 100 and a choice of

a = 10, random demand was generated for 100 periods. The Bayes

estimate was then computed for various a priori combinations of y =

0,y,y/2,y/3,y/4,y/5 and a 2 = a 2 ,a 2 /2 ,a 2 /3,a 2 /4 ,a 2 /5 , 2a 2
, 3a 2 ,4a 2 ,5a 2

.

The results are displayed in Table 4.1 the entries being the

Bayes estimates or posterior means after 5 and 100 periods of observa-

tion. Obviously, the closer that y is to the true value of y

(100 in this case) the better the resulting estimate is. For large
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values of the ratio a 2 /c 2
, it should be noted that the convergence

to 100 is fairly rapid even for poor initial guesses. For example,

with y = but a 2 = 5a 2
, y = 96.6 even after only 5 periods of

observation.

Having thus tested the Bayes technique for internal stability,

simulations were further used to compare the technique with exponen-

tial smoothing. For this comparison, mean demand was estimated by

smoothing techniques using the formula,

C
k

= S (x) - a I
g* X

k=0

allowing for initial conditions S n (x) other than zero. Once again

parameter choices y = 100 and a = 10 were adopted. As a first

comparison, the least favorable initial conditions, y
f

= and

S_(x) = 0, were selected. Estimates of mean demand over various

periods were then made for a variety of choices of the weighting

factor a~ and the smoothing constant a. The results are reported

in Table 4.2 where it may be seen that Bayes estimates are typically

better than those given by exponential smoothing when roughly the

same relative weight is attached to the observations. Thus, small

values of a 2 should be compared with small values of a. If we take

a = 0.2 as presently used by NavSup as a guide, then almost any choice

of a 2 will do better in the early stages and about as well in later

periods

.



27

y = 100 m -o
Number of P eriods

a = 10 S
Q

(x) =

Estimator
Parameter

Values
5 10 15 50 100

^ = ° 2 83.7 91.0 93.7 97.9 99.1

2o 2 91.3 95.4 96.8 98.8 99.5

BAYES 3a 2 94.1 96.9 97.8 99.2 99.7

4a 2 95.6 97.7 98.3 99.3 99.8

5a 2 96.6 98.2 98.7 99.4 99.8

a = 0.1 41.1 65.1 79.3 99.2 100.4

0.2 67.3 89.1 96.4 99.8 100.6

SMOOTHING 0.3 83.2 96.9 99.5 99.9 100.8

0.4 92.1 99.0 100.0 99.9 100.9

0.5 96.5 99.5 100.3 99.9 100.9

Table 4.2. Estimates of y = 100
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To assess the effect of initial conditions or risk, the same

basic model was used to generate demands for 100 periods. Reorder

levels were then set on the basis of a k-value to achieve a theoretical

risk of p = .05 using both techniques and the actual attained risk

was then recorded. The experiment was then replicated 1,000 times

and the attained risks averaged over these replications. The results

are reported in Table 4.3 for the worst initial conditions y = = S (x)

and in Table 4.4 for the best initial conditions y = 100 = S (x) .

The results are quite remarkable. Except for a few cases the

Bayes method provides a sample risk closer to the theoretical one than

does exponential smoothing even for poor initial conditions. In both

cases, when a small value of a is chosen the long term results are

fairly accurate, but the results in the early periods are far from

satisfactory. For large values of a the results in the early periods

are better but only at the expense of weaker results in later periods.

By comparison, the Bayes technique produces about the same results

in any case. For large weighting constants (a^ = 5a ) , the Bayes

method adjusts quite rapidly and the long term results are all fairly

accurate.

Of course, all of these results are average values, averaged

over the replications. How badly they vary from one replication to

another is important also. To check on variability, the sample

standard deviations of the estimates of y for the 1,000 replications

were computed. Those values are reported in Table 4.5 for the case
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y = 100 p = o

Number of P eriods
a = 10 S

Q
(x) =

Estimator
Parameter

Values
5 10 15 50 100

<=* 2 .634 .294 .187 .079 .071

2a 2 .310 .159 .107 .068 .062

BAYES 3a 2 .211 .128 .090 .066 .061

4a 2 .168 .109 .084 .065 .061

5a 2 .146 .097 .080 .065 .060

a = 0.1 1.000 .992 .737 .067 .063

0.2 .995 .390 .145 .061 .069

SMOOTHING 0.3 .761 .137 .080 .070 .079

0.4 .365 .088 .080 .076 .083

0.5 .187 .084 .083 .084 .091

Table 4.3. Sample Risks with Worst Initial Conditions
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M = 100 M « 100
Number of P eriods

o = 10 S
Q

(x) = 100

Estimator
Parameter

Values
5 10 15 50 100

og-oi .066 .056 .057 .057 .055

2o 2 .069 .057 .058 .057 .055

BAYES 3o 2 .072 .058 .058 .057 .055

4a 2 .073 .059 .058 .057 .055

5a 2 .074 .059 .058 .057 .055

a = 0.1 .060 .051 .057 .057 .063

0.2 .059 .061 .061 .061 .069

SMOOTHING 0.3 .066 .073 .069 .070 .079

0.4 .073 .077 .079 .076 .083

0.5 .082 .082 .083 .084 .091

Table 4.4. Sample Risks with Best Initial Conditions
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li = 100 y - 100
Number of P eriods

a = 10 S
Q

(x) = 100

Estimator
Parameter

Values
5 10 15 50 100

2 2
°0

= ° 3.95 3.26 2.84 1.95 1.69

2a 2 4.25 3.40 2.94 1.97 1.72

BAYES 3a 2 4.36 3.41 2.94 1.96 1.73

4a 2 4.46 3.47 2.95 1.95 1.72

5a 2 4.48 3.48 2.97 1.95 1.72

a = 0.1 2.31 2.64 2.68 2.61 2.73

0.2 3.41 3.68 3.63 3.60 3.65

SMOOTHING 0.3 4.30 4.51 4.40 4.49 4.44

0.4 5.10 5.27 5.17 5.30 5.16

0.5 5.96 6.03 5.90 6.06 5.88

Table 4.5. Sample Standard Deviations
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u n
= 100 S (x) . It may be seen that for early periods and small

choices of a, the smoothing method is less variable. But, as more

and more periods are taken, the Bayes method produces less variable

results, indeed the standard deviation consistently decreases with

time. On the other hand, smoothing yields results that appear to

have about the same variance regardless of how many periods are

observed, a phenomenon that has been noted before. The sample stand-

ard deviations for the case y = = S (x) were surprisingly about

the same as the most favorable case and are not presented here.

5. CONCLUDINGREMARKS

Regardless of what else might be said about exponential smooth-

ing as a forecasting tool, it now seems reasonably safe to say that

the results tend to be more variable than some other alternative

methods that are available. This same basic theme keeps recurring in

model after model and case after case. Claims in this regard have

repeatedly been made with due caution throughout this and earlier studies

due to the simulation techniques employed. Yet the consistency of

recurrence, coupled with the large sample sizes used, cannot be safely

ignored. In some isolated cases, we have supplied a theoretical basis

for the observations.

It is practically never the case that exponential smoothing

dominates the alternatives studied regardless of the criterion used

for comparison. One of the outgrowths of this study is to highlight
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the importance of variance whenever random demand is faced. It is

a quantity that must be reckoned with, for it is of little comfort to

the individual inventory manager to know that his technique does well

on the average unless some idea of the variability is also known.

Of the alternatives studied, the Bayes method of Section 4

seems admirably suited to a model where mean demand is constant in a

given period but subject to change from period to period. The method

supplies a natural and appealing method of incorporating information

on a prior basis to update estimates sequentially as information is

gathered. More needs to be done with the method, however, before it

can be endorsed over other alternatives. This would be the basic

recommendation of this study, which should be viewed only as an

initial pilot study of this technique. Another recommendation would

be to urge all users of exponential smoothing to give serious consid-

eration to testing other alternatives in the particular context of

their special application. Special attention should be paid to at

least replacing MAD as a method of estimating variance. This much

change alone may produce less variable results and thereby make a

stronger case for exponential smoothing.
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