
Calhoun: The NPS Institutional Archive
DSpace Repository

Reports and Technical Reports All Technical Reports Collection

1986-03

Some tactical algorithms for spherical geometry

Shudde, Rex H.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/29516

Downloaded from NPS Archive: Calhoun

NPS55-86-008

NAVAL POSTGRADUATE SCHOOL

Monterey, California

TECHNICAL

SOME TACTICAL ALGORITHMS FOR

SPHERICAL GEOMETRY

REX H. SHUDDE

MARCH 1986

PedDocs
D 208.14/2
NPS-55-86-008

Approved for public release; distribution unlimited

Prepared for:

Director of Tactical Readiness Division
Office of the Chief of Naval Operations
Department of the Navy
Washington, D. C. 20350

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Robert H. Shumaker David A. Schrady

Superintendent Provost

Approved for public release; distribution unlimited.

This report was prepared by:

aS^SgXMBKAITY
REPORT DOCUMENTATION PAGE Monterey °̂A 8384^.5101

Ri 'CRT ScCURHY CLASSIFICATION

UNCLASSIFIED

id RESTRICTIVE M A rt k. i n G S

itCuKiry classification auihgriiy

DECLASSIFICATION / DOWNGRADING SCHEDULE

j distribution/ a^a. lability of report

Approved for public release;

distribution unlimited
^PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS55-86-008

S MONITORING ORGANIZATION REPORT NUMBEP(S)

NAME OP PERFORMING ORGANIZATION

ival Postgraduate School

bo OFFICE SYMBOL
(If applicable)

Code 55

7a NAME OF MONITORING ORGANIZATION

Director of Tactical Readiness Division

ftffice of Chief of Naval Operations
| ADDRESS (Oty, State, and ZIP Code)

Monterey, CA 93943-5000

/b ADDRESS iGry, Srate, and ZIP Code)

Washington, D.C. 20350

i NAME OF FUNDING/SPONSORING

j

ORGANIZATION

ival Air Development Center

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (Cry, State, and ZIP Code)

Warminster, PA 18974

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TiTic (include Security Classification)

SOME TACTICAL ALGORITHMS FOR SPHERICAL GEOMETRY
ll PERSONAL AUTHOR(S)

SHUDDE, REX H.

I. TYPE OF REPORT

Technical
13b. TIME COVERED
FROM TO

14 DATE OF REPORT (Year. Month. Day)

1986, March
5 PAGE COUNT

30

SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identity by biock numoer)

Navigation, CPA, Intercept, Great Circle, Closest Point

of Approach, Spherical Earth Vectors

ABSTRACT (Continue on reverse if necessary and identify by block number)

but that do not require

» NAME OF RESPONSIBLE INDIVIDUAL

Rpy H Sim

DlSTRiUUTlON/AVAILABILlTY OF ABSTRACT
El UNCLASSIFIED/UNLIMITED SAME AS RPT D DTIC USERS

LLiiiii-.

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22b TELEPHONE (include Area Code)

(408) 646-2303
22c OFFICE SYMBOL
Code 55 u

IFORM 1473. 84 mar 83 APR edition may be used until exnausted

All other editions are obsolete.
SECURITY CLASSIFICATION OF TH'S PAGE

CONTENTS

I. INTRODUCTION 1

H. RECTANGULAR COORDINATES AND VECTORS ON A SPHERE 1

HI. GREAT CIRCLE NAVIGATION
A. Direct Solution 6

B. Inverse Solution 7

IV. CLOSEST POINT OF APPROACH (CPA) PROBLEM 7

V. INTERCEPT PROBLEM 8

VI. SAMPLE PROBLEMS 11

VH. REFERENCES 17

APPENDICES
A. The QATN Function 18

B. Program Listing 19

DISTRIBUTION 26

L INTRODUCTION.

This report presents two great circle navigation algorithms, a closest point of approach

(CPA) algorithm and an intercept algorithm. It also presents an implementation program

that is written in the BASIC language for an IBM PC. Instead of using classical spherical

geometry or the general spherical triangle [Ref. 1], these algorithms incorporate rectangular

coordinates and vectors on the surface of the sphere. Portions of the vector formalism were

suggested by Reference 2.

The intent of the report is to provide algorithms for spherical earth models that can

be used for situations in which flat earth models are not appropriate, but that do not

require the sophistication of rotating earth models.

n. RECTANGULAR COORDINATES AND VECTORS ON A SPHERE

In a spherical earth model, a point P on the earth's surface can be located by a position

vector p = xi+ yj+zk in a rectangular coordinate system with origin at the earth's center.

In matrix form, and with i, y and z expressed in spherical coordinates,

P =
r cos ^ cos A

rcos^sinA

rsin</>

where <j> is the latitude and A is the longitude at the point and r is the distance of the

point from the earth's center. See Figure 1.

In terms of the unit vector x where

x =
XI cos

<f>
cos A

zj = cos
<f>
sin A

x* sin0
(1)

p = rx. We can think of x as the unit vector normal to the surface at the point. It is

convenient to define two other unit vectors in the tangent plane to the earth's surface at

the point. These are local north n and local east e, defined by

x<a
n =

X4

where

sin
<f>
cos A

sin
<f>
sin A

C08(j>

and e =
sin A

cos A (2)

and *A =
fa

The vectors x, n and e provide the basis for a right-handed orthogonal coordinate system.

1

Figure 1. The Earth Coordinate System

Figure 2. The Course Vector

Let a course a be designated at a point on the earth's surface. We wish to determine

the unit course vector c in the direction a which lies in the tangent plane at the point

in terms of <p, A and a (see Fig. 2). An arbitrary vector a, defined at the point P with

coordinates (r, A, <j>) and lying in the tangent plane at the point, can be rotated clockwise

(looking from P toward the origin) through an angle a by using the operation Rp(a)a,

where Rp(a) is the rotation operator. Rp (a) is a composite rotation in 3-space and can be

decomposed into fundamental rotations in one of several ways. One way is to proceed as

follows: First, move P (carrying a with P) along its parallel of latitude to the x-z plane (the

Greenwich meridian); this is equivalent to a clockwise rotation about the 2-axis through

an angle A and is denoted by R»(A). Next, move P along the Greenwich meridian to

the equator: this is equivalent to a counterclockwise rotation about the y-axis through an

angle
<f>
and is denoted by Ry (-0). The point P now lies on the x-axis with coordinates

(r, 0, 0) and the vector a at P makes the same angle with the Greenwich meridian as it did

with respect to the original meridian at (r, A, <j>). Next, leave P on the Greenwich meridian

at the equator and rotate a through an angle a about the i-axis; this clockwise rotation

is denoted by Rx (a). The vector a has now been rotated through the desired angle a

with respect to the Greenwich meridian. When P is returned to its original position by

reversing the steps which got it to the equator on the Greenwich meridian, it will have

been rotated through the angle a with respect to the original meridian of P
t

i.e. Ry (0)

followed by R«(-A). The composite rotation operator Rp(a) is

Rp(a) = Ra(-A)RyMRs(cOR,M)R,(A).

The course vector can then be written as c = Rp(ot)n. The fundamental z-, y- and z-axis

rotation operators are given by

RxM =

Ry(9) =

R*M =

10
cosl sin0

— sin 9 cos 9

cos0 -sin0

1

sin 9 cos 9

cos# sinfl

- sin 9 cos 9

1

and

These rotation operators are consistent with a right-handed coordinate system and positive

signs of 9 for a counterclockwise rotation of the coordinate system or a clockwise rotation

of a point P about the x-, y- or z-axes, respectively, as viewed looking toward the origin

from the positive end of the rotation axis [Ref. 3, pg. 43 and Ref. 4, pg. 100]. Some

simplification in determining Rp(a)n can be obtained by noting that

R„M)Rz (A)n = = k.

Thus c can be found from

c = Rl(-A)R,(pI(a)k.

3

(3)

If an object's course vector c is known at some point with position vector p then it is

easily shown (see Fig. 3) that

n • c = cos a and

e • c = sin a.

From these relations, the course a is found to be

a = qatn(e-c,n-e) (4)

where qatn is a quadrant determining arctangent function (see Appendix A and Ref. 5).

e

Figure 3. An Object's Course

The course can also be determined from the great circle vector g that is defined by

g = xxc, (5)

where p = rx. Prom Figure 3 we see that the following relationships hold:

n g = cos £ = sin a and

e • g = cos r) = - cos a,

whence

a = qatn(n g, -e • g) (6)

If the object is traveling with speed v and is not maneuvering, it's course will be a

great circle. Let vo = vco denote the object's velocity vector, where Co is its course and

po is its position vector at time 0. At some subsequent time t, the object's position vector

will be p(i) and

p(t) = ap + bv t (7)

v

Po vt

?t
p

vt/r /

Figure 4. The Velocity Vector

where a and b are to be determined (see Fig. 4). Dotting Equ. 7 from the right by p , we

see that

p(t) • po = ap • po

or, with angles b radians,

_ P(0 • Po . 1 m n _ 1 o fvfr cos I
—

or

po • Po r-

fvt\
a = cos —

)

.

Similarly, dotting Equ. 7 from the right by vo we find

p(0* vo = &vo -To*= btPt

or

so that

Thus,

b = -«tp(0 • vo = -or rvcos

h = 7t*
m
(j)

p(i)=Pocos(M +v ^sinfy

In terms of the unit vectors, this equation becomes

rx(t) = nco cos I ~
J
+ vc

^
sin

(
—

j
,

or

x(f) = xo cos I —
j
+ c sin

(
—

J

. (8)

Applications of the these relations are made in the following sections of this report.

m. GREAT CIRCLE NAVIGATION.

The a
Direct Solution Algorithm* computes the latitude and longitude of a position P2

and the backward azimuth from P2 to Pi given the latitude and longitude of a position

Pi, the forward azimuth from Pi to Pj and the distance from Pi to Pj. The "Inverse

Solution Algorithm" computes the distance from position Pi to position Pg, the forward

azimuth from Pi to P2 , and the backward azimuth from P2 to Pi given the latitude and

longitude of positions Pi and P2 . Details of these algorithms using the concept of the

general spherical triangle are presented in Reference 5. These models are redeveloped here

using the concepts of Section II.

A. The Direct Solution Algorithm. Given Pi(^i, Ai), forward azimuth (bearing) a^
and distance d, find <fo and A? of P2 and the backward azimuth c*2i- Proceed as follows:

1. Prom
<f>\

and Ai, compute the components of Xi using Equ. 1.

2. Compute Ci from

d = Ra(-Ai)IM0i)lUai2)k.

3. Compute x2 using

f d\ • fd\xj = xi cos 1 - I + ci sin 1 -
]

.

Note, with d = vt in nautical miles and r = 60(180°/ir), Equ. 8 becomes

Xj = Xi cos
(m) +Ci ™(£>)

where the arguments of the cosine and sine are now in degrees.

4. Prom the components of X2 compute

<f>2
= sin

-1
(^2) and

A2 = qatn(zj2 ,a:i2).

5. Compute g = Xi x ci.

6. Compute n2 and e2 using Equ. 2.

7. Using Equ. 6 compute 0:21 = - qatn(n2 • g, -e2 • g). Note that the sign change occurs

because a2 i is the backward azimuth.

6

B. The Inverse Solution Algorithm. Given Pi (fa , Ai) and P2 (^2 , A 2), find the distance

d from Pi to P2 , the forward azimuth a 12 from Pi to P2 and the backward azimuth ar2 i

from P2 to Pi . Proceed as follows:

1. From fa and At
- compute x«, for i = 1, 2.

2. Compute d = rcos_1 (xi • x2), whence d = 60(180/ir) cos
-1

(xi • x2) is the distance in

nautical miles.

3. Compute n« and e,- for t = 1, 2 (see Equ. 2).

4. Compute
Xi XX3

g =
|xi xx2

|

This equation arises because the great circle passes through both Xi and x2 , hence g

must be perpendicular to Xi and to x2 .

5. Compute ari 2 = qatn(ni • g, -ei • g).

6. Compute or2 i = - qatn(n2 • g, -e2 • g).

IV. CLOSEST POINT OF APPROACH (CPA) PROBLEM.

Consider two objects traveling on different great circle paths. From Equ. 8, their tracks

will be characterized by the equations

x,(f) = x,o cos Uit + c,o sin w»f, for i = 1,2, (9)

where w,- = t/,/r. At any time t, their angular separation $(t) in radians is determined by

cosa(*)=xi(i)-x2 (0. (10)

The time of minimum separation (CPA) is that time T when ^[cosa(i)] = 0. That

is, we must find T such that

xl(r).^ +^. X3 (r) = o.
dt dt

Unfortunately, this equation cannot be solved explicitly. One approach is to use the

Newton-Raphson iteration method [Ref. 6] to find the root T of /(*), where

f{t) = Xi (f
J

• —^— + —^— • X2 (*J.

Taking the required derivatives of Equ. 9 and performing the required dot products, we

find that

f(t) = j4sinu;i*sinii;2 * + #coswi* cosw2 < + Csinu/ifcoso;2 f + £coswitsinw2 *,

7

where
A = —(wiXio • C20 + W2X20 • cio)i

B = uj\ c 10 • X20 + W2C20 ' xio»

C = -(uiXio • X20 - W2C20 • cio) and

D = <jj\ C]q • C20 ~~ W2X20 • Xio-

The use of the Newton-Raphson method requires that the derivative of /(f) with respect

to t, namely /'(f), be computed or estimated. We find that

f{t) = - (CW2 + .Dwi)sinwi£sina;2* + (Du^ + Cui) cos u\t cos u^t

+ (Au>2 - Bui) sin. uit cos uzt - (BU2 - Au^coswitsmurf.

The Newton-Raphson method requires us to compute

where to is an initial estimate of T, until some value of % is found for which f(U)/f{U) is

sufficiently close to zero.

The CPA option in the computer program (Appendix B) will print out the time to

CPA (from time t = 0), the distance between objects at CPA and the bearing from object

1 from object 2 at CPA. Also printed is the number of iterations required for convergence

of Equ. 11 to \f(U)/f'{U)\ less than 0.00001 hours. A negative time to CPA indicates that

CPA has already occurred.

V. INTERCEPT PROBLEM.

The intercept problem is divided into two problems, each of which may require an answer.

In both problems we are given the initial position, course and speed of a target as well

as the position of an interceptor or launch platform. In the first problem we are given

the time (or elapsed time) at which intercept is desired and are required to compute the

vehicle speed needed for an intercept to take place. In the second problem we are given

the speed of an intercept vehicle and wish to compute the time required for an intercept

to occur provided an intercept can be made. Provision for both of these options is made

in the program presented in Appendix B.

A. Speed Required to Intercept. Inputs are the initial latitude and longitude of an

interceptor and a target, and the target course and speed. Also input is the time of

the desired intercept. Outputs are the speed required of the interceptor, the course of

8

the interceptor, the distance traveled to intercept, and the latitude and longitude of the

intercept.

From the inputs, use Equ. 1 to compute xio and x^o, the position vectors of the

interceptor and target, respectively, at time t = 0. Denote the time required to intercept

by t. Compute the target course vector, C20, using Equ. 3 and then compute Xa($), the

position of the target at the time of intercept, using Equ. 8. The remainder of the problem

is solved using the inverse solution algorithm discussed previously. The speed required for

intercept is given by t/i = d/t, where d is the distance from the initial interceptor position

to the target position at the time of intercept.

B. Time Required to Intercept. Inputs are the initial latitude and longitude of an

interceptor and a target, and the target course and speed. For a given interceptor speed,

it may or may not be possible to make an intercept. We develop two sub-algorithms. The

first algorithm is to compute the minimum interceptor speed required to achieve intercept

and the time required to make such an intercept. The second algorithm queries the user to

input an interceptor speed. K the speed is at least that required for intercept, then the time

required to intercept is computed. (If the interceptor speed is greater than the minimum

required, there are two possible solutions for the time to intercept—the shortest time to

intercept is computed by the algorithm). Outputs are the minimum required interceptor

speed, the time to intercept at minimum speed, the course of the interceptor, the distance

traveled to intercept, and the latitude and longitude of the intercept.

The first problem is to determine the minimum speed, vm , required to make an in-

terception. This can be accomplished by finding the time of intercept tm which makes

dv/dt = 0. We can relate v to a, the angular separation in radians, between the two points

xio and X2{t) by the relation v(t) = rs(t)/t. We find that dv(t)/dt = implies

Ids s = 0. (12)

Anticipating that it will not be possible to find a closed form solution, we prepare to use the

Newton-Raphson procedure (Equ. 11). Multiplying Equ. (12) by t
2 gives us the function

for which we wish to find tm such that f{tm) = 0. Also needed is

/'«)=<§•

9

Using Equ. 10 to determine s(t) we find that

ds

dt

d*3_

dt*

1

sin 3

sins

-xio
dx2 {t)

dt

cos a

sin
2
s
(xio

and

dx7 (t)\

dt
)

+ xio
dt*

where

xio • ?, = -^2 [*io • x2o sin w2 * - Xio • c2o cos w2 i] and

' —
5f3— "" 2

^

Xqq co8u2 t + Xio - c 2o sin w2 i]

.

*m-The Newton-Raphson procedure continues until tm is found, then vm = sr/tf

The second problem is to find the time of interception ti when the interceptor's speed

V\ is given. Once more the Newton-Raphson procedure is used. As before, we can relate

Vi to a(t), the angular separation in radians, between two points Xio and x2 (0 by the

relation v(t) = rs(t)/t, which tells us that we must require wi = a(f)/t. That is, we wish

to find (/ for which s(ti)/t[equals the constant wi, or equivalently, we wish to find ti such

that f{ti) - where

Also needed is

/(0 = j-«i.

™-\{i-iy
The equation for da/dt is the same as that given in the previous paragraph. The remaining

output is found using the inverse solution algorithm for the points xi0 and x2 (i/).

10

VL SAMPLE PROBLEMS

Master Menu. The master menu for algorithm demonstration program is shown below.

ALGORITHM DEMO

1) DIRECT SOLUTION

2) INVERSE SOLUTION

3) FIND CPA

4) SPEED NEEDED TO INTERCEPT

5) TIME NEEDED TO INTERCEPT

6) QUIT

Problem 1. Suppose you are at San Francisco (latitude 37° 47' north and longitude

122° 25' west), that your initial course is 260° and that you travel a distance of 4000 n. mi.

What is your final position? Select Option 1 from the master menu.

DIRECT SOLUTION

1st LATITUDE DD.MMSS (-S) ? 37.47

1st LONGITUDE DDD.MMSS (-E) ? 122.25

INITIAL COURSE DDD.MMSS ? 260

DISTANCE (n. mi.) ? 4000

SPHERICAL EARTH DIRECT SOLUTION

2nd LATITUDE 6°41.9'

2nd LONGITUDE -172°00.7'

BACK AZIMUTH 51°35.9'

PRESS ANY KEY TO CONTINUE

11

Problem 2. Suppose you are at San Francisco (latitude 37° 47' north and longitude

122° 25' west) and that your destination is Sydney, Australia (latitude 33° 51' south and

longitude 151° 13' east). How far do you travel, what is your initial course, and what is the

backward azimuth from Sydney to San Francisco? Select Option 2 from the master menu.

INVERSE SOLUTION

1st LATITUDE DD.MMSS (-S) ? 37.47

1st LONGITUDE DDD.MMSS (-E) 7 122.25

2nd LATITUDE DD.MMSS (-S) ? -33.51

2nd LONGITUDE DDD.MMSS (-E) ? -151.13

SPHERICAL INVERSE SOLUTION

DISTANCE 6446.3 n.mi.

FORWARD COURSE 240°18.9;

BACK COURSE 55°45.9'

PRESS ANY KEY TO CONTINUE

12

Problem 3. Suppose an observer is at 20° north, 60° west traveling on a course of

010° at a speed of 15 knots. A target is reported to be at 34° north, 50° west on a course

of 220° at a speed of 300 knots. Assuming that neither observer or target changes course

or speed, how much time will elapse until CPA and at CPA where will the target be with

respect to the observer? Select Option 3 from the master menu.

FIND CPA

1st LATITUDE DD.MMSS (-S) ? 20

1st LONGITUDE DDD.MMSS (-E) ? 60

INITIAL COURSE DDD.MMSS ? 10

SPEED (knots) ? 15

2nd LATITUDE DD.MMSS (-S) ? 34

2nd LONGITUDE DDD.MMSS (-E) ? 50

INITIAL COURSE DDD.MMSS ? 220

SPEED (knots) ? 300

TIME TO CPA - 3h09m48s

DISTANCE AT CPA = 67.03 n.mi.

BEARING AT CPA - 304°06.3 /

NO. ITERATIONS = 3

PRESS ANY KEY TO CONTINUE

13

As an additional output, a table of observer positions and target positions is given at

CPA and six equally spaced times before and after CPA.

FIND CPA

TIME LAT 1 LONG 1 DISTANCE BEARING(l->2)

00s 20° 00.0' 60° 00.0' 994.34 30° 18.
8'

31m38s 20° 07.
8' 59° 58.

5' 829.45 29°31.6'

Ih03ml6s 20° 15.
6' 59° 57.1' 664.78 28° 21. 6'

lh34m£4s 20°23.4' 59° 55.
6' 500.56 26°26.3/

2h06m32s 20°31.2' 59° 54.1' 337.43 22° 39. 8'

2h38ml0s 20° 38.
9' 59° 52.

7' 178.42 12°02.7'

3h09m48s 20°46.7' 59° 51. 2' 67.03 304° 06. 3'

3h41m27s 20° 54. 5' 59°49.7' 178.43 236° 10.0'

4hl3m05s 21°02.3' 59°48.2' 337.43 225° 33. 2'

4h44m43s 21° 10.1' 59°46.7' 500.58 221°47.3'

5hl6m21s 21° 17. 9' 59°45.3' 664.81 219°52.7/

5h47m59s 21°25.7' 59° 43. 8' 829.5 218° 43.V
6hl9m37s 21°33.4 / 59°42.3' 994.41 217°57.6/

PRESS ANY KEY TO CONTINUE

14

Problem 4. Suppose an observer at 20° north, 60° west wishes to launch an inter-

ceptor at a target reported to be at 34° north, 50° west on a course of 220° at a speed of

600 knots. If interception is required to take place 45 minutes (2700 seconds) after launch,

how fast must the interceptor travel, and where will the intercept take place? (Assume

that the target does not change course or speed.) Select Option 4 from the master menu.

SPEED NEEDED TO INTERCEPT (l->2)

1st LATITUDE DD.MMSS (-S) ? 20

1st LONGITUDE DDD.MMSS (-E) ? 60

2nd LATITUDE DD.MMSS (-S) ? 34

2nd LONGITUDE DDD.MMSS (-E) ? 50

2nd COURSE DDD.MMSS ? 220

2nd SPEED (knots) ? 600

TIME TO INTERCEPT (SECONDS) ? 2700

SPEED REQUIRED - 730.1 knots

BEARING TO INTERCEPT = 26°06.9'

RANGE TO INTERCEPT - 547.5 n. mi.

LATITUDE OF INTERCEPT = 28°08.0'

LONGITUDE OF INTERCEPT - 55°27.6'

1) CHANGE TIME OF INTERCEPT

2) NEW PROBLEM

3) MASTER MENU

15

Problem 5. As in the previous problem, suppose an observer at 20° north, 60° west

wishes to launch an interceptor at a target reported to be at 34° north, 50° west on a

course of 220° at a speed of 600 knots. If the maximum speed of the interceptor is 700

knots, how long will it take before interception can occur, what should be the interceptor's

initial great circle heading, and where will the intercept take place? (Assume that the

target does not change course or speed.) Select Option 5 from the master menu.

TIME NEEDED TO INTERCEPT (l->2)

1st LATITUDE DD.MMSS (-S) ? 20

1st LONGITUDE DDD.MMSS (-E) ? 60

2nd LATITUDE DD.MMSS (-S) ? 34

2nd LONGITUDE DDD.MMSS (-E) ? 50

2nd COURSE DDD.MMSS ? 220

2nd SPEED (knots) ? 600

MINIMUM SPEED REQUIRED TO INTERCEPT = 52.6 knots

TIME REQ'D TO INTERCEPT AT MIN SPEED - Ih39m50s

INTERCEPTOR SPEED (knots) ? 700

TIME REQUIRED - 46m03s

BEARING TO INTERCEPT = 25°56.l'

RANGE TO INTERCEPT - 537.2 n.ml.

LATITUDE OF INTERCEPT = 27°59.6#

LONGITUDE OF INTERCEPT - 55° 34.V

1) CHANGE INTERCEPTOR SPEED

2) NEW PROBLEM

3) MASTER MENU

16

V. REFERENCES.

1. Chauvenet, Wm., A Treatise on Plane and Spherical Trigonometry, 7th ed., J. B.

Lippincott k Co., 1869.

2. "Computer Aided Stationing Tool (CAST)", Programmable Description Document,

11 May 1984, Prepared by MANTECH International Corporation

3. Mueller, I. L, Spherical and Practical Astronomy as Applied to Geodesy, Frederick

Unger Publishing Co., 1969.

4. Goldstein, H., Classical Mechanics, Addison-Wesley Press, Inc., 1950.

5. Shudde, R. H., "Some Navigation and Almanac Algorithms", Naval Postgraduate

School Technical Report NPS55-85-023, September 1985.

6. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill Book Company,

Inc., 1956.

17

APPENDIX A: The QATN Function

This routine is the standard arctangent function corrected for quadrant. The quadrant arc-

tangent function is occasionally implemented as the ATAN2 function, the ANGLE function

or the Rectangular-to-Polar function.

Entering variables are the x- and y-coordinates, X and Y. The exiting variable is

the angle 8, where — ir < 8 < n. Use of the quadrant arctangent function is denoted by

8 = qatn(y,X).

1. If X £ 0, go to step 4.

2. Set8 = (*/2)*sgn(y).

3. Go to step 8.

4. Set 8 = arctan(y/X).

5. If X > 0, go to step 8.

6. Set 8 = 8 + * * sgn(y).

7. If y = 0, set 8 = u\

8. Return.

Note:

If y > then sgn(y) = +1.

If y = then sgn(y) = 0.

Ify < then sgn(y) = -1.

Users of Microsoft BASIC can simplify the qatn function significantly by using the code

given below. To return an angle of 8 (designated by A in the code) in the range of (-ff, ir)
}

use:

PI » 4*ATN(1): TP = PI + PI: EPS » 1E-33

A - ATN(Y/(X-EPS*(X=0))) - PI*(X<0)*(SGN(Y) - (Y=0))

To return a value of A in the range of (0, 2tt), use:

PI - 4*ATN(1): TP - PI + PI: EPS » 1E-33

A = ATN(Y/(X-EPS*(X=0))) - PI*(X<0) + TP*(X >= 0)*(Y<0)

18

APPENDIX B: Program Listing

10 ' "RECT COORD ALGORITHMS - R.H. SHUDDE, 03-03-86. REV. 03-19-86 1000
13 ' RECTALGR-.A

100 DEFDBL A-Z
110 PI4-ATN(l#):PI2-PI4+PI4:PI-PI2+PI2:TP-PI+PI:RD-PI/180#:EPS-lD-33
120 AE=60#*360#/TP
130 DEF FNM(X)-X-MO*INT(X/MO) :

' X MOD MO FUNCTION.
140 DEF FNL(X)-X-TP*INT((X+PI)/TP):' LONGITUDE ADJUST (-PI.PI)
150 DEF FNR(X)-INT(X*M0+.5)/M0:' ROUNDING FUNCTION.
160 DEF FNG(X)=X+PI*SGN(X)*(AB8(X)>PI2):' LATITUDE ADJU8T (-PI/2, PI/2)
170 DEF FNAC8(X)-ATN(8qR(l#-X*X)/(X-EP8*(XK)#)))-PI*(X<0#): , ARCCOS
180 DEF FNASN(X)=ATN(X/(8QR(1#-X*X)-EPS*(ABS(X)=1#))):' ARCSIN
190 'QATN (-PI.PI) FUNCTION:

200 DEF FNATN2(Y,X)=ATN(Y/(X-EP8*(X=0#)))-PI*(X<0#)*(SGN(Y)-(Y=0#))
210 'QATN (O.TWOPI) FUNCTION:
220 DEF FNATNP(Y,X)=ATN(Y/(X-EP8*(X=O#)))-PI*(X<0#)+TP*(X>*0#)*(Y<0#)
230 'CROSS PRODUCT: X(.)-Xl (.) X X2(.)

:

240 DEF FNCX(X1,Y1,Z1,X2,Y2,Z2)-Y1*Z2-Z1*Y2
260 DEF FNCY(X1,Y1,Z1,X2

I Y2 I Z2)-X2*Z1-Z2*X1
260 DEF FNCZ(X1,Y1,Z1,X2,Y2,Z2)»X1*Y2-Y1*X2
270 GOTO 2000
280 '

1000 ' DECIMAL TO HH MM SS
1010 V$-- ":IF X<0 THEN V$-»-":X—

X

1020 X=X+l/720O#:Y=INT(X) :Z=LEN(8TR$(Y))-1
1030 KX-0:IF Y<>0 THEN V$-V$+RIGHT*(" "+STR$(Y),Z)+"h":KX-l
1040 X=60#*(X-Y):Y=INT(X)
1050 IF Y<>0 OR KX-1 THEN X|-STR$(100#*Y) :V$-V$RIGHT$(X$,2)n ,,

1060 X=60f*(X-Y) :Y=INT(X) :X|=8TR$(100#+Y) : V$-V$+RIGHT$(X$, 2) +"a" : RETURN
1070 '

1080 ' DECIMAL TO DDD MM.F
1090 V$-" ":IF X<0 THEN V$-"-":X—

X

1100 X*X+1/1200#:Y-INT(X):V$-V$+RIGHT$(" "+STR$(Y),3)+CHR$(248)
1110 X-600#*(X-Y) :Y-INT(X) :X$-8TR$(1000+Y)

1120 V$=V$+MID$(X$.3,2)+V"+RIGHT$(X$,1) +B *":RETURN
1130

1140 DDD.MMSS TO DECIMAL
1150 IX-0:FOR Zl-l TO LEN(V$) :C$-MID$(V$,Z! ,1) :IF C$-"."THEN IX-ZI

1160 NEXT: IF IX«0 THEN X«VAL(V|) : RETURN
1170 X-VAL(LEFT$(V$,IX)):SN-1:IF X<0# THEN SN—8N:X—

X

1180 V|»V$+"0000":Y=VAL(MID$(V$ f n+l,2)):Z»VAL(MID$(V$,IX+3,2))
1 190 X-SN* ((Z/60#*Y) /60#+X) : RETURN

1200 '

1300 'DIRECT SOLUTION, SPHER EARTH-RECT COORD. ALL ANGLES MUST BE IN RADIANS

1310 'INPUT: LATITUDE PI. LONGITUDE LI. FORWARD AZIMUTH A12 AND
1320 ' DISTANCE DD TO A POINT P2. NOTE: DD IS IN RADIANS.

1330 'OUTPUT: LATITUDE P2. LONGITUDE L2 AND BACKWARD AZIMUTH A21.

1340 P=P1:L=-L1:G0SUB 1750: 'CHNG SIGN OF LI GIVES RIGHT-HANDED COORDS
1360 FOR I!=l TO 3:P081(I!)=P0SI(I!) :N0RTH1(I!)=N0RTH(I!) :EAST1(I!)=EAST(I!)

:

NEXT
1360 GOSUB 1810:CD=COS(DD):SD=SIN(DD)

19

1370

1380

1390

1400

1410

1420

1500

1510

1620

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1660
1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810
1820

1830

1840

1860

1860

1870
2000

2010

2020
2030

2040
2060

2060

2070
2080

FOR I!-l TO 3:P0S2(I!)-P0S1(I!)*CD+CVEC1(I!)*SD:NEXT
L2=»FNATN2(P0S2(2),P0S2(D) :P2-FNASN(P0S2(3)) : P-P2 : L-L2 : G08UB 1760

X-GVEC(1)*EA8T(1)+GVEC(2)*EA8T(2)+GVEC(3)*EAST(3)

Y=-(GVEC(1)*N0RTH(1)+GVEC(2)*N0RTH(2)+GVEC(3)*N0RTH(3))
A21-FNATNP(Y,X):L2— L2: RETURN :* CONVERT BACK TO LEFT-HANDED OUTPUT
•

'INVER8E SOLUTION, SPHER EARTH- RECT COORD. ALL ANGLES MUST BE IN RADIANS

•INPUT: LATITUDES PI ft P2, AND LONGITUDES LI ft L2.

•OUTPUT: DISTANCE DD TO A POINT P2. (NOTE: <= DD <= PI RADIAN8)

.

' FORWARD AZIMUTH A12. AND BACKWARD AZIMUTH A21.

P=P1:L=-L1: GOSUB 1750:' CHNG SIGN OF LI GIVES RIGHT-HANDED COORDS
FOR I!-l TO 3:P0S1(I!)-P0SI(I!):N0RTH1(I!)-N0RTH(I!):EA8T1(I!)-EAST(I!):
NEXT
P=P2:L=-L2: GOSUB 1750:' CHNG SIGN OF L2 GIVES RIGHT-HANDED COORDS

FOR I!-l TO 3:P0S2(I!)-P0SI(I!):N0RTH2(I!)-N0RTH(I!):EAST2(I!)-EAST(I!):
NEXT
DD-FNACS(P081(1)*P082(1)+P0S1(2)*P0S2(2)+P0S1(3)*P0S2(3))
X=FNCX(P0glU).P0Sl(2) J P0Sl(3).P0S2(l),P0S2(2) 1 P0S2(3))

Y-FNCY(POSKl) ,P0S1(2) ,P0S1 (3) ,P0S2(1) ,P0S2(2) ,P0S2(3))

Z-FNCZ(P081(1),P081(2) > P0S1(3) I P0S2(1),P0S2(2) J P0S2(3))
A12-FNATNP(X*NORTH1(1)+Y*NORTH1(2)+Z*NORTH1(3) J

-(X*EAST1(1)*Y*EAST1(2)+Z*EAST1(3)))
A21-FNATNP(-(X*N0RTH2(1)+Y*N0RTH2(2)+Z*N0RTH2(3)),
X*EA8T2(1)+Y*EAST2(2)+Z*EAST2(3))

RETURN
•

CA-COS (A) : SA-SIN(A) : >Y*CA+Z*SA : Z«Z*CA-Y*SA : Y-T : RETURN :

' X-AXIS ROT

CA=COS (A) :SA=SIN(A):T=Z*CA+X*SA:X=X*CA-Z*SA:Z=T: RETURN:' Y-AXIS ROT
CA»C0S(A):SA-SIN(A):T-X*CA+Y*8A:Y-Y*CA-X*SA:X-T:RETURN:* Z-AXIS ROT
•

'UNIT VECTORS: POSITION, NORTH ft EAST.

SL=SIN(L) :CL=C08(L) :SP=SIN(P) :CP=COS(P)

P0SI(1)=CP*CL:P08I(2)=<:P*SL:P0SI(3)=SP
N0RTH(1)=-SP*CL: NORTH(2)=-SP*SL:N0RTH(3)=CP
EASTCD—SL : EAST(2)-CL : EAST(3)-0 : RETURN
•

'VECTORS :CVEC=COURSE ft GVEC=GREAT CIRCLE NORMAL
X=0:Y=0:Z=1:A=A12:GOSUB 1700:A=P:G08UB 1710:A=-L:G0SUB 1720
CVEC1(1)-X:CVEC1(2)-Y:CVEC1(3)-Z
GVEC(1)-FNCX(P0S1(1),P081(2),P0S1(3),CVEC1(1),CVEC1(2),CVEC1(3))
GVEC(2)»FNCY(P081(1),P0S1(2),P081(3)

< CVEC1(1),CVEC1(2),CVEC1(3))
GVEC(3)aFNCZ(P0Sl(l),P0Sl(2),P081(3),CVECl(l),CVECl(2),CVECl(3))
RETURN

CLS: PRINT SPC(20); "ALGORITHM DEMO
PRINT: PRINT: PRINT
PRINT SPC(15);"1) DIRECT SOLUTION

-2) INVERSE SOLUTION
"3) FIND CPA
4) SPEED NEEDED TO INTERCEPT
"5) TIME NEEDED TO INTERCEPT

PRINT:PRINT SPC(15);"6) qUIT
GOSUB 9010:C-VAL(C$):ON C GOSUB 3000,4000,5000,6000,7000,8000

PRINT SPC(15)
PRINT SPC(15)
PRINT SPCC15)
PRINT SPC(15)

20

2090 GOTO 2000
2100 '

3000 CLS:PRINT 8PC(15); "DIRECT SOLUTION" : PRINT: PRINT
PRINT "1st LATITUDE DD.MM8S (-8) "

1150:P1-X*RD
PRINT "lat LONGITUDE DDD.MMSS (-E)

1150:L1-X*RD
PRINT "INITIAL COURSE DDD.MMSS ";

1150:A12-X*RD
INPUT "DISTANCE (n. Mi.) ? ",D

3010 PRINT SPC(IO);

3020 INPUT V$:G08UB
3030 PRINT SPC(IO);

3040 INPUT V|: GOSUB
3060 PRINT SPC(IO);

3060 INPUT V$: GOSUB
3070 PRINT SPC(IO);

3080 Dl-D*RD/80#
3000 MO-100
3100 DD-D1:G0SUB 1340: PRINT: PRINT SPC (8) ; "SPHERICAL EARTH DIRECT SOLUTION
3110 PRINT SPC(12);"2nd LATITUDE "; :X«P2/RD: GOSUB 1090:PRINT V$

3120 PRINT SPC(12);"2nd LONGITUDE " ; : X-L2/RD : GOSUB 1000: PRINT V$

3130 PRINT SPC(12) ; "BACK AZIMUTH ; :X«A21/RD: GOSUB 1000:PRINT V$

3140 GOSUB 9000: GOTO 2000

3150 *

4000 CLS: PRINT SPC(15); "INVERSE SOLUTION": PRINT: PRINT
4010 PRINT SPC(IO);

4020 INPUT VI: GOSUB

4030 PRINT SPC(IO);
4040 INPUT V$: GOSUB
4060 PRINT SPC (10);

4060 INPUT V$: GOSUB
4070 PRINT SPC(IO);

PRINT "1st LATITUDE DD.MMS8 (-8) ";

1160.P1-X

PRINT "1st LONGITUDE DDD.MM88 (-E) ";

1150:L1-X
PRINT "2nd LATITUDE DD.MMSS (-8) •;

1160:P2-X
: PRINT "2nd LONGITUDE DDD.MMSS (-E) ";

4080 INPUT VI GOSUB 1150:L2-X
4090 P1-P1+RD : P2»P2*RD : L1-L1*RD : L2-L2*RD

4100 DD-D1: GOSUB 1640

4110 PRINT:PRINT SPC (8) ; "SPHERICAL INVERSE SOLUTION

4120 '

4130 PRINT SPC(12); "DISTANCE ";

4140 MO100: PRINT FNR(60#*DD/RD) ; n.ml.

4150 PRINT SPC(12) ; "FORWARD COURSE ; :X-A12/RD: GOSUB 1090:PRINT V$

4160 PRINT SPC (12); "BACK COURSE ; :X»A21/RD: GOSUB 1090:PRINT V$

4170 GOSUB 9000: GOTO 2000

4180 '

5000 CLS: PRINT SPC(20);"FIND CPA" : PRINT : PRINT

5010 PRINT 8PC(10);: PRINT "lat LATITUDE DD.MM8S (-8) ;
5020 INPUT V$: GOSUB 1150:P1-X*RD

5030 PRINT SPC (10);: PRINT "lat LONGITUDE DDD.MM8S (-E) ";

5040 INPUT V$: GOSUB 1150:L1-X*RD

5060 PRINT 8PC(10);: PRINT "INITIAL COURSE DDD.MMSS ";

5060 INPUT V): GOSUB 1150:A1»X*RD

5070 PRINT 8PC(10);: INPUT "SPEED (knota) ? ",S1

5080 PRINT 8PC(10);: PRINT "2nd LATITUDE DD.MM8S (-8) ";

5090 INPUT V$: GOSUB 1160:P2=X*RD

5100 PRINT 8PC(10);: PRINT "2nd LONGITUDE DDD.MMSS (-E) •;

5110 INPUT V$: GOSUB 11S0:L2-X*RD

5120 PRINT 8PC(10);: PRINT "INITIAL COURSE DDD.MMSS ";

5130 INPUT V$: GOSUB 1160:A2-X*RD

5140 PRINT SPC(IO);: INPUT "SPEED (knota) ? ",82

5160 Bl-Sl/AE:B2-82/AE

21

5160 '

5170 P=P1:L=-L1:G0SUB 1750:' CHNG SIGN OF LI GIVES RIGHT-HANDED C00RD8

5180 FOR Il-l TO 3:X1(I!)-P08I(I!):NEXT

5190 X=0:Y=0:Z=1:A=A1:GOSUB 1700 :A=P: GOSUB 1710:A=-L:G08UB 1720

5200 C1(1)"X'C1(2)"Y'C1(3)"Z
5210 P=P2;L=-L2: GOSUB 1750:' CHNG SIGN OF L2 GIVES RIGHT-HANDED COORDS

5220 FOR Il-l TO 3:X2(I!)-P0SI(I!) :NEXT

5230 X»0:Y-0:Z«1:A-A2: GOSUB 1700 :A»P: GOSUB 1710:A—L:GOSUB 1720

5240 C2(1)-X:C2(2)-Y:C2(3)-Z
5260 '

5260 X1C2-X1(1)*C2(1)+X1(2)*C2(2)+X1(3)*C2(3)
5270 C1X2=C1(1)*X2(1)+C1(2)*X2(2)+C1(3)*X2(3)
5280 X1X2-X1(1)*X2(1)+X1(2)*X2(2)+X1(3)*X2(3)

5200 C1C2=C1(1)*C2(1)+C1(2)*C2(2)+C1(3)*C2(3)
5300 BA=-B1*X1C2 - B2*C1X2
5310 BB- B1*C1X2 t B2*X1C2
6320 BC»-B1*X1X2 B2*C1C2

5330 BD- B1*C1C2 - B2*X1X2

5340 '

5360 T=l : IT ! =0 :

' ITERATE WITH NEWTON-RAPHSON
5360 B1T-B1*T:B2T-B2*T:S1-SIN(B1T) :C1-C0S(BIT) S2-SIN(B2T) :C2-C0S(B2T)

5370 S1S2-S1*S2:C1C2-C1*C2;S1C2»S1*C2:C1S2=C1*S2

5380 F=BA*S1S2+BB*C1C2+BC*S1C2+BD*C1S2
5300 FP-- (BC*B2+BD*B1)*S182+(BD*B2+BC*B1)*C1C2+(BA*B2-BB*B1)*S1C2-

(BB*B2-BA*B1)*C1S2
5400 IT!-IT1+1:C0RR-F/FP:T-T-C0RR:IF ABS(CORR)< 00001 THEN 5440

5410 IF IT!>50 THEN PRINT "NO CONVERGENCE* : STOP

6420 GOTO 6360
5430 '

5440 B1T-B1*T:B2T-B2*T:CB1T»C0S(B1T):SB1>8IN(B1T):CB2T-C0S(B2T):SB2T-SIN(B2T)
6460 FOR I!-l TO 3:P0S1(I!)-X1(I!)*CB1T+C1(I!)*SB1T
5460 P0S2(I!)-X2(I!)*CB2TtC2(I!)*SB2T:NEXT I!

5470 P1=FNASN(P0S1(3)):L1=-FNATN2(P081(2),P0S1(1))
5480 P2-FNASN(PQS2(3)):L2—FNATN2(P0S2(2)

(
P0S2(1))

5400 GOSUB 1540

5500 X-T:GOSUB 1010: PRINT: PRINT SPC(10);"TINE TO CPA ";V$

5510 M0»100#:PRINT SPC(IO); "DISTANCE AT CPA ";FNR(60#*DD/RD);" n.mi.

5620 PRINT SPC(IO); "BEARING AT CPA - ; :X»A12/RD:G0SUB 1000: PRINT V$

5530 PRINT SPC(10);"NO. ITERATIONS - ";IT!

5540 TCPA=T:GOSUB 9000
5660 '

5560 CLS: PRINT SPC(22);"FIND CPA": PRINT
5670 PRINT " TIME LAT 1 LONG 1 DISTANCE BEARING(l->2)"
5580 D>TCPA/6#:T-0:FOR Tl-l TO 13:B1T-B1*T:B2T-B2*T
5590 FOR I!-l TO 3:P081(I!)-X1(I!)*C0S(B1T)+C1(I!)*SIN(B1T)
5600 P0S2(I!)-X2(I!)*C0S(B2T)+C2(I!)*SIN(B2T):NEXT II

5610 P1=FNASN(P081(3)):L1=-FNATN2(P0S1(2).P081(1))
5620 P2-FNASN(P0S2(3)):L2—FNATN2(P0S2(2),P0S2(1))
6630 GOSUB 1540

5640 X-T: GOSUB 1010 .PRINT V$;

5660 LOCATE CSRLIN, 12: X-P1/RD: GOSUB 1090: PRINT V$;

5660 LOCATE CSRLIN, 23 :X-L1/RD: GOSUB 1090: PRINT V$;

6670 LOCATE CSRLIN , 37 : PRINT FNR(60#*DD/RD)

;

22

5680 LOCATE CSRLIN,52:X-A12/RD GOSUB 1000: PRINT V$

6690 T-T+DT:NEXT T!

5700 GOSUB 9000: GOTO 2000

5710
6000 CL8: PRINT SPC (10) ;"SPEED NEEDED TO INTERCEPT (l->2)" : PRINT: PRINT
6010 CLNX-O: GOSUB 6610:' GET INPUT

6020 CLNX-10: LOCATE CLNX,1:FQR H-l TO 11: PRINT 8PC(79) :NEXT: ' CLEAR SCREEN

6030 LOCATE CLN% , 1 1 : PRINT "TIME TO INTERCEPT (SECONDS) ";: INPUT TMI

6040 TMI-TMI/3600# : TM-TMI : PI-PIS : L1-L1S : P2-P2S : L2-L2S : A2-A28
6060 '

6060 ' COMPUTE SPEED
6070 P=P18:L=-L1S: GOSUB 1750:' CHNG SIGN OF LI GIVES RIGHT-HANDED C00RD8

6080 FOR I!-l TO 3:X1(I!)«P08I(I!) :NEXT

6090 P»P2S:L—L2S: GOSUB 1750:' CHNG SIGN OF L2 GIVES RIGHT-HANDED COORDS

6100 FOR Ii-1 TO 3:X2(I!)-P0SI(I!):NEXT
6110 X»0:Y»0:Z=1:A*A2: GOSUB 1700 :A=P: GOSUB 1710 :A—L: GOSUB 1720

6120 C2(1)-X:C2(2)=Y:C2(3)»Z

6130 B2T=B2*TM:CB2T=C0S(B2T) :SB2T=SIN(B2T) :CS=0#

6140 FOR Il-l TO 3:P082(I!)-X2(I!)*CB2T+C2(I!)*SB2T
6160 CS«CS+X1(I!)*P0S2(I!):NEXT I!

6160 S-FNACS(CS) :SPD-8*AE/(TM-EPS*(TM-0))

6170 "

6180 ' GET INVERSE SOLN

6190 P2«FNASN(P0S2(3)):L2—FNATN2(P082(2) ,P0S2(1)):G08UB 1640

6200 '

6210 MO-10: LOCATE CLNX+2, 11: PRINT "SPEED REQUIRED - ";FNR(SPD);" knots"

6220 GOSUB 6810: ' PRINT OUT BEARING, RANGE, LAT k LONG

6230 LOCATE CLNX+8, 15: PRINT "1) CHANGE TIME OF INTERCEPT"

6240 LOCATE CLNX+O, 15: PRINT "2) NEW PROBLEM"

6250 LOCATE CLNt+10, 16:PRINT "3) MASTER MENU"

6260 GOSUB 9010:C»VAL(C$) :0N C GOTO 6020,6000,2000

6270 GOTO 6260
6280 '

8500 ' INPUT ROUTINE
6610 LOCATE CLNX+3 , 1 1 : PRINT "let LATITUDE DD.MMSS (-S) ;
6620 INPUT V$: GOSUB 1150:P1S=X*RD

6530 LOCATE CLNX+4 , 1 1 : PRINT "1st LONGITUDE DDD.MMSS (-E) ";

6640 INPUT V$: GOSUB 1160:L1S-X*RD

6560 LOCATE CLNX+6, 11: PRINT "2nd LATITUDE DD.MM8S (-S) ;
6660 INPUT V$: GOSUB 1160:P2S=X*RD

6570 LOCATE CLNX+6, 11: PRINT "2nd LONGITUDE DDD.MMSS (-E) ;
6580 INPUT V$: GOSUB 1160:L2S~X*RD

6590 LOCATE CLNX+7, 11: PRINT "2nd COURSE DDD.MMSS ;
6600 INPUT V$: GOSUB 1150:A2S-X*RD

6610 LOCATE CLNX+8, 11: INPUT "2nd SPEED (knots) ? ",S2

6620 B2-S2/AE: RETURN

6630 '

6800 ' OUTPUT BEARING, RANGE, LAT * LONG

6810 LOCATE CLNX+3 , 1 1 : PRINT "BEARING TO INTERCEPT = ";

6820 X=A12/RD:G08UB 1090: PRINT V$

6830 LOCATE CLNX+4 . 1 1 : PRINT "RANGE TO INTERCEPT = ";FNR(60#*DD/RD) ;

" n.ai."

6840 LOCATE CLNX+5, 11: PRINT "LATITUDE OF INTERCEPT = ";

6860 X=P2/RD: GOSUB 1090: PRINT V$

23

8860 LOCATE CLNl+6 , 1 1 : PRINT "LONGITUDE OF INTERCEPT - ";

8870 X-L2/RD: GOSUB 1000: PRINT V$

8880 RETURN

6890 '

7000 CLS:PRINT SPC(10);"TIME NEEDED TO INTERCEPT (l->2)": PRINT: PRINT

7010 CLNX-O: GOSUB 6610:' GET INPUT

7020 •

7030 * FIND Vain AND Tain vel.

7040 ' Compute arc distance S

7060 P=P1S:L=-L1S:G0SUB 1750:* CHNG SIGN OF LI GIVES RIGHT-HANDED COORDS

7060 FOR I!=l TO 3:11(1!)=P08I(I!) NEXT
7070 P=P2S;L=-L2S:G0SUB 1750:' CHNG SIGN OF L2 GIVES RIGHT-HANDED COORDS

7080 FOR IJ-1 TO 3:X2(I!)=P08I(I!) :NEXT

7090 X=0:Y=0:Z=1:A=A2S: GOSUB 1700 :A=P: GOSUB 1710 :A=-L: GOSUB 1720

7100 C2(1)-X:C2(2)-Y:C2(3)-Z
7110 '

7120 INITIALIZE
7130 X1X2-X1(1)*X2(1)+X1(2)*X2(2)+X1(3)*X2(3)
7140 X1C2-X1(1)*C2(1)+X1(2)*C2(2)+X1(3)*C2(3)
7150 •

7160 ' BEGIN ITERATION
7170 S-FNACS (X1X2) : T-S+AE/S2 : IT ! "1

7180 B2T-B2*T:CB2T»CQS(B2T) :SB2T-SIN(B2T)

7190 CS-X1X2*CB2T+X1C2*SB2T: S-FNACS (CS) : SS-SIN(S)

7200 DSDT=(X1X2*SB2T-X1C2*CB2T) *B2/SS
7210 F=T*DSDT-8
7220 FP-T*(B2*B2*(X1X2*CB2T+X1C2*SB2T)-CS*DSDT*DSDT)/SS
7230 IT!sIT!+l:CORR=F/FP:T=T-CORR:IF ABS(CORR)<. 00001 THEN 7270

7240 IF IT!>50 THEN PRINT "NO CONVERGENCE" : STOP
7250 GOTO 7180
7260 '

7270 TM8-T:VMIN-S*AE/T
7280 LOCATE CLNX+10,11:M0-10
7290 PRINT "MINIMUM SPEED REQUIRED TO INTERCEPT - ";FNR(VMIN) ;" knots"
7300 LOCATE CLNX+11,11:X-TMS:G0SUB 1010

7310 PRINT "TIME REQ/D TO INTERCEPT AT MIN SPEED - ";V$

7320 '

7330 CLNX-13: LOCATE CLNt,l:FOR Il-l TO 11:PRINT SPC(79) :NEXT: * CLEAR SCREEN
7340 LOCATE CLN%,11:PRINT "INTERCEPTOR SPEED (knots) ";:INPUT SPD

7360 IF 8PD>=VMIN THEN 7390
7360 LOCATE CLNX+2 , 1 1 : PRINT "SPEED TOO LOW, CANNOT INTERCEPT"
7370 GOSUB 9000: GOTO 7330
7380 '

7390 Bl-SPD/AE:T-TM8/5: T-.l :IT!-1

7400 B2T»B2*T:CB2T-C0S(B2T) :SB2T»8IN(B2T)
7410 CS-X1X2*CB2T+X1C2*SB2T: S-FNACS (CS) : SS-SIN(S)

7420 DSDT=(X1X2*SB2T-X1C2*CB2T) *B2/SS
7430 F-S/T-B1:FP-(DSDT-S/T)/T
7440 IT!=IT!+1:C0RR*F/FP:T»T-C0RR:IF ABS(CORR)<. 00001 THEN 7500

7460 IF IT!>60 THEN PRINT "NO CONVERGENCE" : STOP
7460 IF ABS(CORR)< 1000000000* THEN 7400
7470 LOCATE CLNX+2, 11: PRINT "SPEED TOO HIGH, NO CONVERGENCE"
7480 LOCATE CLNX+4: GOSUB 9000: GOTO 7330

24

7400 '

7500 X=T:G08UB 1010

7510 LOCATE CLN%+2 , 1 1 : PRINT "TIME REQUIRED - ";V$

7520 '

7530 ' GET INVERSE SOLN

7540 FOR Il-l TO 3:P0S2(I!)-X2(I!)*CB2T+C2(I!)*SB2T:NEXT I!

7550 P1=P18:L1=L1S:P2=FNASN(P0S2(3)):L2=-FNATN2(P0S2(2)
1 P0S2(1)) :GOSUB 1540

7560
7570 GOSUB 6810: ' PRINT OUT BEARING, RANGE, LAT * LONG
7580 LOCATE CLNX+8, 15: PRINT "1) CHANGE INTERCEPTOR SPEED"

7500 LOCATE CLNX+O, 15: PRINT "2) NEW PROBLEM"
7600 LOCATE CLNt+10, 15: PRINT "3) MASTER MENU"

7610 GOSUB 0010:C-VAL(C$):ON C GOTO 7330,7000,2000
7620 GOTO 7610
7630 '

8000 CL3:END
8010 *

0000 PRINT: PRINT SPC(IO); "PRESS ANY KEY TO CONTINUE

0010 FOR I!=l TO 0:C$=INKEY$:NEXT

0020 C$=INKEY$:IF C$-" THEN 0020
0030 RETURN

25

DISTRIBUTION LIST

NO. OF COPIES

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943-5000

Office of Research Administration 1

Code 012A
Naval Postgraduate School

Monterey, CA 93943-5000

Library, Code 55 1

Naval Postgraduate School

Monterey, CA 93943-5000

Office of Naval Research 2

Fleet Activity Support Division

Code ONR-230
800 North Quincy Street

Arlington, VA 22217

Chief of Naval Operations 1

Attn: Code OP-953C2
Washington, D.C. 20350

Navy Tactical Support Activiity 2

Attn: C. Earp, C. Reberkenny

P.O. Box 1042

Silver Springs, MD 20910

COMPATWINGSPAC 2

Attn: Code 51 and Code 532

Naval Air Station

Moffett Field, CA 94035

COMPATWINGSLANT 2

Attn: Code N7
Naval Air Station

Brunswick, ME 04011

26

Commander 2

Surface Warfare Development Group

Naval Amphibious Base, Little Creek

Norfolk, VA

COMSUBDEVRON TWELVE 2

Attn: Code 221

Submarine Base New London

Groton, CT 06349

Mr. James Grant 1

Code 18, Fleet Readiness Office

Naval Oceanographic Systems Center

San Diego, CA 92152

Dr. Martin Leonardo 1

Code 2031

Naval Air Development Center

Warminster, PA 18974-5000

Prof. R.H. Shudde, Code 55Su 50

Naval Postgraduate School

Monterey, CA 93943-5000

27

DUDLEY KNOX LIBRARY

3 2768 00343072 9

